WorldWideScience

Sample records for classical field theory

  1. Advanced classical field theory

    CERN Document Server

    Giachetta, Giovanni; Sardanashvily, Gennadi

    2009-01-01

    Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory

  2. Covariantizing Classical Field Theories

    CERN Document Server

    López, Marco Castrillón

    2010-01-01

    We show how to enlarge the covariance group of any classical field theory in such a way that the resulting "covariantized" theory is 'essentially equivalent' to the original. In particular, our technique will render any classical field theory generally covariant, that is, the covariantized theory will be spacetime diffeomorphism-covariant and free of absolute objects. Our results thus generalize the well-known parametrization technique of Dirac and Kucha\\v{r}. Our constructions apply equally well to internal covariance groups, in which context they produce natural derivations of both the Utiyama minimal coupling and St\\"uckelberg tricks.

  3. Invariants from classical field theory

    CERN Document Server

    Diaz, Rafael

    2007-01-01

    We introduce a method that generates invariant functions from classical field theories depending on external parameters. We apply our method to several field theories such as abelian BF, Chern-Simons and 2-dimensional Yang-Mills theory.

  4. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  5. Equilibration properties of classical integrable field theories

    Science.gov (United States)

    De Luca, Andrea; Mussardo, Giuseppe

    2016-06-01

    We study the equilibration properties of classical integrable field theories at a finite energy density, with a time evolution that starts from initial conditions far from equilibrium. These classical field theories may be regarded as quantum field theories in the regime of high occupation numbers. This observation permits to recover the classical quantities from the quantum ones by taking a proper \\hslash \\to 0 limit. In particular, the time averages of the classical theories can be expressed in terms of a suitable version of the LeClair-Mussardo formula relative to the generalized Gibbs ensemble. For the purposes of handling time averages, our approach provides a solution of the problem of the infinite gap solutions of the inverse scattering method.

  6. The classical theory of fields electromagnetism

    CERN Document Server

    Helrich, Carl S

    2012-01-01

    The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...

  7. Knot Invariants from Classical Field Theories

    CERN Document Server

    Leal, L C

    1999-01-01

    We consider the Non-Abelian Chern-Simons term coupled to external particles, in a gauge and diffeomorphism invariant form. The classical equations of motion are perturbativelly studied, and the on-shell action is shown to produce knot-invariants associated with the sources. The first contributions are explicitly calculated, and the corresponding knot-invariants are recognized. We conclude that the interplay between Knot Theory and Topological Field Theories is manifested not only at the quantum level, but in a classical context as well.

  8. Quantum field theory from classical statistics

    CERN Document Server

    Wetterich, C

    2011-01-01

    An Ising-type classical statistical model is shown to describe quantum fermions. For a suitable time-evolution law for the probability distribution of the Ising-spins our model describes a quantum field theory for Dirac spinors in external electromagnetic fields, corresponding to a mean field approximation to quantum electrodynamics. All quantum features for the motion of an arbitrary number of electrons and positrons, including the characteristic interference effects for two-fermion states, are described by the classical statistical model. For one-particle states in the non-relativistic approximation we derive the Schr\\"odinger equation for a particle in a potential from the time evolution law for the probability distribution of the Ising-spins. Thus all characteristic quantum features, as interference in a double slit experiment, tunneling or discrete energy levels for stationary states, are derived from a classical statistical ensemble. Concerning the particle-wave-duality of quantum mechanics, the discret...

  9. Variational principles for multisymplectic second-order classical field theories

    Science.gov (United States)

    Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso

    2015-06-01

    We state a unified geometrical version of the variational principles for second-order classical field theories. The standard Lagrangian and Hamiltonian variational principles and the corresponding field equations are recovered from this unified framework.

  10. Variational principles for multisymplectic second-order classical field theories

    OpenAIRE

    Román Roy, Narciso; Prieto Martínez, Pedro Daniel

    2015-01-01

    We state a unified geometrical version of the variational principles for second-order classical field theories. The standard Lagrangian and Hamiltonian variational principles and the corresponding field equations are recovered from this unified framework. Peer Reviewed

  11. Fisher information and quantum-classical field theory: classical statistics similarity

    Energy Technology Data Exchange (ETDEWEB)

    Syska, J. [Department of Field Theory and Particle Physics, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)

    2007-07-15

    The classical statistics indication for the impossibility to derive quantum mechanics from classical mechanics is proved. The formalism of the statistical Fisher information is used. Next the Fisher information as a tool of the construction of a self-consistent field theory, which joins the quantum theory and classical field theory, is proposed. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Conformal Field Theory Correlators from Classical Scalar Field Theory on $AdS_{d+1}$

    CERN Document Server

    Mück, W; Mueck, Wolfgang

    1998-01-01

    We use the correspondence between scalar field theory on $AdS_{d+1}$ and a conformal field theory on $R^d$ to calculate the 3- and 4-point functions of the latter. The classical scalar field theory action is evaluated at tree level.

  13. Lectures on classical and quantum theory of fields

    Energy Technology Data Exchange (ETDEWEB)

    Arodz, Henryk; Hadasz, Leszek [Jagiellonian Univ., Krakow (Poland). Inst. Physics

    2010-07-01

    This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)

  14. Lectures on Classical and Quantum Theory of Fields

    CERN Document Server

    Arodź, Henryk

    2010-01-01

    This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course.

  15. Classical electromagnetic field theory in the presence of magnetic sources

    CERN Document Server

    Chen, W J; Naón, C M; Chen, Wen-Jun; Li, Kang

    2001-01-01

    Using two new well defined 4-dimensional potential vectors, we formulate the classical Maxwell's field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we get both Maxwell's equation and the equation of motion of a dyon moving in the electro-magnetic field.

  16. Classical Electromagnetic Field Theory in the Presence of Magnetic Sources

    Institute of Scientific and Technical Information of China (English)

    LI Kang(李康); CHEN Wen-Jun(陈文俊); NAON Carlos M.

    2003-01-01

    Using two new well-defined four-dimensional potential vectors, we formulate the classical Maxwell field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources.We set up a consistent Lagrangian for the theory. Then from the action principle we obtain both Maxwell's equation and the equation of motion of a dyon moving in the electromagnetic field.

  17. Modern Classical Electrodynamics and Electromagnetic Radiation - Vacuum Field Theory Aspects

    OpenAIRE

    2011-01-01

    The work is devoted to studying some new classical electrodynamics models of interacting charged point particles and related with them physical aspects. Based on the vacuum field theory no-geometry approach, developed in \\cite{BPT,BPT1}, the Lagrangian and Hamiltonian reformulations of some alternative classical electrodynamics models are devised. A problem closely related to the radiation reaction force is analyzed aiming to explain the Wheeler and Feynman reaction radiation mechanism, well ...

  18. Classical Effective Field Theory and Caged Black Holes

    CERN Document Server

    Kol, Barak

    2007-01-01

    Matched Asymptotic Expansion (MAE) is a useful technique in General Relativity and other fields whenever interaction takes place between physics at two different length scales. Here MAE is argued to be equivalent quite generally to Classical Effective Field Theory (ClEFT) where one (or more) of the zones is replaced by an effective theory whose terms are organized in order of increasing irrelevancy, as demonstrated by Goldberger and Rothstein in a certain gravitational context. The ClEFT perspective has advantages as the procedure is clearer, it allows a representation via Feynman diagrams, and divergences can be regularized and renormalized in standard field theoretic methods. As a side product we obtain a wide class of classical examples of regularization and renormalization, concepts which are usually associated with Quantum Field Theories. We demonstrate these ideas through the thermodynamics of caged black holes, both simplifying the non-rotating case, and computing the rotating case. In particular we ar...

  19. Modern Classical Electrodynamics and Electromagnetic Radiation - Vacuum Field Theory Aspects

    CERN Document Server

    Bogolubov, N N

    2012-01-01

    The work is devoted to studying some new classical electrodynamics models of interacting charged point particles and related with them physical aspects. Based on the vacuum field theory no-geometry approach, developed in \\cite{BPT,BPT1}, the Lagrangian and Hamiltonian reformulations of some alternative classical electrodynamics models are devised. A problem closely related to the radiation reaction force is analyzed aiming to explain the Wheeler and Feynman reaction radiation mechanism, well known as the absorption radiation theory, and strongly dependent on the Mach type interaction of a charged point particle in an ambient vacuum electromagnetic medium. There are discussed some relationships between this problem and the one derived within the context of the vacuum field theory approach. The R. \\ Feynman's \\textquotedblleft heretical\\textquotedblright\\ approach \\cite{Dy1,Dy2} to deriving the Lorentz force based Maxwell electromagnetic equations is also revisited, its complete legacy is argued both by means o...

  20. Semi-Classical field theory as Decoherence Free Subspaces

    CERN Document Server

    Varela, Jaime

    2014-01-01

    We formulate semi-classical field theory as an approximate decoherence-free-subspace of a finite-dimensional quantum-gravity hilbert space. A complementarity construction can be realized as a unitary transformation which changes the decoherence-free-subspace. This can be translated to signify that field theory on a global slice, in certain space-times, is the simultaneous examination of two different superselected sectors of a gauge theory. We posit that a correct course graining procedure of quantum gravity should be WKB states propagating in a curved background in which particles exiting a horizon have imaginary components to their phases. The field theory appears non-unitary, but it is due to the existence of approximate decoherence free sub-spaces. Furthermore, the importance of operator spaces in the course-graining procedure is discussed. We also briefly touch on Firewalls.

  1. BOOK REVIEW: Classical Solutions in Quantum Field Theory Classical Solutions in Quantum Field Theory

    Science.gov (United States)

    Mann, Robert

    2013-02-01

    Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons--kinks, vortices, and magnetic monopoles--and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is rather condensed. It is

  2. Lie Groupoids in Classical Field Theory I: Noether's Theorem

    CERN Document Server

    Costa, Bruno T; Pêgas, Luiz Henrique P

    2015-01-01

    In the two papers of this series, we initiate the development of a new approach to implementing the concept of symmetry in classical field theory, based on replacing Lie groups/algebras by Lie groupoids/algebroids, which are the appropriate mathematical tools to describe local symmetries when gauge transformations are combined with space-time transformations. Here, we outline the basis of the program and, as a first step, show how to (re)formulate Noether's theorem about the connection between symmetries and conservation laws in this approach.

  3. Latfield2: A c++ library for classical lattice field theory

    CERN Document Server

    David, Daverio; Bevis, Neil

    2015-01-01

    latfield2 is a C++ library designed to simplify writing parallel codes for solving partial differen- tial equations, developed for application to classical field theories in particle physics and cosmology. It is a significant rewrite of the latfield framework, moving from a slab domain decomposition to a rod decomposition, where the last two dimension of the lattice are scattered into a two dimensional process grid. Parallelism is implemented using the Message Passing Interface (MPI) standard, and hidden in the basic objects of grid-based simulations: Lattice, Site and Field. It comes with an integrated parallel fast Fourier transform, and I/O server class permitting computation to continue during the writing of large files to disk. latfield2 has been used for production runs on tens of thousands of processor elements, and is expected to be scalable to hundreds of thousands.

  4. Geometry of Lagrangian First-order Classical Field Theories

    CERN Document Server

    Echeverría-Enríquez, A; Román-Roy, N; Echeverr\\'ia-Enr\\'iquez, Arturo; Muñoz-Lecanda, Miguel C.; Román-Roy, Narciso

    1996-01-01

    We construct a lagrangian geometric formulation for first-order field theories using the canonical structures of first-order jet bundles, which are taken as the phase spaces of the systems in consideration. First of all, we construct all the geometric structures associated with a first-order jet bundle and, using them, we develop the lagrangian formalism, defining the canonical forms associated with a lagrangian density and the density of lagrangian energy, obtaining the {\\sl Euler-Lagrange equations} in two equivalent ways: as the result of a variational problem and developing the {\\sl jet field formalism} (which is a formulation more similar to the case of mechanical systems). A statement and proof of Noether's theorem is also given, using the latter formalism. Finally, some classical examples are briefly studied.

  5. Principles of physics from quantum field theory to classical mechanics

    CERN Document Server

    Jun, Ni

    2014-01-01

    This book starts from a set of common basic principles to establish the formalisms in all areas of fundamental physics, including quantum field theory, quantum mechanics, statistical mechanics, thermodynamics, general relativity, electromagnetic field, and classical mechanics. Instead of the traditional pedagogic way, the author arranges the subjects and formalisms in a logical-sequential way, i.e. all the formulas are derived from the formulas before them. The formalisms are also kept self-contained. Most of the required mathematical tools are also given in the appendices. Although this book covers all the disciplines of fundamental physics, the book is concise and can be treated as an integrated entity. This is consistent with the aphorism that simplicity is beauty, unification is beauty, and thus physics is beauty. The book may be used as an advanced textbook by graduate students. It is also suitable for physicists who wish to have an overview of fundamental physics. Readership: This is an advanced gradua...

  6. Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation

    CERN Document Server

    Scheck, Florian

    2012-01-01

    The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...

  7. On covariant Poisson brackets in classical field theory

    Energy Technology Data Exchange (ETDEWEB)

    Forger, Michael [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Salles, Mário O. [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Campus Universitário – Lagoa Nova, BR–59078-970 Natal, RN (Brazil)

    2015-10-15

    How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra.

  8. A course in mathematical physics 2 classical field theory

    CERN Document Server

    Thirring, Walter

    1978-01-01

    In the past decade the language and methods ofmodern differential geometry have been increasingly used in theoretical physics. What seemed extravagant when this book first appeared 12 years ago, as lecture notes, is now a commonplace. This fact has strengthened my belief that today students of theoretical physics have to learn that language-and the sooner the better. Afterall, they willbe the professors ofthe twenty-first century and it would be absurd if they were to teach then the mathematics of the nineteenth century. Thus for this new edition I did not change the mathematical language. Apart from correcting some mistakes I have only added a section on gauge theories. In the last decade it has become evident that these theories describe fundamental interactions, and on the classical level their structure is suffi­ cientlyclear to qualify them for the minimum amount ofknowledge required by a theoretician. It is with much regret that I had to refrain from in­ corporating the interesting developments in Kal...

  9. Dressing the Post-Newtonian two-body problem and Classical Effective Field Theory

    CERN Document Server

    Kol, Barak

    2009-01-01

    We apply a dressed perturbation theory to better organize and economize the computation of high orders of the 2-body effective action of an inspiralling Post-Newtonian gravitating binary. We use the effective field theory approach with the non-relativistic field decomposition (NRG fields). For that purpose we develop quite generally the dressing theory of a non-linear classical field theory coupled to point-like sources. We introduce dressed charges and propagators, but unlike the quantum theory there are no dressed bulk vertices. The dressed quantities are found to obey recursive integral equations which succinctly encode parts of the diagrammatic expansion, and are the classical version of the Schwinger-Dyson equations. Actually, the classical equations are somewhat stronger since they involve only finitely many quantities, unlike the quantum theory. Classical diagrams are shown to factorize exactly when they contain non-linear world-line vertices, and we classify all the possible topologies of irreducible ...

  10. Shifting the Quantum-Classical Boundary: Theory and Experiment for Statistically Classical Optical Fields

    CERN Document Server

    Qian, Xiao-Feng; Howell, John C; Eberly, J H

    2015-01-01

    The growing recognition that entanglement is not exclusively a quantum property, and does not even originate with Schr\\"odinger's famous remark about it [Proc. Camb. Phil. Soc. {\\bf 31}, 555 (1935)], prompts examination of its role in marking the quantum-classical boundary. We have done this by subjecting correlations of classical optical fields to new Bell-analysis experiments, and report here values of the Bell parameter greater than ${\\cal B} = 2.54$. This is many standard deviations outside the limit ${\\cal B} = 2$ established by the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality [Phys. Rev. Lett. {\\bf 23}, 880 (1969)], in agreement with our theoretical classical prediction, and not far from the Tsirelson limit ${\\cal B} = 2.828...$. These results cast a new light on the standard quantum-classical boundary description, and suggest a reinterpretation of it.

  11. Prequantum Classical Statistical Field Theory: Schrödinger Dynamics of Entangled Systems as a Classical Stochastic Process

    Science.gov (United States)

    Khrennikov, Andrei

    2011-03-01

    The idea that quantum randomness can be reduced to randomness of classical fields (fluctuating at time and space scales which are essentially finer than scales approachable in modern quantum experiments) is rather old. Various models have been proposed, e.g., stochastic electrodynamics or the semiclassical model. Recently a new model, so called prequantum classical statistical field theory (PCSFT), was developed. By this model a "quantum system" is just a label for (so to say "prequantum") classical random field. Quantum averages can be represented as classical field averages. Correlations between observables on subsystems of a composite system can be as well represented as classical correlations. In particular, it can be done for entangled systems. Creation of such classical field representation demystifies quantum entanglement. In this paper we show that quantum dynamics (given by Schrödinger's equation) of entangled systems can be represented as the stochastic dynamics of classical random fields. The "effect of entanglement" is produced by classical correlations which were present at the initial moment of time, cf. views of Albert Einstein.

  12. Quantum Electrodynamics Basis of Classical-Field High-Harmonic Generation Theory

    Institute of Scientific and Technical Information of China (English)

    王兵兵; 高靓辉; 傅盘铭; 郭东升; R. R. Freeman

    2001-01-01

    From the nonperturbative quantum electrodynamics theory, we derive the Landau-Dykhne formula which represents the quantum-mechanical formulation of the three-step model. These studies provide a basis for the classical-field approaches to high-order harmonic generation and justify some assumptions used in classical-field modelling.

  13. Systematic method for unification of various field theories in a two-dimensional classical $\\phi^4$ field theory

    CERN Document Server

    Zarei, Mohammad Hossein

    2016-01-01

    Although creating a unified theory in Elementary Particles Physics is still an open problem, there are a lot of attempts for unifying other fields of physics. Following such unifications, we regard a two dimensional (2D) classical $\\Phi^{4}$ field theory model to study several field theories with different symmetries in various dimensions. While the completeness of this model has been already proved by a mapping between statistical mechanics and quantum information theory, here, we take into account a fundamental systematic approach with purely mathematical basis to re-derive such completeness in a general manner. Due to simplicity and generality, we believe that our method leads to a general approach which can be understood by other physical communities as well as quantum information theorists. Furthermore, our proof of the completeness is not only a proof-of-principle, but also an interesting algorithmic proof. We consider a discrete version of a general field theory as an arbitrary polynomial function of f...

  14. k-Cosymplectic Classical Field Theories: Tulczyjew and Skinner-Rusk Formulations

    Science.gov (United States)

    Rey, Angel M.; Román-Roy, Narciso; Salgado, Modesto; Vilariño, Silvia

    2012-06-01

    The k-cosymplectic Lagrangian and Hamiltonian formalisms of first-order classical field theories are reviewed and completed. In particular, they are stated for singular and almost-regular systems. Subsequently, several alternative formulations for k-cosymplectic first-order field theories are developed: First, generalizing the construction of Tulczyjew for mechanics, we give a new interpretation of the classical field equations. Second, the Lagrangian and Hamiltonian formalisms are unified by giving an extension of the Skinner-Rusk formulation on classical mechanics.

  15. A Four-Dimensional Continuum Theory of Space-Time and the Classical Physical Fields

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2007-10-01

    Full Text Available In this work, we attempt to describe the classical physical fields of gravity, electromagnetism, and the so-called intrinsic spin (chirality in terms of a set of fully geometrized constitutive equations. In our formalism, we treat the four-dimensional space-time continuum as a deformable medium and the classical fields as intrinsic stress and spin fields generated by infinitesimal displacements and rotations in the space-time continuum itself. In itself, the unifying continuum approach employed herein may suggest a possible unified field theory of the known classical physical fields.

  16. Classical Kinetic Theory of Landau Damping for Self-interacting Scalar Fields in the Broken Phase

    OpenAIRE

    1998-01-01

    The classical kinetic theory of one-component self-interacting scalar fields is formulated in the broken symmetry phase and applied to the phenomenon of Landau damping. The domain of validity of the classical approach is found by comparing with the result of a 1-loop quantum calculation.

  17. Solving effective field theory of interacting QCD pomerons in the semi-classical approximation

    CERN Document Server

    Bondarenko, S; Bondarenko, Sergey; Motyka, Leszek

    2006-01-01

    Effective field theory of BFKL pomerons interacting by QCD triple pomeron vertices is investigated. Classical equations of motion for the effective pomeron fields are presented being a minimal extension of the Balitsky-Kovchegov equation that incorporates both merging and splitting of the pomerons and that is self-dual. The equations are solved for symmetric boundary conditions. The solutions provide the dominant contribution to the scattering amplitudes in the semi-classical approximation. We find that for rapidities of the scattering larger than a critical value Y_c at least two classical solutions exist. Curiously, for each of the two classical solutions with the lowest action the symmetry between the projectile and the target is found to be spontaneously broken, being however preserved for the complete set of classical solutions. The solving configurations at rapidities Y>Y_c consist of a Gribov field being strongly suppressed even at very large gluon momenta and the complementary Gribov field that conver...

  18. Analysis of Slight Discrepancy Between Quantum Dynamics and Classical Statistical Dynamics For Second Order Field Theories

    CERN Document Server

    Werbos, P J

    2003-01-01

    Quantum Field Theory (QFT) makes predictions by combining two sets of assumptions: (1) quantum dynamics, such as a Schrodinger or Liouville equation; (2) quantum measurement, such as stochastic collapse to an eigenfunction of a measurement operator. A previous paper defined a classical density matrix R encoding the statistical moments of an ensemble of states of classical second-order Hamiltonian field theory. It proved Tr(RQ)=E(Q), etc., for the usual field operators as defined by Weinberg, and it proved that those observables of the classical system obey the usual Heisenberg dynamic equation. However, R itself obeys dynamics different from the usual Liouville equation! This paper derives those dynamics, and calculates the discrepancy between CFT and normal form QFT in predicting general observables g(Q,P). There is some preliminary evidence for the conjecture that the discrepancies disappear in equilibrium states (bound states and scattering states) for finite bosonic field theories. Even if not, they appea...

  19. Field theory and weak Euler-Lagrange equation for classical particle-field systems.

    Science.gov (United States)

    Qin, Hong; Burby, Joshua W; Davidson, Ronald C

    2014-10-01

    It is commonly believed as a fundamental principle that energy-momentum conservation of a physical system is the result of space-time symmetry. However, for classical particle-field systems, e.g., charged particles interacting through self-consistent electromagnetic or electrostatic fields, such a connection has only been cautiously suggested. It has not been formally established. The difficulty is due to the fact that the dynamics of particles and the electromagnetic fields reside on different manifolds. We show how to overcome this difficulty and establish the connection by generalizing the Euler-Lagrange equation, the central component of a field theory, to a so-called weak form. The weak Euler-Lagrange equation induces a new type of flux, called the weak Euler-Lagrange current, which enters conservation laws. Using field theory together with the weak Euler-Lagrange equation developed here, energy-momentum conservation laws that are difficult to find otherwise can be systematically derived from the underlying space-time symmetry.

  20. Dressing the post-Newtonian two-body problem and classical effective field theory

    Science.gov (United States)

    Kol, Barak; Smolkin, Michael

    2009-12-01

    We apply a dressed perturbation theory to better organize and economize the computation of high orders of the 2-body effective action of an inspiralling post-Newtonian (PN) gravitating binary. We use the effective field theory approach with the nonrelativistic field decomposition (NRG fields). For that purpose we develop quite generally the dressing theory of a nonlinear classical field theory coupled to pointlike sources. We introduce dressed charges and propagators, but unlike the quantum theory there are no dressed bulk vertices. The dressed quantities are found to obey recursive integral equations which succinctly encode parts of the diagrammatic expansion, and are the classical version of the Schwinger-Dyson equations. Actually, the classical equations are somewhat stronger since they involve only finitely many quantities, unlike the quantum theory. Classical diagrams are shown to factorize exactly when they contain nonlinear worldline vertices, and we classify all the possible topologies of irreducible diagrams for low loop numbers. We apply the dressing program to our post-Newtonian case of interest. The dressed charges consist of the dressed energy-momentum tensor after a nonrelativistic decomposition, and we compute all dressed charges (in the harmonic gauge) appearing up to 2PN in the 2-body effective action (and more). We determine the irreducible skeleton diagrams up to 3PN and we employ the dressed charges to compute several terms beyond 2PN.

  1. Geometric field theory and weak Euler-Lagrange equation for classical relativistic particle-field systems

    CERN Document Server

    Fan, Peifeng; Liu, Jian; Xiang, Nong; Yu, Zhi

    2016-01-01

    A manifestly covariant, or geometric, field theory for relativistic classical particle-field system is developed. The connection between space-time symmetry and energy-momentum conservation laws for the system is established geometrically without splitting the space and time coordinates, i.e., space-time is treated as one identity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that particles and field reside on different manifold. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of electromagnetic fields and also a functional of particles' world-lines. The other difficulty associated with the geometric setting is due to the mass-shell condition. The standard Euler-Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell condition is imposed. For the particle-field system, the geometric EL equation is further generalized into a w...

  2. Quantum epistemology from subquantum ontology: Quantum mechanics from theory of classical random fields

    Science.gov (United States)

    Khrennikov, Andrei

    2017-02-01

    The scientific methodology based on two descriptive levels, ontic (reality as it is) and epistemic (observational), is briefly presented. Following Schrödinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be unaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity-the quantum state ("wave function"). The correspondence PCSFT ↦ QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and the superposition principle-by using the formalism of classical field correlations.

  3. Numerical study of chiral plasma instability within the classical statistical field theory approach

    CERN Document Server

    Buividovich, P V

    2015-01-01

    We report on a numerical study of the real-time dynamics of chirally imbalanced lattice Dirac fermions coupled to dynamical electromagnetic field. To this end we use the classical statistical field theory approach, in which the quantum evolution of fermions is simulated exactly, and electromagnetic fields are treated as classical. Motivated by recent experiments on chirally imbalanced Dirac semimetals, we use the Wilson-Dirac lattice Hamiltonian for fermions in order to model the emergent nature of chiral symmetry at low energies. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring large chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to decay at the expense of nonzero helicity of electromagnetic ...

  4. A course in mathematical physics 1 and 2 classical dynamical systems and classical field theory

    CERN Document Server

    Thirring, Walter

    1992-01-01

    The last decade has seen a considerable renaissance in the realm of classical dynamical systems, and many things that may have appeared mathematically overly sophisticated at the time of the first appearance of this textbook have since become the everyday tools of working physicists. This new edition is intended to take this development into account. I have also tried to make the book more readable and to eradicate errors. Since the first edition already contained plenty of material for a one­ semester course, new material was added only when some of the original could be dropped or simplified. Even so, it was necessary to expand the chap­ ter with the proof of the K-A-M Theorem to make allowances for the cur­ rent trend in physics. This involved not only the use of more refined mathe­ matical tools, but also a reevaluation of the word "fundamental. " What was earlier dismissed as a grubby calculation is now seen as the consequence of a deep principle. Even Kepler's laws, which determine the radii of the ...

  5. Motion in classical field theories and the foundations of the self-force problem

    CERN Document Server

    Harte, Abraham I

    2014-01-01

    This article serves as a pedagogical introduction to the problem of motion in classical field theories. The primary focus is on self-interaction: How does an object's own field affect its motion? General laws governing the self-force and self-torque are derived using simple, non-perturbative arguments. The relevant concepts are developed gradually by considering motion in a series of increasingly complicated theories. Newtonian gravity is discussed first, then Klein-Gordon theory, electromagnetism, and finally general relativity. Linear and angular momenta as well as centers of mass are defined in each of these cases. Multipole expansions for the force and torque are then derived to all orders for arbitrarily self-interacting extended objects. These expansions are found to be structurally identical to the laws of motion satisfied by extended test bodies, except that all relevant fields are replaced by effective versions which exclude the self-fields in a particular sense. Regularization methods traditionally ...

  6. Verification and Invalidation of the Theory of Symplectic Manifold with Contact Degeneracies as Applied to the Classical Field Theory

    CERN Document Server

    Sokolov, Igor V

    2015-01-01

    A theory of Symplectic Manifold with Contact Degeneracies (SMCD) was developed in [Zot'ev,2007]. The symplectic geometry uses an anti-symmetric tensor (closed differential form) such as a field tensor used in the classical field theory. The SMCD theory studies degeneracies of such form. In [Zot'ev,2011] the SMCD theory was applied to study a front of an electromagnetic pulsed field propagating into a region with no field. Here, the result of [Zot'ev,2011] is compared with the problem solution obtained using the well-known method presented in Witham, G.B., Linear and nonlinear waves, 1974. It is shown that the SMCD theory prediction is not supported by the result obtained with the Witham method.

  7. Classical field theories of first order and lagrangian submanifolds of premultisymplectic manifolds

    CERN Document Server

    Campos, Cédric M; Marrero, Juan Carlos

    2011-01-01

    A description of classical field theories of first order in terms of Lagrangian submanifolds of premultisymplectic manifolds is presented. For this purpose, a Tulczyjew's triple associated with a fibration is discussed. The triple is adapted to the extended Hamiltonian formalism. Using this triple, we prove that Euler-Lagrange and Hamilton-De Donder-Weyl equations are the local equations defining Lagrangian submanifolds of a premultisymplectic manifold.

  8. Pseudo-classical transport in a sheared magnetic field: Theory and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nevins, W.M.; Harte, J.; Gell, Y.

    1979-11-01

    The cross-field transport due to the trapping of electrons in a finite amplitude wave (pseudo-classical transport) is investigated. Both finite wave frequencies and magnetic shear are included. The single particle orbit equations are solved to obtain the trapping criterion as well as the trapped particle orbit width and bounce frequency. Using a random walk model, the scaling of the pseudo-classical transport coefficients with the parameters of the plasma and wave are deduced. This scaling is employed to extend a previous calculation of the transport coefficients to include magnetic shear which is found to reduce these transport coefficients. Computer simulations of this transport process are presented. The measured transport rates are in very good agreement with the previous kinetic calculation in the absence of magnetic shear and with this extension of pseudo-classical transport theory which includes magnetic shear.

  9. On the Classical String Solutions and String/Field Theory Duality

    OpenAIRE

    Aleksandrova, D.; Bozhilov, P.

    2003-01-01

    We classify almost all classical string configurations, considered in the framework of the semi-classical limit of the string/gauge theory duality. Then, we describe a procedure for obtaining the conserved quantities and the exact classical string solutions in general string theory backgrounds, when the string embedding coordinates depend non-linearly on the worldsheet time parameter.

  10. Force-Field Functor Theory: Classical Force-Fields which Reproduce Equilibrium Quantum Distributions

    Directory of Open Access Journals (Sweden)

    Ryan eBabbush

    2013-10-01

    Full Text Available Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory.

  11. Force-field functor theory: classical force-fields which reproduce equilibrium quantum distributions.

    Science.gov (United States)

    Babbush, Ryan; Parkhill, John; Aspuru-Guzik, Alán

    2013-01-01

    Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory.

  12. Quantum epistemology from subquantum ontology: quantum mechanics from theory of classical random fields

    CERN Document Server

    Khrennikov, Andrei

    2016-01-01

    The scientific methodology based on two descriptive levels, ontic (reality as it is ) and epistemic (observational), is briefly presented. Following Schr\\"odinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be inaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity - the quantum state ("wave function"). The correspondence PCSFT to QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and th...

  13. Field theory and weak Euler-Lagrange equation for classical particle-field systems

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Hong [PPPL; Burby, Joshua W [PPPL; Davidson, Ronald C [PPPL

    2014-10-01

    It is commonly believed that energy-momentum conservation is the result of space-time symmetry. However, for classical particle-field systems, e.g., Klimontovich-Maxwell and Klimontovich- Poisson systems, such a connection hasn't been formally established. The difficulty is due to the fact that particles and the electromagnetic fields reside on different manifolds. To establish the connection, the standard Euler-Lagrange equation needs to be generalized to a weak form. Using this technique, energy-momentum conservation laws that are difficult to find otherwise can be systematically derived.

  14. Classical R-matrix theory for bi-Hamiltonian field systems

    Energy Technology Data Exchange (ETDEWEB)

    Blaszak, Maciej [Department of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Szablikowski, Blazej M [Department of Mathematics, University of Glasgow, Glasgow G12 8QW (United Kingdom)], E-mail: blaszakm@amu.edu.pl, E-mail: b.szablikowski@maths.gla.ac.uk

    2009-10-09

    This is a survey of the application of the classical R-matrix formalism to the construction of infinite-dimensional integrable Hamiltonian field systems. The main point is the study of bi-Hamiltonian structures. Appropriate constructions on Poisson, noncommutative and loop algebras as well as the central extension procedure are presented. The theory is developed for (1 + 1)- and (2 + 1)-dimensional field and lattice soliton systems as well as hydrodynamic systems. The formalism presented contains sufficiently many proofs and important details to make it self-contained and complete. The general theory is applied to several infinite-dimensional Lie algebras in order to construct both dispersionless and dispersive (soliton) integrable field systems.

  15. The quench map in an integrable classical field theory: nonlinear Schrödinger equation

    Science.gov (United States)

    Caudrelier, Vincent; Doyon, Benjamin

    2016-11-01

    We study the non-equilibrium dynamics obtained by an abrupt change (a quench) in the parameters of an integrable classical field theory, the nonlinear Schrödinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the quench map which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux–Bäcklund transformations, Gelfand–Levitan–Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the quantization of our classical approach to the quantum quench problem.

  16. A New Semi-Symmetric Unified Field Theory of the Classical Fields of Gravity and Electromagnetism

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2007-10-01

    Full Text Available We attempt to present a classical theoretical framework in which the gravitational and electromagnetic fields are unified as intrinsic geometric objects in the space-time manifold. For this purpose, we first present the preliminary geometric considerations dealing with the metric differential geometry of Cartan connections. The unified field theory is then developed as an extension of the general theory of relativity based on a semi- symmetric Cartan connection which is meant to be as close as possible structurally to the symmetric connection of the Einstein-Riemann space-time.

  17. The principle of stationary nonconservative action for classical mechanics and field theories

    CERN Document Server

    Galley, Chad R; Stein, Leo C

    2014-01-01

    We further develop a recently introduced variational principle of stationary action for problems in nonconservative classical mechanics and extend it to classical field theories. The variational calculus used is consistent with an initial value formulation of physical problems and allows for time-irreversible processes, such as dissipation, to be included at the level of the action. In this formalism, the equations of motion are generated by extremizing a nonconservative action $\\mathcal{S}$, which is a functional of a doubled set of degrees of freedom. The corresponding nonconservative Lagrangian contains a potential $K$ which generates nonconservative forces and interactions. Such a nonconservative potential can arise in several ways, including from an open system interacting with inaccessible degrees of freedom or from integrating out or coarse-graining a subset of variables in closed systems. We generalize Noether's theorem to show how Noether currents are modified and no longer conserved when $K$ is non-...

  18. Classical solutions in quantum field theory solitons and instantons in high energy physics

    CERN Document Server

    Weinberg, Erick J

    2012-01-01

    Classical solutions play an important role in quantum field theory, high energy physics and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for early universe cosmology. Imaginary-time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on ...

  19. The Quench Map in an Integrable Classical Field Theory: Nonlinear Schr\\"odinger Equation

    CERN Document Server

    Caudrelier, Vincent

    2016-01-01

    We study the non-equilibrium dynamics obtained by an abrupt change (a {\\em quench}) in the parameters of an integrable classical field theory, the nonlinear Schr\\"odinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the {\\em quench map} which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux-B\\"acklund transformations, Gelfand-Levitan-Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the ...

  20. Particle creation, classicality and related issues in quantum field theory: I. Formalism and toy models

    CERN Document Server

    Mahajan, Gaurang

    2007-01-01

    The quantum theory of a harmonic oscillator with a time dependent frequency arises in several important physical problems, especially in the study of quantum field theory in an external background. While the mathematics of this system is straightforward, several conceptual issues arise in such a study. We present a general formalism to address some of the conceptual issues like the emergence of classicality, definition of particle content, back reaction etc. In particular, we parametrize the wave function in terms of a complex number (which we call excitation parameter) and express all physically relevant quantities in terms it. Many of the notions -- like those of particle number density, effective Lagrangian etc., which are usually defined using asymptotic in-out states -- are generalized as time-dependent concepts and we show that these generalized definitions lead to useful and reasonable results. Having developed the general formalism we apply it to several examples. Exact analytic expressions are found ...

  1. Classical and quantum theory of the massive spin-two field

    Science.gov (United States)

    Koenigstein, Adrian; Giacosa, Francesco; Rischke, Dirk H.

    2016-05-01

    In this paper, we review classical and quantum field theory of massive non-interacting spin-two fields. We derive the equations of motion and Fierz-Pauli constraints via three different methods: the eigenvalue equations for the Casimir invariants of the Poincaré group, a Lagrangian approach, and a covariant Hamilton formalism. We also present the conserved quantities, the solution of the equations of motion in terms of polarization tensors, and the tree-level propagator. We then discuss canonical quantization by postulating commutation relations for creation and annihilation operators. We express the energy, momentum, and spin operators in terms of the former. As an application, quark-antiquark currents for tensor mesons are presented. In particular, the current for tensor mesons with quantum numbers JPC =2-+ is, to our knowledge, given here for the first time.

  2. Conformal Field Theory Correlators from Classical Field Theory on Anti-de Sitter Space; 2, Vector and Spinor Fields

    CERN Document Server

    Mück, W

    1998-01-01

    We use the AdS/CFT correspondence to calculate CFT correlation functions of vector and spinor fields. The connection between the AdS and boundary fields is properly treated via a Dirichlet boundary value problem.

  3. Open and Closed String field theory interpreted in classical Algebraic Topology

    OpenAIRE

    Sullivan, Dennis

    2003-01-01

    There is an interpretation of open string field theory in algebraic topology. An interpretation of closed string field theory can be deduced from this open string theory to obtain as well the interpretation of open and closed string field theory combined.

  4. Gauge bridges in classical field theory; Eichbruecken in der klassischen Feldtheorie

    Energy Technology Data Exchange (ETDEWEB)

    Jakobs, S.

    2009-03-15

    In this thesis Poisson structures of two classical gauge field theories (Maxwell-Klein-Gordon- and Maxwell-Dirac-system) are constructed using the parametrix construction of Green's functions. Parametrices for the Maxwell-Klein-Gordon- and Maxwell-Dirac-system are constructed in Minkowski space and this construction is later generalized to curved space times for the Maxwell-Klein-Gordon-system. With these Green's functions Poisson brackets will be defined as Peierls brackets. Finally non-local, gauge invariant observables, the so-called 'gauge bridges'are constructed. Gauge bridges are the matrix elements of holonomy operators. It is shown, that these emerge from Poisson brackets of local, gauge invariant observables. (orig.)

  5. Non-Noetherian symmetries for oscillators in classical mechanics and in field theory

    Science.gov (United States)

    Hojman, Sergio A.; Delajara, Jamie; Pena, Leda

    1995-01-01

    Infinitely many new conservation laws both for free fields as well as for test fields evolving on a given gravitational background are presented. The conserved currents are constructed using the field theoretical counterpart of a recently discovered non-Noetherian symmetry which gives rise to a new way of solving the classical small oscillations problem. Several examples are discussed.

  6. Unified field theory from the classical wave equation: Preliminary application to atomic and nuclear structure

    Science.gov (United States)

    Múnera, Héctor A.

    2016-07-01

    It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger's first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding a unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich's unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.

  7. Discrete Classical Electromagnetic Fields

    CERN Document Server

    De Souza, M M

    1997-01-01

    The classical electromagnetic field of a spinless point electron is described in a formalism with extended causality by discrete finite transverse point-vector fields with discrete and localized point interactions. These fields are taken as a classical representation of photons, ``classical photons". They are all transversal photons; there are no scalar nor longitudinal photons as these are definitely eliminated by the gauge condition. The angular distribution of emitted photons coincides with the directions of maximum emission in the standard formalism. The Maxwell formalism and its standard field are retrieved by the replacement of these discrete fields by their space-time averages, and in this process scalar and longitudinal photons are necessarily created and added. Divergences and singularities are by-products of this averaging process. This formalism enlighten the meaning and the origin of the non-physical photons, the ones that violate the Lorentz condition in manifestly covariant quantization methods.

  8. Potential Theory in Classical Electrodynamics

    CERN Document Server

    Engelhardt, Wolfgang

    2012-01-01

    In Maxwell's classical theory of electrodynamics the fields are frequently expressed by potentials in order to facilitate the solution of the first order system of equations. This method obscures, however, that there exists an inconsistency between Faraday's law of induction and Maxwell's flux law. As a consequence of this internal contradiction there is neither gauge invariance, nor exist unique solutions in general. It is also demonstrated that inhomogeneous wave equations cannot be solved by retarded integrals.

  9. Equation of Motion of a Mass Point in Gravitational Field and Classical Tests of Gauge Theory of Gravity

    Institute of Scientific and Technical Information of China (English)

    WU Ning; ZHANG Da-Hua

    2007-01-01

    A systematic method is developed to study the classical motion of a mass point in gravitational gauge field.First,by using Mathematica,a spherical symmetric solution of the field equation of gravitational gauge field is obtained,which is just the traditional Schwarzschild solution.Combining the principle of gauge covariance and Newton's second law of motion,the equation of motion of a mass point in gravitational field is deduced.Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field,we can discuss classical tests of gauge theory of gravity,including the deflection of light by the sun,the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun.It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.

  10. Classical Electromagnetic Theory

    CERN Document Server

    VanderLinde, Jack

    2004-01-01

    This book is a self contained course in electromagnetic theory suitable for senior physics and electrical engineering students as well as graduate students whose past has not prepared them well for books such as Jackson or Landau and Lifschitz. The text is liberally sprinkled with worked examples illustrating the application of the theory to various physical problems. In this new edition I have endeavored to improve the accuracy and readability, added and further clarified examples, added sections on Schwarz-Christoffel mappings, and to make the book more self sufficient added an appendix on orthogonal function expansions and added the derivation of Bessel functions and Legendre polynomials as well as derivation of their generating functions. The number of student exercises has been increased by 45 over the previous edition. This book stresses the unity of electromagnetic theory with electric and magnetic fields developed in parallel. SI units are used throughout and considerable use is made of tensor notatio...

  11. Equations of motion in Double Field Theory: from classical particles to quantum cosmology

    CERN Document Server

    Kan, Nahomi; Shiraishi, Kiyoshi

    2012-01-01

    The equation of motion for a point particle in the background field of double field theory is considered. We find that the motion is described by a geodesic flow in the doubled geometry. Inspired by analysis on the particle motion, we propose a modified model of quantum string cosmology, which includes two scale factors. The report is based on Phys. Rev. D84 (2011) 124049 [arXiv:1108.5795].

  12. From classical to quantum fields

    CERN Document Server

    Baulieu, Laurent; Sénéor, Roland

    2017-01-01

    Quantum Field Theory has become the universal language of most modern theoretical physics. This introductory textbook shows how this beautiful theory offers the correct mathematical framework to describe and understand the fundamental interactions of elementary particles. The book begins with a brief reminder of basic classical field theories, electrodynamics and general relativity, as well as their symmetry properties, and proceeds with the principles of quantisation following Feynman's path integral approach. Special care is used at every step to illustrate the correct mathematical formulation of the underlying assumptions. Gauge theories and the problems encountered in their quantisation are discussed in detail. The last chapters contain a full description of the Standard Model of particle physics and the attempts to go beyond it, such as grand unified theories and supersymmetry. Written for advanced undergraduate and beginning graduate students in physics and mathematics, the book could also serve as a re...

  13. Electromagnetic Field Interaction With Transmission Lines From Classical Theory to HF Radiation Effects

    CERN Document Server

    Tkachenko, Sergey V

    2008-01-01

    The evaluation of the electromagnetic field coupling to transmission lines is an important problem in electromagnetic compatibility. The unabated increase in the operating frequency of electronic products and the emergence of sources of disturbances with higher frequency content (such as High Power Microwave and Ultra-Wide Band systems) have led to a breakdown of the TL approximation's basic assumptions for a number of applications. In the last decade or so, the generalization of the TL theory to take into account high frequency effects has emerged as an important topic of study in electromagn

  14. Non-equilibrium statistical field theory for classical particles: Non-linear structure evolution with first-order interaction

    CERN Document Server

    Bartelmann, Matthias; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia

    2014-01-01

    We calculate the power spectrum of density fluctuations in the statistical non-equilibrium field theory for classical, microscopic degrees of freedom to first order in the interaction potential. We specialise our result to cosmology by choosing appropriate initial conditions and propagators and show that the non-linear growth of the density power spectrum found in numerical simulations of cosmic structure evolution is reproduced well to redshift zero and for arbitrary wave numbers. The main difference of our approach to ordinary cosmological perturbation theory is that we do not perturb a dynamical equation for the density contrast. Rather, we transport the initial phase-space distribution of a canonical particle ensemble forward in time and extract any collective information from it at the time needed. Since even small perturbations of particle trajectories can lead to large fluctuations in density, our approach allows to reach high density contrast already at first order in the perturbations of the particle...

  15. Classical Information Theory

    Science.gov (United States)

    Suhov, Y.

    We begin with the definition of information gained by knowing that an event A has occurred: iota (A) = -log_2 {{P}}(A). (A dual point of view is also useful (although more evasive), where iota (A) is the amount of information needed to specify event A.) Here and below {{P}} stands for the underlying probability distribution. So the rarer an event A, the more information we gain if we know it has occurred. (More broadly, the rarer an event A, the more impact it will have. For example, the unlikely event that occurred in 1938 when fishermen caught a coelacanth - a prehistoric fish believed to be extinct - required a significant change to beliefs about evolution and biology. On the other hand, the likely event of catching a herring or a tuna would hardly imply any change in theories.)

  16. Classical phase space and Hadamard states in the BRST formalism for gauge field theories on curved spacetime

    CERN Document Server

    Wrochna, Michał

    2014-01-01

    We investigate linearized gauge theories on globally hyperbolic spacetimes in the BRST formalism. A consistent definition of the classical phase space and of its Cauchy surface analogue is proposed. We prove it is isomorphic to the phase space in the subsidiary condition approach of Hack and Schenkel in the case of Maxwell, Yang-Mills, and Rarita-Schwinger fields. Defining Hadamard states in the BRST formalism in a standard way, their existence in the Maxwell and Yang-Mills case is concluded from known results in the subsidiary condition (or Gupta-Bleuler) formalism. Within our framework, we also formulate criteria for non-degeneracy of the phase space in terms of BRST cohomology and discuss special cases. These include an example in the Yang-Mills case, where degeneracy is not related to a non-trivial topology of the Cauchy surface.

  17. Classical theory of radiating strings

    Science.gov (United States)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  18. Classical Simulation of Quantum Fields I

    CERN Document Server

    Hirayama, T

    2005-01-01

    We study classical field theories in a background field configuration where all modes of the theory are excited, matching the zero-point energy spectrum of quantum field theory. Our construction involves elements of a theory of classical electrodynamics by Wheeler-Feynman and the theory of stochastic electrodynamics of Boyer. The nonperturbative effects of interactions in these theories can be very efficiently studied on the lattice. In $\\lambda\\phi^{4}$ theory in 1+1 dimensions we find results, in particular for mass renormalization and the critical coupling for symmetry breaking, that are in agreement with their quantum counterparts. We then study the perturbative expansion of the $n$-point Green's functions and find a loop expansion very similar to that of quantum field theory. When compared to the usual Feynman rules, we find some differences associated with particular combinations of internal lines going on-shell simultaneously.

  19. Classical simulation of quantum fields I

    Science.gov (United States)

    Hirayama, T.; Holdom, B.

    2006-10-01

    We study classical field theories in a background field configuration where all modes of the theory are excited, matching the zero-point energy spectrum of quantum field theory. Our construction involves elements of a theory of classical electrodynamics by Wheeler-Feynman and the theory of stochastic electrodynamics of Boyer. The nonperturbative effects of interactions in these theories can be very efficiently studied on the lattice. In lambda phi(4) theory in 1 + 1 dimensions, we find results, in particular, for mass renormalization and the critical coupling for symmetry breaking that are in agreement with their quantum counterparts. We then study the perturbative expansion of the n-point Green's functions and find a loop expansion very similar to that of quantum field theory. When compared to the usual Feynman rules, we find some differences associated with particular combinations of internal lines going on-shell simultaneously.

  20. Quantum field theory and classical optics: determining the fine structure constant

    OpenAIRE

    Leuchs, Gerd; Hawton, Margaret; Sanchez-Soto, Luis L.

    2016-01-01

    The properties of the vacuum are described by quantum physics including the response to external fields such as electromagnetic radiation. Of the two parameters that govern the details of the electromagnetic field dynamics in vacuum, one is fixed by the requirement of Lorentz invariance $c= 1/\\sqrt{\\varepsilon_{0} \\mu_{0}}$. The other one, $Z_{0}= \\sqrt{\\mu_{0}/\\varepsilon_{0}} = 1/(c\\varepsilon_{0})$ and its relation to the quantum vacuum, is discussed in this contribution. Deriving $\\vareps...

  1. Point-source idealization in classical field theories. II. Mechanical energy losses from electromagnetic radiation reaction

    Science.gov (United States)

    Kates, Ronald E.; Rosenblum, Arnold

    1982-05-01

    This paper compares the mechanical energy losses due to electromagnetic radiation reaction on a two-particle, slow-motion system, as calculated from (1) the method of matched asymptotic expansions and (2) the Lorentz-Dirac equation, which assumes point sources. The matching derivation of the preceding paper avoided the assumption of a δ-function source by using Reissner-Nordström matching zones. Despite the differing mathematical assumptions of the two methods, their results are in agreement with each other and with the electromagnetic-field energy losses calculated by the evaluation of flux integrals. Our purpose is eventually to analyze Rosenblum's use of point sources as a possible cause of disagreement between the analogous calculations of gravitational radiation on a slow-motion system of two bodies. We begin with the simpler electromagnetic problem.

  2. Classical theory of the hydrogen atom

    CERN Document Server

    Rashkovskiy, Sergey

    2016-01-01

    It is shown that all of the basic properties of the hydrogen atom can be consistently described in terms of classical electrodynamics instead of taking the electron to be a particle; we consider an electrically charged classical wave field, an "electron wave", which is held in a limited region of space by the electrostatic field of the proton. It is shown that quantum mechanics must be considered to be not a theory of particles but a classical field theory in the spirit of classical electrodynamics. In this case, we are not faced with difficulties in interpreting the results of the theory. In the framework of classical electrodynamics, all of the well-known regularities of the spontaneous emission of the hydrogen atom are obtained, which is usually derived in the framework of quantum electrodynamics. It is shown that there are no discrete states and discrete energy levels of the atom: the energy of the atom and its states change continuously. An explanation of the conventional corpuscular-statistical interpre...

  3. The classical electromagnetic field

    CERN Document Server

    Eyges, Leonard

    2010-01-01

    This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.

  4. Beyond HTL: The Classical Kinetic Theory of Landau Damping for Selfinteracting Scalar Fields in the Broken Phase

    OpenAIRE

    1999-01-01

    The effective theory of low frequency fluctuations of selfinteracting scalar fields is constructed in the broken symmetry phase. The theory resulting from integrating fluctuations with frequencies much above the spontanously generated mass scale $(p_0>>M)$ is found to be local. Non-local dynamics, especially Landau damping emerges under the effect of fluctuations in the $p_0 \\sim M$ region. A kinetic theory of relativistic scalar gas particles interacting via their locally variable mass with ...

  5. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  6. Evolution operator equation: Integration with algebraic and finite difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado

    1997-10-01

    The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.

  7. Field theory

    CERN Document Server

    Roman, Steven

    2006-01-01

    Intended for graduate courses or for independent study, this book presents the basic theory of fields. The first part begins with a discussion of polynomials over a ring, the division algorithm, irreducibility, field extensions, and embeddings. The second part is devoted to Galois theory. The third part of the book treats the theory of binomials. The book concludes with a chapter on families of binomials - the Kummer theory. This new edition has been completely rewritten in order to improve the pedagogy and to make the text more accessible to graduate students.  The exercises have also been im

  8. Classical Higgs fields on gauge gluon bundles

    Directory of Open Access Journals (Sweden)

    Palese Marcella

    2016-01-01

    Full Text Available Classical Higgs fields and related canonical conserved quantities are defined by invariant variational problems on suitably defined gauge gluon bundles. We consider Lagrangian field theories which are assumed to be invariant with respect to the action of a gauge-natural group. As an illustrative example we exploit the ‘gluon Lagrangian’, i.e. a Yang-Mills Lagrangian on the (1, 1-order gauge-natural bundle of SU(3-principal connections. The kernel of the gauge-natural Jacobi morphism for such a Lagrangian, by inducing a reductive split structure, canonically defines a ‘gluon classical Higgs field’.

  9. Theory of motion for monopole-dipole singularities of classical Yang-Mills-Higgs fields. I. Laws of motion

    Science.gov (United States)

    Drechsler, Wolfgang; Havas, Peter; Rosenblum, Arnold

    1984-02-01

    In two recent papers, the general form of the laws of motion for point particles which are multipole sources of the classical coupled Yang-Mills-Higgs fields was determined by Havas, and for the special case of monopole singularities of a Yang-Mills field an iteration procedure was developed by Drechsler and Rosenblum to obtain the equations of motion of mass points, i.e., the laws of motion including the explicit form of the fields of all interacting particles. In this paper we give a detailed derivation of the laws of motion of monopole-dipole singularities of the coupled Yang-Mills-Higgs fields for point particles with mass and spin, following a procedure first applied by Mathisson and developed by Havas. To obtain the equations of motion, a systematic approximation method is developed in the following paper for the solution of the nonlinear field equations and determination of the fields entering the laws of motion found here to any given order in the coupling constant g.

  10. Introduction to Classical Density Functional Theory by a Computational Experiment

    Science.gov (United States)

    Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2014-01-01

    We propose an in silico experiment to introduce the classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely on abstract concepts that are nonintuitive; however, they are at the heart of powerful tools and active fields of research in both physics and chemistry. They led to the 1998 Nobel Prize in…

  11. Classical Solutions of SU(3) Pure Yang-Mills Theory

    OpenAIRE

    2002-01-01

    Regular classical solutions of pure SU(3) gauge theories, in Minkowsky spacetime, are computed in the Landau gauge. The classical fields have an intrinsic energy scale and produce quark confinement if interpreted in the sense of a nonrelativistic potential. Moreover, the quark propagator in the background of these fields vanishes at large positive and negative time and space separations.

  12. Dual Double Field Theory

    CERN Document Server

    Bergshoeff, Eric A; Penas, Victor A; Riccioni, Fabio

    2016-01-01

    We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for "exotic" dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.

  13. Energy conditions and classical scalar fields

    CERN Document Server

    Bellucci, S

    2002-01-01

    Attention has been recently called upon the fact that the weak and null energy conditions and the second law of thermodynamics are violated in wormhole solutions of Einstein's theory with classical, nonminimally coupled, scalar fields as material source. It is shown that the discussion is only meaningful when ambiguities in the definitions of stress-energy tensor and energy density of a nonminimally coupled scalar are resolved. The three possible approaches are discussed with emphasis on the positivity of the respective energy densities and covariant conservation laws. The root of the ambiguities is traced to the energy localization problem for the gravitational field.

  14. Non-equilibrium statistical field theory for classical particles: Linear and mildly non-linear evolution of cosmological density power spectra

    CERN Document Server

    Bartelmann, Matthias; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia

    2014-01-01

    We use the non-equlibrium statistical field theory for classical particles, recently developed by Mazenko and Das and Mazenko, together with the free generating functional we have previously derived for point sets initially correlated in phase space, to calculate the time evolution of power spectra in the free theory, i.e. neglecting particle interactions. We provide expressions taking linear and quadratic momentum correlations into account. Up to this point, the expressions are general with respect to the free propagator of the microscopic degrees of freedom. We then specialise the propagator to that expected for particles in cosmology treated within the Zel'dovich approximation and show that, to linear order in the momentum correlations, the linear growth of the cosmological power spectrum is reproduced. Quadratic momentum correlations return a first contribution to the non-linear evolution of the power spectrum, for which we derive a simple closed expression valid for arbitrary wave numbers. This expressio...

  15. Microcontinuum field theories

    CERN Document Server

    Eringen, A Cemal

    1999-01-01

    Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...

  16. A Classical Introduction to Galois Theory

    CERN Document Server

    Newman, Stephen C

    2012-01-01

    This book provides an introduction to Galois theory and focuses on one central theme - the solvability of polynomials by radicals. Both classical and modern approaches to the subject are described in turn in order to have the former (which is relatively concrete and computational) provide motivation for the latter (which can be quite abstract). The theme of the book is historically the reason that Galois theory was created, and it continues to provide a platform for exploring both classical and modern concepts. This book examines a number of problems arising in the area of classical mathematic

  17. Theory of interacting quantum fields

    CERN Document Server

    Rebenko, Alexei L

    2012-01-01

    This monograph is devoted to the systematic and encyclopedic presentation of the foundations of quantum field theory. It represents mathematical problems of the quantum field theory with regardto the new methods of the constructive and Euclidean field theory formed for the last thirty years of the 20th century on the basis of rigorous mathematical tools of the functional analysis, the theory of operators, and the theory of generalized functions. The book is useful for young scientists who desire to understand not only the formal structure of the quantum field theory but also its basic concepts and connection with classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of functional integration.

  18. Theory of motion for monopole-dipole singularities of classical Yang-Mills-Higgs fields. II. Approximation scheme and equations of motion

    Science.gov (United States)

    Drechsler, Wolfgang; Havas, Peter; Rosenblum, Arnold

    1984-02-01

    In the preceding paper, the laws of motion were established for classical particles with spin which are monopole-dipole singularities of Yang-Mills-Higgs fields. In this paper, a systematic approximation scheme is developed for solving the coupled nonlinear field equations in any order and for determining the corresponding equations of motion. In zeroth order the potentials are taken as the usual Liénard-Wiechert and Bhabha-Harish-Chandra potentials (generalized to isospace); in this order the solutions are necessarily Abelian, since the isovector describing the charge is constant. The regularization necessary to obtain expressions finite on the world lines of the particles is achieved by the method of Riesz potentials. All fields are taken as retarded and are expressed in integral form. Omitting dipole interactions, the integrals for the various terms are carried out as far as possible for general motions, including radiation-reaction terms. In first order, the charge isovectors are no longer necessarily constant; thus the solutions are not necessarily Abelian, and it is possible for charge to be radiated away. The cases of time-symmetric field theory and of an action-at-a-distance formulation of the theory are discussed in an appendix.

  19. Generalizability Theory and Classical Test Theory

    Science.gov (United States)

    Brennan, Robert L.

    2011-01-01

    Broadly conceived, reliability involves quantifying the consistencies and inconsistencies in observed scores. Generalizability theory, or G theory, is particularly well suited to addressing such matters in that it enables an investigator to quantify and distinguish the sources of inconsistencies in observed scores that arise, or could arise, over…

  20. Classical Theory, Postmodernism, and the Sociology Liberal Arts Curriculum.

    Science.gov (United States)

    Lembcke, Jerry Lee

    1993-01-01

    Discusses classical theory as a modernist endeavor to apprehend the phenomenon of "unity of disunity." Presents three ways that classical theory approaches the philosophy views of Durkheim, Marx, and Weber. Concludes that postmodernism validates the relevancy of classical theory. (CFR)

  1. Unified classical path theories of pressure broadening.

    Science.gov (United States)

    Bottcher, C.

    1971-01-01

    Derivation of a unified classical path theory of pressure broadening, using only elementary concepts. It is shown that the theory of Smith, Cooper and Vidal (1969) is only correct at all frequencies to first order in the number density of perturbers.

  2. Classical Fields and the Quantum Concept

    CERN Document Server

    De Souza, M M

    1996-01-01

    We do a critical review of the Faraday-Maxwell concept of classical field and of its quantization process. With the hindsight knowledge of the essentially quantum character of the interactions, we use a naive classical model of field, based on exchange of classical massless particles, for a comparative and qualitative analysis of the physical content of the Coulomb's and Gauss's laws. It enlightens the physical meaning of a field singularity and of a static field. One can understand the problems on quantizing a classical field but not the hope of quantizing the gravitational field right from General Relativity.

  3. Beam structures classical and advanced theories

    CERN Document Server

    Carrera, Erasmo; Petrolo, Marco

    2011-01-01

    Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc.  Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for be

  4. Introducing quantum effects in classical theories

    CERN Document Server

    Fabris, J C; Rodrigues, D C; Daouda, M H

    2015-01-01

    In this paper, we explore two different ways of implementing quantum effects in a classical structure. The first one is through an external field. The other one is modifying the classical conservation laws. In both cases, the consequences for the description of the evolution of the universe are discussed.

  5. Plasmon mass scale in classical nonequilibrium gauge theory

    CERN Document Server

    Lappi, Tuomas

    2016-01-01

    Classical lattice Yang-Mills calculations provide a good way to understand different nonequilibrium phenomena in nonperturbatively overoccupied systems. Above the Debye scale the classical theory can be matched smoothly to kinetic theory. The aim of this work is to study the limits of this quasiparticle picture by determining the plasmon mass in classical real time Yang-Mills theory on a lattice in 3 spatial dimensions. We compare three methods to determine the plasmon mass: a hard thermal loop expression in terms of the particle distribution, an effective dispersion relation constructed from fields and their time derivatives, and by measuring oscillations between electric and magnetic field modes after artificially introducing a homogeneous color electric field. We find that a version of the dispersion relation that uses electric fields and their time derivatives agrees with the other methods within 50%.

  6. Prototype Theory and Classical Theory:An Explanation and Comparison

    Institute of Scientific and Technical Information of China (English)

    刘莹

    2014-01-01

    This paper discusses two different ways to understand categorization, which are classical theory and prototype theory. There is a deep exploration on how to understand categories, and different theoretical backgrounds of the two categorization the⁃ories. Furthermore, it reviews the limitations and advantages of both theories. And the comparison of the theories gives a clearer angle to understand their similarities and differences.

  7. Classical Ergodicity and Modern Portfolio Theory

    Directory of Open Access Journals (Sweden)

    Geoffrey Poitras

    2015-01-01

    Full Text Available What role have theoretical methods initially developed in mathematics and physics played in the progress of financial economics? What is the relationship between financial economics and econophysics? What is the relevance of the “classical ergodicity hypothesis” to modern portfolio theory? This paper addresses these questions by reviewing the etymology and history of the classical ergodicity hypothesis in 19th century statistical mechanics. An explanation of classical ergodicity is provided that establishes a connection to the fundamental empirical problem of using nonexperimental data to verify theoretical propositions in modern portfolio theory. The role of the ergodicity assumption in the ex post/ex ante quandary confronting modern portfolio theory is also examined.

  8. Introduction to Classical Density Functional Theory by Computational Experiment

    CERN Document Server

    Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel

    2014-01-01

    We present here an introductory practical course to classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely largely on nonintuitive abstract concepts and applied mathematics. They are nevertheless a powerful tool and an active field of research in physics and chemistry that led to the 1998 Nobel prize in chemistry. We here illustrate the DFT in its most mathematically simple and yet physically relevant form: the classical density functional theory of an ideal fluid in an external field, as applied to the prediction of the structure of liquid neon at the molecular scale. This introductory course is built around the production of a cDFT code written by students using the Mathematica language. In this way, they are brought to deal with (i) the cDFT theory itself, (ii) some basic concepts around the statistical mechanics of simple fluids, (iii) the underlying mathematical and numerical problem of functional minimization, and (iv) a functional programming languag...

  9. Evolving Planck Mass in Classically Scale-Invariant Theories

    CERN Document Server

    Kannike, K; Spethmann, C; Veermäe, H

    2016-01-01

    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg po- tential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories....

  10. Gauge field theories

    CERN Document Server

    Frampton, Paul H

    2008-01-01

    This third edition on the classic Gauge Field Theories is an ideal reference for researchers starting work with the Large Hadron Collider and the future International Linear Collider. This latest title continues to offer an up to date reference containing revised chapters on electroweak interactions and model building including a completely new chapter on conformality. Within this essential reference logical organization of the material on gauge invariance, quantization, and renormalization is also discussed providing necessary reading for Cosmologists and Particle Astrophysicists

  11. On the tomographic description of classical fields

    CERN Document Server

    Ibort, A; Man'ko, V I; Marmo, G; Simoni, A; Sudarshan, E C G; Ventriglia, F

    2012-01-01

    After a general description of the tomographic picture for classical systems, a tomographic description of free classical scalar fields is proposed both in a finite cavity and the continuum. The tomographic description is constructed in analogy with the classical tomographic picture of an ensemble of harmonic oscillators. The tomograms of a number of relevant states such as the canonical distribution, the classical counterpart of quantum coherent states and a new family of so called Gauss--Laguerre states, are discussed. Finally the Liouville equation for field states is described in the tomographic picture offering an alternative description of the dynamics of the system that can be extended naturally to other fields.

  12. Classical geometry from the quantum Liouville theory

    CERN Document Server

    Hadasz, L; Piatek, M; Hadasz, Leszek; Jaskolski, Zbigniew; Piatek, Marcin

    2005-01-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  13. Classical geometry from the quantum Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: jask@ift.uni.wroc.pl; Piatek, Marcin [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: piatek@ift.uni.wroc.pl

    2005-09-26

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  14. Quantum field theory of fluids.

    Science.gov (United States)

    Gripaios, Ben; Sutherland, Dave

    2015-02-20

    The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.

  15. "Scars" connect classical and quantum theory

    CERN Multimedia

    Monteiro, T

    1990-01-01

    Chaotic systems are unstable and extremely sensitive to initial condititions. So far, scientists have been unable to demonstrate that the same kind of behaviour exists in quantum or microscopic systems. New connections have been discovered though between classical and quantum theory. One is the phenomena of 'scars' which cut through the wave function of a particle (1 page).

  16. Classical and quantum electrodynamics and the B(3) field

    CERN Document Server

    Evans, Myron W

    2001-01-01

    It is well known that classical electrodynamics is riddled with internal inconsistencies springing from the fact that it is a linear, Abelian theory in which the potentials are unphysical. This volume offers a self-consistent hypothesis which removes some of these problems, as well as builds a framework on which linear and nonlinear optics are treated as a non-Abelian gauge field theory based on the emergence of the fundamental magnetizing field of radiation, the B(3) field. Contents: Interaction of Electromagnetic Radiation with One Fermion; The Field Equations of Classical O (3) b Electrodyn

  17. Introducing a Classical Einstein-Langevin Equation: Proposing a theory for Classical Stochastic Gravity

    CERN Document Server

    Satin, Seema

    2015-01-01

    We attempt to introduce an new approach towards study of certain interesting issues in classical gravity. This can be done for few confined, but interesting and meaningful physical situations, which can be modeled by a classical stochastic Einstein equation. The Einstein equation can be looked upon as an equation of motion, while introducing to it a classical stochastic source or classical fluctuations as driving source. This is analogous to the Langevin equation formalism, in Brownian motion studies. A justification for the validity of such an ansatz for classical gravity is given. The regime of validity of such an approach and the consequences and possible outcomes of this formulation are discussed. We also mention, further relevant directions and applications of the same,that act as motivation towards the new proposal. This field of study can be seen to emerge out of well established ideas and results in Brownian motion theory as well as the Stochastic Semiclassical Gravity (which is already an active area...

  18. Mean-field density functional theory of a nanoconfined classical, three-dimensional Heisenberg fluid. I. The role of molecular anchoring.

    Science.gov (United States)

    Cattes, Stefanie M; Gubbins, Keith E; Schoen, Martin

    2016-05-21

    In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.

  19. Mean-field density functional theory of a nanoconfined classical, three-dimensional Heisenberg fluid. I. The role of molecular anchoring

    Science.gov (United States)

    Cattes, Stefanie M.; Gubbins, Keith E.; Schoen, Martin

    2016-05-01

    In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.

  20. The classical theory of fields

    CERN Document Server

    Landau, Lev Davidovich

    1975-01-01

    Translated from the 6th Russian edition, this latest edition contains seven new sections with chapters on General Relativity, Gravitational Waves and Relativistic Cosmology, where Professor Lifshitz's interests lay. The text of the 3rd English edition has been thoroughly revised and additional problems inserted

  1. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian gauge theories, and gravitation. 3. ed.; Theoretische Physik 3. Klassische Feldtheorie. Von Elektrodynamik, nicht-Abelschen Eichtheorien und Gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Scheck, Florian [Mainz Univ. (Germany). Fachbereich Physik

    2010-07-01

    Stringent presentation of field theory, mediates the connection from the classicalelectrodynamics up to modern gauge theories. The compact presentation is ideal for the bachelor study. New chapter on general relativity theory. Deepens the learned by numerous application from laser physic, metamaterials and different more. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian, and gravitation is the third of five volumes on theoretical physics by professor Scheck. The cycle theoretical physics comprehends: Volume 1: Mechanics. From Newtons law to the deterministic chaos. Volume 2: Nonrelativistic quantum theory. From the hydrogen atom to the many-particle systems. Volume 3: Classical field theory. From the electrodynamics to the gauge theories. Volume 5: From the laws of thermodynamics to the quantum statistics. This textbook mediates modern theoretical physics in string presentation illustrated by many examples. It contains numerous problems with solution hints ore exemplary, complete solutions. The third edition was revised in many single topics, especially the chapter on general relativity theory was supplemented by an extensive analysis of the Schwarzschild solution. [German] Stringente Darstellung der Feldtheorie, vermittelt den Zusammenhang von der klassischen Elektrodynamik bis zu modernen Eichtheorien. Die kompakte Darstellung ist ideal fuer das Bachelor-Studium. Neues Kapitel zur Allgemeinen Relativitaetstheorie. Vertieft das Erlernte durch zahlreiche Anwendungsbeispiele aus Laserphysik, Metamaterialien uvm. Theoretische Physik 3. Klassische Feldtheorie. Von Elektrodynamik, nicht-Abelschen Eichtheorien und Gravitation ist der dritte von fuenf Baenden zur Theoretischen Physik von Professor Scheck. Der Zyklus Theoretische Physik umfasst: Band 1: Mechanik. Von den Newtonschen Gesetzen zum deterministischen Chaos. Band 2: Nichtrelativistische Quantentheorie. Vom Wasserstoffatom zu den Vielteilchensystemen. Band 3: Klassische Feldtheorie

  2. Beyond Quantum Fields: A Classical Fields Approach to QED

    Directory of Open Access Journals (Sweden)

    Chafin C.

    2015-07-01

    Full Text Available A classical field theory is introduced that is defined on a tower of dimensionally in- creasing spaces and is argued to be equivalent to QED. The domain of dependence is discussed to show how an equal times picture of the many coordinate space gives QED results as part of a well posed initial value formalism. Identical particle symmetries are not, a priori, required but when introduced are clearly propagated. This construc- tion uses only classical fields to provide some explanation for why quantum fields and canonical commutation results have been successful. Some old and essential questions regarding causality of propagators are resolved. The problem of resummation, gener- ally forbidden for conditionally convergent series, is dis cussed from the standpoint of particular truncations of the infinite tower of functions an d a two step adiabatic turn on for scattering. As a result of this approach it is shown that the photon inherits its quantization ~ ω from the free lagrangian of the Dirac electrons despite the fact that the free electromagnetic lagrangian has no ~ in it. This provides a possible explanation for the canonical commutation relations for quantum operators , [ ˆ P , ˆ Q ] = i ~ , without ever needing to invoke such a quantum postulate. The form of the equal times conservation laws in this many particle field theory suggests a simplification of the radiation reaction process for fields that allows QED to arise from a sum of path integrals in the various particle time coordinates. A novel method of unifying this theory with gravity, but that has no obvious quantum field theoretic computational scheme , is introduced.

  3. Resolving Witten's Superstring Field Theory

    CERN Document Server

    Erler, Theodore; Sachs, Ivo

    2014-01-01

    We regulate Witten's open superstring field theory by replacing the picture-changing insertion at the midpoint with a contour integral of picture changing insertions over the half-string overlaps of the cubic vertex. The resulting product between string fields is non-associative, but we provide a solution to the $A_\\infty$ relations defining all higher vertices. The result is an explicit covariant superstring field theory which by construction satisfies the classical BV master equation.

  4. Classical Loop Actions of Gauge Theories

    CERN Document Server

    Armand-Ugon, D; Griego, J R; Setaro, L; Armand-Ugon, Daniel; Gambini, Rodolfo; Griego, Jorge; Setaro, Leonardo

    1994-01-01

    Since the first attempts to quantize Gauge Theories and Gravity in the loop representation, the problem of the determination of the corresponding classical actions has been raised. Here we propose a general procedure to determine these actions and we explicitly apply it in the case of electromagnetism. Going to the lattice we show that the electromagnetic action in terms of loops is equivalent to the Wilson action, allowing to do Montecarlo calculations in a gauge invariant way. In the continuum these actions need to be regularized and they are the natural candidates to describe the theory in a ``confining phase''.

  5. Introduction to field theory

    CERN Document Server

    CERN. Geneva; CERN. Geneva

    2001-01-01

    Starting from the notion of path integrals as developed by Feynman, we discuss field theory in zero spacetime dimensions. The concepts of perturbation expansions, connected amplitudes, Feynman diagrams, classical solutions, renormalization and the effective action are developed. The model is extended to four spacetime dimensions, and the full Feynman rules for relativisitc scalar theory derived. The S matrix and the concept of unitarity are discussed, leading to the amputation rules for S matrix elements from considerations of unitarity. The rules are extended to include particles with spin-1/2 and spin-1. The high-energy behaviour of the theory is discussed as a method to derive the gauge symmetry of the various models.

  6. Classical and quantum wormholes with tachyon field

    Institute of Scientific and Technical Information of China (English)

    高长军; 沈有根

    2003-01-01

    The wormhole equations are presented in the presence of tachyon field. Specializing at some values of ω (the ratio of pressure to energy density), we find a family of classical and quantum wormhole solutions.

  7. Exact solutions for classical Yang-Mills fields

    OpenAIRE

    2014-01-01

    We provide a set of exact solutions of the classical Yang-Mills equations. They have the property to satisfy a massive dispersion relation and hold in all gauges. These solutions can be used to describe the vacuum of the quantum Yang-Mills theory and so, they provide a general framework to build a quantum field theory. The components of the field become separated on a generic gauge but are all equal just in the Lorenz (Landau) gauge.

  8. [Taxonomic theory for non-classical systematics].

    Science.gov (United States)

    Pavlinov, I Ia

    2012-01-01

    Outlined briefly are basic principles of construing general taxonomic theory for biological systematics considered in the context of non-classical scientific paradigm. The necessity of such kind of theory is substantiated, and some key points of its elaboration are exposed: its interpretation as a framework concept for the partial taxonomic theories in various schools of systematics; elaboration of idea of cognitive situation including three interrelated components, namely subject, object, and epistemic ones; its construing as a content-wisely interpreted quasi-axiomatics, with strong structuring of its conceptual space including demarcation between axioms and inferring rules; its construing as a "conceptual pyramid" of concepts of various levels of generality; inclusion of a basic model into definition of the taxonomic system (classification) regulating its content. Two problems are indicated as fundamental: definition of taxonomic diversity as a subject domain for the systematics as a whole; definition of onto-epistemological status of taxonomic system (classification) in general and of taxa in particular.

  9. A Classical Solution of Massive Yang-Mills Fields

    CERN Document Server

    Mogami, Tsuguo

    2016-01-01

    Recent researches on the solution of Schwinger-Dyson equations, as well as lattice simulations of pure QCD, suggest that the gluon propagator is massive. In this letter, we assume that the classical counterpart of this massive gluon field may be represented with the equation of motion for Yang-Mills theory with a mass term added. A new classical solution is given for this equation. It is discussed that this solution may have some role in confinement.

  10. HCI Theory Classical, Modern, and Contemporary

    CERN Document Server

    Rogers, Yvonne

    2012-01-01

    Theory is the bedrock of many sciences, providing a rigorous method toadvance knowledge through testing and falsifying hypotheses aboutobservable phenomena. To begin with, the nascent field of HCI followedsuit, borrowing theories from cognitive science to test theories aboutuser performance at the interface.But HCI has emerged as an eclectic interdiscipline rather than a welldefinedscience. It now covers all aspects of human life, from birth tobereavement, through all manner of computing, from device ecologiesto nanotechnology. It comes as no surprise that the role of theory in HCIhas also gre

  11. Representational Realism, Closed Theories and the Quantum to Classical Limit

    CERN Document Server

    de Ronde, Christian

    2016-01-01

    In this paper we discuss the representational realist stance as a pluralist ontic approach to inter-theoretic relationships. Our stance stresses the fact that physical theories require the necessary consideration of a conceptual level of discourse which determines and configures the specific field of phenomena discussed by each particular theory. We will criticize the orthodox line of research which has grounded the analysis about QM in two (Bohrian) metaphysical presuppositions -accepted in the present as dogmas that all interpretations must follow. We will also examine how the orthodox project of "bridging the gap" between the quantum and the classical domains has constrained the possibilities of research, producing only a limited set of interpretational problems which only focus in the justification of "classical reality" and exclude the possibility of analyzing the possibilities of non-classical conceptual representations of QM. The representational realist stance introduces two new problems, namely, the ...

  12. Exact solutions for classical Yang-Mills fields

    CERN Document Server

    Frasca, Marco

    2014-01-01

    Some years ago we displayed a set of classical solutions for the classical Yang-Mills field theory having the property to satisfy a dispersion relation typical of a massive theory. But such solutions seemed to be exact only in the Landau gauge making all the argument an asymptotic one for the most general case of a generic gauge. These solutions can be used to describe the vacuum of the quantum Yang-Mills theory and so, to prove that they are always exact can grant a general framework to build a quantum field theory. Here we show that these solutions are always exact changing just the normalization factor. The components of the field become separated on a generic gauge being all equal just in the Landau gauge.

  13. Classical theory of atomic collisions - The first hundred years

    Science.gov (United States)

    Grujić, Petar V.

    2012-05-01

    Classical calculations of the atomic processes started in 1911 with famous Rutherford's evaluation of the differential cross section for α particles scattered on foil atoms [1]. The success of these calculations was soon overshadowed by the rise of Quantum Mechanics in 1925 and its triumphal success in describing processes at the atomic and subatomic levels. It was generally recognized that the classical approach should be inadequate and it was neglected until 1953, when the famous paper by Gregory Wannier appeared, in which the threshold law for the single ionization cross section behaviour by electron impact was derived. All later calculations and experimental studies confirmed the law derived by purely classical theory. The next step was taken by Ian Percival and collaborators in 60s, who developed a general classical three-body computer code, which was used by many researchers in evaluating various atomic processes like ionization, excitation, detachment, dissociation, etc. Another approach was pursued by Michal Gryzinski from Warsaw, who started a far reaching programme for treating atomic particles and processes as purely classical objects [2]. Though often criticized for overestimating the domain of the classical theory, results of his group were able to match many experimental data. Belgrade group was pursuing the classical approach using both analytical and numerical calculations, studying a number of atomic collisions, in particular near-threshold processes. Riga group, lead by Modris Gailitis [3], contributed considerably to the field, as it was done by Valentin Ostrovsky and coworkers from Sanct Petersbourg, who developed powerful analytical methods within purely classical mechanics [4]. We shall make an overview of these approaches and show some of the remarkable results, which were subsequently confirmed by semiclassical and quantum mechanical calculations, as well as by the experimental evidence. Finally we discuss the theoretical and

  14. Classical-field description of the quantum effects in the light-atom interaction

    CERN Document Server

    Rashkovskiy, Sergey A

    2016-01-01

    In this paper I show that light-atom interaction can be described using purely classical field theory without any quantization. In particular, atom excitation by light that accounts for damping due to spontaneous emission is fully described in the framework of classical field theory. I show that three well-known laws of the photoelectric effect can also be derived and that all of its basic properties can be described within classical field theory.

  15. Polynomial Invariant Theory of the Classical Groups

    CERN Document Server

    Westrich, Quinton

    2011-01-01

    The goal of invariant theory is to find all the generators for the algebra of representations of a group that leave the group invariant. Such generators will be called \\emph{basic invariants}. In particular, we set out to find the set of basic invariants for the classical groups GL$(V)$, O$(n)$, and Sp$(n)$ for $n$ even. In the first half of the paper we set up relevant definitions and theorems for our search for the set of basic invariants, starting with linear algebraic groups and then discussing associative algebras. We then state and prove a monumental theorem that will allow us to proceed with hope: it says that the set of basic invariants is finite if $G$ is reductive. Finally we state without proof the First Fundamental Theorems, which aim to list explicitly the relevant sets of basic invariants, for the classical groups above. We end by commenting on some applications of invariant theory, on the history of its development, and stating a useful theorem in the appendix whose proof lies beyond the scope ...

  16. Robust topological degeneracy of classical theories

    Science.gov (United States)

    Vaezi, Mohammad-Sadegh; Ortiz, Gerardo; Nussinov, Zohar

    2016-05-01

    We challenge the hypothesis that the ground states of a physical system whose degeneracy depends on topology must necessarily realize topological quantum order and display nonlocal entanglement. To this end, we introduce and study a classical rendition of the Toric Code model embedded on Riemann surfaces of different genus numbers. We find that the minimal ground state degeneracy (and those of all levels) depends on the topology of the embedding surface alone. As the ground states of this classical system may be distinguished by local measurements, a characteristic of Landau orders, this example illustrates that topological degeneracy is not a sufficient condition for topological quantum order. This conclusion is generic and, as shown, it applies to many other models. We also demonstrate that certain lattice realizations of these models, and other theories, display a ground state entropy (and those of all levels) that is "holographic", i.e., extensive in the system boundary. We find that clock and U (1 ) gauge theories display topological (in addition to gauge) degeneracies.

  17. Classical-field model of the hydrogen atom

    Science.gov (United States)

    Rashkovskiy, Sergey A.

    2017-02-01

    It is shown that all of the basic properties of the hydrogen atom can be consistently described in terms of classical electrodynamics if instead of considering the electron to be a particle, we consider an electrically charged classical wave field—an "electron wave"—which is held by the electrostatic field of the proton. It is shown that quantum mechanics must be considered not as a theory of particles but as a classical field theory in the spirit of classical electrodynamics. In this case, we are not faced with difficulties in interpreting the results of the theory. In the framework of classical electrodynamics, all of the well-known regularities of the spontaneous emission of the hydrogen atom are obtained, which is usually derived in the framework of quantum electrodynamics. It is shown that there are no discrete states and discrete energy levels of the atom: the energy of the atom and its states change continuously. An explanation of the conventional corpuscular-statistical interpretation of atomic phenomena is given. It is shown that this explanation is only a misinterpretation of continuous deterministic processes. In the framework of classical electrodynamics, the nonlinear Schrödinger equation is obtained, which accounts for the inverse action of self-electromagnetic radiation of the electron wave and completely describes the spontaneous emissions of an atom.

  18. Dynamics of classical and quantum fields an introduction

    CERN Document Server

    Setlur, Girish S

    2014-01-01

    Dynamics of Classical and Quantum Fields: An Introduction focuses on dynamical fields in non-relativistic physics. Written by a physicist for physicists, the book is designed to help readers develop analytical skills related to classical and quantum fields at the non-relativistic level, and think about the concepts and theory through numerous problems. In-depth yet accessible, the book presents new and conventional topics in a self-contained manner that beginners would find useful. A partial list of topics covered includes: Geometrical meaning of Legendre transformation in classical mechanics Dynamical symmetries in the context of Noether's theorem The derivation of the stress energy tensor of the electromagnetic field, the expression for strain energy in elastic bodies, and the Navier Stokes equation Concepts of right and left movers in case of a Fermi gas explained Functional integration is interpreted as a limit of a sequence of ordinary integrations Path integrals for one and two quantum particles and for...

  19. Modern Quantum Field Theory

    Science.gov (United States)

    Banks, Tom

    2008-09-01

    1. Introduction; 2. Quantum theory of free scalar fields; 3. Interacting field theory; 4. Particles of spin one, and gauge invariance; 5. Spin 1/2 particles and Fermi statistics; 6. Massive quantum electrodynamics; 7. Symmetries, Ward identities and Nambu Goldstone bosons; 8. Non-abelian gauge theory; 9. Renormalization and effective field theory; 10. Instantons and solitons; 11. Concluding remarks; Appendices; References; Index.

  20. Geometries from field theories

    Science.gov (United States)

    Aoki, Sinya; Kikuchi, Kengo; Onogi, Tetsuya

    2015-10-01

    We propose a method to define a d+1-dimensional geometry from a d-dimensional quantum field theory in the 1/N expansion. We first construct a d+1-dimensional field theory from the d-dimensional one via the gradient-flow equation, whose flow time t represents the energy scale of the system such that trArr 0 corresponds to the ultraviolet and trArr infty to the infrared. We then define the induced metric from d+1-dimensional field operators. We show that the metric defined in this way becomes classical in the large-N limit, in the sense that quantum fluctuations of the metric are suppressed as 1/N due to the large-N factorization property. As a concrete example, we apply our method to the O(N) nonlinear σ model in two dimensions. We calculate the 3D induced metric, which is shown to describe an anti-de Sitter space in the massless limit. Finally, we discuss several open issues for future studies.

  1. Extending classical molecular theory with polarization.

    Science.gov (United States)

    Keyes, Tom; Napoleon, Raeanne L

    2011-01-27

    A classical, polarizable, electrostatic theory of short-ranged atom-atom interactions, incorporating the smeared nature of atomic partial charges, is presented. Detailed models are constructed for CO monomer and for CO interacting with an iron atom, as a first step toward heme proteins. A good representation is obtained of the bond-length-dependent dipole of CO monomer from fitting at the equilibrium distance only. Essential features of the binding of CO to myoglobin (Mb) and model heme compounds, including the binding energy, the position of the minimum in the Fe-C potential, the Fe-C frequency, the bending energy, the linear geometry of FeCO, and the increase of the Stark tuning rate and IR intensity, are obtained, suggesting that a substantial part of the Fe-CO interaction consists of a classical, noncovalent, "electrostatic bond ". The binding energy is primarily polarization energy, and the polarization energy of an OH pair in water is shown to be comparable to the experimental hydrogen bond energy.

  2. Renormalizable Tensor Field Theories

    CERN Document Server

    Geloun, Joseph Ben

    2016-01-01

    Extending tensor models at the field theoretical level, tensor field theories are nonlocal quantum field theories with Feynman graphs identified with simplicial complexes. They become relevant for addressing quantum topology and geometry in any dimension and therefore form an interesting class of models for studying quantum gravity. We review the class of perturbatively renormalizable tensor field theories and some of their features.

  3. Quantum Mechanics and Quantum Field Theory

    Science.gov (United States)

    Dimock, Jonathan

    2011-02-01

    Introduction; Part I. Non-relativistic: 1. Mathematical prelude; 2. Classical mechanics; 3. Quantum mechanics; 4. Single particle; 5. Many particles; 6. Statistical mechanics; Part II. Relativistic: 7. Relativity; 8. Scalar particles and fields; 9. Electrons and photons; 10. Field theory on a manifold; Part III. Probabilistic Methods: 11. Path integrals; 12. Fields as random variables; 13. A nonlinear field theory; Appendices; References; Index.

  4. Shear viscosity of the $\\Phi^4$ theory from classical simulation

    CERN Document Server

    Homor, M M

    2015-01-01

    Shear viscosity of the classical $\\Phi^4$ theory is measured using classical microcanonical simulation. To calculate the Kubo formula, we measure the energy-momentum tensor correlation function, and apply the Green-Kubo relation. Being a classical theory, the results depend on the cutoff which should be chosen in the range of the temperature. Comparison with experimentally accessible systems is also performed.

  5. Number theory arising from finite fields analytic and probabilistic theory

    CERN Document Server

    Knopfmacher, John

    2001-01-01

    ""Number Theory Arising from Finite Fields: Analytic and Probabilistic Theory"" offers a discussion of the advances and developments in the field of number theory arising from finite fields. It emphasizes mean-value theorems of multiplicative functions, the theory of additive formulations, and the normal distribution of values from additive functions. The work explores calculations from classical stages to emerging discoveries in alternative abstract prime number theorems.

  6. Semi-classical quantum theory for cyclotron radiation

    Institute of Scientific and Technical Information of China (English)

    陈军锋; 邓劲松; 徐毅; 尤峻汉

    1997-01-01

    A semi-classical quantum theory of the cyclotron radiation of the nonrelativistic thermal electrons in a very strong magnetic field is presented.The basic formulae of the absorption coefficient of cyclotron resonance kv and the absorption (scattering) cross-section of cyclotron resonance σv have been derived under the quadrupole approximation.σv is an important quantity in the study of the "magnetic inverse-Compton scattering".It is shown that σv is greatly larger than the Thomson cross-sectron σT,which is important in discussing the magnetic inverse-Compton scattering of the relativistic electrons in a very strong magnetic field.

  7. Balanced Topological Field Theories

    Science.gov (United States)

    Dijkgraaf, R.; Moore, G.

    We describe a class of topological field theories called ``balanced topological field theories''. These theories are associated to moduli problems with vanishing virtual dimension and calculate the Euler character of various moduli spaces. We show that these theories are closely related to the geometry and equivariant cohomology of ``iterated superspaces'' that carry two differentials. We find the most general action for these theories, which turns out to define Morse theory on field space. We illustrate the constructions with numerous examples. Finally, we relate these theories to topological sigma-models twisted using an isometry of the target space.

  8. Balanced Topological Field Theories

    CERN Document Server

    Dijkgraaf, R

    1997-01-01

    We describe a class of topological field theories called ``balanced topological field theories.'' These theories are associated to moduli problems with vanishing virtual dimension and calculate the Euler character of various moduli spaces. We show that these theories are closely related to the geometry and equivariant cohomology of ``iterated superspaces'' that carry two differentials. We find the most general action for these theories, which turns out to define Morse theory on field space. We illustrate the constructions with numerous examples. Finally, we relate these theories to topological sigma-models twisted using an isometry of the target space.

  9. Hilbert space theory of classical electrodynamics

    Indian Academy of Sciences (India)

    RAJAGOPAL A K; GHOSE PARTHA

    2016-06-01

    Classical electrodynamics is reformulated in terms of wave functions in the classical phase space of electrodynamics, following the Koopman–von Neumann–Sudarshan prescription for classical mechanics on Hilbert spaces sans the superselection rule which prohibits interference effects in classical mechanics. This is accomplished by transforming from a set of commutingobservables in one Hilbert space to another set of commuting observables in a larger Hilbert space. This is necessary to clarify the theoretical basis of the much recent work on quantum-like features exhibited by classical optics. Furthermore, following Bondar et al, {\\it Phys. Rev.} A 88, 052108 (2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of theWigner function can be implemented by classical optics. This may be useful in interpreting quantum information processing in terms of classical optics.

  10. Classical and semi-classical solutions of the Yang--Mills theory. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Jackiw, R.; Nohl, C.; Rebbi, C.

    1977-12-01

    This review summarizes what is known at present about classical solutions to Yang-Mills theory both in Euclidean and Minkowski space. The quantal meaning of these solutions is also discussed. Solutions in Euclidean space expose multiple vacua and tunnelling of the quantum theory. Those in Minkowski space-time provide a semi-classical spectrum for a conformal generator.

  11. Nonlocal and quasilocal field theories

    Science.gov (United States)

    Tomboulis, E. T.

    2015-12-01

    We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.

  12. Functional methods underlying classical mechanics, relativity and quantum theory

    OpenAIRE

    Kryukov, Alexey A.

    2013-01-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is "made" of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accou...

  13. A Classical Theory of the Anomalous Zeeman Effect

    Science.gov (United States)

    Espinosa, James; Woodyard, James

    2010-10-01

    Over a hundred years ago, it was discovered that spectral lines were shifted by magnetic fields. Lorentz was able to explain a small set of phenomena that was ironically called the normal Zeeman effect. It took more than twenty years for Lande to arrive at a vector model of the atom to explain the majority of shiftings called the anomalous Zeeman effect. Within a couple of years, Uhlenbeck and Goudsmit introduced the idea of a spinning electron that would give an underlying explanation of the vector model rules. It is generally taught that without the concept of spin there can be no explanation of all the spectral splittings caused by a magnetic field. We will present a purely classical model developed by Woldemar Voigt to describe the most famous anomalous splitting, the sodium D line. In addition, his theory correctly describes the transition from the weak field state to the strong one, called the Paschen-Back effect. We will show how his theory matches well with our classical picture of the atom.

  14. Ultraviolet singularities in classical brane theory

    CERN Document Server

    Lechner, Kurt

    2010-01-01

    We construct for the first time an energy-momentum tensor for the electromagnetic field of a p-brane in arbitrary dimensions, entailing finite energy-momentum integrals. The construction relies on distribution theory and is based on a Lorentz-invariant regularization, followed by the subtraction of divergent and finite counterterms supported on the brane. The resulting energy-momentum tensor turns out to be uniquely determined. We perform the construction explicitly for a generic stationary brane. For a brane in arbitrary motion our approach provides a new paradigm for the derivation of the, otherwise divergent, self-force of the brane. The so derived self-force is automatically finite and guarantees, by construction, energy-momentum conservation.

  15. Symmetries in Lagrangian Field Theory

    Science.gov (United States)

    Búa, Lucia; Bucataru, Ioan; León, Manuel de; Salgado, Modesto; Vilariño, Silvia

    2015-06-01

    By generalising the cosymplectic setting for time-dependent Lagrangian mechanics, we propose a geometric framework for the Lagrangian formulation of classical field theories with a Lagrangian depending on the independent variables. For that purpose we consider the first-order jet bundles J1π of a fiber bundle π : E → ℝk where ℝk is the space of independent variables. Generalized symmetries of the Lagrangian are introduced and the corresponding Noether theorem is proved.

  16. Gauge field theories: various mathematical approaches

    CERN Document Server

    Jordan, François; Thierry, Masson

    2014-01-01

    This paper presents relevant modern mathematical formulations for (classical) gauge field theories, namely, ordinary differential geometry, noncommutative geometry, and transitive Lie algebroids. They provide rigorous frameworks to describe Yang-Mills-Higgs theories or gravitation theories, and each of them improves the paradigm of gauge field theories. A brief comparison between them is carried out, essentially due to the various notions of connection. However they reveal a compelling common mathematical pattern on which the paper concludes.

  17. Information field theory

    OpenAIRE

    Enßlin, Torsten

    2013-01-01

    Non-linear image reconstruction and signal analysis deal with complex inverse problems. To tackle such problems in a systematic way, I present information field theory (IFT) as a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms even for non-linear and non-Gaussian signal inference problems. IFT algorithms exploit spatial correlations of the signal fields and b...

  18. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  19. Classical glueballs in non-Abelian Born-Infeld theory

    CERN Document Server

    Galtsov, D V; Gal'tsov, Dmitri; Kerner, Richard

    2000-01-01

    It is shown that the Born-Infeld-type modification of the quadratic Yang-Mills action suggested by the superstring theory gives rise to classical particle-like solutions prohibited in the standard Yang-Mills theory. This becomes possible due to the scale invariance breaking by the Born-Infeld non-linearity. New classical glueballs are sphaleronic in nature and exhibit a striking similarity with the Bartnik-McKinnon solutions of the Yang-Mills theory coupled to gravity.

  20. Comprehensive theory for star-like polymer micelles; combining classical nucleation and polymer brush theory.

    Science.gov (United States)

    Sprakel, Joris; Leermakers, Frans A M; Cohen Stuart, Martien A; Besseling, Nicolaas A M

    2008-09-14

    A comprehensive theory is proposed that combines classical nucleation and polymer brush theory to describe star-like polymer micelles. With a minimum of adjustable parameters, the model predicts properties such as critical micelle concentrations and micellar size distributions. The validity of the present theory is evidenced in direct comparison to experiments; this revealed that the proportionality constant in the Daoud-Cotton model is of the order of unity and that the star-limit is valid down to relatively short corona chains. Furthermore, we show that the predicted saddle points in the free energy correspond to those solutions that are accessible with self-consistent field methods for self-assembly.

  1. A course in field theory

    CERN Document Server

    Baal, Pierre Van

    2014-01-01

    ""… a pleasant novelty that manages the impossible: a full course in field theory from a derivation of the Dirac equation to the standard electroweak theory in less than 200 pages. Moreover, the final chapter consists of a careful selection of assorted problems, which are original and either anticipate or detail some of the topics discussed in the bulk of the chapters. Instead of building a treatise out of a collection of lecture notes, the author took the complementary approach and constructed a course out of a number of well-known and classic treatises. The result is fresh and useful. … the

  2. Boundary Conformal Field Theory

    CERN Document Server

    Cardy, J L

    2004-01-01

    Boundary conformal field theory (BCFT) is simply the study of conformal field theory (CFT) in domains with a boundary. It gains its significance because, in some ways, it is mathematically simpler: the algebraic and geometric structures of CFT appear in a more straightforward manner; and because it has important applications: in string theory in the physics of open strings and D-branes, and in condensed matter physics in boundary critical behavior and quantum impurity models. In this article, however, I describe the basic ideas from the point of view of quantum field theory, without regard to particular applications nor to any deeper mathematical formulations.

  3. Quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sadovskii, Michael V.

    2013-06-01

    This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.

  4. Engineering field theory

    CERN Document Server

    Baden Fuller, A J

    2014-01-01

    Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation

  5. Dynamics and causality constraints in field theory

    CERN Document Server

    De Souza, M M

    1997-01-01

    We discuss the physical meaning and the geometric interpretation of causality implementation in classical field theories. Causality is normally implemented through kinematical constraints on fields but we show that in a zero-distance limit they also carry a dynamical information, which calls for a revision of our standard concepts of interacting fields. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the lightcone; a finite and consistent field theory requires a lightcone generator as the field support.

  6. On the classical theory of molecular optical activity

    CERN Document Server

    Frolov, Alexei M

    2010-01-01

    The basic principles of classical and semi-classical theories of molecular optical activity are discussed. These theories are valid for dilute solutions of optically active organic molecules. It is shown that all phenomena known in the classical theory of molecular optical activity can be described with the use of one pseudo-scalar which is a uniform function of the incident light frequency $\\omega$. The relation between optical rotation and circular dichroism is derived from the basic Kramers-Kronig relations. In our discussion of the general theory of molecular optical activity we introduce the tensor of molecular optical activity. It is shown that to evaluate the optical rotation and circular dichroism at arbitrary frequencies one needs to know only nine (3 + 6) molecular tensors. The quantum (or semi-classical) theory of molecular optical activity is also briefly discussed. We also raise the possibility of measuring the optical rotation and circular dichroism at wavelengths which correspond to the vacuum ...

  7. Mathematical aspects of quantum field theories

    CERN Document Server

    Strobl, Thomas

    2015-01-01

    Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...

  8. (Re)igniting a Sociological Imagination in Adult Education: The Continuing Relevance of Classical Theory

    Science.gov (United States)

    Lange, Elizabeth

    2015-01-01

    This article argues that sociology has been a foundational discipline for the field of adult education, but it has been largely implicit, until recently. This article contextualizes classical theories of sociology within contemporary critiques, reviews the historical roots of sociology and then briefly introduces the classical theories…

  9. Ramond Equations of Motion in Superstring Field Theory

    CERN Document Server

    Erler, Theodore; Sachs, Ivo

    2015-01-01

    We extend the recently constructed NS superstring field theories in the small Hilbert space to give classical field equations for all superstring theories, including Ramond sectors. We also comment on the realization of supersymmetry in this framework.

  10. Quantum field theory

    CERN Document Server

    Mandl, Franz

    2010-01-01

    Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic

  11. Classical conformality in the Standard Model from Coleman's theory

    CERN Document Server

    Kawana, Kiyoharu

    2016-01-01

    The classical conformality is one of the possible candidates for explaining the gauge hierarchy of the Standard Model. We show that it is naturally obtained from the Coleman's theory on baby universe.

  12. Experimental assessment of unvalidated assumptions in classical plasticity theory.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Rebecca Moss (University of Utah, Salt Lake City, UT); Burghardt, Jeffrey A. (University of Utah, Salt Lake City, UT); Bauer, Stephen J.; Bronowski, David R.

    2009-01-01

    This report investigates the validity of several key assumptions in classical plasticity theory regarding material response to changes in the loading direction. Three metals, two rock types, and one ceramic were subjected to non-standard loading directions, and the resulting strain response increments were displayed in Gudehus diagrams to illustrate the approximation error of classical plasticity theories. A rigorous mathematical framework for fitting classical theories to the data, thus quantifying the error, is provided. Further data analysis techniques are presented that allow testing for the effect of changes in loading direction without having to use a new sample and for inferring the yield normal and flow directions without having to measure the yield surface. Though the data are inconclusive, there is indication that classical, incrementally linear, plasticity theory may be inadequate over a certain range of loading directions. This range of loading directions also coincides with loading directions that are known to produce a physically inadmissible instability for any nonassociative plasticity model.

  13. Quantitative methods in classical perturbation theory.

    Science.gov (United States)

    Giorgilli, A.

    Poincaré proved that the series commonly used in Celestial mechanics are typically non convergent, although their usefulness is generally evident. Recent work in perturbation theory has enlightened this conjecture of Poincaré, bringing into evidence that the series of perturbation theory, although non convergent in general, furnish nevertheless valuable approximations to the true orbits for a very large time, which in some practical cases could be comparable with the age of the universe. The aim of the author's paper is to introduce the quantitative methods of perturbation theory which allow to obtain such powerful results.

  14. CLASSICAL ELECTRON THEORY FROM A MODERN STANDPOINT

    Science.gov (United States)

    occurrence and removal of runaway modes, the radiation from a uniformly accelerated charge, an the relation between Maxwell’s electrodynamics and the action-at-a-distance theory of Wheeler and Feynman . (Author)

  15. Perturbative Topological Field Theory

    Science.gov (United States)

    Dijkgraaf, Robbert

    We give a review of the application of perturbative techniques to topological quantum field theories, in particular three-dimensional Chern-Simons-Witten theory and its various generalizations. To this end we give an introduction to graph homology and homotopy algebras and the work of Vassiliev and Kontsevich on perturbative knot invariants.

  16. Quantum field theory

    CERN Document Server

    de Wit, Bernard

    1990-01-01

    After a brief and practical introduction to field theory and the use of Feynman diagram, we discuss the main concept in gauge theories and their application in elementary particle physics. We present all the ingredients necessary for the construction of the standard model.

  17. Covariant Hamiltonian field theory

    CERN Document Server

    Giachetta, G; Sardanashvily, G

    1999-01-01

    We study the relationship between the equations of first order Lagrangian field theory on fiber bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. The main peculiarity of these Hamilton equations lies in the fact that, for degenerate systems, they contain additional gauge fixing conditions. We develop the BRST extension of the covariant Hamiltonian formalism, characterized by a Lie superalgebra of BRST and anti-BRST symmetries.

  18. On the concept of Bell’s local causality in local classical and quantum theory

    Energy Technology Data Exchange (ETDEWEB)

    Hofer-Szabó, Gábor, E-mail: szabo.gabor@btk.mta.hu [Research Center for the Humanities, Budapest (Hungary); Vecsernyés, Péter, E-mail: vecsernyes.peter@wigner.mta.hu [Wigner Research Centre for Physics, Budapest (Hungary)

    2015-03-15

    The aim of this paper is to implement Bell’s notion of local causality into a framework, called local physical theory. This framework, based on the axioms of algebraic field theory, is broad enough to integrate both probabilistic and spatiotemporal concepts and also classical and quantum theories. Bell’s original idea of local causality will arise as the classical case of our definition. Classifying local physical theories by whether they obey local primitive causality, a property rendering the dynamics of the theory causal, we then investigate what is needed for a local physical theory to be locally causal. Finally, comparing local causality with the common cause principles and relating both to the Bell inequalities we find a nice parallelism: Bell inequalities cannot be derived neither from local causality nor from a common cause unless the local physical theory is classical or the common cause is commuting, respectively.

  19. Classical Field-Theoretical approach to the non-linear q-Klein-Gordon Equation

    CERN Document Server

    Plastino, A

    2016-01-01

    In the wake of efforts made in [EPL {\\bf 97}, 41001 (2012)], we extend them here by developing a classical field theory (FT)to the q-Klein-Gordon equation advanced in [Phys. Rev. Lett. {\\bf 106}, 140601 (2011)]. This makes it possible to generate a hipotetical conjecture regarding black matter. We also develop the classical field theory for a q-Schrodinger equation, different from the one in [EPL {\\bf 97}, 41001 (2012)], that was deduced in [Phys. Lett. A {\\bf 379}, 2690 (2015)] from the hypergeometric differential equation. Our two classical theories reduce to the usual quantum FT for $q\\rightarrow 1$.

  20. Resolving Witten’s superstring field theory

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Theodore; Konopka, Sebastian; Sachs, Ivo [Arnold Sommerfeld Center, Ludwig-Maximilians University, Theresienstrasse 37, D-80333, Munich (Germany)

    2014-04-24

    We regulate Witten’s open superstring field theory by replacing the picture-changing insertion at the midpoint with a contour integral of picture changing insertions over the half-string overlaps of the cubic vertex. The resulting product between string fields is non-associative, but we provide a solution to the A{sub ∞} relations defining all higher vertices. The result is an explicit covariant superstring field theory which by construction satisfies the classical BV master equation.

  1. Functional methods underlying classical mechanics, relativity and quantum theory

    Science.gov (United States)

    Kryukov, A.

    2013-04-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is "made" of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.

  2. Classical Coupled Mode Theory of Optomechanical Crystals

    CERN Document Server

    Khorasani, Sina

    2016-01-01

    Acousto-optic interaction in optomechanical crystals allows unidirectional control of elastic waves over optical waves. However, as a result of this nonlinear interaction, infinitely many optical modes are born. This article presents an exact formulaion of coupled mode theory for interaction between elastic Bloch wave waves and photonic Bloch waves moving in a phonotonic waveguide. In general, an optical wavefront is strongly diffracted by an elastic wave in frequency and wavevector, and thus infinite modes with different frequencies and wavevectors appear. We discuss resonance and mode conversion conditions, and present a rigorous method to derive coupling rates and mode profiles. We also find a conservation law which rules over total optical power from interacting individual modes. Modifications of the theory to phonotonic cavities are also discussed. We present application examples including switch, frequency shifter, and reflector.

  3. Quantum theory of fields

    CERN Document Server

    Wentzel, Gregor

    2003-01-01

    A prominent figure in twentieth-century physics, Gregor Wentzel made major contributions to the development of quantum field theory, first in Europe and later at the University of Chicago. His Quantum Theory of Fields offers a knowledgeable view of the original literature of elementary quantum mechanics and helps make these works accessible to interested readers.An introductory volume rather than an all-inclusive account, the text opens with an examination of general principles, without specification of the field equations of the Lagrange function. The following chapters deal with particular

  4. Classical stabilization of the hydrogen atom in a monochromatic field

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, F.; Casati, G. (Dipartimento di Fisica dell' Universita, Via Castelnuovo 7, 22100 Como (Italy)); Shepelyansky, D.L. (Laboratoire de Physique Quantique, Universite Paul Sabatier, 31062, Toulouse (France))

    1993-02-01

    We report the results of analytical and numerical investigations on the ionization of a classical atom in a strong, linearly polarized, monochromatic field. We show that the ionization probability decreases with increasing field intensity at field amplitudes much larger than the classical chaos border. This effect should be observable in real laboratory experiments.

  5. Second-order spatial correlation in the far-field: Comparing entangled and classical light sources

    Science.gov (United States)

    Zhang, Erfeng; Liu, Weitao; Lin, Huizu; Chen, Pingxing

    2016-02-01

    We consider second-order spatial correlation with entangled and classical light in the far-field. The quantum theory of second-order spatial correlation is analyzed, and the role of photon statistics and detection mode in the second-order spatial correlation are discussed. Meanwhile, the difference of second-order spatial correlation with entangled and classical light sources is deduced.

  6. String field theory solution corresponding to constant background magnetic field

    CERN Document Server

    Ishibashi, Nobuyuki; Takahashi, Tomohiko

    2016-01-01

    Following the method recently proposed by Erler and Maccaferri, we construct solutions to the equation of motion of Witten's cubic string field theory, which describe constant magnetic field background. We study the boundary condition changing operators relevant to such background and calculate the operator product expansions of them. We obtain solutions whose classical action coincide with the Born-Infeld action.

  7. Theory of electromagnetic fields

    CERN Document Server

    Wolski, Andrzej

    2011-01-01

    We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.

  8. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchik, A. Yu. [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46, 40126 Bologna (Italy) and L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Kosygin str. 2, 119334 Moscow (Russian Federation); Manti, S. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2013-02-21

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.

  9. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    CERN Document Server

    Kamenshchik, A

    2013-01-01

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.

  10. Classical and Quantum Big Brake Cosmology for Scalar Field and Tachyonic Models

    Science.gov (United States)

    Kamenshchik, Alexander; Manti, Serena

    2015-01-01

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field. It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.

  11. PREFACE: Particles and Fields: Classical and Quantum

    Science.gov (United States)

    Asorey, M.; Clemente-Gallardo, J.; Marmo, G.

    2007-07-01

    This volume contains some of the contributions to the Conference Particles and Fields: Classical and Quantum, which was held at Jaca (Spain) in September 2006 to honour George Sudarshan on his 75th birthday. Former and current students, associates and friends came to Jaca to share a few wonderful days with George and his family and to present some contributions of their present work as influenced by George's impressive achievements. This book summarizes those scientific contributions which are presented as a modest homage to the master, collaborator and friend. At the social ceremonies various speakers were able to recall instances of his life-long activity in India, the United States and Europe, adding colourful remarks on the friendly and intense atmosphere which surrounded those collaborations, some of which continued for several decades. This meeting would not have been possible without the financial support of several institutions. We are deeply indebted to Universidad de Zaragoza, Ministerio de Educación y Ciencia de España (CICYT), Departamento de Ciencia, Tecnología y Universidad del Gobierno de Aragón, Universitá di Napoli 'Federico II' and Istituto Nazionale di Fisica Nucleare. Finally, we would like to thank the participants, and particularly George's family, for their contribution to the wonderful atmosphere achieved during the Conference. We would like also to acknowledge the authors of the papers collected in the present volume, the members of the Scientific Committee for their guidance and support and the referees for their generous work. M Asorey, J Clemente-Gallardo and G Marmo The Local Organizing Committee George Sudarshan International Advisory Committee A. Ashtekhar (Pennsylvania State University, USA) L. J. Boya (Universidad de Zaragoza, Spain) I. Cirac (Max Planck Institute, Garching, Germany) G. F. Dell Antonio (Universitá di Roma La Sapienza, Italy) A. Galindo (Universidad Complutense de Madrid, Spain) S. L. Glashow (Boston University

  12. Quantum Field Theory

    CERN Document Server

    Zeidler, Eberhard

    This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...

  13. Tree Quantum Field Theory

    CERN Document Server

    Gurau, R; Rivasseau, V

    2008-01-01

    We propose a new formalism for quantum field theory which is neither based on functional integrals, nor on Feynman graphs, but on marked trees. This formalism is constructive, i.e. it computes correlation functions through convergent rather than divergent expansions. It applies both to Fermionic and Bosonic theories. It is compatible with the renormalization group, and it allows to define non-perturbatively {\\it differential} renormalization group equations. It accommodates any general stable polynomial Lagrangian. It can equally well treat noncommutative models or matrix models such as the Grosse-Wulkenhaar model. Perhaps most importantly it removes the space-time background from its central place in QFT, paving the way for a nonperturbative definition of field theory in noninteger dimension.

  14. p-Mechanics and Field Theory

    OpenAIRE

    Kisil, Vladimir V.

    2004-01-01

    The orbit method of Kirillov is used to derive the p-mechanical brackets [math-ph/0007030, quant-ph/0212101]. They generate the quantum (Moyal) and classic (Poisson) brackets on respective orbits corresponding to representations of the Heisenberg group. The extension of p-mechanics to field theory is made through the De Donder--Weyl Hamiltonian formulation. The principal step is the substitution of the Heisenberg group with Galilean. Keywords: Classic and quantum mechanics, Moyal brackets, Po...

  15. Problem Book in Quantum Field Theory

    CERN Document Server

    Radovanovič, Voja

    2008-01-01

    The Problem Book in Quantum Field Theory contains about 200 problems with solutions or hints that help students to improve their understanding and develop skills necessary for pursuing the subject. It deals with the Klein-Gordon and Dirac equations, classical field theory, canonical quantization of scalar, Dirac and electromagnetic fields, the processes in the lowest order of perturbation theory, renormalization and regularization. The solutions are presented in a systematic and complete manner. The material covered and the level of exposition make the book appropriate for graduate and undergraduate students in physics, as well as for teachers and researchers. The new edition is a corrected paperback edition for students.

  16. Non-classical Measurement Theory: a Framework for Behavioral Sciences

    CERN Document Server

    Danilov, V I

    2006-01-01

    Instances of non-commutativity are pervasive in human behavior. In this paper, we suggest that psychological properties such as attitudes, values, preferences and beliefs may be suitably described in terms of the mathematical formalism of quantum mechanics. We expose the foundations of non-classical measurement theory building on a simple notion of orthospace and ortholattice (logic). Two axioms are formulated and the characteristic state-property duality is derived. A last axiom concerned with the impact of measurements on the state takes us with a leap toward the Hilbert space model of Quantum Mechanics. An application to behavioral sciences is proposed. First, we suggest an interpretation of the axioms and basic properties for human behavior. Then we explore an application to decision theory in an example of preference reversal. We conclude by formulating basic ingredients of a theory of actualized preferences based in non-classical measurement theory.

  17. Painleve Field Theory

    CERN Document Server

    Aminov, G; Levin, A; Olshanetsky, M; Zotov, A

    2013-01-01

    We propose multidimensional versions of the Painleve VI equation and its degenerations. These field theories are related to the isomonodromy problems of flat holomorphic infinite rank bundles over elliptic curves and take the form of non-autonomous Hamiltonian equations. The modular parameter of curves plays the role of "time". Reduction of the field equations to the zero modes leads to SL(N,C) monodromy preserving equations. The latter coincide with the Painleve VI equation for N=2. We consider two types of the bundles. In the first one the group of automorphisms is the centrally and cocentrally extended loop group L(SL(N,C)) or some multiloop group. In the case of the Painleve VI field theory in D=1+1 four constants of the Painleve VI equation become dynamical fields. The second type of bundles are defined by the group of automorphisms of the noncommutative torus. They lead to the equations in dimension 2+1. In both cases we consider trigonometric, rational and scaling limits of the theories. Generically (e...

  18. Quantum Field Theory in a Semiotic Perspective

    CERN Document Server

    Günter Dosch, Hans; Sieroka, Norman

    2005-01-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...

  19. Classical and Quantum Theory of Perturbations in Inflationary Universe Models

    CERN Document Server

    Brandenberger, R H; Mukhanov, V

    1993-01-01

    A brief introduction to the gauge invariant classical and quantum theory of cosmological perturbations is given. The formalism is applied to inflationary Universe models and yields a consistent and unified description of the generation and evolution of fluctuations. A general formula for the amplitude of cosmological perturbations in inflationary cosmology is derived.

  20. Aesthetic Creativity: Insights from Classical Literary Theory on Creative Learning

    Science.gov (United States)

    Hellstrom, Tomas Georg

    2011-01-01

    This paper addresses the subject of textual creativity by drawing on work done in classical literary theory and criticism, specifically new criticism, structuralism and early poststructuralism. The question of how readers and writers engage creatively with the text is closely related to educational concerns, though they are often thought of as…

  1. Classical Stasis Theory and the Analysis of Public Policy.

    Science.gov (United States)

    Hatch, Gary Layne

    In classical Greece, there was a close tie between rhetoric and the practice and theory of public policy. Gradually, however, rhetoric became increasingly concerned with style and literary criticism, while philosophers began to debate political issues apart from the practical affairs of the polis. Because rhetoric provides a model that can still…

  2. Theory of Optimal Currency Zones: from Classics until Today

    Directory of Open Access Journals (Sweden)

    Pinchuk Anastasiya K.

    2013-12-01

    Full Text Available The article analyses evolution of the theory of optimal currency zones (OCZ, starting from its classical provisions until moder developments. Based on the critical analysis of classical criteria of OCZ, the article develops a scheme of selection of the currency mode by the Robert Mundell theory. It considers achievements of the alternative OCZ theory, the main provisions of which are shown schematically in the form of illustrations of evolution of the theory of optimal currency zones. In the result of analysis of classical criteria of optimal currency zones and generalisation of developments of the new OCZ theory, the article develops a universal algorithm of identification of optimal conditions for an efficient currency zone. Using this algorithm allows identification of a system of quantitative indicators of expediency of regional joining the OCZ, on the basis of which one can build an economic model of an optimal currency zone, which reflects the degree of readiness of any country to join or develop the OCZ. Development of this model is necessary for many countries that face the need to select the currency integration. This model is of special importance for Ukraine, for which it is important to select the course of external integration, since various directions of foreign policy significantly influence efficiency of the domestic economic policy in the country.

  3. Gyrokinetic field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-08-01

    The Lagrangian formulation of the gyrokinetic theory is generalized in order to describe the particles' dynamics as well as the self-consistent behavior of the electromagnetic fields. The gyrokinetic equation for the particle distribution function and the gyrokinetic Maxwell's equations for the electromagnetic fields are both derived from the variational principle for the Lagrangian consisting of the parts of particles, fields, and their interaction. In this generalized Lagrangian formulation, the energy conservation property for the total nonlinear gyrokinetic system of equations is directly shown from the Noether's theorem. This formulation can be utilized in order to derive the nonlinear gyrokinetic system of equations and the rigorously conserved total energy for fluctuations with arbitrary frequency. (author)

  4. THE NEW CLASSICAL THEORY AND THE REAL BUSINESS CYCLE MODEL

    Directory of Open Access Journals (Sweden)

    Oana Simona HUDEA (CARAMAN

    2014-11-01

    Full Text Available The present paper aims at describing some key elements of the new classical theory-related model, namely the Real Business Cycle, mainly describing the economy from the perspective of a perfectly competitive market, characterised by price, wage and interest rate flexibility. The rendered impulse-response functions, that help us in revealing the capacity of the model variables to return to their steady state under the impact of a structural shock, be it technology or monetary policy oriented, give points to the neutrality of the monetary entity decisions, therefore confirming the well-known classical dichotomy existing between the nominal and the real factors of the economy.

  5. Folding defect affine Toda field theories

    CERN Document Server

    Robertson, C

    2013-01-01

    A folding process is applied to fused a^(1)_r defects to construct defects for the non-simply laced affi?ne Toda ?field theories of c^(1)_n, d^(2)_n and a^(2)_n at the classical level. Support for the hypothesis that these defects are integrable in the folded theories is provided by the observation that transmitted solitons retain their form. Further support is given by the demonstration that energy and momentum are conserved.

  6. Quantum algorithms for quantum field theories.

    Science.gov (United States)

    Jordan, Stephen P; Lee, Keith S M; Preskill, John

    2012-06-01

    Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.

  7. Classical and Quantum Mechanical Motion in Magnetic Fields

    CERN Document Server

    Franklin, J

    2016-01-01

    We study the motion of a particle in a particular magnetic field configuration both classically and quantum mechanically. For flux-free radially symmetric magnetic fields defined on circular regions, we establish that particle escape speeds depend, classically, on a gauge-fixed magnetic vector potential, and demonstrate some trajectories associated with this special type of magnetic field. Then we show that some of the geometric features of the classical trajectory (perpendicular exit from the field region, trapped and escape behavior) are reproduced quantum mechanically using a numerical method that extends the norm-preserving Crank-Nicolson method to problems involving magnetic fields. While there are similarities between the classical trajectory and the position expectation value of the quantum mechanical solution, there are also differences, and we demonstrate some of these.

  8. Classic Grounded Theory to Analyse Secondary Data: Reality and Reflections

    Directory of Open Access Journals (Sweden)

    Lorraine Andrews

    2012-06-01

    Full Text Available This paper draws on the experiences of two researchers and discusses how they conducted a secondary data analysis using classic grounded theory. The aim of the primary study was to explore first-time parents’ postnatal educational needs. A subset of the data from the primary study (eight transcripts from interviews with fathers was used for the secondary data analysis. The objectives of the secondary data analysis were to identify the challenges of using classic grounded theory with secondary data and to explore whether the re-analysis of primary data using a different methodology would yield a different outcome. Through the process of re-analysis a tentative theory emerged on ‘developing competency as a father’. Challenges encountered during this re-analysis included the small dataset, the pre-framed data, and limited ability for theoretical sampling. This re-analysis proved to be a very useful learning tool for author 1(LA, who was a novice with classic grounded theory.

  9. Quantum and classical statistics of the electromagnetic zero-point field

    CERN Document Server

    Ibison, M

    1996-01-01

    A classical electromagnetic zero-point field (ZPF) analogue of the vacuum of quantum field theory has formed the basis for theoretical investigations in the discipline known as random or stochastic electrodynamics (SED) wherein quantum measurements are imitated by the introduction of a stochastic classical background EM field. Random EM fluctuations are assumed to provide perturbations which can mimic some quantum phenomena while retaining a purely classical basis, e.g. the Casimir force, the Van-der-Waals force, the Lamb shift, spontaneous emission, the RMS radius of the harmonic oscillator, and the radius of the Bohr atom. This classical ZPF is represented as a homogeneous, isotropic ensemble of plane waves with fixed amplitudes and random phases. Averaging over the random phases is assumed to be equivalent to taking the ground-state expectation values of the corresponding quantum operator. We demonstrate that this is not precisely correct by examining the statistics of the classical ZPF in contrast to that...

  10. A superfield generalization of the classical action-at-a-distance theory

    Science.gov (United States)

    Tugai, V. V.; Zheltukhin, A. A.

    1994-07-01

    A generalization of the Fokker-Schwarzschild- Tetrode-Wheeler-Feynman electromagnetic theory onto superspace is considered. The classical vector and spinor fields belonging to the Maxwell supermultiplet are built of the world-line coordinates of the charged particles in superspace.

  11. Superfield generalization of the classical action-at-a-distance theory

    Science.gov (United States)

    Tugai, V. V.; Zheltukhin, A. A.

    1995-04-01

    A generalization of the Fokker-Schwarzschild-Tetrode-Wheeler-Feynman electromagnetic theory onto superspace is considered. The classical vector and spinor fields belonging to the Maxwell supermultiplet are built of the world-line coordinates of the charged particles in superspace.

  12. Superfield generalization of the classical action-at-a-distance theory

    Energy Technology Data Exchange (ETDEWEB)

    Tugai, V.V. (Scientific Physicotechnological Center, 310145 Kharkov (Ukraine)); Zheltukhin, A.A. (Kharkov Physicotechnical Institute, 310108 Kharkov (Ukraine))

    1995-04-15

    A generalization of the Fokker-Schwarzschild-Tetrode-Wheeler-Feynman electromagnetic theory onto superspace is considered. The classical vector and spinor fields belonging to the Maxwell supermultiplet are built of the world-line coordinates of the charged particles in superspace.

  13. Quantum theory is classical mechanics with non-local existence

    CERN Document Server

    Hegseth, John

    2009-01-01

    I propose a new and direct connection between classical mechanics and quantum mechanics where I derive the quantum mechanical propagator from a variational principle. This variational principle is Hamilton's modified principle generalized to allow many paths due to the non-local existence of particles in phase space. This principle allows a physical system to evolve non-locally in phase space while still allowing a representation that uses many classical paths. Whereas a point in phase space represents a classical system's state, I represent the state of a non-local system by a mixed trajectory. This formulation naturally leads to the transactional interpretation for resolving the paradoxes of the measurement problem. This principle also suggests a more flexible framework for formulating theories based on invariant actions and provides a single conceptual framework for discussing many areas of science.

  14. Unified field theories

    CERN Document Server

    Vizgin, Vladimir P

    2011-01-01

    Despite the rapidly expanding ambit of physical research and the continual appearance of new branches of physics, the main thrust in its development has been the attempt at a theoretical synthesis of the entire body of physical knowledge. Vladimir Vizgin's work presents perhaps the first systematic historico-scientific study of the formation and development of the unified field theories in the general context of 20th century physics. Concentrating on the first three decades of the century and drawing extensively on Russian sources, the author analyses the first successes, failures and paths of

  15. Higgs Effective Field Theories

    CERN Document Server

    2016-01-01

    The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.

  16. Topics in field theory

    CERN Document Server

    Karpilovsky, G

    1989-01-01

    This monograph gives a systematic account of certain important topics pertaining to field theory, including the central ideas, basic results and fundamental methods.Avoiding excessive technical detail, the book is intended for the student who has completed the equivalent of a standard first-year graduate algebra course. Thus it is assumed that the reader is familiar with basic ring-theoretic and group-theoretic concepts. A chapter on algebraic preliminaries is included, as well as a fairly large bibliography of works which are either directly relevant to the text or offer supplementary material of interest.

  17. Lectures on Matrix Field Theory

    Science.gov (United States)

    Ydri, Badis

    The subject of matrix field theory involves matrix models, noncommutative geometry, fuzzy physics and noncommutative field theory and their interplay. In these lectures, a lot of emphasis is placed on the matrix formulation of noncommutative and fuzzy spaces, and on the non-perturbative treatment of the corresponding field theories. In particular, the phase structure of noncommutative $\\phi^4$ theory is treated in great detail, and an introduction to noncommutative gauge theory is given.

  18. Quantum Stability of Chameleon Field Theories

    CERN Document Server

    Upadhye, Amol; Khoury, Justin

    2012-01-01

    Chameleon scalar fields are dark energy candidates which suppress fifth forces in high density regions of the universe by becoming massive. We consider chameleon models as effective field theories and estimate quantum corrections to their potentials. Requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound $m 0.0042$\\,eV. An improvement of less than a factor of two in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well-controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential.

  19. Quiver Theories for Moduli Spaces of Classical Group Nilpotent Orbits

    CERN Document Server

    Hanany, Amihay

    2016-01-01

    We approach the topic of Classical group nilpotent orbits from the perspective of their moduli spaces, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKahler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for ...

  20. A New Conformal Theory of Semi-Classical Quantum General Relativity

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2007-10-01

    Full Text Available We consider a new four-dimensional formulation of semi-classical quantum general relativity in which the classical space-time manifold, whose intrinsic geometric properties give rise to the effects of gravitation, is allowed to evolve microscopically by means of a conformal function which is assumed to depend on some quantum mechanical wave function. As a result, the theory presented here produces a unified field theory of gravitation and (microscopic electromagnetism in a somewhat simple, effective manner. In the process, it is seen that electromagnetism is actually an emergent quantum field originating in some kind of stochastic smooth extension (evolution of the gravitational field in the general theory of relativity.

  1. Factorization algebras in quantum field theory

    CERN Document Server

    Costello, Kevin

    2017-01-01

    Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.

  2. Development of a unified viscoplasticity constitutive model based on classical plasticity theory

    Institute of Scientific and Technical Information of China (English)

    GUAN Ping; LIU ChangChun; L(U) HeXiang

    2009-01-01

    The traditional unified viscoplasticity constitutive model can be only applied to metal materials. The study of the unified constitutive theory for metal materials has discovered the correlation between the classical plasticity theory and the unified viscoplasticity constitutive model, thus leading to the con-cepts of the classic plastic potential and yield surface in the unified constitutive model. Moreover, this research has given the continuous expression of the classical plastic multiplier and presented the corresponding constructive method, which extends its physical significance and lays down a good foundation for the application of the unified constitutive theory to the material analysis in more fields.This paper also introduces the unified constitutive model for metal materials and geo-materials. The numerical simulation indicates that the construction should be both reasonable and practical.

  3. Development of a unified viscoplasticity constitutive model based on classical plasticity theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The traditional unified viscoplasticity constitutive model can be only applied to metal materials.The study of the unified constitutive theory for metal materials has discovered the correlation between the classical plasticity theory and the unified viscoplasticity constitutive model,thus leading to the con-cepts of the classic plastic potential and yield surface in the unified constitutive model.Moreover,this research has given the continuous expression of the classical plastic multiplier and presented the corresponding constructive method,which extends its physical significance and lays down a good foundation for the application of the unified constitutive theory to the material analysis in more fields.This paper also introduces the unified constitutive model for metal materials and geo-materials.The numerical simulation indicates that the construction should be both reasonable and practical.

  4. A New Fuzzy Set Theory Satisfying All Classical Set Formulas

    Institute of Scientific and Technical Information of China (English)

    Qing-Shi Gao; Xiao-Yu Gao; Yue Hu

    2009-01-01

    A new fuzzy set theory, C-fuzzy set theory, is introduced in this paper. It is a particular case of the classical set theory and satisfies all formulas of the classical set theory. To add a limitation to C-fuzzy set system, in which all fuzzy sets must be "non-uniform inclusive" to each other, then it forms a family of sub-systems, the Z-fuzzy set family. It can be proved that the Z0-fuzzy set system, one of Z-fuzzy set systems, is equivalent to Zadeh's fuzzy set system. Analysis shows that 1) Zadeh's fuzzy set system defines the relations A = B and A ∈B between two fuzzy sets A and B as "Vu e U,(u A E (u)=μB(U))" and "Au ∈ U, (μA(U) ≤μB(μ))" respectively is inappropriate, because it makes all fuzzy sets be "non-uniformly inclusive"; 2) it is also inappropriate to define two fuzzy sets' union and intersection operations as the max and rain of their grades of membership, because this prevents fuzzy set's ability to correctly reflect different kinds of fuzzy phenomenon in the natural world. Then it has to work around the problem by invent unnatural functions that are hard to understand, such as augmenting max and min for union and intersection to min{a + b, 1} and max{a + b - 1, 0}, but these functions are incorrect on inclusive case. If both pairs of definitions are used together, not only are they unnatural, but also they are still unable to cover all possible set relationships in the natural world; and 3) it is incorrect to define the set complement as 1 -μA(μ), because it can be proved that set complement cannot exist in Zadeh's fuzzy set, and it causes confusion in logic and thinking. And it is seriously mistaken to believe that logics of fuzzy sets necessarily go against classical and normal thinking, logic, and conception. The C-fuzzy set theory proposed in this paper overcomes all of the above errors and shortcomings, and more reasonably reflects fuzzy phenomenon in the natural world. It satisfies all relations, formulas, and operations of the

  5. Electromagnetic Field Theory A Collection of Problems

    CERN Document Server

    Mrozynski, Gerd

    2013-01-01

    After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...

  6. Logarithmic conformal field theory

    Science.gov (United States)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more

  7. Encoding field theories into gravities

    CERN Document Server

    Aoki, Sinya; Onogi, Tetsuya

    2016-01-01

    We propose a method to give a $d+1$ geometry from a $d$ dimensional quantum field theory in the large N expansion. We first construct a $d+1$ dimensional field from the $d$ dimensional one using the gradient flow equation, whose flow time $t$ represents the energy scale of the system such that $t\\rightarrow 0$ corresponds to the ultra-violet (UV) while $t\\rightarrow\\infty$ to the infra-red (IR). We define the induced metric using $d+1$ dimensional field operators. We show that the metric defined in this way becomes classical in the large N limit: quantum fluctuations of the metric are suppressed as 1/N due to the large $N$ factorization property. As a concrete example, we apply our method to the O(N) non-linear $\\sigma$ model in two dimensions. We calculate the three dimensional induced metric, which describes an AdS space in the massless limit. We finally discuss several open issues for future investigations.

  8. ClassSTRONG: Classical simulations of Strong Field processes

    CERN Document Server

    Ciappina, M F; Lewenstein, M

    2013-01-01

    A set of Mathematica functions is presented to model classically two of the most important processes in strong field physics, namely high-order harmonic generation (HHG) and above-threshold ionization (ATI). Our approach is based on the numerical solution of the Newton-Lorentz equation of an electron moving on an electric field and takes advantage of the symbolic languages features and graphical power of Mathematica. Similarly as in the Strong Field Approximation (SFA), the effects of atomic potential on the motion of electron in the laser field are neglected. The SFA has proven to be an essential tool in strong field physics in the sense that it is able to predict with great precision the harmonic (in the HHG) and energy (in the ATI) limits. We have extended substantially the conventional classical simulations, where the electric field is only dependent on time, including spatial nonhomogeneous fields and spatial and temporal synthesized fields. Spatial nonhomogeneous fields appear when metal nanosystems int...

  9. Chameleon Field Theories

    CERN Document Server

    Khoury, Justin

    2013-01-01

    Chameleons are light scalar fields with remarkable properties. Through the interplay of self-interactions and coupling to matter, chameleon particles have a mass that depends on the ambient matter density. The manifestation of the fifth force mediated by chameleons therefore depends sensitively on their environment, which makes for a rich phenomenology. In this article, we review two recent results on chameleon phenomenology. The first result a pair of no-go theorems limiting the cosmological impact of chameleons and their generalizations: i) the range of the chameleon force at cosmological density today can be at most ~Mpc; ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time. These theorems imply that chameleons have negligible effect on the linear growth of structure, and cannot account for the observed cosmic acceleration except as some form of dark energy. The second result pertains to the quantum stability of chameleon theories. We ...

  10. The energy–momentum tensor(s in classical gauge theories

    Directory of Open Access Journals (Sweden)

    Daniel N. Blaschke

    2016-11-01

    Full Text Available We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.

  11. The Energy-Momentum Tensor(s) in Classical Gauge Theories

    CERN Document Server

    Blaschke, Daniel N; Reboud, Meril; Schweda, Manfred

    2016-01-01

    We give an introduction to, and review of, the energy-momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space-time. For the canonical energy-momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy-momentum tensor. The relationship with the Einstein-Hilbert tensor following from the coupling to a gravitational field is also discussed.

  12. Thermal imaginary part of a real-time static potential from classical lattice gauge theory simulations

    CERN Document Server

    Laine, M; Tassler, M

    2007-01-01

    Recently, a finite-temperature real-time static potential has been introduced via a Schr\\"odinger-type equation satisfied by a certain heavy quarkonium Green's function. Furthermore, it has been pointed out that it possesses an imaginary part, which induces a finite width for the tip of the quarkonium peak in the thermal dilepton production rate. The imaginary part originates from Landau-damping of low-frequency gauge fields, which are essentially classical due to their high occupation number. Here we show how the imaginary part can be measured with classical lattice gauge theory simulations, accounting non-perturbatively for the infrared sector of finite-temperature field theory. We demonstrate that a non-vanishing imaginary part indeed exists non-perturbatively; and that its value agrees semi-quantitatively with that predicted by Hard Loop resummed perturbation theory.

  13. Classical theory of resonant transition radiation in multilayer structures.

    Science.gov (United States)

    Pardo, B; André, J M

    2001-01-01

    A rigorous classical electromagnetic theory of the transition radiation in finite and infinite multilayer structures is presented. It makes the standard results of thin-film optics, such as the matrix formalism, accountable; it allows thus an exact treatment of the propagation of the waves induced by the electron. This method is applied to the particular case of the periodic structures to treat the resonant transition radiation (RTR). It is noted that the present theory gives, in the hard x-ray domain, results previously published. The reason for this approach is to make the numerical calculations rigorous and easy. The numerical results of our theory are compared to experimental RTR data obtained recently by Yamada et al. [Phys. Rev. A 59, 3673 (1999)] with a nickel-carbon multilayer structure.

  14. Towards the mathematics of quantum field theory

    CERN Document Server

    Paugam, Frédéric

    2014-01-01

    The aim of this book is to introduce mathematicians (and, in particular, graduate students) to the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in play. This should in turn promote interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, even if the mathematical one is the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second...

  15. Classical Bianchi type I cosmology in K-essence theory

    CERN Document Server

    Socorro, J; Espinoza-García, Abraham

    2014-01-01

    We use one of the simplest forms of the K-essence theory and we apply it to the classical anisotropic Bianchi type I cosmological model, with a barotropic perfect fluid modeling the usual matter content and with cosmological constant. The classical solutions for any but the stiff fluid and without cosmological constant are found in closed form, using a time transformation. We also present the solution whith cosmological constant and some particular values of the barotropic parameter. We present the possible isotropization of the cosmological model, using the ratio between the anisotropic parameters and the volume of the universe and show that this tend to a constant or to zero for different cases. We include also a qualitative analysis of the analog of the Friedmann equation.

  16. The theory of variational hybrid quantum-classical algorithms

    CERN Document Server

    McClean, Jarrod R; Babbush, Ryan; Aspuru-Guzik, Alán

    2015-01-01

    Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as "the quantum variational eigensolver" was developed with the philosophy that even minimal quantum resources could be made useful when used in conjunction with classical routines. In this work we extend the general theory of this algorithm and suggest algorithmic improvements for practical implementations. Specifically, we develop a variational adiabatic ansatz and explore unitary coupled cluster where we establish a connection from second order unitary coupled cluster to universal gate sets through relaxation of exponential splitting. We introduce the concept of quantum variational error suppression that allows some errors to be suppressed naturally in this algorithm on a pre-threshold quantum device. Additionally, we analyze truncation and correlated sampling in Hamiltonian averaging as ways to reduce the cost of this proced...

  17. Classical microscopic theory of dispersion, emission and absorption of light in dielectrics. Classical microscopic theory of dielectric susceptibility

    Science.gov (United States)

    Carati, Andrea; Galgani, Luigi

    2014-10-01

    This paper is a continuation of a recent one in which, apparently for the first time, the existence of polaritons in ionic crystals was proven in a microscopic electrodynamic theory. This was obtained through an explicit computation of the dispersion curves. Here the main further contribution consists in studying electric susceptibility, from which the spectrum can be inferred. We show how susceptibility is obtained by the Green-Kubo methods of Hamiltonian statistical mechanics, and give for it a concrete expression in terms of time-correlation functions. As in the previous paper, here too we work in a completely classical framework, in which the electrodynamic forces acting on the charges are all taken into account, both the retarded forces and the radiation reaction ones. So, in order to apply the methods of statistical mechanics, the system has to be previously reduced to a Hamiltonian one. This is made possible in virtue of two global properties of classical electrodynamics, namely, the Wheeler-Feynman identity and the Ewald resummation properties, the proofs of which were already given for ordered system. The second contribution consists in formulating the theory in a completely general way, so that in principle it applies also to disordered systems such as glasses, or liquids or gases, provided the two general properties mentioned above continue to hold. A first step in this direction is made here by providing a completely general proof of the Wheeler-Feynman identity, which is shown to be the counterpart of a general causality property of classical electrodynamics. Finally it is shown how a line spectrum can appear at all in classical systems, as a counterpart of suitable stability properties of the motions, with a broadening due to a coexistence of chaoticity. The relevance of some recent results of the theory of dynamical systems in this connection is also pointed out.

  18. Classical and quantum mechanics of diatomic molecules in tilted fields.

    Science.gov (United States)

    Arango, Carlos A; Kennerly, William W; Ezra, Gregory S

    2005-05-08

    We investigate the classical and quantum mechanics of diatomic molecules in noncollinear (tilted) static electric and nonresonant linearly polarized laser fields. The classical diatomic in tilted fields is a nonintegrable system, and we study the phase space structure for physically relevant parameter regimes for the molecule KCl. While exhibiting low-energy (pendular) and high-energy (free-rotor) integrable limits, the rotor in tilted fields shows chaotic dynamics at intermediate energies, and the degree of classical chaos can be tuned by changing the tilt angle. We examine the quantum mechanics of rotors in tilted fields. Energy-level correlation diagrams are computed, and the presence of avoided crossings quantified by the study of nearest-neighbor spacing distributions as a function of energy and tilting angle. Finally, we examine the influence of classical periodic orbits on rotor wave functions. Many wave functions in the tilted field case are found to be highly nonseparable in spherical polar coordinates. Localization of wave functions in the vicinity of classical periodic orbits, both stable and unstable, is observed for many states.

  19. a Classical Isodual Theory of Antimatter and its Prediction of Antigravity

    Science.gov (United States)

    Santilli, Ruggero Maria

    An inspection of the contemporary physics literature reveals that, while matter is treated at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is solely treated at the level of second quantization. For the purpose of initiating the restoration of full equivalence in the treatment of matter and antimatter in due time, and as the classical foundations of an axiomatically consistent inclusion of gravitation in unified gauge theories recently appeared elsewhere, in this paper we present a classical representation of antimatter which begins at the primitive Newtonian level with corresponding formulations at all subsequent levels. By recalling that charge conjugation of particles into antiparticles is antiautomorphic, the proposed theory of antimatter is based on a new map, called isoduality, which is also antiautomorphic (and more generally, antiisomorphic), yet it is applicable beginning at the classical level and then persists at the quantum level where it becomes equivalent to charge conjugation. We therefore present, apparently for the first time, the classical isodual theory of antimatter, we identify the physical foundations of the theory as being the novel isodual Galilean, special and general relativities, and we show the compatibility of the theory with all available classical experimental data on antimatter. We identify the classical foundations of the prediction of antigravity for antimatter in the field of matter (or vice-versa) without any claim on its validity, and defer its resolution to specifically identified experiments. We identify the novel, classical, isodual electromagnetic waves which are predicted to be emitted by antimatter, the so-called space-time machine based on a novel non-Newtonian geometric propulsion, and other implications of the theory. We also introduce, apparently for the first time, the isodual space and time inversions and show that they are nontrivially different than the conventional ones, thus

  20. Methods of quantum field theory in statistical physics

    CERN Document Server

    Abrikosov, A A; Gorkov, L P; Silverman, Richard A

    1975-01-01

    This comprehensive introduction to the many-body theory was written by three renowned physicists and acclaimed by American Scientist as ""a classic text on field theoretic methods in statistical physics."

  1. The Prediction of Item Parameters Based on Classical Test Theory and Latent Trait Theory

    Science.gov (United States)

    Anil, Duygu

    2008-01-01

    In this study, the prediction power of the item characteristics based on the experts' predictions on conditions try-out practices cannot be applied was examined for item characteristics computed depending on classical test theory and two-parameters logistic model of latent trait theory. The study was carried out on 9914 randomly selected students…

  2. Comprehensive theory for star-like polymer micelles: combining classical nucleation and polymer brush theory

    NARCIS (Netherlands)

    Sprakel, J.H.B.; Leermakers, F.A.M.; Cohen Stuart, M.A.; Besseling, N.A.M.

    2008-01-01

    A comprehensive theory is proposed that combines classical nucleation and polymer brush theory to describe star-like polymer micelles. With a minimum of adjustable parameters, the model predicts properties such as critical micelle concentrations and micellar size distributions. The validity of the p

  3. Link Invariants from Classical Chern-Simons Theory

    CERN Document Server

    Leal, L C

    2002-01-01

    Taking as starting point a perturbative study of the classical equations of motion of the non-Abelian Chern-Simons Theory with non-dynamical sources, we search for analytical expressions for link invarians. In order to present this expressions in a manifestly diffeomorphism-invariant form, we introduce a set of differential forms associated with submanifolds in Euclidean three-space that allow us to write the link invariants as a kind of surface-dependent diffeomorphism-invariants that present certain Abelian gauge symmetry.

  4. Field redefinition invariance in quantum field theory

    CERN Document Server

    Apfeldorf, K M; Apfeldorf, Karyn M; Ordonez, Carlos

    1994-01-01

    We investigate the consequences of field redefinition invariance in quantum field theory by carefully performing nonlinear transformations in the path integral. We first present a ``paradox'' whereby a 1+1 freemassless scalar theory on a Minkowskian cylinder is reduced to an effectively quantum mechanical theory. We perform field redefinitions both before and after reduction to suggest that one should not ignore operator ordering issues in quantum field theory. We next employ a discretized version of the path integral for a free massless scalar quantum field in d dimensions to show that beyond the usual jacobian term, an infinite series of divergent ``extra'' terms arises in the action whenever a nonlinear field redefinition is made. The explicit forms for the first couple of these terms are derived. We evaluate Feynman diagrams to illustrate the importance of retaining the extra terms, and conjecture that these extra terms are the exact counterterms necessary to render physical quantities invariant under fie...

  5. The Fock-Kemmer approach to precursor shock waves in relativistic field theory

    CERN Document Server

    Abdullah, Rawand H

    2016-01-01

    We use distribution theory (generalized functions) to extend and justify the Fock-Kemmer approach to the propagation of precursor shock wave discontinuities in classical and quantum field theory. We apply lightcone causality arguments to propose that shock wave singularities in non-linear classical field theories and in Maxwell's equations for responsive media require a form of classical renormalization analogous to Wilson operator product expansions in quantum field theories.

  6. Emergence Of A Classical World From Within Quantum Theory

    CERN Document Server

    Poulin, D

    2005-01-01

    The starting point of this dissertation is that a quantum state represents the observer's knowledge about the system of interest. As it has been pointed out several times by the opponents of this epistemic interpretation, it is difficult to reconcile this point of view with our common notion of “physical reality”, which exists independently of our monitoring, and can be discovered without disturbance. Indeed, if quantum theory is correct, it should apply to classical systems—including measurement devices—as well as to any other system. In this dissertation, we will study the quantum mechanisms responsible for our perception of the world and demonstrate how they lead to the emergence of an operational objective reality from within quantum theory: several observers gathering information through these mechanisms will arrive at a common consensus about the properties of the world. The two mechanisms we study in great detail are the redundant proliferation of information in ...

  7. Light-cone Wilson loop in classical lattice gauge theory

    CERN Document Server

    Laine, M

    2013-01-01

    The transverse broadening of an energetic jet passing through a non-Abelian plasma is believed to be described by the thermal expectation value of a light-cone Wilson loop. In this exploratory study, we measure the light-cone Wilson loop with classical lattice gauge theory simulations. We observe, as suggested by previous studies, that there are strong interactions already at short transverse distances, which may lead to more efficient jet quenching than in leading-order perturbation theory. We also verify that the asymptotics of the Wilson loop do not change qualitatively when crossing the light cone, which supports arguments in the literature that infrared contributions to jet quenching can be studied with dimensionally reduced simulations in the space-like domain. Finally we speculate on possibilities for full four-dimensional lattice studies of the same observable, perhaps by employing shifted boundary conditions in order to simulate ensembles boosted by an imaginary velocity.

  8. Marshaling Resources: A Classic Grounded Theory Study of Online Learners

    Directory of Open Access Journals (Sweden)

    Barbara Yalof

    2014-06-01

    Full Text Available Classic grounded theory (CGT was used to identify a main concern of online students in higher education. One of the main impediments to studying online is a sense of isolation and lack of access to support systems as students navigate through complex requirements of their online programs. Hypothetical probability statements illustrate the imbalance between heightened needs of virtual learners and perceived inadequate support provided by educational institutions. The core variable, marshaling resources, explains how peer supports sustain motivation toward successful program completion. Understanding the critical contribution virtual interpersonal networks make towards maximizing resources by group problem solving is a significant aspect of this theory. Keywords: Online learning, e-learning, personal learning networks, peer networks

  9. Quantum field theory in a semiotic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)

    2005-07-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)

  10. Effective field theory of slowly-moving "extreme black holes"

    OpenAIRE

    Degura, Yoshitaka; Shiraishi, Kiyoshi

    2000-01-01

    We consider the non-relativistic effective field theory of ``extreme black holes'' in the Einstein-Maxwell-dilaton theory with an arbitrary dilaton coupling. We investigate finite-temperature behavior of gas of ``extreme black holes'' using the effective theory. The total energy of the classical many-body system is also derived.

  11. Quiver theories for moduli spaces of classical group nilpotent orbits

    Science.gov (United States)

    Hanany, Amihay; Kalveks, Rudolph

    2016-06-01

    We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3 d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKähler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials.

  12. Multisymplectic effective General Boundary Field Theory

    CERN Document Server

    Arjang, Mona

    2013-01-01

    The transfer matrix in lattice field theory connects the covariant and the initial data frameworks; in spin foam models, it can be written as a composition of elementary cellular amplitudes/propagators. We present a framework for discrete spacetime classical field theory in which solutions to the field equations over elementary spacetime cells may be amalgamated if they satisfy simple gluing conditions matching the composition rules of cellular amplitudes in spin foam models. Furthermore, the formalism is endowed with a multisymplectic structure responsible for local conservation laws. Some models within our framework are effective theories modeling a system at a given scale. Our framework allows us to study coarse graining and the continuum limit.

  13. Second-order spatial correlation in the far-field: Comparing entangled and classical light sources

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Erfeng, E-mail: efzhang@163.com; Liu, Weitao; Lin, Huizu; Chen, Pingxing

    2016-02-15

    Highlights: • Second-order spatial correlation with entangled and classical light in the far-field is investigated. • The role of photon statistics and detection mode in the second-order spatial correlation are discussed. • The difference of second-order spatial correlation with entangled and classical light sources is deduced. - Abstract: We consider second-order spatial correlation with entangled and classical light in the far-field. The quantum theory of second-order spatial correlation is analyzed, and the role of photon statistics and detection mode in the second-order spatial correlation are discussed. Meanwhile, the difference of second-order spatial correlation with entangled and classical light sources is deduced.

  14. On classical and quantum dynamics of tachyon-like fields and their cosmological implications

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrijević, Dragoljub D., E-mail: ddrag@pmf.ni.ac.rs; Djordjević, Goran S., E-mail: ddrag@pmf.ni.ac.rs; Milošević, Milan, E-mail: ddrag@pmf.ni.ac.rs [Department of Physics, Faculty of Science and Mathematics, University of Niš (Serbia); Vulcanov, Dumitru [Faculty of Physics, West University of Timisoara (Romania)

    2014-11-24

    We consider a class of tachyon-like potentials, motivated by string theory, D-brane dynamics and inflation theory in the context of classical and quantum mechanics. A formalism for describing dynamics of tachyon fields in spatially homogenous and one-dimensional - classical and quantum mechanical limit is proposed. A few models with concrete potentials are considered. Additionally, possibilities for p-adic and adelic generalization of these models are discussed. Classical actions and corresponding quantum propagators, in the Feynman path integral approach, are calculated in a form invariant on a change of the background number fields, i.e. on both archimedean and nonarchimedean spaces. Looking for a quantum origin of inflation, relevance of p-adic and adelic generalizations are briefly discussed.

  15. Heavy Quark Thermalization in Classical Lattice Gauge Theory Lessons for Strongly-Coupled QCD

    CERN Document Server

    Laine, Mikko; Philipsen, Owe; Tassler, Marcus

    2009-01-01

    Thermalization of a heavy quark near rest is controlled by the correlator of two electric fields along a temporal Wilson line. We address this correlator within real-time, classical lattice Yang-Mills theory, and elaborate on the analogies that exist with the dynamics of hot QCD. In the weak-coupling limit, it can be shown analytically that the dynamics on the two sides are closely related to each other. For intermediate couplings, we carry out non-perturbative simulations within the classical theory, showing that the leading term in the weak-coupling expansion significantly underestimates the heavy quark thermalization rate. Our analytic and numerical results also yield a general understanding concerning the overall shape of the spectral function corresponding to the electric field correlator, which may be helpful in subsequent efforts to reconstruct it from Euclidean lattice Monte Carlo simulations.

  16. Topics in Double Field Theory

    Science.gov (United States)

    Kwak, Seung Ki

    The existence of momentum and winding modes of closed string on a torus leads to a natural idea that the field theoretical approach of string theory should involve winding type coordinates as well as the usual space-time coordinates. Recently developed double field theory is motivated from this idea and it implements T-duality manifestly by doubling the coordinates. In this thesis we will mainly focus on the double field theory formulation of different string theories in its low energy limit: bosonic, heterotic, type II and its massive extensions, and N = 1 supergravity theory. In chapter 2 of the thesis we study the equivalence of different formulations of double field theory. There are three different formulations of double field theory: background field E formulation, generalized metric H formulation, and frame field EAM formulation. Starting from the frame field formalism and choosing an appropriate gauge, the equivalence of the three formulations of bosonic theory are explicitly verified. In chapter 3 we construct the double field theory formulation of heterotic strings. The global symmetry enlarges to O( D, D + n) for heterotic strings and the enlarged generalized metric features this symmetry. The structural form of bosonic theory can directly be applied to the heterotic theory with the enlarged generalized metric. In chapter 4 we develop a unified framework of double field theory for type II theories. The Ramond-Ramond potentials fit into spinor representations of the duality group O( D, D) and the theory displays Spin+( D, D) symmetry with its self-duality relation. For a specific form of RR 1-form the theory reduces to the massive deformation of type IIA theory due to Romans. In chapter 5 we formulate the N = 1 supersymmetric extension of double field theory including the coupling to n abelian vector multiplets. This theory features a local O(1, 9 + n) x O(1, 9) tangent space symmetry under which the fermions transform. (Copies available exclusively from

  17. Quantum statistical correlations in thermal field theories: boundary effective theory

    CERN Document Server

    Bessa, A; de Carvalho, C A A; Fraga, E S

    2010-01-01

    We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field $\\phi_c$, and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schr\\"{o}dinger field-representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle-point for fixed boundary fields, which is the classical field $\\phi_c$, a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally-reduced effective theory for the thermal system. We calculate the two-point correlation as an example.

  18. Studying thin film damping in a micro-beam resonator based on non-classical theories

    Science.gov (United States)

    Ghanbari, Mina; Hossainpour, Siamak; Rezazadeh, Ghader

    2016-06-01

    In this paper, a mathematical model is presented for studying thin film damping of the surrounding fluid in an in-plane oscillating micro-beam resonator. The proposed model for this study is made up of a clamped-clamped micro-beam bound between two fixed layers. The micro-gap between the micro-beam and fixed layers is filled with air. As classical theories are not properly capable of predicting the size dependence behaviors of the micro-beam, and also behavior of micro-scale fluid media, hence in the presented model, equation of motion governing longitudinal displacement of the micro-beam has been extracted based on non-local elasticity theory. Furthermore, the fluid field has been modeled based on micro-polar theory. These coupled equations have been simplified using Newton-Laplace and continuity equations. After transforming to non-dimensional form and linearizing, the equations have been discretized and solved simultaneously using a Galerkin-based reduced order model. Considering slip boundary conditions and applying a complex frequency approach, the equivalent damping ratio and quality factor of the micro-beam resonator have been obtained. The obtained values for the quality factor have been compared to those based on classical theories. We have shown that applying non-classical theories underestimate the values of the quality factor obtained based on classical theories. The effects of geometrical parameters of the micro-beam and micro-scale fluid field on the quality factor of the resonator have also been investigated.

  19. Studying thin film damping in a micro-beam resonator based on non-classical theories

    Institute of Scientific and Technical Information of China (English)

    Mina Ghanbari; Siamak Hossainpour; Ghader Rezazadeh

    2016-01-01

    In this paper, a mathematical model is presented for studying thin film damping of the surrounding fluid in an in-plane oscillating micro-beam resonator. The proposed model for this study is made up of a clamped-clamped micro-beam bound between two fixed layers. The micro-gap between the micro-beam and fixed layers is filled with air. As classical theories are not properly capable of pre-dicting the size dependence behaviors of the micro-beam, and also behavior of micro-scale fluid media, hence in the presented model, equation of motion governing longitudinal displacement of the micro-beam has been extracted based on non-local elasticity theory. Furthermore, the fluid field has been modeled based on micro-polar theory. These coupled equations have been simplified using Newton-Laplace and continuity equations. After transforming to non-dimensional form and linearizing, the equations have been discretized and solved simultaneously using a Galerkin-based reduced order model. Considering slip boundary conditions and applying a complex frequency approach, the equivalent damping ratio and quality factor of the micro-beam resonator have been obtained. The obtained values for the quality factor have been compared to those based on classical theories. We have shown that applying non-classical theories underestimate the values of the quality factor obtained based on classical theo-ries. The effects of geometrical parameters of the micro-beam and micro-scale fluid field on the quality factor of the res-onator have also been investigated.

  20. Introduction of a Classical Level in Quantum Theory

    Science.gov (United States)

    Prosperi, G. M.

    2016-11-01

    In an old paper of our group in Milano a formalism was introduced for the continuous monitoring of a system during a certain interval of time in the framework of a somewhat generalized approach to quantum mechanics (QM). The outcome was a distribution of probability on the space of all the possible continuous histories of a set of quantities to be considered as a kind of coarse grained approximation to some ordinary quantum observables commuting or not. In fact the main aim was the introduction of a classical level in the context of QM, treating formally a set of basic quantities, to be considered as beables in the sense of Bell, as continuously taken under observation. However the effect of such assumption was a permanent modification of the Liouville-von Neumann equation for the statistical operator by the introduction of a dissipative term which is in conflict with basic conservation rules in all reasonable models we had considered. Difficulties were even encountered for a relativistic extension of the formalism. In this paper I propose a modified version of the original formalism which seems to overcome both difficulties. First I study the simple models of an harmonic oscillator and a free scalar field in which a coarse grain position and a coarse grained field respectively are treated as beables. Then I consider the more realistic case of spinor electrodynamics in which only certain coarse grained electric and magnetic fields are introduced as classical variables and no matter related quantities.

  1. Dynamic density functional theory for nucleation: Non-classical predictions of mesoscopic nucleation theory

    Science.gov (United States)

    Duran-Olivencia, Miguel A.; Yatsyshin, Peter; Lutsko, James F.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) for fluids and its dynamic extension (DDFT) provide an appealing mean-field framework for describing equilibrium and dynamics of complex soft matter systems. For a long time, homogeneous nucleation was considered to be outside the limits of applicability of DDFT. However, our recently developed mesoscopic nucleation theory (MeNT) based on fluctuating hydrodynamics, reconciles the inherent randomness of the nucleation process with the deterministic nature of DDFT. It turns out that in the weak-noise limit, the most likely path (MLP) for nucleation to occur is determined by the DDFT equations. We present computations of MLPs for homogeneous and heterogeneous nucleation in colloidal suspensions. For homogeneous nucleation, the MLP obtained is in excellent agreement with the reduced order-parameter description of MeNT, which predicts a multistage nucleation pathway. For heterogeneous nucleation, the presence of impurities in the fluid affects the MLP, but remarkably, the overall qualitative picture of homogeneous nucleation persists. Finally, we highlight the use of DDFT as a simulation tool, which is especially appealing as there are no known applications of MeNT to heterogeneous nucleation. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from EPSRC via Grants No. EP/L020564 and EP/L025159.

  2. Translation invariant theory of polaron (bipolaron) and the problem of quantizing near the classical solution

    Energy Technology Data Exchange (ETDEWEB)

    Lakhno, V. D., E-mail: lak@impb.psn.ru [Russian Academy of Sciences, Institute of Mathematical Problems of Biology (Russian Federation)

    2013-06-15

    A physical interpretation of translation-invariant polarons and bipolarons is presented, some results of their existence are discussed. Consideration is given to the problem of quantization in the vicinity of the classical solution in the quantum field theory. The lowest variational estimate is obtained for the bipolaron energy E({eta}) with E(0) = -0.440636{alpha}{sup 2}, where {alpha} is a constant of electron-phonon coupling, {eta} is a parameter of ion binding.

  3. Surface-Invariants in 2D Classical Yang-Mills Theory

    CERN Document Server

    Díaz, R; Leal, L; D\\'{\\i}az, Rafael; Leal, Lorenzo

    2006-01-01

    We study a method to obtain invariants under area-preserving diffeomorphisms associated to closed curves in the plane from classical Yang-Mills theory in two dimensions. Taking as starting point the Yang-Mills field coupled to non dynamical particles carrying chromo-electric charge, and by means of a perturbative scheme, we obtain the first two contributions to the on shell action, which are area-invariants. A geometrical interpretation of these invariants is given.

  4. On field theory quantization around instantons

    CERN Document Server

    Anselmi, D

    2009-01-01

    With the perspective of looking for experimentally detectable physical applications of the so-called topological embedding, a procedure recently proposed by the author for quantizing a field theory around a non-discrete space of classical minima (instantons, for example), the physical implications are discussed in a ``theoretical'' framework, the ideas are collected in a simple logical scheme and the topological version of the Ginzburg-Landau theory of superconductivity is solved in the intermediate situation between type I and type II superconductors.

  5. 5d Field Theories and M Theory

    OpenAIRE

    Kol, Barak

    1997-01-01

    5-brane configurations describing 5d field theories are promoted to an M theory description a la Witten in terms of polynomials in two complex variables. The coefficients of the polynomials are the Coulomb branch. This picture resolves apparent singularities at vertices and reveals exponentially small corrections. These corrections ask to be compared to world line instanton corrections. From a different perspective this procedure may be used to define a diagrammatic representation of polynomi...

  6. Properties of double field theory

    NARCIS (Netherlands)

    Penas, Victor Alejandro

    2016-01-01

    In this thesis we study several aspects of Double Field Theory (DFT). In general, Double Field Theory is subject to the so-called strong constraint. By using the Flux Formulation of DFT, we explore to what extent one can deal with the gauge consistency constraints of DFT without imposing the strong

  7. New views on classical and quantum Brans-Dicke theory

    CERN Document Server

    Fabris, Júlio C; Rodrigues, Davi C; Almeida, Carla R; Piattella, Oliver F

    2016-01-01

    The Brans-Dicke action is one of the most natural extensions of the Einstein-Hilbert action. It is based on the introduction of a fundamental scalar field that effectively incorporates a dynamics to the gravitational coupling $G$. In spite of the diverse motivations and the rich phenomenology that comes from its solutions, Solar System tests impose strong constraints on the Brans-Dicke theory, rendering it indistinguishable from General Relativity. In the present text, new perspectives for the Brans-Dicke theory are presented, based on the possibility that the scalar field presented in the BD theory can be external, as well as on the applications to black hole physics and the primordial universe.

  8. Scalar Field Dynamics Classical, Quantum and in Between

    CERN Document Server

    Salle, M; Vink, Jeroen C

    2000-01-01

    Using a Hartree ensemble approximation, we investigate the dynamics of the \\phi^4 model in 1+1 dimensions. We find that the fields initially thermalize with a Bose-Einstein distribution for the fields. Gradually, however, the distribution changes towards classical equipartition. Using suitable initial conditions quantum thermalization is achieved much faster than the onset of this undesirable equipartition. We also show how the numerical efficiency of our method can be significantly improved.

  9. Natural discretization in noncommutative field theory

    Energy Technology Data Exchange (ETDEWEB)

    Acatrinei, Ciprian Sorin, E-mail: acatrine@theory.nipne.ro [Department of Theoretical Physics, Horia Hulubei National Institute for Nuclear Physics, Bucharest (Romania)

    2015-12-07

    A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.

  10. Natural discretization in noncommutative field theory

    Science.gov (United States)

    Acatrinei, Ciprian Sorin

    2015-12-01

    A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.

  11. On the History of Unified Field Theories

    Directory of Open Access Journals (Sweden)

    Goenner Hubert F.M.

    2004-01-01

    Full Text Available This article is intended to give a review of the history of the classical aspects of unified field theories in the 20th century. It includes brief technical descriptions of the theories suggested, short biographical notes concerning the scientists involved, and an extensive bibliography. The present first installment covers the time span between 1914 and 1933, i.e., when Einstein was living and working in Berlin - with occasional digressions into other periods. Thus, the main theme is the unification of the electromagnetic and gravitational fields augmented by short-lived attempts to include the matter field described by Schrödinger's or Dirac's equations. While my focus lies on the conceptual development of the field, by also paying attention to the interaction of various schools of mathematicians with the research done by physicists, some prosopocraphical remarks are included.

  12. Classical Scalar Fields and Violations of the Second Law

    CERN Document Server

    Ford, L H; Roman, Thomas A.

    2001-01-01

    It has been recently shown that classical non-minimally coupled scalar fields can violate all of the standard energy conditions in general relativity. Violations of the null and averaged null energy conditions obtainable with such fields have been suggested as possible exotic matter candidates required for the maintenance of traversable wormholes. In this paper, we demonstrate that if such fields exist, they could be used to produce large negative energy fluxes and macroscopic violations of the generalized second law of thermodynamics. This would appear to present a serious problem, as such fields are widely used in many areas of modern theoretical physics.

  13. Wave Equations for Classical Two-Component Proca Fields in Curved Spacetimes with Torsionless Affinities

    Science.gov (United States)

    Santos Júnior, S. I.; Cardoso, J. G.

    2016-10-01

    The world formulation of the full theory of classical Proca fields in generally relativistic spacetimes is reviewed. Subsequently, the entire set of field equations is transcribed in a straightforward way into the framework of one of the Infeld-van der Waerden formalisms. Some well-known calculational techniques are then utilized for deriving the wave equations that control the propagation of the fields allowed for. It appears that no interaction couplings between such fields and electromagnetic curvatures are ultimately carried by the wave equations at issue. What results is, in effect, that the only interactions which occur in the theoretical context under consideration involve strictly Proca fields and wave functions for gravitons.

  14. Classical mechanics including an introduction to the theory of elasticity

    CERN Document Server

    Hentschke, Reinhard

    2017-01-01

    This textbook teaches classical mechanics as one of the foundations of physics. It describes the mechanical stability and motion in physical systems ranging from the molecular to the galactic scale. Aside from the standard topics of mechanics in the physics curriculum, this book includes an introduction to the theory of elasticity and its use in selected modern engineering applications, e.g. dynamic mechanical analysis of viscoelastic materials. The text also covers many aspects of numerical mechanics, ranging from the solution of ordinary differential equations, including molecular dynamics simulation of many particle systems, to the finite element method. Attendant Mathematica programs or parts thereof are provided in conjunction with selected examples. Numerous links allow the reader to connect to related subjects and research topics. Among others this includes statistical mechanics (separate chapter), quantum mechanics, space flight, galactic dynamics, friction, and vibration spectroscopy. An introductory...

  15. Complex analysis fundamentals of the classical theory of functions

    CERN Document Server

    Stalker, John

    1998-01-01

    This clear, concise introduction to the classical theory of one complex variable is based on the premise that "anything worth doing is worth doing with interesting examples." The content is driven by techniques and examples rather than definitions and theorems. This self-contained monograph is an excellent resource for a self-study guide and should appeal to a broad audience. The only prerequisite is a standard calculus course. The first chapter deals with a beautiful presentation of special functions. . . . The third chapter covers elliptic and modular functions. . . in much more detail, and from a different point of view, than one can find in standard introductory books. . . . For [the] subjects that are omitted, the author has suggested some excellent references for the reader who wants to go through these topics. The book is read easily and with great interest. It can be recommended to both students as a textbook and to mathematicians and physicists as a useful reference. ---Mathematical Reviews Mainly or...

  16. A numerical efficient way to minimize classical density functional theory.

    Science.gov (United States)

    Edelmann, Markus; Roth, Roland

    2016-02-21

    The minimization of the functional of the grand potential within the framework of classical density functional theory in three spatial dimensions can be numerically very demanding. The Picard iteration, that is often employed, is very simple and robust but can be rather slow. While a number of different algorithms for optimization problems have been suggested, there is still great need for additional strategies. Here, we present an approach based on the limited memory Broyden algorithm that is efficient and relatively simple to implement. We demonstrate the performance of this algorithm with the minimization of an inhomogeneous bulk structure of a fluid with competing interactions. For the problems we studied, we find that the presented algorithm improves performance by roughly a factor of three.

  17. Classical morphology of plants as an elementary instance of classical invariant theory.

    Directory of Open Access Journals (Sweden)

    Evgeny V Mavrodiev

    Full Text Available It has long been known that structural chemistry shows an intriguing correspondence with Classical Invariant Theory (CIT. Under this view, an algebraic binary form of the degree n corresponds to a chemical atom with valence n and each physical molecule or ion has an invariant-theoretic counterpart. This theory was developed using the Aronhold symbolical approach and the symbolical processes of convolution/transvection in CIT was characterized as a potential "accurate morphological method". However, CIT has not been applied to the formal morphology of living organisms. Based on the morphological interpretation of binary form, as well as the process of convolution/transvection, the First and Second Fundamental Theorems of CIT and the Nullforms of CIT, we show how CIT can be applied to the structure of plants, especially when conceptualized as a series of plant metamers (phytomers. We also show that the weight of the covariant/invariant that describes a morphological structure is a criterion of simplicity and, therefore, we argue that this allows us to formulate a parsimonious method of formal morphology. We demonstrate that the "theory of axilar bud" is the simplest treatment of the grass seedling/embryo. Our interpretations also represent Troll's bauplan of the angiosperms, the principle of variable proportions, morphological misfits, the basic types of stem segmentation, and Goethe's principle of metamorphosis in terms of CIT. Binary forms of different degrees might describe any repeated module of plant organisms. As bacteria, invertebrates, and higher vertebrates are all generally shared a metameric morphology, wider implications of the proposed symmetry between CIT and formal morphology of plants are apparent.

  18. Fundamental Elements and Interactions of Nature: A Classical Unification Theory

    Directory of Open Access Journals (Sweden)

    Tianxi Zhang

    2010-04-01

    Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are considered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interaction between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation-color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deepens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a

  19. Fundamental Elements and Interactions of Nature: A Classical Unification Theory

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2010-04-01

    Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are con- sidered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interac- tion between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation- color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deep- ens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a

  20. Field theories of condensed matter physics

    CERN Document Server

    Fradkin, Eduardo

    2013-01-01

    Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high energy and string theorists, as well as mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators and quantum entanglement. The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.

  1. Nonlocal and quasi-local field theories

    CERN Document Server

    Tomboulis, E T

    2015-01-01

    We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasi-local (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasi-local kernels all acausal effects are confined within the compact support regi...

  2. Noether symmetric classical and quantum scalar field cosmology

    CERN Document Server

    Vakili, Babak

    2011-01-01

    We study the evolution of a two dimensional minisuperspace cosmological model in classical and quantum levels by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a Friedmann-Robertson-Walker (FRW) model and a scalar field with which the action of the model is augmented. It is shown that the minisuperspace of such a model is a two dimensional manifold with vanishing Ricci scalar. We present a coordinate transformation which cast the corresponding minisuper metric to a Minkowskian or Euclidean one according to the choices of an ordinary or phantom model for the scalar field. Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generators of the desired symmetry. We explicitly calculate the form of the scalar field potential functions for which such symmetries exist. For these potential functions, the exact classical and quantum solutions in the cases where th...

  3. Towards state locality in quantum field theory: free fermions

    CERN Document Server

    Oeckl, Robert

    2013-01-01

    We provide a restricted solution to the state locality problem in quantum field theory for the case of free fermions. Concretely, we present a functorial quantization scheme that takes as input a classical free fermionic field theory. Crucially, no data is needed beyond the classical structures evident from a Lagrangian setting. The output is a quantum field theory encoded in a weakened version of the positive formalism of the general boundary formulation. When the classical data is augmented with complex structures on hypersurfaces, the quantum data correspondingly augment to the full positive formalism and the standard quantization of free fermionic field theory is recovered. This augmentation can be performed selectively, i.e., it may be limited to a subcollection of hypersurfaces. The state locality problem arises from the fact that suitable complex structures only exist on a very restricted class of unbounded hypersurfaces. But standard quantization requires them on all hypersurfaces and is thus only abl...

  4. The Nonlinear Field Space Theory

    Energy Technology Data Exchange (ETDEWEB)

    Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)

    2016-08-10

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  5. The Nonlinear Field Space Theory

    Directory of Open Access Journals (Sweden)

    Jakub Mielczarek

    2016-08-01

    Full Text Available In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity, as well as in condensed matter physics (e.g. continuous spin chains, and can shed new light on the issue of divergences in quantum field theories.

  6. The Nonlinear Field Space Theory

    Science.gov (United States)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2016-08-01

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the "Principle of finiteness" of physical theories, which once motivated the Born-Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  7. Charged free fermions, vertex operators and the classical theory of conjugate nets

    Energy Technology Data Exchange (ETDEWEB)

    Doliwa, Adam [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome (Italy); Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Warsaw (Poland); Manas, Manuel [Departamento de Matematica Aplicada y Estadistica, EUIT Aeronautica, Universidad Politecnica de Madrid, Madrid (Spain); Departamento de Fisica Teorica, Universidad Complutense, Madrid (Spain); Martinez Alonso, Luis; Medina, Elena [Departamento de Matematicas, Universidad de Cadiz, Cadiz (Spain); Santini, Paolo Maria [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome (Italy); Dipartimento di Fisica, Universita di Catania, Catania (Italy)

    1999-02-19

    We show that the quantum field theoretical formulation of the {tau}-function theory has a geometrical interpretation within the classical transformation theory of conjugate nets. In particular, we prove that (i) the partial charge transformations preserving the neutral sector are Laplace transformations, (ii) the basic vertex operators are Levy and adjoint Levy transformations and (iii) the diagonal soliton vertex operators generate fundamental transformations. We also show that the bilinear identity for the multicomponent Kadomtsev-Petviashvili hierarchy becomes, through a generalized Miwa map, a bilinear identity for the multidimensional quadrilateral lattice equations. (author)

  8. Relating field theories via stochastic quantization

    Science.gov (United States)

    Dijkgraaf, Robbert; Orlando, Domenico; Reffert, Susanne

    2010-01-01

    This note aims to subsume several apparently unrelated models under a common framework. Several examples of well-known quantum field theories are listed which are connected via stochastic quantization. We highlight the fact that the quantization method used to obtain the quantum crystal is a discrete analog of stochastic quantization. This model is of interest for string theory, since the (classical) melting crystal corner is related to the topological A-model. We outline several ideas for interpreting the quantum crystal on the string theory side of the correspondence, exploring interpretations in the Wheeler-De Witt framework and in terms of a non-Lorentz invariant limit of topological M-theory.

  9. Relating field theories via stochastic quantization

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, Robbert [KdV Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam (Netherlands); Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Orlando, Domenico [Institute for the Mathematics and Physics of the Universe, University of Tokyo, Kashiwa-no-Ha 5-1-5, Kashiwa-shi, 277-8568 Chiba (Japan); Reffert, Susanne, E-mail: susanne.reffert@impu.j [Institute for the Mathematics and Physics of the Universe, University of Tokyo, Kashiwa-no-Ha 5-1-5, Kashiwa-shi, 277-8568 Chiba (Japan)

    2010-01-11

    This note aims to subsume several apparently unrelated models under a common framework. Several examples of well-known quantum field theories are listed which are connected via stochastic quantization. We highlight the fact that the quantization method used to obtain the quantum crystal is a discrete analog of stochastic quantization. This model is of interest for string theory, since the (classical) melting crystal corner is related to the topological A-model. We outline several ideas for interpreting the quantum crystal on the string theory side of the correspondence, exploring interpretations in the Wheeler-De Witt framework and in terms of a non-Lorentz invariant limit of topological M-theory.

  10. Relating Field Theories via Stochastic Quantization

    CERN Document Server

    Dijkgraaf, Robbert; Reffert, Susanne

    2009-01-01

    This note aims to subsume several apparently unrelated models under a common framework. Several examples of well-known quantum field theories are listed which are connected via stochastic quantization. We highlight the fact that the quantization method used to obtain the quantum crystal is a discrete analog of stochastic quantization. This model is of interest for string theory, since the (classical) melting crystal corner is related to the topological A-model. We outline several ideas for interpreting the quantum crystal on the string theory side of the correspondence, exploring interpretations in the Wheeler-De Witt framework and in terms of a non-Lorentz invariant limit of topological M-theory.

  11. Chaos, scaling and existence of a continuum limit in classical non-Abelian lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H.B. [Niels Bohr Inst., Kobenhavn (Denmark); Rugh, H.H. [Univ. of Warwick, Coventry (United Kingdom); Rugh, S.E. [Los Alamos National Lab., NM (United States)

    1996-12-31

    We discuss space-time chaos and scaling properties for classical non-Abelian gauge fields discretized on a spatial lattice. We emphasize that there is a {open_quote}no go{close_quotes} for simulating the original continuum classical gauge fields over a long time span since there is a never ending dynamical cascading towards the ultraviolet. We note that the temporal chaotic properties of the original continuum gauge fields and the lattice gauge system have entirely different scaling properties thereby emphasizing that they are entirely different dynamical systems which have only very little in common. Considered as a statistical system in its own right the lattice gauge system in a situation where it has reached equilibrium comes closest to what could be termed a {open_quotes}continuum limit{close_quotes} in the limit of very small energies (weak non-linearities). We discuss the lattice system both in the limit for small energies and in the limit of high energies where we show that there is a saturation of the temporal chaos as a pure lattice artifact. Our discussion focuses not only on the temporal correlations but to a large extent also on the spatial correlations in the lattice system. We argue that various conclusions of physics have been based on monitoring the non-Abelian lattice system in regimes where the fields are correlated over few lattice units only. This is further evidenced by comparison with results for Abelian lattice gauge theory. How the real time simulations of the classical lattice gauge theory may reach contact with the real time evolution of (semi-classical aspects of) the quantum gauge theory (e.g. Q.C.D.) is left an important question to be further examined.

  12. Group field cosmology: a cosmological field theory of quantum geometry

    CERN Document Server

    Calcagni, Gianluca; Oriti, Daniele

    2012-01-01

    Following the idea of a field quantization of gravity as realized in group field theory, we construct a minisuperspace model where the wavefunction of canonical quantum cosmology (either Wheeler-DeWitt or loop quantum cosmology) is promoted to a field, the coordinates are minisuperspace variables, the kinetic operator is the Hamiltonian constraint operator, and the action features a nonlinear and possibly nonlocal interaction term. We discuss free-field classical solutions, the quantum propagator, and a mean-field approximation linearizing the equation of motion and augmenting the Hamiltonian constraint by an effective term mixing gravitational and matter variables. Depending on the choice of interaction, this can reproduce, for example, a cosmological constant, a scalar-field potential, or a curvature contribution.

  13. Lectures on quantum field theory

    CERN Document Server

    Das, Ashok

    2008-01-01

    This book consists of the lectures for a two-semester course on quantum field theory, and as such is presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis of the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactio

  14. Double Field Theory on Group Manifolds (Thesis)

    CERN Document Server

    Hassler, Falk

    2015-01-01

    This thesis deals with Double Field Theory (DFT), an effective field theory capturing the low energy dynamics of closed strings on a torus. It renders T-duality on a torus manifest by adding $D$ winding coordinates in addition to the $D$ space time coordinates. An essential consistency constraint of the theory, the strong constraint, only allows for field configurations which depend on half of the coordinates of the arising doubled space. I derive DFT${}_\\mathrm{WZW}$, a generalization of the current formalism. It captures the low energy dynamics of a closed bosonic string propagating on a compact group manifold. Its classical action and the corresponding gauge transformations arise from Closed String Field Theory up to cubic order in the massless fields. These results are rewritten in terms of a generalized metric and extended to all orders in the fields. There is an explicit distinction between background and fluctuations. For the gauge algebra to close, the latter have to fulfill a modified strong constrai...

  15. Exact Classical and Quantum Dynamics in Background Electromagnetic Fields

    Science.gov (United States)

    Heinzl, Tom; Ilderton, Anton

    2017-03-01

    Analytic results for (Q)ED processes in external fields are limited to a few special cases, such as plane waves. However, the strong focusing of intense laser fields implies a need to go beyond the plane wave model. By exploiting Poincaré symmetry and superintegrability we show how to construct, and solve without approximation, new models of laser-matter interactions. We illustrate the method with a model of a radially polarized (TM) laser beam, for which we exactly determine the classical orbits and quantum wave functions. Including in this way the effects of transverse field structure should improve predictions and analyses for experiments at intense laser facilities.

  16. Phase-space quantization of field theory.

    Energy Technology Data Exchange (ETDEWEB)

    Curtright, T.; Zachos, C.

    1999-04-20

    In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999.

  17. Quantum Field Theory, Revised Edition

    Science.gov (United States)

    Mandl, F.; Shaw, G.

    1994-01-01

    Quantum Field Theory Revised Edition F. Mandl and G. Shaw, Department of Theoretical Physics, The Schuster Laboratory, The University, Manchester, UK When this book first appeared in 1984, only a handful of W± and Z° bosons had been observed and the experimental investigation of high energy electro-weak interactions was in its infancy. Nowadays, W± bosons and especially Z° bosons can be produced by the thousand and the study of their properties is a precise science. We have revised the text of the later chapters to incorporate these developments and discuss their implications. We have also taken this opportunity to update the references throughout and to make some improvements in the treatment of dimen-sional regularization. Finally, we have corrected some minor errors and are grateful to various people for pointing these out. This book is designed as a short and simple introduction to quantum field theory for students beginning research in theoretical and experimental physics. The three main objectives are to explain the basic physics and formalism of quantum field theory, to make the reader fully proficient in theory calculations using Feynman diagrams, and to introduce the reader to gauge theories, which play such a central role in elementary particle physics. The theory is applied to quantum electrodynamics (QED), where quantum field theory had its early triumphs, and to weak interactions where the standard electro-weak theory has had many impressive successes. The treatment is based on the canonical quantization method, because readers will be familiar with this, because it brings out lucidly the connection between invariance and conservation laws, and because it leads directly to the Feynman diagram techniques which are so important in many branches of physics. In order to help inexperienced research students grasp the meaning of the theory and learn to handle it confidently, the mathematical formalism is developed from first principles, its physical

  18. Thermo-Field Extension of Open String Field Theory

    CERN Document Server

    Cantcheff, M Botta

    2015-01-01

    We study the implementation of Thermo Field Dynamics (TFD) to the covariant formulation of Open String Field Theory (OSFT). In this paper, we extend the state space and fields according to the duplication rules of TFD and construct the corresponding classical action. The result is a theory whose fields would encode the statistical information of open strings and, noticeably, present degrees of freedom that could be identified as those of closed strings. The physical spectrum of the free theory is studied through the cohomology of the extended BRST charge, and, as a result, we get new fields in the spectrum. We also show, however, that their appearing in the action is directly related to the choice of the inner product in the extended algebra, so that many fields could be eliminated from the theory by choosing that product conveniently. Finally, we study the extension of the three-vertex interaction and provide a simple prescription for it whose results at tree-level amplitudes agree with those of the conventi...

  19. Applications of Generalizability Theory and Their Relations to Classical Test Theory and Structural Equation Modeling.

    Science.gov (United States)

    Vispoel, Walter P; Morris, Carrie A; Kilinc, Murat

    2017-01-23

    Although widely recognized as a comprehensive framework for representing score reliability, generalizability theory (G-theory), despite its potential benefits, has been used sparingly in reporting of results for measures of individual differences. In this article, we highlight many valuable ways that G-theory can be used to quantify, evaluate, and improve psychometric properties of scores. Our illustrations encompass assessment of overall reliability, percentages of score variation accounted for by individual sources of measurement error, dependability of cut-scores for decision making, estimation of reliability and dependability for changes made to measurement procedures, disattenuation of validity coefficients for measurement error, and linkages of G-theory with classical test theory and structural equation modeling. We also identify computer packages for performing G-theory analyses, most of which can be obtained free of charge, and describe how they compare with regard to data input requirements, ease of use, complexity of designs supported, and output produced. (PsycINFO Database Record

  20. Lectures on matrix field theory

    CERN Document Server

    Ydri, Badis

    2017-01-01

    These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.

  1. Quantum field theory competitive models

    CERN Document Server

    Tolksdorf, Jürgen; Zeidler, Eberhard

    2009-01-01

    For more than 70 years, quantum field theory (QFT) can be seen as a driving force in the development of theoretical physics. Equally fascinating is the fruitful impact which QFT had in rather remote areas of mathematics. The present book features some of the different approaches, different physically viewpoints and techniques used to make the notion of quantum field theory more precise. For example, the present book contains a discussion including general considerations, stochastic methods, deformation theory and the holographic AdS/CFT correspondence. It also contains a discussion of more recent developments like the use of category theory and topos theoretic methods to describe QFT. The present volume emerged from the 3rd 'Blaubeuren Workshop: Recent Developments in Quantum Field Theory', held in July 2007 at the Max Planck Institute of Mathematics in the Sciences in Leipzig/Germany. All of the contributions are committed to the idea of this workshop series: 'To bring together outstanding experts working in...

  2. A landscape of field theories

    Science.gov (United States)

    Maxfield, Travis; Robbins, Daniel; Sethi, Savdeep

    2016-11-01

    Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2, 0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.

  3. A Landscape of Field Theories

    CERN Document Server

    Maxfield, Travis; Sethi, Savdeep

    2015-01-01

    Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.

  4. On the Relationship between Classical Test Theory and Item Response Theory: From One to the Other and Back

    Science.gov (United States)

    Raykov, Tenko; Marcoulides, George A.

    2016-01-01

    The frequently neglected and often misunderstood relationship between classical test theory and item response theory is discussed for the unidimensional case with binary measures and no guessing. It is pointed out that popular item response models can be directly obtained from classical test theory-based models by accounting for the discrete…

  5. The Theory of Conceptual Fields

    Science.gov (United States)

    Vergnaud, Gerard

    2009-01-01

    The theory of conceptual fields is a developmental theory. It has two aims: (1) to describe and analyse the progressive complexity, on a long- and medium-term basis, of the mathematical competences that students develop inside and outside school, and (2) to establish better connections between the operational form of knowledge, which consists in…

  6. Neural fields theory and applications

    CERN Document Server

    Graben, Peter; Potthast, Roland; Wright, James

    2014-01-01

    With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...

  7. Solutions in Exceptional Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, Felix J. [Queen Mary University of London, Centre for Research in String Theory, School of Physics, London (United Kingdom)

    2016-04-15

    Exceptional Field Theory employs an extended spacetime to make supergravity fully covariant under the U-duality groups of M-theory. This allows for the wave and monopole solutions to be combined into a single solution which obeys a twisted self-duality relation. All fundamental, solitonic and Dirichlet branes of ten- and eleven-dimensonal supergravity may be extracted from this single solution in Exceptional Field Theory. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. New covariant Lagrange formulation for field theories

    CERN Document Server

    Ootsuka, T

    2012-01-01

    A novel approach for Lagrange formulation for field theories is proposed in terms of Kawaguchi geometry (areal metric space). On the extended configuration space M for classical field theory composed of spacetime and field configuration space, one can define a geometrical structure called Kawaguchi areal metric K from the field Lagrangian and (M,K) can be regarded as Kawaguchi manifold. The geometrical action functional is given by K and the dynamics of field is determined by covariant Euler-Lagrange equation derived from the variational principle of the action. The solution to the equation becomes a minimal hypersurface on (M,K) which has the same dimension as spacetime. We propose that this hypersurface is what we should regard as our real spacetime manifold, while the usual way to understand spacetime is to consider it as the parameter spacetime (base manifold) of a fibre bundle. In this way, the dynamics of field and spacetime structure is unified by Kawaguchi geometry. The theory has the property of stro...

  9. Lectures on Conformal Field Theory

    CERN Document Server

    Qualls, Joshua D

    2015-01-01

    These lectures notes are based on courses given at National Taiwan University, National Chiao-Tung University, and National Tsing Hua University in the spring term of 2015. Although the course was offered primarily for graduate students, these lecture notes have been prepared for a more general audience. They are intended as an introduction to conformal field theories in various dimensions, with applications related to topics of particular interest: topics include the conformal bootstrap program, boundary conformal field theory, and applications related to the AdS/CFT correspondence. We assume the reader to be familiar with quantum mechanics at the graduate level and to have some basic knowledge of quantum field theory. Familiarity with string theory is not a prerequisite for this lectures, although it can only help.

  10. The Effective Field Theory of Dark Energy

    CERN Document Server

    Gubitosi, Giulia; Vernizzi, Filippo

    2012-01-01

    We propose a universal description of dark energy and modified gravity that includes all single-field models. By extending a formalism previously applied to inflation, we consider the metric universally coupled to matter fields and we write in terms of it the most general unitary gauge action consistent with the residual unbroken symmetries of spatial diffeomorphisms. Our action is particularly suited for cosmological perturbation theory: the background evolution depends on only three operators. All other operators start at least at quadratic order in the perturbations and their effects can be studied independently and systematically. In particular, we focus on the properties of a few operators which appear in non-minimally coupled scalar-tensor gravity and galileon theories. In this context, we study the mixing between gravity and the scalar degree of freedom. We assess the quantum and classical stability, derive the speed of sound of fluctuations and the renormalization of the Newton constant. The scalar ca...

  11. Background Independent String Field Theory

    CERN Document Server

    Bars, Itzhak

    2014-01-01

    We develop a new background independent Moyal star formalism in bosonic open string field theory. The new star product is formulated in a half-phase-space, and because phase space is independent of any background fields, the interactions are background independent. In this basis there is a large amount of symmetry, including a supersymmetry OSp(d|2) that acts on matter and ghost degrees of freedom, and simplifies computations. The BRST operator that defines the quadratic kinetic term of string field theory may be regarded as the solution of the equation of motion A*A=0 of a purely cubic background independent string field theory. We find an infinite number of non-perturbative solutions to this equation, and are able to associate them to the BRST operator of conformal field theories on the worldsheet. Thus, the background emerges from a spontaneous-type breaking of a purely cubic highly symmetric theory. The form of the BRST field breaks the symmetry in a tractable way such that the symmetry continues to be us...

  12. Purely cubic action for string field theory

    Science.gov (United States)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  13. A 1+1 field theory spectrum from M theory

    CERN Document Server

    Rodríguez, M J; Rodriguez, Maria Jose; Talavera, Pere

    2005-01-01

    The spectrum of a 1+1 dimensional field theory with dynamical quarks is constructed. We focus in testing the possible brane embeddings that can support fundamental matter. The requirement on the wave function normalisation and the dependence on the quark mass of the quark condensate allow to discard most of the embeddings. We pay attention to some more general considerations comparing the behaviour of the non-compact theory at different dimensions. In particular we explored the possibility that the AdS/CFT duality ``formalism'' introduce a scale breaking parameter at (1+1)d allowing the existence of classical glueballs and its possible relation with point-like string configurations. The screening effects and the appearance of a possible phase transition is also discussed.

  14. Electromagnetic field theories for engineering

    CERN Document Server

    Salam, Md Abdus

    2014-01-01

    A four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.

  15. Classical light dispersion theory in a regular lattice

    Science.gov (United States)

    Marino, M.; Carati, A.; Galgani, L.

    2007-04-01

    We study the dynamics of an infinite regular lattice of classical charged oscillators. Each individual oscillator is described as a point particle subject to a harmonic restoring potential, to the retarded electromagnetic field generated by all the other particles, and to the radiation reaction expressed according to the Lorentz-Dirac equation. Exact normal mode solutions, describing the propagation of plane electromagnetic waves through the lattice, are obtained for the complete linearized system of infinitely many oscillators. At variance with all the available results, our method is valid for any values of the frequency, or of the ratio between wavelength and lattice parameter. A remarkable feature is that the proper inclusion of radiation reaction in the dynamics of the individual oscillators does not give rise to any extinction coefficient for the global normal modes of the lattice. The dispersion relations resulting from our solution are numerically studied for the case of a simple cubic lattice. New predictions are obtained in this way about the behavior of the crystal at frequencies near the proper oscillation frequency of the dipoles.

  16. Currents in supersymmetric field theories

    CERN Document Server

    Derendinger, Jean-Pierre

    2016-01-01

    A general formalism to construct and improve supercurrents and source or anomaly superfields in two-derivative N=1 supersymmetric theories is presented. It includes arbitrary gauge and chiral superfields and a linear superfield coupled to gauge fields. These families of supercurrent structures are characterized by their energy-momentum tensors and R currents and they display a specific relation to the dilatation current of the theory. The linear superfield is introduced in order to describe the gauge coupling as a background (or propagating) field. Supersymmetry does not constrain the dependence on this gauge coupling field of gauge kinetic terms and holomorphicity restrictions are absent. Applying these results to an effective (Wilson) description of super-Yang-Mills theory, matching or cancellation of anomalies leads to an algebraic derivation of the all-order NSVZ beta function.

  17. Phenomenology of Noncommutative Field Theories

    CERN Document Server

    Carone, C D

    2006-01-01

    Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model.

  18. A reappraisal of classical archetype theory and its implications for theory and practice.

    Science.gov (United States)

    Merchant, John

    2009-06-01

    This paper begins with an overview of contemporary approaches to archetype theory and notes the radical nature of certain deductions. Some argue that there is no 'archetype-as-such' as a pre-existing entity at the core of a complex driving its formation whilst the findings of current neuroscience are calling into question one very thing on which the classical theory is built--innatism. Knox's argument for image schemas raises the question as to the extent to which archetypes can be conceived in any preformationist sense. The question is then posed--to what extent can Jung's classical theory of archetypes be read in light of these current models? The case examples Jung uses to evidence the existence of archetypes, his explications of synchronicity and his own Philemon experience are then reappraised. The conclusion is drawn that it is difficult to evidence the existence of autonomous archetypes unrelated to personal affective experience. Not only would this be expected by emergent/developmental models of archetype but it can explain many of Jung's disjunctive statements about archetype constellation; the difficulties in separating personal and collective psychic content and Jung's apparent Lamarckianism. The implications of these models for theory, clinical practice and analyst training are then offered for discussion.

  19. Bosonic colored group field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ben Geloun, Joseph [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France); University of Abomey-Calavi, Cotonou (BJ). International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair); Universite Cheikh Anta Diop, Departement de Mathematiques et Informatique, Faculte des Sciences et Techniques, Dakar (Senegal); Magnen, Jacques [Ecole Polytechnique, Centre de Physique Theorique, Palaiseau Cedex (France); Rivasseau, Vincent [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)

    2010-12-15

    Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the ''ultraspin'' (large spin) limit. The results are generalized in any dimension. Finally, integrating out two colors we write a new representation, which could be useful for the constructive analysis of this type of models. (orig.)

  20. Unitarity of superstring field theory

    Science.gov (United States)

    Sen, Ashoke

    2016-12-01

    We complete the proof of unitarity of (compactified) heterotic and type II string field theories by showing that in the cut diagrams only physical states appear in the sum over intermediate states. This analysis takes into account the effect of mass and wave-function renormalization, and the possibility that the true vacuum may be related to the perturbative vacuum by small shifts in the string fields.

  1. Unitarity of Superstring Field Theory

    CERN Document Server

    Sen, Ashoke

    2016-01-01

    We complete the proof of unitarity of (compactified) heterotic and type II string field theories by showing that in the cut diagrams only physical states appear in the sum over intermediate states. This analysis takes into account the effect of mass and wave-function renormalization, and the possibility that the true vacuum may be related to the perturbative vacuum by small shifts in the string fields.

  2. Classical and quantum particle dynamics in univariate background fields

    CERN Document Server

    Heinzl, Thomas; King, Ben

    2016-01-01

    We investigate deviations from the plane wave model in the interaction of charged particles with strong electromagnetic fields. A general result is that integrability of the dynamics is lost when going from lightlike to timelike or spacelike field dependence. For a special scenario in the classical regime we show how the radiation spectrum in the spacelike (undulator) case becomes well-approximated by the plane wave model in the high energy limit, despite the two systems being Lorentz inequivalent. In the quantum problem, there is no analogue of the WKB-exact Volkov solution. Nevertheless, WKB and uniform-WKB approaches give good approximations in all cases considered. Other approaches that reduce the underlying differential equations from second to first order are found to miss the correct physics for situations corresponding to barrier transmission and wide-angle scattering.

  3. D=0 Matrix Model as Conjugate Field Theory

    CERN Document Server

    Ben-Menahem, S

    1993-01-01

    The D=0 matrix model is reformulated as a 2d nonlocal quantum field theory. The interactions occur on the one-dimensional line of hermitian matrix eigenvalues. The field is conjugate to the density of matrix eigenvalues which appears in the Jevicki-Sakita collective field theory. The classical solution of the field equation is either unique or labeled by a discrete index. Such a solution corresponds to the Dyson sea modified by an entropy term. The modification smoothes the sea edges, and interpolates between different eigenvalue bands for multiple-well potentials. Our classical eigenvalue density contains nonplanar effects, and satisfies a local nonlinear Schr\\"odinger equation with similarities to the Marinari-Parisi $D=1$ reformulation. The quantum fluctuations about a classical solution are computable, and the IR and UV divergences are manifestly removed to all orders. The quantum corrections greatly simplify in the double scaling limit, and include both string-perturbative and nonperturbative effects.

  4. Effective field theory of dissipative fluids

    CERN Document Server

    Crossley, Michael; Liu, Hong

    2015-01-01

    We develop an effective field theory for dissipative fluids which governs the dynamics of gapless modes associated to conserved quantities. The system is put in a curved spacetime and coupled to external sources for charged currents. The invariance of the hydrodynamical action under gauge symmetries and diffeomorphisms suggests a natural set of dynamical variables which provide a mapping between an emergent "fluid spacetime" and the physical spacetime. An essential aspect of our formulation is to identify the appropriate symmetries in the fluid spacetime. Our theory applies to nonlinear disturbances around a general density matrix. For a thermal density matrix, we require an additional Z_2 symmetry, to which we refer as the local KMS condition. This leads to the standard constraints of hydrodynamics, as well as a nonlinear generalization of the Onsager relations. It also leads to an emergent supersymmetry in the classical statistical regime, with a higher derivative version required for the full quantum regim...

  5. Multivector field formulation of Hamiltonian field theories: equations and symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. [Departamento de Matematica Aplicada y Telematica, Edificio C-3, Campus Norte UPC, Barcelona (Spain)

    1999-12-03

    We state the intrinsic form of the Hamiltonian equations of first-order classical field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analysed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between Cartan-Noether symmetries and general symmetries of the system is discussed. Noether's theorem is also stated in this context, both the 'classical' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed. (author)

  6. Decoherence in Field Theory General Couplings and Slow Quenches

    CERN Document Server

    Lombardo, F C; Rivers, R J

    2003-01-01

    We study the onset of a classical order parameter after a second-order phase transition in quantum field theory. We consider a quantum scalar field theory in which the system-field (long-wavelength modes), interacts with its environment, represented both by a set of scalar fields and by its own short-wavelength modes. We compute the decoherence times for the system-field modes and compare them with the other time scales of the model. We analyze different couplings between the system and the environment for both instantaneous and slow quenches. Within our approximations decoherence is in general a short time event.

  7. Locally covariant quantum field theory with external sources

    CERN Document Server

    Fewster, Christopher J

    2014-01-01

    We provide a detailed analysis of the classical and quantized theory of a multiplet of inhomogeneous Klein-Gordon fields, which couple to the spacetime metric and also to an external source term; thus the solutions form an affine space. Following the formulation of affine field theories in terms of presymplectic vector spaces as proposed in [Annales Henri Poincare 15, 171 (2014)], we determine the relative Cauchy evolution induced by metric as well as source term perturbations and compute the automorphism group of natural isomorphisms of the presymplectic vector space functor. Two pathological features of this formulation are revealed: the automorphism group contains elements that cannot be interpreted as global gauge transformations of the theory; moreover, the presymplectic formulation does not respect a natural requirement on composition of subsystems. We therefore propose a systematic strategy to improve the original description of affine field theories at the classical and quantized level, first passing ...

  8. Bohmian mechanics and quantum field theory.

    Science.gov (United States)

    Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino

    2004-08-27

    We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.

  9. Entanglement Entropy Renormalization for the NC scalar field coupled to classical BTZ geometry

    CERN Document Server

    Jurić, Tajron

    2016-01-01

    In this work, we consider a noncommutative (NC) massless scalar field coupled to the classical nonrotational BTZ geometry. In a manner of the theories where the gravity emerges from the underlying scalar field theory, we study the effective action and the entropy derived from this noncommutative model. In particular, the entropy is calculated by making use of the two different approaches, the brick wall method and the heat kernel method designed for spaces with conical singularity. We show that the UV divergent structures of the entropy, obtained through these two different methods, agree with each other. It is also shown that the same renormalization condition that removes the infinities from the effective action can also be used to renormalize the entanglement entropy for the same system. Besides, the interesting feature of the NC model considered here is that it allows an interpretation in terms of an equivalent system comprising of a commutative massive scalar field, but in a modified geometry; that of th...

  10. Non-classical continuum theory for solids incorporating internal rotations and rotations of Cosserat theories

    Science.gov (United States)

    Surana, K. S.; Joy, A. D.; Reddy, J. N.

    2017-03-01

    This paper presents a non-classical continuum theory in Lagrangian description for solids in which the conservation and the balance laws are derived by incorporating both the internal rotations arising from the Jacobian of deformation and the rotations of Cosserat theories at a material point. In particular, in this non-classical continuum theory, we have (i) the usual displacements ( ±b \\varvec{u}) and (ii) three internal rotations ({}_i ±b \\varvec{Θ}) about the axes of a triad whose axes are parallel to the x-frame arising from the Jacobian of deformation (which are completely defined by the skew-symmetric part of the Jacobian of deformation), and (iii) three additional rotations ({}_e ±b \\varvec{Θ}) about the axes of the same triad located at each material point as additional three degrees of freedom referred to as Cosserat rotations. This gives rise to ±b \\varvec{u} and {}_e ±b \\varvec{{Θ} as six degrees of freedom at a material point. The internal rotations ({}_i ±b \\varvec{Θ}), often neglected in classical continuum mechanics, exist in all deforming solid continua as these are due to Jacobian of deformation. When the internal rotations {}_i ±b \\varvec{Θ} are resisted by the deforming matter, conjugate moment tensor arises that together with {}_i ±b \\varvec{Θ} may result in energy storage and/or dissipation, which must be accounted for in the conservation and the balance laws. The Cosserat rotations {}_e ±b \\varvec{Θ} also result in conjugate moment tensor which, together with {}_e ±b \\varvec{Θ}, may also result in energy storage and/or dissipation. The main focus of the paper is a consistent derivation of conservation and balance laws that incorporate aforementioned physics and associated constitutive theories for thermoelastic solids. The mathematical model derived here has closure, and the constitutive theories derived using two alternate approaches are in agreement with each other as well as with the condition resulting from the

  11. A critical experimental study of the classical tactile threshold theory

    Directory of Open Access Journals (Sweden)

    Medina Leonel E

    2010-06-01

    Full Text Available Abstract Background The tactile sense is being used in a variety of applications involving tactile human-machine interfaces. In a significant number of publications the classical threshold concept plays a central role in modelling and explaining psychophysical experimental results such as in stochastic resonance (SR phenomena. In SR, noise enhances detection of sub-threshold stimuli and the phenomenon is explained stating that the required amplitude to exceed the sensory threshold barrier can be reached by adding noise to a sub-threshold stimulus. We designed an experiment to test the validity of the classical vibrotactile threshold. Using a second choice experiment, we show that individuals can order sensorial events below the level known as the classical threshold. If the observer's sensorial system is not activated by stimuli below the threshold, then a second choice could not be above the chance level. Nevertheless, our experimental results are above that chance level contradicting the definition of the classical tactile threshold. Results We performed a three alternative forced choice detection experiment on 6 subjects asking them first and second choices. In each trial, only one of the intervals contained a stimulus and the others contained only noise. According to the classical threshold assumptions, a correct second choice response corresponds to a guess attempt with a statistical frequency of 50%. Results show an average of 67.35% (STD = 1.41% for the second choice response that is not explained by the classical threshold definition. Additionally, for low stimulus amplitudes, second choice correct detection is above chance level for any detectability level. Conclusions Using a second choice experiment, we show that individuals can order sensorial events below the level known as a classical threshold. If the observer's sensorial system is not activated by stimuli below the threshold, then a second choice could not be above the chance

  12. Field Analysis and Potential Theory

    Science.gov (United States)

    1985-06-01

    T T T 430 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.5.7 But V2f [ dT - Z j V2 Jxdr T T hence V c2at 7- dT _- J2 (J2 dT T TT whence dalf [13 dT " 0 (5.7...8) at exterior points or dal pot [2] - O (5.7-8(a)) Similarly, dalf r dS - 0 (5.7-9) dal [y] ds - 0 (5.7-10) r Sec.5.7] RETARDED POTENTIAL THEORY 431

  13. Einstein's theory of unified fields

    CERN Document Server

    Tonnelat, Marie Antoinette

    2014-01-01

    First published in1966, here is presented a comprehensive overview of one of the most elusive scientific speculations by the pre-eminent genius of the 20th century. The theory is viewed by some scientists with deep suspicion, by others with optimism, but all agree that it represents an extreme challenge. As the author herself affirms, this work is not intended to be a complete treatise or 'didactic exposition' of the theory of unified fields, but rather a tool for further study, both by students and professional physicists. Dealing with all the major areas of research whic

  14. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; XU Jing-Bo

    2012-01-01

    We investigate the quantum discord dynamics in a cavity quantum electrodynamics system, which consists of two noninteracting two-level atoms driven by independent optical Gelds and classical fields, and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields. It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields. Finally, the influence of the classical driving field on the fidelity of the system is also examined.%We investigate the quantum discord dynamics in a cavity quantum electrodynamics system,which consists of two noninteracting two-level atoms driven by independent optical fields and classical fields,and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields.It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields.Finally,the influence of the classical driving field on the fidelity of the system is also examined.

  15. Field reparametrization in effective field theories

    CERN Document Server

    Passarino, Giampiero

    2016-01-01

    Debate topic for Effective Field Theory (EFT) is the choice of a "basis" for $\\mrdim = 6$ operators Clearly all bases are equivalent as long as they are a "basis", containing a minimal set of operators after the use of equations of motion and respecting gauge invariance. From a more formal point of view a basis is characterized by its closure with respect to renormalization. Equivalence of bases should always be understood as a statement for the S-matrix and not for the Lagrangian, as dictated by the equivalence theorem. Any phenomenological approach that misses one of these ingredients is still acceptable for a preliminar analysis, as long as it does not pretend to be an EFT. Here we revisit the equivalence theorem and its consequences for EFT when two sets of higher dimensional operators are connected by a set of non-linear, noninvariant, field reparametrizations.

  16. Variational methods for field theories

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Menahem, S.

    1986-09-01

    Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.

  17. Kinetic mean-field theories

    Science.gov (United States)

    Karkheck, John; Stell, George

    1981-08-01

    A kinetic mean-field theory for the evolution of the one-particle distribution function is derived from maximizing the entropy. For a potential with a hard-sphere core plus tail, the resulting theory treats the hard-core part as in the revised Enskog theory. The tail, weighted by the hard-sphere pair distribution function, appears linearly in a mean-field term. The kinetic equation is accompanied by an entropy functional for which an H theorem was proven earlier. The revised Enskog theory is obtained by setting the potential tail to zero, the Vlasov equation is obtained by setting the hard-sphere diameter to zero, and an equation of the Enskog-Vlasov type is obtained by effecting the Kac limit on the potential tail. At equilibrium, the theory yields a radial distribution function that is given by the hard-sphere reference system and thus furnishes through the internal energy a thermodynamic description which is exact to first order in inverse temperature. A second natural route to thermodynamics (from the momentum flux which yields an approximate equation of state) gives somewhat different results; both routes coincide and become exact in the Kac limit. Our theory furnishes a conceptual basis for the association in the heuristically based modified Enskog theory (MET) of the contact value of the radial distribution function with the ''thermal pressure'' since this association follows from our theory (using either route to thermodynamics) and moreover becomes exact in the Kac limit. Our transport theory is readily extended to the general case of a soft repulsive core, e.g., as exhibited by the Lennard-Jones potential, via by-now-standard statistical-mechanical methods involving an effective hard-core potential, thus providing a self-contained statistical-mechanical basis for application to such potentials that is lacking in the standard versions of the MET. We obtain very good agreement with experiment for the thermal conductivity and shear viscosity of several

  18. How some infinities cause problems in classical physical theories

    NARCIS (Netherlands)

    Atkinson, David; Peijnenburg, Jeanne; Allo, P.; van Kerhove, B.

    2014-01-01

    In this paper we review a 1992 excursion of Jean Paul Van Bendegem into physics, ‘How Infinities Cause Problems in Classical Physical Theories’, in the light of two later models concerning colliding balls, of Pérez Laraudogoitia and of Alper and Bridger, respectively. We show that Van Bendegem antic

  19. Homology of classical groups and K-theory

    NARCIS (Netherlands)

    Mirzaii, B.

    2004-01-01

    The study of the homology groups of classical group over a ring R with coefficient A, where A is a commutative ring with trivial group action, seems important, notably because of their close relation to algebraic and Hermitian Ktheory and their appearance in the study of scissors congruence of polyh

  20. Dynamical Mean-Field Theory

    OpenAIRE

    Vollhardt, D.; Byczuk, K.; Kollar, M.

    2011-01-01

    The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the ...

  1. Structural aspects of quantum field theory and noncommutative geometry

    CERN Document Server

    Grensing, Gerhard

    2013-01-01

    This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...

  2. Chiral field theories as models for hadron substructure

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, S.H.

    1987-03-01

    A model for the nucleon as soliton of quarks interacting with classical meson fields is described. The theory, based on the linear sigma model, is renormalizable and capable of including sea quarks straightforwardly. Application to nuclear matter is made in a Wigner-Seitz approximation.

  3. Multivector Fields and Jet Fields Setting Evolution Equations in Field Theories

    CERN Document Server

    Echeverría-Enríquez, A; Román-Roy, N

    1997-01-01

    The integrability of multivector fields in a differentiable manifold is studied. Then, given a jet bundle $J^1E\\to E\\to M$, it is shown that integrable multivector fields in $E$ are equivalent to integrable jet fields in $J^1E$ (connections in $E$). This result is applied to the particular case of multivector fields in the manifold $J^1E$ and jet fields in the repeated jet bundle $J^1J^1E$, in order to characterize integrable multivector fields and jet fields whose integral manifolds are canonical liftings of sections. These results allow us to set the lagrangian evolution equations for first-order classical field theories in three equivalent geometrical ways (in a form similar to that in which the lagrangian dynamical equations of non-autonomous mechanical systems are usually given).

  4. Phase diagram of the classical Heisenberg model in a trimodal random field distribution

    Science.gov (United States)

    Santos-Filho, A.; Albuquerque, D. F. de; Santos-Filho, J. B.; Batista, T. S. Araujo

    2016-11-01

    The classical spin 1 / 2 Heisenberg model on a simple cubic lattice, with fluctuating bond interactions between nearest neighbors and in the presence of a random magnetic field, is investigated by effective field theory based on two-spin cluster. The random field is drawn from the asymmetric and anisotropic trimodal probability distribution. The fluctuating bond is extracted from the symmetric and anisotropic bimodal probability. We estimate the transition temperatures, and the phase diagram in the Tc- h, Tc- p and Tc - α planes. We observe that the temperature of the tricritical point decreases with the increase of disorder in exchange interactions until the system ceases to display tricritical behavior. The disorder of the interactions and reentrant phenomena depends on the trimodal distribution of the random field.

  5. Theory of elites in classical and contemporary political sociology

    OpenAIRE

    Pavlović, Vukašin

    2011-01-01

    The text consists of three parts. The first one analyses classical concepts of elites in the works of Gaetano Mosca, Vilfredo Pareto and Robert Michels. The second part presents and analyses new concepts of elites given in the works by Karl Mannheim, Joseph Schumpeter, James Burnham, Milovan Đilas, Wright Mills, Tom Bottomore, John Kenneth Galbraith, Raymond Aron. The third, concluding part, considers the relation between democracy and elitism.

  6. Imaging resolution signal-to-noise ratio in transverse phase amplification from classical information theory

    Energy Technology Data Exchange (ETDEWEB)

    French, Doug [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)], E-mail: french@purdue.edu; Huang Zun; Pao, H.-Y.; Jovanovic, Igor [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2009-03-02

    A quantum phase amplifier operated in the spatial domain can improve the signal-to-noise ratio in imaging beyond the classical limit. The scaling of the signal-to-noise ratio with the gain of the quantum phase amplifier is derived from classical information theory.

  7. Classical conformality in the Standard Model from Coleman’s theory

    Science.gov (United States)

    Kawana, Kiyoharu

    2016-09-01

    The classical conformality (CC) is one of the possible candidates for explaining the gauge hierarchy of the Standard Model (SM). We show that it is naturally obtained from the Coleman’s theory on baby universe.

  8. Dark Solitons, D-branes and Noncommutative Tachyon Field Theory

    CERN Document Server

    Giaccari, Stefano

    2016-01-01

    In this paper we discuss the boson/vortex duality by mapping the Gross-Pitaevskii theory into an effective string theory, both with and without boundaries. Through the effective string theory, we find the Seiberg-Witten map between the commutative and the noncommutative tachyon field theories, and consequently identify their soliton solutions with the D-branes in the effective string theory. We perform various checks of the duality map and the identification of classical solutions. This new insight of the duality between the Gross-Pitaevskii theory and the effective string theory allows us to test many results of string theory in Bose-Einstein condensates, and at the same time help us understand the quantum behavior of superfluids and cold atom systems.

  9. Zitterbewegung in quantum field theory

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Yong; Xiong Cai-Dong

    2008-01-01

    Traditionally,the zitterbewegung (ZB) of the Dirac electron has just been studied at the level of quantum mechanics.Seeing the fact that an old interest in ZB has recently been rekindled by the investigations on spintronic,graphene,and superconducting systems,etc.,this paper presents a quantum-field-theory investigation on ZB and obtains the con clusion that,the ZB of an electron arises from the influence of virtual electron-positron pairs (or vacuum fluctuations)on the electron.

  10. Asymptoticaly Confirmed Hypoteses Metod for the Construction of Micropolar and Classical Theories of Elastic Thin Shells

    Directory of Open Access Journals (Sweden)

    Sargsyan S.H.

    2014-03-01

    Full Text Available In the present paper, the system of equations of three-dimensional micropolar theory of elasticity, written down for thin shell as singularly perturbed with small geometric parameter system, is analyzed asymptotically: the internal iteration process and boundary layers are constructed, their interaction is studied, boundary conditions are obtained for each of them. Then, the main specific properties of the asymptotic solution accepting as hypotheses, general applied theory of micropolar elastic thin shells is constructed and it is shown that the constructed theory is asymptotically correct. Passing from the micropolar theory of thin shells to the classical theory, it is shown, that this applied classical theory of thin shells, when transverse shifts are taken into account, is asymptotically correct theory in relation to the other corrected theories of thin shells.

  11. Classification and Properties of Solutions for the System of Equations of Classical Electrode Effect Theory

    Science.gov (United States)

    Kalinin, A. V.; Grigor'ev, E. E.; Zhidkov, A. A.; Terent'ev, A. M.

    2014-04-01

    We study a one-dimensional stationary system of equations comprising the continuity equation for the ion concentration with the recombination effects taken into account and the Gauss law for the electric field. This system gives a simplified description of various phenomena in ionized medium theory and is used, in particular, for modeling of the electrode effect in the atmospheric surface layers with the turbulent diffusion effects neglected. Using the integral of the system and a phase portrait in the ion concentration plane, we offer a complete classification of types of solutions of the system, examine their properties, and deduce some analytical relations between the ion concentration and the electric field. The basic equations of classical electrode effect theory are obtained for some classes of solutions within the framework of this approach. Correct formulations of the problems are discussed. New classes of solutions, for which there are layers with infinitely increasing conductivity and charge density are described. The Appendix illustrates, in both analytical and graphical form, the results obtained in the main part of this paper on the basis of qualitative reasoning for parameters close to real. Analytical expressions for the fields and ion concentrations are given for all types of solutions. Relations for the distances between electrodes and analytical relations describing the properties of the spatially localized solutions are presented.

  12. Anthropology and social theory: renewing dialogue via the classics

    DEFF Research Database (Denmark)

    Thomassen, Bjørn

    2011-01-01

    Agnes Horvath, Bjørn Thomassen, & Dr Harald Wydra, editors of the Journal,International Political Anthropology “Anthropology and social theory: renewing dialogue via the classics” This paper argues that anthropology may represent a perspective from where social theory can renew itself. The presen......Agnes Horvath, Bjørn Thomassen, & Dr Harald Wydra, editors of the Journal,International Political Anthropology “Anthropology and social theory: renewing dialogue via the classics” This paper argues that anthropology may represent a perspective from where social theory can renew itself....... The presentation therefore inserts itself within the history of a long conversation between anthropology and social theory. This discussion goes back at least to the Durkhemian school which saw the study of modern and "archaic" cultures as part and parcel of the same project. However, the disciplines of sociology...... with anthropology via the "cultural turn". Yet this elevated status of anthropology and its method has involved almost no engagement with the theoretical luggage found within the discipline of anthropology.Our premise is that the modern world may indeed not be so unique in all its features, and that it therefore...

  13. Vaccinology of classical swine fever: from lab to field

    NARCIS (Netherlands)

    Oirschot, van J.T.

    2003-01-01

    There are two types of classical swine fever vaccines available: the classical live and the recently developed E2 subunit vaccines. The live Chinese strain vaccine is the most widely used. After a single vaccination, it confers solid immunity within a few days that appears to persist lifelong. The E

  14. Quantization of light energy directly from classical electromagnetic theory in vacuum

    Institute of Scientific and Technical Information of China (English)

    She Wei-Long

    2005-01-01

    It is currently believed that light quantum or the quantization of light energy is beyond classical physics, and the picture of wave-particle duality, which was criticized by Einstein but has attracted a number of experimental researches, is necessary for the description of light. It is shown in this paper, however, that the quantization of light energy in vacuum, which is the same as that in quantum electrodynamics, can be derived directly from the classical electromagnetic theory through the consideration of statistics based on classical physics. Therefore, the quantization of energy is an intrinsic property of light as a classical electromagnetic wave and has no need of being related to particles.

  15. Classical versus Keynesian theory of unemployment : an approach to the Spanish labor market

    OpenAIRE

    Alonso Rodríguez, Rubén

    2015-01-01

    In the last decade the unemployment skyrocketed defining a dramatic landscape for the Spanish economy. In order to understand the root causes, I have revisited two theories widely extended in labor economics: The Classical Theory of Unemployment and the Keynesian Theory of Unemployment. Despite both conceptions are well known and supported by academic literature, in the Spanish case as in many other countries is still unclear what theory better adjust to reality. To solve this lack of clearne...

  16. A Naturally Renormalized Quantum Field Theory

    OpenAIRE

    2006-01-01

    It was shown that quantum metric fluctuations smear out the singularities of Green's functions on the light cone [1], but it does not remove other ultraviolet divergences of quantum field theory. We have proved that the quantum field theory in Krein space, {\\it i.e.} indefinite metric quantization, removes all divergences of quantum field theory with exception of the light cone singularity [2,3]. In this paper, it is discussed that the combination of quantum field theory in Krein space togeth...

  17. THE CONCEPT OF INTERNATIONAL TRADE AND MAIN CLASSIC THEORIES

    Directory of Open Access Journals (Sweden)

    Elena Ramona TERZEA

    2016-07-01

    Full Text Available Taking into account the major impact that international trade has on the economy and on the people’s lives, and considering its effects on the economic growth, the foreign commerce has to be well understood so that the commercial policies have to be well elaborated, implemented and followed. The theories of international trade are extremely important in order to determine the flows, but especially in the anticipation of the evolution of the forces that influences its dymanic. The theories regarding the foreign trade are used also by the big companies, by their managers, in their attempt to identify the most advantageous strategies of internationalizations, on the most promising markets.

  18. A class of exact classical solutions to string theory.

    Science.gov (United States)

    Coley, A A

    2002-12-31

    We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be explicitly obtained, and these spacetimes are expected to provide some hints for the study of superstrings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections to all loop orders they may also offer insights into quantum gravity.

  19. Relativistic quantum mechanics and introduction to field theory

    Energy Technology Data Exchange (ETDEWEB)

    Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica

    1996-12-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.

  20. Inflation from string field theory

    CERN Document Server

    Koshelev, Alexey S; Moniz, Paulo Vargas

    2016-01-01

    In the framework of string field theory (SFT) a setting where the closed string dilaton is coupled to the open string tachyon at the final stage of an unstable brane or brane-anti-brane pair decay is considered. We show that this configuration can lead to viable inflation by means of the dilaton becoming a non-local (infinite-derivative) inflaton. The structure of non-locality leads to interesting inflationary scenarios. We obtain (i) a class of single field inflation with universal attractor predictions at $n_{s}\\sim0.967$ with any value of $r<0.1$, where the tensor to scalar ratio $r$ can be solely regulated by parameters of the SFT; (ii) a new class of two field conformally invariant models with a peculiar quadratic cross-product of scalar fields. We analyze a specific case where a spontaneously broken conformal invariance leads to Starobinsky like inflation plus creating an uplifted potential minimum which accounts to vacuum energy after inflation.

  1. Field Theory of Fundamental Interactions

    Science.gov (United States)

    Wang, Shouhong; Ma, Tian

    2017-01-01

    First, we present two basic principles, the principle of interaction dynamics (PID) and the principle of representation invariance (PRI). Intuitively, PID takes the variation of the action under energy-momentum conservation constraint. We show that the PID is the requirement of the presence of dark matter and dark energy, the Higgs field and the quark confinement. PRI requires that the SU(N) gauge theory be independent of representations of SU(N). It is clear that PRI is the logic requirement of any gauge theory. With PRI, we demonstrate that the coupling constants for the strong and the weak interactions are the main sources of these two interactions, reminiscent of the electric charge. Second, we emphasize that symmetry principles-the principle of general relativity and the principle of Lorentz invariance and gauge invariance-together with the simplicity of laws of nature, dictate the actions for the four fundamental interactions. Finally, we show that the PID and the PRI, together with the symmetry principles give rise to a unified field model for the fundamental interactions, which is consistent with current experimental observations and offers some new physical predictions. The research is supported in part by the National Science Foundation (NSF) grant DMS-1515024, and by the Office of Naval Research (ONR) grant N00014-15-1-2662.

  2. Effective Field Theories and Inflation

    CERN Document Server

    Burgess, C P; Holman, R

    2003-01-01

    We investigate the possible influence of very-high-energy physics on inflationary predictions focussing on whether effective field theories can allow effects which are parametrically larger than order H^2/M^2, where M is the scale of heavy physics and H is the Hubble scale at horizon exit. By investigating supersymmetric hybrid inflation models, we show that decoupling does not preclude heavy-physics having effects for the CMB with observable size even if H^2/M^2 << O(1%), although their presence can only be inferred from observations given some a priori assumptions about the inflationary mechanism. Our analysis differs from the results of hep-th/0210233, in which other kinds of heavy-physics effects were found which could alter inflationary predictions for CMB fluctuations, inasmuch as the heavy-physics can be integrated out here to produce an effective field theory description of low-energy physics. We argue, as in hep-th/0210233, that the potential presence of heavy-physics effects in the CMB does no...

  3. Hydration of Clays at the Molecular Scale: The Promising Perspective of Classical Density Functional Theory

    CERN Document Server

    Jeanmairet, Guillaume; Levesque, Maximilien; Rotenberg, Benjamin; Borgis, Daniel

    2014-01-01

    We report here how the hydration of complex surfaces can be efficiently studied thanks to recent advances in classical molecular density functional theory. This is illustrated on the example of the pyrophylite clay. After presenting the most recent advances, we show that the strength of this implicit method is that (i) it is in quantitative or semi-quantitative agreement with reference all-atoms simulations (molecular dynamics here) for both the solvation structure and energetics, and that (ii) the computational cost is two to three orders of magnitude less than in explicit methods. The method remains imperfect, in that it locally overestimates the polarization of water close to hydrophylic sites of the clay. The high numerical efficiency of the method is illustrated and exploited to carry a systematic study of the electrostatic and van der Waals components of the surface-solvant interactions within the most popular force field for clays, CLAYFF. Hydration structure and energetics are found to weakly depend u...

  4. Foundations of the classical theory of partial differential equations

    CERN Document Server

    Egorov, Yu V

    1998-01-01

    From the reviews of the first printing, published as volume 30 of the Encyclopaedia of Mathematical Sciences: "... I think the volume is a great success and an excellent preparation for future volumes in the series. ... the introductory style of Egorov and Shubin is .. attractive. ... a welcome addition to the literature and I am looking forward to the appearance of more volumes of the Encyclopedia in the near future. ..." The Mathematical Intelligencer, 1993 "... According to the authors ... the work was written for nonspecialists and physicists but in my opinion almost every specialist will find something new ... in the text. The style is clear, the notations are chosen luckily. The most characteristic feature of the work is the accurate emphasis on the fundamental notions ..." Acta Scientiarum Mathematicarum, 1993 "... On the whole, a thorough overview on the classical aspects of the topic may be gained from that volume." Monatshefte für Mathematik, 1993 "... It is comparable in scope with the great Coura...

  5. Quantum Field Theory in (0 + 1) Dimensions

    Science.gov (United States)

    Boozer, A. D.

    2007-01-01

    We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…

  6. Noncommutative Dipole Field Theories And Unitarity

    CERN Document Server

    Chiou, D W; Chiou, Dah-Wei; Ganor, Ori J.

    2004-01-01

    We extend the argument of Gomis and Mehen for violation of unitarity in field theories with space-time noncommutativity to dipole field theories. In dipole field theories with a timelike dipole vector, we present 1-loop amplitudes that violate the optical theorem. A quantum mechanical system with nonlocal potential of finite extent in time also shows violation of unitarity.

  7. Collaboration in classical political economy and noncooperative game theory.

    Science.gov (United States)

    McCain, Roger A

    2014-06-01

    This commentary suggests (1) that there are precedents for Smaldino's "collaboration" in the history of economic thought before 1900 and (2) that the distinction of collaboration from what is thought of as cooperation in game theory is less clear than Smaldino suggests.

  8. Quantum field theory a tourist guide for mathematicians

    CERN Document Server

    Folland, Gerald B

    2008-01-01

    Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theor...

  9. Quantum and classical theories of scattering of relativistic electrons in ultrathin crystals

    CERN Document Server

    Shulga, N F

    2016-01-01

    Quantum and classical theories are proposed of scattering of high energy electrons in ultrathin crystals. The quantum theory is based upon a special representation of the scattering amplitude in the form of the integral over the surface surrounding the crystal, and on the spectral method of determination of the wave function. The classical theory is based upon the solution of the equation of motion by numerical methods. The comparison is performed of quantum and classical differential cross-sections of scattering in the transitional range of crystal thicknesses, from those at which the channeling phenomenon is not developed up to those at which it is realized. It is shown that in this range of crystal thicknesses substantial difference of quantum and classical scattering cross-sections takes place for the electrons with the energy up to tens of MeV. With the energy increase such difference decreases but some quantum effects in scattering still remain.

  10. Emerging quantum mechanics: Coefficient of second-order coherence from classical random fields interacting with threshold type detectors

    Science.gov (United States)

    Khrennikov, Andrei

    2014-11-01

    This paper is a contribution to the project "emergent quantum mechanics" unifying a variety of attempts to treat quantum mechanics (QMs) as emergent from other theories pretending on finer descriptions of quantum phenomena. More concretely it is about an attempt to model detection probabilities predicted by QM for single photon states by using classical random fields interacting with detectors of the threshold type. Continuous field model, prequantum classical statistical field theory (PCSFT), was developed in recent years and its predictions about probabilities and correlations match well with QM. The main problem is to develop the corresponding measurement theory which would describe the transition from continuous fields to discrete events, "clicks of detectors". Some success was achieved and the click-probabilities for quantum observables can be derived from PCSFT by modeling interaction of fields with the threshold type detectors. However, already for the coefficient of second-order coherence g2(0) calculations are too complicated and only an estimation of g2(0) was obtained. In this paper, we present results of numerical simulation based on PCSFT and modeling of interaction with threshold type detectors. The "prequantum random field" interacting with a detector is modeled as the Brownian motion in the space of classical fields (Wiener process in complex Hilbert space). Simulation for g2(0) shows that this coefficient approaches zero with increase of the number of detections.

  11. Polarization-free Quantization of Linear Field Theories

    CERN Document Server

    Lanéry, Suzanne

    2016-01-01

    It is well-known that there exist infinitely-many inequivalent representations of the canonical (anti)-commutation relations of Quantum Field Theory (QFT). A way out, suggested by Algebraic QFT, is to instead define the quantum theory as encompassing all possible (abstract) states. In the present paper, we describe a quantization scheme for general linear (aka. free) field theories that can be seen as intermediate between traditional Fock quantization and full Algebraic QFT, in the sense that: * it provides a constructive, explicit description of the resulting space of quantum states; * it does not require the choice of a polarization, aka. the splitting of classical solutions into positive vs. negative-frequency modes: in fact, any Fock representation corresponding to a "reasonable" choice of polarization is naturally embedded; * it supports the implementation of a "large enough" class of linear symplectomorphisms of the classical, infinite-dimensional phase space. The proposed quantization (like Algebraic Q...

  12. Conformal field theory, boundary conditions and applications to string theory

    OpenAIRE

    Schweigert, C.; Fuchs, J.; Walcher, J.

    2000-01-01

    This is an introduction to two-dimensional conformal field theory and its applications in string theory. Modern concepts of conformal field theory are explained, and it is outlined how they are used in recent studies of D-branes in the strong curvature regime by means of CFT on surfaces with boundary.

  13. Neutrix Calculus and Finite Quantum Field Theory

    CERN Document Server

    Ng, Y J

    2004-01-01

    In general, quantum field theories require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like QED are not convergent series, but are asymptotic series in their interaction couplings. We propose to apply neutrix calculus, developed by van der Corput and Hadamard in connection with asymptotic series, to tackle divergent integrals, yielding finite renormalizations for the parameters in quantum field theories. We observe that quantum gravity theories are rendered more manageable, and that both renormalizable field theories and effective field theories can be accommodated in the framework of neutrix calculus.

  14. Theory and Analysis of Classic Heavy Metal Harmony

    OpenAIRE

    Lilja, Esa

    2009-01-01

    This thesis explores melodic and harmonic features of heavy metal, and while doing so, explores various methods of music analysis; their applicability and limitations regarding the study of heavy metal music. The study is built on three general hypotheses according to which 1) acoustic characteristics play a significant role for chord constructing in heavy metal, 2) heavy metal has strong ties and similarities with other Western musical styles, and 3) theories and analytical methods of Wester...

  15. Universality principle and the development of classical density functional theory

    Institute of Scientific and Technical Information of China (English)

    周世琦; 张晓琪

    2002-01-01

    The universality principle of the free energy density functional and the ‘test particle' trick by Percus are combined to construct the approximate free energy density functional or its functional derivative. Information about the bulk fluid ralial distribution function is integrated into the density functional approximation directly for the first time in the present methodology. The physical foundation of the present methodology also applies to the quantum density functional theory.

  16. Opportunizing: A classic grounded theory study on business and management

    Directory of Open Access Journals (Sweden)

    Ólavur Christiansen

    2006-11-01

    Full Text Available Opportunizing emerged as the core variable of this classic GT study on business and management. Opportunizing is the recurrent main concern that businesses have to continually resolve, and it explains how companies recurrently create, identify, seize or exploit situations to maintain their growth or survival. Opportunizing is the recurrent creation and re-creation of opportunities in business. Opportunizing is basically what business managers do and do all the time. The problematic nature of opportunizing is resolved by a core social process ofopportunizing and its attached sub-processes that account for change over time and for the variations of the problematic nature of its resolution.Opportunizing has five main facets. These are conditional befriending (confidence building & modifying behavior,prospecting (e.g. information gaining, weighing up (information appraisal & decision-making, moment capturing (quick intervention for seizing strategic opportunities, andconfiguration matching (adjusting the business organization to abet the other activities of opportunizing.On a more abstract level, opportunizing has three more organizational facets: the physically boundary-less, the valuehierarchical, and the physically bounded. The first of these called perpetual opportunizing. This emerges from the conjunction of conditional befriending and prospecting. The second facet is called triggering opportunizing. It arises from the coming together of weighing up and moment capturing. The final facet is called spasmodic opportunizing. This happens when moment capturing and configuration matching unite.

  17. Quantum Field Theory A Modern Perspective

    CERN Document Server

    Parameswaran Nair, V

    2005-01-01

    Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...

  18. Young's Double Slit Experiment in Quantum Field Theory

    CERN Document Server

    Kenmoku, Masakatsu

    2011-01-01

    Young's double slit experiment is formulated in the framework of canonical quantum field theory in view of the modern quantum optics. We adopt quantum scalar fields instead of quantum electromagnetic fields ignoring the vector freedom in gauge theory. The double slit state is introduced in Fock space corresponding to experimental setup. As observables, expectation values of energy density and positive frequency part of current with respect to the double slit state are calculated which give the interference term. Classical wave states are realized by coherent double slit states in Fock space which connect quantum particle states with classical wave states systematically. In case of incoherent sources, the interference term vanishes by averaging random phase angles as expected.

  19. Finite-block-length analysis in classical and quantum information theory.

    Science.gov (United States)

    Hayashi, Masahito

    2017-01-01

    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects.

  20. Perturbative quantization of Yang-Mills theory with classical double as gauge algebra

    CERN Document Server

    Ruiz, F Ruiz

    2015-01-01

    Perturbative quantization of Yang-Mills theory with a gauge algebra given by the classical double of a semisimple Lie algebra is considered. The classical double of a real Lie algebra is a nonsemisimple real Lie algebra that admits a nonpositive definite invariant metric, the indefiniteness of the metric suggesting an apparent lack of unitarity. It is shown that the theory is UV divergent at one loop and that there are no radiative corrections at higher loops. One-loop UV divergences are removed through renormalization of the coupling constant, thus introducing a renormalization scale. The terms in the classical action that would spoil unitarity are proved to be cohomologically trivial with respect to the Slavnov-Taylor operator that controls gauge invariance for the quantum theory. Hence they do not contribute gauge invariant radiative corrections to the quantum effective action and the theory is unitary.

  1. Perturbative quantization of Yang-Mills theory with classical double as gauge algebra

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Ruiz, F. [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)

    2016-02-15

    Perturbative quantization of Yang-Mills theory with a gauge algebra given by the classical double of a semisimple Lie algebra is considered. The classical double of a real Lie algebra is a nonsemisimple real Lie algebra that admits a nonpositive definite invariant metric, the indefiniteness of the metric suggesting an apparent lack of unitarity. It is shown that the theory is UV divergent at one loop and that there are no radiative corrections at higher loops. One-loop UV divergences are removed through renormalization of the coupling constant, thus introducing a renormalization scale. The terms in the classical action that would spoil unitarity are proved to be cohomologically trivial with respect to the Slavnov-Taylor operator that controls gauge invariance for the quantum theory. Hence they do not contribute gauge invariant radiative corrections to the quantum effective action and the theory is unitary. (orig.)

  2. Families and degenerations of conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Roggenkamp, D.

    2004-09-01

    In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)

  3. PREFACE: Classical density functional theory methods in soft and hard matter Classical density functional theory methods in soft and hard matter

    Science.gov (United States)

    Haataja, Mikko; Gránásy, László; Löwen, Hartmut

    2010-08-01

    Herein we provide a brief summary of the background, events and results/outcome of the CECAM workshop 'Classical density functional theory methods in soft and hard matter held in Lausanne between October 21 and October 23 2009, which brought together two largely separately working communities, both of whom employ classical density functional techniques: the soft-matter community and the theoretical materials science community with interests in phase transformations and evolving microstructures in engineering materials. After outlining the motivation for the workshop, we first provide a brief overview of the articles submitted by the invited speakers for this special issue of Journal of Physics: Condensed Matter, followed by a collection of outstanding problems identified and discussed during the workshop. 1. Introduction Classical density functional theory (DFT) is a theoretical framework, which has been extensively employed in the past to study inhomogeneous complex fluids (CF) [1-4] and freezing transitions for simple fluids, amongst other things. Furthermore, classical DFT has been extended to include dynamics of the density field, thereby opening a new avenue to study phase transformation kinetics in colloidal systems via dynamical DFT (DDFT) [5]. While DDFT is highly accurate, the computations are numerically rather demanding, and cannot easily access the mesoscopic temporal and spatial scales where diffusional instabilities lead to complex solidification morphologies. Adaptation of more efficient numerical methods would extend the domain of DDFT towards this regime of particular interest to materials scientists. In recent years, DFT has re-emerged in the form of the so-called 'phase-field crystal' (PFC) method for solid-state systems [6, 7], and it has been successfully employed to study a broad variety of interesting materials phenomena in both atomic and colloidal systems, including elastic and plastic deformations, grain growth, thin film growth, solid

  4. Anomalous reparametrizations and butterfly states in string field theory

    CERN Document Server

    Schnabl, M

    2003-01-01

    The reparametrization symmetries of Witten's vertex in ordinary or vacuum string field theories can be used to extract useful information about classical solutions of the equations of motion corresponding to D-branes. It follows, that the vacuum string field theory in general has to be regularized. For the regularization recently considered by Gaiotto et al., we show that the identities we derive, are so constraining, that among all surface states they uniquely select the simplest butterfly projector discovered numerically by those authors. The reparametrization symmetries are also used to give a simple proof that the butterfly states and their generalizations are indeed projectors.

  5. Energy flow in non-equilibrium conformal field theory

    Science.gov (United States)

    Bernard, Denis; Doyon, Benjamin

    2012-09-01

    We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.

  6. Localisation in Quantum Field Theory

    CERN Document Server

    Balachandran, A P

    2016-01-01

    In nonrelativistic quantum mechanics , Born's principle of localisation is as follows: For a single particle, if a wave function $\\psi_K$ vanishes outside a spatial region $K$, it is said to be localised in $K$. In particular if a spatial region $K'$ is disjoint from $K$, a wave function $\\psi_{K'}$ localised in $K'$ is orthogonal to $\\psi_K$. Such a principle of localisation does not exist compatibly with relativity and causality in quantum field theory (Newton and Wigner) or interacting point particles (Currie,Jordan and Sudarshan).It is replaced by symplectic localisation of observables as shown by Brunetti, Guido and Longo, Schroer and others. This localisation gives a simple derivation of the spin-statistics theorem and the Unruh effect, and shows how to construct quantum fields for anyons and for massless particles with `continuous' spin. This review outlines the basic principles underlying symplectic localisation and shows or mentions its deep implications. In particular, it has the potential to affect...

  7. Nuclear Dynamics with Effective Field Theories

    CERN Document Server

    Epelbaum, Evgeny

    2013-01-01

    These are the proceedings of the international workshop on "Nuclear Dynamics with Effective Field Theories" held at Ruhr-Universitaet Bochum, Germany from July 1 to 3, 2013. The workshop focused on effective field theories of low-energy QCD, chiral perturbation theory for nuclear forces as well as few- and many-body physics. Included are a short contribution per talk.

  8. Momentum relation and classical limit in the future-not-included complex action theory

    CERN Document Server

    Nagao, Keiichi

    2013-01-01

    Studying the time development of the expectation value in the future-not-included complex action theory we point out that the momentum relation (relation analogous to $p=\\frac{\\partial L}{\\partial \\dot{q}}$), which was derived via Feynman path integral and was shown to be right in the future-included theory in our previous papers, is not valid in the future-not-included theory. We provide the correct momentum relation in the future-not-included theory, and argue that the future-not-included classical theory is described by a certain real action. In addition we provide another way to understand the time development of the future-not-included theory by utilizing the future-included theory. Furthermore, applying the method used in our previous paper to the future-not-included theory properly by introducing a formal Lagrangian, we derive the correct momentum relation in the future-not-included theory.

  9. Momentum relation and classical limit in the future-not-included complex action theory

    Science.gov (United States)

    Nagao, Keiichi; Nielsen, Holger Bech

    2013-07-01

    Studying the time development of the expectation value in the future-not-included complex action theory, we point out that the momentum relation (the relation analogous to p=frac {partial L}{partial dot {q}}), which was derived via the Feynman path integral and was shown to be correct in the future-included theory in our previous papers, is not valid in the future-not-included theory. We provide the correct momentum relation in the future-not-included theory, and argue that the future-not-included classical theory is described by a certain real action. In addition, we provide another way to understand the time development of the future-not-included theory by utilizing the future-included theory. Furthermore, properly applying the method used in our previous paper to the future-not-included theory by introducing a formal Lagrangian, we derive the correct momentum relation in the future-not-included theory.

  10. Quasi-classical theory of electronic flux density in electronically adiabatic molecular processes.

    Science.gov (United States)

    Diestler, D J

    2012-11-26

    The standard Born-Oppenheimer (BO) description of electronically adiabatic molecular processes predicts a vanishing electronic flux density (EFD). A previously proposed "coupled-channels" theory permits the extraction of the EFD from the BO wave function for one-electron diatomic systems, but attempts at generalization to many-electron polyatomic systems are frustrated by technical barriers. An alternative "quasi-classical" approach, which eliminates the explicit quantum dynamics of the electrons within a classical framework, yet retains the quantum character of the nuclear motion, appears capable of yielding EFDs for arbitrarily complex systems. Quasi-classical formulas for the EFD in simple systems agree with corresponding coupled-channels formulas. Results of the application of the new quasi-classical formula for the EFD to a model triatomic system indicate the potential of the quasi-classical scheme to elucidate the dynamical role of electrons in electronically adiabatic processes in more complex multiparticle systems.

  11. Efficient Simulation of Quantum States Based on Classical Fields Modulated with Pseudorandom Phase Sequences

    CERN Document Server

    Fu, Jian

    2010-01-01

    We demonstrate that a tensor product structure could be obtained by introducing pseudorandom phase sequences into classical fields with two orthogonal modes. Using classical fields modulated with pseudorandom phase sequences, we discuss efficient simulation of several typical quantum states, including product state, Bell states, GHZ state, and W state. By performing quadrature demodulation scheme, we could obtain the mode status matrix of the simulating classical fields, based on which we propose a sequence permutation mechanism to reconstruct the simulated quantum states. The research on classical simulation of quantum states is important, for it not only enables potential practical applications in quantum computation, but also provides useful insights into fundamental concepts of quantum mechanics.

  12. Particle Indistinguishability Symmetry within a Field Theory. Entropic Effects

    Directory of Open Access Journals (Sweden)

    Jean Pierre Badiali

    2009-04-01

    Full Text Available In this paper, we briefly discuss a field theory approach of classical statistical mechanics. We show how an essentially entropic functional accounts for fundamental symmetries related to quantum mechanical properties which hold out in the classical limit of the quantum description. Within this framework, energetic and entropic properties are treated at equal level. Based on a series of examples on electrolytes, we illustrate how this framework gives simple interpretations where entropic fluctuations of anions and cations compete with the energetic properties related to the interaction potential.

  13. Prime numbers, quantum field theory and the Goldbach conjecture

    CERN Document Server

    Sanchis-Lozano, Miguel-Angel; Navarro-Salas, Jose

    2012-01-01

    Motivated by the Goldbach and Polignac conjectures in Number Theory, we propose the factorization of a classical non-interacting real scalar field (on a two-cylindrical spacetime) as a product of either two or three (so-called primer) fields whose Fourier expansion exclusively contains prime modes. We undertake the canonical quantization of such primer fields and construct the corresponding Fock space by introducing creation operators $a_p^{\\dag}$ (labeled by prime numbers $p$) acting on the vacuum. The analysis of our model, based on the standard rules of quantum field theory, suggests intriguing connections between different topics in Number Theory, notably the Riemann hypothesis and the Goldbach and Polignac conjectures. Our analysis also suggests that the (non) renormalizability properties of the proposed model could be linked to the possible validity or breakdown of the Goldbach conjecture for large integer numbers.

  14. Batalin-Vilkovisky formalism in locally covariant field theory

    CERN Document Server

    Rejzner, Katarzyna

    2011-01-01

    The present work contains a complete formulation of the Batalin-Vilkovisky (BV) formalism in the framework of locally covariant field theory. In the first part of the thesis the classical theory is investigated with a particular focus on the infinite dimensional character of the underlying structures. It is shown that the use of infinite dimensional differential geometry allows for a conceptually clear and elegant formulation. The construction of the BV complex is performed in a fully covariant way and we also generalize the BV framework to a more abstract level, using functors and natural transformations. In this setting we construct the BV complex for classical gravity. This allows us to give a homological interpretation to the notion of diffeomorphism invariant physical quantities in general relativity. The second part of the thesis concerns the quantum theory. We provide a framework for the BV quantization that doesn't rely on the path integral formalism, but is completely formulated within perturbative a...

  15. Magnetic Backgrounds and Noncommutative Field Theory

    OpenAIRE

    Szabo, Richard J.

    2004-01-01

    This paper is a rudimentary introduction, geared at non-specialists, to how noncommutative field theories arise in physics and their applications to string theory, particle physics and condensed matter systems.

  16. Introductory Lectures on Quantum Field Theory

    CERN Document Server

    Alvarez-Gaumé, Luís

    2014-01-01

    In these lectures we present a few topics in Quantum Field Theory in detail. Some of them are conceptual and some more practical. They have been selected because they appear frequently in current applications to Particle Physics and String Theory.

  17. Toward a gauge field theory of gravity.

    Science.gov (United States)

    Yilmaz, H.

    Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.

  18. Towards weakly constrained double field theory

    Directory of Open Access Journals (Sweden)

    Kanghoon Lee

    2016-08-01

    Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  19. Towards weakly constrained double field theory

    Science.gov (United States)

    Lee, Kanghoon

    2016-08-01

    We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  20. Towards Weakly Constrained Double Field Theory

    CERN Document Server

    Lee, Kanghoon

    2015-01-01

    We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X- ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  1. An educational contribution to the inadequacy of interpreting the photoelectric effect through the classical theory

    Science.gov (United States)

    Kapoyannis, A. S.; Kalkanis, G.

    2017-03-01

    We develop a simulation to facilitate the teaching of the photoelectric effect in an introductory course on quantum mechanics at undergraduate level. Through a Visual Basic program we describe the interaction of light with electrons in a metal conductor in the phenomenon according to the classical theory. The description includes both the microscopic interaction, as well as the predictions of the theory for the experimental results, arising from the microscopic scale. The predictions of the classical model are in stark contrast with the experimental results of a real photoelectric device.

  2. Regularization of identity based solution in string field theory

    Science.gov (United States)

    Zeze, Syoji

    2010-10-01

    We demonstrate that an Erler-Schnabl type solution in cubic string field theory can be naturally interpreted as a gauge invariant regularization of an identity based solution. We consider a solution which interpolates between an identity based solution and ordinary Erler-Schnabl one. Two gauge invariant quantities, the classical action and the closed string tadpole, are evaluated for finite value of the gauge parameter. It is explicitly checked that both of them are independent of the gauge parameter.

  3. Regularization of identity based solution in string field theory

    CERN Document Server

    Zeze, Syoji

    2010-01-01

    We demonstrate that an Erler-Schnabl type solution in cubic string field theory can be naturally interpreted as a gauge invariant regularization of an identity based solution. We consider a solution which interpolates between an identity based solution and ordinary Erler-Schnabl one. Two gauge invariant quantities, the classical action and the closed string tadpole, are evaluated for finite value of the gauge parameter. It is explicitly checked that both of them are independent of the gauge parameter.

  4. The Phantom Term in Open String Field Theory

    CERN Document Server

    Erler, Theodore

    2012-01-01

    We show that given any two classical solutions in open string field theory and a singular gauge transformation relating them, it is possible to write the second solution as a gauge transformation of the first plus a singular, projector-like state which describes the shift in the open string background between the two solutions. This is the "phantom term." We give some applications in the computation of gauge invariant observables.

  5. Conformal field theory on the plane

    CERN Document Server

    Ribault, Sylvain

    2014-01-01

    We provide an introduction to conformal field theory on the plane in the conformal bootstrap approach. We introduce the main ideas of the bootstrap approach to quantum field theory, and how they apply to two-dimensional theories with local conformal symmetry. We describe the mathematical structures which appear in such theories, from the Virasoro algebra and its representations, to the BPZ equations and their solutions. As examples, we study a number of models: Liouville theory, (generalized) minimal models, free bosonic theories, the $H_3^+$ model, and the $SU_2$ and $\\widetilde{SL}_2(\\mathbb{R})$ WZW models.

  6. Topics in quantum field theory; Topicos em teoria quantica dos campos

    Energy Technology Data Exchange (ETDEWEB)

    Svaiter, N.F

    2006-11-15

    This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method.

  7. Parameterized quantum field theory without Haag's theorem

    CERN Document Server

    Seidewitz, Ed

    2015-01-01

    Under the normal assumptions of quantum field theory, Haag's theorem states that any field unitarily equivalent to a free field must itself be a free field. Unfortunately, the derivation of the Dyson series perturbation expansion relies on the use of the interaction picture, in which the interacting field is unitarily equivalent to the free field but must still account for interactions. Thus, the traditional perturbative derivation of the scattering matrix in quantum field theory is mathematically ill defined. Nevertheless, perturbative quantum field theory is currently the only practical approach for addressing scattering for realistic interactions, and it has been spectacularly successful in making empirical predictions. This paper explains this success by showing that quantum field theory can be formulated, using an invariant, fifth path parameter in addition to the usual four position parameters, in such a way that Haag's theorem no longer applies, but such that the Dyson perturbation expansion for the sc...

  8. Classical chaos in one-dimensional hydrogen in strong dc electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Humm, D.C.; Nayfeh, M.H. (Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (US))

    1989-10-01

    We analyze the effect of a dc electric field on classical chaos in one-dimensional hydrogen in a microwave field in the {ital n} nonmixing regime and also in the inter-{ital n}-mixing regime where significant dc field-induced ionization occurs. We study the ac field-induced nonlinear classical resonances, the threshold of chaos, and the number of states trapped in the resonances. In the strong-{ital n}-mixing and ionizing regime (unclamping dc field), we find the chaotic dynamics depend sharply on the dc field and the number of states trapped in the resonances, allowing the system to undergo a transition from a regime of classical behavior to a regime of uniquely quantum behavior as the dc field is changed. We show that ionization by classical chaos competes favorably with ionization by tunneling in the transition region, and that tunneling allows very sensitive spectroscopy of this region.

  9. An assessment of Evans' unified field theory I

    CERN Document Server

    Hehl, F W

    2007-01-01

    Evans developed a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. This geometry can be characterized by an orthonormal coframe theta and a (metric compatible) Lorentz connection Gamma. These two potentials yield the field strengths torsion T and curvature R. Evans tried to infuse electromagnetic properties into this geometrical framework by putting the coframe theta to be proportional to four extended electromagnetic potentials A; these are assumed to encompass the conventional Maxwellian potential in a suitable limit. The viable Einstein-Cartan(-Sciama-Kibble) theory of gravity was adopted by Evans to describe the gravitational sector of his theory. Including also the results of an accompanying paper by Obukhov and the author, we show that Evans' ansatz for electromagnetism is untenable beyond repair both from a geometrical as well as from a physical point of view. As a consequence, his unified theory is obsolete.

  10. Neo-classical theory of competition or Adam Smith's hand as mathematized ideology

    Science.gov (United States)

    McCauley, Joseph L.

    2001-10-01

    Orthodox economic theory (utility maximization, rational agents, efficient markets in equilibrium) is based on arbitrarily postulated, nonempiric notions. The disagreement between economic reality and a key feature of neo-classical economic theory was criticized empirically by Osborne. I show that the orthodox theory is internally self-inconsistent for the very reason suggested by Osborne: lack of invertibility of demand and supply as functions of price to obtain price as functions of supply and demand. The reason for the noninvertibililty arises from nonintegrable excess demand dynamics, a feature of their theory completely ignored by economists.

  11. Theory of linear physical systems theory of physical systems from the viewpoint of classical dynamics, including Fourier methods

    CERN Document Server

    Guillemin, Ernst A

    2013-01-01

    An eminent electrical engineer and authority on linear system theory presents this advanced treatise, which approaches the subject from the viewpoint of classical dynamics and covers Fourier methods. This volume will assist upper-level undergraduates and graduate students in moving from introductory courses toward an understanding of advanced network synthesis. 1963 edition.

  12. Investigating the non-classical boundary conditions relevant to strain gradient theories

    Science.gov (United States)

    Jafari, Akbar; Ezzati, Meysam

    2017-02-01

    In the present study, two classes of non-classical constitutive equations consisting of the first and the second order strain gradients theories (FSG and SSG) were applied in order to develop the governing equations of static and free vibrational behavior of beam structures. The governing equations in orders of six and eight were constructed for FSG and SSG theories, respectively. Therefore, higher order or in other words non-classical boundary conditions (HOBCs or NCBCs) came into play in addition to the classical ones (CBCs). Some explanations were presented about the concept of the non-classical boundary conditions. Analytical and finite element (FE) approaches were employed to solve the governing equations. The analytical solutions were utilized in validation and convergence study of FE results. Comparisons were made with the relevant data reported in the open literature; however, to the best of the authors' knowledge, few references have been published on SSG theory and HOBCs. In the numerical studies, the effects of applying different combinations of CBCs and HOBCs to the static and free vibration behaviors of the beam were investigated. Moreover, the impacts of non-classical elastic constants and the beam size on its behavior were also studied.

  13. Lorentz Dispersion Law from classical Hydrogen electron orbits in AC electric field via geometric algebra

    CERN Document Server

    Perez, Uzziel; Sugon, Quirino M; McNamara, Daniel J; Yoshikawa, Akimasa

    2015-01-01

    We studied the orbit of an electron revolving around an infinitely massive nucleus of a large classical Hydrogen atom subject to an AC electric field oscillating perpendicular to the electron's circular orbit. Using perturbation theory in geometric algebra, we show that the equation of motion of the electron perpendicular to the unperturbed orbital plane satisfies a forced simple harmonic oscillator equation found in Lorentz dispersion law in Optics. We show that even though we did not introduce a damping term, the initial orbital position and velocity of the electron results to a solution whose absorbed energies are finite at the dominant resonant frequency $\\omega=\\omega_0$; the electron slowly increases its amplitude of oscillation until it becomes ionized. We computed the average power absorbed by the electron both at the perturbing frequency and at the electron's orbital frequency. We graphed the trace of the angular momentum vector at different frequencies. We showed that at different perturbing frequen...

  14. Killing Vector Fields and Superharmonic Field Theories

    CERN Document Server

    Groeger, Josua

    2013-01-01

    The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, referred to as superharmonic action, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of the superharmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.

  15. Duality Covariant Solutions in Extended Field Theories

    CERN Document Server

    Rudolph, Felix J

    2016-01-01

    Double field theory and exceptional field theory are formulations of supergravity that make certain dualities manifest symmetries of the action. To achieve this, the geometry is extended by including dual coordinates corresponding to winding modes of the fundamental objects. This geometrically unifies the spacetime metric and the gauge fields (and their local symmetries) in a generalized geometry. Solutions to these extended field theories take the simple form of waves and monopoles in the extended space. From a supergravity point of view they appear as 1/2 BPS objects such as the string, the membrane and the fivebrane in ordinary spacetime. In this thesis double field theory and exceptional field theory are introduced, solutions to their equations of motion are constructed and their properties are analyzed. Further it is established how isometries in the extended space give rise to duality relations between the supergravity solutions. Extensions to these core ideas include studying Goldstone modes, probing s...

  16. Bose Einstein condensation of the classical axion field in cosmology?

    CERN Document Server

    Davidson, Sacha

    2013-01-01

    The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a bose einstein condensate. Using classical equations of motion during linear structure formation, we explore whether "gravitational thermalisation" can drive axions to a bose einstein condensate. At linear order in G_N, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. From the anisotropic stress, we estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.

  17. Quantum-like model of processing of information in the brain based on classical electromagnetic field

    CERN Document Server

    Khrennikov, Andrei

    2010-01-01

    We propose a model of quantum-like (QL) processing of mental information. This model is based on quantum information theory. However, in contrast to models of ``quantum physical brain'' reducing mental activity (at least at the highest level) to quantum physical phenomena in the brain, our model matches well with the basic neuronal paradigm of the cognitive science. QL information processing is based (surprisingly) on classical electromagnetic signals induced by joint activity of neurons. This novel approach to quantum information is based on representation of quantum mechanics as a version of classical signal theory which was recently elaborated by the author. The brain uses the QL representation (QLR) for working with abstract concepts; concrete images are described by classical information theory. Two processes, classical and QL, are performed parallely. Moreover, information is actively transmitted from one representation to another. A QL concept given in our model by a density operator can generate a var...

  18. Field theory of the spinning electron: I - Internal motions

    Energy Technology Data Exchange (ETDEWEB)

    Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica; Recami, Erasmo [Universita Statale di Bergamo, Dalmine, BG (Italy). Facolta di Ingegneria]|[Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada

    1994-05-01

    One of the most satisfactory picture of spinning particles is the Barut-Zanghi (BZ) classical theory for the relativistic electron, that relates the electron spin with the so-called Zitterbewegung (zbw). The BZ theory has been recently studied in the Lagrangian and Hamiltonian symplectic formulations, both in flat and in curved space-time. The BZ motion equations constituted the starting point for two recent works about spin and electron structure, co-authored by us, which adopted the Clifford algebra formalism. In this letter, by employing on the contrary the ordinary tensorial language, we first write down a meaningful (real) equation of motion, describing particle classical paths, quite different from the corresponding (complex) equation of the standard Dirac theory. As a consequence, we succeed in regarding the electron as an extended-type object with a classically intelligible structure (thus overcoming some long-standing, well-known problems). Second, we make explicit the kinematical properties of the 4-velocity field v{sup {mu}}, which also result to be quite different from the ordinary ones, valid for scalar particles. At last, we analyze the inner zbw motions, both time-like and light-like, as functions of the initial conditions (in particular, for the case of classical uniform motions, the z component of spin s is shown to be quantized). In so doing, we make explicit the strict correlation existing between electron polarization and zbw kinematics. (author). 9 refs.

  19. Lectures on Crystal Field Theory

    Science.gov (United States)

    1982-11-01

    func- tions is immediately obtained, particularly k k k <r > = <r > /T (184)HP A second error of the classical method was the omission of the Sternheimer ...shielding factors ( Sternheimer , 1951, 1966; Sternheimer et al, 1968). In 1951 Sternheimer showed that, in a multipo~ar expan- sion of the energy of a...2986. Sternheimer , R. M., 1951, Phys. Rev. 84, 244. Sternheimer , R. M., 1966, Phys. Rev. 146, 140. Sternheimer , R. M., M. Blume, and R. F. Peierls, 1968

  20. A Classical Test Theory Analysis of the Light and Spectroscopy Concept Inventory National Study Data Set

    Science.gov (United States)

    Schlingman, Wayne M.; Prather, Edward E.; Wallace, Colin S.; Brissenden, Gina; Rudolph, Alexander L.

    2012-01-01

    This paper is the first in a series of investigations into the data from the recent national study using the Light and Spectroscopy Concept Inventory (LSCI). In this paper, we use classical test theory to form a framework of results that will be used to evaluate individual item difficulties, item discriminations, and the overall reliability of the…

  1. Uniting the Spheres: Modern Feminist Theory and Classic Texts in AP English

    Science.gov (United States)

    Drew, Simao J. A.; Bosnic, Brenda G.

    2008-01-01

    High school teachers Simao J. A. Drew and Brenda G. Bosnic help familiarize students with gender role analysis and feminist theory. Students examine classic literature and contemporary texts, considering characters' historical, literary, and social contexts while expanding their understanding of how patterns of identity and gender norms exist and…

  2. Wigner's dynamical transition state theory in phase space : classical and quantum

    NARCIS (Netherlands)

    Waalkens, Holger; Schubert, Roman; Wiggins, Stephen

    2008-01-01

    We develop Wigner's approach to a dynamical transition state theory in phase space in both the classical and quantum mechanical settings. The key to our development is the construction of a normal form for describing the dynamics in the neighbourhood of a specific type of saddle point that governs t

  3. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    Science.gov (United States)

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  4. Emergence of particles from bosonic quantum field theory

    CERN Document Server

    Wallace, D

    2001-01-01

    An examination is made of the way in which particles emerge from linear, bosonic, massive quantum field theories. Two different constructions of the one-particle subspace of such theories are given, both illustrating the importance of the interplay between the quantum-mechanical linear structure and the classical one. Some comments are made on the Newton-Wigner representation of one-particle states, and on the relationship between the approach of this paper and those of Segal, and of Haag and Ruelle.

  5. Haag's theorem in renormalised quantum field theories

    CERN Document Server

    Klaczynski, Lutz

    2016-01-01

    We review a package of no-go results in axiomatic quantum field theory with Haag's theorem at its centre. Since the concept of operator-valued distributions in this framework comes very close to what we believe canonical quantum fields are about, these results are of consequence to quantum field theory: they suggest the seeming absurdity that this highly victorious theory is incapable of describing interactions. We single out unitarity of the interaction picture's intertwiner as the most salient provision of Haag's theorem and critique canonical perturbation theory to argue that renormalisation bypasses Haag's theorem by violating this very assumption.

  6. Worked examples in engineering field theory

    CERN Document Server

    Fuller, A J Baden

    1976-01-01

    Worked Examples in Engineering Field Theory is a product of a lecture course given by the author to first-year students in the Department of Engineering in the University of Leicester. The book presents a summary of field theory together with a large number of worked examples and solutions to all problems given in the author's other book, Engineering Field Theory. The 14 chapters of this book are organized into two parts. Part I focuses on the concept of flux including electric flux. This part also tackles the application of the theory in gravitation, ideal fluid flow, and magnetism. Part II d

  7. Wavelet-Based Quantum Field Theory

    Directory of Open Access Journals (Sweden)

    Mikhail V. Altaisky

    2007-11-01

    Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.

  8. Lattice methods and effective field theory

    CERN Document Server

    Nicholson, Amy N

    2016-01-01

    Lattice field theory is a non-perturbative tool for studying properties of strongly interacting field theories, which is particularly amenable to numerical calculations and has quantifiable systematic errors. In these lectures we apply these techniques to nuclear Effective Field Theory (EFT), a non-relativistic theory for nuclei involving the nucleons as the basic degrees of freedom. The lattice formulation of [1,2] for so-called pionless EFT is discussed in detail, with portions of code included to aid the reader in code development. Systematic and statistical uncertainties of these methods are discussed at length, and extensions beyond pionless EFT are introduced in the final Section.

  9. Backgrounds in Boundary String Field Theory

    CERN Document Server

    Baumgartl, M

    2009-01-01

    We study the role of closed string backgrounds in boundary string field theory. Background independence requires the introduction of dual boundary fields, which are reminiscent of the doubled field formalism. We find a correspondence between closed string backgrounds and collective excitations of open strings described by vertex operators involving dual fields. Renormalization group flow, solutions and stability are discussed in an example.

  10. Ostrogradsky in Theories with Multiple Fields

    CERN Document Server

    de Rham, Claudia

    2016-01-01

    We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar--Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamical or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark ene...

  11. Regularity Theory for Mean-Field Game Systems

    KAUST Repository

    Gomes, Diogo A.

    2016-09-14

    Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.

  12. Regularity theory for mean-field game systems

    CERN Document Server

    Gomes, Diogo A; Voskanyan, Vardan

    2016-01-01

    Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.

  13. Pilot-wave theory and quantum fields

    Science.gov (United States)

    Struyve, Ward

    2010-10-01

    Pilot-wave theories provide possible solutions to the measurement problem. In such theories, quantum systems are not only described by the state vector but also by some additional variables. These additional variables, also called beables, can be particle positions, field configurations, strings, etc. In this paper we focus our attention on pilot-wave theories in which the additional variables are field configurations. The first such theory was proposed by Bohm for the free electromagnetic field. Since Bohm, similar pilot-wave theories have been proposed for other quantum fields. The purpose of this paper is to present an overview and further development of these proposals. We discuss various bosonic quantum field theories such as the Schrödinger field, the free electromagnetic field, scalar quantum electrodynamics and the Abelian Higgs model. In particular, we compare the pilot-wave theories proposed by Bohm and by Valentini for the electromagnetic field, finding that they are equivalent. We further discuss the proposals for fermionic fields by Holland and Valentini. In the case of Holland's model we indicate that further work is required in order to show that the model is capable of reproducing the standard quantum predictions. We also consider a similar model, which does not seem to reproduce the standard quantum predictions. In the case of Valentini's model we point out a problem that seems hard to overcome.

  14. Carter subgroups of singular classical groups over finite fields

    Institute of Scientific and Technical Information of China (English)

    高有; 石新华

    2004-01-01

    Let Fq be a finite field with qelements whereq = pα. In the present paper, the authors study the existence and structure of Carter subgroups of singular symplectic group Sp (Fq), singular unitary group U ( Fq2 ) and singular orthogonal group O ( Fq ) ( n is even) over finite fields Fq.

  15. Conditional symmetries in axisymmetric quantum cosmologies with scalar fields and the fate of the classical singularities

    Science.gov (United States)

    Zampeli, Adamantia; Pailas, Theodoros; Terzis, Petros A.; Christodoulakis, T.

    2016-05-01

    In this paper, the classical and quantum solutions of some axisymmetric cosmologies coupled to a massless scalar field are studied in the context of minisuperspace approximation. In these models, the singular nature of the Lagrangians entails a search for possible conditional symmetries. These have been proven to be the simultaneous conformal symmetries of the supermetric and the superpotential. The quantization is performed by adopting the Dirac proposal for constrained systems, i.e. promoting the first-class constraints to operators annihilating the wave function. To further enrich the approach, we follow [1] and impose the operators related to the classical conditional symmetries on the wave function. These additional equations select particular solutions of the Wheeler-DeWitt equation. In order to gain some physical insight from the quantization of these cosmological systems, we perform a semiclassical analysis following the Bohmian approach to quantum theory. The generic result is that, in all but one model, one can find appropriate ranges of the parameters, so that the emerging semiclassical geometries are non-singular. An attempt for physical interpretation involves the study of the effective energy-momentum tensor which corresponds to an imperfect fluid.

  16. Batalin-Vilkovisky formalism in locally covariant field theory

    Energy Technology Data Exchange (ETDEWEB)

    Rejzner, Katarzyna Anna

    2011-12-15

    The present work contains a complete formulation of the Batalin-Vilkovisky (BV) formalism in the framework of locally covariant field theory. In the first part of the thesis the classical theory is investigated with a particular focus on the infinite dimensional character of the underlying structures. It is shown that the use of infinite dimensional differential geometry allows for a conceptually clear and elegant formulation. The construction of the BV complex is performed in a fully covariant way and we also generalize the BV framework to a more abstract level, using functors and natural transformations. In this setting we construct the BV complex for classical gravity. This allows us to give a homological interpretation to the notion of diffeomorphism invariant physical quantities in general relativity. The second part of the thesis concerns the quantum theory. We provide a framework for the BV quantization that doesn't rely on the path integral formalism, but is completely formulated within perturbative algebraic quantum field theory. To make such a formulation possible we first prove that the renormalized time-ordered product can be understood as a binary operation on a suitable domain. Using this result we prove the associativity of this product and provide a consistent framework for the renormalized BV structures. In particular the renormalized quantum master equation and the renormalized quantum BV operator are defined. To give a precise meaning to theses objects we make a use of the master Ward identity, which is an important structure in causal perturbation theory. (orig.)

  17. Noncommutative Field Theory on Homogeneous Gravitational Waves

    CERN Document Server

    Halliday, S; Halliday, Sam; Szabo, Richard J.

    2006-01-01

    We describe an algebraic approach to the time-dependent noncommutative geometry of a six-dimensional Cahen-Wallach pp-wave string background supported by a constant Neveu-Schwarz flux, and develop a general formalism to construct and analyse quantum field theories defined thereon. Various star-products are derived in closed explicit form and the Hopf algebra of twisted isometries of the plane wave is constructed. Scalar field theories are defined using explicit forms of derivative operators, traces and noncommutative frame fields for the geometry, and various physical features are described. Noncommutative worldvolume field theories of D-branes in the pp-wave background are also constructed.

  18. Synchrotron radiation in strongly coupled conformal field theories

    CERN Document Server

    Athanasiou, Christiana; Liu, Hong; Nickel, Dominik; Rajagopal, Krishna

    2010-01-01

    Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled ${\\cal N}=4$ supersymmetric Yang-Mills (SYM) theory. We compare the strong coupling results to those at weak coupling, finding them to be very similar. In both regimes, the angular distribution of the radiated power is in fact similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle $\\alpha \\sim 1/\\gamma$. To an observer far away from the quark, the emitted radiation appears as a short periodic burst, just like the light from a lighthouse does to a ship at sea. Our strong coupling results are valid for any strongly coupled conformal field theory with a dual classical gravity description.

  19. Action and entanglement in gravity and field theory.

    Science.gov (United States)

    Neiman, Yasha

    2013-12-27

    In nongravitational quantum field theory, the entanglement entropy across a surface depends on the short-distance regularization. Quantum gravity should not require such regularization, and it has been conjectured that the entanglement entropy there is always given by the black hole entropy formula evaluated on the entangling surface. We show that these statements have precise classical counterparts at the level of the action. Specifically, we point out that the action can have a nonadditive imaginary part. In gravity, the latter is fixed by the black hole entropy formula, while in nongravitating theories it is arbitrary. From these classical facts, the entanglement entropy conjecture follows by heuristically applying the relation between actions and wave functions.

  20. The Postmodern Turn: Shall Classic Grounded Theory Take That Detour? A Review Essay

    OpenAIRE

    2006-01-01

    Adherents to classic grounded theory have gotten used to spotting the pretenders working under the grounded theory banner. Some of these faux-GT researchers have worked in a fog, misunderstanding fundamentals of the method; these are the studies that leave us shaking our heads and wondering about the doctoral committee and peer reviewers who did not bother to find out more about the method they were evaluating. More infuriating are the authors who are claiming to improve on grounded theory, t...

  1. Effective model hierarchies for dynamic and static classical density functional theories

    Energy Technology Data Exchange (ETDEWEB)

    Majaniemi, S [Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11100, FI-00076 Aalto (Finland); Provatas, N [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S-4L7 (Canada); Nonomura, M, E-mail: maj@fyslab.hut.f [Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2010-09-15

    The origin and methodology of deriving effective model hierarchies are presented with applications to solidification of crystalline solids. In particular, it is discussed how the form of the equations of motion and the effective parameters on larger scales can be obtained from the more microscopic models. It will be shown that tying together the dynamic structure of the projection operator formalism with static classical density functional theories can lead to incomplete (mass) transport properties even though the linearized hydrodynamics on large scales is correctly reproduced. To facilitate a more natural way of binding together the dynamics of the macrovariables and classical density functional theory, a dynamic generalization of density functional theory based on the nonequilibrium generating functional is suggested.

  2. Matrix string theory, contact terms, and superstring field theory

    CERN Document Server

    Dijkgraaf, R; Dijkgraaf, Robbert; Motl, Lubos

    2003-01-01

    In this note, we first explain the equivalence between the interaction Hamiltonian of Green-Schwarz light-cone gauge superstring field theory and the twist field formalism known from matrix string theory. We analyze the role of the large N limit in matrix string theory, in particular in relation with conformal perturbation theory around the orbifold SCFT that reproduces light-cone string perturbation theory. We show how the scaling with N is directly related to measures on the moduli space of Riemann surfaces. The scaling dimension 3 of the Mandelstam vertex as reproduced by the twist field interaction is in this way related to the dimension 3(h-1) of the moduli space. We analyze the structure and scaling of the higher order twist fields that represent the contact terms. We find one relevant twist field at each order. More generally, the structure of string field theory seems more transparent in the twist field formalism. Finally we also investigate the modifications necessary to describe the pp-wave backgrou...

  3. Perturbative algebraic quantum field theory an introduction for mathematicians

    CERN Document Server

    Rejzner, Kasia

    2016-01-01

    Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities. We discuss in detail the examples of scalar fields and gauge theories and generalize them to QFT on curved spacetimes. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses QFT on curved spacetimes and effective quantum gravity. The book aims to be accessible researchers and graduate students interested in the mathematical foundations of pQFT are th...

  4. On the analytical formulation of classical electromagnetic fields

    CERN Document Server

    Baker, Mark Robert

    2016-01-01

    Three objections to the canonical analytical treatment of covariant electromagnetic theory are presented: (i) only half of Maxwell's equations are present upon variation of the fundamental Lagrangian; (ii) the trace components of the energy-momentum tensor are obtained from Noether's theorem by manipulation of the action; (iii) the Belinfante symmetrization procedure exists separate from the analytical approach. It is shown that the analytical construction from Noether's theorem is based on manipulations that were developed to obtain the compact forms of the theory presented by Minkowski and Einstein. By reformulating the fundamental Lagrangian, all of the objections are relieved, without need for manipulations. Variation of the proposed Lagrangian yields the complete set of Maxwell's equations in the Euler-Lagrange equation of motion, and the observed energy-momentum tensor directly follows from Noether's theorem. Previously unavailable symmetries and identities that follow naturally from this procedure are ...

  5. Embeddings of maximal tori in classical groups over local and global fields

    Science.gov (United States)

    Bayer-Fluckiger, E.; Lee, T.-Y.; Parimala, R.

    2016-08-01

    Embeddings of maximal tori in classical groups over fields of characteristic not 2 are the subject matter of several recent papers. The aim of the present paper is to give necessary and sufficient conditions for such an embedding to exist, when the base field is a local field, or the field of real numbers. This completes the results of [3], where a complete criterion is given for the Hasse principle to hold when the base field is a global field.

  6. The Lagrangian and Hamiltonian Aspects of the Electrodynamic Vacuum-Field Theory Models

    CERN Document Server

    Bogolubov, Nikolai N; Blackmore, Denis; Prykarpatsky, Yarema A

    2012-01-01

    We review the modern classical electrodynamics problems and present the related main fundamental principles characterizing the electrodynamical vacuumfield structure. We analyze the models of the vacuumfield medium and charged point particle dynamics using the developed field theory concepts. There is also described a new approach to the classical Maxwell theory based on the derived and newly interpreted basic equations making use of the vacuum field theory approach. In particular, there are obtained the main classical special relativity theory relations and their new explanations. The well known Feynman approach to Maxwell electromagnetic equations and the Lorentz type force derivation is also discussed in detail. A related charged point particle dynamics and a hadronic string model analysis is also presented. We also revisited and reanalyzed the classical Lorentz force expression in arbitrary non-inertial reference frames and present some new interpretations of the relations between special relativity theor...

  7. Decoherence and dynamical entropy generation in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Koksma, Jurjen F., E-mail: J.F.Koksma@uu.nl [Institute for Theoretical Physics (ITP) and Spinoza Institute, Utrecht University, Postbus 80195, 3508 TD Utrecht (Netherlands); Prokopec, Tomislav, E-mail: T.Prokopec@uu.nl [Institute for Theoretical Physics (ITP) and Spinoza Institute, Utrecht University, Postbus 80195, 3508 TD Utrecht (Netherlands); Schmidt, Michael G., E-mail: M.G.Schmidt@thphys.uni-heidelberg.de [Institut fuer Theoretische Physik, Heidelberg University, Philosophenweg 16, D-69120 Heidelberg (Germany)

    2012-01-20

    We formulate a novel approach to decoherence based on neglecting observationally inaccessible correlators. We apply our formalism to a renormalised interacting quantum field theoretical model. Using out-of-equilibrium field theory techniques we show that the Gaussian von Neumann entropy for a pure quantum state increases to the interacting thermal entropy. This quantifies decoherence and thus measures how classical our pure state has become. The decoherence rate is equal to the single particle decay rate in our model. We also compare our approach to existing approaches to decoherence in a simple quantum mechanical model. We show that the entropy following from the perturbative master equation suffers from physically unacceptable secular growth.

  8. Comments on superstring field theory and its vacuum solution

    Science.gov (United States)

    Kroyter, Michael

    2009-08-01

    We prove that the NS cubic superstring field theories are classically equivalent, regardless of the choice of Y-2 in their definition, and illustrate it by an explicit evaluation of the action of Erler's solution. We then turn to examine this solution. First, we explain that its cohomology is trivial also in the Ramond sector. Then, we show that the boundary state corresponding to it is identically zero. We conclude that this solution is indeed a closed string vacuum solution despite the absence of a tachyon field on the BPS D-brane.

  9. Comments on superstring field theory and its vacuum solution

    CERN Document Server

    Kroyter, Michael

    2009-01-01

    We prove that the NS cubic superstring field theories are classically equivalent, regardless of the choice of Y_{-2} in their definition, and illustrate it by an explicit evaluation of the action of Erler's solution. We then turn to examine this solution. First, we explain that its cohomology is trivial also in the Ramond sector. Then, we show that the boundary state corresponding to it is identically zero. We conclude that this solution is indeed a closed string vacuum solution despite the absence of a tachyon field on the BPS D-brane.

  10. Supergeometry in locally covariant quantum field theory

    CERN Document Server

    Hack, Thomas-Paul; Schenkel, Alexander

    2015-01-01

    In this paper we analyze supergeometric locally covariant quantum field theories. We develop suitable categories SLoc of super-Cartan supermanifolds, which generalize Lorentz manifolds in ordinary quantum field theory, and show that, starting from a few representation theoretic and geometric data, one can construct a functor A : SLoc --> S*Alg to the category of super-*-algebras which can be interpreted as a non-interacting super-quantum field theory. This construction turns out to disregard supersymmetry transformations as the morphism sets in the above categories are too small. We then solve this problem by using techniques from enriched category theory, which allows us to replace the morphism sets by suitable morphism supersets that contain supersymmetry transformations as their higher superpoints. We construct super-quantum field theories in terms of enriched functors eA : eSLoc --> eS*Alg between the enriched categories and show that supersymmetry transformations are appropriately described within the en...

  11. A Field Theory with Curvature and Anticurvature

    Directory of Open Access Journals (Sweden)

    M. I. Wanas

    2014-01-01

    Full Text Available The present work is an attempt to construct a unified field theory in a space with curvature and anticurvature, the PAP-space. The theory is derived from an action principle and a Lagrangian density using a symmetric linear parameterized connection. Three different methods are used to explore physical contents of the theory obtained. Poisson’s equations for both material and charge distributions are obtained, as special cases, from the field equations of the theory. The theory is a pure geometric one in the sense that material distribution, charge distribution, gravitational and electromagnetic potentials, and other physical quantities are defined in terms of pure geometric objects of the structure used. In the case of pure gravity in free space, the spherical symmetric solution of the field equations gives the Schwarzschild exterior field. The weak equivalence principle is respected only in the case of pure gravity in free space; otherwise it is violated.

  12. Light-Front quantization of field theory

    CERN Document Server

    Srivastava, P P

    1996-01-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincarè algebra and the LF Spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons.

  13. Generation of longitudinal electric current by the transversal electromagnetic field in classical and quantum plasma

    CERN Document Server

    Latyshev, A V

    2015-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with degenerate collisionless classical and quantum plasmas is carried out. Formulas for calculation electric current in degenerate collisionless classical and quantum plasmas are deduced. It has appeared, that the nonlinearity account leads to occurrence of longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis. Graphic comparison of density of electric current for classical degenerate Fermi plasmas and Fermi-Dirac plasmas (plasmas with any degree of degeneration of electronic gas) is carried out. Graphic comparison of density of electric current for classical and quantum degenerate plasmas is carried out. Also comparison of dependence of density of electric current of quantum degenerate plasmas from dimensionless wave number at various values of dimensionless frequency of oscillations of electromagnetic field is carried ...

  14. Green-Function-Based Monte Carlo Method for Classical Fields Coupled to Fermions

    OpenAIRE

    Weiße, Alexander

    2009-01-01

    Microscopic models of classical degrees of freedom coupled to non-interacting fermions occur in many different contexts. Prominent examples from solid state physics are descriptions of colossal magnetoresistance manganites and diluted magnetic semiconductors, or auxiliary field methods for correlated electron systems. Monte Carlo simulations are vital for an understanding of such systems, but notorious for requiring the solution of the fermion problem with each change in the classical field c...

  15. Second order classical perturbation theory for the sticking probability of heavy atoms scattered on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Tapas; Pollak, Eli [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2015-08-14

    A second order classical perturbation theory is developed to calculate the sticking probability of a particle scattered from an uncorrugated thermal surface. An analytic expression for the temperature dependent energy loss of the particle to the surface is derived by employing a one-dimensional generalized Langevin equation. The surface temperature reduces the energy loss, since the thermal surface transfers energy to the particle. Using a Gaussian energy loss kernel and the multiple collision theory of Fan and Manson [J. Chem. Phys. 130, 064703 (2009)], enables the determination of the fraction of particles trapped on the surface after subsequent momentum reversals of the colliding particle. This then leads to an estimate of the trapping probability. The theory is tested for the model scattering of Ar on a LiF(100) surface. Comparison with numerical simulations shows excellent agreement of the analytical theory with simulations, provided that the energy loss is determined by the second order perturbation theory.

  16. Second order classical perturbation theory for the sticking probability of heavy atoms scattered on surfaces.

    Science.gov (United States)

    Sahoo, Tapas; Pollak, Eli

    2015-08-14

    A second order classical perturbation theory is developed to calculate the sticking probability of a particle scattered from an uncorrugated thermal surface. An analytic expression for the temperature dependent energy loss of the particle to the surface is derived by employing a one-dimensional generalized Langevin equation. The surface temperature reduces the energy loss, since the thermal surface transfers energy to the particle. Using a Gaussian energy loss kernel and the multiple collision theory of Fan and Manson [J. Chem. Phys. 130, 064703 (2009)], enables the determination of the fraction of particles trapped on the surface after subsequent momentum reversals of the colliding particle. This then leads to an estimate of the trapping probability. The theory is tested for the model scattering of Ar on a LiF(100) surface. Comparison with numerical simulations shows excellent agreement of the analytical theory with simulations, provided that the energy loss is determined by the second order perturbation theory.

  17. Playing with QCD I: effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica

    2009-07-01

    The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)

  18. Noncommutative gravity and quantum field theory on noncummutative curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, Alexander

    2011-10-24

    The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the

  19. N=2 gauge theories and degenerate fields of Toda theory

    CERN Document Server

    Kanno, Shoichi; Shiba, Shotaro; Tachikawa, Yuji

    2009-01-01

    We discuss the correspondence between degenerate fields of the W_N algebra and punctures of Gaiotto's description of the Seiberg-Witten curve of N=2 superconformal gauge theories. Namely, we find that the type of degenerate fields of the W_N algebra, with null states at level one, is classified by Young diagrams with N boxes, and that the singular behavior of the Seiberg-Witten curve near the puncture agrees with that of W_N generators. We also find how to translate mass parameters of the gauge theory to the momenta of the Toda theory.

  20. Classical understanding of electron vortex beams in a uniform magnetic field

    Science.gov (United States)

    Han, Yeong Deok; Choi, Taeseung

    2017-04-01

    Recently, interesting observations on electron vortex beams have been made. We propose a classical model that shows vortex-like motion due to suitably-synchronized motion of each electron's cyclotron motion in a uniform magnetic field. It is shown that some basic features of electron vortex beams in a uniform magnetic field, such as azimuthal currents, the relation between energy and kinetic angular momentum, and the parallel-axis theorem are understandable by using this classical model. We also show that the time-dependence of kinetic angular momentum of electron vortex beams could be understood as an effect of a specific nonuniform distribution of classical electrons.

  1. Chaotic instantons in scalar field theory

    CERN Document Server

    Addazi, Andrea

    2016-01-01

    We consider a new class of instantons in context of quantum field theory of a scalar field coupled with a chaotic background source field. We show how the instanton associated to the quantum tunneling from a metastable false to the true vacuum will be corrected by an exponential enhancement factor. Possible implications are discussed.

  2. On 2-dimensional topological field theories

    CERN Document Server

    Dumitrescu, Florin

    2010-01-01

    In this paper we give a characterization of 2-dimensional topological field theories over a space $X$ as Frobenius bundles with connections over $LX$, the free loop space of $X$. This is a generalization of the folk theorem stating that 2-dimensional topological field theories (over a point) are described by finite-dimensional commutative Frobenius algebras. In another direction, this result extends the description of 1-dimensional topological field theories over a space $X$ as vector bundles with connections over $X$, cf. \\cite{DST}.

  3. Classical diffusion and quantum level velocities: systematic deviations from random matrix theory.

    Science.gov (United States)

    Lakshminarayan, A; Cerruti, N R; Tomsovic, S

    1999-10-01

    We study the response of the quasienergy levels in the context of quantized chaotic systems through the level velocity variance and relate them to classical diffusion coefficients using detailed semiclassical analysis. The systematic deviations from random matrix theory, assuming independence of eigenvectors from eigenvalues, are shown to be connected to classical higher-order time correlations of the chaotic system. We study the standard map as a specific example, and thus the well-known oscillatory behavior of the diffusion coefficient with respect to the parameter is reflected exactly in the oscillations of the variance of the level velocities. We study the case of mixed phase-space dynamics as well and note a transition in the scaling properties of the variance that occurs along with the classical transition to chaos.

  4. Parametric dependent Hamiltonians, wave functions, random matrix theory, and quantal-classical correspondence.

    Science.gov (United States)

    Cohen, D; Kottos, T

    2001-03-01

    We study a classically chaotic system that is described by a Hamiltonian H(Q,P;x), where (Q,P) are the canonical coordinates of a particle in a two-dimensional well, and x is a parameter. By changing x we can deform the "shape" of the well. The quantum eigenstates of the system are /n(x)>. We analyze numerically how the parametric kernel P(n/m)=//(2) evolves as a function of delta(x)[triple bond](x-x(0)). This kernel, regarded as a function of n-m, characterizes the shape of the wave functions, and it also can be interpreted as the local density of states. The kernel P(n/m) has a well-defined classical limit, and the study addresses the issue of quantum-classical correspondence. Both the perturbative and the nonperturbative regimes are explored. The limitations of the random matrix theory approach are demonstrated.

  5. Classical trajectory perspective of atomic ionization in strong laser fields semiclassical modeling

    CERN Document Server

    Liu, Jie

    2014-01-01

    The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers...

  6. Classical R-matrix theory of dispersionless systems: I. (1+1)-dimension theory

    Energy Technology Data Exchange (ETDEWEB)

    Blaszak, Maciej; Szablikowski, Blazej M [Institute of Physics, A Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)

    2002-12-06

    A systematic way of construction of (1+1)-dimensional dispersionless integrable Hamiltonian systems is presented. The method is based on the classical R-matrix on Poisson algebras of formal Laurent series. Results are illustrated with the known and new (1+1)-dimensional dispersionless systems.

  7. Classical R-matrix theory of dispersionless systems: II. (2+1) dimension theory

    Energy Technology Data Exchange (ETDEWEB)

    Blaszak, Maciej; Szablikowski, Blazej M [Institute of Physics, A Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)

    2002-12-06

    A systematic way of constructing (2+1)-dimensional dispersionless integrable Hamiltonian systems is presented. The method is based on the so-called central extension procedure and classical R-matrix applied to the Poisson algebras of formal Laurent series. Results are illustrated with the known and new (2+1)-dimensional dispersionless systems.

  8. Quantum Field Theory on Noncommutative Spaces

    CERN Document Server

    Szabó, R J

    2003-01-01

    A pedagogical and self-contained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the Weyl-Wigner correspondence, noncommutative Feynman diagrams, UV/IR mixing, noncommutative Yang-Mills theory on infinite space and on the torus, Morita equivalences of noncommutative gauge theories, twisted reduced models, and an in-depth study of the gauge group of noncommutative Yang-Mills theory. Some of the more mathematical ideas and techniques of noncommutative geometry are also briefly explained.

  9. Ostrogradsky in theories with multiple fields

    Energy Technology Data Exchange (ETDEWEB)

    Rham, Claudia de; Matas, Andrew [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106 (United States)

    2016-06-23

    We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar-Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamical or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark energy and the stability of the theory. In particular we find that if we restrict ourselves to the Extended Scalar-Tensor class of theories for which the tensors are well-behaved and the scalar is free from gradient or ghost instabilities on FLRW then we recover Horndeski up to field redefinitions.

  10. Bi-local Fields in Noncommutative Field Theory

    CERN Document Server

    Iso, S; Kitazawa, Y; Iso, Satoshi; Kawai, Hikaru; Kitazawa, Yoshihisa

    2000-01-01

    We propose a bi-local representation in noncommutative field theory. It provides a simple description for high momentum degrees of freedom. It also shows that the low momentum modes can be well approximated by ordinary local fields. Long range interactions are generated in the effective action for the lower momentum modes after integrating out the high momentum bi-local fields. The low momentum modes can be represented by diagonal blocks in the matrix model picture and the high momentum bi-local fields correspond to off-diagonal blocks. This block-block interaction picture simply reproduces the infrared singular behaviors of nonplanar diagrams in noncommutative field theory.

  11. Involutions on Classical Crossed Products over Global Fields

    Institute of Scientific and Technical Information of China (English)

    Y. Hatzaras; Th. Theohari-Apostolidi

    2002-01-01

    If L/K is a finite Galois extension of the global field K with Galois group G, we denote by A = (L/K, α) the crossed product algebra of G over L,where α is the factor set of G. We give a criterion when A admits an involution of the first kind by which a characterization of the factor set is given.

  12. The conceptual framework of quantum field theory

    CERN Document Server

    Duncan, Anthony

    2012-01-01

    The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...

  13. Magnetic fields, special relativity and potential theory elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    1972-01-01

    Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec

  14. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    Science.gov (United States)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical

  15. Extended hydrodynamic approach to quantum-classical nonequilibrium evolution. I. Theory.

    Science.gov (United States)

    Bousquet, David; Hughes, Keith H; Micha, David A; Burghardt, Irene

    2011-02-14

    A mixed quantum-classical formulation is developed for a quantum subsystem in strong interaction with an N-particle environment, to be treated as classical in the framework of a hydrodynamic representation. Starting from the quantum Liouville equation for the N-particle distribution and the corresponding reduced single-particle distribution, exact quantum hydrodynamic equations are obtained for the momentum moments of the single-particle distribution coupled to a discretized quantum subsystem. The quantum-classical limit is subsequently taken and the resulting hierarchy of equations is further approximated by various closure schemes. These include, in particular, (i) a Grad-Hermite-type closure, (ii) a Gaussian closure at the level of a quantum-classical local Maxwellian distribution, and (iii) a dynamical density functional theory approximation by which the hydrodynamic pressure term is replaced by a free energy functional derivative. The latter limit yields a mixed quantum-classical formulation which has previously been introduced by I. Burghardt and B. Bagchi, Chem. Phys. 134, 343 (2006).

  16. A New Theory of the Electromagnetic Field

    Science.gov (United States)

    Kriske, Richard

    2017-01-01

    This author has previously introduced a new theory of the Electromagnetic Field and its interaction with matter. There was from the start a problem with Einstein's formulation of Invariants and its use in describing The EM field. The photon produced by first varying a stationary Electric field in one observer's reference frame is not the same as a photon produced from varying the a stationary Magnetic Field. The Magnetic field photon is thought of as being ``off the mass shell''. The Quantum information seems to carry with it an ordering of these events. You see this ordering in Wick's theory and in Feynman diagrams. This author is proposing that other fields can vary first in another Observers reference frame, not just the ``Scalar Field'' or the ``Fermion Field'', but many other forms of Energy. If the ``Nuclear Field'' varies first, it results in Quantum information that produces a photon that has the Nuclear Field in it and also the Magnetic Field, this is the strange effect seen in Nuclear Magnetic Resonance. This author proposed that there is a large number of photons with different properties, because of this ordering of events that occurs in Quantum Information. One of these photons is the Neutrino which appears to be a three field photon. This is Kriske's Field Theory.

  17. Austerity and Geometric Structure of Field Theories

    Science.gov (United States)

    Kheyfets, Arkady

    The relation between the austerity idea and the geometric structure of the three basic field theories- -electrodynamics, Yang-Mills theory, and general relativity --is studied. The idea of austerity was originally suggested by J. A. Wheeler in an attempt to formulate the laws of physics in such a way that they would come into being only within "the gates of time" extending from big bang to big crunch, rather than exist from everlasting to everlasting. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity (PAR-DIFF)(CCIRC)(PAR -DIFF) = 0 used twice, at the 1-2-3-dimensional level (providing the homgeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories--electrodynamics, Yang-Mills theory, and general relativity. This dissertation: (a) analyses the difficulties by means of algebraic topology, integration theory and modern differential geometry based on the concepts of principal bundles and Ehresmann connections; (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for all the three theories and compatible with the original austerity idea; (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories, including the soldering form as a dynamical variable rather than as a background structure.

  18. A quantum field theory of the extended electron

    Energy Technology Data Exchange (ETDEWEB)

    Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica; Recami, Erasmo [Universita Statale di Bergamo, Dalmine, BG (Italy). Facolta di Ingegneria]|[Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada

    1993-12-01

    In a recent paper, the classical model of Barut and Zanghi (BZ) for the electron spin which interpreted the Zitterbewegung (zbw) motion along helical paths and its quantum version have been investigated by using the language of Clifford algebras. In also doing, a new non-linear Dirac-like equation (NDE) was derived. We want to readdress the whole subject, and complete it, by adopting - for the sake of physical clarity - the ordinary tensorial language. In particular, we re-derive here the NDE for the electron quantum field, show it to be associated with a new conserved probability current, and stress its importance for a quantum field theory of spin 1/2 fermions. Actually, we propose this equation in substitution for the Dirac equation, which comes from the former by averaging over a zbw cycle. We then derive a new equation of motion for the quantum field velocity, which will allow us to regard the electron as an extended object, with a classically intelligible internal structure (thus overcoming some known, long-standing problems). We carefully the solutions of the NDE; with special attention to those implying (at the classical limit) light-like helical motions, since these appear to be the most adequate equations for the electron description, from the kinematical and physical points of view, and do cope with the electron electromagnetic properties (such as Coulomb field and intrinsic magnetic moment). (author). 18 refs.

  19. Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sihvola, Ari [Helsinki University of Technology (Finland)

    2005-03-11

    everything seems to work well with the 'old' multipole theory. But then the focus is shifted to observables associated with the reflection of waves from a surface. And there the classical analysis fails. This gives the motivation for the following chapters where the transformed multipole theory is represented. As expected, the correct multipole balance restores the physicality of the results in the reflection problem. One of the healthy reminders for an electrical engineer-scientist reading the book is the fact that E and B are the primary electric and magnetic fields. The other two field quantities, D and H, are the response fields (which, by the way, are also shown to be origin-dependent and poorly defined in the framework of classical multipole theory). In defence, however, for these poor latter quantities one can mention the many advantages of the engineering-type constitutive relations where D and B are expressed as responses to E and H. An example is the beautiful symmetry and complete analogy between the electric and magnetic quantities (voltage becomes current and vice versa in the duality transformation) which helps us write down solutions to electromagnetic problems from other known cases. From a pragmatic point of view we would also favour the use of quantities like Poynting vector and energy density (which require the H field). Another discussion-provoking question to the authors of the book might be whether their new multipole balance could be broken in the analysis of artificial materials. New nanotechnological discoveries and devices make it look like engineers can do anything. Perhaps in the design of complex media and metamaterials, a hot topic in today?s materials science, such macroscopic responses can be tailored where a certain high-order multipole contribution dominates over other, more basic ones. Multiple Theory in Electromagnetism is suitable for a broad spectrum of readers: solid-state physicists, molecular chemists, theoretical and

  20. BOOK REVIEW: Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications

    Science.gov (United States)

    Sihvola, Ari

    2005-03-01

    ' multipole theory. But then the focus is shifted to observables associated with the reflection of waves from a surface. And there the classical analysis fails. This gives the motivation for the following chapters where the transformed multipole theory is represented. As expected, the correct multipole balance restores the physicality of the results in the reflection problem. One of the healthy reminders for an electrical engineer-scientist reading the book is the fact that E and B are the primary electric and magnetic fields. The other two field quantities, D and H, are the response fields (which, by the way, are also shown to be origin-dependent and poorly\\endcolumn defined in the framework of classical multipole theory). In defence, however, for these poor latter quantities one can mention the many advantages of the engineering-type constitutive relations where D and B are expressed as responses to E and H. An example is the beautiful symmetry and complete analogy between the electric and magnetic quantities (voltage becomes current and vice versa in the duality transformation) which helps us write down solutions to electromagnetic problems from other known cases. From a pragmatic point of view we would also favour the use of quantities like Poynting vector and energy density (which require the H field). Another discussion-provoking question to the authors of the book might be whether their new multipole balance could be broken in the analysis of artificial materials. New nanotechnological discoveries and devices make it look like engineers can do anything. Perhaps in the design of complex media and metamaterials, a hot topic in todayÂ's materials science, such macroscopic responses can be tailored where a certain high-order multipole contribution dominates over other, more basic ones. Multiple Theory in Electromagnetism is suitable for a broad spectrum of readers: solid-state physicists, molecular chemists, theoretical and experimental optics scientists, radiophysics

  1. Dynamical symmetry breaking in quantum field theories

    CERN Document Server

    Miransky, Vladimir A

    1993-01-01

    The phenomenon of dynamical symmetry breaking (DSB) in quantum field theory is discussed in a detailed and comprehensive way. The deep connection between this phenomenon in condensed matter physics and particle physics is emphasized. The realizations of DSB in such realistic theories as quantum chromodynamics and electroweak theory are considered. Issues intimately connected with DSB such as critical phenomenona and effective lagrangian approach are also discussed.

  2. From exceptional field theory to heterotic double field theory via K3

    Science.gov (United States)

    Malek, Emanuel

    2017-03-01

    In this paper we show how to obtain heterotic double field theory from exceptional field theory by breaking half of the supersymmetry. We focus on the SL(5) exceptional field theory and show that when the extended space contains a generalised SU(2)-structure manifold one can define a reduction to obtain the heterotic SO(3 , n) double field theory. In this picture, the reduction on the SU(2)-structure breaks half of the supersymmetry of the exceptional field theory and the gauge group of the heterotic double field theory is given by the embedding tensor of the reduction used. Finally, we study the example of a consistent truncation of M-theory on K3 and recover the duality with the heterotic string on T 3. This suggests that the extended space can be made sense of even in the case of non-toroidal compactifications.

  3. Butterfly Tachyons in Vacuum String Field Theory

    CERN Document Server

    Matlock, P

    2003-01-01

    We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in Vacuum String Field Theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation.

  4. Klein Topological Field Theories from Group Representations

    Directory of Open Access Journals (Sweden)

    Sergey A. Loktev

    2011-07-01

    Full Text Available We show that any complex (respectively real representation of finite group naturally generates a open-closed (respectively Klein topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring.

  5. Field theory for trapped atomic gases

    NARCIS (Netherlands)

    Stoof, H.T.C.

    2001-01-01

    In this course we give a selfcontained introduction to the quantum field theory for trapped atomic gases, using functional methods throughout. We consider both equilibrium and nonequilibrium phenomena. In the equilibrium case, we first derive the appropriate Hartree-Fock theory for the properties of

  6. The conceptual basis of Quantum Field Theory

    NARCIS (Netherlands)

    Hooft, G. 't

    2007-01-01

    Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental ingredients f

  7. Medley in finite temperature field theory

    CERN Document Server

    Pisarski, R D

    1993-01-01

    I discuss three subjects in thermal field theory: why in \\sun gauge theories the \\zn symmetry is broken at high (instead of low) temperature, the possible singularity structure of gauge variant propagators, and the problem of how to compute the viscosity from the Kubo formula.

  8. Computer animations of quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E. (Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique)

    1992-07-01

    A visualization mehtod for quantum field theories based on the transfer matrix formalism is presented. It generates computer animations simulating the time evolution of complex physical systems subject to local Hamiltonians. The method may be used as a means of gaining insight to theories such as QCD, and as an educational tool in explaining high-energy physics. (orig.).

  9. Field theory for trapped atomic gases

    NARCIS (Netherlands)

    Stoof, H.T.C.

    2001-01-01

    In this course we give a selfcontained introduction to the quantum field theory for trapped atomic gases, using functional methods throughout. We consider both equilibrium and nonequilibrium phenomena. In the equilibrium case, we first derive the appropriate Hartree—Fock theory for the properties of

  10. N = 8 supersingleton quantum field theory

    NARCIS (Netherlands)

    Bergshoeff, Eric; Salam, Abdus; Sezgin, Ergin; Tanii, Yoshiaki

    1988-01-01

    We quantize the N = 8 supersymmetric singleton field theory which is formulated on the boundary of the four-dimensional anti-de Sitter spacetime (ADS4). The theory has rigid OSp(8, 4) symmetry which acts as a superconformal group on the boundary of AdS4. We show that the generators of this symmetry

  11. Path integral quantization of parametrised field theory

    CERN Document Server

    Varadarajan, M

    2004-01-01

    Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrised field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrised field theory in order to analyse issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is non-trivial and is the analog of the Fradkin- Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrised field theory using key ideas of Schleich and show that our constructions imply the existence of non-standard `Wick rotations' of the standard free scalar field 2 point function. We develop a framework to study the problem of time through computations of scalar field 2 point functions. We illustra...

  12. Relativistic semi-classical theory of atom ionization in ultra-intense laser

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A relativistic semi-classical theory (RSCT) of H-atom ionizationin ultra-intense laser (UIL) is proposed. A relativistic analytical expression for ionization probability of H-atom in its ground state is given. This expression, compared with non-relativistic expression, clearly shows the effects of the magnet vector in the laser, the non-dipole approximation and the relativistic mass-energy relation on the ionization processes. At the same time, we show that under some conditions the relativistic expression reduces to the non-relativistic expression of non-dipole approximation. At last, some possible applications of the relativistic theory are briefly stated.

  13. Gravitation Field Dynamics in Jeans Theory

    Indian Academy of Sciences (India)

    A. A. Stupka

    2008-09-01

    Closed system of time equations for nonrelativistic gravitation field and hydrodynamic medium was obtained by taking into account binary correlations of the field, which is the generalization of Jeans theory. Distribution function of the systemwas built on the basis of the Bogolyubov reduced description method. Calculations were carried out up to the first order of a perturbation theory in interaction. Adiabatic and enthropic types of perturbations were corrected and two new types of perturbations were found.

  14. Covariant Hamilton equations for field theory

    Energy Technology Data Exchange (ETDEWEB)

    Giachetta, Giovanni [Department of Mathematics and Physics, University of Camerino, Camerino (Italy); Mangiarotti, Luigi [Department of Mathematics and Physics, University of Camerino, Camerino (Italy)]. E-mail: mangiaro@camserv.unicam.it; Sardanashvily, Gennadi [Department of Theoretical Physics, Physics Faculty, Moscow State University, Moscow (Russian Federation)]. E-mail: sard@grav.phys.msu.su

    1999-09-24

    We study the relations between the equations of first-order Lagrangian field theory on fibre bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. If a Lagrangian is hyperregular, these equations are equivalent. A degenerate Lagrangian requires a set of associated Hamiltonian forms in order to exhaust all solutions of the Euler-Lagrange equations. The case of quadratic degenerate Lagrangians is studied in detail. (author)

  15. Continuous point symmetries in Group Field Theories

    CERN Document Server

    Kegeles, Alexander

    2016-01-01

    We discuss the notion of symmetries in non-local field theories characterized by integro-differential equation of motion, from a geometric perspective. We then focus on Group Field Theory (GFT) models of quantum gravity. We provide a general analysis of their continuous point symmetry transformations, including the generalized conservation laws following from them, and apply it to several GFT models of interest to current research.

  16. Gravitation Field Dynamics in Jeans Theory

    CERN Document Server

    Stupka, A A

    2016-01-01

    Closed system of time equations for nonrelativistic gravitation field and hydrodynamic medium was obtained by taking into account binary correlations of the field, which is the generalization of Jeans theory. Distribution function of the systemwas built on the basis of the Bogolyubov reduced description method. Calculations were carried out up to the first order of a perturbation theory in interaction. Adiabatic and enthropic types of perturbations were corrected and two new types of perturbations were found.

  17. Oxygen precipitation in silicon: Experimental studies and theoretical investigations within the classical theory of nucleation

    Science.gov (United States)

    Kelton, K. F.; Falster, R.; Gambaro, D.; Olmo, M.; Cornara, M.; Wei, P. F.

    1999-06-01

    Quantitative measurements of the oxygen precipitate rate as a function of annealing were made in Czochralski-grown silicon wafers that contained different initial concentrations of oxygen. All wafers were annealed at 1000 °C for 15 min to ensure that the initial cluster-size distributions were identical in all samples of the same composition prior to the multi-step annealing treatments used for the precipitation studies. The experimental data are compared with numerical predictions for time-dependent nucleation within the classical theory of nucleation. Quantitative agreement is obtained between the measured and calculated densities of oxygen precipitates for nucleation temperatures greater than 600 °C, but only over a narrow range of oxygen composition. Below 600 °C, the measured density for all samples is orders of magnitude larger than is predicted from the model. Further, the measured data show an anomalously small temperature dependence for the induction time for nucleation that does not scale with the diffusion coefficient, as expected from the classical theory of nucleation. Fundamentally, the classical theory of nucleation cannot explain the time-dependent nucleation of oxygen precipitates for temperatures below 650 °C. A possible reason is given.

  18. Homotopy Theory of Probability Spaces I: Classical independence and homotopy Lie algebras

    CERN Document Server

    Park, Jae-Suk

    2015-01-01

    This is the first installment of a series of papers whose aim is to lay a foundation for homotopy probability theory by establishing its basic principles and practices. The notion of a homotopy probability space is an enrichment of the notion of an algebraic probability space with ideas from algebraic homotopy theory. This enrichment uses a characterization of the laws of random variables in a probability space in terms of symmetries of the expectation. The laws of random variables are reinterpreted as invariants of the homotopy types of infinity morphisms between certain homotopy algebras. The relevant category of homotopy algebras is determined by the appropriate notion of independence for the underlying probability theory. This theory will be both a natural generalization and an effective computational tool for the study of classical algebraic probability spaces, while keeping the same central limit. This article is focused on the commutative case, where the laws of random variables are also described in t...

  19. N=3 four dimensional field theories

    CERN Document Server

    García-Etxebarria, Iñaki

    2015-01-01

    We introduce a class of four dimensional field theories constructed by quotienting ordinary $\\mathcal{N}=4$ $U(N)$ SYM by particular combinations of R-symmetry and $SL(2,\\mathbb{Z})$ automorphisms. These theories appear naturally on the worldvolume of D3 branes probing terminal singularities in F-theory, where they can be thought of as non-perturbative generalizations of the O3 plane. We focus on cases preserving only 12 supercharges, where the quotient gives rise to theories with coupling fixed at a value of order one. These constructions posses an unconventional large $N$ limit described by a non-trivial F-theory fibration with base $AdS_5\\times (S^5/\\mathbb{Z}_k)$. Upon reduction on a circle the $\\mathcal{N}=3$ theories flow to well-known $\\mathcal{N}=6$ ABJM theories.

  20. Effective Field Theories and Lattice QCD

    CERN Document Server

    Bernard, C

    2015-01-01

    I describe some of the many connections between lattice QCD and effective field theories, focusing in particular on chiral effective theory, and, to a lesser extent, Symanzik effective theory. I first discuss the ways in which effective theories have enabled and supported lattice QCD calculations. Particular attention is paid to the inclusion of discretization errors, for a variety of lattice QCD actions, into chiral effective theory. Several other examples of the usefulness of chiral perturbation theory, including the encoding of partial quenching and of twisted boundary conditions, are also described. In the second part of the talk, I turn to results from lattice QCD for the low energy constants of the two- and three-flavor chiral theories. I concentrate here on mesonic quantities, but the dependence of the nucleon mass on the pion mass is also discussed. Finally I describe some recent preliminary lattice QCD calculations by the MILC Collaboration relating to the three-flavor chiral limit.