Advances In Classical Field Theory
Yahalom, Asher
2011-01-01
Classical field theory is employed by physicists to describe a wide variety of physical phenomena. These include electromagnetism, fluid dynamics, gravitation and quantum mechanics. The central entity of field theory is the field which is usually a multi component function of space and time. Those multi component functions are usually grouped together as vector fields as in the case in electromagnetic theory and fluid dynamics, in other cases they are grouped as tensors as in theories of gravitation and yet in other cases they are grouped as complex functions as in the case of quantum mechanic
Three Approaches to Classical Thermal Field Theory
Gozzi, E.; Penco, R.
2010-01-01
In this paper we study three different functional approaches to classical thermal field theory, which turn out to be the classical counterparts of three well-known different formulations of quantum thermal field theory: the Closed-Time Path (CTP) formalism, the Thermofield Dynamics (TFD) and the Matsubara approach.
Three approaches to classical thermal field theory
Gozzi, E.; Penco, R.
2011-04-01
In this paper we study three different functional approaches to classical thermal field theory, which turn out to be the classical counterparts of three well-known different formulations of quantum thermal field theory: the closed-time path (CTP) formalism, the thermofield dynamics (TFD) and the Matsubara approach.
Classical-field theory of thermal radiation
Rashkovskiy, Sergey A
2016-01-01
In this paper, using the viewpoint that quantum mechanics can be constructed as a classical field theory without any quantization I build a fully classical theory of thermal radiation. Planck's law for the spectral energy density of thermal radiation and the Einstein A-coefficient for spontaneous emission are derived in the framework of classical field theory without using the concept of "photon". It is shown that the spectral energy density of thermal radiation is apparently not a universal function of frequency, as follows from the Planck's law, but depends weakly on the nature of atoms, while Planck's law is valid only as an approximation in the limit of weak excitation of atoms.
Classical theory of electric and magnetic fields
Good, Roland H
1971-01-01
Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma
Equilibration properties of classical integrable field theories
De Luca, Andrea; Mussardo, Giuseppe
2016-06-01
We study the equilibration properties of classical integrable field theories at a finite energy density, with a time evolution that starts from initial conditions far from equilibrium. These classical field theories may be regarded as quantum field theories in the regime of high occupation numbers. This observation permits to recover the classical quantities from the quantum ones by taking a proper \\hslash \\to 0 limit. In particular, the time averages of the classical theories can be expressed in terms of a suitable version of the LeClair-Mussardo formula relative to the generalized Gibbs ensemble. For the purposes of handling time averages, our approach provides a solution of the problem of the infinite gap solutions of the inverse scattering method.
The classical theory of fields electromagnetism
Helrich, Carl S
2012-01-01
The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...
Quantum field theory from classical statistics
Wetterich, C
2011-01-01
An Ising-type classical statistical model is shown to describe quantum fermions. For a suitable time-evolution law for the probability distribution of the Ising-spins our model describes a quantum field theory for Dirac spinors in external electromagnetic fields, corresponding to a mean field approximation to quantum electrodynamics. All quantum features for the motion of an arbitrary number of electrons and positrons, including the characteristic interference effects for two-fermion states, are described by the classical statistical model. For one-particle states in the non-relativistic approximation we derive the Schr\\"odinger equation for a particle in a potential from the time evolution law for the probability distribution of the Ising-spins. Thus all characteristic quantum features, as interference in a double slit experiment, tunneling or discrete energy levels for stationary states, are derived from a classical statistical ensemble. Concerning the particle-wave-duality of quantum mechanics, the discret...
Conformal Invariance in Classical Field Theory
Grigore, D. R.
1993-01-01
A geometric generalization of first-order Lagrangian formalism is used to analyse a conformal field theory for an arbitrary primary field. We require that global conformal transformations are Noetherian symmetries and we prove that the action functional can be taken strictly invariant with respect to these transformations. In other words, there does not exists a "Chern-Simons" type Lagrangian for a conformally invariant Lagrangian theory.
Conformal Field Theory Correlators from Classical Scalar Field Theory on $AdS_{d+1}$
Mück, W; Mueck, Wolfgang
1998-01-01
We use the correspondence between scalar field theory on $AdS_{d+1}$ and a conformal field theory on $R^d$ to calculate the 3- and 4-point functions of the latter. The classical scalar field theory action is evaluated at tree level.
Lectures on classical and quantum theory of fields
Energy Technology Data Exchange (ETDEWEB)
Arodz, Henryk; Hadasz, Leszek [Jagiellonian Univ., Krakow (Poland). Inst. Physics
2010-07-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)
Lectures on Classical and Quantum Theory of Fields
Arodź, Henryk
2010-01-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course.
Lectures on classical and quantum theory of fields
International Nuclear Information System (INIS)
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)
Quantum fermions and quantum field theory from classical statistics
Wetterich, C.
2012-01-01
An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schr\\"odinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.
Classical Electromagnetic Field Theory in the Presence of Magnetic Sources
Institute of Scientific and Technical Information of China (English)
LI Kang(李康); CHEN Wen-Jun(陈文俊); NAON Carlos M.
2003-01-01
Using two new well-defined four-dimensional potential vectors, we formulate the classical Maxwell field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources.We set up a consistent Lagrangian for the theory. Then from the action principle we obtain both Maxwell's equation and the equation of motion of a dyon moving in the electromagnetic field.
Classical electromagnetic field theory in the presence of magnetic sources
Chen, W J; Naón, C M; Chen, Wen-Jun; Li, Kang
2001-01-01
Using two new well defined 4-dimensional potential vectors, we formulate the classical Maxwell's field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we get both Maxwell's equation and the equation of motion of a dyon moving in the electro-magnetic field.
On the variational formulation of classical Abelian gauge field theories
International Nuclear Information System (INIS)
It is shown how one can formulate an action principle for classical Abelian gauge theories not by means of gauge potentials and currents but in terms of the gauge invariant field strengths and gauge variant stream potentias. The discussion is on a general formal level in n=s+t space-time dimensions and uses, for brevity, the language of differential forms
Quantum to classical transition in quantum field theory
Lombardo, F C
1998-01-01
We study the quatum to classical transition process in the context of quantum field theory. Extending the influence functional formalism of Feynman and Vernon, we study the decoherence process for self-interacting quantum fields in flat space. We also use this formalism for arbitrary geometries to analyze the quantum to classical transition in quantum gravity. After summarizing the main results known for the quantum Brownian motion, we consider a self-interacting field theory in Minkowski spacetime. We compute a coarse grained effective action by integrating out the field modes with wavelength shorter than a critical value. From this effective action we obtain the evolution equation for the reduced density matrix (master equation). We compute the diffusion coefficients for this equation and analyze the decoherence induced on the long-wavelength modes. We generalize the results to the case of a conformally coupled scalar field in de Sitter spacetime. We show that the decoherence is effective as long as the cri...
Quantum Mind from a Classical Field Theory of the Brain
Zizzi, Paola
2011-01-01
We suggest that, with regard to a theory of quantum mind, brain processes can be described by a classical, dissipative, non-abelian gauge theory. In fact, such a theory has a hidden quantum nature due to its non-abelian character, which is revealed through dissipation, when the theory reduces to a quantum vacuum, where temperatures are of the order of absolute zero, and coherence of quantum states is preserved. We consider in particular the case of pure SU(2) gauge theory with a special anzatz for the gauge field, which breaks Lorentz invariance. In the ansatz, a contraction mapping plays the role of dissipation. In the limit of maximal dissipation, which corresponds to the attractive fixed point of the contraction mapping, the gauge fields reduce, up to constant factors, to the Pauli quantum gates for one-qubit states. Then tubuline-qubits can be processed in the quantum vacuum of the classical field theory of the brain, where decoherence is avoided due to the extremely low temperature. Finally, we interpret...
BOOK REVIEW: Classical Solutions in Quantum Field Theory Classical Solutions in Quantum Field Theory
Mann, Robert
2013-02-01
Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons--kinks, vortices, and magnetic monopoles--and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is rather condensed. It is
Local gauge invariant Lagrangeans in classical field theories
International Nuclear Information System (INIS)
We investigate the most general local gauge invariant Lagrangean in the framework of classical field theory. We rederive esentially Utiyama's result with a slight generalization. Our proof makes clear the importance of the so called current conditions, i.e. the requirement that the Noether currents are different from zero. This condition is of importance both in the general motivation for the introduction of the Yang-Mills fields and for the actual proof. Some comments are made about the basic mathematical structure of the problem - the gauge group. (author)
Zatloukal, Václav
2016-04-01
Classical field theory is considered as a theory of unparametrized surfaces embedded in a configuration space, which accommodates, in a symmetric way, spacetime positions and field values. Dynamics is defined by a (Hamiltonian) constraint between multivector-valued generalized momenta, and points in the configuration space. Starting from a variational principle, we derive local equations of motion, that is, differential equations that determine classical surfaces and momenta. A local Hamilton-Jacobi equation applicable in the field theory then follows readily. The general method is illustrated with three examples: non-relativistic Hamiltonian mechanics, De Donder-Weyl scalar field theory, and string theory.
Lie Groupoids in Classical Field Theory I: Noether's Theorem
Costa, Bruno T; Pêgas, Luiz Henrique P
2015-01-01
In the two papers of this series, we initiate the development of a new approach to implementing the concept of symmetry in classical field theory, based on replacing Lie groups/algebras by Lie groupoids/algebroids, which are the appropriate mathematical tools to describe local symmetries when gauge transformations are combined with space-time transformations. Here, we outline the basis of the program and, as a first step, show how to (re)formulate Noether's theorem about the connection between symmetries and conservation laws in this approach.
Gauge-fields and integrated quantum-classical theory
International Nuclear Information System (INIS)
Physical situations in which quantum systems communicate continuously to their classically described environment are not covered by contemporary quantum theory, which requires a temporary separation of quantum degrees of freedom from classical ones. A generalization would be needed to cover these situations. An incomplete proposal is advanced for combining the quantum and classical degrees of freedom into a unified objective description. It is based on the use of certain quantum-classical structures of light that arise from gauge invariance to coordinate the quantum and classical degrees of freedom. Also discussed is the question of where experimenters should look to find phenomena pertaining to the quantum-classical connection. 17 refs
Latfield2: A c++ library for classical lattice field theory
David, Daverio; Bevis, Neil
2015-01-01
latfield2 is a C++ library designed to simplify writing parallel codes for solving partial differen- tial equations, developed for application to classical field theories in particle physics and cosmology. It is a significant rewrite of the latfield framework, moving from a slab domain decomposition to a rod decomposition, where the last two dimension of the lattice are scattered into a two dimensional process grid. Parallelism is implemented using the Message Passing Interface (MPI) standard, and hidden in the basic objects of grid-based simulations: Lattice, Site and Field. It comes with an integrated parallel fast Fourier transform, and I/O server class permitting computation to continue during the writing of large files to disk. latfield2 has been used for production runs on tens of thousands of processor elements, and is expected to be scalable to hundreds of thousands.
Geometry of Lagrangian first-order classical field theories
Energy Technology Data Exchange (ETDEWEB)
Echeverria-Enriquez, A. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Munoz-Lecanda, M.C. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Roman-Roy, N. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica
1996-10-01
We construct a lagrangian geometric formulation for first-order field theories using the canonical structures of first-order jet bundles, which are taken as the phase spaces of the systems in consideration. First of all, we construct all the geometric structures associated with a first-order jet bundle and, using them, we develop the lagrangian formalism, defining the canonical forms associated with a lagrangian density and the density of lagrangian energy, obtaining the Euler-Lagrange equations in two equivalent ways: as the result of a variational problem and developing the jet field formalism (which is a formulation more similar to the case of mechanical systems). A statement and proof of Noether`s theorem is also given, using the latter formalism. Finally, some classical examples are briefly studied. (orig.)
Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation
Scheck, Florian
2012-01-01
The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...
Quantum Mind from a Classical Field Theory of the Brain
Zizzi, Paola
2011-01-01
We suggest that, with regard to a theory of quantum mind, brain processes can be described by a classical, dissipative, non-abelian gauge theory. In fact, such a theory has a hidden quantum nature due to its non-abelian character, which is revealed through dissipation, when the theory reduces to a quantum vacuum, where temperatures are of the order of absolute zero, and coherence of quantum states is preserved. We consider in particular the case of pure SU(2) gauge theory with a special anzat...
On covariant Poisson brackets in classical field theory
Energy Technology Data Exchange (ETDEWEB)
Forger, Michael [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Salles, Mário O. [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Campus Universitário – Lagoa Nova, BR–59078-970 Natal, RN (Brazil)
2015-10-15
How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra.
A course in mathematical physics 2 classical field theory
Thirring, Walter
1978-01-01
In the past decade the language and methods ofmodern differential geometry have been increasingly used in theoretical physics. What seemed extravagant when this book first appeared 12 years ago, as lecture notes, is now a commonplace. This fact has strengthened my belief that today students of theoretical physics have to learn that language-and the sooner the better. Afterall, they willbe the professors ofthe twenty-first century and it would be absurd if they were to teach then the mathematics of the nineteenth century. Thus for this new edition I did not change the mathematical language. Apart from correcting some mistakes I have only added a section on gauge theories. In the last decade it has become evident that these theories describe fundamental interactions, and on the classical level their structure is suffi cientlyclear to qualify them for the minimum amount ofknowledge required by a theoretician. It is with much regret that I had to refrain from in corporating the interesting developments in Kal...
Qian, Xiao-Feng; Howell, John C; Eberly, J H
2015-01-01
The growing recognition that entanglement is not exclusively a quantum property, and does not even originate with Schr\\"odinger's famous remark about it [Proc. Camb. Phil. Soc. {\\bf 31}, 555 (1935)], prompts examination of its role in marking the quantum-classical boundary. We have done this by subjecting correlations of classical optical fields to new Bell-analysis experiments, and report here values of the Bell parameter greater than ${\\cal B} = 2.54$. This is many standard deviations outside the limit ${\\cal B} = 2$ established by the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality [Phys. Rev. Lett. {\\bf 23}, 880 (1969)], in agreement with our theoretical classical prediction, and not far from the Tsirelson limit ${\\cal B} = 2.828...$. These results cast a new light on the standard quantum-classical boundary description, and suggest a reinterpretation of it.
Dressing the Post-Newtonian two-body problem and Classical Effective Field Theory
Kol, Barak
2009-01-01
We apply a dressed perturbation theory to better organize and economize the computation of high orders of the 2-body effective action of an inspiralling Post-Newtonian gravitating binary. We use the effective field theory approach with the non-relativistic field decomposition (NRG fields). For that purpose we develop quite generally the dressing theory of a non-linear classical field theory coupled to point-like sources. We introduce dressed charges and propagators, but unlike the quantum theory there are no dressed bulk vertices. The dressed quantities are found to obey recursive integral equations which succinctly encode parts of the diagrammatic expansion, and are the classical version of the Schwinger-Dyson equations. Actually, the classical equations are somewhat stronger since they involve only finitely many quantities, unlike the quantum theory. Classical diagrams are shown to factorize exactly when they contain non-linear world-line vertices, and we classify all the possible topologies of irreducible ...
Quantum Electrodynamics Basis of Classical-Field High-Harmonic Generation Theory
Institute of Scientific and Technical Information of China (English)
王兵兵; 高靓辉; 傅盘铭; 郭东升; R. R. Freeman
2001-01-01
From the nonperturbative quantum electrodynamics theory, we derive the Landau-Dykhne formula which represents the quantum-mechanical formulation of the three-step model. These studies provide a basis for the classical-field approaches to high-order harmonic generation and justify some assumptions used in classical-field modelling.
Zarei, Mohammad Hossein
2016-01-01
Although creating a unified theory in Elementary Particles Physics is still an open problem, there are a lot of attempts for unifying other fields of physics. Following such unifications, we regard a two dimensional (2D) classical $\\Phi^{4}$ field theory model to study several field theories with different symmetries in various dimensions. While the completeness of this model has been already proved by a mapping between statistical mechanics and quantum information theory, here, we take into account a fundamental systematic approach with purely mathematical basis to re-derive such completeness in a general manner. Due to simplicity and generality, we believe that our method leads to a general approach which can be understood by other physical communities as well as quantum information theorists. Furthermore, our proof of the completeness is not only a proof-of-principle, but also an interesting algorithmic proof. We consider a discrete version of a general field theory as an arbitrary polynomial function of f...
Bosonic Loop Diagrams as Perturbative Solutions of the Classical Field Equations in $\\phi^4$-Theory
Finster, Felix
2012-01-01
Solutions of the classical $\\phi^4$-theory in Minkowski space-time are analyzed in a perturbation expansion in the nonlinearity. Using the language of Feynman diagrams, the solution of the Cauchy problem is expressed in terms of tree diagrams which involve the retarded Green's function and have one outgoing leg. In order to obtain general tree diagrams, we set up a "classical measurement process" in which a virtual observer of a scattering experiment modifies the field and detects suitable energy differences. By adding a classical stochastic background field, we even obtain all loop diagrams. The expansions are compared with the standard Feynman diagrams of the corresponding quantum field theory.
k-Cosymplectic Classical Field Theories: Tulczyjew and Skinner-Rusk Formulations
Rey, Angel M.; Román-Roy, Narciso; Salgado, Modesto; Vilariño, Silvia
2012-06-01
The k-cosymplectic Lagrangian and Hamiltonian formalisms of first-order classical field theories are reviewed and completed. In particular, they are stated for singular and almost-regular systems. Subsequently, several alternative formulations for k-cosymplectic first-order field theories are developed: First, generalizing the construction of Tulczyjew for mechanics, we give a new interpretation of the classical field equations. Second, the Lagrangian and Hamiltonian formalisms are unified by giving an extension of the Skinner-Rusk formulation on classical mechanics.
Quantization, Classical and Quantum Field Theory and Theta - Functions
Tyurin, Andrey N.
2002-01-01
In the abelian case (the subject of several beautiful books) fixing some combinatorial structure (so called theta structure of level k) one obtains a special basis in the space of sections of canonical polarization powers over the jacobians. These sections can be presented as holomorphic functions on the "abelian Schottky space". This fact provides various applications of these concrete analytic formulas to the integrable systems, classical mechanics and PDE's. Our practical goal is to do the...
International Nuclear Information System (INIS)
In this paper, a detailed numerical comparison of the high-harmonic generation (HHG) from free electrons in intense laser fields in both classical and semi-classical frameworks has been presented. These two frameworks have been widely used in the literature. It has been found that the HHG spectra display distinct quantitative differences for high-energy electrons. In some special situations, qualitative differences appear. Even if the radiation reaction is included in the electron classical dynamics, no consistent result can be obtained. Hence it should be of critical importance to submit the present HHG theory for high-precision experimental tests, which can help us not only to justify the present theories, but also to check the QED predictions in the high-intensity regime. (paper)
Field theory and weak Euler-Lagrange equation for classical particle-field systems.
Qin, Hong; Burby, Joshua W; Davidson, Ronald C
2014-10-01
It is commonly believed as a fundamental principle that energy-momentum conservation of a physical system is the result of space-time symmetry. However, for classical particle-field systems, e.g., charged particles interacting through self-consistent electromagnetic or electrostatic fields, such a connection has only been cautiously suggested. It has not been formally established. The difficulty is due to the fact that the dynamics of particles and the electromagnetic fields reside on different manifolds. We show how to overcome this difficulty and establish the connection by generalizing the Euler-Lagrange equation, the central component of a field theory, to a so-called weak form. The weak Euler-Lagrange equation induces a new type of flux, called the weak Euler-Lagrange current, which enters conservation laws. Using field theory together with the weak Euler-Lagrange equation developed here, energy-momentum conservation laws that are difficult to find otherwise can be systematically derived from the underlying space-time symmetry.
Dressing the post-Newtonian two-body problem and classical effective field theory
Kol, Barak; Smolkin, Michael
2009-12-01
We apply a dressed perturbation theory to better organize and economize the computation of high orders of the 2-body effective action of an inspiralling post-Newtonian (PN) gravitating binary. We use the effective field theory approach with the nonrelativistic field decomposition (NRG fields). For that purpose we develop quite generally the dressing theory of a nonlinear classical field theory coupled to pointlike sources. We introduce dressed charges and propagators, but unlike the quantum theory there are no dressed bulk vertices. The dressed quantities are found to obey recursive integral equations which succinctly encode parts of the diagrammatic expansion, and are the classical version of the Schwinger-Dyson equations. Actually, the classical equations are somewhat stronger since they involve only finitely many quantities, unlike the quantum theory. Classical diagrams are shown to factorize exactly when they contain nonlinear worldline vertices, and we classify all the possible topologies of irreducible diagrams for low loop numbers. We apply the dressing program to our post-Newtonian case of interest. The dressed charges consist of the dressed energy-momentum tensor after a nonrelativistic decomposition, and we compute all dressed charges (in the harmonic gauge) appearing up to 2PN in the 2-body effective action (and more). We determine the irreducible skeleton diagrams up to 3PN and we employ the dressed charges to compute several terms beyond 2PN.
Fan, Peifeng; Liu, Jian; Xiang, Nong; Yu, Zhi
2016-01-01
A manifestly covariant, or geometric, field theory for relativistic classical particle-field system is developed. The connection between space-time symmetry and energy-momentum conservation laws for the system is established geometrically without splitting the space and time coordinates, i.e., space-time is treated as one identity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that particles and field reside on different manifold. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of electromagnetic fields and also a functional of particles' world-lines. The other difficulty associated with the geometric setting is due to the mass-shell condition. The standard Euler-Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell condition is imposed. For the particle-field system, the geometric EL equation is further generalized into a w...
Kuwahara, Y.; Nakamura, Y.; Yamanaka, Y.
2013-12-01
The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [1]. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.
Energy Technology Data Exchange (ETDEWEB)
Kuwahara, Y., E-mail: a.kuwahara1224@asagi.waseda.jp; Nakamura, Y., E-mail: nakamura@aoni.waseda.jp; Yamanaka, Y., E-mail: yamanaka@waseda.jp
2013-12-09
The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.
Kuwahara, Y; Nakamura, Y; Yamanaka, Y
2013-01-01
The $2 \\times 2$-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [Phys. Rev. Lett. 110, 174301 (2013)]. We show that the Galley's Hamilto...
Two-Component Theory of Classical Proca Fields in Curved Spacetimes with Torsionless Affinities
Santos Júnior, S. I.; Cardoso, J. G.
2016-04-01
The world formulation of the full theory of classical Proca fields in generally relativistic spacetimes is reviewed. Subsequently the entire set of field equations is transcribed in a straightforward way into the framework of one of the Infeld-van der Waerden formalisms. Some well-known calculational techniques are then utilized for deriving the wave equations that control the propagation of the fields allowed for. It appears that no interaction couplings between such fields and electromagnetic curvatures are ultimately carried by the wave equations at issue. What results is, in effect, that the only interactions which occur in the theoretical context under consideration involve strictly Proca fields and wave functions for gravitons.
A course in mathematical physics 1 and 2 classical dynamical systems and classical field theory
Thirring, Walter
1992-01-01
The last decade has seen a considerable renaissance in the realm of classical dynamical systems, and many things that may have appeared mathematically overly sophisticated at the time of the first appearance of this textbook have since become the everyday tools of working physicists. This new edition is intended to take this development into account. I have also tried to make the book more readable and to eradicate errors. Since the first edition already contained plenty of material for a one semester course, new material was added only when some of the original could be dropped or simplified. Even so, it was necessary to expand the chap ter with the proof of the K-A-M Theorem to make allowances for the cur rent trend in physics. This involved not only the use of more refined mathe matical tools, but also a reevaluation of the word "fundamental. " What was earlier dismissed as a grubby calculation is now seen as the consequence of a deep principle. Even Kepler's laws, which determine the radii of the ...
Motion in classical field theories and the foundations of the self-force problem
Harte, Abraham I
2014-01-01
This article serves as a pedagogical introduction to the problem of motion in classical field theories. The primary focus is on self-interaction: How does an object's own field affect its motion? General laws governing the self-force and self-torque are derived using simple, non-perturbative arguments. The relevant concepts are developed gradually by considering motion in a series of increasingly complicated theories. Newtonian gravity is discussed first, then Klein-Gordon theory, electromagnetism, and finally general relativity. Linear and angular momenta as well as centers of mass are defined in each of these cases. Multipole expansions for the force and torque are then derived to all orders for arbitrarily self-interacting extended objects. These expansions are found to be structurally identical to the laws of motion satisfied by extended test bodies, except that all relevant fields are replaced by effective versions which exclude the self-fields in a particular sense. Regularization methods traditionally ...
Sokolov, Igor V
2015-01-01
A theory of Symplectic Manifold with Contact Degeneracies (SMCD) was developed in [Zot'ev,2007]. The symplectic geometry uses an anti-symmetric tensor (closed differential form) such as a field tensor used in the classical field theory. The SMCD theory studies degeneracies of such form. In [Zot'ev,2011] the SMCD theory was applied to study a front of an electromagnetic pulsed field propagating into a region with no field. Here, the result of [Zot'ev,2011] is compared with the problem solution obtained using the well-known method presented in Witham, G.B., Linear and nonlinear waves, 1974. It is shown that the SMCD theory prediction is not supported by the result obtained with the Witham method.
AMMARI, Zied; Falconi, Marco
2016-01-01
In the mid Sixties Edward Nelson proved the existence of a consistent quantum field theory that describes the Yukawa-like interaction of a non-relativistic nucleon field with a relativistic meson field. Since then it is thought, despite the renormalization procedure involved in the construction, that the quantum dynamics should be governed in the classical limit by a Schr\\"odinger-Klein-Gordon system with Yukawa coupling. In the present paper we prove this fact in the form of a Bohr correspon...
Pseudo-classical transport in a sheared magnetic field: Theory and simulation
Energy Technology Data Exchange (ETDEWEB)
Nevins, W.M.; Harte, J.; Gell, Y.
1979-11-01
The cross-field transport due to the trapping of electrons in a finite amplitude wave (pseudo-classical transport) is investigated. Both finite wave frequencies and magnetic shear are included. The single particle orbit equations are solved to obtain the trapping criterion as well as the trapped particle orbit width and bounce frequency. Using a random walk model, the scaling of the pseudo-classical transport coefficients with the parameters of the plasma and wave are deduced. This scaling is employed to extend a previous calculation of the transport coefficients to include magnetic shear which is found to reduce these transport coefficients. Computer simulations of this transport process are presented. The measured transport rates are in very good agreement with the previous kinetic calculation in the absence of magnetic shear and with this extension of pseudo-classical transport theory which includes magnetic shear.
On the Classical String Solutions and String/Field Theory Duality
Aleksandrova, D.; Bozhilov, P.
2003-01-01
We classify almost all classical string configurations, considered in the framework of the semi-classical limit of the string/gauge theory duality. Then, we describe a procedure for obtaining the conserved quantities and the exact classical string solutions in general string theory backgrounds, when the string embedding coordinates depend non-linearly on the worldsheet time parameter.
Force-Field Functor Theory: Classical Force-Fields which Reproduce Equilibrium Quantum Distributions
Directory of Open Access Journals (Sweden)
Ryan eBabbush
2013-10-01
Full Text Available Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory.
Classical and quantum effective theories
Polonyi, Janos
2014-01-01
A generalization of the action principle of classical mechanics, motivated by the Closed Time Path (CTP) scheme of quantum field theory, is presented to deal with initial condition problems and dissipative forces. The similarities of the classical and the quantum cases are underlined. In particular, effective interactions which describe classical dissipative forces represent the system-environment entanglement. The relation between the traditional effective theories and their CTP extension is briefly discussed and few qualitative examples are mentioned.
Numerical study of chiral plasma instability within the classical statistical field theory approach
Buividovich, P. V.; Ulybyshev, M. V.
2016-07-01
We report on a numerical study of real-time dynamics of electromagnetically interacting chirally imbalanced lattice Dirac fermions within the classical statistical field theory approach. Namely, we perform exact simulations of the real-time quantum evolution of fermionic fields coupled to classical electromagnetic fields, which are in turn coupled to the vacuum expectation value of the fermionic electric current. We use Wilson-Dirac Hamiltonian for fermions, and noncompact action for the gauge field. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, the electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to transform to helicity of the electromagnetic field. By performing simulations on large lattices we show that in most cases this decay process is accompanied by the inverse cascade phenomenon, which transfers energy from short-wavelength to long-wavelength electromagnetic fields. In some simulations, however, we observe a very clear signature of inverse cascade for the helical magnetic fields that is not accompanied by the axial charge decay. This suggests that the relation between the inverse cascade and axial charge decay is not as straightforward as predicted by the simplest form of anomalous Maxwell equations.
Khrennikov, Andrei
2016-01-01
The scientific methodology based on two descriptive levels, ontic (reality as it is ) and epistemic (observational), is briefly presented. Following Schr\\"odinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be inaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity - the quantum state ("wave function"). The correspondence PCSFT to QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and th...
Field theory and weak Euler-Lagrange equation for classical particle-field systems
Energy Technology Data Exchange (ETDEWEB)
Qin, Hong [PPPL; Burby, Joshua W [PPPL; Davidson, Ronald C [PPPL
2014-10-01
It is commonly believed that energy-momentum conservation is the result of space-time symmetry. However, for classical particle-field systems, e.g., Klimontovich-Maxwell and Klimontovich- Poisson systems, such a connection hasn't been formally established. The difficulty is due to the fact that particles and the electromagnetic fields reside on different manifolds. To establish the connection, the standard Euler-Lagrange equation needs to be generalized to a weak form. Using this technique, energy-momentum conservation laws that are difficult to find otherwise can be systematically derived.
Relativistic and nonrelativistic classical field theory on fivedimensional space-time
International Nuclear Information System (INIS)
This paper is a sequel to earlier ones in which, on the one hand, classical field theories were described on a curved Newtonian space-time, and on the other hand, the Newtonian gravitation theory was formulated on a fivedimensional space-time with a metric of signature and a covariantly constant vector field. Here we show that Lagrangians for matter fields are easily formulated on this extended space-time from simple invariance arguments and that stress-energy tensors can be derived from them in the usual manner so that four-dimensional space-time expressions are obtained that are consistent in the relativistic as well as in the Newtonian case. In the former the theory is equivalent to General Relativity. When the magnitude of the distinguished vector field vanishes equations for the (covariant) Newtonian limit follow. We demonstrate this here explicity in the case of the Klein-Gordon/Schroedinger and the Dirac field and its covariant nonrelativistic analogue, the Levy-Leblond field. Especially in the latter example the covariant Newtonian theory simplifies dramatically in this fivedimensional form
The quench map in an integrable classical field theory: nonlinear Schrödinger equation
Caudrelier, Vincent; Doyon, Benjamin
2016-11-01
We study the non-equilibrium dynamics obtained by an abrupt change (a quench) in the parameters of an integrable classical field theory, the nonlinear Schrödinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the quench map which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux–Bäcklund transformations, Gelfand–Levitan–Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the quantization of our classical approach to the quantum quench problem.
Axiomatics of classical electrodynamics and its relation to gauge field theory
Gronwald, F; Nitsch, J; Gronwald, Frank; Hehl, Friedrich W.
2005-01-01
We give a concise axiomatic introduction into the fundamental structure of classical electrodynamics: It is based on electric charge conservation, the Lorentz force, magnetic flux conservation, and the existence of local and linear constitutive relations. The {\\it inhomogeneous} Maxwell equations, expressed in terms of $D^i$ and $H_i$, turn out to be a consequence of electric charge conservation, whereas the {\\it homogeneous} Maxwell equations, expressed in terms of $E_i$ and $B^i$, are derived from magnetic flux conservation and special relativity theory. The excitations $D^i$ and $H_i$, by means of constitutive relations, are linked to the field strengths $E_i$ and $B^i$. Eventually, we point out how this axiomatic approach is related to the framework of gauge field theory.
Current-carrying plasma and the magnetic field ambiguity in classical MHD theory
International Nuclear Information System (INIS)
An ambiguity in the classical theoretical framework used for computing magnetohydrostatic equilibrium is pointed out and analyzed. This inconsistency implies that some proposed solutions of the magnetohydrodynamic (MHD) equations may not represent actual magnetic fields of plasma currents in the geometry considered. The root of the inconsistency is that the magnetostatic field equation and the magnetohydrostatic equations are not invariant under the same transformations. There are two types of problems where inconsistencies have arisen in the literature: (a) unphysical magnetic fields are postulated inside a plasma current; and (b) vacuum magnetic fields are postulated that are not gradient fields. In both cases, magnetic fields are obtained which cannot be created in the laboratory. This inconsistency is traced back to a mishandling of the mathematical structure of the magnetic field equation. The magnetic field rvec B is a vector potential for the current density distribution rvec j, just as rvec A is a vector potential for rvec B. Nevertheless, whereas a gauge transformation on rvec A is unobservable (gauge invariant), the analogous gauge transformation in the rvec B vector (gradient field transformation) is indeed observable and changes the Lorentz force. Following Alfven, the authors characterize plasmas mathematically through the field lines of the current density distribution vector. Classical MHD theory, by contrast, is concerned strictly with magnetic field lines. They show here how this magnetic field approach can lead to inconsistencies when applied to plasmas. A resolution of entrenched ambiguities is made possible by using the current fiber description to derive a corrected Grad-Shafranov plasma equilibrium equation
A New Semi-Symmetric Uniﬁed Field Theory of the Classical Fields of Gravity and Electromagnetism
Directory of Open Access Journals (Sweden)
Suhendro I.
2007-10-01
Full Text Available We attempt to present a classical theoretical framework in which the gravitational and electromagnetic fields are unified as intrinsic geometric objects in the space-time manifold. For this purpose, we first present the preliminary geometric considerations dealing with the metric differential geometry of Cartan connections. The unified field theory is then developed as an extension of the general theory of relativity based on a semi- symmetric Cartan connection which is meant to be as close as possible structurally to the symmetric connection of the Einstein-Riemann space-time.
Classical solutions in quantum field theory solitons and instantons in high energy physics
Weinberg, Erick J
2012-01-01
Classical solutions play an important role in quantum field theory, high energy physics and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for early universe cosmology. Imaginary-time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on ...
The Quench Map in an Integrable Classical Field Theory: Nonlinear Schr\\"odinger Equation
Caudrelier, Vincent
2016-01-01
We study the non-equilibrium dynamics obtained by an abrupt change (a {\\em quench}) in the parameters of an integrable classical field theory, the nonlinear Schr\\"odinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the {\\em quench map} which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux-B\\"acklund transformations, Gelfand-Levitan-Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the ...
Mahajan, Gaurang
2007-01-01
The quantum theory of a harmonic oscillator with a time dependent frequency arises in several important physical problems, especially in the study of quantum field theory in an external background. While the mathematics of this system is straightforward, several conceptual issues arise in such a study. We present a general formalism to address some of the conceptual issues like the emergence of classicality, definition of particle content, back reaction etc. In particular, we parametrize the wave function in terms of a complex number (which we call excitation parameter) and express all physically relevant quantities in terms it. Many of the notions -- like those of particle number density, effective Lagrangian etc., which are usually defined using asymptotic in-out states -- are generalized as time-dependent concepts and we show that these generalized definitions lead to useful and reasonable results. Having developed the general formalism we apply it to several examples. Exact analytic expressions are found ...
Classical and quantum theory of the massive spin-two field
Koenigstein, Adrian; Giacosa, Francesco; Rischke, Dirk H.
2016-05-01
In this paper, we review classical and quantum field theory of massive non-interacting spin-two fields. We derive the equations of motion and Fierz-Pauli constraints via three different methods: the eigenvalue equations for the Casimir invariants of the Poincaré group, a Lagrangian approach, and a covariant Hamilton formalism. We also present the conserved quantities, the solution of the equations of motion in terms of polarization tensors, and the tree-level propagator. We then discuss canonical quantization by postulating commutation relations for creation and annihilation operators. We express the energy, momentum, and spin operators in terms of the former. As an application, quark-antiquark currents for tensor mesons are presented. In particular, the current for tensor mesons with quantum numbers JPC =2-+ is, to our knowledge, given here for the first time.
Classical and quantum theory of the massive spin-two field
Koenigstein, Adrian; Rischke, Dirk H
2015-01-01
In this paper, we review classical and quantum field theory of massive non-interacting spin-two fields. We derive the equations of motion and Fierz-Pauli constraints via three different methods: the eigenvalue equations for the Casimir invariants of the Poincar\\'{e} group, a Lagrangian approach, and a covariant Hamilton formalism. We also present the conserved quantities, the solution of the equations of motion in terms of polarization tensors, and the tree-level propagator. We then discuss canonical quantization by postulating commutation relations for creation and annihilation operators. We express the energy, momentum, and spin operators in terms of the former. As an application, quark-antiquark currents for tensor mesons are presented. In particular, the current for tensor mesons with quantum numbers $J^{PC}=2^{-+}$ is, to our knowledge, given here for the first time.
Mück, W
1998-01-01
We use the AdS/CFT correspondence to calculate CFT correlation functions of vector and spinor fields. The connection between the AdS and boundary fields is properly treated via a Dirichlet boundary value problem.
Open and Closed String field theory interpreted in classical Algebraic Topology
Sullivan, Dennis
2003-01-01
There is an interpretation of open string field theory in algebraic topology. An interpretation of closed string field theory can be deduced from this open string theory to obtain as well the interpretation of open and closed string field theory combined.
Gauge bridges in classical field theory; Eichbruecken in der klassischen Feldtheorie
Energy Technology Data Exchange (ETDEWEB)
Jakobs, S.
2009-03-15
In this thesis Poisson structures of two classical gauge field theories (Maxwell-Klein-Gordon- and Maxwell-Dirac-system) are constructed using the parametrix construction of Green's functions. Parametrices for the Maxwell-Klein-Gordon- and Maxwell-Dirac-system are constructed in Minkowski space and this construction is later generalized to curved space times for the Maxwell-Klein-Gordon-system. With these Green's functions Poisson brackets will be defined as Peierls brackets. Finally non-local, gauge invariant observables, the so-called 'gauge bridges'are constructed. Gauge bridges are the matrix elements of holonomy operators. It is shown, that these emerge from Poisson brackets of local, gauge invariant observables. (orig.)
Classical theory of algebraic numbers
Ribenboim, Paulo
2001-01-01
Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...
Múnera, Héctor A.
2016-07-01
It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger's first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding a unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich's unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.
Institute of Scientific and Technical Information of China (English)
WU Ning; ZHANG Da-Hua
2007-01-01
A systematic method is developed to study the classical motion of a mass point in gravitational gauge field.First,by using Mathematica,a spherical symmetric solution of the field equation of gravitational gauge field is obtained,which is just the traditional Schwarzschild solution.Combining the principle of gauge covariance and Newton's second law of motion,the equation of motion of a mass point in gravitational field is deduced.Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field,we can discuss classical tests of gauge theory of gravity,including the deflection of light by the sun,the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun.It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.
Equations of motion in Double Field Theory: from classical particles to quantum cosmology
Kan, Nahomi; Shiraishi, Kiyoshi
2012-01-01
The equation of motion for a point particle in the background field of double field theory is considered. We find that the motion is described by a geodesic flow in the doubled geometry. Inspired by analysis on the particle motion, we propose a modified model of quantum string cosmology, which includes two scale factors. The report is based on Phys. Rev. D84 (2011) 124049 [arXiv:1108.5795].
A Time-Dependent Classical Solution of C=1 String Field Theory and Non-Perturbative Effects
Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R.
1993-01-01
We describe a real-time classical solution of $c=1$ string field theory written in terms of the phase space density, $u(p,q,t)$, of the equivalent fermion theory. The solution corresponds to tunnelling of a single fermion above the filled fermi sea and leads to amplitudes that go as $\\exp(- C/ \\gst)$. We discuss how one can use this technique to describe non-perturbative effects in the Marinari-Parisi model. We also discuss implications of this type of solution for the two-dimensional black hole.
Energy-momentum tensors in classical field theories — A modern perspective
Voicu, Nicoleta
2016-04-01
The paper presents a general geometric approach to energy-momentum tensors in Lagrangian field theories, based on a global Hilbert-type definition. The approach is consistent with the ones defining energy-momentum tensors in terms of hypermomentum maps given by the diffeomorphism invariance of the Lagrangian — and, in a sense, complementary to these, with the advantage of an increased simplicity of proofs and also, opening up new insights on the topic. A special attention is paid to the particular cases of metric and metric-affine theories.
From classical to quantum fields
Baulieu, Laurent; Sénéor, Roland
2017-01-01
Quantum Field Theory has become the universal language of most modern theoretical physics. This introductory textbook shows how this beautiful theory offers the correct mathematical framework to describe and understand the fundamental interactions of elementary particles. The book begins with a brief reminder of basic classical field theories, electrodynamics and general relativity, as well as their symmetry properties, and proceeds with the principles of quantisation following Feynman's path integral approach. Special care is used at every step to illustrate the correct mathematical formulation of the underlying assumptions. Gauge theories and the problems encountered in their quantisation are discussed in detail. The last chapters contain a full description of the Standard Model of particle physics and the attempts to go beyond it, such as grand unified theories and supersymmetry. Written for advanced undergraduate and beginning graduate students in physics and mathematics, the book could also serve as a re...
FROM CLASSICAL TO EPISTEMIC GAME THEORY
ANDRÉS PEREA
2014-01-01
In this paper, we give a historical overview of the transition from classical game theory to epistemic game theory. To that purpose we will discuss how important notions such as reasoning about the opponents, belief hierarchies, common belief, and the concept of common belief in rationality arose, and gradually entered the game theoretic picture, thereby giving birth to the field of epistemic game theory. We will also address the question why it took game theory so long before it finally inco...
Suhov, Y.
We begin with the definition of information gained by knowing that an event A has occurred: iota (A) = -log_2 {{P}}(A). (A dual point of view is also useful (although more evasive), where iota (A) is the amount of information needed to specify event A.) Here and below {{P}} stands for the underlying probability distribution. So the rarer an event A, the more information we gain if we know it has occurred. (More broadly, the rarer an event A, the more impact it will have. For example, the unlikely event that occurred in 1938 when fishermen caught a coelacanth - a prehistoric fish believed to be extinct - required a significant change to beliefs about evolution and biology. On the other hand, the likely event of catching a herring or a tuna would hardly imply any change in theories.)
Classical theory of radiating strings
Copeland, Edmund J.; Haws, D.; Hindmarsh, M.
1990-01-01
The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.
Wrochna, Michał
2014-01-01
We investigate linearized gauge theories on globally hyperbolic spacetimes in the BRST formalism. A consistent definition of the classical phase space and of its Cauchy surface analogue is proposed. We prove it is isomorphic to the phase space in the subsidiary condition approach of Hack and Schenkel in the case of Maxwell, Yang-Mills, and Rarita-Schwinger fields. Defining Hadamard states in the BRST formalism in a standard way, their existence in the Maxwell and Yang-Mills case is concluded from known results in the subsidiary condition (or Gupta-Bleuler) formalism. Within our framework, we also formulate criteria for non-degeneracy of the phase space in terms of BRST cohomology and discuss special cases. These include an example in the Yang-Mills case, where degeneracy is not related to a non-trivial topology of the Cauchy surface.
Classical Theory of Hot-Electron Transport in Electric and Magnetic Fields
Institute of Scientific and Technical Information of China (English)
WENG Ming-Qi; WU Hang-Sheng
2002-01-01
Balance equation approach to the hot-electron transport in electric and magnetic fields is reformulated.The balance equations are re-derived from the Boltzmann equation. A new expression for the distribution function isreported in the present paper. It is homogeneous steady solution of the Boltzmann equation in constant relaxation timeapproximation. It holds when ωocτ < i or ωc < Te. As an example, the mobility of 2D electron gas in the GaAs-AlGaAsheterojunction is computed as a function of electric field and magnetic field.
Classical Theory of Hot－Electron Transport in Electric and Magnetic Fields
Institute of Scientific and Technical Information of China (English)
WENGMing－Qi; WuHang－Sheng
2002-01-01
Balance equation approach to the hot-electron transport in electric and magnetic fields is reformulated.The balance equations are re-derived from the Boltzmann equation.A new expression for the distribution function is reported in the present paper.It is homogeneous steady solution of the Boltzmann equation in costant relaxation time approximation.It holds when ωT<<1 or ωc<
International Nuclear Information System (INIS)
The integral expressions for spectral-angular and spectral distributions of the radiation power of heterogeneous charged particles system moving on arbitrary trajectory in nonabsorbable isotropic media media with ε≠1 , μ≠1 are obtained using the Lorentz's self-interaction method. In this method a proper electromagnetic field, acting on electron, is defined as a semi difference between retarded and advanced potentials (Dirac, 1938). The power spectrum of Cherenkov radiation for the linear uniformly moving heterogeneous system of charged particles are obtained. It is found that the expression for the radiation power of heterogeneous system of charged particles becomes simplified when a system of charged particles is homogeneous. In this case the radiation power includes the coherent factor. It is shown what the redistribution effects in energy of the radiation spectrum of the studied system are caused by the coherent factor. The radiation spectrum of the system of electrons moving in a circle in this medium is discrete. The Doppler effect causes the appearance of the new harmonics for the system of electrons moving in a spiral. These harmonics form the region of continuous radiation spectrum. (authors)
Classical theory of the hydrogen atom
Rashkovskiy, Sergey
2016-01-01
It is shown that all of the basic properties of the hydrogen atom can be consistently described in terms of classical electrodynamics instead of taking the electron to be a particle; we consider an electrically charged classical wave field, an "electron wave", which is held in a limited region of space by the electrostatic field of the proton. It is shown that quantum mechanics must be considered to be not a theory of particles but a classical field theory in the spirit of classical electrodynamics. In this case, we are not faced with difficulties in interpreting the results of the theory. In the framework of classical electrodynamics, all of the well-known regularities of the spontaneous emission of the hydrogen atom are obtained, which is usually derived in the framework of quantum electrodynamics. It is shown that there are no discrete states and discrete energy levels of the atom: the energy of the atom and its states change continuously. An explanation of the conventional corpuscular-statistical interpre...
The classical electromagnetic field
Eyges, Leonard
2010-01-01
This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.
Energy Technology Data Exchange (ETDEWEB)
Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado
1997-10-01
The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.
Classical Electron Theory and Conservation Laws
Kiessling, Michael K. -H.
1999-01-01
It is shown that the traditional conservation laws for total charge, energy, linear and angular momentum, hold jointly in classical electron theory if and only if classical electron spin is included as dynamical degree of freedom.
Drechsler, Wolfgang; Havas, Peter; Rosenblum, Arnold
1984-02-01
In two recent papers, the general form of the laws of motion for point particles which are multipole sources of the classical coupled Yang-Mills-Higgs fields was determined by Havas, and for the special case of monopole singularities of a Yang-Mills field an iteration procedure was developed by Drechsler and Rosenblum to obtain the equations of motion of mass points, i.e., the laws of motion including the explicit form of the fields of all interacting particles. In this paper we give a detailed derivation of the laws of motion of monopole-dipole singularities of the coupled Yang-Mills-Higgs fields for point particles with mass and spin, following a procedure first applied by Mathisson and developed by Havas. To obtain the equations of motion, a systematic approximation method is developed in the following paper for the solution of the nonlinear field equations and determination of the fields entering the laws of motion found here to any given order in the coupling constant g.
Classical Gauged Massless Rarita-Schwinger Fields
Adler, Stephen L
2015-01-01
We show that, in contrast to known results in the massive case, a minimally gauged massless Rarita-Schwinger field yields a consistent classical theory, with a generalized fermionic gauge invariance realized as a canonical transformation. To simplify the algebra, we study a two-component left chiral reduction of the massless theory. We formulate the classical theory in both Lagrangian and Hamiltonian form for a general non-Abelian gauging, and analyze the constraints and the Rarita-Schwinger gauge invariance of the action. An explicit wave front calculation for Abelian gauge fields shows that wave-like modes do not propagate with superluminal velocities. An analysis of Rarita-Schwinger spinor scattering from gauge fields shows that adiabatic decoupling fails in the limit of zero gauge field amplitude, invalidating various "no-go" theorems based on "on-shell" methods that claim to show the impossibility of gauging Rarita-Schwinger fields. Quantization of Rarita-Schwinger fields, using many formulas from this p...
Bergshoeff, Eric A; Penas, Victor A; Riccioni, Fabio
2016-01-01
We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for "exotic" dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.
Energy conditions and classical scalar fields
Bellucci, S
2002-01-01
Attention has been recently called upon the fact that the weak and null energy conditions and the second law of thermodynamics are violated in wormhole solutions of Einstein's theory with classical, nonminimally coupled, scalar fields as material source. It is shown that the discussion is only meaningful when ambiguities in the definitions of stress-energy tensor and energy density of a nonminimally coupled scalar are resolved. The three possible approaches are discussed with emphasis on the positivity of the respective energy densities and covariant conservation laws. The root of the ambiguities is traced to the energy localization problem for the gravitational field.
Functional Approach to Classical Yang-Mills Theories
Carta, P
2002-01-01
Sometime ago it was shown that the operatorial approach to classical mechanics, pioneered in the 30's by Koopman and von Neumann, can have a functional version. In this talk we will extend this functional approach to the case of classical field theories and in particular to the Yang-Mills ones. We shall show that the issues of gauge-fixing and Faddeev-Popov determinant arise also in this classical formalism.
Bartelmann, Matthias; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia
2014-01-01
We use the non-equlibrium statistical field theory for classical particles, recently developed by Mazenko and Das and Mazenko, together with the free generating functional we have previously derived for point sets initially correlated in phase space, to calculate the time evolution of power spectra in the free theory, i.e. neglecting particle interactions. We provide expressions taking linear and quadratic momentum correlations into account. Up to this point, the expressions are general with respect to the free propagator of the microscopic degrees of freedom. We then specialise the propagator to that expected for particles in cosmology treated within the Zel'dovich approximation and show that, to linear order in the momentum correlations, the linear growth of the cosmological power spectrum is reproduced. Quadratic momentum correlations return a first contribution to the non-linear evolution of the power spectrum, for which we derive a simple closed expression valid for arbitrary wave numbers. This expressio...
Classical Electrodynamics in a Unified Theory
Ghose, Partha
2016-01-01
Some consequences of a fully classical unified theory of gravity and electromagnetism are worked out for the electromagnetic sector such as the occurrence of classical light beams with spin and orbital angular momenta that are topologically quantized in units of $q_e q_m=\\sigma$, independent of the beam size. Empirical fits require $\\sigma = \\hbar$. The theory also predicts a generalized coherency matrix whose consequences are testable.
A Classical Introduction to Galois Theory
Newman, Stephen C
2012-01-01
This book provides an introduction to Galois theory and focuses on one central theme - the solvability of polynomials by radicals. Both classical and modern approaches to the subject are described in turn in order to have the former (which is relatively concrete and computational) provide motivation for the latter (which can be quite abstract). The theme of the book is historically the reason that Galois theory was created, and it continues to provide a platform for exploring both classical and modern concepts. This book examines a number of problems arising in the area of classical mathematic
Drechsler, Wolfgang; Havas, Peter; Rosenblum, Arnold
1984-02-01
In the preceding paper, the laws of motion were established for classical particles with spin which are monopole-dipole singularities of Yang-Mills-Higgs fields. In this paper, a systematic approximation scheme is developed for solving the coupled nonlinear field equations in any order and for determining the corresponding equations of motion. In zeroth order the potentials are taken as the usual Liénard-Wiechert and Bhabha-Harish-Chandra potentials (generalized to isospace); in this order the solutions are necessarily Abelian, since the isovector describing the charge is constant. The regularization necessary to obtain expressions finite on the world lines of the particles is achieved by the method of Riesz potentials. All fields are taken as retarded and are expressed in integral form. Omitting dipole interactions, the integrals for the various terms are carried out as far as possible for general motions, including radiation-reaction terms. In first order, the charge isovectors are no longer necessarily constant; thus the solutions are not necessarily Abelian, and it is possible for charge to be radiated away. The cases of time-symmetric field theory and of an action-at-a-distance formulation of the theory are discussed in an appendix.
Eringen, A Cemal
1999-01-01
Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...
Generalizability Theory and Classical Test Theory
Brennan, Robert L.
2011-01-01
Broadly conceived, reliability involves quantifying the consistencies and inconsistencies in observed scores. Generalizability theory, or G theory, is particularly well suited to addressing such matters in that it enables an investigator to quantify and distinguish the sources of inconsistencies in observed scores that arise, or could arise, over…
Beam structures classical and advanced theories
Carrera, Erasmo; Petrolo, Marco
2011-01-01
Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc. Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for be
Introducing quantum effects in classical theories
Fabris, J C; Rodrigues, D C; Daouda, M H
2015-01-01
In this paper, we explore two different ways of implementing quantum effects in a classical structure. The first one is through an external field. The other one is modifying the classical conservation laws. In both cases, the consequences for the description of the evolution of the universe are discussed.
Prototype Theory and Classical Theory:An Explanation and Comparison
Institute of Scientific and Technical Information of China (English)
刘莹
2014-01-01
This paper discusses two different ways to understand categorization, which are classical theory and prototype theory. There is a deep exploration on how to understand categories, and different theoretical backgrounds of the two categorization the⁃ories. Furthermore, it reviews the limitations and advantages of both theories. And the comparison of the theories gives a clearer angle to understand their similarities and differences.
Plasmon mass scale in classical nonequilibrium gauge theory
Lappi, Tuomas
2016-01-01
Classical lattice Yang-Mills calculations provide a good way to understand different nonequilibrium phenomena in nonperturbatively overoccupied systems. Above the Debye scale the classical theory can be matched smoothly to kinetic theory. The aim of this work is to study the limits of this quasiparticle picture by determining the plasmon mass in classical real time Yang-Mills theory on a lattice in 3 spatial dimensions. We compare three methods to determine the plasmon mass: a hard thermal loop expression in terms of the particle distribution, an effective dispersion relation constructed from fields and their time derivatives, and by measuring oscillations between electric and magnetic field modes after artificially introducing a homogeneous color electric field. We find that a version of the dispersion relation that uses electric fields and their time derivatives agrees with the other methods within 50%.
Studies in quantum field theory
International Nuclear Information System (INIS)
Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD
Emergence of classical theories from quantum mechanics
Hajicek, Petr
2012-01-01
Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is ...
Classical Ergodicity and Modern Portfolio Theory
Directory of Open Access Journals (Sweden)
Geoffrey Poitras
2015-01-01
Full Text Available What role have theoretical methods initially developed in mathematics and physics played in the progress of financial economics? What is the relationship between financial economics and econophysics? What is the relevance of the “classical ergodicity hypothesis” to modern portfolio theory? This paper addresses these questions by reviewing the etymology and history of the classical ergodicity hypothesis in 19th century statistical mechanics. An explanation of classical ergodicity is provided that establishes a connection to the fundamental empirical problem of using nonexperimental data to verify theoretical propositions in modern portfolio theory. The role of the ergodicity assumption in the ex post/ex ante quandary confronting modern portfolio theory is also examined.
Introduction to Classical Density Functional Theory by Computational Experiment
Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel
2014-01-01
We present here an introductory practical course to classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely largely on nonintuitive abstract concepts and applied mathematics. They are nevertheless a powerful tool and an active field of research in physics and chemistry that led to the 1998 Nobel prize in chemistry. We here illustrate the DFT in its most mathematically simple and yet physically relevant form: the classical density functional theory of an ideal fluid in an external field, as applied to the prediction of the structure of liquid neon at the molecular scale. This introductory course is built around the production of a cDFT code written by students using the Mathematica language. In this way, they are brought to deal with (i) the cDFT theory itself, (ii) some basic concepts around the statistical mechanics of simple fluids, (iii) the underlying mathematical and numerical problem of functional minimization, and (iv) a functional programming languag...
Evolving Planck Mass in Classically Scale-Invariant Theories
Kannike, K; Spethmann, C; Veermäe, H
2016-01-01
We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg po- tential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories....
Classical geometry from the quantum Liouville theory
Hadasz, L; Piatek, M; Hadasz, Leszek; Jaskolski, Zbigniew; Piatek, Marcin
2005-01-01
Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.
Classical geometry from the quantum Liouville theory
Energy Technology Data Exchange (ETDEWEB)
Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: jask@ift.uni.wroc.pl; Piatek, Marcin [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: piatek@ift.uni.wroc.pl
2005-09-26
Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.
"Scars" connect classical and quantum theory
Monteiro, T
1990-01-01
Chaotic systems are unstable and extremely sensitive to initial condititions. So far, scientists have been unable to demonstrate that the same kind of behaviour exists in quantum or microscopic systems. New connections have been discovered though between classical and quantum theory. One is the phenomena of 'scars' which cut through the wave function of a particle (1 page).
On the tomographic description of classical fields
International Nuclear Information System (INIS)
After a general description of the tomographic picture for classical systems, a tomographic description of free classical scalar fields is proposed both in a finite cavity and the continuum. The tomographic description is constructed in analogy with the classical tomographic picture of an ensemble of harmonic oscillators. The tomograms of a number of relevant states such as the canonical distribution, the classical counterpart of quantum coherent states and a new family of so-called Gauss–Laguerre states, are discussed. Finally the Liouville equation for field states is described in the tomographic picture offering an alternative description of the dynamics of the system that can be extended naturally to other fields.
On the tomographic description of classical fields
Energy Technology Data Exchange (ETDEWEB)
Ibort, A., E-mail: albertoi@math.uc3m.es [Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid (Spain); López-Yela, A., E-mail: alyela@math.uc3m.es [Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid (Spain); Man' ko, V.I., E-mail: manko@na.infn.it [P.N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, G., E-mail: marmo@na.infn.it [Dipartimento di Scienze Fisiche dell' Università “Federico II” e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Naples (Italy); Simoni, A., E-mail: simoni@na.infn.it [Dipartimento di Scienze Fisiche dell' Università “Federico II” e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Naples (Italy); Sudarshan, E.C.G., E-mail: bhamathig@gmail.com [Physics Department, Center for Particle Physics, University of Texas, Austin, TX 78712 (United States); Ventriglia, F., E-mail: ventriglia@na.infn.it [Dipartimento di Scienze Fisiche dell' Università “Federico II” e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Naples (Italy)
2012-03-26
After a general description of the tomographic picture for classical systems, a tomographic description of free classical scalar fields is proposed both in a finite cavity and the continuum. The tomographic description is constructed in analogy with the classical tomographic picture of an ensemble of harmonic oscillators. The tomograms of a number of relevant states such as the canonical distribution, the classical counterpart of quantum coherent states and a new family of so-called Gauss–Laguerre states, are discussed. Finally the Liouville equation for field states is described in the tomographic picture offering an alternative description of the dynamics of the system that can be extended naturally to other fields.
On the tomographic description of classical fields
Ibort, A; Man'ko, V I; Marmo, G; Simoni, A; Sudarshan, E C G; Ventriglia, F
2012-01-01
After a general description of the tomographic picture for classical systems, a tomographic description of free classical scalar fields is proposed both in a finite cavity and the continuum. The tomographic description is constructed in analogy with the classical tomographic picture of an ensemble of harmonic oscillators. The tomograms of a number of relevant states such as the canonical distribution, the classical counterpart of quantum coherent states and a new family of so called Gauss--Laguerre states, are discussed. Finally the Liouville equation for field states is described in the tomographic picture offering an alternative description of the dynamics of the system that can be extended naturally to other fields.
Energy Technology Data Exchange (ETDEWEB)
Scheck, Florian [Mainz Univ. (Germany). Fachbereich Physik
2010-07-01
Stringent presentation of field theory, mediates the connection from the classicalelectrodynamics up to modern gauge theories. The compact presentation is ideal for the bachelor study. New chapter on general relativity theory. Deepens the learned by numerous application from laser physic, metamaterials and different more. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian, and gravitation is the third of five volumes on theoretical physics by professor Scheck. The cycle theoretical physics comprehends: Volume 1: Mechanics. From Newtons law to the deterministic chaos. Volume 2: Nonrelativistic quantum theory. From the hydrogen atom to the many-particle systems. Volume 3: Classical field theory. From the electrodynamics to the gauge theories. Volume 5: From the laws of thermodynamics to the quantum statistics. This textbook mediates modern theoretical physics in string presentation illustrated by many examples. It contains numerous problems with solution hints ore exemplary, complete solutions. The third edition was revised in many single topics, especially the chapter on general relativity theory was supplemented by an extensive analysis of the Schwarzschild solution. [German] Stringente Darstellung der Feldtheorie, vermittelt den Zusammenhang von der klassischen Elektrodynamik bis zu modernen Eichtheorien. Die kompakte Darstellung ist ideal fuer das Bachelor-Studium. Neues Kapitel zur Allgemeinen Relativitaetstheorie. Vertieft das Erlernte durch zahlreiche Anwendungsbeispiele aus Laserphysik, Metamaterialien uvm. Theoretische Physik 3. Klassische Feldtheorie. Von Elektrodynamik, nicht-Abelschen Eichtheorien und Gravitation ist der dritte von fuenf Baenden zur Theoretischen Physik von Professor Scheck. Der Zyklus Theoretische Physik umfasst: Band 1: Mechanik. Von den Newtonschen Gesetzen zum deterministischen Chaos. Band 2: Nichtrelativistische Quantentheorie. Vom Wasserstoffatom zu den Vielteilchensystemen. Band 3: Klassische Feldtheorie
Classical Loop Actions of Gauge Theories
Armand-Ugon, D; Griego, J R; Setaro, L; Armand-Ugon, Daniel; Gambini, Rodolfo; Griego, Jorge; Setaro, Leonardo
1994-01-01
Since the first attempts to quantize Gauge Theories and Gravity in the loop representation, the problem of the determination of the corresponding classical actions has been raised. Here we propose a general procedure to determine these actions and we explicitly apply it in the case of electromagnetism. Going to the lattice we show that the electromagnetic action in terms of loops is equivalent to the Wilson action, allowing to do Montecarlo calculations in a gauge invariant way. In the continuum these actions need to be regularized and they are the natural candidates to describe the theory in a ``confining phase''.
You, Setthivoine
2015-11-01
A new canonical field theory has been developed to help interpret the interaction between plasma flows and magnetic fields. The theory augments the Lagrangian of general dynamical systems to rigourously demonstrate that canonical helicity transport is valid across single particle, kinetic and fluid regimes, on scales ranging from classical to general relativistic. The Lagrangian is augmented with two extra terms that represent the interaction between the motion of matter and electromagnetic fields. The dynamical equations can then be re-formulated as a canonical form of Maxwell's equations or a canonical form of Ohm's law valid across all non-quantum regimes. The field theory rigourously shows that helicity can be preserved in kinetic regimes and not only fluid regimes, that helicity transfer between species governs the formation of flows or magnetic fields, and that helicity changes little compared to total energy only if density gradients are shallow. The theory suggests a possible interpretation of particle energization partitioning during magnetic reconnection as canonical wave interactions. This work is supported by US DOE Grant DE-SC0010340.
Dense matter theory a simple classical approach
Savic, P
1998-01-01
In the sixties,the first author and R.Kasanin have started developing a mean field theory of dense matter.This paper presents a short review of the basic ideas of the theory,and discusses some examples of its applications,which range from DAC experiments to modelling of planetary interiors.
A magnetic condensate solution of the classical electroweak theory
International Nuclear Information System (INIS)
According to the electroweak theory a large homogeneous magnetic field exceeding m2w/e is unstable. We present a different solution of the classical electroweak field equations which is a condensate of magnetic fluxes induced by an anti-Lenz current of the charged vector bosons. The anti-Lenz mechanism is a consequence of asymptotic freedom. The range of validity of this solution depends on the Weinberg angle θ. (orig.)
Guerra, Francesco
2005-01-01
A coincise review about Euclidean (Quantum) Field Theory is presented. It deals with the general structural properties, the connections with Quantum Field Theory, the exploitation in Constructive Quantum Field Theory, and the physical interpretation.
HCI Theory Classical, Modern, and Contemporary
Rogers, Yvonne
2012-01-01
Theory is the bedrock of many sciences, providing a rigorous method toadvance knowledge through testing and falsifying hypotheses aboutobservable phenomena. To begin with, the nascent field of HCI followedsuit, borrowing theories from cognitive science to test theories aboutuser performance at the interface.But HCI has emerged as an eclectic interdiscipline rather than a welldefinedscience. It now covers all aspects of human life, from birth tobereavement, through all manner of computing, from device ecologiesto nanotechnology. It comes as no surprise that the role of theory in HCIhas also gre
Differential formalism aspects of the gauge classical theories
International Nuclear Information System (INIS)
The classical aspects of the gauge theories are shown using differential geometry as fundamental tool. Somme comments are done about Maxwell Electro-dynamics, classical Yang-Mills and gravitation theories. (L.C.)
A Classical Solution of Massive Yang-Mills Fields
Mogami, Tsuguo
2016-01-01
Recent researches on the solution of Schwinger-Dyson equations, as well as lattice simulations of pure QCD, suggest that the gluon propagator is massive. In this letter, we assume that the classical counterpart of this massive gluon field may be represented with the equation of motion for Yang-Mills theory with a mass term added. A new classical solution is given for this equation. It is discussed that this solution may have some role in confinement.
Representational Realism, Closed Theories and the Quantum to Classical Limit
de Ronde, Christian
2016-01-01
In this paper we discuss the representational realist stance as a pluralist ontic approach to inter-theoretic relationships. Our stance stresses the fact that physical theories require the necessary consideration of a conceptual level of discourse which determines and configures the specific field of phenomena discussed by each particular theory. We will criticize the orthodox line of research which has grounded the analysis about QM in two (Bohrian) metaphysical presuppositions -accepted in the present as dogmas that all interpretations must follow. We will also examine how the orthodox project of "bridging the gap" between the quantum and the classical domains has constrained the possibilities of research, producing only a limited set of interpretational problems which only focus in the justification of "classical reality" and exclude the possibility of analyzing the possibilities of non-classical conceptual representations of QM. The representational realist stance introduces two new problems, namely, the ...
The classical pion field in a nucleus
Ripka, Georges
2007-01-01
A self-consistent symmetry arises when the nucleon angular momentum j and the isospin t are coupled to a grand spin G. Closed G shells become sources of a classical pion field with a hedgehog shape. Although the amplitude of the pion field, as measured by the chiral angle, is small, it is found to perturb significantly the energies of the nucleon orbits.
Polynomial Invariant Theory of the Classical Groups
Westrich, Quinton
2011-01-01
The goal of invariant theory is to find all the generators for the algebra of representations of a group that leave the group invariant. Such generators will be called \\emph{basic invariants}. In particular, we set out to find the set of basic invariants for the classical groups GL$(V)$, O$(n)$, and Sp$(n)$ for $n$ even. In the first half of the paper we set up relevant definitions and theorems for our search for the set of basic invariants, starting with linear algebraic groups and then discussing associative algebras. We then state and prove a monumental theorem that will allow us to proceed with hope: it says that the set of basic invariants is finite if $G$ is reductive. Finally we state without proof the First Fundamental Theorems, which aim to list explicitly the relevant sets of basic invariants, for the classical groups above. We end by commenting on some applications of invariant theory, on the history of its development, and stating a useful theorem in the appendix whose proof lies beyond the scope ...
Robust topological degeneracy of classical theories
Vaezi, Mohammad-Sadegh; Ortiz, Gerardo; Nussinov, Zohar
2016-05-01
We challenge the hypothesis that the ground states of a physical system whose degeneracy depends on topology must necessarily realize topological quantum order and display nonlocal entanglement. To this end, we introduce and study a classical rendition of the Toric Code model embedded on Riemann surfaces of different genus numbers. We find that the minimal ground state degeneracy (and those of all levels) depends on the topology of the embedding surface alone. As the ground states of this classical system may be distinguished by local measurements, a characteristic of Landau orders, this example illustrates that topological degeneracy is not a sufficient condition for topological quantum order. This conclusion is generic and, as shown, it applies to many other models. We also demonstrate that certain lattice realizations of these models, and other theories, display a ground state entropy (and those of all levels) that is "holographic", i.e., extensive in the system boundary. We find that clock and U (1 ) gauge theories display topological (in addition to gauge) degeneracies.
On the consistency of classical and quantum supergravity theories
Energy Technology Data Exchange (ETDEWEB)
Hack, Thomas-Paul [II. Institute for Theoretical Physics, University of Hamburg (Germany); Makedonski, Mathias [Department of Mathematical Sciences, University of Copenhagen (Denmark); Schenkel, Alexander [Department of Stochastics, University of Wuppertal (Germany)
2012-07-01
It is known that pure N=1 supergravity in d=4 spacetime dimensions is consistent at a classical and quantum level, i.e. that in a particular gauge the field equations assume a hyperbolic form - ensuring causal propagation of the degrees of freedom - and that the associated canonical quantum field theory satisfies unitarity. It seems, however, that it is yet unclear whether these properties persist if one considers the more general and realistic case of N=1, d=4 supergravity theories including arbitrary matter fields. We partially clarify the issue by introducing novel hyperbolic gauges for the gravitino field and proving that they commute with the resulting equations of motion. Moreover, we review recent partial results on the unitarity of these general supergravity theories and suggest first steps towards a comprehensive unitarity proof.
Classical-field description of the quantum effects in the light-atom interaction
Rashkovskiy, Sergey A
2016-01-01
In this paper I show that light-atom interaction can be described using purely classical field theory without any quantization. In particular, atom excitation by light that accounts for damping due to spontaneous emission is fully described in the framework of classical field theory. I show that three well-known laws of the photoelectric effect can also be derived and that all of its basic properties can be described within classical field theory.
Classical and Quantum Gauged Massless Rarita-Schwinger Fields
Adler, Stephen L
2015-01-01
We show that, in contrast to known results in the massive case, a minimally gauged massless Rarita-Schwinger field yields consistent classical and quantum theories. To simplify the algebra, we study a two component left chiral reduction of the massless theory. We formulate the classical theory in both Lagrangian and Hamiltonian form for a general non-Abelian gauging, and analyze the constraints and the Rarita-Schwinger gauge invariance of the action. An explicit wave front calculation for Abelian gauge fields shows that wave-like modes do not propagate with superluminal velocities. The quantized case is studied in covariant radiation gauge and axial gauge for the Rarita-Schwinger field, by both functional integral and Dirac bracket methods. The constraints have the form needed to apply the Faddeev-Popov method for deriving a functional integral in covariant radiation gauge. The Dirac bracket approach yields consistent Hamilton equations of motion in covariant radiation gauge, and leads to anticommutation rela...
Extending classical molecular theory with polarization.
Keyes, Tom; Napoleon, Raeanne L
2011-01-27
A classical, polarizable, electrostatic theory of short-ranged atom-atom interactions, incorporating the smeared nature of atomic partial charges, is presented. Detailed models are constructed for CO monomer and for CO interacting with an iron atom, as a first step toward heme proteins. A good representation is obtained of the bond-length-dependent dipole of CO monomer from fitting at the equilibrium distance only. Essential features of the binding of CO to myoglobin (Mb) and model heme compounds, including the binding energy, the position of the minimum in the Fe-C potential, the Fe-C frequency, the bending energy, the linear geometry of FeCO, and the increase of the Stark tuning rate and IR intensity, are obtained, suggesting that a substantial part of the Fe-CO interaction consists of a classical, noncovalent, "electrostatic bond ". The binding energy is primarily polarization energy, and the polarization energy of an OH pair in water is shown to be comparable to the experimental hydrogen bond energy.
Dynamics of classical and quantum fields an introduction
Setlur, Girish S
2014-01-01
Dynamics of Classical and Quantum Fields: An Introduction focuses on dynamical fields in non-relativistic physics. Written by a physicist for physicists, the book is designed to help readers develop analytical skills related to classical and quantum fields at the non-relativistic level, and think about the concepts and theory through numerous problems. In-depth yet accessible, the book presents new and conventional topics in a self-contained manner that beginners would find useful. A partial list of topics covered includes: Geometrical meaning of Legendre transformation in classical mechanics Dynamical symmetries in the context of Noether's theorem The derivation of the stress energy tensor of the electromagnetic field, the expression for strain energy in elastic bodies, and the Navier Stokes equation Concepts of right and left movers in case of a Fermi gas explained Functional integration is interpreted as a limit of a sequence of ordinary integrations Path integrals for one and two quantum particles and for...
Classical lifting processes and multiplicative vector fields
Mackenzie, Kirill; Xu, Ping
1997-01-01
We extend the calculus of multiplicative vector fields and differential forms and their intrinsic derivatives from Lie groups to Lie groupoids; this generalization turns out to include also the classical process of complete lifting from arbitrary manifolds to tangent and cotangent bundles. Using this calculus we give a new description of the Lie bialgebroid structure associated with a Poisson groupoid.
Bursa, Francis; Kroyter, Michael
2010-01-01
String field theory is a candidate for a full non-perturbative definition of string theory. We aim to define string field theory on a space-time lattice to investigate its behaviour at the quantum level. Specifically, we look at string field theory in a one dimensional linear dilaton background. We report the first results of our simulations.
Quantum Back Reaction on a Classical Field
Brout, R; Popescu, S; Parentani, R; Spindel, P; Spindel, Ph.
1995-01-01
We show how to apply post selection in the context of weak measurement of Aharonov and collaborators to construct the quantum back reaction on a classical field. The particular case which we study in this paper is pair creation in an external electric field and the back reaction is the counter field produced by the pair \\underline {as} it is made. The construction leads to a complex electric field obtained from non diagonal matrix elements of the current operator, the interpretation of which is clear in terms of weak measurement. The analogous construction applied to black hole physics (thereby leading to a complex metric) is relegated to a future paper.
An approximate classical unimolecular reaction rate theory
Zhao, Meishan; Rice, Stuart A.
1992-05-01
We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.
Covariant Noncommutative Field Theory
International Nuclear Information System (INIS)
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced
Classical behavior of a scalar field in the inflationary universe
International Nuclear Information System (INIS)
Extending the coarse-graining approach of Starobinsky, we formulate a theory to deal with the dynamics of a scalar field in inflationary universe models. We find a set of classical Langevin equations which describes the large scale behavior of the scalar field, provided that the coarse-grained size is greater than the effective compton wavelength of the scalar field. The corresponding Fokker-Planck equation is also derived which is defined on the phase space of the scalar field. We show that our theory is essentially equivalent to the one-loop field theory in de Sitter space and reduces to that of Starobinsky in a strong limit of the slow roll-over condition. Analysis of a simple Higgs potential model is done and the implications are discussed. (author)
Number theory arising from finite fields analytic and probabilistic theory
Knopfmacher, John
2001-01-01
""Number Theory Arising from Finite Fields: Analytic and Probabilistic Theory"" offers a discussion of the advances and developments in the field of number theory arising from finite fields. It emphasizes mean-value theorems of multiplicative functions, the theory of additive formulations, and the normal distribution of values from additive functions. The work explores calculations from classical stages to emerging discoveries in alternative abstract prime number theorems.
Hilbert space theory of classical electrodynamics
Indian Academy of Sciences (India)
RAJAGOPAL A K; GHOSE PARTHA
2016-06-01
Classical electrodynamics is reformulated in terms of wave functions in the classical phase space of electrodynamics, following the Koopman–von Neumann–Sudarshan prescription for classical mechanics on Hilbert spaces sans the superselection rule which prohibits interference effects in classical mechanics. This is accomplished by transforming from a set of commutingobservables in one Hilbert space to another set of commuting observables in a larger Hilbert space. This is necessary to clarify the theoretical basis of the much recent work on quantum-like features exhibited by classical optics. Furthermore, following Bondar et al, {\\it Phys. Rev.} A 88, 052108 (2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of theWigner function can be implemented by classical optics. This may be useful in interpreting quantum information processing in terms of classical optics.
Antigravity and classical solutions of five-dimensional Kaluza-Klein theory
Energy Technology Data Exchange (ETDEWEB)
Pollard, D. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)
1983-02-21
Classical solutions are exhibited of a graviton-graviphoton-graviscalar field theory which are antigravitating in the weak-field approximation. The theory itself is obtained by a Kaluza-Klein type reduction from five to four dimensions. The solutions are dyonic black holes with scalar charge. They share some similarities with the extreme Reissner-Nordstrom black holes of Einstein-Maxwell theory.
The Possibility of Reconciling Quantum Mechanics with Classical Probability Theory
Slavnov, D. A.
2007-01-01
We describe a scheme for constructing quantum mechanics in which a quantum system is considered as a collection of open classical subsystems. This allows using the formal classical logic and classical probability theory in quantum mechanics. Our approach nevertheless allows completely reproducing the standard mathematical formalism of quantum mechanics and identifying its applicability limits. We especially attend to the quantum state reduction problem.
Nonlocal and quasilocal field theories
Tomboulis, E. T.
2015-12-01
We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.
Classical solutions of some field theoretic models
International Nuclear Information System (INIS)
In recent years much attention has been paid to simpler fields theories, so chosen that they possess several properties of nonabelian gauge theories. They preserve the conformal invariance of the action and one can define the topological charge for them. They possess nontrivial solutions to the equations of motion. The perturbation theory based on the fluctuations around each solution is characterized by asymptotic freedom. A model called CP sup(n-1) is presented and some models which are its natural generalizations are discussed. (M.F.W.)
Combinatorics and field theory
Bender, Carl M.; Brody, Dorje C.; Meister, Bernhard K.
2006-01-01
For any given sequence of integers there exists a quantum field theory whose Feynman rules produce that sequence. An example is illustrated for the Stirling numbers. The method employed here offers a new direction in combinatorics and graph theory.
Mathematical aspects of quantum field theory
de Faria, Edson
2010-01-01
Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.
A Tulczyjew triple for classical fields
International Nuclear Information System (INIS)
The geometrical structure known as the Tulczyjew triple has proved to be very useful in describing mechanical systems, even those with singular Lagrangians or subject to constraints. Starting from basic concepts of the variational calculus, we construct the Tulczyjew triple for first-order field theory. The important feature of our approach is that we do not postulate ad hoc the ingredients of the theory, but obtain them as unavoidable consequences of the variational calculus. This picture of field theory is covariant and complete, containing not only the Lagrangian formalism and Euler–Lagrange equations but also the phase space, the phase dynamics and the Hamiltonian formalism. Since the configuration space turns out to be an affine bundle, we have to use affine geometry, in particular the notion of the affine duality. In our formulation, the two maps α and β which constitute the Tulczyjew triple are morphisms of double structures of affine-vector bundles. We also discuss the Legendre transformation, i.e. the transition between the Lagrangian and the Hamiltonian formulation of the first-order field theory. (paper)
A Tulczyjew triple for classical fields
Grabowska, Katarzyna
2012-04-01
The geometrical structure known as the Tulczyjew triple has proved to be very useful in describing mechanical systems, even those with singular Lagrangians or subject to constraints. Starting from basic concepts of the variational calculus, we construct the Tulczyjew triple for first-order field theory. The important feature of our approach is that we do not postulate ad hoc the ingredients of the theory, but obtain them as unavoidable consequences of the variational calculus. This picture of field theory is covariant and complete, containing not only the Lagrangian formalism and Euler-Lagrange equations but also the phase space, the phase dynamics and the Hamiltonian formalism. Since the configuration space turns out to be an affine bundle, we have to use affine geometry, in particular the notion of the affine duality. In our formulation, the two maps α and β which constitute the Tulczyjew triple are morphisms of double structures of affine-vector bundles. We also discuss the Legendre transformation, i.e. the transition between the Lagrangian and the Hamiltonian formulation of the first-order field theory.
Field theory and the Standard Model
Dudas, E
2014-01-01
This brief introduction to Quantum Field Theory and the Standard Model con- tains the basic building blocks of perturbation theory in quantum field theory, an elementary introduction to gauge theories and the basic classical and quan- tum features of the electroweak sector of the Standard Model. Some details are given for the theoretical bias concerning the Higgs mass limits, as well as on obscure features of the Standard Model which motivate new physics con- structions
[Studies in quantum field theory
International Nuclear Information System (INIS)
During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity
Baal, Pierre Van
2014-01-01
""… a pleasant novelty that manages the impossible: a full course in field theory from a derivation of the Dirac equation to the standard electroweak theory in less than 200 pages. Moreover, the final chapter consists of a careful selection of assorted problems, which are original and either anticipate or detail some of the topics discussed in the bulk of the chapters. Instead of building a treatise out of a collection of lecture notes, the author took the complementary approach and constructed a course out of a number of well-known and classic treatises. The result is fresh and useful. … the
Superspace conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Superspace conformal field theory
International Nuclear Information System (INIS)
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
On the classical theory of molecular optical activity
Frolov, Alexei M
2010-01-01
The basic principles of classical and semi-classical theories of molecular optical activity are discussed. These theories are valid for dilute solutions of optically active organic molecules. It is shown that all phenomena known in the classical theory of molecular optical activity can be described with the use of one pseudo-scalar which is a uniform function of the incident light frequency $\\omega$. The relation between optical rotation and circular dichroism is derived from the basic Kramers-Kronig relations. In our discussion of the general theory of molecular optical activity we introduce the tensor of molecular optical activity. It is shown that to evaluate the optical rotation and circular dichroism at arbitrary frequencies one needs to know only nine (3 + 6) molecular tensors. The quantum (or semi-classical) theory of molecular optical activity is also briefly discussed. We also raise the possibility of measuring the optical rotation and circular dichroism at wavelengths which correspond to the vacuum ...
A modification of Amiet's classical trailing edge noise theory for strictly two dimensional flows
Sandberg, Richard D.; Sandham, Neil D.
2007-01-01
The aim of this report is to derive theoretical expressions for the far-field pressure generated by disturbances convecting over a trailing edge. First, a general calculation of the far-field pressure is discussed. Then the classical theory of Amiet (1976b) is reviewed, listing the most relevant assumptions. Amiet's theory is then revised for two-dimensional flows.
Non-linear coupling of quantum theory and classical gravity
International Nuclear Information System (INIS)
The possibility that the non-linear evolution proposed earlier for a relativistic quantum field theory may be related to its coupling to a classical gravitational field is discussed. Formally, in the Schroedinger picture, it is shown how both the Schroedinger equation and Einstein's equations (with the expectation value of the energy-momentum tensor on the right) can be derived from a variational principle. This yields a non-linear quantum evolution. Other terms can be added to the action integral to incorporate explicit non-linearities of the type discussed previously. The possibility of giving a meaning to the resulting equation in a Heisenberg or interaction-like picture, is briefly discussed. (author)
Lange, Elizabeth
2015-01-01
This article argues that sociology has been a foundational discipline for the field of adult education, but it has been largely implicit, until recently. This article contextualizes classical theories of sociology within contemporary critiques, reviews the historical roots of sociology and then briefly introduces the classical theories…
Wu, Ning
1998-01-01
In this paper, we will construct a gauge field model, in which the masses of gauge fields are non-zero and the local gauge symmetry is strictly preserved. A SU(N) gauge field model is discussed in details in this paper. In the limit $\\alpha \\longrightarrow 0$ or $\\alpha \\longrightarrow \\infty$, the gauge field model discussed in this paper will return to Yang-Mills gauge field model. This theory could be regarded as theoretical development of Yang-Mills gauge field theory.
Baden Fuller, A J
2014-01-01
Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation
Mathematical aspects of quantum field theories
Strobl, Thomas
2015-01-01
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...
Classical conformality in the Standard Model from Coleman's theory
Kawana, Kiyoharu
2016-01-01
The classical conformality is one of the possible candidates for explaining the gauge hierarchy of the Standard Model. We show that it is naturally obtained from the Coleman's theory on baby universe.
Experimental assessment of unvalidated assumptions in classical plasticity theory.
Energy Technology Data Exchange (ETDEWEB)
Brannon, Rebecca Moss (University of Utah, Salt Lake City, UT); Burghardt, Jeffrey A. (University of Utah, Salt Lake City, UT); Bauer, Stephen J.; Bronowski, David R.
2009-01-01
This report investigates the validity of several key assumptions in classical plasticity theory regarding material response to changes in the loading direction. Three metals, two rock types, and one ceramic were subjected to non-standard loading directions, and the resulting strain response increments were displayed in Gudehus diagrams to illustrate the approximation error of classical plasticity theories. A rigorous mathematical framework for fitting classical theories to the data, thus quantifying the error, is provided. Further data analysis techniques are presented that allow testing for the effect of changes in loading direction without having to use a new sample and for inferring the yield normal and flow directions without having to measure the yield surface. Though the data are inconclusive, there is indication that classical, incrementally linear, plasticity theory may be inadequate over a certain range of loading directions. This range of loading directions also coincides with loading directions that are known to produce a physically inadmissible instability for any nonassociative plasticity model.
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
From Classical to Quantum Shannon Theory
Wilde, Mark M
2011-01-01
The aim of this book is to develop "from the ground up" all of the major, exciting, pre- and post-millenium developments in the general area of study known as quantum Shannon theory. As such, we spend a significant amount of time on quantum mechanics for quantum information theory (Part II), we give a careful study of the important unit protocols of teleportation, super-dense coding, and entanglement distribution (Part III), and we develop many of the tools necessary for understanding information transmission or compression (Part IV). Parts V and VI are the culmination of this book, where all of the tools developed come into play for understanding many of the important results in quantum Shannon theory.
Theory of Antisymmetric Tensor Fields
Dvoeglazov, V V
2003-01-01
It has long been claimed that the antisymmetric tensor field of the second rank is pure longitudinal after quantization. In my opinion, such a situation is quite unacceptable. I repeat the well-known procedure of the derivation of the set of Proca equations. It is shown that it can be written in various forms. Furthermore, on the basis of the Lagrangian formalism I calculate dynamical invariants (including the Pauli-Lubanski vector of relativistic spin for this field). Even at the classical level the Pauli-Lubanski vector can be equal to zero after applications of well-known constraints. The importance of the normalization is pointed out for the problem of the description of quantized fields of maximal spin 1. The correct quantization procedure permits us to propose a solution of this puzzle in the modern field theory. Finally, the discussion of the connection of the Ogievetskii-Polubarinov-Kalb-Ramond field and the electrodynamic gauge is presented.
[The establishment, contributions, and final results of classical medical theories].
Wang, Tai
2013-01-01
In countries with ancient civilization of both Eastern world and Western world, after the accumulation of clinical experiences of "empirical medicine" to a sufficient amount; in accordance of their primitive philosophical thoughts, classical medical theories were established to play an important role in guiding the clinical practice of "empirical medicine". Because of the similarity of philosophical thoughts all over the ancient world, their medical theories were also very similar to each other. After the scientific evaluation and improvement, Greek classical medical theories were inherited, refined or abandoned, and then eventually finished their historical mission. Chinese classical medical theories also need the similar scientific identification and improvement for flowing into the authorized main stream of modern medical theory systems to continuously apply their guiding roles in clinical practice. Scholars would better consider the developmental principles of cultures and sciences with a historical viewpoint and an open mind to avoid making mistakes from haughty and prejudice. PMID:23596779
Algebraic quantum field theory
International Nuclear Information System (INIS)
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
On the concept of Bell’s local causality in local classical and quantum theory
International Nuclear Information System (INIS)
The aim of this paper is to implement Bell’s notion of local causality into a framework, called local physical theory. This framework, based on the axioms of algebraic field theory, is broad enough to integrate both probabilistic and spatiotemporal concepts and also classical and quantum theories. Bell’s original idea of local causality will arise as the classical case of our definition. Classifying local physical theories by whether they obey local primitive causality, a property rendering the dynamics of the theory causal, we then investigate what is needed for a local physical theory to be locally causal. Finally, comparing local causality with the common cause principles and relating both to the Bell inequalities we find a nice parallelism: Bell inequalities cannot be derived neither from local causality nor from a common cause unless the local physical theory is classical or the common cause is commuting, respectively
On the concept of Bell’s local causality in local classical and quantum theory
Energy Technology Data Exchange (ETDEWEB)
Hofer-Szabó, Gábor, E-mail: szabo.gabor@btk.mta.hu [Research Center for the Humanities, Budapest (Hungary); Vecsernyés, Péter, E-mail: vecsernyes.peter@wigner.mta.hu [Wigner Research Centre for Physics, Budapest (Hungary)
2015-03-15
The aim of this paper is to implement Bell’s notion of local causality into a framework, called local physical theory. This framework, based on the axioms of algebraic field theory, is broad enough to integrate both probabilistic and spatiotemporal concepts and also classical and quantum theories. Bell’s original idea of local causality will arise as the classical case of our definition. Classifying local physical theories by whether they obey local primitive causality, a property rendering the dynamics of the theory causal, we then investigate what is needed for a local physical theory to be locally causal. Finally, comparing local causality with the common cause principles and relating both to the Bell inequalities we find a nice parallelism: Bell inequalities cannot be derived neither from local causality nor from a common cause unless the local physical theory is classical or the common cause is commuting, respectively.
Effective quantum field theories
International Nuclear Information System (INIS)
Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)
Classical Field-Theoretical approach to the non-linear q-Klein-Gordon Equation
Plastino, A
2016-01-01
In the wake of efforts made in [EPL {\\bf 97}, 41001 (2012)], we extend them here by developing a classical field theory (FT)to the q-Klein-Gordon equation advanced in [Phys. Rev. Lett. {\\bf 106}, 140601 (2011)]. This makes it possible to generate a hipotetical conjecture regarding black matter. We also develop the classical field theory for a q-Schrodinger equation, different from the one in [EPL {\\bf 97}, 41001 (2012)], that was deduced in [Phys. Lett. A {\\bf 379}, 2690 (2015)] from the hypergeometric differential equation. Our two classical theories reduce to the usual quantum FT for $q\\rightarrow 1$.
Classical Coupled Mode Theory of Optomechanical Crystals
Khorasani, Sina
2016-01-01
Acousto-optic interaction in optomechanical crystals allows unidirectional control of elastic waves over optical waves. However, as a result of this nonlinear interaction, infinitely many optical modes are born. This article presents an exact formulaion of coupled mode theory for interaction between elastic Bloch wave waves and photonic Bloch waves moving in a phonotonic waveguide. In general, an optical wavefront is strongly diffracted by an elastic wave in frequency and wavevector, and thus infinite modes with different frequencies and wavevectors appear. We discuss resonance and mode conversion conditions, and present a rigorous method to derive coupling rates and mode profiles. We also find a conservation law which rules over total optical power from interacting individual modes. Modifications of the theory to phonotonic cavities are also discussed. We present application examples including switch, frequency shifter, and reflector.
Finite temperature field theory
Das, Ashok
1997-01-01
This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. Applications of the formalisms are worked out in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The question of gauge dependence of the effective potential and the Nielsen identities are explained. The nonrestoration of some symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are al
Semi-classical theory of quiet lasers. I: Principles
Arnaud, J; Philippe, F; Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice
2006-01-01
When light originating from a laser diode driven by non-fluctuating electrical currents is incident on a photo-detector, the photo-current does not fluctuate much. Precisely, this means that the variance of the number of photo-electrons counted over a large time interval is much smaller that the average number of photo-electrons. At non-zero Fourier frequency $\\Omega$ the photo-current power spectrum is of the form $\\Omega^2/(1+\\Omega^2)$ and thus vanishes as $\\Omega\\to 0$, a conclusion equivalent to the one given above. The purpose of this paper is to show that results such as the one just cited may be derived from a (semi-classical) theory in which neither the optical field nor the electron wave-function are quantized. We first observe that almost any medium may be described by a circuit and distinguish (possibly non-linear) conservative elements such as pure capacitances, and conductances that represent the atom-field coupling. The theory rests on the non-relativistic approximation. Nyquist noise sources (...
Wentzel, Gregor
2003-01-01
A prominent figure in twentieth-century physics, Gregor Wentzel made major contributions to the development of quantum field theory, first in Europe and later at the University of Chicago. His Quantum Theory of Fields offers a knowledgeable view of the original literature of elementary quantum mechanics and helps make these works accessible to interested readers.An introductory volume rather than an all-inclusive account, the text opens with an examination of general principles, without specification of the field equations of the Lagrange function. The following chapters deal with particular
Homotopy Classification of Bosonic String Field Theory
Muenster, Korbinian; Sachs, Ivo
2012-01-01
We prove the decomposition theorem for the loop homotopy algebra of quantum closed string field theory and use it to show that closed string field theory is unique up to gauge transformations on a given string background and given S-matrix. For the theory of open and closed strings we use results in open-closed homotopy algebra to show that the space of inequivalent open string field theories is isomorphic to the space of classical closed string backgrounds. As a further application of the op...
A classical theory of continuous spin and hidden gauge invariance
International Nuclear Information System (INIS)
We present a classical higher derivative point particle theory whose quantization gives Wigner's continuous spin representation of the Poincare group. Although the theory is not reparameterization invariant in the usual sense, it does possess a hidden gauge invariance that provides a non-local representation of the reparameterization group. The Hamiltonian of the theory does not vanish and its value is the continuous spin parameter. The theory presented here represents the simplest example of a wide class of higher derivative theories possessing a hidden gauge invariance
A classical theory of continuous spin and hidden gauge invariance
Energy Technology Data Exchange (ETDEWEB)
Zoller, D.
1991-01-01
We present a classical higher derivative point particle theory whose quantization gives Wigner's continuous spin representation of the Poincare group. Although the theory is not reparameterization invariant in the usual sense, it does possess a hidden gauge invariance that provides a non-local representation of the reparameterization group. The Hamiltonian of the theory does not vanish and its value is the continuous spin parameter. The theory presented here represents the simplest example of a wide class of higher derivative theories possessing a hidden gauge invariance.
A classical theory of continuous spin and hidden gauge invariance
Energy Technology Data Exchange (ETDEWEB)
Zoller, D.
1991-12-31
We present a classical higher derivative point particle theory whose quantization gives Wigner`s continuous spin representation of the Poincare group. Although the theory is not reparameterization invariant in the usual sense, it does possess a hidden gauge invariance that provides a non-local representation of the reparameterization group. The Hamiltonian of the theory does not vanish and its value is the continuous spin parameter. The theory presented here represents the simplest example of a wide class of higher derivative theories possessing a hidden gauge invariance.
Field-theory methods in coagulation theory
International Nuclear Information System (INIS)
Coagulating systems are systems of chaotically moving particles that collide and coalesce, producing daughter particles of mass equal to the sum of the masses involved in the respective collision event. The present article puts forth basic ideas underlying the application of methods of quantum-field theory to the theory of coagulating systems. Instead of the generally accepted treatment based on the use of a standard kinetic equation that describes the time evolution of concentrations of particles consisting of a preset number of identical objects (monomers in the following), one introduces the probability W(Q, t) to find the system in some state Q at an instant t for a specific rate of transitions between various states. Each state Q is characterized by a set of occupation numbers Q = (n1, n2, ..., ng, ...), where ng is the total number of particles containing precisely g monomers. Thereupon, one introduces the generating functional Ψ for the probability W(Q, t). The time evolution of Ψ is described by an equation that is similar to the Schrödinger equation for a one-dimensional Bose field. This equation is solved exactly for transition rates proportional to the product of the masses of colliding particles. It is shown that, within a finite time interval, which is independent of the total mass of the entire system, a giant particle of mass about the mass of the entire system may appear in this system. The particle in question is unobservable in the thermodynamic limit, and this explains the well-known paradox of mass-concentration nonconservation in classical kinetic theory. The theory described in the present article is successfully applied in studying the time evolution of random graphs.
String field theory solution corresponding to constant background magnetic field
Ishibashi, Nobuyuki; Takahashi, Tomohiko
2016-01-01
Following the method recently proposed by Erler and Maccaferri, we construct solutions to the equation of motion of Witten's cubic string field theory, which describe constant magnetic field background. We study the boundary condition changing operators relevant to such background and calculate the operator product expansions of them. We obtain solutions whose classical action coincide with the Born-Infeld action.
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
Gurau, R; Rivasseau, V
2008-01-01
We propose a new formalism for quantum field theory which is neither based on functional integrals, nor on Feynman graphs, but on marked trees. This formalism is constructive, i.e. it computes correlation functions through convergent rather than divergent expansions. It applies both to Fermionic and Bosonic theories. It is compatible with the renormalization group, and it allows to define non-perturbatively {\\it differential} renormalization group equations. It accommodates any general stable polynomial Lagrangian. It can equally well treat noncommutative models or matrix models such as the Grosse-Wulkenhaar model. Perhaps most importantly it removes the space-time background from its central place in QFT, paving the way for a nonperturbative definition of field theory in noninteger dimension.
Gurau, Razvan
2009-01-01
Group field theories are higher dimensional generalizations of matrix models. Their Feynman graphs are fat and in addition to vertices, edges and faces, they also contain higher dimensional cells, called bubbles. In this paper, we propose a new, fermionic Group Field Theory, posessing a color symmetry, and take the first steps in a systematic study of the topological properties of its graphs. Unlike its bosonic counterpart, the bubbles of the Feynman graphs of this theory are well defined and readily identified. We prove that this graphs are combinatorial cellular complexes. We define and study the cellular homology of this graphs. Furthermore we define a homotopy transformation appropriate to this graphs. Finally, the amplitude of the Feynman graphs is shown to be related to the fundamental group of the cellular complex.
Extende conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Taormina, A. (Chicago Univ., IL (USA). Enrico Fermi Inst.)
1990-08-01
Some extended conformal field theories are briefly reviewed. They illustrate how non minimal models of the Virasoro algebra (c{ge}1) can become minimal with respect to a larger algebra. The accent is put on N-extended superconformal algebras, which are relevant in superstring compactification. (orig.).
Extended conformal field theories
Taormina, Anne
1990-08-01
Some extended conformal field theories are briefly reviewed. They illustrate how non minimal models of the Virasoro algebra (c≥1) can become minimal with respect to a larger algebra. The accent is put on N-extended superconformal algebras, which are relevant in superstring compactification.
Non-classical Measurement Theory: a Framework for Behavioral Sciences
Danilov, V I
2006-01-01
Instances of non-commutativity are pervasive in human behavior. In this paper, we suggest that psychological properties such as attitudes, values, preferences and beliefs may be suitably described in terms of the mathematical formalism of quantum mechanics. We expose the foundations of non-classical measurement theory building on a simple notion of orthospace and ortholattice (logic). Two axioms are formulated and the characteristic state-property duality is derived. A last axiom concerned with the impact of measurements on the state takes us with a leap toward the Hilbert space model of Quantum Mechanics. An application to behavioral sciences is proposed. First, we suggest an interpretation of the axioms and basic properties for human behavior. Then we explore an application to decision theory in an example of preference reversal. We conclude by formulating basic ingredients of a theory of actualized preferences based in non-classical measurement theory.
International Nuclear Information System (INIS)
We describe the construction of a class of cubic gauge-invariant actions for superstring field theory, and the gauge-fixing of one representative. Fermion string fields are taken in the -1/2-picture and boson string fields in the 0-picture, which makes a picture-changing insertion carrying picture number -2 necessary. The construction of all such operators is outlined. We discuss the gauge b1 + b-1 = 0, in which the action formally linearizes. Nontrivial scattering amplitudes are obtained by approaching this gauge as a limit. 20 refs
Revision of the classical nucleation theory for supersaturated solutions
Borisenko, Alexander
2015-01-01
During the processes of nucleation and growth of a precipitate cluster from a supersaturated solution, the diffusion flux between the cluster and the solution changes the solute concentration near the cluster-solution interface from its average bulk value. This feature affects the rates of attachment and detachment of solute atoms at the interface and, therefore, alters the entire nucleation kinetics. Unless quite obvious, this effect has been ignored in the classical nucleation theory. To illustrate the results of this new approach, for the case of homogeneous nucleation, we calculate the total solubility (including the contribution from heterophase fluctuations) and the nucleation rate as functions of two parameters of the model and compare these results to the classical ones. One can conclude that discrepancies with the classical nucleation theory are great in the diffusion-limited regime, when the bulk diffusion mobility of solute atoms is small compared to the interfacial one, while in the opposite inter...
PREFACE: Particles and Fields: Classical and Quantum
Asorey, M.; Clemente-Gallardo, J.; Marmo, G.
2007-07-01
This volume contains some of the contributions to the Conference Particles and Fields: Classical and Quantum, which was held at Jaca (Spain) in September 2006 to honour George Sudarshan on his 75th birthday. Former and current students, associates and friends came to Jaca to share a few wonderful days with George and his family and to present some contributions of their present work as influenced by George's impressive achievements. This book summarizes those scientific contributions which are presented as a modest homage to the master, collaborator and friend. At the social ceremonies various speakers were able to recall instances of his life-long activity in India, the United States and Europe, adding colourful remarks on the friendly and intense atmosphere which surrounded those collaborations, some of which continued for several decades. This meeting would not have been possible without the financial support of several institutions. We are deeply indebted to Universidad de Zaragoza, Ministerio de Educación y Ciencia de España (CICYT), Departamento de Ciencia, Tecnología y Universidad del Gobierno de Aragón, Universitá di Napoli 'Federico II' and Istituto Nazionale di Fisica Nucleare. Finally, we would like to thank the participants, and particularly George's family, for their contribution to the wonderful atmosphere achieved during the Conference. We would like also to acknowledge the authors of the papers collected in the present volume, the members of the Scientific Committee for their guidance and support and the referees for their generous work. M Asorey, J Clemente-Gallardo and G Marmo The Local Organizing Committee George Sudarshan International Advisory Committee A. Ashtekhar (Pennsylvania State University, USA) L. J. Boya (Universidad de Zaragoza, Spain) I. Cirac (Max Planck Institute, Garching, Germany) G. F. Dell Antonio (Universitá di Roma La Sapienza, Italy) A. Galindo (Universidad Complutense de Madrid, Spain) S. L. Glashow (Boston University
Aesthetic Creativity: Insights from Classical Literary Theory on Creative Learning
Hellstrom, Tomas Georg
2011-01-01
This paper addresses the subject of textual creativity by drawing on work done in classical literary theory and criticism, specifically new criticism, structuralism and early poststructuralism. The question of how readers and writers engage creatively with the text is closely related to educational concerns, though they are often thought of as…
Kim, S; Yee, H U; Kim, Seok; Lee, Ki-Myeong; Yee, Ho-Ung
2006-01-01
To a domain wall or string object, Noether charge and topological spatial objects can be attracted, forming a composite BPS (Bogomolny-Prasad-Sommerfield) object. We consider two field theories and derive a new BPS bound on composite linear solitons involving multiple charges. Among the BPS objects `supertubes' appear when the wall or string tension is canceled by the bound energy, and could take an arbitrary closed curve. In our theories, supertubes manifest as Chern-Simons solitons, dyonic instantons, charged semi-local vortices, and dyonic instantons on vortex flux sheet.
Holographic effective field theories
Martucci, Luca; Zaffaroni, Alberto
2016-06-01
We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.
Quantum Field Theory in a Semiotic Perspective
Günter Dosch, Hans; Sieroka, Norman
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...
Theory of Optimal Currency Zones: from Classics until Today
Directory of Open Access Journals (Sweden)
Pinchuk Anastasiya K.
2013-12-01
Full Text Available The article analyses evolution of the theory of optimal currency zones (OCZ, starting from its classical provisions until moder developments. Based on the critical analysis of classical criteria of OCZ, the article develops a scheme of selection of the currency mode by the Robert Mundell theory. It considers achievements of the alternative OCZ theory, the main provisions of which are shown schematically in the form of illustrations of evolution of the theory of optimal currency zones. In the result of analysis of classical criteria of optimal currency zones and generalisation of developments of the new OCZ theory, the article develops a universal algorithm of identification of optimal conditions for an efficient currency zone. Using this algorithm allows identification of a system of quantitative indicators of expediency of regional joining the OCZ, on the basis of which one can build an economic model of an optimal currency zone, which reflects the degree of readiness of any country to join or develop the OCZ. Development of this model is necessary for many countries that face the need to select the currency integration. This model is of special importance for Ukraine, for which it is important to select the course of external integration, since various directions of foreign policy significantly influence efficiency of the domestic economic policy in the country.
The traversable wormhole with classical scalar fields
Kim, S. -W; Kim, S. P.
1999-01-01
We study the Lorentzian static traversable wormholes coupled to quadratic scalar fields. We also obtain the solutions of the scalar fields and matters in the wormhole background and find that the minimal size of the wormhole should be quantized under the appropriate boundary conditions for the positive non-minimal massive scalar field.
Alvarez-Gaumé, Luís
1996-01-01
Quantum Field Theory provides the most fundamental language known to express the fundamental laws of Nature. It is the consequence of trying to describe physical phenomena within the conceptual framework of Quantum Mechanics and Special Relativity. The aim of these lectures will be to present a number of concepts and methods in the subject which many of us find difficult to understand. They may include (depending on time) : the need to introduce quantum fields, the realization of symmetries, the renormalization group, non-perturbative phenomena, infrared divergences and jets, etc. Some familiarity with the rudiments of Feynman diagrams and relativistic quantum mechanics will be appreciated.
THE NEW CLASSICAL THEORY AND THE REAL BUSINESS CYCLE MODEL
Directory of Open Access Journals (Sweden)
Oana Simona HUDEA (CARAMAN
2014-11-01
Full Text Available The present paper aims at describing some key elements of the new classical theory-related model, namely the Real Business Cycle, mainly describing the economy from the perspective of a perfectly competitive market, characterised by price, wage and interest rate flexibility. The rendered impulse-response functions, that help us in revealing the capacity of the model variables to return to their steady state under the impact of a structural shock, be it technology or monetary policy oriented, give points to the neutrality of the monetary entity decisions, therefore confirming the well-known classical dichotomy existing between the nominal and the real factors of the economy.
Classic Grounded Theory to Analyse Secondary Data: Reality and Reflections
Directory of Open Access Journals (Sweden)
Lorraine Andrews
2012-06-01
Full Text Available This paper draws on the experiences of two researchers and discusses how they conducted a secondary data analysis using classic grounded theory. The aim of the primary study was to explore first-time parents’ postnatal educational needs. A subset of the data from the primary study (eight transcripts from interviews with fathers was used for the secondary data analysis. The objectives of the secondary data analysis were to identify the challenges of using classic grounded theory with secondary data and to explore whether the re-analysis of primary data using a different methodology would yield a different outcome. Through the process of re-analysis a tentative theory emerged on ‘developing competency as a father’. Challenges encountered during this re-analysis included the small dataset, the pre-framed data, and limited ability for theoretical sampling. This re-analysis proved to be a very useful learning tool for author 1(LA, who was a novice with classic grounded theory.
Polymer Parametrised Field Theory
Laddha, Alok
2008-01-01
Free scalar field theory on 2 dimensional flat spacetime, cast in diffeomorphism invariant guise by treating the inertial coordinates of the spacetime as dynamical variables, is quantized using LQG type `polymer' representations for the matter field and the inertial variables. The quantum constraints are solved via group averaging techniques and, analogous to the case of spatial geometry in LQG, the smooth (flat) spacetime geometry is replaced by a discrete quantum structure. An overcomplete set of Dirac observables, consisting of (a) (exponentials of) the standard free scalar field creation- annihilation modes and (b) canonical transformations corresponding to conformal isometries, are represented as operators on the physical Hilbert space. None of these constructions suffer from any of the `triangulation' dependent choices which arise in treatments of LQG. In contrast to the standard Fock quantization, the non- Fock nature of the representation ensures that the algebra of conformal isometries as well as tha...
The facets of relativistic quantum field theory
Dosch, H. G.; Müller, V. F.
2011-04-01
Relativistic quantum field theory is generally recognized to form the adequate theoretical frame for subatomic physics, with the Standard Model of Particle Physics as a major achievement. We point out that quantum field theory in its present form is not a monolithic theory, but rather consists of distinct facets, which aim at a common ideal goal. We give a short overview of the strengths and limitations of these facets. We emphasize the theory-dependent relation between the quantum fields, and the basic objects in the empirical domain, the particles. Given the marked conceptual differences between the facets, we argue to view these, and therefore also the Standard Model, as symbolic constructions. We finally note that this view of physical theories originated in the 19th century and is related to the emergence of the classical field as an autonomous concept.
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm. PMID:22654052
Quiver Theories for Moduli Spaces of Classical Group Nilpotent Orbits
Hanany, Amihay
2016-01-01
We approach the topic of Classical group nilpotent orbits from the perspective of their moduli spaces, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKahler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for ...
THE NEW CLASSICAL THEORY AND THE REAL BUSINESS CYCLE MODEL
Oana Simona HUDEA (CARAMAN); Sorin George TOMA; Marin BURCEA
2014-01-01
The present paper aims at describing some key elements of the new classical theory-related model, namely the Real Business Cycle, mainly describing the economy from the perspective of a perfectly competitive market, characterised by price, wage and interest rate flexibility. The rendered impulse-response functions, that help us in revealing the capacity of the model variables to return to their steady state under the impact of a structural shock, be it technology or monetary policy oriented, ...
A New Fuzzy Set Theory Satisfying All Classical Set Formulas
Institute of Scientific and Technical Information of China (English)
Qing-Shi Gao; Xiao-Yu Gao; Yue Hu
2009-01-01
A new fuzzy set theory, C-fuzzy set theory, is introduced in this paper. It is a particular case of the classical set theory and satisfies all formulas of the classical set theory. To add a limitation to C-fuzzy set system, in which all fuzzy sets must be "non-uniform inclusive" to each other, then it forms a family of sub-systems, the Z-fuzzy set family. It can be proved that the Z0-fuzzy set system, one of Z-fuzzy set systems, is equivalent to Zadeh's fuzzy set system. Analysis shows that 1) Zadeh's fuzzy set system defines the relations A = B and A ∈B between two fuzzy sets A and B as "Vu e U,(u A E (u)=μB(U))" and "Au ∈ U, (μA(U) ≤μB(μ))" respectively is inappropriate, because it makes all fuzzy sets be "non-uniformly inclusive"; 2) it is also inappropriate to define two fuzzy sets' union and intersection operations as the max and rain of their grades of membership, because this prevents fuzzy set's ability to correctly reflect different kinds of fuzzy phenomenon in the natural world. Then it has to work around the problem by invent unnatural functions that are hard to understand, such as augmenting max and min for union and intersection to min{a + b, 1} and max{a + b - 1, 0}, but these functions are incorrect on inclusive case. If both pairs of definitions are used together, not only are they unnatural, but also they are still unable to cover all possible set relationships in the natural world; and 3) it is incorrect to define the set complement as 1 -μA(μ), because it can be proved that set complement cannot exist in Zadeh's fuzzy set, and it causes confusion in logic and thinking. And it is seriously mistaken to believe that logics of fuzzy sets necessarily go against classical and normal thinking, logic, and conception. The C-fuzzy set theory proposed in this paper overcomes all of the above errors and shortcomings, and more reasonably reflects fuzzy phenomenon in the natural world. It satisfies all relations, formulas, and operations of the
Classical and quantum Big Brake cosmology for scalar field and tachyonic models
Kamenshchik, Alexander Y.; Manti, Serena
2012-01-01
We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical ...
Classical and quantum Big Brake cosmology for scalar field and tachyonic models
Kamenshchik, A.; Manti, S.
2013-01-01
We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical ...
Development of a unified viscoplasticity constitutive model based on classical plasticity theory
Institute of Scientific and Technical Information of China (English)
GUAN Ping; LIU ChangChun; L(U) HeXiang
2009-01-01
The traditional unified viscoplasticity constitutive model can be only applied to metal materials. The study of the unified constitutive theory for metal materials has discovered the correlation between the classical plasticity theory and the unified viscoplasticity constitutive model, thus leading to the con-cepts of the classic plastic potential and yield surface in the unified constitutive model. Moreover, this research has given the continuous expression of the classical plastic multiplier and presented the corresponding constructive method, which extends its physical significance and lays down a good foundation for the application of the unified constitutive theory to the material analysis in more fields.This paper also introduces the unified constitutive model for metal materials and geo-materials. The numerical simulation indicates that the construction should be both reasonable and practical.
Development of a unified viscoplasticity constitutive model based on classical plasticity theory
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The traditional unified viscoplasticity constitutive model can be only applied to metal materials.The study of the unified constitutive theory for metal materials has discovered the correlation between the classical plasticity theory and the unified viscoplasticity constitutive model,thus leading to the con-cepts of the classic plastic potential and yield surface in the unified constitutive model.Moreover,this research has given the continuous expression of the classical plastic multiplier and presented the corresponding constructive method,which extends its physical significance and lays down a good foundation for the application of the unified constitutive theory to the material analysis in more fields.This paper also introduces the unified constitutive model for metal materials and geo-materials.The numerical simulation indicates that the construction should be both reasonable and practical.
Higgs Effective Field Theories
2016-01-01
The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.
Karpilovsky, G
1989-01-01
This monograph gives a systematic account of certain important topics pertaining to field theory, including the central ideas, basic results and fundamental methods.Avoiding excessive technical detail, the book is intended for the student who has completed the equivalent of a standard first-year graduate algebra course. Thus it is assumed that the reader is familiar with basic ring-theoretic and group-theoretic concepts. A chapter on algebraic preliminaries is included, as well as a fairly large bibliography of works which are either directly relevant to the text or offer supplementary material of interest.
A New Conformal Theory of Semi-Classical Quantum General Relativity
Directory of Open Access Journals (Sweden)
Suhendro I.
2007-10-01
Full Text Available We consider a new four-dimensional formulation of semi-classical quantum general relativity in which the classical space-time manifold, whose intrinsic geometric properties give rise to the effects of gravitation, is allowed to evolve microscopically by means of a conformal function which is assumed to depend on some quantum mechanical wave function. As a result, the theory presented here produces a unified field theory of gravitation and (microscopic electromagnetism in a somewhat simple, effective manner. In the process, it is seen that electromagnetism is actually an emergent quantum field originating in some kind of stochastic smooth extension (evolution of the gravitational field in the general theory of relativity.
On open-closed extension of boundary string field theory
Ishida, Akira; Teraguchi, Shunsuke
2012-01-01
We investigate a classical open-closed string field theory whose open string sector is given by boundary string field theory. The open-closed interaction is introduced by the overlap of a boundary state with a closed string field. With the help of the Batalin-Vilkovisky formalism, the closed string sector is determined to be the HIKKO closed string field theory. We also discuss the gauge invariance of this theory in both open and closed string sides.
Reverse Engineering Quantum Field Theory
Oeckl, Robert
2012-01-01
An approach to the foundations of quantum theory is advertised that proceeds by "reverse engineering" quantum field theory. As a concrete instance of this approach, the general boundary formulation of quantum theory is outlined.
Reverse engineering quantum field theory
Oeckl, Robert
2012-12-01
An approach to the foundations of quantum theory is advertised that proceeds by "reverse engineering" quantum field theory. As a concrete instance of this approach, the general boundary formulation of quantum theory is outlined.
Quantum stability of chameleon field theories.
Upadhye, Amol; Hu, Wayne; Khoury, Justin
2012-07-27
Chameleon scalar fields are dark-energy candidates which suppress fifth forces in high density regions of the Universe by becoming massive. We consider chameleon models as effective field theories and estimate quantum corrections to their potentials. Requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound m0.0042 eV. An improvement of less than a factor of two in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential. PMID:23006073
Quantum Stability of Chameleon Field Theories
Upadhye, Amol; Khoury, Justin
2012-01-01
Chameleon scalar fields are dark energy candidates which suppress fifth forces in high density regions of the universe by becoming massive. We consider chameleon models as effective field theories and estimate quantum corrections to their potentials. Requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound $m 0.0042$\\,eV. An improvement of less than a factor of two in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well-controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential.
Choy, Ting-Pong
One of the leading problems in condensed matter physics is what state of matter obtain when there is a strong Coulomb repulsion between the electrons. One of the exotic examples is the high temperature superconductivity which was discovered in copper-oxide ceramics (cuprates) over twenty years ago. Thus far, a satisfactory theory is absent. In particular, the nature of the electron state outside the superconducting phase remains controversial. In analogy with the BCS theory of a conventional superconductor, in which the metal is well known to be a Fermi liquid, a complete understanding of the normal state of cuprate is necessary prior to the study of the superconducting mechanism in the high temperature superconductors. In this thesis, we will provide a theory for these exotic normal state properties by studying the minimal microscopic model which captures the physics of strong electron correlation. Even in such a simple microscopic model, striking properties including charge localization and presence of a Luttinger surface resemble the normal state properties of cuprate. An exact low energy theory of a doped Mott insulator will be constructed by explicitly integrating (rather than projecting) out the degrees of freedom far away from the chemical potential. The exact low energy theory contains degrees of freedom that cannot be obtained from projective schemes. In particular, a charge 2e bosonic field which is not made out of elemental excitations emerges at low energies. Such a field accounts for dynamical spectral weight transfer across the Mott gap. At half-filling, we show that two such excitations emerge which play a crucial role in preserving the Luttinger surface along which the single-particle Green function vanishes. We also apply this method to the Anderson-U impurity and show that in addition to the Kondo interaction, bosonic degrees of freedom appear as well. We show that many of the normal state properties of the cuprates can result from this new charge
A Gauge-theoretical Treatment of the Gravitational Field: Classical
Gomes, Henrique
2008-01-01
In the geometrodynamical setting of general relativity one is concerned mainly with Riemannian metrics over a manifold $M$. We show that for the space Riem$(M)$, we have a natural principal fiber bundle (PFB) structure. This construction makes the gravitational field amenable to exactly the same gauge-theoretic treatment given in [Littlejohn] where it is used to separate rotational and vibrational degrees of freedom of $n$-particle systems, both classically and quantum mechanically. Furthermore, we show how the gauge connection in this PFB setting can be seen as a realization of Mach's Principle of Relative Motion, in accordance with Barbour's et al work on timeless gravitational theories. We show Barbour's reconstruction of GR is obtained by requiring the connection to be the one induced by the deWitt metric in Riem$(M)$. As a simple application of the gauge theory, we put the ADM lagrangian in a Kaluza-Klein context, and from conservation of charge we derive an interesting condition on the three-dimensional...
Class field theory. The Bonn lectures
International Nuclear Information System (INIS)
Clear presentation. Quick and immediate access to the subject. A classic (established and prominent German original). The present manuscript is an improved edition of a text that first appeared under the same title in Bonner Mathematische Schriften, no.26, and originated from a series of lectures given by the author in 1965/66 in Wolfgang Krull's seminar in Bonn. Its main goal is to provide the reader, acquainted with the basics of algebraic number theory, a quick and immediate access to class field theory. This script consists of three parts, the first of which discusses the cohomology of finite groups. The second part discusses local class field theory, and the third part concerns the class field theory of finite algebraic number fields.
Quantum field theory and the standard model
Schwartz, Matthew D
2014-01-01
Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe...
Electromagnetic Field Theory A Collection of Problems
Mrozynski, Gerd
2013-01-01
After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...
Logarithmic conformal field theory
Gainutdinov, Azat; Ridout, David; Runkel, Ingo
2013-12-01
Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more
Encoding field theories into gravities
Aoki, Sinya; Onogi, Tetsuya
2016-01-01
We propose a method to give a $d+1$ geometry from a $d$ dimensional quantum field theory in the large N expansion. We first construct a $d+1$ dimensional field from the $d$ dimensional one using the gradient flow equation, whose flow time $t$ represents the energy scale of the system such that $t\\rightarrow 0$ corresponds to the ultra-violet (UV) while $t\\rightarrow\\infty$ to the infra-red (IR). We define the induced metric using $d+1$ dimensional field operators. We show that the metric defined in this way becomes classical in the large N limit: quantum fluctuations of the metric are suppressed as 1/N due to the large $N$ factorization property. As a concrete example, we apply our method to the O(N) non-linear $\\sigma$ model in two dimensions. We calculate the three dimensional induced metric, which describes an AdS space in the massless limit. We finally discuss several open issues for future investigations.
The Energy-Momentum Tensor(s) in Classical Gauge Theories
Blaschke, Daniel N; Reboud, Meril; Schweda, Manfred
2016-01-01
We give an introduction to, and review of, the energy-momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space-time. For the canonical energy-momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy-momentum tensor. The relationship with the Einstein-Hilbert tensor following from the coupling to a gravitational field is also discussed.
Khoury, Justin
2013-01-01
Chameleons are light scalar fields with remarkable properties. Through the interplay of self-interactions and coupling to matter, chameleon particles have a mass that depends on the ambient matter density. The manifestation of the fifth force mediated by chameleons therefore depends sensitively on their environment, which makes for a rich phenomenology. In this article, we review two recent results on chameleon phenomenology. The first result a pair of no-go theorems limiting the cosmological impact of chameleons and their generalizations: i) the range of the chameleon force at cosmological density today can be at most ~Mpc; ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time. These theorems imply that chameleons have negligible effect on the linear growth of structure, and cannot account for the observed cosmic acceleration except as some form of dark energy. The second result pertains to the quantum stability of chameleon theories. We ...
Common Axioms for Inferring Classical Ensemble Dynamics and Quantum Theory
Parwani, R R
2005-01-01
Within a hamiltonian framework, the same set of physically motivated axioms is used to construct both the classical ensemble Hamilton-Jacobi equation and Schrodingers equation. Crucial roles are played by the assumptions of universality and simplicity (Occam's Razor) which restrict the number and type of of arbitrary constants that appear in the hamiltonian. In this approach, non-relativistic quantum theory is seen as the unique single parameter extension of the classical ensemble dynamics. The method is contrasted with other related constructions in the literature. Possible generalisation to the relativistic case, and some consequences of relaxing the axioms, are also discussed: for example, simple extensions of the linear Schrodinger equation lead to higher-derivative nonlinear corrections that are possibly related to gravity.
The theory of variational hybrid quantum-classical algorithms
McClean, Jarrod R; Babbush, Ryan; Aspuru-Guzik, Alán
2015-01-01
Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as "the quantum variational eigensolver" was developed with the philosophy that even minimal quantum resources could be made useful when used in conjunction with classical routines. In this work we extend the general theory of this algorithm and suggest algorithmic improvements for practical implementations. Specifically, we develop a variational adiabatic ansatz and explore unitary coupled cluster where we establish a connection from second order unitary coupled cluster to universal gate sets through relaxation of exponential splitting. We introduce the concept of quantum variational error suppression that allows some errors to be suppressed naturally in this algorithm on a pre-threshold quantum device. Additionally, we analyze truncation and correlated sampling in Hamiltonian averaging as ways to reduce the cost of this proced...
Fluctuations, temperature, and detailed balance in classical nucleation theory
Energy Technology Data Exchange (ETDEWEB)
McGraw, R. [Environmental Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973 (United States); LaViolette, R.A. [Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415 (United States)
1995-06-08
The role of temperature in classical nucleation theory is examined. It is shown that while even small clusters are assigned a temperature in the classical theory, this must be a fluctuating quantity. Stochastic simulations of cluster evaporation and growth are presented to track the temperature fluctuations in time. The relation {l_angle}{vert_bar}{delta}{ital T}{vert_bar}{sup 2}{r_angle}={ital kT}{sup @2}{ital d}0/{ital C}{sub {nu}} for the mean square temperature fluctuation is confirmed, where {ital k} is the Boltzmann constant, {ital C}{sub {nu}} is the cluster heat capacity, and {ital T}{sub 0} is the bath temperature. For small capillary drops (50--100 molecules), the resulting rms temperature fluctuations of 10{degree}--20{degree} might be expected to have a significant effect on the nucleation rate. However, the simulations reveal a cluster temperature distribution that is centered several degrees below {ital T}{sub 0}. A theory is presented to explain this effect. To first order, which includes Gaussian fluctuations of the cluster temperature {ital T}, we find that the effective temperature for cluster evaporation is {ital T}{minus}{ital h}/2{ital C}{sub {nu}}, where {ital h} is the latent heat. This temperature correction is precisely that required by detailed balance and results both in a centering of the cluster temperature distribution on {ital T}{sub 0} and a cancellation of any significant effect of temperature fluctuations on the nucleation rate.
a Classical Isodual Theory of Antimatter and its Prediction of Antigravity
Santilli, Ruggero Maria
An inspection of the contemporary physics literature reveals that, while matter is treated at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is solely treated at the level of second quantization. For the purpose of initiating the restoration of full equivalence in the treatment of matter and antimatter in due time, and as the classical foundations of an axiomatically consistent inclusion of gravitation in unified gauge theories recently appeared elsewhere, in this paper we present a classical representation of antimatter which begins at the primitive Newtonian level with corresponding formulations at all subsequent levels. By recalling that charge conjugation of particles into antiparticles is antiautomorphic, the proposed theory of antimatter is based on a new map, called isoduality, which is also antiautomorphic (and more generally, antiisomorphic), yet it is applicable beginning at the classical level and then persists at the quantum level where it becomes equivalent to charge conjugation. We therefore present, apparently for the first time, the classical isodual theory of antimatter, we identify the physical foundations of the theory as being the novel isodual Galilean, special and general relativities, and we show the compatibility of the theory with all available classical experimental data on antimatter. We identify the classical foundations of the prediction of antigravity for antimatter in the field of matter (or vice-versa) without any claim on its validity, and defer its resolution to specifically identified experiments. We identify the novel, classical, isodual electromagnetic waves which are predicted to be emitted by antimatter, the so-called space-time machine based on a novel non-Newtonian geometric propulsion, and other implications of the theory. We also introduce, apparently for the first time, the isodual space and time inversions and show that they are nontrivially different than the conventional ones, thus
Towards the mathematics of quantum field theory
Paugam, Frédéric
2014-01-01
The aim of this book is to introduce mathematicians (and, in particular, graduate students) to the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in play. This should in turn promote interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, even if the mathematical one is the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second...
Field Theory on Curved Noncommutative Spacetimes
Directory of Open Access Journals (Sweden)
Alexander Schenkel
2010-08-01
Full Text Available We study classical scalar field theories on noncommutative curved spacetimes. Following the approach of Wess et al. [Classical Quantum Gravity 22 (2005, 3511 and Classical Quantum Gravity 23 (2006, 1883], we describe noncommutative spacetimes by using (Abelian Drinfel'd twists and the associated *-products and *-differential geometry. In particular, we allow for position dependent noncommutativity and do not restrict ourselves to the Moyal-Weyl deformation. We construct action functionals for real scalar fields on noncommutative curved spacetimes, and derive the corresponding deformed wave equations. We provide explicit examples of deformed Klein-Gordon operators for noncommutative Minkowski, de Sitter, Schwarzschild and Randall-Sundrum spacetimes, which solve the noncommutative Einstein equations. We study the construction of deformed Green's functions and provide a diagrammatic approach for their perturbative calculation. The leading noncommutative corrections to the Green's functions for our examples are derived.
[Topics in field theory and string theory
International Nuclear Information System (INIS)
In the past year, I have continued to investigate the relations between conformal field theories and lattice statistical mechanical models. I have also tried to extend some of these results to higher dimensions and to find applications in string theories and other contexts
Non-Equilibrium Time Evolution in Quantum Field Theory
Wetterich, C.
1997-01-01
The time development of equal-time correlation functions in quantum mechanics and quantum field theory is described by an exact evolution equation for generating functionals. This permits a comparison between classical and quantum evolution in non-equilibrium systems.
Emergence Of A Classical World From Within Quantum Theory
Poulin, D
2005-01-01
The starting point of this dissertation is that a quantum state represents the observer's knowledge about the system of interest. As it has been pointed out several times by the opponents of this epistemic interpretation, it is difficult to reconcile this point of view with our common notion of “physical reality”, which exists independently of our monitoring, and can be discovered without disturbance. Indeed, if quantum theory is correct, it should apply to classical systems—including measurement devices—as well as to any other system. In this dissertation, we will study the quantum mechanisms responsible for our perception of the world and demonstrate how they lead to the emergence of an operational objective reality from within quantum theory: several observers gathering information through these mechanisms will arrive at a common consensus about the properties of the world. The two mechanisms we study in great detail are the redundant proliferation of information in ...
Marshaling Resources: A Classic Grounded Theory Study of Online Learners
Directory of Open Access Journals (Sweden)
Barbara Yalof
2014-06-01
Full Text Available Classic grounded theory (CGT was used to identify a main concern of online students in higher education. One of the main impediments to studying online is a sense of isolation and lack of access to support systems as students navigate through complex requirements of their online programs. Hypothetical probability statements illustrate the imbalance between heightened needs of virtual learners and perceived inadequate support provided by educational institutions. The core variable, marshaling resources, explains how peer supports sustain motivation toward successful program completion. Understanding the critical contribution virtual interpersonal networks make towards maximizing resources by group problem solving is a significant aspect of this theory. Keywords: Online learning, e-learning, personal learning networks, peer networks
Light-cone Wilson loop in classical lattice gauge theory
Laine, M
2013-01-01
The transverse broadening of an energetic jet passing through a non-Abelian plasma is believed to be described by the thermal expectation value of a light-cone Wilson loop. In this exploratory study, we measure the light-cone Wilson loop with classical lattice gauge theory simulations. We observe, as suggested by previous studies, that there are strong interactions already at short transverse distances, which may lead to more efficient jet quenching than in leading-order perturbation theory. We also verify that the asymptotics of the Wilson loop do not change qualitatively when crossing the light cone, which supports arguments in the literature that infrared contributions to jet quenching can be studied with dimensionally reduced simulations in the space-like domain. Finally we speculate on possibilities for full four-dimensional lattice studies of the same observable, perhaps by employing shifted boundary conditions in order to simulate ensembles boosted by an imaginary velocity.
Quiver theories for moduli spaces of classical group nilpotent orbits
Hanany, Amihay; Kalveks, Rudolph
2016-06-01
We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3 d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKähler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials.
Emergence of a classical world from within quantum theory
Poulin, David
The starting point of this dissertation is that a quantum state represents the observer's knowledge about the system of interest. As it has been pointed out several times by the opponents of this epistemic interpretation, it is difficult to reconcile this point of view with our common notion of "physical reality", which exists independently of our monitoring, and can be discovered without disturbance. Indeed, if quantum theory is correct, it should apply to classical systems---including measurement devices---as well as to any other system. In this dissertation, we will study the quantum mechanisms responsible for our perception of the world and demonstrate how they lead to the emergence of an operational objective reality from within quantum theory: several observers gathering information through these mechanisms will arrive at a common consensus about the properties of the world. The two mechanisms we study in great detail are the redundant proliferation of information in the environment and the direct measurement of a macroscopic observable. An example of the first mechanism is the photon environment which provides us with our visual data about the world. Several independent observers learning about their surroundings in this indirect fashion will agree on their findings. An example of the second mechanism is our tactile information: when the tip of our finger touches an object, it interacts collectively with a very large number of molecules. Again, under realistic assumptions, this type of information acquisition will lead to a classical perception of the world.
Thermal Quantum Field Theory and Perturbative Non-Equilibrium Dynamics
Millington, Peter William
2012-01-01
In this thesis, we develop a perturbative formulation of non-equilibrium thermalquantum field theory, capable of describing the evolution of both temporal and spa-tial inhomogeneities in relativistic, quantum-statistical ensembles. We begin with areview of the necessary prerequisites from classical thermodynamics, classical andquantum statistical mechanics, quantum field theory and equilibrium thermal fieldtheory. Setting general boundary conditions on the ensemble expectation values ofproduc...
Quantum Field Theory of Fluids
Gripaios, Ben; Sutherland, Dave
2015-01-01
The quantum theory of fields is largely based on studying perturbations around non-interacting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is `freer', in the sense that the non-interacting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree- and loop-level, we give evidence that a...
Field redefinition invariance in quantum field theory
Apfeldorf, K M; Apfeldorf, Karyn M; Ordonez, Carlos
1994-01-01
We investigate the consequences of field redefinition invariance in quantum field theory by carefully performing nonlinear transformations in the path integral. We first present a ``paradox'' whereby a 1+1 freemassless scalar theory on a Minkowskian cylinder is reduced to an effectively quantum mechanical theory. We perform field redefinitions both before and after reduction to suggest that one should not ignore operator ordering issues in quantum field theory. We next employ a discretized version of the path integral for a free massless scalar quantum field in d dimensions to show that beyond the usual jacobian term, an infinite series of divergent ``extra'' terms arises in the action whenever a nonlinear field redefinition is made. The explicit forms for the first couple of these terms are derived. We evaluate Feynman diagrams to illustrate the importance of retaining the extra terms, and conjecture that these extra terms are the exact counterterms necessary to render physical quantities invariant under fie...
Effective quantum field theories in general spacetimes
Raab, Andreas
2008-01-01
We introduce regular charts as physical reference frames in spacetime, and we show that general spacetimes can always be fully captured by regular charts. Effective quantum field theories (QFTs) can be conveniently defined in regular reference frames, and the definition is independent of specific background metric and independent of specific regular reference frame. As a consequence, coupling to classical gravity is possible in effective QFTs without getting back-reaction effects. Moreover, w...
Quantum field theory of K-mouflage
Brax, Philippe; Valageas, Patrick
2016-08-01
We consider K-mouflage models, which are K-essence theories coupled to matter. We analyze their quantum properties and in particular the quantum corrections to the classical Lagrangian. We setup the renormalization program for these models and show that, contrary to renormalizable field theories where renormalization by infinite counterterms can be performed in one step, K-mouflage theories involve a recursive construction whereby each set of counterterms introduces new divergent quantum contributions which in turn must be subtracted by new counterterms. This tower of counterterms can be in principle constructed step by step by recursion and allows one to calculate the finite renormalized action of the model. In particular, it can be checked that the classical action is not renormalized and that the finite corrections to the renormalized action contain only higher-derivative operators. We concentrate then on the regime where calculability is ensured, i.e., when the corrections to the classical action are negligible. We establish an operational criterion for classicality and show that this is satisfied in cosmological and astrophysical situations for (healthy) K-mouflage models which pass the solar system tests. These results rely on perturbation theory around a background and are only valid when the background configuration is quantum stable. We analyze the quantum stability of astrophysical and cosmological backgrounds and find that models that pass the solar system tests are quantum stable. We then consider the possible embedding of the K-mouflage models in an UV completion. We find that the healthy models which pass the solar system tests all violate the positivity constraint which would follow from the unitarity of the putative UV completion, implying that these healthy K-mouflage theories have no UV completion. We then analyze their behavior at high energy, and we find that the classicality criterion is satisfied in the vicinity of a high-energy collision
Quantum field theory in a semiotic perspective
Energy Technology Data Exchange (ETDEWEB)
Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)
2005-07-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Rydberg atoms in external fields as an example of open quantum systems with classical chaos
International Nuclear Information System (INIS)
We examine the quantum spectra of hydrogen atoms in external magnetic and electric fields above the ionization threshold with respect to signatures of classical chaos characteristics of open systems. The spectra are obtained by calculating wavefunctions and photionization cross sections in the continuum region with the aid of the complex-coordinate-rotation method. We find that the photoionization cross sections exhibit strong Ericson fluctuations, a quantum feature characteristic of classically chaotic scattering, in energy-field regions where classical trajectory calculations reveal a fractal dependence of the classical ionization time on the initial conditions. We also compare the nearest-neighbour-spacing distributions of complex resonance energies with predictions of random-matrix theories and find that our results are well reproduced by a Ginibre distribution. (author)
Integrable structures in quantum field theory
Negro, Stefano
2016-08-01
This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q-operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only.
Introduction of a Classical Level in Quantum Theory
Prosperi, G. M.
2016-11-01
In an old paper of our group in Milano a formalism was introduced for the continuous monitoring of a system during a certain interval of time in the framework of a somewhat generalized approach to quantum mechanics (QM). The outcome was a distribution of probability on the space of all the possible continuous histories of a set of quantities to be considered as a kind of coarse grained approximation to some ordinary quantum observables commuting or not. In fact the main aim was the introduction of a classical level in the context of QM, treating formally a set of basic quantities, to be considered as beables in the sense of Bell, as continuously taken under observation. However the effect of such assumption was a permanent modification of the Liouville-von Neumann equation for the statistical operator by the introduction of a dissipative term which is in conflict with basic conservation rules in all reasonable models we had considered. Difficulties were even encountered for a relativistic extension of the formalism. In this paper I propose a modified version of the original formalism which seems to overcome both difficulties. First I study the simple models of an harmonic oscillator and a free scalar field in which a coarse grain position and a coarse grained field respectively are treated as beables. Then I consider the more realistic case of spinor electrodynamics in which only certain coarse grained electric and magnetic fields are introduced as classical variables and no matter related quantities.
Studying thin film damping in a micro-beam resonator based on non-classical theories
Institute of Scientific and Technical Information of China (English)
Mina Ghanbari; Siamak Hossainpour; Ghader Rezazadeh
2016-01-01
In this paper, a mathematical model is presented for studying thin film damping of the surrounding fluid in an in-plane oscillating micro-beam resonator. The proposed model for this study is made up of a clamped-clamped micro-beam bound between two fixed layers. The micro-gap between the micro-beam and fixed layers is filled with air. As classical theories are not properly capable of pre-dicting the size dependence behaviors of the micro-beam, and also behavior of micro-scale fluid media, hence in the presented model, equation of motion governing longitudinal displacement of the micro-beam has been extracted based on non-local elasticity theory. Furthermore, the fluid field has been modeled based on micro-polar theory. These coupled equations have been simplified using Newton-Laplace and continuity equations. After transforming to non-dimensional form and linearizing, the equations have been discretized and solved simultaneously using a Galerkin-based reduced order model. Considering slip boundary conditions and applying a complex frequency approach, the equivalent damping ratio and quality factor of the micro-beam resonator have been obtained. The obtained values for the quality factor have been compared to those based on classical theories. We have shown that applying non-classical theories underestimate the values of the quality factor obtained based on classical theo-ries. The effects of geometrical parameters of the micro-beam and micro-scale fluid field on the quality factor of the res-onator have also been investigated.
Multisymplectic effective General Boundary Field Theory
Arjang, Mona
2013-01-01
The transfer matrix in lattice field theory connects the covariant and the initial data frameworks; in spin foam models, it can be written as a composition of elementary cellular amplitudes/propagators. We present a framework for discrete spacetime classical field theory in which solutions to the field equations over elementary spacetime cells may be amalgamated if they satisfy simple gluing conditions matching the composition rules of cellular amplitudes in spin foam models. Furthermore, the formalism is endowed with a multisymplectic structure responsible for local conservation laws. Some models within our framework are effective theories modeling a system at a given scale. Our framework allows us to study coarse graining and the continuum limit.
Energy Technology Data Exchange (ETDEWEB)
Lakhno, V. D., E-mail: lak@impb.psn.ru [Russian Academy of Sciences, Institute of Mathematical Problems of Biology (Russian Federation)
2013-06-15
A physical interpretation of translation-invariant polarons and bipolarons is presented, some results of their existence are discussed. Consideration is given to the problem of quantization in the vicinity of the classical solution in the quantum field theory. The lowest variational estimate is obtained for the bipolaron energy E({eta}) with E(0) = -0.440636{alpha}{sup 2}, where {alpha} is a constant of electron-phonon coupling, {eta} is a parameter of ion binding.
Half-String Approach to Closed String Field Theory
Antón, Fernando; Abdurrahman, A.; Bordes Villagrasa, José M.
1993-01-01
In this letter we present an operator formalism for Closed String Field Theory based on closed half-strings. Our results indicate that the restricted polyhedra of the classical non-polynomial string field theory, can be represented as traces of infinite matrices, with operator insertions that reparametrise the half-strings.
Kwak, Seung Ki
The existence of momentum and winding modes of closed string on a torus leads to a natural idea that the field theoretical approach of string theory should involve winding type coordinates as well as the usual space-time coordinates. Recently developed double field theory is motivated from this idea and it implements T-duality manifestly by doubling the coordinates. In this thesis we will mainly focus on the double field theory formulation of different string theories in its low energy limit: bosonic, heterotic, type II and its massive extensions, and N = 1 supergravity theory. In chapter 2 of the thesis we study the equivalence of different formulations of double field theory. There are three different formulations of double field theory: background field E formulation, generalized metric H formulation, and frame field EAM formulation. Starting from the frame field formalism and choosing an appropriate gauge, the equivalence of the three formulations of bosonic theory are explicitly verified. In chapter 3 we construct the double field theory formulation of heterotic strings. The global symmetry enlarges to O( D, D + n) for heterotic strings and the enlarged generalized metric features this symmetry. The structural form of bosonic theory can directly be applied to the heterotic theory with the enlarged generalized metric. In chapter 4 we develop a unified framework of double field theory for type II theories. The Ramond-Ramond potentials fit into spinor representations of the duality group O( D, D) and the theory displays Spin+( D, D) symmetry with its self-duality relation. For a specific form of RR 1-form the theory reduces to the massive deformation of type IIA theory due to Romans. In chapter 5 we formulate the N = 1 supersymmetric extension of double field theory including the coupling to n abelian vector multiplets. This theory features a local O(1, 9 + n) x O(1, 9) tangent space symmetry under which the fermions transform. (Copies available exclusively from
Scalar Field Dynamics Classical, Quantum and in Between
Salle, M; Vink, Jeroen C
2000-01-01
Using a Hartree ensemble approximation, we investigate the dynamics of the \\phi^4 model in 1+1 dimensions. We find that the fields initially thermalize with a Bose-Einstein distribution for the fields. Gradually, however, the distribution changes towards classical equipartition. Using suitable initial conditions quantum thermalization is achieved much faster than the onset of this undesirable equipartition. We also show how the numerical efficiency of our method can be significantly improved.
Complex analysis fundamentals of the classical theory of functions
Stalker, John
1998-01-01
This clear, concise introduction to the classical theory of one complex variable is based on the premise that "anything worth doing is worth doing with interesting examples." The content is driven by techniques and examples rather than definitions and theorems. This self-contained monograph is an excellent resource for a self-study guide and should appeal to a broad audience. The only prerequisite is a standard calculus course. The first chapter deals with a beautiful presentation of special functions. . . . The third chapter covers elliptic and modular functions. . . in much more detail, and from a different point of view, than one can find in standard introductory books. . . . For [the] subjects that are omitted, the author has suggested some excellent references for the reader who wants to go through these topics. The book is read easily and with great interest. It can be recommended to both students as a textbook and to mathematicians and physicists as a useful reference. ---Mathematical Reviews Mainly or...
Deformation Quantization of Principal Fibre Bundles and Classical Gauge Theories
Wei\\ss, Stefan
2010-01-01
In this dissertation the notion of deformation quantization of principal fibre bundles is established and investigated in order to find a geometric formulation of classical gauge theories on noncommutative space-times. As a generalization, the notion of deformation quantization of surjective submersions is also discussed. It is shown that deformation quantizations of surjective submersions and principal fibre bundles always exist and are unique up to equivalence. These statements concerning complex-valued functions are moreover formulated and proved for sections of arbitrary vector bundles over the total space, in particular equivariant vector bundles. The commutants of the deformed right module structures within the differential operators, playing an inportant role with regard to the infinitesimal gauge transformations, are computed explicitly in each case. Depending on the choice of specific covariant derivatives and connections the commutants are isomorphic to the formal power series of the respective vert...
Broken symmetries in field theory
Kok, Mark Okker de
2008-01-01
The thesis discusses the role of symmetries in Quantum Field Theory. Quantum Field Theory is the mathematical framework to describe the physics of elementary particles. A symmetry here means a transformation under which the model at hand is invariant. Three types of symmetry are distinguished: 1. In
Properties of double field theory
Penas, Victor Alejandro
2016-01-01
In this thesis we study several aspects of Double Field Theory (DFT). In general, Double Field Theory is subject to the so-called strong constraint. By using the Flux Formulation of DFT, we explore to what extent one can deal with the gauge consistency constraints of DFT without imposing the strong
Fundamental Elements and Interactions of Nature: A Classical Unification Theory
Directory of Open Access Journals (Sweden)
Tianxi Zhang
2010-04-01
Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are considered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interaction between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation-color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deepens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a
Fundamental Elements and Interactions of Nature: A Classical Unification Theory
Directory of Open Access Journals (Sweden)
Zhang T. X.
2010-04-01
Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are con- sidered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interac- tion between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation- color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deep- ens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a
Les Houches lectures on large N field theories and gravity
International Nuclear Information System (INIS)
We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. (authors)
On the classical limit of self-interacting quantum field Hamiltonians with cutoffs
AMMARI, Zied; Zerzeri, Maher
2012-01-01
We study, using Hepp's method, the propagation of coherent states for a general class of self interacting bosonic quantum field theories with spatial cutoffs. This includes models with non-polynomial interactions in the field variables. We show indeed that the time evolution of coherent states, in the classical limit, is well approximated by time-dependent affine Bogoliubov unitary transformations. Our analysis relies on a non-polynomial Wick quantization and a specific hypercontractive estim...
Classical dynamics of a charged particle in a laser field beyond the dipole approximation
Jameson, Paul; Khvedelidze, Arsen
2008-01-01
The classical dynamics of a charged particle traveling in a laser field modeled by an elliptically polarized monochromatic electromagnetic plane wave is discussed within the time reparametrization invariant form of the non-relativistic Hamilton-Jacobi theory. The exact parametric representation for a particle's orbit in an arbitrary plane wave background beyond the dipole approximation and including effect of the magnetic field is derived. For an elliptically polarized monochromatic plane wav...
On the History of Unified Field Theories
Directory of Open Access Journals (Sweden)
Goenner Hubert F.M.
2004-01-01
Full Text Available This article is intended to give a review of the history of the classical aspects of unified field theories in the 20th century. It includes brief technical descriptions of the theories suggested, short biographical notes concerning the scientists involved, and an extensive bibliography. The present first installment covers the time span between 1914 and 1933, i.e., when Einstein was living and working in Berlin - with occasional digressions into other periods. Thus, the main theme is the unification of the electromagnetic and gravitational fields augmented by short-lived attempts to include the matter field described by Schrödinger's or Dirac's equations. While my focus lies on the conceptual development of the field, by also paying attention to the interaction of various schools of mathematicians with the research done by physicists, some prosopocraphical remarks are included.
Natural discretization in noncommutative field theory
Energy Technology Data Exchange (ETDEWEB)
Acatrinei, Ciprian Sorin, E-mail: acatrine@theory.nipne.ro [Department of Theoretical Physics, Horia Hulubei National Institute for Nuclear Physics, Bucharest (Romania)
2015-12-07
A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.
Patterns in open string field theory solutions
International Nuclear Information System (INIS)
In open string field theory the kinetic operator mixes matter and ghost sectors, and thus the ghost structure of classical solutions is not universal. Nevertheless, we have found from numerical analysis that certain ratios of expectation values for states involving pure ghost excitations appear to be universal. We give an analytic expression for these ratios and find good evidence that they are common to all known solutions of open string field theory, including the tachyon vacuum solution, lump solutions and string fields representing marginal deformations. We also draw attention to a close correspondence between the expectation values for the pure matter components in the tachyon vacuum solution and those in the solution of a simpler equation for a ghost number zero string field. Finally we observe that the action of L0 on the tachyon condensate gives a state that is approximately factorized into a matter and a ghost part. (author)
Kreuzer, H.; Watanabe, K
1988-01-01
We discuss the explicit construction of diabatic states which form the basis to study the kinetics of field desorption, ionization and eventually field-induced surface chemistry. We indicate the calculation of the temperature and field dependence of energy dependent ion yields starting from a master equation.
Solutions in Exceptional Field Theory
Rudolph, Felix J
2015-01-01
Exceptional Field Theory employs an extended spacetime to make supergravity fully covariant under the U-duality groups of M-theory. This allows for the wave and monopole solutions to be combined into a single solution which obeys a twisted self-duality relation. All fundamental, solitonic and Dirichlet branes of ten- and eleven-dimensonal supergravity may be extracted from this single solution in Exceptional Field Theory.
Renormalization and effective field theory
Costello, Kevin
2011-01-01
This book tells mathematicians about an amazing subject invented by physicists and it tells physicists how a master mathematician must proceed in order to understand it. Physicists who know quantum field theory can learn the powerful methodology of mathematical structure, while mathematicians can position themselves to use the magical ideas of quantum field theory in "mathematics" itself. The retelling of the tale mathematically by Kevin Costello is a beautiful tour de force. --Dennis Sullivan This book is quite a remarkable contribution. It should make perturbative quantum field theory accessible to mathematicians. There is a lot of insight in the way the author uses the renormalization group and effective field theory to analyze perturbative renormalization; this may serve as a springboard to a wider use of those topics, hopefully to an eventual nonperturbative understanding. --Edward Witten Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorio...
Santos Júnior, S. I.; Cardoso, J. G.
2016-10-01
The world formulation of the full theory of classical Proca fields in generally relativistic spacetimes is reviewed. Subsequently, the entire set of field equations is transcribed in a straightforward way into the framework of one of the Infeld-van der Waerden formalisms. Some well-known calculational techniques are then utilized for deriving the wave equations that control the propagation of the fields allowed for. It appears that no interaction couplings between such fields and electromagnetic curvatures are ultimately carried by the wave equations at issue. What results is, in effect, that the only interactions which occur in the theoretical context under consideration involve strictly Proca fields and wave functions for gravitons.
Charged free fermions, vertex operators and the classical theory of conjugate nets
International Nuclear Information System (INIS)
We show that the quantum field theoretical formulation of the τ-function theory has a geometrical interpretation within the classical transformation theory of conjugate nets. In particular, we prove that (i) the partial charge transformations preserving the neutral sector are Laplace transformations, (ii) the basic vertex operators are Levy and adjoint Levy transformations and (iii) the diagonal soliton vertex operators generate fundamental transformations. We also show that the bilinear identity for the multicomponent Kadomtsev-Petviashvili hierarchy becomes, through a generalized Miwa map, a bilinear identity for the multidimensional quadrilateral lattice equations. (author)
Charged free fermions, vertex operators and the classical theory of conjugate nets
Energy Technology Data Exchange (ETDEWEB)
Doliwa, Adam [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome (Italy); Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Warsaw (Poland); Manas, Manuel [Departamento de Matematica Aplicada y Estadistica, EUIT Aeronautica, Universidad Politecnica de Madrid, Madrid (Spain); Departamento de Fisica Teorica, Universidad Complutense, Madrid (Spain); Martinez Alonso, Luis; Medina, Elena [Departamento de Matematicas, Universidad de Cadiz, Cadiz (Spain); Santini, Paolo Maria [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome (Italy); Dipartimento di Fisica, Universita di Catania, Catania (Italy)
1999-02-19
We show that the quantum field theoretical formulation of the {tau}-function theory has a geometrical interpretation within the classical transformation theory of conjugate nets. In particular, we prove that (i) the partial charge transformations preserving the neutral sector are Laplace transformations, (ii) the basic vertex operators are Levy and adjoint Levy transformations and (iii) the diagonal soliton vertex operators generate fundamental transformations. We also show that the bilinear identity for the multicomponent Kadomtsev-Petviashvili hierarchy becomes, through a generalized Miwa map, a bilinear identity for the multidimensional quadrilateral lattice equations. (author)
Nonlocal and quasi-local field theories
Tomboulis, E T
2015-01-01
We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasi-local (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasi-local kernels all acausal effects are confined within the compact support regi...
Background formalism for superstring field theory
International Nuclear Information System (INIS)
In the framework of the background formalism we analyse possible versions of the Witten-type NSR superstring field theory. We find the picture for string fields to be uniquely fixed by the requirement that the perturbative classical solutions are well-defined. This uniquely defined picture and the corresponding action are different from the ones in Witten's theory and coincide with the ones proposed from different reasons in our previous paper. Following the same background method we calculate the tree-level scattering amplitudes for the new action and argue that in contrast to the ones in Witten's original theory, the amplitudes are singularity-free and hence there is no need to add any tree-level counterterms. We also prove the amplitudes to reproduce correctly the first quantized results. (orig.)
An assessment of Evans' unified field theory II
Hehl, F W; Hehl, Friedrich W.; Obukhov, Yuri N.
2007-01-01
Evans developed a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. In an accompanying paper I, we analyzed this theory and summarized it in nine equations. We now propose a variational principle for Evans' theory and show that it yields two field equations. The second field equation is algebraic in the torsion and we can resolve it with respect to the torsion. It turns out that for all physical cases the torsion vanishes and the first field equation, together with Evans' unified field theory, collapses to an ordinary Einstein equation.
[Topics in field theory and string theory
International Nuclear Information System (INIS)
In the past year, I have continued to investigate the relations between conformal field theories and lattice statistical mechanical models, and in particular have been studying two dimensional models coupled to quantum gravity. I have continued as well to consider possible extension of these results to higher dimensions and potential applications in other contexts
Towards state locality in quantum field theory: free fermions
Oeckl, Robert
2013-01-01
We provide a restricted solution to the state locality problem in quantum field theory for the case of free fermions. Concretely, we present a functorial quantization scheme that takes as input a classical free fermionic field theory. Crucially, no data is needed beyond the classical structures evident from a Lagrangian setting. The output is a quantum field theory encoded in a weakened version of the positive formalism of the general boundary formulation. When the classical data is augmented with complex structures on hypersurfaces, the quantum data correspondingly augment to the full positive formalism and the standard quantization of free fermionic field theory is recovered. This augmentation can be performed selectively, i.e., it may be limited to a subcollection of hypersurfaces. The state locality problem arises from the fact that suitable complex structures only exist on a very restricted class of unbounded hypersurfaces. But standard quantization requires them on all hypersurfaces and is thus only abl...
The Nonlinear Field Space Theory
Mielczarek, Jakub; Trześniewski, Tomasz
2016-08-01
In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the "Principle of finiteness" of physical theories, which once motivated the Born-Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.
Spatial Wilson loops in the classical field of high-energy heavy-ion collisions
Petreska, Elena
2013-01-01
It has been previously shown numerically that the expectation value of the magnetic Wilson loop at the initial time of a heavy-ion collision exhibits area law scaling. This was obtained for a classical non-Abelian gauge field in the forward light cone and for loops of area $A\\gsim 2/Q_s^2$. Here, we present an analytic calculation of the spatial Wilson loop evaluated in the classical field of a collision within perturbation theory. We show that the leading diagram corresponds to two sources, for both projectile and target, whose field is evaluated at second order in the gauge potential. We find that in ``naive'' perturbation theory without screening the magnetic flux through a loop is proportional to the square of its area.
Introduction to quantum field theory
International Nuclear Information System (INIS)
The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs
Double Field Theory on Group Manifolds (Thesis)
Hassler, Falk
2015-01-01
This thesis deals with Double Field Theory (DFT), an effective field theory capturing the low energy dynamics of closed strings on a torus. It renders T-duality on a torus manifest by adding $D$ winding coordinates in addition to the $D$ space time coordinates. An essential consistency constraint of the theory, the strong constraint, only allows for field configurations which depend on half of the coordinates of the arising doubled space. I derive DFT${}_\\mathrm{WZW}$, a generalization of the current formalism. It captures the low energy dynamics of a closed bosonic string propagating on a compact group manifold. Its classical action and the corresponding gauge transformations arise from Closed String Field Theory up to cubic order in the massless fields. These results are rewritten in terms of a generalized metric and extended to all orders in the fields. There is an explicit distinction between background and fluctuations. For the gauge algebra to close, the latter have to fulfill a modified strong constrai...
Raykov, Tenko; Marcoulides, George A.
2016-01-01
The frequently neglected and often misunderstood relationship between classical test theory and item response theory is discussed for the unidimensional case with binary measures and no guessing. It is pointed out that popular item response models can be directly obtained from classical test theory-based models by accounting for the discrete…
Phase-space Quantization of Field Theory
Zachos, C K; Curtright, Thomas; Zachos, Cosmas
1999-01-01
In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple-indeed, classical-for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published in J Phys A32 (1999) 771 and Phys Rev D58 (1998) 025002, reported at the Yukawa Institute Workshop "Gauge Theory and Integrable Models", 26-29 January, 1999.
Thermo-Field Extension of Open String Field Theory
Cantcheff, M Botta
2015-01-01
We study the implementation of Thermo Field Dynamics (TFD) to the covariant formulation of Open String Field Theory (OSFT). In this paper, we extend the state space and fields according to the duplication rules of TFD and construct the corresponding classical action. The result is a theory whose fields would encode the statistical information of open strings and, noticeably, present degrees of freedom that could be identified as those of closed strings. The physical spectrum of the free theory is studied through the cohomology of the extended BRST charge, and, as a result, we get new fields in the spectrum. We also show, however, that their appearing in the action is directly related to the choice of the inner product in the extended algebra, so that many fields could be eliminated from the theory by choosing that product conveniently. Finally, we study the extension of the three-vertex interaction and provide a simple prescription for it whose results at tree-level amplitudes agree with those of the conventi...
On the Foundational Equations of the Classical Theory of Electrodynamics
Mansuripur, Masud
2014-01-01
A close examination of the Maxwell-Lorentz theory of electrodynamics reveals that polarization and magnetization of material media need not be treated as local averages over small volumes - volumes that nevertheless contain a large number of electric and/or magnetic dipoles. Indeed, Maxwell's macroscopic equations are exact and self-consistent mathematical relations between electromagnetic fields and their sources, which consist of free charge, free current, polarization, and magnetization. When necessary, the discrete nature of the constituents of matter and the granularity of material media can be handled with the aid of special functions, such as Dirac's delta-function. The energy of the electromagnetic field and the exchange of this energy with material media are treated with a single postulate that establishes the Poynting vector S = ExH as the rate of flow of electromagnetic energy under all circumstances. Similarly, the linear and angular momentum densities of the fields are simple functions of the Poy...
Quantum field theory competitive models
Tolksdorf, Jürgen; Zeidler, Eberhard
2009-01-01
For more than 70 years, quantum field theory (QFT) can be seen as a driving force in the development of theoretical physics. Equally fascinating is the fruitful impact which QFT had in rather remote areas of mathematics. The present book features some of the different approaches, different physically viewpoints and techniques used to make the notion of quantum field theory more precise. For example, the present book contains a discussion including general considerations, stochastic methods, deformation theory and the holographic AdS/CFT correspondence. It also contains a discussion of more recent developments like the use of category theory and topos theoretic methods to describe QFT. The present volume emerged from the 3rd 'Blaubeuren Workshop: Recent Developments in Quantum Field Theory', held in July 2007 at the Max Planck Institute of Mathematics in the Sciences in Leipzig/Germany. All of the contributions are committed to the idea of this workshop series: 'To bring together outstanding experts working in...
Maxfield, Travis; Sethi, Savdeep
2015-01-01
Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.
Cubic Twistorial String Field Theory
Berkovits, Nathan; Motl, Lubos
2004-01-01
Witten has recently proposed a string theory in twistor space whose D-instanton contributions are conjectured to compute N=4 super-Yang-Mills scattering amplitudes. An alternative string theory in twistor space was then proposed whose open string tree amplitudes reproduce the D-instanton computations of maximal degree in Witten's model. In this paper, a cubic open string field theory action is constructed for this alternative string in twistor space, and is shown to be invariant under parity ...
The Theory of Conceptual Fields
Vergnaud, Gerard
2009-01-01
The theory of conceptual fields is a developmental theory. It has two aims: (1) to describe and analyse the progressive complexity, on a long- and medium-term basis, of the mathematical competences that students develop inside and outside school, and (2) to establish better connections between the operational form of knowledge, which consists in…
On Classical de Sitter Vacua in String Theory
Wrase, Timm
2010-01-01
We review the prospect of obtaining tree-level de Sitter (dS) vacua and slow-roll inflation models in string compactifications. Restricting ourselves to the closed string sector and assuming the absence of NSNS-sources, we classify the minimal classical ingredients that evade the simplest no-go theorems against dS vacua and inflation. Spaces with negative integrated curvature together with certain combinations of low-dimensional orientifold planes and low-rank RR-fluxes emerge as the most promising setups of this analysis. We focus on two well-controlled classes that lead to an effective 4D, N=1 supergravity description: Type IIA theory on group or coset manifolds with SU(3)-structure and O6-planes, as well as type IIB compactifications on SU(2)-structure manifolds with O5- and O7-planes. While fully stabilized AdS vacua are generically possible, a number of problems encountered in the search for dS vacua are discussed.
Backreaction to wormhole by classical scalar field: Will classical scalar field destroy wormhole?
Kim, Sung-Won
1999-01-01
There are two effects of extra matter fields on the Lorentzian traversable wormhole. The ``primary effect'' says that the extra matter can afford to be a part of source or whole source of the wormhole when the wormhole is being formed. Thus the matter does not affect the stability of wormhole and the wormhole is still safe. If the extra matter is extotic, it can be the whole part of the source of the wormhole. The ``auxiliary effect'' is that the extra matter plays the role of the additional ...
Neural fields theory and applications
Graben, Peter; Potthast, Roland; Wright, James
2014-01-01
With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...
Solutions in Exceptional Field Theory
Energy Technology Data Exchange (ETDEWEB)
Rudolph, Felix J. [Queen Mary University of London, Centre for Research in String Theory, School of Physics, London (United Kingdom)
2016-04-15
Exceptional Field Theory employs an extended spacetime to make supergravity fully covariant under the U-duality groups of M-theory. This allows for the wave and monopole solutions to be combined into a single solution which obeys a twisted self-duality relation. All fundamental, solitonic and Dirichlet branes of ten- and eleven-dimensonal supergravity may be extracted from this single solution in Exceptional Field Theory. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Superstring field theory equivalence: Ramond sector
Kroyter, Michael
2009-01-01
We extend the classical equivalence between the cubic and the non-polynomial open superstring field theories to the Ramond sector. To that end we find mappings between the string fields (NS and Ramond, including Chan-Paton factors and the various GSO sectors) of the two theories that send solutions to solutions in a way that respects the gauge symmetries in both sides and keeps the action of the solutions invariant. The perturbative spectrum around equivalent solutions is also isomorphic. We show that the gauge symmetry of the Ramond sector of the modified cubic theory suffers from collisions of picture changing operators. Our mapping works at the level of the linearized gauge transformation, which is well-defined. Nonetheless, the familiar form of the cubic theory is inconsistent and should be modified. Hence, at this level, our equivalence is only formal, since it relates a consistent theory to an inconsistent one. At the non-polynomial theory the Ramond sector is described using two constrained string fiel...
Geometer energy unified field theory
Rivera, Susana; Rivera, Anacleto
GEOMETER - ENERGY UNIFIED FIELD THEORY Author: Anacleto Rivera Nivón Co-author: Susana Rivera Cabrera This work is an attempt to find the relationship between the Electromagnetic Field and the Gravitational Field. Despite it is based on the existence of Strings of Energy, it is not the same kind of strings that appears on other theories like Superstring Theory, Branas Theory, M - Theory, or any other related string theories. Here, the Strings are concentrated energy lines that vibrates, and experiences shrinking and elongations, absorbing and yielding on each contraction and expansion all that is found in the Universe: matter and antimatter, waves and energy in all manifestations. In contrast to superstring theory, which strings are on the range of the Length of Planck, these Strings can be on the cosmological size, and can contain many galaxies, or clusters, or groups of galaxies; but also they can reach as small sizes as subatomic levels. Besides, and contrary to what it is stated in some other string theories that need the existence of ten or more dimensions, the present proposal sustains in only four particular dimensions. It has been developed a mathematical support that will try to help to improve the understanding of the phenomena that take place at the Universe.
Cubic twistorial string field theory
Energy Technology Data Exchange (ETDEWEB)
Berkovits, Nathan; Motl, Lubos E-mail: motl@feynman.harvard.edu
2004-04-01
Witten has recently proposed a string theory in twistor space whose D-instanton contributions are conjectured to compute N=4 super-Yang-Mills scattering amplitudes. An alternative string theory in twistor space was then proposed whose open string tree amplitudes reproduce the D-instanton computations of maximal degree in Witten's model. In this paper, a cubic open string field theory action is constructed for this alternative string in twistor space, and is shown to be invariant under parity transformations which exchange MHV and googly amplitudes. Since the string field theory action is gauge-invariant and reproduces the correct cubic super-Yang-Mills interactions, it provides strong support for the conjecture that the string theory correctly computes N-point super-Yang-Mills tree amplitudes. (author)
Cubic Twistorial String Field Theory
Berkovits, N; Berkovits, Nathan; Motl, Lubos
2004-01-01
Witten has recently proposed a string theory in twistor space whose D-instanton contributions are conjectured to compute N=4 super-Yang-Mills scattering amplitudes. An alternative string theory in twistor space was then proposed whose open string tree amplitudes reproduce the D-instanton computations of maximal degree in Witten's model. In this paper, a cubic open string field theory action is constructed for this alternative string in twistor space, and is shown to be invariant under parity transformations which exchange MHV and googly amplitudes. Since the string field theory action is gauge-invariant and reproduces the correct cubic super-Yang-Mills interactions, it provides strong support for the conjecture that the string theory correctly computes N-point super-Yang-Mills tree amplitudes.
Lectures on Conformal Field Theory
Qualls, Joshua D
2015-01-01
These lectures notes are based on courses given at National Taiwan University, National Chiao-Tung University, and National Tsing Hua University in the spring term of 2015. Although the course was offered primarily for graduate students, these lecture notes have been prepared for a more general audience. They are intended as an introduction to conformal field theories in various dimensions, with applications related to topics of particular interest: topics include the conformal bootstrap program, boundary conformal field theory, and applications related to the AdS/CFT correspondence. We assume the reader to be familiar with quantum mechanics at the graduate level and to have some basic knowledge of quantum field theory. Familiarity with string theory is not a prerequisite for this lectures, although it can only help.
Field theory approaches to new media practices
DEFF Research Database (Denmark)
Hartley, Jannie Møller; Willig, Ida; Waltorp, Karen
2015-01-01
In this article introducing the theme of the special issue we argue that studies of new media practices might benefit from especially Pierre Bourdieu’s research on cultural production. We introduce some of the literature, which deals with the use of digital media, and which have taken steps to...... develop field theory in this context. Secondly, we present the four thematic articles in this issue and the articles outside the theme, which includes two translations of classic texts within communication and media research. This introduction article concludes by encouraging media scholars to embark on...... more studies within a field theory framework, as the ability of the comprehensive theoretical work and the ideas of a reflexive sociology is able to trigger the good questions, more than it claims to offer a complete and self-sufficient sociology of media and inherent here also new media....
Background Independent String Field Theory
Bars, Itzhak
2014-01-01
We develop a new background independent Moyal star formalism in bosonic open string field theory. The new star product is formulated in a half-phase-space, and because phase space is independent of any background fields, the interactions are background independent. In this basis there is a large amount of symmetry, including a supersymmetry OSp(d|2) that acts on matter and ghost degrees of freedom, and simplifies computations. The BRST operator that defines the quadratic kinetic term of string field theory may be regarded as the solution of the equation of motion A*A=0 of a purely cubic background independent string field theory. We find an infinite number of non-perturbative solutions to this equation, and are able to associate them to the BRST operator of conformal field theories on the worldsheet. Thus, the background emerges from a spontaneous-type breaking of a purely cubic highly symmetric theory. The form of the BRST field breaks the symmetry in a tractable way such that the symmetry continues to be us...
Purely cubic action for string field theory
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
The Nonlinear Field Space Theory
Jakub Mielczarek; Tomasz Trześniewski
2016-01-01
In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we prese...
On the general theory of quantized fields
International Nuclear Information System (INIS)
In my lecture I describe the present stage of the general theory of quantized fields on the example of 5 subjects. They are ordered in the direction from large to small distances. The first one is the by now classical problem of the structure of superselection sectors. It involves the behavior of the theory at spacelike infinity and is directly connected with particle statistics and internal symmetries. It has become popular in recent years by the discovery of a lot of nontrivial models in 2d conformal-field theory, by connections to integrable models and critical behavior in statistical mechanics and by the relations to the Jones' theory of subfactors in von Neumann algebras and to the corresponding geometrical objects (braids, knots, 3d manifolds, ...). At large timelike distances the by far most important feature of quantum field theory is the particle structure. This will be the second subject of my lecture. It follows the technically most involved part which is concerned with the behavior at finite distances. Two aspets, nuclearity which emphasizes the finite density of states in phase space, and the modular structure which relies on the infinite number of degrees of freedom present even locally, and their mutual relations will be treated. The next point, involving the structure at infinitesimal distances, is the connection between the Haag-Kastler framework of algebras of local and the framework of Wightman fields. Finally, problems in approaches to quantum gravity will be discussed, as far as they are accessible by the methods of the general theory of quantized fields. (orig.)
Controlling entanglement sudden death in cavity QED by classical driving fields
Zhang, Jian-Song; Xu, Jing-Bo; Lin, Qiang
2008-01-01
We investigate the entanglement dynamics of a quantum system consisting of two-level atoms interacting with vacuum or thermal fields with classical driving fields. We find that the entanglement of the system can be improved by adjusting the classical driving field. The influence of the classical field and the purity of the initial state on the entanglement sudden death is also studied. It is shown that the time of entanglement sudden death can be controlled by the classical driving fields. Pa...
Electromagnetic field theories for engineering
Salam, Md Abdus
2014-01-01
A four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.
A reappraisal of classical archetype theory and its implications for theory and practice.
Merchant, John
2009-06-01
This paper begins with an overview of contemporary approaches to archetype theory and notes the radical nature of certain deductions. Some argue that there is no 'archetype-as-such' as a pre-existing entity at the core of a complex driving its formation whilst the findings of current neuroscience are calling into question one very thing on which the classical theory is built--innatism. Knox's argument for image schemas raises the question as to the extent to which archetypes can be conceived in any preformationist sense. The question is then posed--to what extent can Jung's classical theory of archetypes be read in light of these current models? The case examples Jung uses to evidence the existence of archetypes, his explications of synchronicity and his own Philemon experience are then reappraised. The conclusion is drawn that it is difficult to evidence the existence of autonomous archetypes unrelated to personal affective experience. Not only would this be expected by emergent/developmental models of archetype but it can explain many of Jung's disjunctive statements about archetype constellation; the difficulties in separating personal and collective psychic content and Jung's apparent Lamarckianism. The implications of these models for theory, clinical practice and analyst training are then offered for discussion.
A reappraisal of classical archetype theory and its implications for theory and practice.
Merchant, John
2009-06-01
This paper begins with an overview of contemporary approaches to archetype theory and notes the radical nature of certain deductions. Some argue that there is no 'archetype-as-such' as a pre-existing entity at the core of a complex driving its formation whilst the findings of current neuroscience are calling into question one very thing on which the classical theory is built--innatism. Knox's argument for image schemas raises the question as to the extent to which archetypes can be conceived in any preformationist sense. The question is then posed--to what extent can Jung's classical theory of archetypes be read in light of these current models? The case examples Jung uses to evidence the existence of archetypes, his explications of synchronicity and his own Philemon experience are then reappraised. The conclusion is drawn that it is difficult to evidence the existence of autonomous archetypes unrelated to personal affective experience. Not only would this be expected by emergent/developmental models of archetype but it can explain many of Jung's disjunctive statements about archetype constellation; the difficulties in separating personal and collective psychic content and Jung's apparent Lamarckianism. The implications of these models for theory, clinical practice and analyst training are then offered for discussion. PMID:19531124
Currents in supersymmetric field theories
Derendinger, Jean-Pierre
2016-01-01
A general formalism to construct and improve supercurrents and source or anomaly superfields in two-derivative N=1 supersymmetric theories is presented. It includes arbitrary gauge and chiral superfields and a linear superfield coupled to gauge fields. These families of supercurrent structures are characterized by their energy-momentum tensors and R currents and they display a specific relation to the dilatation current of the theory. The linear superfield is introduced in order to describe the gauge coupling as a background (or propagating) field. Supersymmetry does not constrain the dependence on this gauge coupling field of gauge kinetic terms and holomorphicity restrictions are absent. Applying these results to an effective (Wilson) description of super-Yang-Mills theory, matching or cancellation of anomalies leads to an algebraic derivation of the all-order NSVZ beta function.
Stringlike object in quantum field theory
International Nuclear Information System (INIS)
We investigate the dynamical structure of an extended object in field theory which admits static classical solutions with stringlike structure without magnetic sources. The stringlike object is specified with its two end-points and field excitations confined in the object. The Hamiltonian of the system in the non-relativistic approximation takes the form similar to that of a rotating elastic bar, though the mass density depends on the direction of the motion. The center-of-mass motion and the internal motion are no longer independent, so that the size of the extended object becomes momentum dependent. The internal field excitations, some of which correspond to the vibrations of the string line, yield an extra potential for the internal motion. (auth.)
A Lagrangian effective field theory
Vlah, Zvonimir; White, Martin; Aviles, Alejandro
2015-01-01
We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tam...
Classical and quantum particle dynamics in univariate background fields
Heinzl, Thomas; King, Ben
2016-01-01
We investigate deviations from the plane wave model in the interaction of charged particles with strong electromagnetic fields. A general result is that integrability of the dynamics is lost when going from lightlike to timelike or spacelike field dependence. For a special scenario in the classical regime we show how the radiation spectrum in the spacelike (undulator) case becomes well-approximated by the plane wave model in the high energy limit, despite the two systems being Lorentz inequivalent. In the quantum problem, there is no analogue of the WKB-exact Volkov solution. Nevertheless, WKB and uniform-WKB approaches give good approximations in all cases considered. Other approaches that reduce the underlying differential equations from second to first order are found to miss the correct physics for situations corresponding to barrier transmission and wide-angle scattering.
Bosonic colored group field theory
Energy Technology Data Exchange (ETDEWEB)
Ben Geloun, Joseph [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France); University of Abomey-Calavi, Cotonou (BJ). International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair); Universite Cheikh Anta Diop, Departement de Mathematiques et Informatique, Faculte des Sciences et Techniques, Dakar (Senegal); Magnen, Jacques [Ecole Polytechnique, Centre de Physique Theorique, Palaiseau Cedex (France); Rivasseau, Vincent [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)
2010-12-15
Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the ''ultraspin'' (large spin) limit. The results are generalized in any dimension. Finally, integrating out two colors we write a new representation, which could be useful for the constructive analysis of this type of models. (orig.)
Unitarity of Superstring Field Theory
Sen, Ashoke
2016-01-01
We complete the proof of unitarity of (compactified) heterotic and type II string field theories by showing that in the cut diagrams only physical states appear in the sum over intermediate states. This analysis takes into account the effect of mass and wave-function renormalization, and the possibility that the true vacuum may be related to the perturbative vacuum by small shifts in the string fields.
Effective field theory of dissipative fluids
Crossley, Michael; Liu, Hong
2015-01-01
We develop an effective field theory for dissipative fluids which governs the dynamics of gapless modes associated to conserved quantities. The system is put in a curved spacetime and coupled to external sources for charged currents. The invariance of the hydrodynamical action under gauge symmetries and diffeomorphisms suggests a natural set of dynamical variables which provide a mapping between an emergent "fluid spacetime" and the physical spacetime. An essential aspect of our formulation is to identify the appropriate symmetries in the fluid spacetime. Our theory applies to nonlinear disturbances around a general density matrix. For a thermal density matrix, we require an additional Z_2 symmetry, to which we refer as the local KMS condition. This leads to the standard constraints of hydrodynamics, as well as a nonlinear generalization of the Onsager relations. It also leads to an emergent supersymmetry in the classical statistical regime, with a higher derivative version required for the full quantum regim...
Traffic breakdown at a signal: classical theory versus the three-phase theory of city traffic
International Nuclear Information System (INIS)
Physical reasons for a crucial difference between the results of a three-phase theory developed recently (Kerner 2011 Phys. Rev. E 84 045102(R); 2013 Europhys. Lett. 102 28010; 2014 Physica A 397 76) and the classical theory are explained. Microscopic characteristics of traffic passing a traffic signal during the green signal phase and their dependence on the duration of the green phase have been found. It turns out that a moving synchronized flow pattern (MSP), which occurs in under-saturated traffic at the signal, causes ‘compression’ of traffic flow: the rate of MSP discharge can be considerably larger than the saturation flow rate of the classical traffic theory of city traffic. This leads to a considerably larger rate of traffic passing the signal in comparison with the saturation flow rate. This effect together with traffic behavior at the upstream queue front explains the metastability of under-saturated traffic with respect to a random time-delayed traffic breakdown. (paper)
Traffic breakdown at a signal: classical theory versus the three-phase theory of city traffic
Kerner, Boris S.; Klenov, Sergey L.; Schreckenberg, Michael
2014-03-01
Physical reasons for a crucial difference between the results of a three-phase theory developed recently (Kerner 2011 Phys. Rev. E 84 045102(R); 2013 Europhys. Lett. 102 28010; 2014 Physica A 397 76) and the classical theory are explained. Microscopic characteristics of traffic passing a traffic signal during the green signal phase and their dependence on the duration of the green phase have been found. It turns out that a moving synchronized flow pattern (MSP), which occurs in under-saturated traffic at the signal, causes ‘compression’ of traffic flow: the rate of MSP discharge can be considerably larger than the saturation flow rate of the classical traffic theory of city traffic. This leads to a considerably larger rate of traffic passing the signal in comparison with the saturation flow rate. This effect together with traffic behavior at the upstream queue front explains the metastability of under-saturated traffic with respect to a random time-delayed traffic breakdown.
Quantum Field Theory in Graphene
Fialkovsky, I. V.; Vassilevich, D. V.
2011-01-01
This is a short non-technical introduction to applications of the Quantum Field Theory methods to graphene. We derive the Dirac model from the tight binding model and describe calculations of the polarization operator (conductivity). Later on, we use this quantity to describe the Quantum Hall Effect, light absorption by graphene, the Faraday effect, and the Casimir interaction.
Boundary Logarithmic Conformal Field Theory
Kogan, I I; Kogan, Ian I.; Wheater, John F.
2000-01-01
We discuss the effect of boundaries in boundary logarithmic conformal field theory and show, with reference to both $c=-2$ and $c=0$ models, how they produce new features even in bulk correlation functions which are not present in the corresponding models without boundaries. We show how Cardy's relation between boundary states and bulk quantities is modified.
Multivector field formulation of Hamiltonian field theories: equations and symmetries
Energy Technology Data Exchange (ETDEWEB)
Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. [Departamento de Matematica Aplicada y Telematica, Edificio C-3, Campus Norte UPC, Barcelona (Spain)
1999-12-03
We state the intrinsic form of the Hamiltonian equations of first-order classical field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analysed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between Cartan-Noether symmetries and general symmetries of the system is discussed. Noether's theorem is also stated in this context, both the 'classical' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed. (author)
Classical mutual information in mean-field spin glass models
Alba, Vincenzo; Inglis, Stephen; Pollet, Lode
2016-03-01
We investigate the classical Rényi entropy Sn and the associated mutual information In in the Sherrington-Kirkpatrick (S-K) model, which is the paradigm model of mean-field spin glasses. Using classical Monte Carlo simulations and analytical tools we investigate the S-K model in the n -sheet booklet. This is achieved by gluing together n independent copies of the model, and it is the main ingredient for constructing the Rényi entanglement-related quantities. We find a glassy phase at low temperatures, whereas at high temperatures the model exhibits paramagnetic behavior, consistent with the regular S-K model. The temperature of the paramagnetic-glassy transition depends nontrivially on the geometry of the booklet. At high temperatures we provide the exact solution of the model by exploiting the replica symmetry. This is the permutation symmetry among the fictitious replicas that are used to perform disorder averages (via the replica trick). In the glassy phase the replica symmetry has to be broken. Using a generalization of the Parisi solution, we provide analytical results for Sn and In and for standard thermodynamic quantities. Both Sn and In exhibit a volume law in the whole phase diagram. We characterize the behavior of the corresponding densities, Sn/N and In/N , in the thermodynamic limit. Interestingly, at the critical point the mutual information does not exhibit any crossing for different system sizes, in contrast with local spin models.
Vacuum-to-vacuum transition probability and the classic radiation theory
International Nuclear Information System (INIS)
Using the fact that the vacuum-to-vacuum transition probability for the interaction of the Maxwell field Aμ(x) with a given current Jμ(x) represents the probability of no photons emitted by the current of a Poisson distribution, the average number of photons emitted of given energies for the underlying distribution is readily derived. From this the classical power of radiation of Schwinger of a relativistic charged particle follows. - Highlights: • Quantum viewpoint of radiation theory based on the vacuum-to-transition probabilities. • Mathematical method in handling radiation for extended and point sources. • Radiated energy and power for arbitrary source distribution obtained from the above. • Explicit power of radiation for point relativistic sources from the general theory
Entanglement Entropy Renormalization for the NC scalar field coupled to classical BTZ geometry
Jurić, Tajron
2016-01-01
In this work, we consider a noncommutative (NC) massless scalar field coupled to the classical nonrotational BTZ geometry. In a manner of the theories where the gravity emerges from the underlying scalar field theory, we study the effective action and the entropy derived from this noncommutative model. In particular, the entropy is calculated by making use of the two different approaches, the brick wall method and the heat kernel method designed for spaces with conical singularity. We show that the UV divergent structures of the entropy, obtained through these two different methods, agree with each other. It is also shown that the same renormalization condition that removes the infinities from the effective action can also be used to renormalize the entanglement entropy for the same system. Besides, the interesting feature of the NC model considered here is that it allows an interpretation in terms of an equivalent system comprising of a commutative massive scalar field, but in a modified geometry; that of th...
Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field
Institute of Scientific and Technical Information of China (English)
QIAN Yi; XU Jing-Bo
2012-01-01
We investigate the quantum discord dynamics in a cavity quantum electrodynamics system, which consists of two noninteracting two-level atoms driven by independent optical Gelds and classical fields, and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields. It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields. Finally, the influence of the classical driving field on the fidelity of the system is also examined.%We investigate the quantum discord dynamics in a cavity quantum electrodynamics system,which consists of two noninteracting two-level atoms driven by independent optical fields and classical fields,and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields.It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields.Finally,the influence of the classical driving field on the fidelity of the system is also examined.
Locally covariant quantum field theory with external sources
Fewster, Christopher J
2014-01-01
We provide a detailed analysis of the classical and quantized theory of a multiplet of inhomogeneous Klein-Gordon fields, which couple to the spacetime metric and also to an external source term; thus the solutions form an affine space. Following the formulation of affine field theories in terms of presymplectic vector spaces as proposed in [Annales Henri Poincare 15, 171 (2014)], we determine the relative Cauchy evolution induced by metric as well as source term perturbations and compute the automorphism group of natural isomorphisms of the presymplectic vector space functor. Two pathological features of this formulation are revealed: the automorphism group contains elements that cannot be interpreted as global gauge transformations of the theory; moreover, the presymplectic formulation does not respect a natural requirement on composition of subsystems. We therefore propose a systematic strategy to improve the original description of affine field theories at the classical and quantized level, first passing ...
An assessment of Evans' unified field theory II
Hehl, Friedrich W.; Obukhov, Yuri N.
2007-01-01
Evans developed a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. In an accompanying paper I, we analyzed this theory and summarized it in nine equations. We now propose a variational principle for Evans' theory and show that it yields two field equations. The second field equation is algebraic in the torsion and we can resolve it with respect to the torsion. It turns out that for all physical cases the tor...
How some infinities cause problems in classical physical theories
Atkinson, David; Peijnenburg, Jeanne; Allo, P.; van Kerhove, B.
2014-01-01
In this paper we review a 1992 excursion of Jean Paul Van Bendegem into physics, ‘How Infinities Cause Problems in Classical Physical Theories’, in the light of two later models concerning colliding balls, of Pérez Laraudogoitia and of Alper and Bridger, respectively. We show that Van Bendegem antic
Bohmian Mechanics and Quantum Field Theory
Duerr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghi, Nino
2003-01-01
We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which in particular ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines fo...
Einstein's theory of unified fields
Tonnelat, Marie Antoinette
2014-01-01
First published in1966, here is presented a comprehensive overview of one of the most elusive scientific speculations by the pre-eminent genius of the 20th century. The theory is viewed by some scientists with deep suspicion, by others with optimism, but all agree that it represents an extreme challenge. As the author herself affirms, this work is not intended to be a complete treatise or 'didactic exposition' of the theory of unified fields, but rather a tool for further study, both by students and professional physicists. Dealing with all the major areas of research whic
The Hamiltonians of Linear Quantum Fields; 1, Existence Theory
Helfer, A D
1999-01-01
For linear scalar field theories, I characterize those classical Hamiltonian vector fields which have self-adjoint operators as their quantum counterparts. As an application, it is shown that for a scalar field in curved space-time, a self-adjoint Hamiltonian for evolution along the unit timelike normal to a Cauchy surface exists only if the second fundamental form of the surface vanishes identically.
Instanton Representation of Plebanski Gravity. The Classical Theory
Ita, Eyo
2015-10-01
This paper is a self-contained introduction to the instanton representation of Plebanski gravity (IRPG), a formulation of General Relativity (GR) where the basic variables are a spacetime gauge connection and a three by three matrix valued in the Lie algebra of so(3,C). We present a classical analysis of the IRPG from various perspectives, noting some of its interesting features and motivations.
On inert properties of particles in classical theory
Kosyakov, B. P.
2002-01-01
This is a critical review of inert properties of classical relativistic point objects. The objects are classified as Galilean and non-Galilean. Three types of non-Galilean objects are considered: spinning, rigid, and dressed particles. In the absence of external forces, such particles are capable of executing not only uniform motions along straight lines but also Zitterbewegungs, self-accelerations, self-decelerations, and uniformly accelerated motions. A free non-Galilean object possesses th...
Coends in conformal field theory
Fuchs, Jürgen
2016-01-01
The idea of "summing over all intermediate states" that is central for implementing locality in quantum systems can be realized by coend constructions. In the concrete case of systems of conformal blocks for a certain class of conformal vertex algebras, one deals with coends in functor categories. Working with these coends involves quite a few subtleties which, even though they have in principle already been understood twenty years ago, have not been sufficiently appreciated by the conformal field theory community.
Theory of field reversed configurations
International Nuclear Information System (INIS)
This final report surveys the results of work conducted on the theory of field reversed configurations. This project has spanned ten years, beginning in early 1980. During this period, Spectra Technology was one of the leading contributors to the advances in understanding FRC. The report is organized into technical topic areas, FRC formation, equilibrium, stability, and transport. Included as an appendix are papers published in archival journals that were generated in the course of this report. 33 refs
AdS Field Theory from Conformal Field Theory
Fitzpatrick, A Liam
2012-01-01
We provide necessary and sufficient conditions for a Conformal Field Theory to have a description in terms of a perturbative Effective Field Theory in AdS. The first two conditions are well-known: the existence of a perturbative `1/N' expansion and an approximate Fock space of states generated by a finite number of low-dimension operators. We add a third condition, that the Mellin amplitudes of the CFT correlators must be well-approximated by functions that are bounded by a polynomial at infinity in Mellin space, or in other words, that the Mellin amplitudes have an effective theory-type expansion. We explain the relationship between our conditions and unitarity, and provide an analogy with scattering amplitudes that becomes exact in the flat space limit of AdS. The analysis also yields a simple connection between conformal blocks and AdS diagrams, providing a new calculational tool very much in the spirit of the S-Matrix program. We also begin to explore the potential pathologies associated with higher spin ...
Quantum field perturbation theory revisited
Matone, Marco
2016-03-01
Schwinger's formalism in quantum field theory can be easily implemented in the case of scalar theories in D dimension with exponential interactions, such as μDexp (α ϕ ). In particular, we use the relation exp (α δ/δ J (x ) )exp (-Z0[J ])=exp (-Z0[J +αx]) with J the external source, and αx(y )=α δ (y -x ). Such a shift is strictly related to the normal ordering of exp (α ϕ ) and to a scaling relation which follows by renormalizing μ . Next, we derive a new formulation of perturbation theory for the potentials V (ϕ )=λ/n ! :ϕn: , using the generating functional associated to :exp (α ϕ ):. The Δ (0 )-terms related to the normal ordering are absorbed at once. The functional derivatives with respect to J to compute the generating functional are replaced by ordinary derivatives with respect to auxiliary parameters. We focus on scalar theories, but the method is general and similar investigations extend to other theories.
Structural aspects of quantum field theory and noncommutative geometry
Grensing, Gerhard
2013-01-01
This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...
Hyperdense coding and superadditivity of classical capacities in hypersphere theories
Massar, Serge; Pironio, Stefano; Pitalúa-García, Damián
2015-01-01
In quantum superdense coding, two parties previously sharing entanglement can communicate a two bit message by sending a single qubit. We study this feature in the broader framework of general probabilistic theories. We consider a particular class of theories in which the local state space of the communicating parties corresponds to Euclidean hyperballs of dimension n (the case n = 3 corresponds to the Bloch ball of quantum theory). We show that a single n-ball can encode at most one bit of i...
Classical conformality in the Standard Model from Coleman’s theory
Kawana, Kiyoharu
2016-09-01
The classical conformality (CC) is one of the possible candidates for explaining the gauge hierarchy of the Standard Model (SM). We show that it is naturally obtained from the Coleman’s theory on baby universe.
(Non-)decoupled supersymmetric field theories
Energy Technology Data Exchange (ETDEWEB)
Pietro, Lorenzo Di [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 76100 (Israel); Dine, Michael [Santa Cruz Institute for Particle Physics and Department of Physics,Santa Cruz CA 95064 (United States); Komargodski, Zohar [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 76100 (Israel)
2014-04-10
We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M. We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism (http://dx.doi.org/10.1016/0370-2693(89)90729-6; http://dx.doi.org/10.1016/0550-3213(90)90584-Z; http://dx.doi.org/10.1016/0550-3213(91)80030-P), we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed N=4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS{sub 4} Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB)
Localization and diffusion in polymer quantum field theory
Arzano, Michele
2014-01-01
Polymer quantization is a non-standard approach to quantizing a classical system inspired by background independent approaches to quantum gravity such as loop quantum gravity. When applied to field theory it introduces a characteristic polymer scale at the level of the fields classical configuration space. Compared with models with space-time discreteness or non-commutativity this is an alternative way in which a characteristic scale can be introduced in a field theoretic context. Motivated by this comparison we study here localization and diffusion properties associated with polymer field observables and dispersion relation in order to shed some light on the novel physical features introduced by polymer quantization. While localization processes seems to be only mildly affected by polymer effects, we find that polymer diffusion differs significantly from the "dimensional reduction" picture emerging in other Planck-scale models beyond local quantum field theory.
Directory of Open Access Journals (Sweden)
Sargsyan S.H.
2014-03-01
Full Text Available In the present paper, the system of equations of three-dimensional micropolar theory of elasticity, written down for thin shell as singularly perturbed with small geometric parameter system, is analyzed asymptotically: the internal iteration process and boundary layers are constructed, their interaction is studied, boundary conditions are obtained for each of them. Then, the main specific properties of the asymptotic solution accepting as hypotheses, general applied theory of micropolar elastic thin shells is constructed and it is shown that the constructed theory is asymptotically correct. Passing from the micropolar theory of thin shells to the classical theory, it is shown, that this applied classical theory of thin shells, when transverse shifts are taken into account, is asymptotically correct theory in relation to the other corrected theories of thin shells.
Quantization of light energy directly from classical electromagnetic theory in vacuum
Institute of Scientific and Technical Information of China (English)
She Wei-Long
2005-01-01
It is currently believed that light quantum or the quantization of light energy is beyond classical physics, and the picture of wave-particle duality, which was criticized by Einstein but has attracted a number of experimental researches, is necessary for the description of light. It is shown in this paper, however, that the quantization of light energy in vacuum, which is the same as that in quantum electrodynamics, can be derived directly from the classical electromagnetic theory through the consideration of statistics based on classical physics. Therefore, the quantization of energy is an intrinsic property of light as a classical electromagnetic wave and has no need of being related to particles.
Kalinin, A. V.; Grigor'ev, E. E.; Zhidkov, A. A.; Terent'ev, A. M.
2014-04-01
We study a one-dimensional stationary system of equations comprising the continuity equation for the ion concentration with the recombination effects taken into account and the Gauss law for the electric field. This system gives a simplified description of various phenomena in ionized medium theory and is used, in particular, for modeling of the electrode effect in the atmospheric surface layers with the turbulent diffusion effects neglected. Using the integral of the system and a phase portrait in the ion concentration plane, we offer a complete classification of types of solutions of the system, examine their properties, and deduce some analytical relations between the ion concentration and the electric field. The basic equations of classical electrode effect theory are obtained for some classes of solutions within the framework of this approach. Correct formulations of the problems are discussed. New classes of solutions, for which there are layers with infinitely increasing conductivity and charge density are described. The Appendix illustrates, in both analytical and graphical form, the results obtained in the main part of this paper on the basis of qualitative reasoning for parameters close to real. Analytical expressions for the fields and ion concentrations are given for all types of solutions. Relations for the distances between electrodes and analytical relations describing the properties of the spatially localized solutions are presented.
Vaccinology of classical swine fever: from lab to field
Oirschot, van J.T.
2003-01-01
There are two types of classical swine fever vaccines available: the classical live and the recently developed E2 subunit vaccines. The live Chinese strain vaccine is the most widely used. After a single vaccination, it confers solid immunity within a few days that appears to persist lifelong. The E
Topics in the theory of quantum and classical networks
Almaas, Eivind
We study both quantum and classical networks. The quantum networks consist of 1D and 2D arrays of Josephson junctions coupled to a resonant cavity. We derive dynamical equations for these arrays by applying the Heisenberg equations of motion to a model Hamiltonian. By means of a canonical transformation, we also show that, in the absence of an applied current and dissipation, our model reduces to one used to describe coupled qubits, and that the cavity-junction coupling corresponds to a capacitive coupling between the array and the cavity mode. From extensive numerical solutions of the model in both 1D and 2D, we find that the array locks into a coherent, periodic state above a critical number of active junctions, that the current-voltage characteristics of the array have self-induced resonant steps (SIRS's), that when N a active junctions are synchronized on a SIRS, the energy emitted into the resonant cavity is quadratic in Na, and that when a fixed number of junctions is biased on a SIRS, the energy is linear in the input power. All these results are in agreement with recent experiments. We conclude that most of the experimental data can be understood from classical equations of motion. Our study of classical networks is divided into two parts. In the first, we study the structural properties of 'small-world' networks (SWN)---networks that display properties of both regular and random graphs. We generalize the model for generating such networks that was first introduced by Watts and Strogatz. For this model, we study the distribution function for minimal paths, derive its general form and also discuss its scaling properties. Using this distribution function, we derive exact expressions for several network properties, like the average minimal distance, ℓ¯ and its variance, sigma2. These exact relations are independent of the 'degree distribution', i.e. the distribution of nearest-neighbor connections. In the second, we study how the structure of the network
Classical versus Keynesian theory of unemployment : an approach to the Spanish labor market
Alonso Rodríguez, Rubén
2015-01-01
In the last decade the unemployment skyrocketed defining a dramatic landscape for the Spanish economy. In order to understand the root causes, I have revisited two theories widely extended in labor economics: The Classical Theory of Unemployment and the Keynesian Theory of Unemployment. Despite both conceptions are well known and supported by academic literature, in the Spanish case as in many other countries is still unclear what theory better adjust to reality. To solve this lack of clearne...
3D gravity with dust: classical and quantum theory
Husain, Viqar
2015-01-01
We study the Einstein gravity and dust system in three spacetime dimensions as an example of a non-perturbative quantum gravity model with local degrees of freedom. We derive the Hamiltonian theory in the dust time gauge and show that it has a rich class of exact solutions. These include the Ba\\~nados-Teitelboim-Zanelli black hole, static solutions with naked singularities and travelling wave solutions with dynamical horizons. We give a complete quantization of the wave sector of the theory, including a definition of a self-adjoint spacetime metric operator. This operator is used to demonstrate the quantization of deficit angle and the fluctuation of dynamical horizons.
A class of exact classical solutions to string theory.
Coley, A A
2002-12-31
We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be explicitly obtained, and these spacetimes are expected to provide some hints for the study of superstrings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections to all loop orders they may also offer insights into quantum gravity.
THE CONCEPT OF INTERNATIONAL TRADE AND MAIN CLASSIC THEORIES
Directory of Open Access Journals (Sweden)
Elena Ramona TERZEA
2016-07-01
Full Text Available Taking into account the major impact that international trade has on the economy and on the people’s lives, and considering its effects on the economic growth, the foreign commerce has to be well understood so that the commercial policies have to be well elaborated, implemented and followed. The theories of international trade are extremely important in order to determine the flows, but especially in the anticipation of the evolution of the forces that influences its dymanic. The theories regarding the foreign trade are used also by the big companies, by their managers, in their attempt to identify the most advantageous strategies of internationalizations, on the most promising markets.
A Modern Introduction to Quantum Field Theory
International Nuclear Information System (INIS)
This book gives a clear exposition of quantum field theory at the graduate level and the contents could be covered in a two semester course or, with some effort, in a one semester course. The book is well organized, and subtle issues are clearly explained. The margin notes are very useful, and the problems given at the end of each chapter are relevant and help the student gain an insight into the subject. The solutions to these problems are given in chapter 12. Care is taken to keep the numerical factors and notation very clear. Chapter 1 gives a clear overview and typical scales in high energy physics. Chapter 2 presents an excellent account of the Lorentz group and its representation. The decomposition of Lorentz tensors under SO(3) and the subsequent spinorial representations are introduced with clarity. After giving the field representation for scalar, Weyl, Dirac, Majorana and vector fields, the Poincare group is introduced. Representations of 1-particle states using m2 and the Pauli-Lubanski vector, although standard, are treated lucidly. Classical field theory is introduced in chapter 3 and a careful treatment of the Noether theorem and the energy momentum tensor are given. After covering real and complex scalar fields, the author impressively introduces the Dirac spinor via the Weyl spinor; Abelian gauge theory is also introduced. Chapter 4 contains the essentials of free field quantization of real and complex scalar fields, Dirac fields and massless Weyl fields. After a brief discussion of the CPT theorem, the quantization of electromagnetic field is carried out both in radiation gauge and Lorentz gauge. The presentation of the Gupta-Bleuler method is particularly impressive; the margin notes on pages 85, 100 and 101 invaluable. Chapter 5 considers the essentials of perturbation theory. The derivation of the LSZ reduction formula for scalar field theory is clearly expressed. Feynman rules are obtained for the λΦ4 theory in detail and those of QED briefly
Classical theory of thermal radiation from a solid.
Guo, Wei
2016-06-01
In this work, a solid at a finite temperature is modeled as an ensemble of identical atoms, each of which moves around a lattice site inside an isotropic harmonic potential. The motion of one such atom is studied first. It is found that the atom moves like a time-dependent current density and, thus, can emit electromagnetic radiation. Since all the atoms are identical, they can radiate, too. The resultant radiation from the atoms is the familiar thermal radiation from the solid. After its general expression is obtained, the intensity of the thermal radiation is discussed for its properties, and specifically calculated in the low-temperature limit. Both atomic motion and radiation are formulated in the classical domain. PMID:27409442
Foundations of the classical theory of partial differential equations
Egorov, Yu V
1998-01-01
From the reviews of the first printing, published as volume 30 of the Encyclopaedia of Mathematical Sciences: "... I think the volume is a great success and an excellent preparation for future volumes in the series. ... the introductory style of Egorov and Shubin is .. attractive. ... a welcome addition to the literature and I am looking forward to the appearance of more volumes of the Encyclopedia in the near future. ..." The Mathematical Intelligencer, 1993 "... According to the authors ... the work was written for nonspecialists and physicists but in my opinion almost every specialist will find something new ... in the text. The style is clear, the notations are chosen luckily. The most characteristic feature of the work is the accurate emphasis on the fundamental notions ..." Acta Scientiarum Mathematicarum, 1993 "... On the whole, a thorough overview on the classical aspects of the topic may be gained from that volume." Monatshefte für Mathematik, 1993 "... It is comparable in scope with the great Coura...
Dark Solitons, D-branes and Noncommutative Tachyon Field Theory
Giaccari, Stefano
2016-01-01
In this paper we discuss the boson/vortex duality by mapping the Gross-Pitaevskii theory into an effective string theory, both with and without boundaries. Through the effective string theory, we find the Seiberg-Witten map between the commutative and the noncommutative tachyon field theories, and consequently identify their soliton solutions with the D-branes in the effective string theory. We perform various checks of the duality map and the identification of classical solutions. This new insight of the duality between the Gross-Pitaevskii theory and the effective string theory allows us to test many results of string theory in Bose-Einstein condensates, and at the same time help us understand the quantum behavior of superfluids and cold atom systems.
Zitterbewegung in quantum field theory
Institute of Scientific and Technical Information of China (English)
Wang Zhi-Yong; Xiong Cai-Dong
2008-01-01
Traditionally,the zitterbewegung (ZB) of the Dirac electron has just been studied at the level of quantum mechanics.Seeing the fact that an old interest in ZB has recently been rekindled by the investigations on spintronic,graphene,and superconducting systems,etc.,this paper presents a quantum-field-theory investigation on ZB and obtains the con clusion that,the ZB of an electron arises from the influence of virtual electron-positron pairs (or vacuum fluctuations)on the electron.
Classical instanton and wormhole solutions of Type IIB string theory
Kim, Jin Young; Lee, H. W.; Myung, Y. S.
1996-01-01
We study $p=-1$ D-brane in type IIB superstring theory. In addition to RR instanton, we obtain the RR charged wormhole solution in the Einstein frame. This corresponds to the ten-dimensional singular wormhole solution with infinite euclidean action.
Jeanmairet, Guillaume; Levesque, Maximilien; Rotenberg, Benjamin; Borgis, Daniel
2014-01-01
We report here how the hydration of complex surfaces can be efficiently studied thanks to recent advances in classical molecular density functional theory. This is illustrated on the example of the pyrophylite clay. After presenting the most recent advances, we show that the strength of this implicit method is that (i) it is in quantitative or semi-quantitative agreement with reference all-atoms simulations (molecular dynamics here) for both the solvation structure and energetics, and that (ii) the computational cost is two to three orders of magnitude less than in explicit methods. The method remains imperfect, in that it locally overestimates the polarization of water close to hydrophylic sites of the clay. The high numerical efficiency of the method is illustrated and exploited to carry a systematic study of the electrostatic and van der Waals components of the surface-solvant interactions within the most popular force field for clays, CLAYFF. Hydration structure and energetics are found to weakly depend u...
Topics in low-dimensional field theory
International Nuclear Information System (INIS)
Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density
Topics in low-dimensional field theory
Energy Technology Data Exchange (ETDEWEB)
Crescimanno, M.J.
1991-04-30
Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density.
Matrix string theory, contact terms, and superstring field theory
Dijkgraaf, Robbert; Motl, Lubos
2003-01-01
In this note, we first explain the equivalence between the interaction Hamiltonian of Green-Schwarz light-cone gauge superstring field theory and the twist field formalism known from matrix string theory. We analyze the role of the large N limit in matrix string theory, in particular in relation with conformal perturbation theory around the orbifold SCFT that reproduces light-cone string perturbation theory. We show how the scaling with N is directly related to measures on the moduli space of...
Effective field theory in nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Martin J. Savage
2000-12-12
I review recent developments in the application of effective field theory to nuclear physics. Emphasis is placed on precision two-body calculations and efforts to formulate the nuclear shell model in terms of an effective field theory.
Effective Field Theory in Nuclear Physics
Savage, Martin J.
2000-01-01
I review recent developments in the application of effective field theory to nuclear physics. Emphasis is placed on precision two-body calculations and efforts to formulate the nuclear shell model in terms of an effective field theory.
Extended string field theory for massless higher-spin fields
International Nuclear Information System (INIS)
We propose a new gauge field theory which is an extension of ordinary string field theory by assembling multiple state spaces of the bosonic string. The theory includes higher-spin fields in its massless spectrum together with the infinite tower of massive fields. From the theory, we can easily extract the minimal gauge-invariant quadratic action for tensor fields with any symmetry. As examples, we explicitly derive the gauge-invariant actions for some simple mixed symmetric tensor fields. We also construct covariantly gauge-fixed action by extending the method developed for string field theory
Universality principle and the development of classical density functional theory
Institute of Scientific and Technical Information of China (English)
周世琦; 张晓琪
2002-01-01
The universality principle of the free energy density functional and the ‘test particle' trick by Percus are combined to construct the approximate free energy density functional or its functional derivative. Information about the bulk fluid ralial distribution function is integrated into the density functional approximation directly for the first time in the present methodology. The physical foundation of the present methodology also applies to the quantum density functional theory.
Relativistic quantum mechanics and introduction to field theory
Energy Technology Data Exchange (ETDEWEB)
Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica
1996-12-01
The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.
A Naturally Renormalized Quantum Field Theory
Rouhani, S.; Takook, M. V.
2006-01-01
It was shown that quantum metric fluctuations smear out the singularities of Green's functions on the light cone [1], but it does not remove other ultraviolet divergences of quantum field theory. We have proved that the quantum field theory in Krein space, {\\it i.e.} indefinite metric quantization, removes all divergences of quantum field theory with exception of the light cone singularity [2,3]. In this paper, it is discussed that the combination of quantum field theory in Krein space togeth...
Opportunizing: A classic grounded theory study on business and management
Directory of Open Access Journals (Sweden)
Ólavur Christiansen
2006-11-01
Full Text Available Opportunizing emerged as the core variable of this classic GT study on business and management. Opportunizing is the recurrent main concern that businesses have to continually resolve, and it explains how companies recurrently create, identify, seize or exploit situations to maintain their growth or survival. Opportunizing is the recurrent creation and re-creation of opportunities in business. Opportunizing is basically what business managers do and do all the time. The problematic nature of opportunizing is resolved by a core social process ofopportunizing and its attached sub-processes that account for change over time and for the variations of the problematic nature of its resolution.Opportunizing has five main facets. These are conditional befriending (confidence building & modifying behavior,prospecting (e.g. information gaining, weighing up (information appraisal & decision-making, moment capturing (quick intervention for seizing strategic opportunities, andconfiguration matching (adjusting the business organization to abet the other activities of opportunizing.On a more abstract level, opportunizing has three more organizational facets: the physically boundary-less, the valuehierarchical, and the physically bounded. The first of these called perpetual opportunizing. This emerges from the conjunction of conditional befriending and prospecting. The second facet is called triggering opportunizing. It arises from the coming together of weighing up and moment capturing. The final facet is called spasmodic opportunizing. This happens when moment capturing and configuration matching unite.
Reese, Lynda M.
This study extended prior Law School Admission Council (LSAC) research related to the item response theory (IRT) local item independence assumption into the realm of classical test theory. Initially, results from the Law School Admission Test (LSAT) and two other tests were investigated to determine the approximate state of local item independence…
Quantum Field Theory without Divergences: Quantum Spacetime
Gadiyar, G. H.
1994-01-01
A fundamental length is introduced into physics in a way which respects the principles of relativity and quantum field theory. This improves the properties of quantum field theory: divergences are removed. How to quantize gravity is also indicated. When the fundamental length tends to zero the present version of quantum field theory is recovered.
Quantum Field Theory in (0 + 1) Dimensions
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Noncommutative Dipole Field Theories And Unitarity
Chiou, D W; Chiou, Dah-Wei; Ganor, Ori J.
2004-01-01
We extend the argument of Gomis and Mehen for violation of unitarity in field theories with space-time noncommutativity to dipole field theories. In dipole field theories with a timelike dipole vector, we present 1-loop amplitudes that violate the optical theorem. A quantum mechanical system with nonlocal potential of finite extent in time also shows violation of unitarity.
Noncommutative Dipole Field Theories And Unitarity
Energy Technology Data Exchange (ETDEWEB)
Chiou, Dah-Wei; Ganor, Ori J.
2003-10-24
We extend the argument of Gomis and Mehen for violation of unitarity in field theories with space-time noncommutativity to dipole field theories. In dipole field theories with a timelike dipole vector, we present 1-loop amplitudes that violate the optical theorem. A quantum mechanical system with nonlocal potential of finite extent in time also shows violation of unitarity.
Open+Closed String Field Theory From Gauge Fields
Gomis, Jaume; Moriyama, Sanefumi(Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602, Japan); Park, Jongwon
2003-01-01
We study open and closed string interactions in the Type IIB plane wave background using open+closed string field theory. We reproduce all string amplitudes from the dual N=2 Sp(N) gauge theory by computing matrix elements of the dilatation operator. A direct diagrammatic correspondence is found between string theory and gauge theory Feynman diagrams. The prefactor and Neumann matrices of open+closed string field theory are separately realized in terms of gauge theory quantities.
Quantum field theory a tourist guide for mathematicians
Folland, Gerald B
2008-01-01
Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theor...
Polarization-free Quantization of Linear Field Theories
Lanéry, Suzanne
2016-01-01
It is well-known that there exist infinitely-many inequivalent representations of the canonical (anti)-commutation relations of Quantum Field Theory (QFT). A way out, suggested by Algebraic QFT, is to instead define the quantum theory as encompassing all possible (abstract) states. In the present paper, we describe a quantization scheme for general linear (aka. free) field theories that can be seen as intermediate between traditional Fock quantization and full Algebraic QFT, in the sense that: * it provides a constructive, explicit description of the resulting space of quantum states; * it does not require the choice of a polarization, aka. the splitting of classical solutions into positive vs. negative-frequency modes: in fact, any Fock representation corresponding to a "reasonable" choice of polarization is naturally embedded; * it supports the implementation of a "large enough" class of linear symplectomorphisms of the classical, infinite-dimensional phase space. The proposed quantization (like Algebraic Q...
Lectures on RCFT [Rational Conformal Field Theory
International Nuclear Information System (INIS)
We review some recent results in two dimensional Rational Conformal Field Theory. We discuss these theories as a generalization of group theory. The relation to a three dimensional topological theory is explained and the particle example of Chern-Simons-Witten theory is analyzed in detail. This study leads to a natural conjecture regarding the classification of all RCFT's. 62 refs
Matrix Analogues to Some Classical Problems in Number Theory
Niwa, Masahiko
1996-01-01
The aim of this paper is to give a few results on some problems in the matrix ring Mn(R) over a commutative ring R analogous to some classical problems in number theory, which are handled in L. N. Vaserstein[4]. As for Matrix Goldbach Problem we can easily give an affirmative solution in Mn(R)(any n≧2), contrary to the difficulty of the original conjecture. As for Matrix Fermat Problem we will explain the connection of this problem with elements of finite order of the group GLn(R) of uni...
Perturbative quantization of Yang-Mills theory with classical double as gauge algebra
Energy Technology Data Exchange (ETDEWEB)
Ruiz Ruiz, F. [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)
2016-02-15
Perturbative quantization of Yang-Mills theory with a gauge algebra given by the classical double of a semisimple Lie algebra is considered. The classical double of a real Lie algebra is a nonsemisimple real Lie algebra that admits a nonpositive definite invariant metric, the indefiniteness of the metric suggesting an apparent lack of unitarity. It is shown that the theory is UV divergent at one loop and that there are no radiative corrections at higher loops. One-loop UV divergences are removed through renormalization of the coupling constant, thus introducing a renormalization scale. The terms in the classical action that would spoil unitarity are proved to be cohomologically trivial with respect to the Slavnov-Taylor operator that controls gauge invariance for the quantum theory. Hence they do not contribute gauge invariant radiative corrections to the quantum effective action and the theory is unitary. (orig.)
Refringence, field theory and normal modes
International Nuclear Information System (INIS)
In a previous paper [Barcelo C et al 2001 Class. Quantum Grav. 18 3595-610 (Preprint gr-qc/0104001)] we have shown that the occurrence of curved spacetime 'effective Lorentzian geometries' is a generic result of linearizing an arbitrary classical field theory around some nontrivial background configuration. This observation explains the ubiquitous nature of the 'analogue models' for general relativity that have recently been developed based on condensed matter physics. In the simple (single scalar field) situation analysed in our previous paper, there is a single unique effective metric; more complicated situations can lead to bi-metric and multi-metric theories. In the present paper we will investigate the conditions required to keep the situation under control and compatible with experiment - either by enforcing a unique effective metric (as would be required to be strictly compatible with the Einstein equivalence principle), or at the worst by arranging things so that there are multiple metrics that are all 'close' to each other (in order to be compatible with the Eoetvoes experiment). The algebraically most general situation leads to a physical model whose mathematical description requires an extension of the usual notion of Finsler geometry to a Lorentzian-signature pseudo-Finsler geometry; while this is possibly of some interest in its own right, this particular case does not seem to be immediately relevant for either particle physics or gravitation. The key result is that wide classes of theories lend themselves to an effective metric description. This observation provides further evidence that the notion of 'analogue gravity' is rather generic
Young's Double Slit Experiment in Quantum Field Theory
Kenmoku, Masakatsu
2011-01-01
Young's double slit experiment is formulated in the framework of canonical quantum field theory in view of the modern quantum optics. We adopt quantum scalar fields instead of quantum electromagnetic fields ignoring the vector freedom in gauge theory. The double slit state is introduced in Fock space corresponding to experimental setup. As observables, expectation values of energy density and positive frequency part of current with respect to the double slit state are calculated which give the interference term. Classical wave states are realized by coherent double slit states in Fock space which connect quantum particle states with classical wave states systematically. In case of incoherent sources, the interference term vanishes by averaging random phase angles as expected.
Haataja, Mikko; Gránásy, László; Löwen, Hartmut
2010-08-01
Herein we provide a brief summary of the background, events and results/outcome of the CECAM workshop 'Classical density functional theory methods in soft and hard matter held in Lausanne between October 21 and October 23 2009, which brought together two largely separately working communities, both of whom employ classical density functional techniques: the soft-matter community and the theoretical materials science community with interests in phase transformations and evolving microstructures in engineering materials. After outlining the motivation for the workshop, we first provide a brief overview of the articles submitted by the invited speakers for this special issue of Journal of Physics: Condensed Matter, followed by a collection of outstanding problems identified and discussed during the workshop. 1. Introduction Classical density functional theory (DFT) is a theoretical framework, which has been extensively employed in the past to study inhomogeneous complex fluids (CF) [1-4] and freezing transitions for simple fluids, amongst other things. Furthermore, classical DFT has been extended to include dynamics of the density field, thereby opening a new avenue to study phase transformation kinetics in colloidal systems via dynamical DFT (DDFT) [5]. While DDFT is highly accurate, the computations are numerically rather demanding, and cannot easily access the mesoscopic temporal and spatial scales where diffusional instabilities lead to complex solidification morphologies. Adaptation of more efficient numerical methods would extend the domain of DDFT towards this regime of particular interest to materials scientists. In recent years, DFT has re-emerged in the form of the so-called 'phase-field crystal' (PFC) method for solid-state systems [6, 7], and it has been successfully employed to study a broad variety of interesting materials phenomena in both atomic and colloidal systems, including elastic and plastic deformations, grain growth, thin film growth, solid
Identifying cosmological perturbations in group field theory condensates
Gielen, Steffen
2015-01-01
One proposal for deriving effective cosmological models from theories of quantum gravity is to view the former as a mean-field (hydrodynamic) description of the latter, which describes a universe formed by a 'condensate' of quanta of geometry. This idea has been successfully applied within the setting of group field theory (GFT), a quantum field theory of 'atoms of space' which can form such a condensate. We further clarify the interpretation of this mean-field approximation, and show how it can be used to obtain a semiclassical description of the GFT, in which the mean field encodes a classical statistical distribution of geometric data. In this sense, GFT condensates are quantum homogeneous geometries that also contain statistical information about cosmological inhomogeneities. We show in the isotropic case how this information can be extracted from geometric GFT observables and mapped to quantities of observational interest. Basic uncertainty relations of (non-commutative) Fourier transforms imply that thi...
Quantum Field Theory A Modern Perspective
Parameswaran Nair, V
2005-01-01
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...
Classical dynamics of a charged particle in a laser field beyond the dipole approximation
Jameson, Paul
2008-01-01
The classical dynamics of a charged particle traveling in a laser field modeled by an elliptically polarized monochromatic electromagnetic plane wave is discussed within the time reparametrization invariant form of the non-relativistic Hamilton-Jacobi theory. The exact parametric representation for a particle's orbit in an arbitrary plane wave background beyond the dipole approximation and including effect of the magnetic field is derived. For an elliptically polarized monochromatic plane wave the particle's trajectory, as an explicit function of the laboratory frame's time, is given in terms of the Jacobian elliptic functions, whose modulus is proportional to the laser's intensity and depends on the polarization of radiation. It is shown that the system exposes the ``intensity duality'', correspondence between the motion in the backgrounds with various intensities. In virtue of the modular properties of the Jacobian functions, by starting with the representative ``fundamental solution'' and applying a certai...
Quasi-classical theory of electronic flux density in electronically adiabatic molecular processes.
Diestler, D J
2012-11-26
The standard Born-Oppenheimer (BO) description of electronically adiabatic molecular processes predicts a vanishing electronic flux density (EFD). A previously proposed "coupled-channels" theory permits the extraction of the EFD from the BO wave function for one-electron diatomic systems, but attempts at generalization to many-electron polyatomic systems are frustrated by technical barriers. An alternative "quasi-classical" approach, which eliminates the explicit quantum dynamics of the electrons within a classical framework, yet retains the quantum character of the nuclear motion, appears capable of yielding EFDs for arbitrarily complex systems. Quasi-classical formulas for the EFD in simple systems agree with corresponding coupled-channels formulas. Results of the application of the new quasi-classical formula for the EFD to a model triatomic system indicate the potential of the quasi-classical scheme to elucidate the dynamical role of electrons in electronically adiabatic processes in more complex multiparticle systems.
Families and degenerations of conformal field theories
International Nuclear Information System (INIS)
In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)
Families and degenerations of conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Roggenkamp, D.
2004-09-01
In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)
Group field theory with noncommutative metric variables.
Baratin, Aristide; Oriti, Daniele
2010-11-26
We introduce a dual formulation of group field theories as a type of noncommutative field theories, making their simplicial geometry manifest. For Ooguri-type models, the Feynman amplitudes are simplicial path integrals for BF theories. We give a new definition of the Barrett-Crane model for gravity by imposing the simplicity constraints directly at the level of the group field theory action. PMID:21231377
Treatise on classical elasticity theory and related problems
Teodorescu, Petre P
2013-01-01
Deformable solids have a particularly complex character; mathematical modeling is not always simple and often leads to inextricable difficulties of computation. One of the simplest mathematical models and, at the same time, the most used model, is that of the elastic body – especially the linear one. But, notwithstanding its simplicity, even this model of a real body may lead to great difficulties of computation. The practical importance of a work about the theory of elasticity, which is also an introduction to the mechanics of deformable solids, consists of the use of scientific methods of computation in a domain in which simplified methods are still used. This treatise takes into account the consideration made above, with special attention to the theoretical study of the state of strain and stress of a deformable solid. The book draws on the known specialized literature, as well as the original results of the author and his 50+ years experience as Professor of Mechanics and Elasticity at the University o...
Momentum relation and classical limit in the future-not-included complex action theory
Nagao, Keiichi
2013-01-01
Studying the time development of the expectation value in the future-not-included complex action theory we point out that the momentum relation (relation analogous to $p=\\frac{\\partial L}{\\partial \\dot{q}}$), which was derived via Feynman path integral and was shown to be right in the future-included theory in our previous papers, is not valid in the future-not-included theory. We provide the correct momentum relation in the future-not-included theory, and argue that the future-not-included classical theory is described by a certain real action. In addition we provide another way to understand the time development of the future-not-included theory by utilizing the future-included theory. Furthermore, applying the method used in our previous paper to the future-not-included theory properly by introducing a formal Lagrangian, we derive the correct momentum relation in the future-not-included theory.
Fu, Jian
2010-01-01
We demonstrate that a tensor product structure could be obtained by introducing pseudorandom phase sequences into classical fields with two orthogonal modes. Using classical fields modulated with pseudorandom phase sequences, we discuss efficient simulation of several typical quantum states, including product state, Bell states, GHZ state, and W state. By performing quadrature demodulation scheme, we could obtain the mode status matrix of the simulating classical fields, based on which we propose a sequence permutation mechanism to reconstruct the simulated quantum states. The research on classical simulation of quantum states is important, for it not only enables potential practical applications in quantum computation, but also provides useful insights into fundamental concepts of quantum mechanics.
Localisation in Quantum Field Theory
Balachandran, A P
2016-01-01
In nonrelativistic quantum mechanics , Born's principle of localisation is as follows: For a single particle, if a wave function $\\psi_K$ vanishes outside a spatial region $K$, it is said to be localised in $K$. In particular if a spatial region $K'$ is disjoint from $K$, a wave function $\\psi_{K'}$ localised in $K'$ is orthogonal to $\\psi_K$. Such a principle of localisation does not exist compatibly with relativity and causality in quantum field theory (Newton and Wigner) or interacting point particles (Currie,Jordan and Sudarshan).It is replaced by symplectic localisation of observables as shown by Brunetti, Guido and Longo, Schroer and others. This localisation gives a simple derivation of the spin-statistics theorem and the Unruh effect, and shows how to construct quantum fields for anyons and for massless particles with `continuous' spin. This review outlines the basic principles underlying symplectic localisation and shows or mentions its deep implications. In particular, it has the potential to affect...
Energy flow in non-equilibrium conformal field theory
Bernard, Denis; Doyon, Benjamin
2012-09-01
We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.
Discrete quantum field theories of the gravitational field
Energy Technology Data Exchange (ETDEWEB)
Tedesco, Gennaro [Georg-August-Universitaet Goettingen (Germany)
2012-07-01
We introduce a procedure of quantization for the gravitational field by taking a lattice regularization of the space-time in terms of graphs labelled by representations of the symmetry groups. A quantum field theory for the gravitational field, namely the Group Field Theory, is also provided.
Nakayama, Yu
2016-01-01
We show that eleven dimensional supergravity in Euclidean signature admits an exact classical solution with isometry corresponding to a three dimensional scale invariant field theory without conformal invariance. We also construct the holographic renormalization group flow that connects the known UV conformal fixed point and the new scale invariant but not conformal fixed point. In view of holography, the existence of such classical solutions suggests that the topologically twisted M2-brane gauge theory possesses a scale invariant but not conformal phase.
Particle Indistinguishability Symmetry within a Field Theory. Entropic Effects
Directory of Open Access Journals (Sweden)
Jean Pierre Badiali
2009-04-01
Full Text Available In this paper, we briefly discuss a field theory approach of classical statistical mechanics. We show how an essentially entropic functional accounts for fundamental symmetries related to quantum mechanical properties which hold out in the classical limit of the quantum description. Within this framework, energetic and entropic properties are treated at equal level. Based on a series of examples on electrolytes, we illustrate how this framework gives simple interpretations where entropic fluctuations of anions and cations compete with the energetic properties related to the interaction potential.
Axiomatic quantum field theory in curved spacetime
Hollands, S
2008-01-01
The usual formulations of quantum field theory in Minkowski spacetime make crucial use of features--such as Poincare invariance and the existence of a preferred vacuum state--that are very special to Minkowski spacetime. In order to generalize the formulation of quantum field theory to arbitrary globally hyperbolic curved spacetimes, it is essential that the theory be formulated in an entirely local and covariant manner, without assuming the presence of a preferred state. We propose a new framework for quantum field theory, in which the existence of an Operator Product Expansion (OPE) is elevated to a fundamental status, and, in essence, all of the properties of the quantum field theory are determined by its OPE. We provide general axioms for the OPE coefficients of a quantum field theory. These include a local and covariance assumption (implying that the quantum field theory is locally and covariantly constructed from the spacetime metric), a microlocal spectrum condition, an "associativity" condition, and t...
Perturbative Double Field Theory on General Backgrounds
Hohm, Olaf
2015-01-01
We develop the perturbation theory of double field theory around arbitrary solutions of its field equations. The exact gauge transformations are written in a manifestly background covariant way and contain at most quadratic terms in the field fluctuations. We expand the generalized curvature scalar to cubic order in fluctuations and thereby determine the cubic action in a manifestly background covariant form. As a first application we specialize this theory to group manifold backgrounds, such as $SU(2) \\simeq S^3$ with $H$-flux. In the full string theory this corresponds to a WZW background CFT. Starting from closed string field theory, the cubic action around such backgrounds has been computed before by Blumenhagen, Hassler and L\\"ust. We establish precise agreement with the cubic action derived from double field theory. This result confirms that double field theory is applicable to arbitrary curved background solutions, disproving assertions in the literature to the contrary.
Nuclear Dynamics with Effective Field Theories
Epelbaum, Evgeny
2013-01-01
These are the proceedings of the international workshop on "Nuclear Dynamics with Effective Field Theories" held at Ruhr-Universitaet Bochum, Germany from July 1 to 3, 2013. The workshop focused on effective field theories of low-energy QCD, chiral perturbation theory for nuclear forces as well as few- and many-body physics. Included are a short contribution per talk.
Classical and quantum contents of solvable game theory on Hilbert space
International Nuclear Information System (INIS)
A simple and general formulation of the quantum game theory is presented, accommodating all possible strategies in the Hilbert space for the first time. The theory is solvable for the two strategy quantum game, which is shown to be equivalent to a family of classical games supplemented by quantum interference. Our formulation gives a clear perspective to understand why and how quantum strategies outmaneuver classical strategies. It also reveals novel aspects of quantum games such as the stone-scissor-paper phase sub-game and the fluctuation-induced moderation
Prime numbers, quantum field theory and the Goldbach conjecture
Sanchis-Lozano, Miguel-Angel; Navarro-Salas, Jose
2012-01-01
Motivated by the Goldbach and Polignac conjectures in Number Theory, we propose the factorization of a classical non-interacting real scalar field (on a two-cylindrical spacetime) as a product of either two or three (so-called primer) fields whose Fourier expansion exclusively contains prime modes. We undertake the canonical quantization of such primer fields and construct the corresponding Fock space by introducing creation operators $a_p^{\\dag}$ (labeled by prime numbers $p$) acting on the vacuum. The analysis of our model, based on the standard rules of quantum field theory, suggests intriguing connections between different topics in Number Theory, notably the Riemann hypothesis and the Goldbach and Polignac conjectures. Our analysis also suggests that the (non) renormalizability properties of the proposed model could be linked to the possible validity or breakdown of the Goldbach conjecture for large integer numbers.
Dynamics of an electron spin in strong classical and quantized electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Skoromnik, Oleg
2014-07-09
The electron motion in the presence of a strong classical and quantized pulse of an electromagnetic field is studied with a special emphasis on the spin degree of freedom. It is shown that the Hamiltonian of this system can be separated into two parts with the help of canonical transformations of the field variables, namely the interaction between an electron and a single collective mode of the field and fluctuations relatively to this collective mode. The application of perturbation theory to the fluctuations allows the conditions of applicability of the single-mode approximation for the quantized external field to be formulated. Furthermore, within this approximation the electron spin evolution is investigated. In addition to fast spin oscillations at the laser frequency, a second time scale is identified due to the intensity-dependent emissions and absorptions of field quanta, that is collapse and revival dynamics. The effect is observable at the experimentally feasible intensity of 10{sup 18} Wcm{sup 2}. After this, we switch to the regime of higher intensities, when the fluctuations of the external field can be neglected. We investigate the asymmetries in the electron scattering arising due to the electron polarization and pulse duration, and constrain the optimal conditions for the asymmetry observation.
Batalin-Vilkovisky formalism in locally covariant field theory
Rejzner, Katarzyna
2011-01-01
The present work contains a complete formulation of the Batalin-Vilkovisky (BV) formalism in the framework of locally covariant field theory. In the first part of the thesis the classical theory is investigated with a particular focus on the infinite dimensional character of the underlying structures. It is shown that the use of infinite dimensional differential geometry allows for a conceptually clear and elegant formulation. The construction of the BV complex is performed in a fully covariant way and we also generalize the BV framework to a more abstract level, using functors and natural transformations. In this setting we construct the BV complex for classical gravity. This allows us to give a homological interpretation to the notion of diffeomorphism invariant physical quantities in general relativity. The second part of the thesis concerns the quantum theory. We provide a framework for the BV quantization that doesn't rely on the path integral formalism, but is completely formulated within perturbative a...
Toward a gauge field theory of gravity.
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Effective Field Theory and $\\chi$pt
Holstein, Barry R.
2000-01-01
A brief introduction to the subject of chiral perturbation theory ($\\chi$pt) is given, including a discussion of effective field theory and application to the upcoming Bates virtual Compton scattering measurement.
On purely transmitting defects in affine Toda field theory
Corrigan, E
2007-01-01
Affine Toda field theories with a purely transmitting integrable defect are considered and the model based on a_2 is analysed in detail. After providing a complete characterization of the problem in a classical framework, a suitable quantum transmission matrix, able to describe the interaction between an integrable defect and solitons, is found. Two independent paths are taken to reach the result. One is an investigation of the triangle equations using the S-matrix for the imaginary coupling bulk affine Toda field theories proposed by Hollowood, and the other uses a functional integral approach together with a bootstrap procedure. Evidence to support the results is collected in various ways: for instance, through the calculation of the transmission factors for the lightest breathers. While previous discoveries within the sine-Gordon model motivated this study, there are several new phenomena displayed in the a_2 model including intriguing disparities between the classical and the quantum pictures. For example...
Towards weakly constrained double field theory
Lee, Kanghoon
2016-08-01
We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
Towards weakly constrained double field theory
Directory of Open Access Journals (Sweden)
Kanghoon Lee
2016-08-01
Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
Towards Weakly Constrained Double Field Theory
Lee, Kanghoon
2015-01-01
We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X- ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
Neo-classical theory of competition or Adam Smith's hand as mathematized ideology
McCauley, Joseph L.
2001-10-01
Orthodox economic theory (utility maximization, rational agents, efficient markets in equilibrium) is based on arbitrarily postulated, nonempiric notions. The disagreement between economic reality and a key feature of neo-classical economic theory was criticized empirically by Osborne. I show that the orthodox theory is internally self-inconsistent for the very reason suggested by Osborne: lack of invertibility of demand and supply as functions of price to obtain price as functions of supply and demand. The reason for the noninvertibililty arises from nonintegrable excess demand dynamics, a feature of their theory completely ignored by economists.
Conformal invariant D-dimensional field theory
International Nuclear Information System (INIS)
Conformation invariant quantum field theory is especially interesting by the fact that the high symmetry imposes very strict limitations on its structure and one can try to find exact solutions for very wide classes of field models. In this paper, the authors consider field theory in D-dimensional Euclidean space and describe the method to find it's exact solution
Jurić, Tajron; Samsarov, Andjelo
2016-05-01
In this work, we consider a noncommutative (NC) massless scalar field coupled to the classical nonrotational BTZ geometry. In a manner of the theories where the gravity emerges from the underlying scalar field theory, we study the effective action and the entropy derived from this noncommutative model. In particular, the entropy is calculated by making use of the two different approaches, the brick-wall method and the heat kernel method designed for spaces with conical singularity. We show that the UV divergent structures of the entropy obtained through these two different methods agree with each other. It is also shown that the same renormalization condition that removes the infinities from the effective action can also be used to renormalize the entanglement entropy for the same system. Besides, the interesting feature of the NC model considered here is that it allows an interpretation in terms of an equivalent system comprising a commutative massive scalar field but in a modified geometry: that of the rotational BTZ black hole, the result that hints at a duality between the commutative and noncommutative systems in the background of a BTZ black hole.
Flat connection, conformal field theory and quantum group
International Nuclear Information System (INIS)
General framework of linear first order differential equation for four-point conformal block is studied by using flat connection. Integrability and SL2 invariance restrict possible form of flat connection. Under a special ansatz classical Yang-Baxter equation appears as an integrability condition and the WZW model turns to be unique conformal field theory in that case. Monodromy property of conformal block can be easily determined by the flat connection. 11 refs
Guillemin, Ernst A
2013-01-01
An eminent electrical engineer and authority on linear system theory presents this advanced treatise, which approaches the subject from the viewpoint of classical dynamics and covers Fourier methods. This volume will assist upper-level undergraduates and graduate students in moving from introductory courses toward an understanding of advanced network synthesis. 1963 edition.
On String Field Theory and Effective Actions
Giveon, Amit
1992-01-01
A truncation of string field theory is compared with the duality invariant effective action of $D=4, N=4$ heterotic strings to cubic order. The three string vertex must satisfy a set of compatibility conditions. Any cyclic three string vertex is compatible with the $D=4, N=4$ effective field theory. The effective actions may be useful in understanding the non--polynomial structure and the underlying symmetry of covariant closed string field theory, and in addressing issues of background indep...
Parameterized quantum field theory without Haag's theorem
Seidewitz, Ed
2015-01-01
Under the normal assumptions of quantum field theory, Haag's theorem states that any field unitarily equivalent to a free field must itself be a free field. Unfortunately, the derivation of the Dyson series perturbation expansion relies on the use of the interaction picture, in which the interacting field is unitarily equivalent to the free field but must still account for interactions. Thus, the traditional perturbative derivation of the scattering matrix in quantum field theory is mathematically ill defined. Nevertheless, perturbative quantum field theory is currently the only practical approach for addressing scattering for realistic interactions, and it has been spectacularly successful in making empirical predictions. This paper explains this success by showing that quantum field theory can be formulated, using an invariant, fifth path parameter in addition to the usual four position parameters, in such a way that Haag's theorem no longer applies, but such that the Dyson perturbation expansion for the sc...
Topics in quantum field theory; Topicos em teoria quantica dos campos
Energy Technology Data Exchange (ETDEWEB)
Svaiter, N.F
2006-11-15
This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method.
An assessment of Evans' unified field theory I
Hehl, F W
2007-01-01
Evans developed a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. This geometry can be characterized by an orthonormal coframe theta and a (metric compatible) Lorentz connection Gamma. These two potentials yield the field strengths torsion T and curvature R. Evans tried to infuse electromagnetic properties into this geometrical framework by putting the coframe theta to be proportional to four extended electromagnetic potentials A; these are assumed to encompass the conventional Maxwellian potential in a suitable limit. The viable Einstein-Cartan(-Sciama-Kibble) theory of gravity was adopted by Evans to describe the gravitational sector of his theory. Including also the results of an accompanying paper by Obukhov and the author, we show that Evans' ansatz for electromagnetism is untenable beyond repair both from a geometrical as well as from a physical point of view. As a consequence, his unified theory is obsolete.
Gauge Transformation of Double Field Theory for Open String
Ma, Chen-Te
2014-01-01
I combine the symmetry structure of both the normal and transverse coordinates to construct the Dirac-Born-Infeld (DBI) theory. Normal coordinates are dual to Neumann boundary conditions and transverse coordinates dual to Dirichlet boundary conditions. The gauge transformation of the generalized metric is also governed by the generalized Lie derivative as the massless closed string field theory. The massless closed string field theory gives $C$-bracket, but the DBI theory gives the $F$-bracket from the closed algebra. The $F$-bracket can be a $\\alpha^{\\prime}$ deformation of the $C$-bracket. From the symmetry, we can deduce the suitable action with non-zero flux in open string. From the equations of motion of the scalar dilaton, it offers the generalized scalar curvature. Finally, I show the classical equivalence between the double sigma model and normal sigma model for open string.
Strings - Links between conformal field theory, gauge theory and gravity
International Nuclear Information System (INIS)
String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity
Bose Einstein condensation of the classical axion field in cosmology?
Davidson, Sacha
2013-01-01
The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a bose einstein condensate. Using classical equations of motion during linear structure formation, we explore whether "gravitational thermalisation" can drive axions to a bose einstein condensate. At linear order in G_N, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. From the anisotropic stress, we estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.
Anomalies in non-polynomial closed string field theory
Energy Technology Data Exchange (ETDEWEB)
Kaku, Michio (Institute for Advanced Study, Princeton, NJ (USA))
1990-11-01
The complete classical action for the non-polynomial closed string field theory was written down last year by the author and the Kyoto group. It successfully reproduces all closed string tree diagrams, but fails to reproduce modular invariant loop amplitudes. In this paper we show that the classical action is also riddled with gauge anomalies. Thus, the classical action is not really gauge invariant and fails as a quantum theory. The presence of gauge anomalies and the violation of modular invariance appear to be a disaster for the theory. Actually, this is a blessing in disguise. We show that by adding new non-polynomial terms to the action, we can simultaneously eliminate both the gauge anomalies and the modular-violating loop diagrams. We show this explicitly at the one loop level and also for an infinite class of p-puncture, genus-g amplitudes, making use of a series of non-trivial identities. The theory is thus an acceptable quantum theory. We comment on the origin of this strange link between local gauge anomalies and global modular invariance. (orig.).
Perez, Uzziel; Sugon, Quirino M; McNamara, Daniel J; Yoshikawa, Akimasa
2015-01-01
We studied the orbit of an electron revolving around an infinitely massive nucleus of a large classical Hydrogen atom subject to an AC electric field oscillating perpendicular to the electron's circular orbit. Using perturbation theory in geometric algebra, we show that the equation of motion of the electron perpendicular to the unperturbed orbital plane satisfies a forced simple harmonic oscillator equation found in Lorentz dispersion law in Optics. We show that even though we did not introduce a damping term, the initial orbital position and velocity of the electron results to a solution whose absorbed energies are finite at the dominant resonant frequency $\\omega=\\omega_0$; the electron slowly increases its amplitude of oscillation until it becomes ionized. We computed the average power absorbed by the electron both at the perturbing frequency and at the electron's orbital frequency. We graphed the trace of the angular momentum vector at different frequencies. We showed that at different perturbing frequen...
Uniting the Spheres: Modern Feminist Theory and Classic Texts in AP English
Drew, Simao J. A.; Bosnic, Brenda G.
2008-01-01
High school teachers Simao J. A. Drew and Brenda G. Bosnic help familiarize students with gender role analysis and feminist theory. Students examine classic literature and contemporary texts, considering characters' historical, literary, and social contexts while expanding their understanding of how patterns of identity and gender norms exist and…
Anisotropic cosmology in S\\'aez-Ballester theory: classical and quantum solutions
Socorro, J; G., M A Sánchez; Palos, M G Frías
2010-01-01
We use the S\\'aez-Ballester theory on anisotropic Bianchi I cosmological model, with barotropic fluid and cosmological constant. We obtain the classical solution by using the Hamilton-Jacobi approach. Also the quantum regime is constructed and exact solutions to the Wheeler-DeWitt equation are found.
Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment
Marcus, R. A.
1964-01-01
In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.
Gelis, F.; Jeon, S.; Venugopalan, R.
2007-01-01
We develop the formalism discussed previously in hep-ph/0601209 and hep-ph/0605246 to construct a kinetic theory that provides insight into the earliest ``Glasma'' stage of a high energy heavy ion collision. Particles produced from the decay of classical fields in the Glasma obey a Boltzmann equation whose novel features include an inhomogeneous source term and new contributions to the collision term. We discuss the power counting associated with the different terms in the Boltzmann equation ...
Short-distance analysis for algebraic euclidean field theory
Schlingemann, D
1999-01-01
Recently D. Buchholz and R. Verch have proposed a method for implementing in algebraic quantum field theory ideas from renormalization group analysis of short-distance (high energy) behavior by passing to certain scaling limit theories. Buchholz and Verch distinguish between different types of theories where the limit is unique, degenerate, or classical, and the method allows in principle to extract the `ultraparticle' content of a given model, i.e. to identify particles (like quarks and gluons) that are not visible at finite distances due to `confinement'. It is therefore of great importance for the physical interpretation of the theory. The method has been illustrated in a simple model in with some rather surprising results. This paper will focus on the question how the short distance behavior of models defined by euclidean means is reflected in the corresponding behavior of their Minkowski counterparts. More specifically, we shall prove that if a euclidean theory has some short distance limit, then it is p...
Even symplectic supermanifolds and double field theory
Deser, Andreas
2014-01-01
Over many decades, the word "double" has appeared in various contexts, at times seemingly unrelated. Several have some relation to mathematical physics. Recently, this has become particularly strking in DFT (double field theory). Two 'doubles' that are particularly relevant are double vector bundles and Drinfel'd doubles. The original Drinfel'd double occurred in the contexts of quantum groups and of Lie bialgebras. Quoting T. Voronov: "Double Lie algebroids arose in the works on double Lie groupoids and in connection with an analog for Lie bialgebroids of the classical Drinfel'd double of Lie bialgebras...Suppose $(A,A^*)$ is a Lie bialgebroid over a base $M$... Mackenzie and Roytenberg suggested two different constructions based on the cotangent bundles $T^*A$ and $T^*\\Pi A$, respectively. Here $\\Pi$ is the fibre-wise parity reversal functor." Although the approaches of Roytenberg and of Mackenzie look very different, Voronov establishes their equivalence. We have found Roytenberg's version to be quite cong...
Dynamical origin of the $\\star_\\theta$-noncommutativity in field theory from quantum mechanics
Rosenbaum, Marcos; Vergara, J. David; Juárez, L. Román
2006-01-01
We show that introducing an extended Heisenberg algebra in the context of the Weyl-Wigner-Groenewold-Moyal formalism leads to a deformed product of the classical dynamical variables that is inherited to the level of quantum field theory, and that allows us to relate the operator space noncommutativity in quantum mechanics to the quantum group inspired algebra deformation noncommutativity in field theory.
Field theory of the spinning electron: I - Internal motions
Energy Technology Data Exchange (ETDEWEB)
Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica; Recami, Erasmo [Universita Statale di Bergamo, Dalmine, BG (Italy). Facolta di Ingegneria]|[Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada
1994-05-01
One of the most satisfactory picture of spinning particles is the Barut-Zanghi (BZ) classical theory for the relativistic electron, that relates the electron spin with the so-called Zitterbewegung (zbw). The BZ theory has been recently studied in the Lagrangian and Hamiltonian symplectic formulations, both in flat and in curved space-time. The BZ motion equations constituted the starting point for two recent works about spin and electron structure, co-authored by us, which adopted the Clifford algebra formalism. In this letter, by employing on the contrary the ordinary tensorial language, we first write down a meaningful (real) equation of motion, describing particle classical paths, quite different from the corresponding (complex) equation of the standard Dirac theory. As a consequence, we succeed in regarding the electron as an extended-type object with a classically intelligible structure (thus overcoming some long-standing, well-known problems). Second, we make explicit the kinematical properties of the 4-velocity field v{sup {mu}}, which also result to be quite different from the ordinary ones, valid for scalar particles. At last, we analyze the inner zbw motions, both time-like and light-like, as functions of the initial conditions (in particular, for the case of classical uniform motions, the z component of spin s is shown to be quantized). In so doing, we make explicit the strict correlation existing between electron polarization and zbw kinematics. (author). 9 refs.
Field theory of the spinning electron: I - Internal motions
International Nuclear Information System (INIS)
One of the most satisfactory picture of spinning particles is the Barut-Zanghi (BZ) classical theory for the relativistic electron, that relates the electron spin with the so-called Zitterbewegung (zbw). The BZ theory has been recently studied in the Lagrangian and Hamiltonian symplectic formulations, both in flat and in curved space-time. The BZ motion equations constituted the starting point for two recent works about spin and electron structure, co-authored by us, which adopted the Clifford algebra formalism. In this letter, by employing on the contrary the ordinary tensorial language, we first write down a meaningful (real) equation of motion, describing particle classical paths, quite different from the corresponding (complex) equation of the standard Dirac theory. As a consequence, we succeed in regarding the electron as an extended-type object with a classically intelligible structure (thus overcoming some long-standing, well-known problems). Second, we make explicit the kinematical properties of the 4-velocity field vμ, which also result to be quite different from the ordinary ones, valid for scalar particles. At last, we analyze the inner zbw motions, both time-like and light-like, as functions of the initial conditions (in particular, for the case of classical uniform motions, the z component of spin s is shown to be quantized). In so doing, we make explicit the strict correlation existing between electron polarization and zbw kinematics. (author). 9 refs
Induced Gravity and Topological Quantum Field Theory
Oda, Ichiro
2016-01-01
We construct an induced gravity (pregeometry) where both the Newton constant and the cosmological constant appear as integration constants in solving field equations. By adding the kinetic terms of ghosts and antighosts, an action of the induced gravity is transformed to a topological field theory. Moreover, by solving field equations of the topological field theory in the FRW universe, we find an inflation solution. The present study might shed some light on a close relationship between the induced gravity and the topological quantum field theory.
Duality Covariant Solutions in Extended Field Theories
Rudolph, Felix J
2016-01-01
Double field theory and exceptional field theory are formulations of supergravity that make certain dualities manifest symmetries of the action. To achieve this, the geometry is extended by including dual coordinates corresponding to winding modes of the fundamental objects. This geometrically unifies the spacetime metric and the gauge fields (and their local symmetries) in a generalized geometry. Solutions to these extended field theories take the simple form of waves and monopoles in the extended space. From a supergravity point of view they appear as 1/2 BPS objects such as the string, the membrane and the fivebrane in ordinary spacetime. In this thesis double field theory and exceptional field theory are introduced, solutions to their equations of motion are constructed and their properties are analyzed. Further it is established how isometries in the extended space give rise to duality relations between the supergravity solutions. Extensions to these core ideas include studying Goldstone modes, probing s...
Induced Gravity and Topological Quantum Field Theory
Oda, Ichiro
2016-01-01
We construct an induced gravity (pregeometry) where both the Newton constant and the cosmological constant appear as integration constants in solving field equations. By adding the kinetic terms of ghosts and antighosts, an action of the induced gravity is transformed to a topological field theory. Moreover, by solving field equations of the topological field theory in the FRW universe, we find an inflation solution. The present study might shed some light on a close relationship between the ...
A comparison of three classical analytical theories for the motion of artificial satellites
Gordon, R. A.; Mistreets, G. D.; Watson, J. S.
1978-01-01
Motivated by the heavy reliance upon the analytic orbit theory in orbit determination operations at the Goddard Space Flight Center (GSFC), a comparison study is performed for three classical analytical theories of artificial satellite motion about an oblate earth. The three analytical theories are: (1) Brouwer, (2) a modified Brouwer, i.e., Brouwer-Lyddane and Cohen, and (3) Vinti. Comparison results for each theory are produced for a number of representative satellites of current or past interest which proved amenable to analytic theory application. The uniformity of these results has significant implications for current and future mission operations and planning activities. Subsidiary topics arising from the results of this study which relate to the optimum usage of the individual theories are also discussed
Parametric Instability of Classical Yang-Mills Fields under Color Magnetic Background
Tsutsui, Shoichiro; Kunihiro, Teiji; Ohnishi, Akira
2014-01-01
We investigate instabilities of classical Yang-Mills fields in a time-dependent spatially homogeneous color magnetic background field in a non-expanding geometry for elucidating the earliest stage dynamics of ultra-relativistic heavy-ion collisions. The background gauge field configuration considered in this article is spatially homogeneous and temporally periodic, and is alluded by Berges-Scheffler-Schlichting-Sexty (BSSS). We discuss the whole structure of instability bands of fluctuations around the BSSS background gauge field on the basis of Floquet theory, which enables us to discuss the stability in a systematic way. We find various instability bands on the $(p_z, p_T)$-plane. These instability bands are caused by parametric resonance despite the fact that the momentum dependence of the growth rate for $|\\mathbf{p}| \\leq \\sqrt{B}$ is similar to a Nielsen-Olesen instability. Moreover, some of instability bands are found to emerge not only in the low momentum but also in the high momentum region; typicall...
Nanoscale Capillary Flows in Alumina: Testing the Limits of Classical Theory.
Lei, Wenwen; McKenzie, David R
2016-07-21
Anodic aluminum oxide (AAO) membranes have well-formed cylindrical channels, as small as 10 nm in diameter, in a close packed hexagonal array. The channels in AAO membranes simulate very small leaks that may be present for example in an aluminum oxide device encapsulation. The 10 nm alumina channel is the smallest that has been studied to date for its moisture flow properties and provides a stringent test of classical capillary theory. We measure the rate at which moisture penetrates channels with diameters in the range of 10 to 120 nm with moist air present at 1 atm on one side and dry air at the same total pressure on the other. We extend classical theory for water leak rates at high humidities by allowing for variable meniscus curvature at the entrance and show that the extended theory explains why the flow increases greatly when capillary filling occurs and enables the contact angle to be determined. At low humidities our measurements for air-filled channels agree well with theory for the interdiffusive flow of water vapor in air. The flow rate of water-filled channels is one order of magnitude less than expected from classical capillary filling theory and is coincidentally equal to the helium flow rate, validating the use of helium leak testing for evaluating moisture flows in aluminum oxide leaks. PMID:27336652
Carter subgroups of singular classical groups over finite fields
Institute of Scientific and Technical Information of China (English)
高有; 石新华
2004-01-01
Let Fq be a finite field with qelements whereq = pα. In the present paper, the authors study the existence and structure of Carter subgroups of singular symplectic group Sp (Fq), singular unitary group U ( Fq2 ) and singular orthogonal group O ( Fq ) ( n is even) over finite fields Fq.
New results in topological field theory and Abelian gauge theory
International Nuclear Information System (INIS)
These are the lecture notes of a set of lectures delivered at the 1995 Trieste summer school in June. I review some recent work on duality in four dimensional Maxwell theory on arbitrary four manifolds, as well as a new set of topological invariants known as the Seiberg-Witten invariants. Much of the necessary background material is given, including a crash course in topological field theory, cohomology of manifolds, topological gauge theory and the rudiments of four manifold theory. My main hope is to wet the readers appetite, so that he or she will wish to read the original works and perhaps to enter this field. (author). 41 refs, 5 figs
Holographic applications of logarithmic conformal field theories
Grumiller, D.; Riedler, W.; Rosseel, J.; Zojer, T.
2013-01-01
We review the relations between Jordan cells in various branches of physics, ranging from quantum mechanics to massive gravity theories. Our main focus is on holographic correspondences between critically tuned gravity theories in anti-de Sitter space and logarithmic conformal field theories in vari
Ice Nucleation on Carbon Surface Supports the Classical Theory for Heterogeneous Nucleation
Cabriolu, Raffaela
2015-01-01
The prevalence of heterogeneous nucleation in nature was explained qualitatively by the classical theory for heterogeneous nucleation established over more than 60 years ago, but the quantitative validity and the key conclusions of the theory have remained unconfirmed. Employing the forward flux sampling method and the coarse-grained water model mW, we explicitly computed the heterogeneous ice nucleation rates in the supercooled water on a graphitic surface at various temperatures. The independently calculated ice nucleation rates were found to fit well according to the classical theory for heterogeneous nucleation. The fitting procedure further yields the estimate of the potency factor which measures the ratio of the heterogeneous nucleation barrier to the homogeneous nucleation barrier. Remarkably, the estimated potency factor agrees quantitatively with the volumetric ratio of the critical nuclei between the heterogeneous and homogeneous nucleation. Our numerical study thus provides a strong support to the ...
Effective model hierarchies for dynamic and static classical density functional theories
Energy Technology Data Exchange (ETDEWEB)
Majaniemi, S [Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11100, FI-00076 Aalto (Finland); Provatas, N [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S-4L7 (Canada); Nonomura, M, E-mail: maj@fyslab.hut.f [Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)
2010-09-15
The origin and methodology of deriving effective model hierarchies are presented with applications to solidification of crystalline solids. In particular, it is discussed how the form of the equations of motion and the effective parameters on larger scales can be obtained from the more microscopic models. It will be shown that tying together the dynamic structure of the projection operator formalism with static classical density functional theories can lead to incomplete (mass) transport properties even though the linearized hydrodynamics on large scales is correctly reproduced. To facilitate a more natural way of binding together the dynamics of the macrovariables and classical density functional theory, a dynamic generalization of density functional theory based on the nonequilibrium generating functional is suggested.
Lattice methods and effective field theory
Nicholson, Amy N
2016-01-01
Lattice field theory is a non-perturbative tool for studying properties of strongly interacting field theories, which is particularly amenable to numerical calculations and has quantifiable systematic errors. In these lectures we apply these techniques to nuclear Effective Field Theory (EFT), a non-relativistic theory for nuclei involving the nucleons as the basic degrees of freedom. The lattice formulation of [1,2] for so-called pionless EFT is discussed in detail, with portions of code included to aid the reader in code development. Systematic and statistical uncertainties of these methods are discussed at length, and extensions beyond pionless EFT are introduced in the final Section.
Wavelet-Based Quantum Field Theory
Directory of Open Access Journals (Sweden)
Mikhail V. Altaisky
2007-11-01
Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.
Haag's theorem in renormalised quantum field theories
Klaczynski, Lutz
2016-01-01
We review a package of no-go results in axiomatic quantum field theory with Haag's theorem at its centre. Since the concept of operator-valued distributions in this framework comes very close to what we believe canonical quantum fields are about, these results are of consequence to quantum field theory: they suggest the seeming absurdity that this highly victorious theory is incapable of describing interactions. We single out unitarity of the interaction picture's intertwiner as the most salient provision of Haag's theorem and critique canonical perturbation theory to argue that renormalisation bypasses Haag's theorem by violating this very assumption.
Ostrogradsky in Theories with Multiple Fields
de Rham, Claudia
2016-01-01
We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar--Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamical or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark ene...
Quantum field theory for the gifted amateur
Lancaster, Tom
2014-01-01
Quantum field theory is arguably the most far-reaching and beautiful physical theory ever constructed, with aspects more stringently tested and verified to greater precision than any other theory in physics. Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in ...
Regularity theory for mean-field game systems
Gomes, Diogo A; Voskanyan, Vardan
2016-01-01
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
International Nuclear Information System (INIS)
We have computed the surface self-diffusion constants on four different crystal faces [fcc(111), fcc(100), bcc(110), and bcc(211)] using classical transition state theory methods. These results can be compared directly with previous classical-trajectory results which used the same Lennard-Jones 6-12 potential and template model; the agreement is good, though dynamical effects are evident for the fcc(111) and bcc(110) surfaces. Implications are discussed for low-temperature diffusion studies, which are inaccessible to direct molecular dynamics, and the use of ab initio potentials rather than approximate pairwise potentials
Picard groups in rational conformal field theory
Fröhlich, J.; Fuchs, J.; Runkel, I.; Schweigert, C.
2005-01-01
Algebra and representation theory in modular tensor categories can be combined with tools from topological field theory to obtain a deeper understanding of rational conformal field theories in two dimensions: It allows us to establish the existence of sets of consistent correlation functions, to demonstrate some of their properties in a model-independent manner, and to derive explicit expressions for OPE coefficients and coefficients of partition functions in terms of invariants of links in t...
Transformations among large c conformal field theories
Jankiewicz, Marcin M.; Kephart, Thomas W.
2005-01-01
We show that there is a set of transformations that relates all of the 24 dimensional even self-dual (Niemeier) lattices, and also leads to non-lattice objects that however cannot be interpreted as a basis for the construction of holomorphic conformal field theory. In the second part of this paper, we extend our observations to higher dimensional conformal field theories build on extremal partition functions, where we generate c=24k theories with spectra decomposable into the irreducible repr...
On the analytical formulation of classical electromagnetic fields
Baker, Mark Robert
2016-01-01
Three objections to the canonical analytical treatment of covariant electromagnetic theory are presented: (i) only half of Maxwell's equations are present upon variation of the fundamental Lagrangian; (ii) the trace components of the energy-momentum tensor are obtained from Noether's theorem by manipulation of the action; (iii) the Belinfante symmetrization procedure exists separate from the analytical approach. It is shown that the analytical construction from Noether's theorem is based on manipulations that were developed to obtain the compact forms of the theory presented by Minkowski and Einstein. By reformulating the fundamental Lagrangian, all of the objections are relieved, without need for manipulations. Variation of the proposed Lagrangian yields the complete set of Maxwell's equations in the Euler-Lagrange equation of motion, and the observed energy-momentum tensor directly follows from Noether's theorem. Previously unavailable symmetries and identities that follow naturally from this procedure are ...
Batalin-Vilkovisky formalism in locally covariant field theory
Energy Technology Data Exchange (ETDEWEB)
Rejzner, Katarzyna Anna
2011-12-15
The present work contains a complete formulation of the Batalin-Vilkovisky (BV) formalism in the framework of locally covariant field theory. In the first part of the thesis the classical theory is investigated with a particular focus on the infinite dimensional character of the underlying structures. It is shown that the use of infinite dimensional differential geometry allows for a conceptually clear and elegant formulation. The construction of the BV complex is performed in a fully covariant way and we also generalize the BV framework to a more abstract level, using functors and natural transformations. In this setting we construct the BV complex for classical gravity. This allows us to give a homological interpretation to the notion of diffeomorphism invariant physical quantities in general relativity. The second part of the thesis concerns the quantum theory. We provide a framework for the BV quantization that doesn't rely on the path integral formalism, but is completely formulated within perturbative algebraic quantum field theory. To make such a formulation possible we first prove that the renormalized time-ordered product can be understood as a binary operation on a suitable domain. Using this result we prove the associativity of this product and provide a consistent framework for the renormalized BV structures. In particular the renormalized quantum master equation and the renormalized quantum BV operator are defined. To give a precise meaning to theses objects we make a use of the master Ward identity, which is an important structure in causal perturbation theory. (orig.)
Batalin-Vilkovisky formalism in locally covariant field theory
International Nuclear Information System (INIS)
The present work contains a complete formulation of the Batalin-Vilkovisky (BV) formalism in the framework of locally covariant field theory. In the first part of the thesis the classical theory is investigated with a particular focus on the infinite dimensional character of the underlying structures. It is shown that the use of infinite dimensional differential geometry allows for a conceptually clear and elegant formulation. The construction of the BV complex is performed in a fully covariant way and we also generalize the BV framework to a more abstract level, using functors and natural transformations. In this setting we construct the BV complex for classical gravity. This allows us to give a homological interpretation to the notion of diffeomorphism invariant physical quantities in general relativity. The second part of the thesis concerns the quantum theory. We provide a framework for the BV quantization that doesn't rely on the path integral formalism, but is completely formulated within perturbative algebraic quantum field theory. To make such a formulation possible we first prove that the renormalized time-ordered product can be understood as a binary operation on a suitable domain. Using this result we prove the associativity of this product and provide a consistent framework for the renormalized BV structures. In particular the renormalized quantum master equation and the renormalized quantum BV operator are defined. To give a precise meaning to theses objects we make a use of the master Ward identity, which is an important structure in causal perturbation theory. (orig.)
Action and entanglement in gravity and field theory.
Neiman, Yasha
2013-12-27
In nongravitational quantum field theory, the entanglement entropy across a surface depends on the short-distance regularization. Quantum gravity should not require such regularization, and it has been conjectured that the entanglement entropy there is always given by the black hole entropy formula evaluated on the entangling surface. We show that these statements have precise classical counterparts at the level of the action. Specifically, we point out that the action can have a nonadditive imaginary part. In gravity, the latter is fixed by the black hole entropy formula, while in nongravitating theories it is arbitrary. From these classical facts, the entanglement entropy conjecture follows by heuristically applying the relation between actions and wave functions. PMID:24483789
New classical solutions with fermion in conformal invariant field theories
International Nuclear Information System (INIS)
New instanton type solutions for coupled non-linear equations of scalar and fermion are given. Invariance properties of the solutions under the six-dimensional conformal group are studied. Quantum significances are discussed, and the equations of motion for quantum fluctuations turn out to be the eigenvalue equations for the Casimir operators of the 0(5) group
Singular vectors in logarithmic conformal field theories
International Nuclear Information System (INIS)
Null vectors are generalized to the case of indecomposable representations which are one of the main features of logarithmic conformal field theories. This is done by developing a compact formalism with the particular advantage that the stress energy tensor acting on Jordan cells of primary fields and their logarithmic partners can still be represented in form of linear differential operators. Since the existence of singular vectors is subject to much stronger constraints than in regular conformal field theory, they also provide a powerful tool for the classification of logarithmic conformal field theories. (orig.)
Matrix string theory, contact terms, and superstring field theory
Dijkgraaf, R; Dijkgraaf, Robbert; Motl, Lubos
2003-01-01
In this note, we first explain the equivalence between the interaction Hamiltonian of Green-Schwarz light-cone gauge superstring field theory and the twist field formalism known from matrix string theory. We analyze the role of the large N limit in matrix string theory, in particular in relation with conformal perturbation theory around the orbifold SCFT that reproduces light-cone string perturbation theory. We show how the scaling with N is directly related to measures on the moduli space of Riemann surfaces. The scaling dimension 3 of the Mandelstam vertex as reproduced by the twist field interaction is in this way related to the dimension 3(h-1) of the moduli space. We analyze the structure and scaling of the higher order twist fields that represent the contact terms. We find one relevant twist field at each order. More generally, the structure of string field theory seems more transparent in the twist field formalism. Finally we also investigate the modifications necessary to describe the pp-wave backgrou...
Aspects of affine Toda field theory
International Nuclear Information System (INIS)
The report is devoted to properties of the affine Toda field theory, the intention being to highlight a selection of curious properties that should be explicable in terms of the underlying group theory but for which in most cases there are no explanation. The motivation for exploring the ideas contained in this report came principally from the recent work of Zamolodchikov concerning the two dimensional Ising model at critical temperature perturbed by a magnetic field. Hollowood and Mansfield pointed out that since Toda field theory is conformal the perturbation considered by Zamolodchikov might well be best regarded as a perturbation of a Toda field theory. This work made it seem plausible that the theory sought by Zamolodchikov was actually affine E8 Toda field theory. However, this connection required an imaginary value of the coupling constant. Investigations here concerning exact S-matrices use a perturbative approach based on real coupling and the results differ in various ways from those thought to correspond to perturbed conformal field theory. A further motivation is to explore the connection between conformal and perturbed conformal field theories in other contexts using similar ideas. (N.K.)
Perturbative algebraic quantum field theory an introduction for mathematicians
Rejzner, Kasia
2016-01-01
Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities. We discuss in detail the examples of scalar fields and gauge theories and generalize them to QFT on curved spacetimes. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses QFT on curved spacetimes and effective quantum gravity. The book aims to be accessible researchers and graduate students interested in the mathematical foundations of pQFT are th...
Energy Technology Data Exchange (ETDEWEB)
Sahoo, Tapas; Pollak, Eli [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel)
2015-08-14
A second order classical perturbation theory is developed to calculate the sticking probability of a particle scattered from an uncorrugated thermal surface. An analytic expression for the temperature dependent energy loss of the particle to the surface is derived by employing a one-dimensional generalized Langevin equation. The surface temperature reduces the energy loss, since the thermal surface transfers energy to the particle. Using a Gaussian energy loss kernel and the multiple collision theory of Fan and Manson [J. Chem. Phys. 130, 064703 (2009)], enables the determination of the fraction of particles trapped on the surface after subsequent momentum reversals of the colliding particle. This then leads to an estimate of the trapping probability. The theory is tested for the model scattering of Ar on a LiF(100) surface. Comparison with numerical simulations shows excellent agreement of the analytical theory with simulations, provided that the energy loss is determined by the second order perturbation theory.
Gauge fields without perturbation theory
International Nuclear Information System (INIS)
Methods for investigating gauge theories not based on perturbation theory have been considered. It is pointed out that the Monte-Carlo method is the most powerful one for gauge lattice theories. This method is indicative of the absence of phase transition in SU(3)-gluodynamics. Spectrum of lower hadrons as well as a number of other physical values disregarding quark polarization of vacuum, are calculated by this method. The method of expansion in the inverse number of the degrees of feedom proved to be very interesting and promiing for understanding qualitative picture of calculations in QCD. The study of gluodynamics in D-meric space-time is reduced to the study of O-meric tasks, which constituted the main achievement in the study of multicolour QCD for the last year
Measuring a piecewise constant axion field in classical electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Obukhov, Yuri N. [Institute for Theoretical Physics, University of Cologne, 50923 Cologne (Germany)]. E-mail: yo@thp.uni-koeln.de; Hehl, Friedrich W. [Institute for Theoretical Physics, University of Cologne, 50923 Cologne (Germany)
2005-06-27
In order to settle the problem of the 'Post constraint' in material media, we consider the propagation of a plane electromagnetic wave in a medium with a piecewise constant axion field. Although a constant axion field does not affect the wave propagation in a homogeneous medium, we show that the reflection and transmission of a wave at an interface between the two media is sensitive to the difference of the axion values. This observation can be used to determine experimentally the axion piece in matter despite the fact that a constant axion value does not contribute to the Maxwell equations.
Measuring a piecewise constant axion field in classical electrodynamics
Obukhov, Yu N; Obukhov, Yuri N.; Hehl, Friedrich W.
2005-01-01
In order to settle the problem of the "Post constraint" in material media, we consider the propagation of a plane electromagnetic wave in a medium with a piecewise constant axion field. Although a constant axion field does not affect the wave propagation in a homogeneous medium, we show that the reflection and transmission of a wave at an interface between the two media is sensitive to the difference of the axion values. This observation can be used to determine experimentally the axion piece in matter despite the fact that a constant axion value does not contribute to the Maxwell equations.
The Lagrangian and Hamiltonian Aspects of the Electrodynamic Vacuum-Field Theory Models
Bogolubov, Nikolai N; Blackmore, Denis; Prykarpatsky, Yarema A
2012-01-01
We review the modern classical electrodynamics problems and present the related main fundamental principles characterizing the electrodynamical vacuumfield structure. We analyze the models of the vacuumfield medium and charged point particle dynamics using the developed field theory concepts. There is also described a new approach to the classical Maxwell theory based on the derived and newly interpreted basic equations making use of the vacuum field theory approach. In particular, there are obtained the main classical special relativity theory relations and their new explanations. The well known Feynman approach to Maxwell electromagnetic equations and the Lorentz type force derivation is also discussed in detail. A related charged point particle dynamics and a hadronic string model analysis is also presented. We also revisited and reanalyzed the classical Lorentz force expression in arbitrary non-inertial reference frames and present some new interpretations of the relations between special relativity theor...
Introduction to conformal field theory and string theory
Energy Technology Data Exchange (ETDEWEB)
Dixon, L.J.
1989-12-01
These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs.
Multimomentum Hamiltonian Formalism in Quantum Field Theory
Sardanashvily, G.
1994-01-01
The familiar generating functionals in quantum field theory fail to be true measures and, so they make the sense only in the framework of the perturbation theory. In our approach, generating functionals are defined strictly as the Fourier transforms of Gaussian measures in nuclear spaces of multimomentum canonical variables when field momenta correspond to derivatives of fields with respect to all world coordinates, not only to time.
Decoherence and dynamical entropy generation in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Koksma, Jurjen F., E-mail: J.F.Koksma@uu.nl [Institute for Theoretical Physics (ITP) and Spinoza Institute, Utrecht University, Postbus 80195, 3508 TD Utrecht (Netherlands); Prokopec, Tomislav, E-mail: T.Prokopec@uu.nl [Institute for Theoretical Physics (ITP) and Spinoza Institute, Utrecht University, Postbus 80195, 3508 TD Utrecht (Netherlands); Schmidt, Michael G., E-mail: M.G.Schmidt@thphys.uni-heidelberg.de [Institut fuer Theoretische Physik, Heidelberg University, Philosophenweg 16, D-69120 Heidelberg (Germany)
2012-01-20
We formulate a novel approach to decoherence based on neglecting observationally inaccessible correlators. We apply our formalism to a renormalised interacting quantum field theoretical model. Using out-of-equilibrium field theory techniques we show that the Gaussian von Neumann entropy for a pure quantum state increases to the interacting thermal entropy. This quantifies decoherence and thus measures how classical our pure state has become. The decoherence rate is equal to the single particle decay rate in our model. We also compare our approach to existing approaches to decoherence in a simple quantum mechanical model. We show that the entropy following from the perturbative master equation suffers from physically unacceptable secular growth.
Thermofield dynamics extension of the open string field theory
Botta Cantcheff, M.; Scherer Santos, R. J.
2016-03-01
We study the application of the rules of thermofield dynamics (TFD) to the covariant formulation of open-string field theory. We extend the states space and fields according to the duplication rules of TFD and construct the corresponding classical action. The result is interpreted as a theory whose fields would encode the statistical information of open strings. The physical spectrum of the free theory is studied through the cohomology of the extended Becchi, Rouet, Stora and Tyutin (BRST) charge, and, as a result, we get new fields in the spectrum emerging by virtue of the quantum entanglement, and, noticeably, it presents degrees of freedom that could be identified as those of closed strings. We also show, however, that their appearing in the action is directly related to the choice of the inner product in the extended algebra, so that different sectors of fields could be eliminated from the theory by choosing that product conveniently. Finally, we study the extension of the three-vertex interaction and provide a simple prescription for it of which the results at tree level agree with those of the conventional theory.
A Field Theory with Curvature and Anticurvature
Directory of Open Access Journals (Sweden)
M. I. Wanas
2014-01-01
Full Text Available The present work is an attempt to construct a unified field theory in a space with curvature and anticurvature, the PAP-space. The theory is derived from an action principle and a Lagrangian density using a symmetric linear parameterized connection. Three different methods are used to explore physical contents of the theory obtained. Poisson’s equations for both material and charge distributions are obtained, as special cases, from the field equations of the theory. The theory is a pure geometric one in the sense that material distribution, charge distribution, gravitational and electromagnetic potentials, and other physical quantities are defined in terms of pure geometric objects of the structure used. In the case of pure gravity in free space, the spherical symmetric solution of the field equations gives the Schwarzschild exterior field. The weak equivalence principle is respected only in the case of pure gravity in free space; otherwise it is violated.
Supergeometry in locally covariant quantum field theory
Hack, Thomas-Paul; Schenkel, Alexander
2015-01-01
In this paper we analyze supergeometric locally covariant quantum field theories. We develop suitable categories SLoc of super-Cartan supermanifolds, which generalize Lorentz manifolds in ordinary quantum field theory, and show that, starting from a few representation theoretic and geometric data, one can construct a functor A : SLoc --> S*Alg to the category of super-*-algebras which can be interpreted as a non-interacting super-quantum field theory. This construction turns out to disregard supersymmetry transformations as the morphism sets in the above categories are too small. We then solve this problem by using techniques from enriched category theory, which allows us to replace the morphism sets by suitable morphism supersets that contain supersymmetry transformations as their higher superpoints. We construct super-quantum field theories in terms of enriched functors eA : eSLoc --> eS*Alg between the enriched categories and show that supersymmetry transformations are appropriately described within the en...
Moduli spaces of unitary conformal field theories
International Nuclear Information System (INIS)
We investigate various features of moduli spaces of unitary conformal field theories. A geometric characterization of rational toroidal conformal field theories in arbitrary dimensions is presented and discussed in relation to singular tori and those with complex multiplication. We study the moduli space M2 of unitary two-dimensional conformal field theories with central charge c = 2. All the 26 non-exceptional non-isolated irreducible components of M2 are constructed that may be obtained by an orbifold procedure from toroidal theories. The parameter spaces and partition functions are calculated explicitly. All multicritical points and lines are determined, such that all but three of these 26 components are directly or indirectly connected to the space of toroidal theories in M2. Relating our results to those by Dixon, Ginsparg, Harvey on the classification of c = 3/2 superconformal field theories, we give geometric interpretations to all non-isolated orbifolds discussed by them and correct their statements on multicritical points within the moduli space of c = 3/2 superconformal field theories. In the main part of this work, we investigate the moduli space M of N = (4, 4) superconformal field theories with central charge c = 6. After a slight emendation of its global description we give generic partition functions for models contained in M. We explicitly determine the locations of various known models in the component of M associated to K3 surfaces
Light-Front quantization of field theory
Srivastava, P P
1996-01-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincarè algebra and the LF Spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons.
Light-front quantization of field theory
Energy Technology Data Exchange (ETDEWEB)
Srivastava, Prem P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
1996-07-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs.
Classical trajectory perspective of atomic ionization in strong laser fields semiclassical modeling
Liu, Jie
2014-01-01
The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers...
High energy approximations in quantum field theory
International Nuclear Information System (INIS)
New theoretical methods in hadron physics based on a high-energy perturbation theory are discussed. The approximated solutions to quantum field theory obtained by this method appear to be sufficiently simple and rich in structure to encourage hadron dynamics studies. Operator eikonal form for field - theoretic Green's functions is derived and discussion is held on how the eikonal perturbation theory is to be renormalized. This method is extended to massive quantum electrodynamics of scalar charged bosons. Possible developments and applications of this theory are given
[Studies in quantum field theory: Progress report, April 1, 1991--March 31, 1992
International Nuclear Information System (INIS)
Professors Bender, Bernard, and Shrauner, Assistant Professors Ogilvie and Goltermann, Research Assistant Professors Visser and Petcher, and Research Associate Rivas are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: lattice gauge calculations of masses and weak matrix elements; strong-coupling approximation; low-energy effective field theories; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; the nature of perturbation theory in large order; quark condensation in QCD; chiral fermion theories on the lattice; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD; studies of the early universe and inflation; quantum gravity. This work is described in detail in the body of this proposal
Noncommutative gravity and quantum field theory on noncummutative curved spacetimes
Energy Technology Data Exchange (ETDEWEB)
Schenkel, Alexander
2011-10-24
The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the
Coarse Grainings and Irreversibility in Quantum Field Theory
Anastopoulos, C
1997-01-01
In this paper we are interested in the studying coarse-graining in field theories using the language of quantum open systems. Motivated by the ideas of Calzetta and Hu on correlation histories we employ the Zwanzig projection technique to obtain evolution equations for relevant observables in self-interacting scalar field theories. Our coarse-graining operation consists in concentrating solely on the evolution of the correlation functions of degree less than $n$, a treatment which corresponds to the familiar from statistical mechanics truncation of the BBKGY hierarchy at the n-th level. We derive the equations governing the evolution of mean field and two-point functions thus identifying the terms corresponding to dissipation and noise. We discuss possible applications of our formalism, the emergence of classical behaviour and the connection to the decoherent histories framework.
Chaotic instantons in scalar field theory
Addazi, Andrea
2016-01-01
We consider a new class of instantons in context of quantum field theory of a scalar field coupled with a chaotic background source field. We show how the instanton associated to the quantum tunneling from a metastable false to the true vacuum will be corrected by an exponential enhancement factor. Possible implications are discussed.
Reginatto, Marcel
2013-01-01
I consider the formulation of hybrid cosmological models that consists of a classical gravitational field interacting with a quantized massive scalar field in the formalism of ensembles on configuration space. This is a viable approach that provides an alternative to semiclassical gravity. I discuss a particular, highly nonclassical solution in two approximations, minisuperspace and spherically-symmetric midisuperspace. In both cases, the coupling of the quantum scalar field and classical gravitational field leads to a cosmological model which has a quantized radius of the universe.
Gluon-gluon elastic scattering amplitude in classical color field of colliding protons
Cheung, Man-Fung
2011-01-01
We present a formalism for gluon-gluon elastic scattering in the presence of the classical color field of the protons in high energy collision. The classical field is obtained by solving the classical Yang-Mills equation in the covariant gauge and treated as a prescribed background for the quantum gluons involved in the scattering process. The interaction between the classical field and the quantum gluon modifies the gluon propagator, and, in turn, the $gg\\rightarrow gg$ amplitude. The modified gluon propagator is derived to the first non-zero order of the classical field using the Gaussian approximation in Color Glass Condensate and shown to satisfy the generalized Slavnov-Taylor identity. This formalism is the theoretical basis for our recently proposed classical color field modified minijet model where we show that the $pp$ and $\\pbar p$ cross section data from $\\sqrt{s}=5$ GeV to 30 TeV can be satisfactorily fitted and the model predicts a $(\\ln s)^2$ behavior for large $s$, which saturates the asymptotic...
Quantum Field Theory on Noncommutative Spaces
Szabó, R J
2003-01-01
A pedagogical and self-contained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the Weyl-Wigner correspondence, noncommutative Feynman diagrams, UV/IR mixing, noncommutative Yang-Mills theory on infinite space and on the torus, Morita equivalences of noncommutative gauge theories, twisted reduced models, and an in-depth study of the gauge group of noncommutative Yang-Mills theory. Some of the more mathematical ideas and techniques of noncommutative geometry are also briefly explained.
Sihvola, Ari
2005-03-01
' multipole theory. But then the focus is shifted to observables associated with the reflection of waves from a surface. And there the classical analysis fails. This gives the motivation for the following chapters where the transformed multipole theory is represented. As expected, the correct multipole balance restores the physicality of the results in the reflection problem. One of the healthy reminders for an electrical engineer-scientist reading the book is the fact that E and B are the primary electric and magnetic fields. The other two field quantities, D and H, are the response fields (which, by the way, are also shown to be origin-dependent and poorly\\endcolumn defined in the framework of classical multipole theory). In defence, however, for these poor latter quantities one can mention the many advantages of the engineering-type constitutive relations where D and B are expressed as responses to E and H. An example is the beautiful symmetry and complete analogy between the electric and magnetic quantities (voltage becomes current and vice versa in the duality transformation) which helps us write down solutions to electromagnetic problems from other known cases. From a pragmatic point of view we would also favour the use of quantities like Poynting vector and energy density (which require the H field). Another discussion-provoking question to the authors of the book might be whether their new multipole balance could be broken in the analysis of artificial materials. New nanotechnological discoveries and devices make it look like engineers can do anything. Perhaps in the design of complex media and metamaterials, a hot topic in todayÂ's materials science, such macroscopic responses can be tailored where a certain high-order multipole contribution dominates over other, more basic ones. Multiple Theory in Electromagnetism is suitable for a broad spectrum of readers: solid-state physicists, molecular chemists, theoretical and experimental optics scientists, radiophysics
Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications
International Nuclear Information System (INIS)
' multipole theory. But then the focus is shifted to observables associated with the reflection of waves from a surface. And there the classical analysis fails. This gives the motivation for the following chapters where the transformed multipole theory is represented. As expected, the correct multipole balance restores the physicality of the results in the reflection problem. One of the healthy reminders for an electrical engineer-scientist reading the book is the fact that E and B are the primary electric and magnetic fields. The other two field quantities, D and H, are the response fields (which, by the way, are also shown to be origin-dependent and poorly defined in the framework of classical multipole theory). In defence, however, for these poor latter quantities one can mention the many advantages of the engineering-type constitutive relations where D and B are expressed as responses to E and H. An example is the beautiful symmetry and complete analogy between the electric and magnetic quantities (voltage becomes current and vice versa in the duality transformation) which helps us write down solutions to electromagnetic problems from other known cases. From a pragmatic point of view we would also favour the use of quantities like Poynting vector and energy density (which require the H field). Another discussion-provoking question to the authors of the book might be whether their new multipole balance could be broken in the analysis of artificial materials. New nanotechnological discoveries and devices make it look like engineers can do anything. Perhaps in the design of complex media and metamaterials, a hot topic in today?s materials science, such macroscopic responses can be tailored where a certain high-order multipole contribution dominates over other, more basic ones. Multiple Theory in Electromagnetism is suitable for a broad spectrum of readers: solid-state physicists, molecular chemists, theoretical and experimental optics scientists, radiophysics experts
Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications
Energy Technology Data Exchange (ETDEWEB)
Sihvola, Ari [Helsinki University of Technology (Finland)
2005-03-11
everything seems to work well with the 'old' multipole theory. But then the focus is shifted to observables associated with the reflection of waves from a surface. And there the classical analysis fails. This gives the motivation for the following chapters where the transformed multipole theory is represented. As expected, the correct multipole balance restores the physicality of the results in the reflection problem. One of the healthy reminders for an electrical engineer-scientist reading the book is the fact that E and B are the primary electric and magnetic fields. The other two field quantities, D and H, are the response fields (which, by the way, are also shown to be origin-dependent and poorly defined in the framework of classical multipole theory). In defence, however, for these poor latter quantities one can mention the many advantages of the engineering-type constitutive relations where D and B are expressed as responses to E and H. An example is the beautiful symmetry and complete analogy between the electric and magnetic quantities (voltage becomes current and vice versa in the duality transformation) which helps us write down solutions to electromagnetic problems from other known cases. From a pragmatic point of view we would also favour the use of quantities like Poynting vector and energy density (which require the H field). Another discussion-provoking question to the authors of the book might be whether their new multipole balance could be broken in the analysis of artificial materials. New nanotechnological discoveries and devices make it look like engineers can do anything. Perhaps in the design of complex media and metamaterials, a hot topic in today?s materials science, such macroscopic responses can be tailored where a certain high-order multipole contribution dominates over other, more basic ones. Multiple Theory in Electromagnetism is suitable for a broad spectrum of readers: solid-state physicists, molecular chemists, theoretical and
String theory and noncommutative field theories at one loop
International Nuclear Information System (INIS)
By exploiting the boundary state formalism we obtain the string correlator between two internal points on the one loop open string world-sheet in the presence of a constant background B-field. From this derivation it is clear that there is an ambiguity when one tries to restrict the Green function to the boundary of the surface. We fix this ambiguity by showing that there is a unique form for the correlator between two points on the boundary which reproduces the one loop field theory results of different noncommutative field theories. In particular, we present the derivation of one loop diagrams for phi36 and phi44 scalar interactions and for Yang-Mills theory. From the 2-point function we are able to derive the one loop β-function for noncommutative gauge theory
Ostrogradsky in theories with multiple fields
de Rham, Claudia; Matas, Andrew
2016-06-01
We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar-Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamical or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark energy and the stability of the theory. In particular we find that if we restrict ourselves to the Extended Scalar-Tensor class of theories for which the tensors are well-behaved and the scalar is free from gradient or ghost instabilities on FLRW then we recover Horndeski up to field redefinitions.
Relativistic semi-classical theory of atom ionization in ultra-intense laser
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A relativistic semi-classical theory (RSCT) of H-atom ionizationin ultra-intense laser (UIL) is proposed. A relativistic analytical expression for ionization probability of H-atom in its ground state is given. This expression, compared with non-relativistic expression, clearly shows the effects of the magnet vector in the laser, the non-dipole approximation and the relativistic mass-energy relation on the ionization processes. At the same time, we show that under some conditions the relativistic expression reduces to the non-relativistic expression of non-dipole approximation. At last, some possible applications of the relativistic theory are briefly stated.
Effective Field Theory out of Equilibrium: Brownian quantum fields
Boyanovsky, D
2015-01-01
The emergence of an effective field theory out of equilibrium is studied in the case in which a light field --the system-- interacts with very heavy fields in a finite temperature bath. We obtain the reduced density matrix for the light field, its time evolution is determined by an effective action that includes the \\emph{influence action} from correlations of the heavy degrees of freedom. The non-equilibrium effective field theory yields a Langevin equation of motion for the light field in terms of dissipative and noise kernels that obey a generalized fluctuation dissipation relation. These are completely determined by the spectral density of the bath which is analyzed in detail for several cases. At $T=0$ we elucidate the effect of thresholds in the renormalization aspects and the asymptotic emergence of a local effective field theory with unitary time evolution. At $T\
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yun, E-mail: zhou.yun.x@gmail.com; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel); Miret-Artés, Salvador, E-mail: s.miret@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)
2014-01-14
A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.
Homotopy Theory of Probability Spaces I: Classical independence and homotopy Lie algebras
Park, Jae-Suk
2015-01-01
This is the first installment of a series of papers whose aim is to lay a foundation for homotopy probability theory by establishing its basic principles and practices. The notion of a homotopy probability space is an enrichment of the notion of an algebraic probability space with ideas from algebraic homotopy theory. This enrichment uses a characterization of the laws of random variables in a probability space in terms of symmetries of the expectation. The laws of random variables are reinterpreted as invariants of the homotopy types of infinity morphisms between certain homotopy algebras. The relevant category of homotopy algebras is determined by the appropriate notion of independence for the underlying probability theory. This theory will be both a natural generalization and an effective computational tool for the study of classical algebraic probability spaces, while keeping the same central limit. This article is focused on the commutative case, where the laws of random variables are also described in t...
Blockspin transformations for finite temperature field theories with gauge fields
International Nuclear Information System (INIS)
A procedure is proposed to study quantum field theories at zero or at finite temperature by a sequence of real space renormalization group (RG) or blockspin transformations. They transform to effective theories on coarser and coarser lattices. The ultimate aim is to compute constraint effective potentials, i.e. the free energy as a function of suitable order parameters. From the free energy one can read off the thermodynamic behaviour of the theory, in particular the existence and nature of phase transitions. In a finite temperature field theory one begins with either one or a sequence of transformations which transform the original theory into an effective theory on a three-dimensional lattice. Its effective action has temperature dependent coefficients. Thereafter one may proceed with further blockspin transformations of the three-dimensional theory. Assuming a finite volume, this can in principle be continued until one ends with a lattice with a single site. Its effective action is the constraint effective potential. In each RG-step, an integral over the high frequency part of the field, also called the fluctuation field, has to be performed. This is done by perturbation theory. It requires the knowledge of bare fluctuation field propagators and of interpolation operators which enter into the vertices. A detailed examination of these quantities is presented for scalar fields, abelian gauge fields and for Higgs fields, finite temperature is admitted. The lattice perturbation theory is complicated because the bare lattice propagators are complicated. This is due to a partial loss of translation invariance in each step. Therefore the use of translation invariant cutoffs in place of a lattice is also discussed. In case of gauge fields this is only possible as a continuum version of the blockspin method. (orig.)
Magnetic fields, special relativity and potential theory elementary electromagnetic theory
Chirgwin, B H; Kilmister, C W
1972-01-01
Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec
Strong Dissipative Behavior in Quantum Field Theory
Berera, A; Ramos, R O; Berera, Arjun; Gleiser, Marcelo; Ramos, Rudnei O.
1998-01-01
We study under which conditions an overdamped regime can be attained in the dynamic evolution of a quantum field configuration. Using a real-time formulation of finite temperature field theory, we compute the effective evolution equation of a scalar field configuration, quadratically interacting with a given set of other scalar fields. We then show that, in the overdamped regime, the dissipative kernel in the field equation of motion is closely related to the shear viscosity coefficient, as computed in scalar field theory at finite temperature. The effective dynamics is equivalent to a time-dependent Ginzburg-Landau description of the approach to equilibrium in phenomenological theories of phase transitions. Applications of our results, including a recently proposed inflationary scenario called ``warm inflation'', are discussed.
Cutkosky Rules for Superstring Field Theory
Pius, Roji
2016-01-01
Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky ru...
The conceptual framework of quantum field theory
Duncan, Anthony
2012-01-01
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...
Effective field theories from QCD
International Nuclear Information System (INIS)
We present a method for extracting effective Lagrangians from QCD. The resulting effective Lagrangians are based on exact rewrites of cut-off QCD in terms of these new collective field degrees of freedom. These cut-off Lagrangians are thus 'effective' in the sense that they explicitly contain some of the physical long-distance degrees of freedom from the outset. As an example we discuss the introduction of a new collective field carrying the quantum numbers of the η'-meson. (orig.)
A quantum field theory of the extended electron
Energy Technology Data Exchange (ETDEWEB)
Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica; Recami, Erasmo [Universita Statale di Bergamo, Dalmine, BG (Italy). Facolta di Ingegneria]|[Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada
1993-12-01
In a recent paper, the classical model of Barut and Zanghi (BZ) for the electron spin which interpreted the Zitterbewegung (zbw) motion along helical paths and its quantum version have been investigated by using the language of Clifford algebras. In also doing, a new non-linear Dirac-like equation (NDE) was derived. We want to readdress the whole subject, and complete it, by adopting - for the sake of physical clarity - the ordinary tensorial language. In particular, we re-derive here the NDE for the electron quantum field, show it to be associated with a new conserved probability current, and stress its importance for a quantum field theory of spin 1/2 fermions. Actually, we propose this equation in substitution for the Dirac equation, which comes from the former by averaging over a zbw cycle. We then derive a new equation of motion for the quantum field velocity, which will allow us to regard the electron as an extended object, with a classically intelligible internal structure (thus overcoming some known, long-standing problems). We carefully the solutions of the NDE; with special attention to those implying (at the classical limit) light-like helical motions, since these appear to be the most adequate equations for the electron description, from the kinematical and physical points of view, and do cope with the electron electromagnetic properties (such as Coulomb field and intrinsic magnetic moment). (author). 18 refs.
A High Order Theory for Linear Thermoelastic Shells: Comparison with Classical Theories
Directory of Open Access Journals (Sweden)
V. V. Zozulya
2013-01-01
Full Text Available A high order theory for linear thermoelasticity and heat conductivity of shells has been developed. The proposed theory is based on expansion of the 3-D equations of theory of thermoelasticity and heat conductivity into Fourier series in terms of Legendre polynomials. The first physical quantities that describe thermodynamic state have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby all equations of elasticity and heat conductivity including generalized Hooke's and Fourier's laws have been transformed to the corresponding equations for coefficients of the polynomial expansion. Then in the same way as in the 3D theories system of differential equations in terms of displacements and boundary conditions for Fourier coefficients has been obtained. First approximation theory is considered in more detail. The obtained equations for the first approximation theory are compared with the corresponding equations for Timoshenko's and Kirchhoff-Love's theories. Special case of plates and cylindrical shell is also considered, and corresponding equations in displacements are presented.
Aspects of integrability in a classical model for non-interacting fermionic fields
Grosse-Holz, Simon; Richter, Klaus; Urbina, Juan Diego
2015-01-01
In this work we investigate the issue of integrability in a classical model for noninteracting fermionic fields. This model is constructed via classical-quantum correspondence obtained from the semiclassical treatment of the quantum system. Our main finding is that the classical system, contrary to the quantum system, is not integrablein general. Regarding this contrast it is clear that in general classical models for fermionic quantum systems have to be handled with care. Further numerical investigation of the system showed that there may be islands of stability in the phase space. We also investigated a similar model that is used in theoretical chemistry and found this one to be most probably integrable, although also here the integrability is not assured by the quantum-classical correspondence principle.