WorldWideScience

Sample records for classical fear conditioning

  1. Unconditioned responses and functional fear networks in human classical conditioning

    OpenAIRE

    Linnman, Clas; Rougemont-Bücking, Ansgar; Beucke, Jan Carl; Zeffiro, Thomas A.; Milad, Mohammed R.

    2011-01-01

    Human imaging studies examining fear conditioning have mainly focused on the neural responses to conditioned cues. In contrast, the neural basis of the unconditioned response and the mechanisms by which fear modulates inter-regional functional coupling have received limited attention. We examined the neural responses to an unconditioned stimulus using a partial-reinforcement fear conditioning paradigm and functional MRI. The analysis focused on: (1) the effects of an unconditioned stimulus (a...

  2. Unconditioned responses and functional fear networks in human classical conditioning.

    Science.gov (United States)

    Linnman, Clas; Rougemont-Bücking, Ansgar; Beucke, Jan Carl; Zeffiro, Thomas A; Milad, Mohammed R

    2011-08-01

    Human imaging studies examining fear conditioning have mainly focused on the neural responses to conditioned cues. In contrast, the neural basis of the unconditioned response and the mechanisms by which fear modulates inter-regional functional coupling have received limited attention. We examined the neural responses to an unconditioned stimulus using a partial-reinforcement fear conditioning paradigm and functional MRI. The analysis focused on: (1) the effects of an unconditioned stimulus (an electric shock) that was either expected and actually delivered, or expected but not delivered, and (2) on how related brain activity changed across conditioning trials, and (3) how shock expectation influenced inter-regional coupling within the fear network. We found that: (1) the delivery of the shock engaged the red nucleus, amygdale, dorsal striatum, insula, somatosensory and cingulate cortices, (2) when the shock was expected but not delivered, only the red nucleus, the anterior insular and dorsal anterior cingulate cortices showed activity increases that were sustained across trials, and (3) psycho-physiological interaction analysis demonstrated that fear led to increased red nucleus coupling to insula but decreased hippocampus coupling to the red nucleus, thalamus and cerebellum. The hippocampus and the anterior insula may serve as hubs facilitating the switch between engagement of a defensive immediate fear network and a resting network. PMID:21377494

  3. Effects of local anesthesia of the cerebellum on classical fear conditioning in goldfish

    Directory of Open Access Journals (Sweden)

    Hirano Ruriko

    2010-03-01

    Full Text Available Abstract Background Besides the amygdala, of which emotion roles have been intensively studied, the cerebellum has also been demonstrated to play a critical role in simple classical fear conditioning in both mammals and fishes. In the present study, we examined the effect of local administration of the anesthetic agent lidocaine into the cerebellum on fear-related, classical heart-rate conditioning in goldfish. Methods The effects of microinjection of the anesthetic agent lidocaine into the cerebellum on fear conditioning were investigated in goldfish. The fear conditioning paradigm was delayed classical conditioning with light as a conditioned stimulus and electric shock as an unconditioned stimulus; cardiac deceleration (bradycardia was the conditioned response. Results Injecting lidocaine into the cerebellum had no effect on the base heart rate, an arousal/orienting response to the novel stimulus (i.e., the first presentation of light, or an unconditioned response to electric shock. However, lidocaine injection greatly impaired acquisition of conditioned bradycardia. Lidocaine injection 60 min before the start of the conditioning procedure showed no effect on acquisition of conditioned bradycardia, indicating that the effect of lidocaine was reversible. Conclusions The present results further confirm the idea that the cerebellum in teleost fish, as in mammals, is critically involved in classical fear conditioning.

  4. Conditioned withdrawal in goldfish: a simple and inexpensive preparation for the study of classical fear conditioning in vertebrates.

    Science.gov (United States)

    Barela, Peter B

    2012-02-01

    Summary.-A preparation for the study of classical fear conditioning in vertebrates is described. Its unique features are that it is inexpensive and easy to construct and operate. The following classical conditioning phenomena are demonstrated using this preparation: excitatory conditioning, extinction, contextual conditioning, blocking, a conditioned inhibition discrimination, and latent inhibition.

  5. Differential Transcriptional Response to Nonassociative and Associative Components of Classical Fear Conditioning in the Amygdala and Hippocampus

    Science.gov (United States)

    Isiegas, Carolina; Stein, Joel; Hellman, Kevin; Hannenhalli, Sridhar; Abel, Ted; Keeley, Michael B.; Wood, Marcelo A.

    2006-01-01

    Classical fear conditioning requires the recognition of conditioned stimuli (CS) and the association of the CS with an aversive stimulus. We used Affymetrix oligonucleotide microarrays to characterize changes in gene expression compared to naive mice in both the amygdala and the hippocampus 30 min after classical fear conditioning and 30 min after…

  6. Updated meta-analysis of classical fear conditioning in the anxiety disorders.

    Science.gov (United States)

    Duits, Puck; Cath, Danielle C; Lissek, Shmuel; Hox, Joop J; Hamm, Alfons O; Engelhard, Iris M; van den Hout, Marcel A; Baas, Joke M P

    2015-04-01

    The aim of the current study was twofold: (1) to systematically examine differences in fear conditioning between anxiety patients and healthy controls using meta-analytic methods, and (2) to examine the extent to which study characteristics may account for the variability in findings across studies. Forty-four studies (published between 1920 and 2013) with data on 963 anxiety disordered patients and 1,222 control subjects were obtained through PubMed and PsycINFO, as well as from a previous meta-analysis on fear conditioning (Lissek et al.). Results demonstrated robustly increased fear responses to conditioned safety cues (CS-) in anxiety patients compared to controls during acquisition. This effect may represent an impaired ability to inhibit fear in the presence of safety cues (CS-) and/or may signify an increased tendency in anxiety disordered patients to generalize fear responses to safe stimuli resembling the conditioned danger cue (CS+). In contrast, during extinction, patients show stronger fear responses to the CS+ and a trend toward increased discrimination learning (differentiation between the CS+ and CS-) compared to controls, indicating delayed and/or reduced extinction of fear in anxiety patients. Finally, none of the included study characteristics, such as the type of fear measure (subjective vs. psychophysiological index of fear), could account significantly for the variance in effect sizes across studies. Further research is needed to investigate the predictive value of fear extinction on treatment outcome, as extinction processes are thought to underlie the beneficial effects of exposure treatment in anxiety disorders.

  7. Emotional stress evoked by classical fear conditioning induces yawning behavior in rats.

    Science.gov (United States)

    Kubota, Natsuko; Amemiya, Seiichiro; Yanagita, Shinya; Nishijima, Takeshi; Kita, Ichiro

    2014-04-30

    Yawning is often observed not only in a state of boredom or drowsiness but also in stressful emotional situations, suggesting that yawning is an emotional behavior. However, the neural mechanisms for yawning during stressful emotional situations have not been fully determined, though previous studies have suggested that both parvocellular oxytocin (OT) and corticotropin-releasing factor (CRF) neurons in the hypothalamic paraventricular nucleus (PVN) are responsible for induction of yawning. Thus, using ethological observations and c-Fos immunohistochemistry, we examined whether emotional stress evoked by classical fear conditioning is involved in induction of yawning behavior in freely moving rats. Emotional stress induced yawning behavior that was accompanied by anxiety-related behavior, and caused neuronal activation of the central nucleus of the amygdala (CeA), as well as increases in activity of both OT and CRF neurons in the PVN. These results suggest that emotional stress may induce yawning behavior, in which the neuronal activation of the CeA may have a key role.

  8. Serotonin in fear conditioning processes.

    Science.gov (United States)

    Bauer, Elizabeth P

    2015-01-15

    This review describes the latest developments in our understanding of how the serotonergic system modulates Pavlovian fear conditioning, fear expression and fear extinction. These different phases of classical fear conditioning involve coordinated interactions between the extended amygdala, hippocampus and prefrontal cortices. Here, I first define the different stages of learning involved in cued and context fear conditioning and describe the neural circuits underlying these processes. The serotonergic system can be manipulated by administering serotonin receptor agonists and antagonists, as well as selective serotonin reuptake inhibitors (SSRIs), and these can have significant effects on emotional learning and memory. Moreover, variations in serotonergic genes can influence fear conditioning and extinction processes, and can underlie differential responses to pharmacological manipulations. This research has considerable translational significance as imbalances in the serotonergic system have been linked to anxiety and depression, while abnormalities in the mechanisms of conditioned fear contribute to anxiety disorders.

  9. Classical conditioning of autonomic fear responses is independent of contingency awareness.

    Science.gov (United States)

    Schultz, Douglas H; Helmstetter, Fred J

    2010-10-01

    The role of contingency awareness in classical conditioning experiments using human subjects is currently under debate. This study took a novel approach to manipulating contingency awareness in a differential Pavlovian conditioning paradigm. Complex sine wave gratings were used as visual conditional stimuli (CS). By manipulating the fundamental spatial frequency of the displays, we were able to construct pairs of stimuli that varied in discriminability. One group of subjects was given an "easy" discrimination, and another was exposed to a "difficult" CS+ and CS-. A 3rd group was exposed to a stimulus that was paired with the unconditional stimulus (UCS) 50% of the time and served as a control. Skin conductance response (SCR) and continuous UCS expectancy data were measured concurrently throughout the experiment. Differential UCS expectancy was found only in the easy discrimination group. Differential SCRs were found in the easy discrimination group as well as in the difficult discrimination group, but not in the 50% contingency control. The difficult discrimination group did not exhibit differential UCS expectancy but did show clear differential SCR. These observations support a dual process interpretation of classical conditioning whereby conditioning on an implicit level can occur without explicit knowledge about the contingencies. The role of contingency awareness in classical conditioning experiments using human subjects is currently under debate. This study took a novel approach to manipulating contingency awareness in a differential Pavlovian conditioning paradigm. Complex sine wave gratings were used as visual conditional stimuli (CS). By manipulating the fundamental spatial frequency of the displays, we were able to construct pairs of stimuli that varied in discriminability. One group of subjects was given an "easy" discrimination, and another was exposed to a "difficult" CS+ and CS-. A 3rd group was exposed to a stimulus that was paired with the

  10. The involvement of ventral tegmental area cholinergic muscarinic receptors in classically conditioned fear expression as measured with fear-potentiated startle.

    Science.gov (United States)

    Greba, Q; Munro, L J; Kokkinidis, L

    2000-07-01

    Accumulating evidence suggests that dopamine (DA) neurons in the ventral tegmental area (VTA) contribute to the complex amygdala-based neurocircuitry that mediates fear-motivated behaviors. Because of acetylcholine's (ACh) role in DA neuronal activation, the involvement of VTA cholinergic muscarinic receptors in Pavlovian conditioned fear responding was evaluated in the present study. Fear-potentiated startle was used to assess the effects of intraVTA infused methylscopolamine on conditioned fear performance in laboratory rats. Application of this nonspecific muscarinic receptor antagonist to VTA neurons was observed to inhibit the ability of a conditioned stimulus (CS) previously paired with footshock to enhance the amplitude of the acoustic startle reflex. Doses of methylscopolamine that blocked conditioned fear expression did not alter baseline sensorimotor responding. These results identify ACh neurotransmission in the VTA as a potential excitatory mechanism underlying the fear-arousing properties of threatening environmental stimuli.

  11. Limbic system development underlies the emergence of classical fear conditioning during the third and fourth weeks of life in the rat.

    Science.gov (United States)

    Deal, Alex L; Erickson, Kristen J; Shiers, Stephanie I; Burman, Michael A

    2016-04-01

    Classical fear conditioning creates an association between an aversive stimulus and a neutral stimulus. Although the requisite neural circuitry is well understood in mature organisms, the development of these circuits is less well studied. The current experiments examine the ontogeny of fear conditioning and relate it to neuronal activation assessed through immediate early gene (IEG) expression in the amygdala, hippocampus, perirhinal cortex, and hypothalamus of periweanling rats. Rat pups were fear conditioned, or not, during the third or fourth weeks of life. Neuronal activation was assessed by quantifying expression of FBJ osteosarcoma oncogene (FOS) using immunohistochemistry (IHC) in Experiment 1. Fos and early growth response gene-1 (EGR1) expression was assessed using qRT-PCR in Experiment 2. Behavioral data confirm that both auditory and contextual fear continue to emerge between PD 17 and 24. The IEG expression data are highly consistent with these behavioral results. IHC results demonstrate significantly more FOS protein expression in the basal amygdala of fear-conditioned PD 23 subjects compared to control subjects, but no significant difference at PD 17. qRT-PCR results suggest specific activation of the amygdala only in older subjects during auditory fear expression. A similar effect of age and conditioning status was also observed in the perirhinal cortex during both contextual and auditory fear expression. Overall, the development of fear conditioning occurring between the third and fourth weeks of life appears to be at least partly attributable to changes in activation of the amygdala and perirhinal cortex during fear conditioning or expression. (PsycINFO Database Record

  12. N-methyl-D-aspartate receptor antagonist MK-801 impairs learning but not memory fixation or expression of classical fear conditioning in goldfish (Carassius auratus).

    Science.gov (United States)

    Xu, X; Davis, R E

    1992-04-01

    The amnestic effects of the noncompetitive antagonist MK-801 on visually mediated, classic fear conditioning in goldfish (Carassius auratus) was examined in 5 experiments. MK-801 was administered 30 min before the training session on Day 1 to look for anterograde amnestic effects, immediately after training to look for retrograde amnestic effects, and before the training or test session, or both, to look for state-dependence effects. The results showed that MK-801 produced anterograde amnesia at doses that did not produce retrograde amnesia or state dependency and did not impair the expression of conditioned or unconditioned branchial suppression responses (BSRs) to the conditioned stimulus. The results indicate that MK-801 disrupts the mechanism of learning of the conditioned stimulus-unconditioned stimulus relation. Evidence is also presented that the learning processes that are disrupted by MK-801 occur during the initial stage of BSR conditioning.

  13. Extinction in human fear conditioning

    OpenAIRE

    Hermans, Dirk; Craske, Michelle G.; Mineka, Susan; Lovibond, Peter F.

    2006-01-01

    Although most extinction research is conducted in animal laboratories, the study of extinction learning in human fear conditioning has gained increasing attention over the last decade. The most important findings from human fear extinction are reviewed in this article. Specifically, we review experimental investigations of the impact of conditioned inhibitors, conditioned exciters, context renewal, and reinstatement on fear extinction in human samples. We discuss data from laboratory studies ...

  14. Posterior insular cortex is necessary for conditioned inhibition of fear.

    Science.gov (United States)

    Foilb, Allison R; Flyer-Adams, Johanna G; Maier, Steven F; Christianson, John P

    2016-10-01

    Veridical detection of safety versus danger is critical to survival. Learned signals for safety inhibit fear, and so when presented, reduce fear responses produced by danger signals. This phenomenon is termed conditioned inhibition of fear. Here, we report that CS+/CS- fear discrimination conditioning over 5 days in rats leads the CS- to become a conditioned inhibitor of fear, as measured by the classic tests of conditioned inhibition: summation and retardation of subsequent fear acquisition. We then show that NMDA-receptor antagonist AP5 injected to posterior insular cortex (IC) before training completely prevented the acquisition of a conditioned fear inhibitor, while intra-AP5 to anterior and medial IC had no effect. To determine if the IC contributes to the recall of learned fear inhibition, injections of the GABAA agonist muscimol were made to posterior IC before a summation test. This resulted in fear inhibition per se, which obscured inference to the effect of IC inactivation with recall of the safety cue. Control experiments sought to determine if the role of the IC in conditioned inhibition learning could be reduced to simpler fear discrimination function, but fear discrimination and recall were unaffected by AP5 or muscimol, respectively, in the posterior IC. These data implicate a role of posterior IC in the learning of conditioned fear inhibitors.

  15. Worrying affects associative fear learning: a startle fear conditioning study.

    Directory of Open Access Journals (Sweden)

    Femke J Gazendam

    Full Text Available A valuable experimental model for the pathogenesis of anxiety disorders is that they originate from a learned association between an intrinsically non-aversive event (Conditioned Stimulus, CS and an anticipated disaster (Unconditioned Stimulus, UCS. Most anxiety disorders, however, do not evolve from a traumatic experience. Insights from neuroscience show that memory can be modified post-learning, which may elucidate how pathological fear can develop after relatively mild aversive events. Worrying--a process frequently observed in anxiety disorders--is a potential candidate to strengthen the formation of fear memory after learning. Here we tested in a discriminative fear conditioning procedure whether worry strengthens associative fear memory. Participants were randomly assigned to either a Worry (n = 23 or Control condition (n = 25. After fear acquisition, the participants in the Worry condition processed six worrisome questions regarding the personal aversive consequences of an electric stimulus (UCS, whereas the Control condition received difficult but neutral questions. Subsequently, extinction, reinstatement and re-extinction of fear were tested. Conditioned responding was measured by fear-potentiated startle (FPS, skin conductance (SCR and UCS expectancy ratings. Our main results demonstrate that worrying resulted in increased fear responses (FPS to both the feared stimulus (CS(+ and the originally safe stimulus (CS(-, whereas FPS remained unchanged in the Control condition. In addition, worrying impaired both extinction and re-extinction learning of UCS expectancy. The implication of our findings is that they show how worry may contribute to the development of anxiety disorders by affecting associative fear learning.

  16. Dopaminergic Activity in the Medial Prefrontal Cortex Modulates Fear Conditioning

    Directory of Open Access Journals (Sweden)

    Parvin Babaei

    2011-07-01

    Full Text Available "nThe purpose of the present study was to determine the role of medial prefrontal cortex (mPFC dopaminergic system in fear conditioning response considering individual differences. Animals were initially counterbalanced and classified based on open field test, and then were given a single infusion of the dopamine agonist, amphetamine (AMPH and antagonist, clozapine (CLZ into the medial prefrontal cortex. Rats received tone-shock pairing in a classical fear conditioning test and then exposed to the tone alone. Freezing responses were measured as conditioned fear index. The results showed that both AMPH and CLZ infusion in mPFC reduced the expression of conditioned fear. This finding indicates that elevation or reduction in the dopaminergic activity is associated with the decrease of fear responses, despite preexisting individual-typological differences.

  17. Extending animal models of fear conditioning to humans.

    Science.gov (United States)

    Delgado, M R; Olsson, A; Phelps, E A

    2006-07-01

    A goal of fear and anxiety research is to understand how to treat the potentially devastating effects of anxiety disorders in humans. Much of this research utilizes classical fear conditioning, a simple paradigm that has been extensively investigated in animals, helping outline a brain circuitry thought to be responsible for the acquisition, expression and extinction of fear. The findings from non-human animal research have more recently been substantiated and extended in humans, using neuropsychological and neuroimaging methodologies. Research across species concur that the neural correlates of fear conditioning include involvement of the amygdala during all stages of fear learning, and prefrontal areas during the extinction phase. This manuscript reviews how animal models of fear are translated to human behavior, and how some fears are more easily acquired in humans (i.e., social-cultural). Finally, using the knowledge provided by a rich animal literature, we attempt to extend these findings to human models targeted to helping facilitate extinction or abolishment of fears, a trademark of anxiety disorders, by discussing efficacy in modulating the brain circuitry involved in fear conditioning via pharmacological treatments or emotion regulation cognitive strategies. PMID:16472906

  18. Modeling fear-conditioned bradycardia in humans

    OpenAIRE

    Castegnetti, G.; Tzovara, A.; Staib, M.; Paulus, P. C.; Hofer, N.; Bach, D R

    2016-01-01

    Across species, cued fear conditioning is a common experimental paradigm to investigate aversive Pavlovian learning. While fear-conditioned stimuli (CS+) elicit overt behavior in many mammals, this is not the case in humans. Typically, autonomic nervous system activity is used to quantify fear memory in humans, measured by skin conductance responses (SCR). Here, we investigate whether heart period responses (HPR) evoked by the CS, often observed in humans and small mammals, are suitable to co...

  19. Odors eliciting fear: a conditioning approach to Idiopathic Environmental Intolerances.

    Science.gov (United States)

    Leer, Arne; Smeets, Monique A M; Bulsing, Patricia J; van den Hout, Marcel A

    2011-06-01

    Patients suffering from Idiopathic Environmental Intolerances (IEI) report health symptoms, referable to multiple organ systems, which are triggered by harmless odors and therefore medically unexplainable. In line with previous research that predominantly points towards psychological explanations, the present study tests the hypothesis that IEI symptoms result from learning via classical conditioning of odors to fear. A differential conditioning paradigm was employed. Hedonically different odors were compared on ease of fear acquisition. Conditioned stimuli (CSs) were Dimethyl Sulfide (unpleasant) and peach (pleasant). The unconditioned stimulus (US) was an electrical shock. During acquisition one odor (CS+) was followed by shock, while the other odor (CS-) was not. Next, fear extinction was tested by presenting both CS+ and CS- without US. Electrodermal response, odor evaluation, and sniffing behavior were monitored. Results showed successful fear conditioning irrespective of hedonic character as evidenced by electrodermal response. Acquired fear did not extinguish. There was no evidence of evaluative conditioning taking place, as CS evaluation did not change during fear acquisition. Early avoidance of the CS+, as deduced from odor inhalation measures, was demonstrated, but did not sustain during the entire acquisition phase. This study suggests that a fear conditioning account of IEI is only partially satisfactory.

  20. Pain pathways involved in fear conditioning measured with fear-potentiated startle: lesion studies.

    Science.gov (United States)

    Shi, C; Davis, M

    1999-01-01

    It is well established that the basolateral amygdala is critically involved in the association between an unconditioned stimulus (US), such as a foot shock, and a conditioned stimulus (CS), such as a light, during classic fear conditioning. However, little is known about how the US (pain) inputs are relayed to the basolateral amygdala. The present studies were designed to define potential US pathways to the amygdala using lesion methods. Electrolytic lesions before or after training were placed in caudal granular/dysgranular insular cortex (IC) alone or in conjunction with the posterior intralaminar nuclei of the thalamus (PoT/PIL), and the effects on fear conditioning were examined. Pretraining lesions of both IC and PoT/PIL, but not lesions of IC alone, blocked the acquisition of fear-potentiated startle. However, post-training combined lesions of IC and PoT/PIL did not prevent expression of conditioned fear. Given that previous studies have shown that lesions of PoT/PIL alone had no effect on acquisition of conditioned fear, these results suggest that two parallel cortical (insula-amygdala) and subcortical (PoT/PIL-amygdala) pathways are involved in relaying shock information to the basolateral amygdala during fear conditioning.

  1. Fear conditioning is disrupted by damage to the postsubiculum.

    Science.gov (United States)

    Robinson, Siobhan; Bucci, David J

    2012-06-01

    The hippocampus plays a central role in spatial and contextual learning and memory, however relatively little is known about the specific contributions of parahippocampal structures that interface with the hippocampus. The postsubiculum (PoSub) is reciprocally connected with a number of hippocampal, parahippocampal and subcortical structures that are involved in spatial learning and memory. In addition, behavioral data suggest that PoSub is needed for optimal performance during tests of spatial memory. Together, these data suggest that PoSub plays a prominent role in spatial navigation. Currently it is unknown whether the PoSub is needed for other forms of learning and memory that also require the formation of associations among multiple environmental stimuli. To address this gap in the literature we investigated the role of PoSub in Pavlovian fear conditioning. In Experiment 1 male rats received either lesions of PoSub or Sham surgery prior to training in a classical fear conditioning procedure. On the training day a tone was paired with foot shock three times. Conditioned fear to the training context was evaluated 24 hr later by placing rats back into theconditioning chamber without presenting any tones or shocks. Auditory fear was assessed on the third day by presenting the auditory stimulus in a novel environment (no shock). PoSub-lesioned rats exhibited impaired acquisition of the conditioned fear response as well as impaired expression of contextual and auditory fear conditioning. In Experiment 2, PoSub lesions were made 1 day after training to specifically assess the role of PoSub in fear memory. No deficits in the expression of contextual fear were observed, but freezing to the tone was significantly reduced in PoSub-lesioned rats compared to shams. Together, these results indicate that PoSub is necessary for normal acquisition of conditioned fear, and that PoSub contributes to the expression of auditory but not contextual fear memory.

  2. Teaching and Demonstrating Classical Conditioning.

    Science.gov (United States)

    Sparrow, John; Fernald, Peter

    1989-01-01

    Discusses classroom demonstrations of classical conditioning and notes tendencies to misrepresent Pavlov's procedures. Describes the design and construction of the conditioner that is used for demonstrating classical conditioning. Relates how students experience conditioning, generalization, extinction, discrimination, and spontaneous recovery.…

  3. Modeling fear-conditioned bradycardia in humans.

    Science.gov (United States)

    Castegnetti, Giuseppe; Tzovara, Athina; Staib, Matthias; Paulus, Philipp C; Hofer, Nicolas; Bach, Dominik R

    2016-06-01

    Across species, cued fear conditioning is a common experimental paradigm to investigate aversive Pavlovian learning. While fear-conditioned stimuli (CS+) elicit overt behavior in many mammals, this is not the case in humans. Typically, autonomic nervous system activity is used to quantify fear memory in humans, measured by skin conductance responses (SCR). Here, we investigate whether heart period responses (HPR) evoked by the CS, often observed in humans and small mammals, are suitable to complement SCR as an index of fear memory in humans. We analyze four datasets involving delay and trace conditioning, in which heart beats are identified via electrocardiogram or pulse oximetry, to show that fear-conditioned heart rate deceleration (bradycardia) is elicited and robustly distinguishes CS+ from CS-. We then develop a psychophysiological model (PsPM) of fear-conditioned HPR. This PsPM is inverted to yield estimates of autonomic input into the heart. We show that the sensitivity to distinguish CS+ and CS- (predictive validity) is higher for model-based estimates than peak-scoring analysis, and compare this with SCR. Our work provides a novel tool to investigate fear memory in humans that allows direct comparison between species. PMID:26950648

  4. Worrying Affects Associative Fear Learning: A Startle Fear Conditioning Study

    OpenAIRE

    Gazendam, F.J.; Kindt, M

    2012-01-01

    A valuable experimental model for the pathogenesis of anxiety disorders is that they originate from a learned association between an intrinsically non-aversive event (Conditioned Stimulus, CS) and an anticipated disaster (Unconditioned Stimulus, UCS). Most anxiety disorders, however, do not evolve from a traumatic experience. Insights from neuroscience show that memory can be modified post-learning, which may elucidate how pathological fear can develop after relatively mild aversive events. W...

  5. A Complete Reanalysis of Horner's Classic "Fear of Success" Study.

    Science.gov (United States)

    Brandt, David A.; Kline, Kay H.

    The well-known study on fear of success (FOS) by Horner (1968) asserted that women low in FOS do better on achievement-oriented tasks under competitive conditions, while women high in the motive do better when the situation is non-competitive. This paper critically reviews the methodology of this study and concludes that the statistical test…

  6. Demographic factors predict magnitude of conditioned fear.

    Science.gov (United States)

    Rosenbaum, Blake L; Bui, Eric; Marin, Marie-France; Holt, Daphne J; Lasko, Natasha B; Pitman, Roger K; Orr, Scott P; Milad, Mohammed R

    2015-10-01

    There is substantial variability across individuals in the magnitudes of their skin conductance (SC) responses during the acquisition and extinction of conditioned fear. To manage this variability, subjects may be matched for demographic variables, such as age, gender and education. However, limited data exist addressing how much variability in conditioned SC responses is actually explained by these variables. The present study assessed the influence of age, gender and education on the SC responses of 222 subjects who underwent the same differential conditioning paradigm. The demographic variables were found to predict a small but significant amount of variability in conditioned responding during fear acquisition, but not fear extinction learning or extinction recall. A larger differential change in SC during acquisition was associated with more education. Older participants and women showed smaller differential SC during acquisition. Our findings support the need to consider age, gender and education when studying fear acquisition but not necessarily when examining fear extinction learning and recall. Variability in demographic factors across studies may partially explain the difficulty in reproducing some SC findings. PMID:26151498

  7. Fear conditioning in frontotemporal lobar degeneration and Alzheimer's disease

    OpenAIRE

    Hoefer, M.; Allison, S. C.; Schauer, G. F.; Neuhaus, J M; Hall, J.; Dang, J. N.; Weiner, M.W.; Miller, B. L.; Rosen, H.J.

    2008-01-01

    Emotional blunting and abnormal processing of rewards and punishments represent early features of frontotemporal lobar degeneration (FTLD). Better understanding of the physiological underpinnings of these emotional changes can be facilitated by the use of classical psychology approaches. Fear conditioning (FC) is an extensively used paradigm for studying emotional processing that has rarely been applied to the study of dementia.We studied FC in controls (n = 25), Alzheimer's disease (n =25) a...

  8. Fear conditioning- and extinction-induced neuronal plasticity in the mouse amygdala

    OpenAIRE

    Ciocchi, Stéphane

    2009-01-01

    Experience-dependent changes in behavior are mediated by long-term functional modifications in brain circuits. To study the underlying mechanisms, our lab is using classical auditory fear conditioning, a simple and robust form of associative learning. In classical fear conditioning, the subject is exposed to a noxious unconditioned stimulus (US), such as a foot-shock, in conjunction with a neutral conditioned stimulus (CS), such as a tone or a light. As a result of the training, the tone acqu...

  9. Contextual and auditory fear conditioning continue to emerge during the periweaning period in rats.

    Directory of Open Access Journals (Sweden)

    Michael A Burman

    Full Text Available Anxiety disorders often emerge during childhood. Rodent models using classical fear conditioning have shown that different types of fear depend upon different neural structures and may emerge at different stages of development. For example, some work has suggested that contextual fear conditioning generally emerges later in development (postnatal day 23-24 than explicitly cued fear conditioning (postnatal day 15-17 in rats. This has been attributed to an inability of younger subjects to form a representation of the context due to an immature hippocampus. However, evidence that contextual fear can be observed in postnatal day 17 subjects and that cued fear conditioning continues to emerge past this age raises questions about the nature of this deficit. The current studies examine this question using both the context pre-exposure facilitation effect for immediate single-shock contextual fear conditioning and traditional cued fear conditioning using Sprague-Dawley rats. The data suggest that both cued and contextual fear conditioning are continuing to develop between PD 17 and 24, consistent with development occurring the in essential fear conditioning circuit.

  10. Contextual and auditory fear conditioning continue to emerge during the periweaning period in rats.

    Science.gov (United States)

    Burman, Michael A; Erickson, Kristen J; Deal, Alex L; Jacobson, Rose E

    2014-01-01

    Anxiety disorders often emerge during childhood. Rodent models using classical fear conditioning have shown that different types of fear depend upon different neural structures and may emerge at different stages of development. For example, some work has suggested that contextual fear conditioning generally emerges later in development (postnatal day 23-24) than explicitly cued fear conditioning (postnatal day 15-17) in rats. This has been attributed to an inability of younger subjects to form a representation of the context due to an immature hippocampus. However, evidence that contextual fear can be observed in postnatal day 17 subjects and that cued fear conditioning continues to emerge past this age raises questions about the nature of this deficit. The current studies examine this question using both the context pre-exposure facilitation effect for immediate single-shock contextual fear conditioning and traditional cued fear conditioning using Sprague-Dawley rats. The data suggest that both cued and contextual fear conditioning are continuing to develop between PD 17 and 24, consistent with development occurring the in essential fear conditioning circuit.

  11. Sex differences in learning processes of classical and operant conditioning.

    Science.gov (United States)

    Dalla, Christina; Shors, Tracey J

    2009-05-25

    Males and females learn and remember differently at different times in their lives. These differences occur in most species, from invertebrates to humans. We review here sex differences as they occur in laboratory rodent species. We focus on classical and operant conditioning paradigms, including classical eyeblink conditioning, fear-conditioning, active avoidance and conditioned taste aversion. Sex differences have been reported during acquisition, retention and extinction in most of these paradigms. In general, females perform better than males in the classical eyeblink conditioning, in fear-potentiated startle and in most operant conditioning tasks, such as the active avoidance test. However, in the classical fear-conditioning paradigm, in certain lever-pressing paradigms and in the conditioned taste aversion, males outperform females or are more resistant to extinction. Most sex differences in conditioning are dependent on organizational effects of gonadal hormones during early development of the brain, in addition to modulation by activational effects during puberty and adulthood. Critically, sex differences in performance account for some of the reported effects on learning and these are discussed throughout the review. Because so many mental disorders are more prevalent in one sex than the other, it is important to consider sex differences in learning when applying animal models of learning for these disorders. Finally, we discuss how sex differences in learning continue to alter the brain throughout the lifespan. Thus, sex differences in learning are not only mediated by sex differences in the brain, but also contribute to them.

  12. Logical, conditional, and classical probability

    OpenAIRE

    Quznetsov, G. A.

    2005-01-01

    The propositional logic is generalized on the real numbers field. the logical function with all properties of the classical probability function is obtained. The logical analog of the Bernoulli independent tests scheme is constructed. The logical analog of the Large Number Law is deduced from properties of these functions. The logical analog of thd conditional probability is defined. Consistency encured by a model on a suitable variant of the nonstandard analysis.

  13. Differential roles of the dorsal and ventral hippocampus in predator odor contextual fear conditioning.

    Science.gov (United States)

    Wang, Melissa E; Fraize, Nicolas P; Yin, Linda; Yuan, Robin K; Petsagourakis, Despina; Wann, Ellen G; Muzzio, Isabel A

    2013-06-01

    The study of fear memory is important for understanding various anxiety disorders in which patients experience persistent recollections of traumatic events. These memories often involve associations of contextual cues with aversive events; consequently, Pavlovian classical conditioning is commonly used to study contextual fear learning. The use of predator odor as a fearful stimulus in contextual fear conditioning has become increasingly important as an animal model of anxiety disorders. Innate fear responses to predator odors are well characterized and reliable; however, attempts to use these odors as unconditioned stimuli in fear conditioning paradigms have proven inconsistent. Here we characterize a contextual fear conditioning paradigm using coyote urine as the unconditioned stimulus. We found that contextual conditioning induced by exposure to coyote urine produces long-term freezing, a stereotypic response to fear observed in mice. This paradigm is context-specific and parallels shock-induced contextual conditioning in that it is responsive to extinction training and manipulations of predator odor intensity. Region-specific lesions of the dorsal and ventral hippocampus indicate that both areas are independently required for the long-term expression of learned fear. These results in conjunction with c-fos immunostaining data suggest that while both the dorsal and ventral hippocampus are required for forming a contextual representation, the ventral region also modulates defensive behaviors associated with predators. This study provides information about the individual contributions of the dorsal and ventral hippocampus to ethologically relevant fear learning.

  14. [Mechanisms for regulation of fear conditioning and memory].

    Science.gov (United States)

    Kida, Satoshi

    2014-11-01

    Pavlovian fear conditioning is a model of fear learning and memory. The mechanisms regulating fear conditioning and memory have been investigated in humans and rodents. In this paradigm, animals learn and memorize an association between a conditioned stimulus (CS), such as context, and an unconditioned stimulus (US), such as an electrical footshock that induces fear. Fear memory generated though fear conditioning is stabilized via a memory consolidation process. Moreover, recent studies have shown the existence of memory processes that control fear memory following the retrieval of consolidated memory. Indeed, when fear memory is retrieved by re-exposure to the CS, the retrieved memory is re-stabilized via the reconsolidation process. On the other hand, the retrieval of fear memory by prolonged re-exposure to the CS also leads to fear memory extinction, new inhibitory learning against the fear memory, in which animals learn that they do not need to respond to the CS. Importantly, the reinforcement of fear memory after retrieval (i.e., re-experience such as flashbacks or nightmares) has been thought to be associated with the development of emotional disorders such as post-traumatic stress disorder (PTSD). In this review, I summarize recent progress in studies on the mechanism of fear conditioning and memory consolidation, reconsolidation and extinction, and furthermore, introduce our recent establishment of a mouse PTSD model that shows enhancement of fear memory after retrieval.

  15. [Mechanisms for regulation of fear conditioning and memory].

    Science.gov (United States)

    Kida, Satoshi

    2014-11-01

    Pavlovian fear conditioning is a model of fear learning and memory. The mechanisms regulating fear conditioning and memory have been investigated in humans and rodents. In this paradigm, animals learn and memorize an association between a conditioned stimulus (CS), such as context, and an unconditioned stimulus (US), such as an electrical footshock that induces fear. Fear memory generated though fear conditioning is stabilized via a memory consolidation process. Moreover, recent studies have shown the existence of memory processes that control fear memory following the retrieval of consolidated memory. Indeed, when fear memory is retrieved by re-exposure to the CS, the retrieved memory is re-stabilized via the reconsolidation process. On the other hand, the retrieval of fear memory by prolonged re-exposure to the CS also leads to fear memory extinction, new inhibitory learning against the fear memory, in which animals learn that they do not need to respond to the CS. Importantly, the reinforcement of fear memory after retrieval (i.e., re-experience such as flashbacks or nightmares) has been thought to be associated with the development of emotional disorders such as post-traumatic stress disorder (PTSD). In this review, I summarize recent progress in studies on the mechanism of fear conditioning and memory consolidation, reconsolidation and extinction, and furthermore, introduce our recent establishment of a mouse PTSD model that shows enhancement of fear memory after retrieval. PMID:25536762

  16. Generalization of Conditioned Fear along a Dimension of Increasing Fear Intensity

    Science.gov (United States)

    Dunsmoor, Joseph E.; Mitroff, Stephen R.; LaBar, Kevin S.

    2009-01-01

    The present study investigated the extent to which fear generalization in humans is determined by the amount of fear intensity in nonconditioned stimuli relative to a perceptually similar conditioned stimulus. Stimuli consisted of graded emotionally expressive faces of the same identity morphed between neutral and fearful endpoints. Two…

  17. A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals

    OpenAIRE

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard J.; Myers, Catherine E.

    2012-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animal...

  18. Fear conditioning with film clips: a complex associative learning paradigm

    NARCIS (Netherlands)

    A.E. Kunze; A. Arntz; M. Kindt

    2014-01-01

    Background and objectives: We argue that the stimuli used in traditional fear conditioning paradigms are too simple to model the learning and unlearning of complex fear memories. We therefore developed and tested an adapted fear conditioning paradigm, specifically designed for the study of complex a

  19. Equal pain – Unequal fear response: Enhanced susceptibility of tooth pain to fear conditioning

    Directory of Open Access Journals (Sweden)

    Michael Lukas Meier

    2014-07-01

    Full Text Available Experimental fear conditioning in humans is widely used as a model to investigate the neural basis of fear learning and to unravel the pathogenesis of anxiety disorders. It has been observed that fear conditioning depends on stimulus salience and subject vulnerability to fear. It is further known that the prevalence of dental-related fear and phobia is exceedingly high in the population. Dental phobia is unique as no other body part is associated with a specific phobia. Therefore, we hypothesized that painful dental stimuli exhibit an enhanced susceptibility to fear conditioning when comparing to equal perceived stimuli applied to other body sites. Differential susceptibility to pain-related fear was investigated by analyzing responses to an unconditioned stimulus (UCS applied to the right maxillary canine (UCS-c versus the right tibia (UCS-t. For fear conditioning, UCS-c and USC-t consisted of painful electric stimuli, carefully matched at both application sites for equal intensity and quality perception. UCSs were paired to simple geometrical forms which served as conditioned stimuli (CS+. Unpaired CS+ were presented for eliciting and analyzing conditioned fear responses. Outcome parameter were 1 skin conductance changes and 2 time-dependent brain activity (BOLD responses in fear-related brain regions such as the amygdala, anterior cingulate cortex, insula, thalamus, orbitofrontal cortex and medial prefrontal cortex.A preferential susceptibility of dental pain to fear conditioning was observed, reflected by heightened skin conductance responses and enhanced time-dependent brain activity (BOLD responses in the fear network. For the first time, this study demonstrates fear-related neurobiological mechanisms that point towards a superior conditionability of tooth pain. Beside traumatic dental experiences our results offer novel evidence that might explain the high prevalence of dental-related fears in the population.

  20. The conditions that promote fear learning: prediction error and Pavlovian fear conditioning.

    Science.gov (United States)

    Li, Susan Shi Yuan; McNally, Gavan P

    2014-02-01

    A key insight of associative learning theory is that learning depends on the actions of prediction error: a discrepancy between the actual and expected outcomes of a conditioning trial. When positive, such error causes increments in associative strength and, when negative, such error causes decrements in associative strength. Prediction error can act directly on fear learning by determining the effectiveness of the aversive unconditioned stimulus or indirectly by determining the effectiveness, or associability, of the conditioned stimulus. Evidence from a variety of experimental preparations in human and non-human animals suggest that discrete neural circuits code for these actions of prediction error during fear learning. Here we review the circuits and brain regions contributing to the neural coding of prediction error during fear learning and highlight areas of research (safety learning, extinction, and reconsolidation) that may profit from this approach to understanding learning.

  1. Effects of sleep on memory for conditioned fear and fear extinction

    OpenAIRE

    Pace-Schott, Edward F.; Germain, Anne; Milad, Mohammed R

    2015-01-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning and extinction memory in the rodent and human, interactions of sleep with th...

  2. Skin Conductance Fear Conditioning Impairments and Aggression: A Longitudinal Study

    OpenAIRE

    Gao, Yu; Tuvblad, Catherine; Schell, Anne; Baker, Laura; Raine, Adrian

    2014-01-01

    Autonomic fear conditioning deficits have been linked to child aggression and adult criminal behavior. However, it is unknown if fear conditioning deficits are specific to certain subtypes of aggression, and longitudinal research is rare. In the current study, reactive and proactive aggression were assessed in a sample of males and females when aged 10, 12, 15, and 18 years old. Skin conductance fear conditioning data were collected when they were 18 years old. Individuals who were persistent...

  3. Neural circuitry underlying the regulation of conditioned fear and its relation to extinction.

    Science.gov (United States)

    Delgado, Mauricio R; Nearing, Katherine I; Ledoux, Joseph E; Phelps, Elizabeth A

    2008-09-11

    Recent efforts to translate basic research to the treatment of clinical disorders have led to a growing interest in exploring mechanisms for diminishing fear. This research has emphasized two approaches: extinction of conditioned fear, examined across species; and cognitive emotion regulation, unique to humans. Here, we sought to examine the similarities and differences in the neural mechanisms underlying these two paradigms for diminishing fear. Using an emotion regulation strategy, we examine the neural mechanisms of regulating conditioned fear using fMRI and compare the resulting activation pattern with that observed during classic extinction. Our results suggest that the lateral PFC regions engaged by cognitive emotion regulation strategies may influence the amygdala, diminishing fear through similar vmPFC connections that are thought to inhibit the amygdala during extinction. These findings further suggest that humans may have developed complex cognition that can aid in regulating emotional responses while utilizing phylogenetically shared mechanisms of extinction.

  4. Faster acquisition of conditioned fear to fear-relevant than to nonfear-relevant conditional stimuli.

    Science.gov (United States)

    Ho, Yiling; Lipp, Ottmar V

    2014-08-01

    Prepared learning theory posits that prepared associations are acquired rapidly and resist extinction. Although it has been shown repeatedly that prepared associations resist extinction, there is currently little evidence to support the proposal of faster acquisition. The current study provides such evidence using a within-subjects conditioning procedure with a 50% reinforcement schedule. Participants were presented with pictures of four animals, two fear-relevant (snake, spider) and two nonfear-relevant (fish, bird), one of each paired with an unpleasant electrotactile stimulus on 50% of the trials during acquisition. Differential electrodermal responding was observed within the first two blocks of acquisition for fear-relevant but not for nonfear-relevant conditional stimuli, confirming the prediction that prepared associations are acquired faster than nonprepared associations. PMID:24725116

  5. Reinstatement of extinguished fear by an unextinguished conditional stimulus

    OpenAIRE

    Halladay, Lindsay R.; Moriel eZelikowsky; Blair, Hugh T.; Fanselow, Michael S.

    2012-01-01

    Anxiety disorders are often treated using extinction-based exposure therapy, but relapse is common and can occur as a result of reinstatement, whereby an aversive trigger can reinstate extinguished fear. Animal models of reinstatement commonly utilize a Pavlovian fear conditioning procedure, in which subjects are first trained to fear a conditional stimulus (CS) by pairing it with an aversive unconditional stimulus (US), and then extinguished by repeated presentations of the CS alone. Reins...

  6. Reinstatement of extinguished fear by an unextinguished conditional stimulus

    OpenAIRE

    Halladay, Lindsay R.; Zelikowsky, Moriel; Blair, Hugh T.; Fanselow, Michael S.

    2012-01-01

    Anxiety disorders are often treated using extinction-based exposure therapy, but relapse is common and can occur as a result of reinstatement, whereby an aversive “trigger” can reinstate extinguished fear. Animal models of reinstatement commonly utilize a Pavlovian fear conditioning procedure, in which subjects are first trained to fear a conditional stimulus (CS) by pairing it with an aversive unconditional stimulus (US), and then extinguished by repeated presentations of the CS alone. Reins...

  7. Fear less : Individual differences in fear conditioning and their relation to treatment outcome in anxiety disorders

    NARCIS (Netherlands)

    Duits, P.

    2016-01-01

    Findings from animal and human experimental studies highlight the importance of fear conditioning processes in the development and treatment of anxiety disorders. The work reported in this thesis was focused on potential abnormalities in the acquisition and extinction of fear in patients with anxiet

  8. Rapid amygdala responses during trace fear conditioning without awareness.

    Directory of Open Access Journals (Sweden)

    Nicholas L Balderston

    Full Text Available The role of consciousness in learning has been debated for nearly 50 years. Recent studies suggest that conscious awareness is needed to bridge the gap when learning about two events that are separated in time, as is true for trace fear conditioning. This has been repeatedly shown and seems to apply to other forms of classical conditioning as well. In contrast to these findings, we show that individuals can learn to associate a face with the later occurrence of a shock, even if they are unable to perceive the face. We used a novel application of magnetoencephalography (MEG to non-invasively record neural activity from the amygdala, which is known to be important for fear learning. We demonstrate rapid (∼ 170-200 ms amygdala responses during the stimulus free period between the face and the shock. These results suggest that unperceived faces can serve as signals for impending threat, and that rapid, automatic activation of the amygdala contributes to this process. In addition, we describe a methodology that can be applied in the future to study neural activity with MEG in other subcortical structures.

  9. Rapid amygdala responses during trace fear conditioning without awareness.

    Science.gov (United States)

    Balderston, Nicholas L; Schultz, Douglas H; Baillet, Sylvain; Helmstetter, Fred J

    2014-01-01

    The role of consciousness in learning has been debated for nearly 50 years. Recent studies suggest that conscious awareness is needed to bridge the gap when learning about two events that are separated in time, as is true for trace fear conditioning. This has been repeatedly shown and seems to apply to other forms of classical conditioning as well. In contrast to these findings, we show that individuals can learn to associate a face with the later occurrence of a shock, even if they are unable to perceive the face. We used a novel application of magnetoencephalography (MEG) to non-invasively record neural activity from the amygdala, which is known to be important for fear learning. We demonstrate rapid (∼ 170-200 ms) amygdala responses during the stimulus free period between the face and the shock. These results suggest that unperceived faces can serve as signals for impending threat, and that rapid, automatic activation of the amygdala contributes to this process. In addition, we describe a methodology that can be applied in the future to study neural activity with MEG in other subcortical structures.

  10. Fear memory formation can affect a different memory: fear conditioning affects the extinction, but not retrieval, of conditioned taste aversion (CTA) memory

    OpenAIRE

    Joels, Gil; Lamprecht, Raphael

    2014-01-01

    The formation of fear memory to a specific stimulus leads to subsequent fearful response to that stimulus. However, it is not apparent whether the formation of fear memory can affect other memories. We study whether specific fearful experience leading to fear memory affects different memories formation and extinction. We revealed that cued fear conditioning, but not unpaired or naïve training, inhibited the extinction of conditioned taste aversion (CTA) memory that was formed after fear condi...

  11. Worrying affects associative fear learning: a startle fear conditioning study

    NARCIS (Netherlands)

    F.J. Gazendam; M. Kindt

    2012-01-01

    A valuable experimental model for the pathogenesis of anxiety disorders is that they originate from a learned association between an intrinsically non-aversive event (Conditioned Stimulus, CS) and an anticipated disaster (Unconditioned Stimulus, UCS). Most anxiety disorders, however, do not evolve f

  12. Reinstatement of extinguished fear by an unextinguished conditional stimulus

    Directory of Open Access Journals (Sweden)

    Lindsay R Halladay

    2012-05-01

    Full Text Available Anxiety disorders are often treated using extinction-based exposure therapy, but relapse is common and can occur as a result of reinstatement, whereby an aversive trigger can reinstate extinguished fear. Animal models of reinstatement commonly utilize a Pavlovian fear conditioning procedure, in which subjects are first trained to fear a conditional stimulus (CS by pairing it with an aversive unconditional stimulus (US, and then extinguished by repeated presentations of the CS alone. Reinstatement is typically induced by exposing subjects to an aversive US after extinction, but here we show that exposure to a non-extinguished CS can reinstate conditional fear responding to an extinguished CS, a phenomenon we refer to as conditional reinstatement. Rats were trained to fear two CSs (light and tone and subsequently underwent extinction training to only one CS (counterbalanced. Presenting the unextinguished CS (but not a novel cue immediately after extinction reinstated conditional fear responding to the extinguished CS in a test session given 24h later. These findings indicate that reinstatement of extinguished fear can be triggered by exposure to conditional as well as unconditional aversive stimuli, and this may help to explain why relapse is common following clinical extinction therapy in humans. Further study of conditional reinstatement using animal models may prove useful for developing refined extinction therapies that are more resistant to reinstatement.

  13. Classical Conditioning: Eliciting the Right Response.

    Science.gov (United States)

    Tauber, Robert T.

    1990-01-01

    Classical conditioning is responsible for students' positive and negative feelings, whether directed toward subject matter, peers, teachers, or education in general. This article explains how educators can use classical conditioning principles (such as reinforcement, extinction, and paired stimuli) to create an anxiety-free learning environment.…

  14. Fear conditioning-related changes in cerebellar Purkinje cell activities in goldfish

    Directory of Open Access Journals (Sweden)

    Yoshida Masayuki

    2012-10-01

    Full Text Available Abstract Background Fear conditioning-induced changes in cerebellar Purkinje cell responses to a conditioned stimulus have been reported in rabbits. It has been suggested that synaptic long-term potentiation and the resulting increases in firing rates of Purkinje cells are related to the acquisition of conditioned fear in mammals. However, Purkinje cell activities during acquisition of conditioned fear have not been analysed, and changes in Purkinje cell activities throughout the development of conditioned fear have not yet been investigated. In the present study, we tracked Purkinje cell activities throughout a fear conditioning procedure and aimed to elucidate further how cerebellar circuits function during the acquisition and expression of conditioned fear. Methods Activities of single Purkinje cells in the corpus cerebelli were tracked throughout a classical fear conditioning procedure in goldfish. A delayed conditioning paradigm was used with cardiac deceleration as the conditioned response. Conditioning-related changes of Purkinje cell responses to a conditioned stimulus and unconditioned stimulus were examined. Results The majority of Purkinje cells sampled responded to the conditioned stimulus by either increasing or decreasing their firing rates before training. Although there were various types of conditioning-related changes in Purkinje cells, more than half of the cells showed suppressed activities in response to the conditioned stimulus after acquisition of conditioned fear. Purkinje cells that showed unconditioned stimulus-coupled complex-spike firings also exhibited conditioning-related suppression of simple-spike responses to the conditioned stimulus. A small number of Purkinje cells showed increased excitatory responses in the acquisition sessions. We found that the magnitudes of changes in the firing frequencies of some Purkinje cells in response to the conditioned stimulus correlated with the magnitudes of the conditioned

  15. Social transmission of Pavlovian fear: fear-conditioning by-proxy in related female rats.

    Science.gov (United States)

    Jones, Carolyn E; Riha, Penny D; Gore, Andrea C; Monfils, Marie-H

    2014-05-01

    Pairing a previously neutral conditioned stimulus (CS; e.g., a tone) to an aversive unconditioned stimulus (US; e.g., a foot-shock) leads to associative learning such that the tone alone will elicit a conditioned response (e.g., freezing). Individuals can also acquire fear from a social context, such as through observing the fear expression of a conspecific. In the current study, we examined the influence of kinship/familiarity on social transmission of fear in female rats. Rats were housed in triads with either sisters or non-related females. One rat from each cage was fear conditioned to a tone CS+ shock US. On day two, the conditioned rat was returned to the chamber accompanied by one of her cage mates. Both rats were allowed to behave freely, while the tone was played in the absence of the foot-shock. The previously untrained rat is referred to as the fear-conditioned by-proxy (FCbP) animal, as she would freeze based on observations of her cage-mate's response rather than due to direct personal experience with the foot-shock. The third rat served as a cage-mate control. The third day, long-term memory tests to the CS were performed. Consistent with our previous application of this paradigm in male rats (Bruchey et al. in Behav Brain Res 214(1):80-84, 2010), our results revealed that social interactions between the fear conditioned and FCbP rats on day two contribute to freezing displayed by the FCbP rats on day three. In this experiment, prosocial behavior occurring at the termination of the cue on day two was significantly greater between sisters than their non-sister counterparts, and this behavior resulted in increased freezing on day three. Our results suggest that familiarity and/or kinship influences the social transmission of fear in female rats.

  16. Controlled cortical impact before or after fear conditioning does not affect fear extinction in mice.

    Science.gov (United States)

    Sierra-Mercado, Demetrio; McAllister, Lauren M; Lee, Christopher C H; Milad, Mohammed R; Eskandar, Emad N; Whalen, Michael J

    2015-05-01

    Post-traumatic stress disorder (PTSD) is characterized in part by impaired extinction of conditioned fear. Traumatic brain injury (TBI) is thought to be a risk factor for development of PTSD. We tested the hypothesis that controlled cortical impact (CCI) would impair extinction of fear learned by Pavlovian conditioning, in mice. To mimic the scenarios in which TBI occurs prior to or after exposure to an aversive event, severe CCI was delivered to the left parietal cortex at one of two time points: (1) Prior to fear conditioning, or (2) after conditioning. Delay auditory conditioning was achieved by pairing a tone with a foot shock in "context A". Extinction training involved the presentation of tones in a different context (context B) in the absence of foot shock. Test for extinction memory was achieved by presentation of additional tones alone in context B over the following two days. In pre- or post-injury paradigms, CCI did not influence fear learning and extinction. Furthermore, CCI did not affect locomotor activity or elevated plus maze testing. Our results demonstrate that, within the time frame studied, CCI does not impair the acquisition and expression of conditioned fear or extinction memory. PMID:25721797

  17. Controlled cortical impact before or after fear conditioning does not affect fear extinction in mice.

    Science.gov (United States)

    Sierra-Mercado, Demetrio; McAllister, Lauren M; Lee, Christopher C H; Milad, Mohammed R; Eskandar, Emad N; Whalen, Michael J

    2015-05-01

    Post-traumatic stress disorder (PTSD) is characterized in part by impaired extinction of conditioned fear. Traumatic brain injury (TBI) is thought to be a risk factor for development of PTSD. We tested the hypothesis that controlled cortical impact (CCI) would impair extinction of fear learned by Pavlovian conditioning, in mice. To mimic the scenarios in which TBI occurs prior to or after exposure to an aversive event, severe CCI was delivered to the left parietal cortex at one of two time points: (1) Prior to fear conditioning, or (2) after conditioning. Delay auditory conditioning was achieved by pairing a tone with a foot shock in "context A". Extinction training involved the presentation of tones in a different context (context B) in the absence of foot shock. Test for extinction memory was achieved by presentation of additional tones alone in context B over the following two days. In pre- or post-injury paradigms, CCI did not influence fear learning and extinction. Furthermore, CCI did not affect locomotor activity or elevated plus maze testing. Our results demonstrate that, within the time frame studied, CCI does not impair the acquisition and expression of conditioned fear or extinction memory.

  18. Psychopaths Show Enhanced Amygdala Activation during Fear Conditioning.

    Science.gov (United States)

    Schultz, Douglas H; Balderston, Nicholas L; Baskin-Sommers, Arielle R; Larson, Christine L; Helmstetter, Fred J

    2016-01-01

    Psychopathy is a personality disorder characterized by emotional deficits and a failure to inhibit impulsive behavior and is often subdivided into "primary" and "secondary" psychopathic subtypes. The maladaptive behavior related to primary psychopathy is thought to reflect constitutional "fearlessness," while the problematic behavior related to secondary psychopathy is motivated by other factors. The fearlessness observed in psychopathy has often been interpreted as reflecting a fundamental deficit in amygdala function, and previous studies have provided support for a low-fear model of psychopathy. However, many of these studies fail to use appropriate screening procedures, use liberal inclusion criteria, or have used unconventional approaches to assay amygdala function. We measured brain activity with BOLD imaging in primary and secondary psychopaths and non-psychopathic control subjects during Pavlovian fear conditioning. In contrast to the low-fear model, we observed normal fear expression in primary psychopaths. Psychopaths also displayed greater differential BOLD activity in the amygdala relative to matched controls. Inverse patterns of activity were observed in the anterior cingulate cortex (ACC) for primary versus secondary psychopaths. Primary psychopaths exhibited a pattern of activity in the dorsal and ventral ACC consistent with enhanced fear expression, while secondary psychopaths exhibited a pattern of activity in these regions consistent with fear inhibition. These results contradict the low-fear model of psychopathy and suggest that the low fear observed for psychopaths in previous studies may be specific to secondary psychopaths. PMID:27014154

  19. Psychopaths Show Enhanced Amygdala Activation during Fear Conditioning.

    Science.gov (United States)

    Schultz, Douglas H; Balderston, Nicholas L; Baskin-Sommers, Arielle R; Larson, Christine L; Helmstetter, Fred J

    2016-01-01

    Psychopathy is a personality disorder characterized by emotional deficits and a failure to inhibit impulsive behavior and is often subdivided into "primary" and "secondary" psychopathic subtypes. The maladaptive behavior related to primary psychopathy is thought to reflect constitutional "fearlessness," while the problematic behavior related to secondary psychopathy is motivated by other factors. The fearlessness observed in psychopathy has often been interpreted as reflecting a fundamental deficit in amygdala function, and previous studies have provided support for a low-fear model of psychopathy. However, many of these studies fail to use appropriate screening procedures, use liberal inclusion criteria, or have used unconventional approaches to assay amygdala function. We measured brain activity with BOLD imaging in primary and secondary psychopaths and non-psychopathic control subjects during Pavlovian fear conditioning. In contrast to the low-fear model, we observed normal fear expression in primary psychopaths. Psychopaths also displayed greater differential BOLD activity in the amygdala relative to matched controls. Inverse patterns of activity were observed in the anterior cingulate cortex (ACC) for primary versus secondary psychopaths. Primary psychopaths exhibited a pattern of activity in the dorsal and ventral ACC consistent with enhanced fear expression, while secondary psychopaths exhibited a pattern of activity in these regions consistent with fear inhibition. These results contradict the low-fear model of psychopathy and suggest that the low fear observed for psychopaths in previous studies may be specific to secondary psychopaths.

  20. Psychopaths show enhanced amygdala activation during fear conditioning

    Directory of Open Access Journals (Sweden)

    Douglas eSchultz

    2016-03-01

    Full Text Available Psychopathy is a personality disorder characterized by emotional deficits and a failure to inhibit impulsive behavior and is often subdivided into primary and secondary psychopathic subtypes. The maladaptive behavior related to primary psychopathy is thought to reflect constitutional fearlessness, while the problematic behavior related to secondary psychopathy is motivated by other factors. The fearlessness observed in psychopathy has often been interpreted as reflecting a fundamental deficit in amygdala function, and previous studies have provided support for a low-fear model of psychopathy. However, many of these studies fail to use appropriate screening procedures, use liberal inclusion criteria, or have used unconventional approaches to assay amygdala function. We measured brain activity with BOLD imaging in primary and secondary psychopaths and non-psychopathic control subjects during Pavlovian fear conditioning. In contrast to the low-fear model, we observed normal fear expression in primary psychopaths. Psychopaths also displayed greater differential BOLD activity in the amygdala relative to matched controls. Inverse patterns of activity were observed in the anterior cingulate cortex (ACC for primary versus secondary psychopaths. Primary psychopaths exhibited a pattern of activity in the dorsal and ventral ACC consistent with enhanced fear expression, while secondary psychopaths exhibited a pattern of activity in these regions consistent with fear inhibition. These results contradict the low-fear model of psychopathy and suggest that the low fear observed for psychopaths in previous studies may be specific to secondary psychopaths.

  1. The Role of Contingency in Classical Conditioning.

    Science.gov (United States)

    Papini, Mauricio R.; Bitterman, M. E.

    1990-01-01

    Early experiments suggesting that classical conditioning depends on the contingency between conditioned stimulus (CS) and the unconditioned stimulus (US) are reconsidered along with later evidence that shows conditioning of the CS and its context in random training. CS-US contingency is neither necessary nor sufficient for conditioning. (SLD)

  2. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning.

    Science.gov (United States)

    Catlow, Briony J; Song, Shijie; Paredes, Daniel A; Kirstein, Cheryl L; Sanchez-Ramos, Juan

    2013-08-01

    Drugs that modulate serotonin (5-HT) synaptic concentrations impact neurogenesis and hippocampal (HPC)-dependent learning. The primary objective is to determine the extent to which psilocybin (PSOP) modulates neurogenesis and thereby affects acquisition and extinction of HPC-dependent trace fear conditioning. PSOP, the 5-HT2A agonist 25I-NBMeO and the 5-HT2A/C antagonist ketanserin were administered via an acute intraperitoneal injection to mice. Trace fear conditioning was measured as the amount of time spent immobile in the presence of the conditioned stimulus (CS, auditory tone), trace (silent interval) and post-trace interval over 10 trials. Extinction was determined by the number of trials required to resume mobility during CS, trace and post-trace when the shock was not delivered. Neurogenesis was determined by unbiased counts of cells in the dentate gyrus of the HPC birth-dated with BrdU co-expressing a neuronal marker. Mice treated with a range of doses of PSOP acquired a robust conditioned fear response. Mice injected with low doses of PSOP extinguished cued fear conditioning significantly more rapidly than high-dose PSOP or saline-treated mice. Injection of PSOP, 25I-NBMeO or ketanserin resulted in significant dose-dependent decreases in number of newborn neurons in hippocampus. At the low doses of PSOP that enhanced extinction, neurogenesis was not decreased, but rather tended toward an increase. Extinction of "fear conditioning" may be mediated by actions of the drugs at sites other than hippocampus such as the amygdala, which is known to mediate the perception of fear. Another caveat is that PSOP is not purely selective for 5-HT2A receptors. PSOP facilitates extinction of the classically conditioned fear response, and this, and similar agents, should be explored as potential treatments for post-traumatic stress disorder and related conditions.

  3. An Appetitive Conditioned Stimulus Enhances Fear Acquisition and Impairs Fear Extinction

    Science.gov (United States)

    Leung, Hiu T.; Holmes, Nathan M.; Westbrook, R. Frederick

    2016-01-01

    Four experiments used between- and within-subject designs to examine appetitive-aversive interactions in rats. Experiments 1 and 2 examined the effect of an excitatory appetitive conditioned stimulus (CS) on acquisition and extinction of conditioned fear. In Experiment 1, a CS shocked in a compound with an appetitive excitor (i.e., a stimulus…

  4. Increased tone-offset response in the lateral nucleus of the amygdala underlies trace fear conditioning.

    Science.gov (United States)

    Kim, Namsoo; Kong, Mi-Seon; Jo, Kyeong Im; Kim, Eun Joo; Choi, June-Seek

    2015-12-01

    Accumulating evidence suggests that the lateral nucleus of the amygdala (LA) stores associative memory in the form of enhanced neural response to the sensory input following classical fear conditioning in which the conditioned stimulus (CS) and the unconditioned stimulus (US) are presented in a temporally continuous manner. However, little is known about the role of the LA in trace fear conditioning where the CS and the US are separated by a temporal gap. Single-unit recordings of LA neurons before and after trace fear conditioning revealed that the short-latency activity to the CS offset, but not that to the onset, increased significantly and accompanied the conditioned fear response. The increased short-latency activity was evident in two aspects: the number of offset-responsive neurons was increased and the latency of the neuronal response to the CS offset was shortened. On the contrary, changes in the firing rate to either the onset or the offset were negligible following unpaired presentations of the CS and US. In sum, our results suggest that increased synaptic efficacy in the CS offset pathway in the LA might underlie the association between temporally distant stimuli in trace fear conditioning.

  5. Characterization of fear conditioning and fear extinction by analysis of electrodermal activity.

    Science.gov (United States)

    Faghih, Rose T; Stokes, Patrick A; Marin, Marie-France; Zsido, Rachel G; Zorowitz, Sam; Rosenbaum, Blake L; Huijin Song; Milad, Mohammed R; Dougherty, Darin D; Eskandar, Emad N; Widge, Alik S; Brown, Emery N; Barbieri, Riccardo

    2015-08-01

    Electrodermal activity (EDA) is a measure of physical arousal, which is frequently measured during psychophysical tasks relevant for anxiety disorders. Recently, specific protocols and procedures have been devised in order to examine the neural mechanisms of fear conditioning and extinction. EDA reflects important responses associated with stimuli specifically administrated during these procedures. Although several previous studies have demonstrated the reproducibility of measures estimated from EDA, a mathematical framework associated with the stimulus-response experiments in question and, at the same time, including the underlying emotional state of the subject during fear conditioning and/or extinction experiments is not well studied. We here propose an ordinary differential equation model based on sudomotor nerve activity, and estimate the fear eliciting stimulus using a compressed sensing algorithm. Our results show that we are able to recover the underlying stimulus (visual cue or mild electrical shock). Moreover, relating the time-delay in the estimated stimulation to the visual cue during extinction period shows that fear level decreases as visual cues are presented without shock, suggesting that this feature might be used to estimate the fear state. These findings indicate that a mathematical model based on electrodermal responses might be critical in defining a low-dimensional representation of essential cognitive features in order to describe dynamic behavioral states. PMID:26738104

  6. Anterograde effects of a single electroconvulsive shock on inhibitory avoidance and on cued fear conditioning

    Directory of Open Access Journals (Sweden)

    Oliveira M.G.M.

    1998-01-01

    Full Text Available A single electroconvulsive shock (ECS or a sham ECS was administered to male 3-4-month-old Wistar rats 1, 2, and 4 h before training in an inhibitory avoidance test and in cued classical fear conditioning (measured by means of freezing time in a new environment. ECS impaired inhibitory avoidance at all times and, at 1 or 2 h before training, reduced freezing time before and after re-presentation of the ECS. These results are interpreted as a transient conditioned stimulus (CS-induced anxiolytic or analgesic effect lasting about 2 h after a single treatment, in addition to the known amnesic effect of the stimulus. This suggests that the effect of anterograde learning impairment is demonstrated unequivocally only when the analgesic/anxiolytic effect is over (about 4 h after ECS administration and that this impairment of learning is selective, affecting inhibitory avoidance but not classical fear conditioning to a discrete stimulus.

  7. Categories, concepts, and conditioning: how humans generalize fear.

    Science.gov (United States)

    Dunsmoor, Joseph E; Murphy, Gregory L

    2015-02-01

    During the past century, Pavlovian conditioning has served as the predominant experimental paradigm and theoretical framework to understand how humans learn to fear and avoid real or perceived dangers. Animal models for translational research offer insight into basic behavioral and neurophysiological factors mediating the acquisition, expression, inhibition, and generalization of fear. However, it is important to consider the limits of traditional animal models when applied to humans. Here, we focus on the question of how humans generalize fear. We propose that to understand fear generalization in humans requires taking into account research on higher-level cognition such as category-based induction, inferential reasoning, and representation of conceptual knowledge. Doing so will open the door for productive avenues of new research.

  8. Appetitive-aversive interactions in Pavlovian fear conditioning.

    Science.gov (United States)

    Nasser, Helen M; McNally, Gavan P

    2012-06-01

    The existence of value coding and salience coding neurons in the mammalian brain, including in habenula and ventral tegmental area, has sparked considerable interest in the interactions that occur between Pavlovian appetitive and aversive conditioning. Here we studied these appetitive-aversive interactions at the behavioral level by assessing the learning that occurs when a Pavlovian appetitive conditioned stimulus (conditional stimulus, CS) serves as a CS for shock in Pavlovian fear conditioning. A Pavlovian appetitive CS was retarded in the rate at which it could be transformed into a fear CS (counterconditioning), but the presence of the appetitive CS augmented fear learning to a concurrently presented neutral CS (superconditioning). Retardation of fear learning was not alleviated by manipulations designed to restore the associability of the appetitive CS before fear conditioning but was alleviated by manipulations designed to increase the aversive quality of the shock unconditioned stimulus (US). These findings are consistent with opponent interactions between the appetitive and aversive motivational systems and provide a behavioral approach for assessing the neural correlates of these appetitive-aversive interactions.

  9. Effects of sleep on memory for conditioned fear and fear extinction.

    Science.gov (United States)

    Pace-Schott, Edward F; Germain, Anne; Milad, Mohammed R

    2015-07-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning, and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. Rapid eye movement (REM) may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction, and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep's effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. (PsycINFO Database Record PMID:25894546

  10. Conditional reasoning and phobic fear : Evidence for a fear-confirming reasoning pattern

    NARCIS (Netherlands)

    de Jong, Peter; Mayer, B; vandenHout, M

    1997-01-01

    In two experiments we explored the role of subjects' reasoning performance in the persistence of phobic fear. More specifically, we investigated whether (phobic) subjects are prone to selectively search for danger-confirming information when asked to judge the validity of conditional rules in the co

  11. Reprint of: "Demographic factors predict magnitude of conditioned fear".

    Science.gov (United States)

    Rosenbaum, Blake L; Bui, Eric; Marin, Marie-France; Holt, Daphne J; Lasko, Natasha B; Pitman, Roger K; Orr, Scott P; Milad, Mohammed R

    2015-12-01

    There is substantial variability across individuals in the magnitudes of their skin conductance (SC) responses during the acquisition and extinction of conditioned fear. To manage this variability, subjects may be matched for demographic variables, such as age, gender and education. However, limited data exist addressing how much variability in conditioned SC responses is actually explained by these variables. The present study assessed the influence of age, gender and education on the SC responses of 222 subjects who underwent the same differential conditioning paradigm. The demographic variables were found to predict a small but significant amount of variability in conditioned responding during fear acquisition, but not fear extinction learning or extinction recall. A larger differential change in SC during acquisition was associated with more education. Older participants and women showed smaller differential SC during acquisition. Our findings support the need to consider age, gender and education when studying fear acquisition but not necessarily when examining fear extinction learning and recall. Variability in demographic factors across studies may partially explain the difficulty in reproducing some SC findings. PMID:26608179

  12. Neural signatures of human fear conditioning: an updated and extended meta-analysis of fMRI studies.

    Science.gov (United States)

    Fullana, M A; Harrison, B J; Soriano-Mas, C; Vervliet, B; Cardoner, N; Àvila-Parcet, A; Radua, J

    2016-04-01

    Classical Pavlovian fear conditioning remains the most widely employed experimental model of fear and anxiety, and continues to inform contemporary pathophysiological accounts of clinical anxiety disorders. Despite its widespread application in human and animal studies, the neurobiological basis of fear conditioning remains only partially understood. Here we provide a comprehensive meta-analysis of human fear-conditioning studies carried out with functional magnetic resonance imaging (fMRI), yielding a pooled sample of 677 participants from 27 independent studies. As a distinguishing feature of this meta-analysis, original statistical brain maps were obtained from the authors of 13 of these studies. Our primary analyses demonstrate that human fear conditioning is associated with a consistent and robust pattern of neural activation across a hypothesized genuine network of brain regions resembling existing anatomical descriptions of the 'central autonomic-interoceptive network'. This finding is discussed with a particular emphasis on the neural substrates of conscious fear processing. Our associated meta-analysis of functional deactivations-a scarcely addressed dynamic in fMRI fear-conditioning studies-also suggests the existence of a coordinated brain response potentially underlying the 'safety signal' (that is, non-threat) processing. We attempt to provide an integrated summary on these findings with the view that they may inform ongoing studies of fear-conditioning processes both in healthy and clinical populations, as investigated with neuroimaging and other experimental approaches.

  13. Voluntary exercise during extinction of auditory fear conditioning reduces the relapse of fear associated with potentiated activity of striatal direct pathway neurons.

    Science.gov (United States)

    Mika, Agnieszka; Bouchet, Courtney A; Bunker, Preston; Hellwinkel, Justin E; Spence, Katie G; Day, Heidi E W; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N

    2015-11-01

    Relapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session. However, it is unclear whether acute exercise can be used to prevent relapse of fear, and the neural mechanisms underlying this potential effect are unknown. The current study therefore examined whether acute exercise during extinction of auditory fear can protect against the later relapse of fear. Male F344 rats lacking an extended history of wheel running were conditioned to fear a tone CS and subsequently extinguished within either a freely mobile running wheel, a locked wheel, or a control context lacking a wheel. Rats exposed to fear extinction within a freely mobile wheel ran during fear extinction, and demonstrated reduced fear as well as attenuated corticosterone levels during re-exposure to the extinguished CS during the relapse test in a novel context 1week later. Examination of cfos mRNA patterns elicited by re-exposure to the extinguished CS during the relapse test revealed that acute exercise during extinction decreased activation of brain circuits classically involved in driving fear expression and interestingly, increased activity within neurons of the direct striatal pathway involved in reward signaling. These data suggest that exercise during extinction reduces relapse through a mechanism involving the direct pathway of the striatum. It is suggested that a positive affective state could become associated with the CS during exercise during extinction, thus resulting in a relapse-resistant extinction memory.

  14. Voluntary exercise during extinction of auditory fear conditioning reduces the relapse of fear associated with potentiated activity of striatal direct pathway neurons.

    Science.gov (United States)

    Mika, Agnieszka; Bouchet, Courtney A; Bunker, Preston; Hellwinkel, Justin E; Spence, Katie G; Day, Heidi E W; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N

    2015-11-01

    Relapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session. However, it is unclear whether acute exercise can be used to prevent relapse of fear, and the neural mechanisms underlying this potential effect are unknown. The current study therefore examined whether acute exercise during extinction of auditory fear can protect against the later relapse of fear. Male F344 rats lacking an extended history of wheel running were conditioned to fear a tone CS and subsequently extinguished within either a freely mobile running wheel, a locked wheel, or a control context lacking a wheel. Rats exposed to fear extinction within a freely mobile wheel ran during fear extinction, and demonstrated reduced fear as well as attenuated corticosterone levels during re-exposure to the extinguished CS during the relapse test in a novel context 1week later. Examination of cfos mRNA patterns elicited by re-exposure to the extinguished CS during the relapse test revealed that acute exercise during extinction decreased activation of brain circuits classically involved in driving fear expression and interestingly, increased activity within neurons of the direct striatal pathway involved in reward signaling. These data suggest that exercise during extinction reduces relapse through a mechanism involving the direct pathway of the striatum. It is suggested that a positive affective state could become associated with the CS during exercise during extinction, thus resulting in a relapse-resistant extinction memory. PMID

  15. Contextual fear conditioning differs for infant, adolescent, and adult rats.

    Science.gov (United States)

    Esmorís-Arranz, Francisco J; Méndez, Cástor; Spear, Norman E

    2008-07-01

    Contextual fear conditioning was tested in infant, adolescent, and adult rats in terms of Pavlovian-conditioned suppression. When a discrete auditory-conditioned stimulus (CS) was paired with footshock (unconditioned stimulus, US) within the largely olfactory context, infants and adolescents conditioned to the context with substantial effectiveness, but adult rats did not. When unpaired presentations of the CS and US occurred within the context, contextual fear conditioning was strong for adults, weak for infants, but about as strong for adolescents as when pairings of CS and US occurred in the context. Nonreinforced presentations of either the CS or context markedly reduced contextual fear conditioning in infants, but, in adolescents, CS extinction had no effect on contextual fear conditioning, although context extinction significantly reduced it. Neither CS extinction nor context extinction affected responding to the CS-context compound in infants, suggesting striking discrimination between the compound and its components. Female adolescents showed the same lack of effect of component extinction on response to the compound as infants, but CS extinction reduced responding to the compound in adolescent males, a sex difference seen also in adults. Theoretical implications are discussed for the development of perceptual-cognitive processing and hippocampus role.

  16. Blockade of endogenous opioid neurotransmission enhances acquisition of conditioned fear in humans.

    Science.gov (United States)

    Eippert, Falk; Bingel, Ulrike; Schoell, Eszter; Yacubian, Juliana; Büchel, Christian

    2008-05-21

    The endogenous opioid system is involved in fear learning in rodents, as opioid agonists attenuate and opioid antagonists facilitate the acquisition of conditioned fear. It has been suggested that an opioidergic signal, which is engaged through conditioning and acts inhibitory on unconditioned stimulus input, is the source of these effects. To clarify whether blockade of endogenous opioid neurotransmission enhances acquisition of conditioned fear in humans, and to elucidate the neural underpinnings of such an effect, we used functional magnetic resonance imaging in combination with behavioral recordings and a double-blind pharmacological intervention. All subjects underwent the same classical fear-conditioning paradigm, but subjects in the experimental group received the opioid antagonist naloxone before and during the experiment, in contrast to subjects in the control group, who received saline. Blocking endogenous opioid neurotransmission with naloxone led to more sustained responses to the unconditioned stimulus across trials, evident in both behavioral and blood oxygen level-dependent responses in pain responsive cortical regions. This effect was likely caused by naloxone blocking conditioned responses in a pain-inhibitory circuit involving opioid-rich areas such as the rostral anterior cingulate cortex, amygdala, and periaqueductal gray. Most importantly, naloxone enhanced the acquisition of fear on the behavioral level and changed the activation profile of the amygdala: whereas the control group showed rapidly decaying conditioned responses across trials, the naloxone group showed sustained conditioned responses in the amygdala. Together, these results demonstrate that in humans the endogenous opioid system has an inhibitory role in the acquisition of fear. PMID:18495880

  17. Attitudes of Children Established by Classical Conditioning.

    Science.gov (United States)

    Barnabei, Fred; And Others

    This study examined the attitudes of children established by classical conditioning. Subjects were 4th graders (26 males and 31 females). Each child was randomly assigned to either an experimental or a control group. A posttest-only design was used with positive and negative word associations presented to the experimental group, and neutral word…

  18. Priority in the Classical Conditioning of Children.

    Science.gov (United States)

    Windholz, George; Lamal, P. A.

    1986-01-01

    Contrary to widely held belief, Watons and Rayner's (1920) experiment with Little Albert is not first reported case of classical conditioning of a child. Their work was preceded by that of Bogen and of Krasnogorskii. Mateer's work either preceded or coincided with Watons and Rayner's. This article clarifies chronology of these early studies of…

  19. Stimulus Configuration, Classical Conditioning, and Hippocampal Function.

    Science.gov (United States)

    Schmajuk, Nestor A.; DiCarlo, James J.

    1991-01-01

    The participation of the hippocampus in classical conditioning is described in terms of a multilayer network portraying stimulus configuration. A model of hippocampal function is presented, and computer simulations are used to study neural activity in the various brain areas mapped according to the model. (SLD)

  20. Ethnic differences in physiological responses to fear conditioned stimuli.

    Science.gov (United States)

    Martínez, Karen G; Franco-Chaves, José A; Milad, Mohammed R; Quirk, Gregory J

    2014-01-01

    The idea that emotional expression varies with ethnicity is based largely on questionnaires and behavioral observations rather than physiological measures. We therefore compared the skin conductance responses (SCR) of Hispanic (Puerto Rican) and White non-Hispanic subjects in a fear conditioning and fear extinction task. Subjects were recruited from two sites: San Juan, Puerto Rico (PR), and Boston, Massachusetts (MA), using identical methods. A total of 78 healthy subjects (39 from PR, 39 from MA) were divided by sex and matched for age and educational level. Females from the two sites did not differ in their SCRs during any experimental phase of fear conditioning (habituation, conditioning, or extinction). In contrast, PR males responded significantly to the conditioned stimulus than MA males or PR females. Subtracting ethnic differences observed during the habituation phase (prior to conditioning) eliminated differences from subsequent phases, suggesting that PR males are elevated in their response to novelty rather than fear learning. Our findings suggest that, in addition to sex differences, there are ethnic differences in physiological responses to novel stimuli at least in males, which could be relevant for the assessment and treatment of anxiety disorders. PMID:25501365

  1. Ethnic differences in physiological responses to fear conditioned stimuli.

    Directory of Open Access Journals (Sweden)

    Karen G Martínez

    Full Text Available The idea that emotional expression varies with ethnicity is based largely on questionnaires and behavioral observations rather than physiological measures. We therefore compared the skin conductance responses (SCR of Hispanic (Puerto Rican and White non-Hispanic subjects in a fear conditioning and fear extinction task. Subjects were recruited from two sites: San Juan, Puerto Rico (PR, and Boston, Massachusetts (MA, using identical methods. A total of 78 healthy subjects (39 from PR, 39 from MA were divided by sex and matched for age and educational level. Females from the two sites did not differ in their SCRs during any experimental phase of fear conditioning (habituation, conditioning, or extinction. In contrast, PR males responded significantly to the conditioned stimulus than MA males or PR females. Subtracting ethnic differences observed during the habituation phase (prior to conditioning eliminated differences from subsequent phases, suggesting that PR males are elevated in their response to novelty rather than fear learning. Our findings suggest that, in addition to sex differences, there are ethnic differences in physiological responses to novel stimuli at least in males, which could be relevant for the assessment and treatment of anxiety disorders.

  2. Classical conditioned responses to absent tones

    OpenAIRE

    Häusler Udo; Jürgens Uwe; Bangert Marc; Altenmüller Eckart

    2006-01-01

    Abstract Background Recent evidence for a tight coupling of sensorimotor processes in trained musicians led to the question of whether this coupling extends to preattentively mediated reflexes; particularly, whether a classically conditioned response in one of the domains (auditory) is generalized to another (tactile/motor) on the basis of a prior association in a second-order Pavlovian paradigm. An eyeblink conditioning procedure was performed in 17 pianists, serving as a model for overlearn...

  3. Secondary extinction in Pavlovian fear conditioning.

    Science.gov (United States)

    Vurbic, Drina; Bouton, Mark E

    2011-09-01

    Pavlov (1927/1960) reported that following the conditioning of several stimuli, extinction of one conditioned stimulus (CS) attenuated responding to others that had not undergone direct extinction. However, this secondary extinction effect has not been widely replicated in the contemporary literature. In three conditioned suppression experiments with rats, we further explored the phenomenon. In Experiment 1, we asked whether secondary extinction is more likely to occur with target CSs that have themselves undergone some prior extinction. A robust secondary extinction effect was obtained with a nonextinguished target CS. Experiment 2 showed that extinction of one CS was sufficient to reduce renewal of a second CS when it was tested in a neutral (nonextinction) context. In Experiment 3, secondary extinction was observed in groups that initially received intermixed conditioning trials with the target and nontarget CSs, but not in groups that received conditioning of the two CSs in separate sessions. The results are consistent with the hypothesis that CSs must be associated with a common temporal context during conditioning for secondary extinction to occur.

  4. Dual functions of perirhinal cortex in fear conditioning.

    Science.gov (United States)

    Kent, Brianne A; Brown, Thomas H

    2012-10-01

    The present review examines the role of perirhinal cortex (PRC) in Pavlovian fear conditioning. The focus is on rats, partly because so much is known, behaviorally and neurobiologically, about fear conditioning in these animals. In addition, the neuroanatomy and neurophysiology of rat PRC have been described in considerable detail at the cellular and systems levels. The evidence suggests that PRC can serve at least two types of mnemonic functions in Pavlovian fear conditioning. The first function, termed "stimulus unitization," refers to the ability to treat two or more separate items or stimulus elements as a single entity. Supporting evidence for this perceptual function comes from studies of context conditioning as well as delay conditioning to discontinuous auditory cues. In a delay paradigm, the conditional stimulus (CS) and unconditional stimulus (US) overlap temporally and co-terminate. The second PRC function entails a type of "transient memory." Supporting evidence comes from studies of trace cue conditioning, where there is a temporal gap or trace interval between the CS offset and the US onset. For learning to occur, there must be a transient CS representation during the trace interval. We advance a novel neurophysiological mechanism for this transient representation. These two hypothesized functions of PRC are consistent with inferences based on non-aversive forms of learning.

  5. Better fear conditioning is associated with reduced symptom severity in autism spectrum disorders.

    Science.gov (United States)

    South, Mikle; Larson, Michael J; White, Sarah E; Dana, Julianne; Crowley, Michael J

    2011-12-01

    Evidence from behavioral and neuroimaging studies suggest that atypical amygdala function plays a critical role in the development of autism spectrum disorders (ASD). The handful of psychophysiological studies examining amygdala function in ASD using classical fear conditioning paradigms have yielded discordant results. We recorded skin conductance response (SCR) during a simple discrimination conditioning task in 30 children and adolescents (ages 8-18) diagnosed with high-functioning ASD and 30 age- and IQ-matched, typically developing controls. SCR response in the ASD group was uniquely and positively associated with social anxiety; and negatively correlated with autism symptom severity, in particular with social functioning. Fear conditioning studies have tremendous potential to aid understanding regarding the amygdale's role in the varied symptom profile of ASD. Our data demonstrate that such studies require careful attention to task-specific factors, including task complexity; and also to contributions of dimensional, within-group factors that contribute to ASD heterogeneity.

  6. Estrous cycle phase and gonadal hormones influence conditioned fear extinction

    Science.gov (United States)

    Milad, Mohammed R; Igoe, Sarah A; Lebron-Milad, Kelimer; Novales, Juan E

    2009-01-01

    Gonadal hormones modulate fear acquisition, but less is known about the influence of gonadal hormones on fear extinction. We assessed sex differences and the influence of gonadal hormone fluctuations and exogenous manipulations of estrogen and progesterone on acquisition, extinction learning and extinction recall in a 3-day auditory fear conditioning and extinction protocol. Experiments were conducted on males and naturally cycling female rats. Regarding female rats, significant differences in fear extinction were observed between subgroups of females, depending on their phase of the estrous cycle. Extinction that took place during the proestrus (high estrogen/progesterone) phase was more fully consolidated, as evidenced by low freezing during a recall test. This suggests that estrogen and/or progesterone facilitate extinction. In support of this, injection of both estrogen and progesterone prior to extinction learning in female rats during the metestrus phase of the cycle (low estrogen/progesterone) facilitated extinction consolidation, and blockade of estrogen and progesterone receptors during the proestrus phase impaired extinction consolidation. When comparing male to female rats without consideration of the estrous cycle phase, no significant sex differences were observed. When accounting for cycle phase in females, sex differences were observed only during extinction recall. Female rats that underwent extinction during the metestrus phase showed significantly higher freezing during the recall test relative to males. Collectively, these data suggest that gonadal hormones influence extinction behavior possibly by influencing the function of brain regions involved in the consolidation of fear extinction. Moreover, the elevated fear observed in female relative to male rats during extinction recall suggests that gonadal hormones may in part play a role in the higher prevalence of anxiety disorders in women. PMID:19761818

  7. FAAH inhibitor OL-135 disrupts contextual, but not auditory, fear conditioning in rats.

    Science.gov (United States)

    Burman, Michael A; Szolusha, Kerribeth; Bind, Rebecca; Kerney, Kristen; Boger, Dale L; Bilsky, Edward J

    2016-07-15

    Anxiety disorders are among the most prevalent psychological disorders, have significant negative impacts on quality of life and the healthcare system, and yet effective treatments remain elusive. Manipulating the endocannabinoid system has demonstrated potential for treating anxiety, although the side effects of direct manipulations of cannabinoid receptors keeps them from widespread clinical use. Disrupting the degradation enzyme fatty acid amide hydrolase (FAAH) enhances endogenous signaling and may produce similar efficacy without the side effects. The current experiments examine the effects of low (5.6mg/kg) or moderate (10.0mg/kg) doses of OL-135, a FAAH inhibitor, on the acquisition and consolidation of classical fear conditioning, a common model of trauma-induced anxiety. The acquisition of contextual, but not auditory, fear conditioning was disrupted by both doses of OL-135. Shock reactivity was not affected. Due to the additional neural circuitry required for contextual, but not auditory, fear conditioning, these data suggest that endocannabinoid signaling outside the amygdala may be critical for a subset of fearful memories.

  8. FAAH inhibitor OL-135 disrupts contextual, but not auditory, fear conditioning in rats.

    Science.gov (United States)

    Burman, Michael A; Szolusha, Kerribeth; Bind, Rebecca; Kerney, Kristen; Boger, Dale L; Bilsky, Edward J

    2016-07-15

    Anxiety disorders are among the most prevalent psychological disorders, have significant negative impacts on quality of life and the healthcare system, and yet effective treatments remain elusive. Manipulating the endocannabinoid system has demonstrated potential for treating anxiety, although the side effects of direct manipulations of cannabinoid receptors keeps them from widespread clinical use. Disrupting the degradation enzyme fatty acid amide hydrolase (FAAH) enhances endogenous signaling and may produce similar efficacy without the side effects. The current experiments examine the effects of low (5.6mg/kg) or moderate (10.0mg/kg) doses of OL-135, a FAAH inhibitor, on the acquisition and consolidation of classical fear conditioning, a common model of trauma-induced anxiety. The acquisition of contextual, but not auditory, fear conditioning was disrupted by both doses of OL-135. Shock reactivity was not affected. Due to the additional neural circuitry required for contextual, but not auditory, fear conditioning, these data suggest that endocannabinoid signaling outside the amygdala may be critical for a subset of fearful memories. PMID:27083303

  9. Eyeblink classical conditioning in the preweanling lamb.

    Science.gov (United States)

    Johnson, Timothy B; Stanton, Mark E; Goodlett, Charles R; Cudd, Timothy A

    2008-06-01

    Classical conditioning of eyeblink responses has been one of the most important models for studying the neurobiology of learning, with many comparative, ontogenetic, and clinical applications. The current study reports the development of procedures to conduct eyeblink conditioning in preweanling lambs and demonstrates successful conditioning using these procedures. These methods will permit application of eyeblink conditioning procedures in the analysis of functional correlates of cerebellar damage in a sheep model of fetal alcohol spectrum disorders, which has significant advantages over more common laboratory rodent models. Because sheep have been widely used for studies of pathogenesis and mechanisms of injury with many different prenatal or perinatal physiological insults, eyeblink conditioning can provide a well-studied method to assess postnatal behavioral outcomes, which heretofore have not typically been pursued with ovine models of developmental insults.

  10. Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses.

    Science.gov (United States)

    Royer, S; Paré, D

    2002-01-01

    Classical fear conditioning is believed to result from potentiation of conditioned synaptic inputs in the basolateral amygdala. That is, the conditioned stimulus would excite more neurons in the central nucleus and, via their projections to the brainstem and hypothalamus, evoke fear responses. However, much data suggests that extinction of fear responses does not depend on the reversal of these changes but on a parallel NMDA-dependent learning that competes with the first one. Because they control impulse traffic from the basolateral amygdala to the central nucleus, GABAergic neurons of the intercalated cell masses are ideally located to implement this second learning. Consistent with this hypothesis, the present study shows that low- and high-frequency stimulation of basolateral afferents respectively induce long-term depression (LTD) and potentiation (LTP) of responses in intercalated cells. Moreover, induction of LTP and LTD is prevented by application of an NMDA antagonist. To determine how these activity-dependent changes are expressed, we tested whether LTD and LTP induction are associated with modifications in paired-pulse facilitation, an index of transmitter release probability. Only LTP induction was associated with a change in paired-pulse facilitation. Depotentiation of previously potentiated synapses did not revert the modification in paired pulse facilitation, suggesting that LTP is associated with presynaptic alterations, but that LTD and depotentiation depend on postsynaptic changes. Taken together, our results suggest that basolateral synapses onto intercalated neurons can express NMDA-dependent LTP and LTD, consistent with the possibility that intercalated neurons are a critical locus of plasticity for the extinction of conditioned fear responses. Ultimately, these plastic events may prevent conditioned amygdala responses from exciting neurons of the central nucleus, and thus from evoking conditioned fear responses.

  11. Demand Characteristics in Classical Verbal Conditioning and Attitude Conditioning Studies.

    Science.gov (United States)

    McGinley, Hugh

    This paper is a draft for the American Psychological Association Symposium on the conditioning of verbal behavior and attitudes. The author presents the results of several studies he conducted in the classical conditioning of meaning and attitude. These studies attempt to control the measurement effects created by extraneous variables operating on…

  12. Evaluating the TD model of classical conditioning.

    Science.gov (United States)

    Ludvig, Elliot A; Sutton, Richard S; Kehoe, E James

    2012-09-01

    The temporal-difference (TD) algorithm from reinforcement learning provides a simple method for incrementally learning predictions of upcoming events. Applied to classical conditioning, TD models suppose that animals learn a real-time prediction of the unconditioned stimulus (US) on the basis of all available conditioned stimuli (CSs). In the TD model, similar to other error-correction models, learning is driven by prediction errors--the difference between the change in US prediction and the actual US. With the TD model, however, learning occurs continuously from moment to moment and is not artificially constrained to occur in trials. Accordingly, a key feature of any TD model is the assumption about the representation of a CS on a moment-to-moment basis. Here, we evaluate the performance of the TD model with a heretofore unexplored range of classical conditioning tasks. To do so, we consider three stimulus representations that vary in their degree of temporal generalization and evaluate how the representation influences the performance of the TD model on these conditioning tasks.

  13. Classical conditioned responses to absent tones

    Directory of Open Access Journals (Sweden)

    Häusler Udo

    2006-08-01

    Full Text Available Abstract Background Recent evidence for a tight coupling of sensorimotor processes in trained musicians led to the question of whether this coupling extends to preattentively mediated reflexes; particularly, whether a classically conditioned response in one of the domains (auditory is generalized to another (tactile/motor on the basis of a prior association in a second-order Pavlovian paradigm. An eyeblink conditioning procedure was performed in 17 pianists, serving as a model for overlearned audiomotor integration, and 14 non-musicians. Results: During the training session, subjects were conditioned to respond to auditory stimuli (piano tones. During a subsequent testing session, when subjects performed keystrokes on a silent piano, pianists showed significantly higher blink rates than non-musicians. Conclusion These findings suggest a tight coupling of the auditory and motor domains in musicians, pointing towards training-dependent mechanisms of strong cross-modal sensorimotor associations even on sub-cognitive processing levels.

  14. Classical eyeblink conditioning in Parkinson's disease.

    Science.gov (United States)

    Daum, I; Schugens, M M; Breitenstein, C; Topka, H; Spieker, S

    1996-11-01

    Patients with Parkinson's disease (PD) show impairments of a range of motor learning tasks, including tracking or serial reaction time task learning. Our study investigated whether such deficits would also be seen on a simple type of motor learning, classic conditioning of the eyeblink response. Medicated and unmediated patients with PD showed intact unconditioned eyeblink responses and significant learning across acquisition; the learning rates did not differ from those of healthy control subjects. The overall frequency of conditioned responses was significantly higher in the medicated patients with PD relative to control subjects, and there was also some evidence of facilitation in the unmedicated patients with PD. Conditioning of electrodermal and electrocortical responses was comparable in all groups. The findings are discussed in terms of enhanced excitability of brainstem pathways in PD and of the involvement of different neuronal circuits in different types of motor learning.

  15. Energy conditions and classical scalar fields

    CERN Document Server

    Bellucci, S

    2002-01-01

    Attention has been recently called upon the fact that the weak and null energy conditions and the second law of thermodynamics are violated in wormhole solutions of Einstein's theory with classical, nonminimally coupled, scalar fields as material source. It is shown that the discussion is only meaningful when ambiguities in the definitions of stress-energy tensor and energy density of a nonminimally coupled scalar are resolved. The three possible approaches are discussed with emphasis on the positivity of the respective energy densities and covariant conservation laws. The root of the ambiguities is traced to the energy localization problem for the gravitational field.

  16. Fear-potentiation in the elevated plus-maze test depends on stressor controllability and fear conditioning

    NARCIS (Netherlands)

    Korte, S M; Bohus, B; de Boer, Sietse

    1999-01-01

    The purpose of the study was to determine which stressor qualities (escapable vs. inescapable stress and unconditioned vs. conditioned stress) can potentiate fear in the elevated plus-maze. While inescapable stress potentiated fear, escapable stress did not, but escapable stress increased the locomo

  17. A role for midline and intralaminar thalamus in the associative blocking of Pavlovian fear conditioning.

    Science.gov (United States)

    Sengupta, Auntora; McNally, Gavan P

    2014-01-01

    Fear learning occurs in response to positive prediction error, when the expected outcome of a conditioning trial exceeds that predicted by the conditioned stimuli present. This role for error in Pavlovian association formation is best exemplified by the phenomenon of associative blocking, whereby prior fear conditioning of conditioned stimulus (CS) A is able to prevent learning to CSB when they are conditioned in compound. The midline and intralaminar thalamic nuclei (MIT) are well-placed to contribute to fear prediction error because they receive extensive projections from the midbrain periaqueductal gray-which has a key role in fear prediction error-and project extensively to prefrontal cortex and amygdala. Here we used an associative blocking design to study the role of MIT in fear learning. In Stage I rats were trained to fear CSA via pairings with shock. In Stage II rats received compound fear conditioning of CSAB paired with shock. On test, rats that received Stage I training expressed less fear to CSB relative to control rats that did not receive this training. Microinjection of bupivacaine into MIT prior to Stage II training had no effect on the expression of fear during Stage II and had no effect on fear learning in controls, but prevented associative blocking and so enabled fear learning to CSB. These results show an important role for MIT in predictive fear learning and are discussed with reference to previous findings implicating the midline and posterior intralaminar thalamus in fear learning and fear responding.

  18. A role for midline and intralaminar thalamus in the associative blocking of Pavlovian fear conditioning

    Directory of Open Access Journals (Sweden)

    Auntora eSengupta

    2014-05-01

    Full Text Available Fear learning occurs in response to positive prediction error, when the expected outcome of a conditioning trial exceeds that predicted by the conditioned stimuli present. This role for error in Pavlovian association formation is best exemplified by the phenomenon of associative blocking, whereby prior fear conditioning of conditioned stimulus (CS A is able to prevent learning to CSB when they are conditioned in compound. The midline and intralaminar thalamic nuclei (MIT are well placed to contribute to fear prediction error because they receive extensive projections from the midbrain periaqueductal gray – which has a key role in fear prediction error – and project extensively to prefrontal cortex and amygdala. Here we used an associative blocking design to study the role of MIT in fear learning. In Stage I rats were trained to fear CSA via pairings with shock. In Stage II rats received compound fear conditioning of CSAB paired with shock. On test, rats that received Stage I training expressed less fear to CSB relative to control rats that did not receive this training. Microinjection of bupivacaine into MIT prior to Stage II training had no effect on the expression of fear during Stage II and had no effect on fear learning in controls, but prevented associative blocking and so enabled fear learning to CSB. These results show an important role for MIT in predictive fear learning and are discussed with reference to previous findings implicating the midline and posterior intralaminar thalamus in fear learning and fear responding.

  19. Opioid receptors regulate the extinction of Pavlovian fear conditioning.

    Science.gov (United States)

    McNally, Gavan P; Westbrook, R Frederick

    2003-12-01

    Rats received a single pairing of an auditory conditioned stimulus (CS) with a footshock unconditioned stimulus (US). The fear (freezing) that had accrued to the CS was then extinguished. Injection of naloxone prior to this extinction significantly impaired the development of extinction. This impairment was mediated by opioid receptors in the brain and was not observed when naloxone was injected after extinction training. Finally, an injection of naloxone on test failed to reinstate extinguished responding that had already accrued to the CS. These experiments show that opioid receptors regulate the development, but not the expression, of fear extinction and are discussed with reference to the roles of opioid receptors in US processing, memory, and appetitive motivation.

  20. Resting heart rate variability predicts safety learning and fear extinction in an interoceptive fear conditioning paradigm.

    Directory of Open Access Journals (Sweden)

    Meike Pappens

    Full Text Available This study aimed to investigate whether interindividual differences in autonomic inhibitory control predict safety learning and fear extinction in an interoceptive fear conditioning paradigm. Data from a previously reported study (N = 40 were extended (N = 17 and re-analyzed to test whether healthy participants' resting heart rate variability (HRV - a proxy of cardiac vagal tone - predicts learning performance. The conditioned stimulus (CS was a slight sensation of breathlessness induced by a flow resistor, the unconditioned stimulus (US was an aversive short-lasting suffocation experience induced by a complete occlusion of the breathing circuitry. During acquisition, the paired group received 6 paired CS-US presentations; the control group received 6 explicitly unpaired CS-US presentations. In the extinction phase, both groups were exposed to 6 CS-only presentations. Measures included startle blink EMG, skin conductance responses (SCR and US-expectancy ratings. Resting HRV significantly predicted the startle blink EMG learning curves both during acquisition and extinction. In the unpaired group, higher levels of HRV at rest predicted safety learning to the CS during acquisition. In the paired group, higher levels of HRV were associated with better extinction. Our findings suggest that the strength or integrity of prefrontal inhibitory mechanisms involved in safety- and extinction learning can be indexed by HRV at rest.

  1. Necessary and sufficient factors in classical conditioning.

    Science.gov (United States)

    Damianopoulos, E N

    1982-01-01

    The issue of necessary and sufficient factors (pairing-contiguity vs. contingency-correlation) in classical (Pavlovian) excitatory conditioning is examined: first, in terms of definitional (logical) and manipulational requirements of "necessary" and "sufficient"; second, in terms of Boolean logic test models indicating experimental and control manipulations in tests of pairing and contingency as necessary and sufficient factors; and, third, by a selective review of reference experiments showing appropriate experimental and control manipulations of pairing and contingency indicated in the Boolean logic test models. Results of examination show pairing-contiguity as the sole necessary and sufficient factor for excitatory conditioning, while contingency-correlation is conceptualized as a modulating factor controlling minimal-maximal effects of pairing-contiguity. Reservations and diagnostic experiments are indicated to assess effects of uncontrolled conditioned stimulus--unconditioned stimulus (--CS--US) probability characteristics (e.g., p (CS--US)/p (--CS--US) in truly random (TR) schedule manipulations). Similar analysis of conditioned inhibition reveals insufficient evidence to support a choice among current alternatives.

  2. Rating data are underrated: validity of US expectancy in human fear conditioning

    NARCIS (Netherlands)

    Y. Boddez; F. Baeyens; L. Luyten; D. Vansteenwegen; D. Hermans; T. Beckers

    2013-01-01

    Background and objectives: Human fear conditioning is widely regarded as one of the prime paradigms for the study of fear and anxiety disorders. We provide an evaluation of a commonly used subjective measure in the human fear conditioning paradigm, namely the US-expectancy measurement. Methods: We a

  3. Modafinil and memory: effects of modafinil on Morris water maze learning and Pavlovian fear conditioning.

    Science.gov (United States)

    Shuman, Tristan; Wood, Suzanne C; Anagnostaras, Stephan G

    2009-04-01

    Modafinil has been shown to promote wakefulness and some studies suggest the drug can improve cognitive function. Because of many similarities, the mechanism of action may be comparable to classical psychostimulants, although the exact mechanisms of modafinil's actions in wakefulness and cognitive enhancement are unknown. The current study aims to further examine the effects of modafinil as a cognitive enhancer on hippocampus-dependent memory in mice. A high dose of modafinil (75 mg/kg ip) given before training improved acquisition on a Morris water maze. When given only before testing, modafinil did not affect water maze performance. We also examined modafinil (0.075 to 75 mg/kg) on Pavlovian fear conditioning. A low dose of pretraining modafinil (0.75 mg/kg) enhanced memory of contextual fear conditioning (tested off-drug 1 week later) whereas a high dose (75 mg/kg) disrupted memory. Pretraining modafinil did not affect cued conditioning at any dose tested, and immediate posttraining modafinil had no effect on either cued or contextual fear. These results suggest that modafinil's effects of memory are more selective than amphetamine or cocaine and specific to hippocampus-dependent memory.

  4. Object-location training elicits an overlapping but temporally distinct transcriptional profile from contextual fear conditioning.

    Science.gov (United States)

    Poplawski, Shane G; Schoch, Hannah; Wimmer, Mathieu E; Hawk, Joshua D; Walsh, Jennifer L; Giese, Karl P; Abel, Ted

    2014-12-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning.

  5. Fear but not fright: re-evaluating traumatic experience attenuates anxiety-like behaviors after fear conditioning

    Directory of Open Access Journals (Sweden)

    Marco eCostanzi

    2014-08-01

    Full Text Available Fear allows organisms to cope with dangerous situations and remembering these situations has an adaptive role preserving individuals from injury and death. However, recalling traumatic memories can induce re-experiencing the trauma, thus resulting in a maladaptive fear. A failure to properly regulate fear responses has been associated with anxiety disorders, like Posttraumatic Stress Disorder (PTSD. Thus, re-establishing the capability to regulate fear has an important role for its adaptive and clinical relevance. Strategies aimed at erasing fear memories have been proposed, although there are limits about their efficiency in treating anxiety disorders. To re-establish fear regulation, here we propose a new approach, based on the re-evaluation of the aversive value of traumatic experience. Mice were submitted to a contextual-fear-conditioning paradigm in which a neutral context was paired with an intense electric footshock. Three weeks after acquisition, conditioned mice were treated with a less intense footshock (pain threshold. The effectiveness of this procedure in reducing fear expression was assessed in terms of behavioral outcomes related to PTSD (e.g. hyper-reactivity to a neutral tone, anxiety levels in a plus maze task, social avoidance, and learning deficits in a spatial water maze and of amygdala activity by evaluating c-fos expression. Furthermore, a possible role of lateral orbitofrontal cortex (lOFC in mediating the behavioral effects induced by the re-evaluation procedure was investigated. We observed that this treatment (i significantly mitigates the abnormal behavioral outcomes induced by trauma, (ii persistently attenuates fear expression without erasing contextual memory, (iii prevents fear reinstatement, (iv reduces amygdala activity and (v requires an intact lOFC to be effective.The results suggest that an effective strategy to treat pathological anxiety should address cognitive re-evaluation of traumatic experiences

  6. Sleep Promotes Generalization of Extinction of Conditioned Fear

    Science.gov (United States)

    Pace-Schott, Edward F.; Milad, Mohammed R.; Orr, Scott P.; Rauch, Scott L.; Stickgold, Robert; Pitman, Roger K.

    2009-01-01

    Study Objective: To examine the effects of sleep on fear conditioning, extinction, extinction recall, and generalization of extinction recall in healthy humans. Design: During the Conditioning phase, a mild, 0.5-sec shock followed conditioned stimuli (CS+s), which consisted of 2 differently colored lamps. A third lamp color was interspersed but never reinforced (CS-). Immediately after Conditioning, one CS+ was extinguished (CS+E) by presentation without shocks (Extinction phase). The other CS+ went unextinguished (CS+U). Twelve hours later, following continuous normal daytime waking (Wake group, N = 27) or an equal interval containing a normal night's sleep (Sleep group, N = 26), conditioned responses (CRs) to all CSs were measured (Extinction Recall phase). It was hypothesized that the Sleep versus Wake group would show greater extinction recall and/or generalization of extinction recall from the CS+E to the CS+U. Setting: Academic medical center. Subjects: Paid normal volunteers. Measurements and Results: Square-root transformed skin conductance response (SCR) measured conditioned responding. During Extinction Recall, the Group (Wake or Sleep) × CS+ Type (CS+E or CS+U) interaction was significant (P = 0.04). SCRs to the CS+E did not differ between groups, whereas SCRs to the CS+U were significantly smaller in the Sleep group. Additionally, SCRs were significantly larger to the CS+U than CS+E in the Wake but not the Sleep group. Conclusions: After sleep, extinction memory generalized from an extinguished conditioned stimulus to a similarly conditioned but unextinguished stimulus. Clinically, adequate sleep may promote generalization of extinction memory from specific stimuli treated during exposure therapy to similar stimuli later encountered in vivo. Citation: Pace-Schott EF; Milad MR; Orr SP; Rauch SL; Stickgold R; Pitman RK. Sleep promotes generalization of extinction of conditioned fear. SLEEP 2009;32(1):19-26. PMID:19189775

  7. Individual Differences in Discriminatory Fear Learning under Conditions of Ambiguity: A Vulnerability Factor for Anxiety Disorders?

    OpenAIRE

    Arnaudova, Inna; Krypotos, Angelos-Miltiadis; Effting, Marieke; Boddez, Yannick; Kindt, Merel; Beckers, Tom

    2013-01-01

    Complex fear learning procedures might be better suited than the common differential fear-conditioning paradigm for detecting individual differences related to vulnerability for anxiety disorders. Two such procedures are the blocking procedure and the protection-from-overshadowing procedure. Their comparison allows for the examination of discriminatory fear learning under conditions of ambiguity. The present study examined the role of individual differences in such discriminatory fear learnin...

  8. The contextual brain: implications for fear conditioning, extinction and psychopathology

    Science.gov (United States)

    Maren, Stephen; Phan, K. Luan; Liberzon, Israel

    2016-01-01

    Contexts surround and imbue meaning to events; they are essential for recollecting the past, interpreting the present and anticipating the future. Indeed, the brain’s capacity to contextualize information permits enormous cognitive and behavioural flexibility. Studies of Pavlovian fear conditioning and extinction in rodents and humans suggest that a neural circuit including the hippocampus, amygdala and medial prefrontal cortex is involved in the learning and memory processes that enable context-dependent behaviour. Dysfunction in this network may be involved in several forms of psychopathology, including post-traumatic stress disorder, schizophrenia and substance abuse disorders. PMID:23635870

  9. Early Extinction after Fear Conditioning Yields a Context-Independent and Short-Term Suppression of Conditional Freezing in Rats

    Science.gov (United States)

    Chang, Chun-hui; Maren, Stephen

    2009-01-01

    Extinction of Pavlovian fear conditioning in rats is a useful model for therapeutic interventions in humans with anxiety disorders. Recently, we found that delivering extinction trials soon (15 min) after fear conditioning yields a short-term suppression of fear, but little long-term extinction. Here, we explored the possible mechanisms underlying…

  10. Pavlovian fear conditioning as a behavioral assay for hippocampus and amygdala function: cautions and caveats.

    Science.gov (United States)

    Maren, Stephen

    2008-10-01

    Pavlovian fear conditioning has become an important model for investigating the neural substrates of learning and memory in rats, mice and humans. The hippocampus and amygdala are widely believed to be essential for fear conditioning to contexts and discrete cues, respectively. Indeed, this parsing of function within the fear circuit has been used to leverage fear conditioning as a behavioral assay of hippocampal and amygdala function, particularly in transgenic mouse models. Recent work, however, blurs the anatomical segregation of cue and context conditioning and challenges the necessity for the hippocampus and amygdala in fear learning. Moreover, nonassociative factors may influence the performance of fear responses under a variety of conditions. Caution must therefore be exercised when using fear conditioning as a behavioral assay for hippocampal- and amygdala-dependent learning.

  11. Mindfulness-Based Stress Reduction, Fear Conditioning, and The Uncinate Fasciculus: A Pilot Study.

    Science.gov (United States)

    Hölzel, Britta K; Brunsch, Vincent; Gard, Tim; Greve, Douglas N; Koch, Kathrin; Sorg, Christian; Lazar, Sara W; Milad, Mohammed R

    2016-01-01

    Mindfulness has been suggested to impact emotional learning, but research on these processes is scarce. The classical fear conditioning/extinction/extinction retention paradigm is a well-known method for assessing emotional learning. The present study tested the impact of mindfulness training on fear conditioning and extinction memory and further investigated whether changes in white matter fiber tracts might support such changes. The uncinate fasciculus (UNC) was of particular interest in the context of emotional learning. In this pilot study, 46 healthy participants were quasi-randomized to a Mindfulness-Based Stress Reduction (MBSR, N = 23) or waitlist control (N = 23) group and underwent a two-day fear conditioning, extinction learning, and extinction memory protocol before and after the course or control period. Skin conductance response (SCR) data served to measure the physiological response during conditioning and extinction memory phases. Diffusion tensor imaging (DTI) data were analyzed with probabilistic tractography and analyzed for changes of fractional anisotropy in the UNC. During conditioning, participants were able to maintain a differential response to conditioned vs. not conditioned stimuli following the MBSR course (i.e., higher sensitivity to the conditioned stimuli), while controls dropped the response. Extinction memory results were not interpretable due to baseline differences. MBSR participants showed a significant increase in fractional anisotropy in the UNC, while controls did not (group by time interaction missed significance). Pre-post changes in UNC were correlated with changes in the response to the conditioned stimuli. The findings suggest effects of mindfulness practice on the maintenance of sensitivity of emotional responses and suggest underlying neural plasticity. (ClinicalTrials.gov, Identifier NCT01320969, https://clinicaltrials.gov/ct2/show/NCT01320969). PMID:27378875

  12. Mindfulness-Based Stress Reduction, Fear Conditioning, and The Uncinate Fasciculus: A Pilot Study

    Science.gov (United States)

    Hölzel, Britta K.; Brunsch, Vincent; Gard, Tim; Greve, Douglas N.; Koch, Kathrin; Sorg, Christian; Lazar, Sara W.; Milad, Mohammed R.

    2016-01-01

    Mindfulness has been suggested to impact emotional learning, but research on these processes is scarce. The classical fear conditioning/extinction/extinction retention paradigm is a well-known method for assessing emotional learning. The present study tested the impact of mindfulness training on fear conditioning and extinction memory and further investigated whether changes in white matter fiber tracts might support such changes. The uncinate fasciculus (UNC) was of particular interest in the context of emotional learning. In this pilot study, 46 healthy participants were quasi-randomized to a Mindfulness-Based Stress Reduction (MBSR, N = 23) or waitlist control (N = 23) group and underwent a two-day fear conditioning, extinction learning, and extinction memory protocol before and after the course or control period. Skin conductance response (SCR) data served to measure the physiological response during conditioning and extinction memory phases. Diffusion tensor imaging (DTI) data were analyzed with probabilistic tractography and analyzed for changes of fractional anisotropy in the UNC. During conditioning, participants were able to maintain a differential response to conditioned vs. not conditioned stimuli following the MBSR course (i.e., higher sensitivity to the conditioned stimuli), while controls dropped the response. Extinction memory results were not interpretable due to baseline differences. MBSR participants showed a significant increase in fractional anisotropy in the UNC, while controls did not (group by time interaction missed significance). Pre-post changes in UNC were correlated with changes in the response to the conditioned stimuli. The findings suggest effects of mindfulness practice on the maintenance of sensitivity of emotional responses and suggest underlying neural plasticity. (ClinicalTrials.gov, Identifier NCT01320969, https://clinicaltrials.gov/ct2/show/NCT01320969). PMID:27378875

  13. Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: implications for underlying fear circuits.

    Science.gov (United States)

    Burghardt, N S; Bauer, E P

    2013-09-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used for the treatment of a spectrum of anxiety disorders, yet paradoxically they may increase symptoms of anxiety when treatment is first initiated. Despite extensive research over the past 30 years focused on SSRI treatment, the precise mechanisms by which SSRIs exert these opposing acute and chronic effects on anxiety remain unknown. By testing the behavioral effects of SSRI treatment on Pavlovian fear conditioning, a well characterized model of emotional learning, we have the opportunity to identify how SSRIs affect the functioning of specific brain regions, including the amygdala, bed nucleus of the stria terminalis (BNST) and hippocampus. In this review, we first define different stages of learning involved in cued and context fear conditioning and describe the neural circuits underlying these processes. We examine the results of numerous rodent studies investigating how acute SSRI treatment modulates fear learning and relate these effects to the known functions of serotonin in specific brain regions. With these findings, we propose a model by which acute SSRI administration, by altering neural activity in the extended amygdala and hippocampus, enhances both acquisition and expression of cued fear conditioning, but impairs the expression of contextual fear conditioning. Finally, we review the literature examining the effects of chronic SSRI treatment on fear conditioning in rodents and describe how downregulation of N-methyl-d-aspartate (NMDA) receptors in the amygdala and hippocampus may mediate the impairments in fear learning and memory that are reported. While long-term SSRI treatment effectively reduces symptoms of anxiety, their disruptive effects on fear learning should be kept in mind when combining chronic SSRI treatment and learning-based therapies, such as cognitive behavioral therapy.

  14. Physiological Consequences of Repeated Exposures to Conditioned Fear

    Directory of Open Access Journals (Sweden)

    Robert S. Thompson

    2012-05-01

    Full Text Available Activation of the stress response evokes a cascade of physiological reactions that may be detrimental when repeated or chronic, and when triggered after exposure to psychological/emotional stressors. Investigation of the physiological mechanisms responsible for the health damaging effects requires animal paradigms that repeatedly evoke a response to psychological/emotional stressors. To this end, adult male Sprague Dawley rats were repeatedly exposed (2X per day for 20 days to a context that they were conditioned to fear (conditioned fear test, CFT. Repeated exposure to CFT produced body weight loss, adrenal hypertrophy, thymic involution, and basal corticosterone elevation. In vivo biotelemetry measures revealed that CFT evokes sympathetic nervous system driven increases in heart rate (HR, mean arterial pressure (MAP, and core body temperature. Extinction of behavioral (freezing and physiological responses to CFT was prevented using minimal reinstatement footshock. MAP responses to the CFT did not diminish across 20 days of exposure. In contrast, HR and cardiac contractility responses declined by day 15, suggesting a shift toward vascular-dominated MAP (a pre-clinical marker of CV dysfunction. Flattened diurnal rhythms, common to stress-related mood/anxiety disorders, were found for most physiological measures. Thus, repeated CFT produces adaptations indicative of the health damaging effects of psychological/emotional stress.

  15. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning

    DEFF Research Database (Denmark)

    Wilensky, Ann E; Schafe, Glenn E; Kristensen, Morten Pilgaard;

    2006-01-01

    of the amygdala (CE), which serves as the principal output nucleus for the expression of conditioned fear responses. In the present study, we reexamined the roles of LA and CE. Specifically, we asked whether CE, like LA, might also be involved in fear learning and memory consolidation. Using functional...... inactivation methods, we first show that CE is involved not only in the expression but also the acquisition of fear conditioning. Next, we show that inhibition of protein synthesis in CE after training impairs fear memory consolidation. These findings indicate that CE is not only involved in fear expression...... but, like LA, is also involved in the learning and consolidation of pavlovian fear conditioning....

  16. Striatal dopamine D1 receptor is essential for contextual fear conditioning.

    Science.gov (United States)

    Ikegami, Masaru; Uemura, Takeshi; Kishioka, Ayumi; Sakimura, Kenji; Mishina, Masayoshi

    2014-02-05

    Fear memory is critical for animals to trigger behavioural adaptive responses to potentially threatening stimuli, while too much or inappropriate fear may cause psychiatric problems. Numerous studies have shown that the amygdala, hippocampus and medial prefrontal cortex play important roles in Pavlovian fear conditioning. Recently, we showed that striatal neurons are required for the formation of the auditory fear memory when the unconditioned stimulus is weak. Here, we found that selective ablation of striatal neurons strongly diminished contextual fear conditioning irrespective of the intensity of footshock. Furthermore, contextual fear conditioning was strongly reduced in striatum-specific dopamine D1 receptor knockout mice. On the other hand, striatum-specific dopamine D2 receptor knockout mice showed freezing responses comparable to those of control mice. These results suggest that striatal D1 receptor is essential for contextual fear conditioning.

  17. Role of conceptual knowledge in learning and retention of conditioned fear.

    Science.gov (United States)

    Dunsmoor, Joseph E; Martin, Alex; LaBar, Kevin S

    2012-02-01

    Associating sensory cues with aversive outcomes is a relatively basic process shared across species. Yet higher-order cognitive processes likely contribute to associative fear learning in many circumstances, especially in humans. Here we ask whether fears can be acquired based on conceptual knowledge of object categories, and whether such concept-based fear conditioning leads to enhanced memory representations for conditioned objects. Participants were presented with a heterogeneous collection of images of animals and tools. Objects from one category were reinforced by an electrical shock, whereas the other category was never reinforced. Results confirmed concept-based fear learning through subjective report of shock expectancy, heightened skin conductance responses, and enhanced 24h recognition memory for items from the conditioned category. These results provide novel evidence that conditioned fear can generalize through knowledge of object concepts, and sheds light on the persistent nature of fear memories and category-based fear responses symptomatic of some anxiety disorders.

  18. Effects of neonatal amygdala lesions on fear learning, conditioned inhibition, and extinction in adult macaques.

    Science.gov (United States)

    Kazama, Andy M; Heuer, Eric; Davis, Michael; Bachevalier, Jocelyne

    2012-06-01

    Fear conditioning studies have demonstrated the critical role played by the amygdala in emotion processing. Although all lesion studies until now investigated the effect of adult-onset damage on fear conditioning, the current study assessed fear-learning abilities, as measured by fear-potentiated startle, in adult monkeys that had received neonatal neurotoxic amygdala damage or sham-operations. After fear acquisition, their abilities to learn and use a safety cue to modulate their fear to the conditioned cue, and, finally, to extinguish their response to the fear conditioned cue were measured with the AX+/BX- Paradigm. Neonatal amygdala damage retarded, but did not completely abolish, the acquisition of a learned fear. After acquisition of the fear signal, four of the six animals with neonatal amygdala lesions discriminated between the fear and safety cues and were also able to use the safety signal to reduce the potentiated-startle response and to extinguish the fear response when the air-blast was absent. In conclusion, the present results support the critical contribution of the amygdala during the early phases of fear conditioning that leads to quick, robust responses to potentially threatening stimuli, a highly adaptive process across all species and likely to be present in early infancy. The neonatal amygdala lesions also indicated the presence of amygdala-independent alternate pathways that are capable to support fear learning in the absence of a functional amygdala. This parallel processing of fear responses within these alternate pathways was also sufficient to support the ability to flexibly modulate the magnitude of the fear responses.

  19. Opioid regulation of Pavlovian overshadowing in fear conditioning.

    Science.gov (United States)

    Zelikowsky, Moriel; Fanselow, Michael S

    2010-08-01

    In Pavlovian overshadowing, a stimulus that predicts a biologically important event reduces conditioning to another, equally predictive stimulus. We tested the effects of an opioid antagonist and dopamine agonist on the ability of a salient white noise to overshadow a less salient light. Rats were conditioned to fear a light or a noise-light compound using a mild footshock. Compound-conditioned rats trained under the saline vehicle revealed significant overshadowing of the light by the noise. This overshadowing effect was significantly attenuated in rats trained under the opioid antagonist naltrexone, consistent with an opioid-mediated negative feedback model of conditioning. In line with predictions made by negative feedback-type models, we failed to obtain overshadowing with few trials, suggesting that the processes underlying conditioning during initial trials do not contribute to the opioid-dependent Pavlovian overshadowing obtained in our preparation. Lastly, we compared the involvement of dopamine-mediated and opioid-mediated processes in overshadowing by conditioning rats under the partial dopamine D1 receptor agonist SKF 38393 or the opioid antagonist naltrexone. Both naltrexone and SKF 38393 were found to attenuate overshadowing; however, the behavioral profiles produced by each pharmacological manipulation were distinct. Collectively, these studies demonstrate an important role for both opioid- and dopamine-mediated processes in multiple-trial overshadowing.

  20. The effects of transcutaneous vagus nerve stimulation on conditioned fear extinction in humans.

    Science.gov (United States)

    Burger, Andreas M; Verkuil, Bart; Van Diest, Ilse; Van der Does, Willem; Thayer, Julian F; Brosschot, Jos F

    2016-07-01

    A critical component of the treatment for anxiety disorders is the extinction of fear via repeated exposure to the feared stimulus. This process is strongly dependent on successful memory formation and consolidation. Stimulation of the vagus nerve enhances memory formation in both animals and humans. The objective of this study was to assess whether transcutaneous stimulation of the vagus nerve (tVNS) can accelerate extinction memory formation and retention in fear conditioned humans. To assess fear conditioning and subsequent fear extinction, we assessed US expectancy ratings, fear potentiated startle responses and phasic heart rate responses. We conducted a randomized controlled trial in thirty-one healthy participants. After fear conditioning participants were randomly assigned to receive tVNS or sham stimulation during the extinction phase. Retention of extinction memory was tested 24h later. tVNS accelerated explicit fear extinction learning (US expectancy ratings), but did not lead to better retention of extinction memory 24h later. We did not find a differential physiological conditioning response during the acquisition of fear and thus were unable to assess potential effects of tVNS on the extinction of physiological indices of fear. These findings complement recent studies that suggest vagus nerve stimulation could be a promising tool to improve memory consolidation and fear extinction. PMID:27222436

  1. Neuropeptide S reduces fear and avoidance of con-specifics induced by social fear conditioning and social defeat, respectively.

    Science.gov (United States)

    Zoicas, Iulia; Menon, Rohit; Neumann, Inga D

    2016-09-01

    Neuropeptide S (NPS) has anxiolytic effects and facilitates extinction of cued fear in rodents. Here, we investigated whether NPS reverses social fear and social avoidance induced by social fear conditioning (SFC) and acute social defeat (SD), respectively, in male CD1 mice. Our results revealed that intracerebroventricular NPS (icv; 10 and 50 nmol/2 μl) reversed fear of unknown con-specifics induced by SFC and dose-dependently reduced avoidance of known aggressive con-specifics induced by SD. While 50 nmol of NPS completely reversed social avoidance and reinstated social preference, 10 nmol of NPS reduced social avoidance, but did not completely reinstate social preference in socially-defeated mice. Further, a lower dose (1 nmol/2 μl) of NPS facilitated the within-session extinction of cued fear, while a higher dose (10 nmol/2 μl) reduced the expression of cued fear. We could also confirm the anxiolytic effects of NPS (1, 10 and 50 nmol/2 μl) on the elevated plus-maze (EPM), which were not accompanied by alterations in locomotor activity either on the EPM or in the home cage. Finally, we could show that icv infusion of the NPS receptor 1 antagonist D-Cys((t)Bu)(5)-NPS (10 nmol/2 μl) did not alter SFC-induced social fear, general anxiety and locomotor activity. Taken together, our study extends the potent anxiolytic profile of NPS to a social context by demonstrating the reduction of social fear and social avoidance, thus providing the framework for studies investigating the involvement of the NPS system in the regulation of different types of social behaviour.

  2. Double dissociation of amygdala and hippocampal contributions to trace and delay fear conditioning.

    Science.gov (United States)

    Raybuck, Jonathan D; Lattal, K Matthew

    2011-01-19

    A key finding in studies of the neurobiology of learning memory is that the amygdala is critically involved in Pavlovian fear conditioning. This is well established in delay-cued and contextual fear conditioning; however, surprisingly little is known of the role of the amygdala in trace conditioning. Trace fear conditioning, in which the CS and US are separated in time by a trace interval, requires the hippocampus and prefrontal cortex. It is possible that recruitment of cortical structures by trace conditioning alters the role of the amygdala compared to delay fear conditioning, where the CS and US overlap. To investigate this, we inactivated the amygdala of male C57BL/6 mice with GABA (A) agonist muscimol prior to 2-pairing trace or delay fear conditioning. Amygdala inactivation produced deficits in contextual and delay conditioning, but had no effect on trace conditioning. As controls, we demonstrate that dorsal hippocampal inactivation produced deficits in trace and contextual, but not delay fear conditioning. Further, pre- and post-training amygdala inactivation disrupted the contextual but the not cued component of trace conditioning, as did muscimol infusion prior to 1- or 4-pairing trace conditioning. These findings demonstrate that insertion of a temporal gap between the CS and US can generate amygdala-independent fear conditioning. We discuss the implications of this surprising finding for current models of the neural circuitry involved in fear conditioning.

  3. Effects of Recent Exposure to a Conditioned Stimulus on Extinction of Pavlovian Fear Conditioning

    Science.gov (United States)

    Chan, Wan Yee Macy; Leung, Hiu T.; Westbrook, R. Frederick; McNally, Gavan P.

    2010-01-01

    In six experiments we studied the effects of a single re-exposure to a conditioned stimulus (CS; "retrieval trial") prior to extinction training (extinction-reconsolidation boundary) on the development of and recovery from fear extinction. A single retrieval trial prior to extinction training significantly augmented the renewal and reinstatement…

  4. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    Science.gov (United States)

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  5. Appetitive and aversive classical conditioning of female sexual response

    NARCIS (Netherlands)

    S. Both; E. Laan; M. Spiering; T. Nilsson; S. Oomens; W. Everaerd

    2008-01-01

    INTRODUCTION: There is only limited evidence for appetitive classical conditioning of female sexual response, and to date modulation of female sexual response by aversive conditioning has not been studied. AIM: The aim of this article is to study appetitive and aversive classical conditioning of sex

  6. Eye Movements Index Implicit Memory Expression in Fear Conditioning.

    Science.gov (United States)

    Hopkins, Lauren S; Schultz, Douglas H; Hannula, Deborah E; Helmstetter, Fred J

    2015-01-01

    The role of contingency awareness in simple associative learning experiments with human participants is currently debated. Since prior work suggests that eye movements can index mnemonic processes that occur without awareness, we used eye tracking to better understand the role of awareness in learning aversive Pavlovian conditioning. A complex real-world scene containing four embedded household items was presented to participants while skin conductance, eye movements, and pupil size were recorded. One item embedded in the scene served as the conditional stimulus (CS). One exemplar of that item (e.g. a white pot) was paired with shock 100 percent of the time (CS+) while a second exemplar (e.g. a gray pot) was never paired with shock (CS-). The remaining items were paired with shock on half of the trials. Participants rated their expectation of receiving a shock during each trial, and these expectancy ratings were used to identify when (i.e. on what trial) each participant became aware of the programmed contingencies. Disproportionate viewing of the CS was found both before and after explicit contingency awareness, and patterns of viewing distinguished the CS+ from the CS-. These observations are consistent with "dual process" models of fear conditioning, as they indicate that learning can be expressed in patterns of viewing prior to explicit contingency awareness.

  7. Eye Movements Index Implicit Memory Expression in Fear Conditioning.

    Directory of Open Access Journals (Sweden)

    Lauren S Hopkins

    Full Text Available The role of contingency awareness in simple associative learning experiments with human participants is currently debated. Since prior work suggests that eye movements can index mnemonic processes that occur without awareness, we used eye tracking to better understand the role of awareness in learning aversive Pavlovian conditioning. A complex real-world scene containing four embedded household items was presented to participants while skin conductance, eye movements, and pupil size were recorded. One item embedded in the scene served as the conditional stimulus (CS. One exemplar of that item (e.g. a white pot was paired with shock 100 percent of the time (CS+ while a second exemplar (e.g. a gray pot was never paired with shock (CS-. The remaining items were paired with shock on half of the trials. Participants rated their expectation of receiving a shock during each trial, and these expectancy ratings were used to identify when (i.e. on what trial each participant became aware of the programmed contingencies. Disproportionate viewing of the CS was found both before and after explicit contingency awareness, and patterns of viewing distinguished the CS+ from the CS-. These observations are consistent with "dual process" models of fear conditioning, as they indicate that learning can be expressed in patterns of viewing prior to explicit contingency awareness.

  8. Corticosterone plasma concentrations in Carioca Highand Low-conditioned freezing rats after a fear conditioned task

    Directory of Open Access Journals (Sweden)

    Laura Andrea León A.

    2013-01-01

    Full Text Available Our group in the Psychology Department at Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio developed a rat genetic model of extreme freezing in response to contextual cues in an experimental chamber previously associated with footshock. One of the lines, Carioca High Freezing (CHF, exhibits an enhanced conditioned freezing response, whereas the other line, Carioca Low Freezing (CLF, shows the opposite response. The present study investigated corticosterone concentration between these two lines of animals and a random (RND line of rats both under basal conditions and test condition after an emotional challenge using a contextual fear conditioning protocol. Comparisons between basal and test plasma corticosterone concentrations suggested differential basal and fear-induced differences between the two lines. The differences between basal conditions is an important and relevant aspect to be considered in behavioral experiments using or assessing stress and could help to understand variability in naïve populations.

  9. Fear conditioning and extinction across development: evidence from human studies and animal models.

    Science.gov (United States)

    Shechner, Tomer; Hong, Melanie; Britton, Jennifer C; Pine, Daniel S; Fox, Nathan A

    2014-07-01

    The ability to differentiate danger and safety through associative processes emerges early in life. Understanding the mechanisms underlying associative learning of threat and safety can clarify the processes that shape development of normative fears and pathological anxiety. Considerable research has used fear conditioning and extinction paradigms to delineate underlying mechanisms in animals and human adults; however, little is known about these mechanisms in children and adolescents. The current paper summarizes the empirical data on the development of fear conditioning and extinction. It reviews methodological considerations and future directions for research on fear conditioning and extinction in pediatric populations. PMID:24746848

  10. Fear conditioning and extinction across development: evidence from human studies and animal models.

    Science.gov (United States)

    Shechner, Tomer; Hong, Melanie; Britton, Jennifer C; Pine, Daniel S; Fox, Nathan A

    2014-07-01

    The ability to differentiate danger and safety through associative processes emerges early in life. Understanding the mechanisms underlying associative learning of threat and safety can clarify the processes that shape development of normative fears and pathological anxiety. Considerable research has used fear conditioning and extinction paradigms to delineate underlying mechanisms in animals and human adults; however, little is known about these mechanisms in children and adolescents. The current paper summarizes the empirical data on the development of fear conditioning and extinction. It reviews methodological considerations and future directions for research on fear conditioning and extinction in pediatric populations.

  11. Adversity-induced relapse of fear: neural mechanisms and implications for relapse prevention from a study on experimentally induced return-of-fear following fear conditioning and extinction.

    Science.gov (United States)

    Scharfenort, R; Menz, M; Lonsdorf, T B

    2016-01-01

    The efficacy of current treatments for anxiety disorders is limited by high relapse rates. Relapse of anxiety disorders and addiction can be triggered by exposure to life adversity, but the underlying mechanisms remain unexplored. Seventy-six healthy adults were a priori selected for the presence or absence of adverse experiences during childhood (CA) and recent past (RA; that is, past 12 months). Participants underwent fear conditioning (day 1) and fear extinction and experimental return-of-fear (ROF) induction through reinstatement (a model for adversity-induced relapse; day 2). Ratings, autonomic (skin conductance response) and neuronal activation measures (functional magnetic resonance imaging (fMRI)) were acquired. Individuals exposed to RA showed a generalized (that is, not CS- specific) fear recall and ROF, whereas unexposed individuals showed differential (that is, CS+ specific) fear recall and ROF on an autonomic level despite no group differences during fear acquisition and extinction learning. These group differences in ROF were accompanied by corresponding activation differences in brain areas known to be involved in fear processing and differentiability/generalization of ROF (that is, hippocampus). In addition, dimensional measures of RA, CA and lifetime adversity were negatively correlated with differential skin conductance responses (SCRs) during ROF and hippocampal activation. As discriminating signals of danger and safety, as well as a tendency for overgeneralization, are core features in clinically anxious populations, these deficits may specifically contribute to relapse risk following exposure to adversity, in particular to recent adversity. Hence, our results may provide first and novel insights into the possible mechanisms mediating enhanced relapse risk following exposure to (recent) adversity, which may guide the development of effective pre- and intervention programs. PMID:27434492

  12. Conditioned Fear Associated Phenotypes as Robust, Translational Indices of Trauma-, Stressor-, and Anxiety-related Behaviors

    Directory of Open Access Journals (Sweden)

    Maria Anne Briscione

    2014-07-01

    Full Text Available Posttraumatic stress disorder (PTSD is a heterogeneous disorder that affects individuals exposed to trauma (e.g., combat, interpersonal violence, and natural disasters. It is characterized by hyperarousal, intrusive reminders of the trauma, avoidance of trauma-related cues, and negative cognition and mood. This heterogeneity indicates the presence of multiple neurobiological mechanisms underlying the development and maintenance of PTSD. Fear conditioning is a robust, translational experimental paradigm that can be employed to elucidate these mechanisms by allowing for the study of fear-related dimensions of PTSD (e.g., fear extinction, fear inhibition, and generalization of fear across multiple units of analysis. Fear conditioning experiments have identified varying trajectories of the dimensions described, highlighting exciting new avenues of targeted, focused study. Additionally, fear conditioning studies provide a translational platform to develop novel interventions. The current review highlights the versatility of fear conditioning paradigms, the implications for pharmacological and non-pharmacological treatments, the robustness of these paradigms to span an array of neuroscientific measures (e.g., genetic studies, and finally the need to understand the boundary conditions under which these paradigms are effective. Further understanding these paradigms will ultimately allow for optimization of fear conditioning paradigms, a necessary step towards the advancement of PTSD treatment methods.

  13. Conditioned fear associated phenotypes as robust, translational indices of trauma-, stressor-, and anxiety-related behaviors.

    Science.gov (United States)

    Briscione, Maria Anne; Jovanovic, Tanja; Norrholm, Seth Davin

    2014-01-01

    Post-traumatic stress disorder (PTSD) is a heterogeneous disorder that affects individuals exposed to trauma (e.g., combat, interpersonal violence, and natural disasters). It is characterized by hyperarousal, intrusive reminders of the trauma, avoidance of trauma-related cues, and negative cognition and mood. This heterogeneity indicates the presence of multiple neurobiological mechanisms underlying the development and maintenance of PTSD. Fear conditioning is a robust, translational experimental paradigm that can be employed to elucidate these mechanisms by allowing for the study of fear-related dimensions of PTSD (e.g., fear extinction, fear inhibition, and generalization of fear) across multiple units of analysis. Fear conditioning experiments have identified varying trajectories of the dimensions described, highlighting exciting new avenues of targeted, focused study. Additionally, fear conditioning studies provide a translational platform to develop novel interventions. The current review highlights the versatility of fear conditioning paradigms, the implications for pharmacological and non-pharmacological treatments, the robustness of these paradigms to span an array of neuroscientific measures (e.g., genetic studies), and finally the need to understand the boundary conditions under which these paradigms are effective. Further understanding these paradigms will ultimately allow for optimization of fear conditioning paradigms, a necessary step towards the advancement of PTSD treatment methods.

  14. Imaging learning and memory: classical conditioning.

    Science.gov (United States)

    Schreurs, B G; Alkon, D L

    2001-12-15

    The search for the biological basis of learning and memory has, until recently, been constrained by the limits of technology to classic anatomic and electrophysiologic studies. With the advent of functional imaging, we have begun to delve into what, for many, was a "black box." We review several different types of imaging experiments, including steady state animal experiments that image the functional labeling of fixed tissues, and dynamic human studies based on functional imaging of the intact brain during learning. The data suggest that learning and memory involve a surprising conservation of mechanisms and the integrated networking of a number of structures and processes.

  15. Revealing context-specific conditioned fear memories with full immersion virtual reality

    Directory of Open Access Journals (Sweden)

    Nicole eHuff

    2011-11-01

    Full Text Available The extinction of conditioned fear is known to be context specific, and often referred to as more robustly contextually bound than the fear memory itself (Bouton, 2004. Yet, recent findings in rodents have challenged the notion that contextual fear retention is initially generalized. The context specificity of a cued-fear memory to the learning context has not been addressed in the human literature largely due to limitations in methodology. Here we adapt a novel technology to test the context specificity of cued fear conditioning using full immersion 3-dimensional virtual reality (VR. During acquisition training, healthy participants navigated through virtual environments containing dynamic snake and spider conditioned stimuli (CSs, one of which was paired with electrical wrist stimulation. During a 24-hour delayed retention test, one group returned to the same context as acquisition training whereas another group experienced the CSs in a novel context. Unconditioned stimulus (US expectancy ratings were assayed on-line during fear acquisition as an index of contingency awareness. Skin conductance responses (SCR time-locked to CS onset were the dependent measure of cued fear, and skin conductance levels during the interstimulus interval were an index of context fear. Findings indicate that early in acquisition training, participants express contingency awareness as well as differential contextual fear, whereas differential cued fear emerged later in acquisition. During the retention test, differential cued fear retention was enhanced in the group who returned to the same context as acquisition training relative to the context shift group. The results extend recent rodent work to illustrate differences in cued and context fear acquisition and the contextual specificity of recent fear memories. Findings support the use of full immersion VR as a novel tool in cognitive neuroscience to bridge rodent models of contextual phenomena underlying human

  16. A Discrete Population of Neurons in the Lateral Amygdala Is Specifically Activated by Contextual Fear Conditioning

    Science.gov (United States)

    Wilson, Yvette M.; Murphy, Mark

    2009-01-01

    There is no clear identification of the neurons involved in fear conditioning in the amygdala. To search for these neurons, we have used a genetic approach, the "fos-tau-lacZ" (FTL) mouse, to map functionally activated expression in neurons following contextual fear conditioning. We have identified a discrete population of neurons in the lateral…

  17. The Writer’s Condition and the Concept of Fear

    Directory of Open Access Journals (Sweden)

    Alina Beatrice Chesca

    2010-07-01

    Full Text Available This paper approaches Otto Rank’s theory according to which the main cause of anxiety is the individual’s separation from the loved beings and objects. Along one’s life, anxiety takes two forms: the fear of life and the fear of death. The fear of life is the anxiety which appears when the person becomes aware of his creative abilities which could separate him from the existing relationships. Writers like Emil Cioran, Mihail Sebastian, Octavian Paler, Yukio Mishima, Ernest Hemingway suffered from the fear of life, they were haunted by a tragic that brought about theloneliness of death. It is what Kierkegaard called: ”the fatal disease”, the sin of the artist’s existence. The artistic process implies an oscillation between acceptance and rejection, satisfaction and negation, life and death, loneliness and happiness.

  18. Updating versus Exposure to Prevent Consolidation of Conditioned Fear

    OpenAIRE

    Victoria Pile; Thorsten Barnhofer; Jennifer Wild

    2015-01-01

    Targeting the consolidation of fear memories following trauma may offer a promising method for preventing the development of flashbacks and other unwanted re-experiencing symptoms that characterise Posttraumatic Stress Disorder (PTSD). Research has demonstrated that performing visuo-spatial tasks after analogue trauma can block the consolidation of fear memory and reduce the frequency of flashbacks. However, no research has yet used verbal techniques to alter memories during the consolidation...

  19. Postural responses explored through classical conditioning.

    Science.gov (United States)

    Campbell, A D; Dakin, C J; Carpenter, M G

    2009-12-15

    The purpose of the study was to determine whether the central nervous system (CNS) requires the sensory feedback generated by balance perturbations in order to trigger postural responses (PRs). In Experiment 1, twenty-one participants experienced toes-up support-surface tilts in two blocks. Control blocks involved unexpected balance perturbations whereas an auditory tone cued the onset of balance perturbations in Conditioning blocks. A single Cue-Only trial followed each block (Cue-Only(Control) and Cue-Only(Conditioning) trials) in the absence of balance perturbations. Cue-Only(Conditioning) trials were used to determine whether postural perturbations were required in order to trigger PRs. Counter-balancing the order of Control and Conditioning blocks allowed Cue-Only(Control) trials to examine both the audio-spinal/acoustic startle effects of the auditory cue and the carryover effects of the initial conditioning procedure. In Experiment 2, six participants first experienced five consecutive Tone-Only trials that were followed by twenty-five conditioning trials. After conditioning, five Tone-Only trials were again presented consecutively to first elicit and then extinguish the conditioned PRs. Surface electromyography (EMG) recorded muscle activity in soleus (SOL), tibialis anterior (TA) and rectus femoris (RF). EMG onset latencies and amplitudes were calculated together with the onset latency, peak and time-to-peak of shank angular accelerations. Results indicated that an auditory cue could be conditioned to initiate PRs in multiple muscles without balance-relevant sensory triggers generated by balance perturbations. Postural synergies involving excitation of TA and RF and inhibition of SOL were observed following the Cue-Only(Conditioning) trials that resulted in shank angular accelerations in the direction required to counter the expected toes-up tilt. Postural synergies were triggered in response to the auditory cue even 15 min post-conditioning. Furthermore

  20. Cerebellar Secretin Modulates Eyeblink Classical Conditioning

    Science.gov (United States)

    Fuchs, Jason R.; Robinson, Gain M.; Dean, Aaron M.; Schoenberg, Heidi E.; Williams, Michael R.; Morielli, Anthony D.; Green, John T.

    2014-01-01

    We have previously shown that intracerebellar infusion of the neuropeptide secretin enhances the acquisition phase of eyeblink conditioning (EBC). Here, we sought to test whether endogenous secretin also regulates EBC and to test whether the effect of exogenous and endogenous secretin is specific to acquisition. In Experiment 1, rats received…

  1. Eyeblink Classical Conditioning and Post Traumatic Stress Disorder – A Model Systems Approach

    Directory of Open Access Journals (Sweden)

    Bernard G Schreurs

    2015-04-01

    Full Text Available Not everyone exposed to trauma suffers flashbacks, bad dreams, numbing, fear, anxiety, sleeplessness, hyper-vigilance, hyperarousal, or an inability to cope, but those who do may suffer from post traumatic stress disorder (PTSD. PTSD is a major physical and mental health problem for military personnel and civilians exposed to trauma. There is still debate about the incidence and prevalence of PTSD especially among the military, but for those who are diagnosed, behavioral therapy and drug treatment strategies have proven to be less than effective. A number of these treatment strategies are based on rodent fear conditioning research and are capable of treating only some of the symptoms because the extinction of fear does not deal with the various forms of hyper-vigilance and hyperarousal experienced by people with PTSD. To help address this problem, we have developed a preclinical eyeblink classical conditioning model of PTSD in which conditioning and hyperarousal can both be extinguished. We review this model and discuss findings showing that unpaired stimulus presentations can be effective in reducing levels of conditioning and hyperarousal even when unconditioned stimulus intensity is reduced to the point where it is barely capable of eliciting a response. These procedures have direct implications for the treatment of PTSD and could be implemented in a virtual reality environment.

  2. The Development of Skin Conductance Fear Conditioning in Children from Ages 3 to 8 Years

    OpenAIRE

    Gao, Yu; Raine, Adrian; Venables, Peter H.; Dawson, Michael E.; Mednick, Sarnoff A.

    2010-01-01

    Although fear conditioning is an important psychological construct implicated in behavioral and emotional problems little is known about how it develops in early childhood. Using a differential, partial reinforcement conditioning paradigm, this longitudinal study assessed skin conductance conditioned responses in 200 children at ages 3, 4, 5, 6, and 8 years. Results demonstrated that in both boys and girls: (1) fear conditioning increased across age, particularly from ages 5 to 6 years, (2) t...

  3. Ketamine administration disturbs behavioural and distributed neural correlates of fear conditioning in the rat

    NARCIS (Netherlands)

    Pietersen, Charmaine Y.; Bosker, Fokko J.; Postema, Folkert; Fokkema, Dirk S.; Korf, Jakob; den Boer, Johan A.

    2006-01-01

    The neurotransmitter glutamate and its associated receptors perform an important role in the brain circuitry underlying normal fear processing. The glutamate NMDA receptor, in particular, is necessary for the acquisition and recollection of conditioned-fear responses. Here the authors examine how ac

  4. The role of the medial prefrontal cortex in the conditioning and extinction of fear

    Directory of Open Access Journals (Sweden)

    Thomas Francis Giustino

    2015-11-01

    Full Text Available Once acquired, a fearful memory can persist for a lifetime. Although learned fear can be extinguished, extinction memories are fragile. The resilience of fear memories to extinction may contribute to the maintenance of disorders of fear and anxiety, including post-traumatic stress disorder (PTSD. As such, considerable effort has been placed on understanding the neural circuitry underlying the acquisition, expression, and extinction of emotional memories in rodent models as well as in humans. A triad of brain regions, including the prefrontal cortex, hippocampus, and amygdala, form an essential brain circuit involved in fear conditioning and extinction. Within this circuit, the prefrontal cortex is thought to exert top-down control over subcortical structures to regulate appropriate behavioral responses. Importantly, a division of labor has been proposed in which the prelimbic (PL and infralimbic (IL subdivisions of the medial prefrontal cortex (mPFC regulate the expression and suppression of fear in rodents, respectively. Here we critically review the anatomical and physiological evidence that has led to this proposed dichotomy of function within mPFC. We propose that under some conditions, the PL and IL act in concert, exhibiting similar patterns of neural activity in response to aversive conditioned stimuli and during the expression or inhibition of conditioned fear. This may stem from common synaptic inputs, parallel downstream outputs, or cortico-cortical interactions. Despite this functional covariation, these mPFC subdivisions may still be coding for largely opposing behavioral outcomes, with PL biased towards fear expression and IL towards suppression.

  5. Learning and memory in conditioned fear extinction: effects of d-cycloserine

    NARCIS (Netherlands)

    B. Vervliet

    2008-01-01

    This review addresses the effects of the cognitive enhancer D-cycloserine (DCS) on the memory processes that occur in conditioned fear extinction, which is the experimental model for exposure techniques to reduce clinical anxiety. All reported rat studies show an enhanced fear extinction effect when

  6. Factors Regulating the Effects of Hippocampal Inactivation on Renewal of Conditional Fear after Extinction

    Science.gov (United States)

    Corcoran, Kevin A.; Maren, Stephen

    2004-01-01

    After extinction of fear to a Pavlovian conditional stimulus (CS), contextual stimuli come to regulate the expression of fear to that CS. There is growing evidence that the context dependence of memory retrieval after extinction involves the hippocampus. In the present experiment, we examine whether hippocampal involvement in memory retrieval…

  7. Electrolytic Lesions of the Dorsal Hippocampus Disrupt Renewal of Conditional Fear after Extinction

    Science.gov (United States)

    Ji, Jinzhao; Maren, Stephen

    2005-01-01

    There is a growing body of evidence that the hippocampus is critical for context-dependent memory retrieval. In the present study, we used Pavlovian fear conditioning in rats to examine the role of the dorsal hippocampus (DH) in the context-specific expression of fear memory after extinction (i.e., renewal). Pre-training electrolytic lesions of…

  8. Impairments in Fear Conditioning in Mice Lacking the nNOS Gene

    Science.gov (United States)

    Kelley, Jonathan B.; Balda, Mara A.; Anderson, Karen L.; Itzhak, Yossef

    2009-01-01

    The fear conditioning paradigm is used to investigate the roles of various genes, neurotransmitters, and substrates in the formation of fear learning related to contextual and auditory cues. In the brain, nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) functions as a retrograde neuronal messenger that facilitates synaptic…

  9. Cerebellar cortical inhibition and classical eyeblink conditioning.

    Science.gov (United States)

    Bao, Shaowen; Chen, Lu; Kim, Jeansok J; Thompson, Richard F

    2002-02-01

    The cerebellum is considered a brain structure in which memories for learned motor responses (e.g., conditioned eyeblink responses) are stored. Within the cerebellum, however, the relative importance of the cortex and the deep nuclei in motor learning/memory is not entirely clear. In this study, we show that the cerebellar cortex exerts both basal and stimulus-activated inhibition to the deep nuclei. Sequential application of a gamma-aminobutyric acid type A receptor (GABA(A)R) agonist and a noncompetitive GABA(A)R antagonist allows selective blockade of stimulus-activated inhibition. By using the same sequential agonist and antagonist methods in behaving animals, we demonstrate that the conditioned response (CR) expression and timing are completely dissociable and involve different inhibitory inputs; although the basal inhibition modulates CR expression, the conditioned stimulus-activated inhibition is required for the proper timing of the CR. In addition, complete blockade of cerebellar deep nuclear GABA(A)Rs prevents CR acquisition. Together, these results suggest that different aspects of the memories for eyeblink CRs are encoded in the cerebellar cortex and the cerebellar deep nuclei.

  10. Functional imaging of stimulus convergence in amygdalar neurons during Pavlovian fear conditioning.

    Directory of Open Access Journals (Sweden)

    Sabiha K Barot

    Full Text Available BACKGROUND: Associative conditioning is a ubiquitous form of learning throughout the animal kingdom and fear conditioning is one of the most widely researched models for studying its neurobiological basis. Fear conditioning is also considered a model system for understanding phobias and anxiety disorders. A fundamental issue in fear conditioning regards the existence and location of neurons in the brain that receive convergent information about the conditioned stimulus (CS and unconditioned stimulus (US during the acquisition of conditioned fear memory. Convergent activation of neurons is generally viewed as a key event for fear learning, yet there has been almost no direct evidence of this critical event in the mammalian brain. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used Arc cellular compartmental analysis of temporal gene transcription by fluorescence in situ hybridization (catFISH to identify neurons activated during single trial contextual fear conditioning in rats. To conform to temporal requirements of catFISH analysis we used a novel delayed contextual fear conditioning protocol which yields significant single- trial fear conditioning with temporal parameters amenable to catFISH analysis. Analysis yielded clear evidence that a population of BLA neurons receives convergent CS and US information at the time of the learning, that this only occurs when the CS-US arrangement is supportive of the learning, and that this process requires N-methyl-D-aspartate receptor activation. In contrast, CS-US convergence was not observed in dorsal hippocampus. CONCLUSIONS/SIGNIFICANCE: Based on the pattern of Arc activation seen in conditioning and control groups, we propose that a key requirement for CS-US convergence onto BLA neurons is the potentiation of US responding by prior exposure to a novel CS. Our results also support the view that contextual fear memories are encoded in the amygdala and that the role of dorsal hippocampus is to process and

  11. Different brain networks underlying the acquisition and expression of contextual fear conditioning: a metabolic mapping study.

    Science.gov (United States)

    González-Pardo, H; Conejo, N M; Lana, G; Arias, J L

    2012-01-27

    The specific brain regions and circuits involved in the acquisition and expression of contextual fear conditioning are still a matter of debate. To address this issue, regional changes in brain metabolic capacity were mapped during the acquisition and expression of contextual fear conditioning using cytochrome oxidase (CO) quantitative histochemistry. In comparison with a group briefly exposed to a conditioning chamber, rats that received a series of randomly presented footshocks in the same conditioning chamber (fear acquisition group) showed increased CO activity in anxiety-related brain regions like the ventral periaqueductal gray, the ventral hippocampus, the lateral habenula, the mammillary bodies, and the laterodorsal thalamic nucleus. Another group received randomly presented footshocks, and it was re-exposed to the same conditioning chamber one week later (fear expression group). The conditioned group had significantly higher CO activity as compared with the matched control group in the following brain regions: the ventral periaqueductal gray, the central and lateral nuclei of the amygdala, and the bed nucleus of the stria terminalis. In addition, analysis of functional brain networks using interregional CO activity correlations revealed different patterns of functional connectivity between fear acquisition and fear expression groups. In particular, a network comprising the ventral hippocampus and amygdala nuclei was found in the fear acquisition group, whereas a closed reciprocal dorsal hippocampal network was detected in the fear expression group. These results suggest that contextual fear acquisition and expression differ as regards to the brain networks involved, although they share common brain regions involved in fear, anxiety, and defensive behavior. PMID:22173014

  12. Temporary inhibition of dorsal or ventral hippocampus by muscimol: distinct effects on measures of innate anxiety on the elevated plus maze, but similar disruption of contextual fear conditioning.

    Science.gov (United States)

    Zhang, Wei-Ning; Bast, Tobias; Xu, Yan; Feldon, Joram

    2014-04-01

    Studies in rats, involving hippocampal lesions and hippocampal drug infusions, have implicated the hippocampus in the modulation of anxiety-related behaviors and conditioned fear. The ventral hippocampus is considered to be more important for anxiety- and fear-related behaviors than the dorsal hippocampus. In the present study, we compared the role of dorsal and ventral hippocampus in innate anxiety and classical fear conditioning in Wistar rats, examining the effects of temporary pharmacological inhibition by the GABA-A agonist muscimol (0.5 ug/0.5 ul/side) in the elevated plus maze and on fear conditioning to a tone and the conditioning context. In the elevated plus maze, dorsal and ventral hippocampal muscimol caused distinct behavioral changes. The effects of ventral hippocampal muscimol were consistent with suppression of locomotion, possibly accompanied by anxiolytic effects, whereas the pattern of changes caused by dorsal hippocampal muscimol was consistent with anxiogenic effects. In contrast, dorsal and ventral hippocampal muscimol caused similar effects in the fear conditioning experiments, disrupting contextual, but not tone, fear conditioning.

  13. Slow late component in conditioned stimulus-evoked potentials from the amygdala after fear conditioning in the rat

    NARCIS (Netherlands)

    Knippenberg, J.M.J.; Luijtelaar, E.L.J.M. van; Maes, J.H.R.

    2003-01-01

    Male Wistar rats were subjected to a differential Pavlovian fear conditioning procedure in which one of two tones (6 or 10 kHz) was followed by an electric shock (CS+) and the other was not (CS-). Before and after fear cnditioning, we recorded the evoked potentials elicited by CS+ and CS- from elect

  14. Conditions of the Classical Transmission Line Equations at High Frequency

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    New transmission line equations are deduced applying Maxwell's equations in this paper. The conditions of the classical transmission line equations have been discussed, which is important to solve the EM problems in high frequency case.

  15. Making Classical Conditioning Understandable through a Demonstration Technique.

    Science.gov (United States)

    Gibb, Gerald D.

    1983-01-01

    One lemon, an assortment of other fruits and vegetables, a tennis ball, and a Galvanic Skin Response meter are needed to implement this approach to teaching about classical conditioning in introductory psychology courses. (RM)

  16. PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories.

    Directory of Open Access Journals (Sweden)

    Peter Serrano

    2008-12-01

    Full Text Available How long-term memories are stored is a fundamental question in neuroscience. The first molecular mechanism for long-term memory storage in the brain was recently identified as the persistent action of protein kinase Mzeta (PKMzeta, an autonomously active atypical protein kinase C (PKC isoform critical for the maintenance of long-term potentiation (LTP. PKMzeta maintains aversively conditioned associations, but what general form of information the kinase encodes in the brain is unknown. We first confirmed the specificity of the action of zeta inhibitory peptide (ZIP by disrupting long-term memory for active place avoidance with chelerythrine, a second inhibitor of PKMzeta activity. We then examined, using ZIP, the effect of PKMzeta inhibition in dorsal hippocampus (DH and basolateral amygdala (BLA on retention of 1-d-old information acquired in the radial arm maze, water maze, inhibitory avoidance, and contextual and cued fear conditioning paradigms. In the DH, PKMzeta inhibition selectively disrupted retention of information for spatial reference, but not spatial working memory in the radial arm maze, and precise, but not coarse spatial information in the water maze. Thus retention of accurate spatial, but not procedural and contextual information required PKMzeta activity. Similarly, PKMzeta inhibition in the hippocampus did not affect contextual information after fear conditioning. In contrast, PKMzeta inhibition in the BLA impaired retention of classical conditioned stimulus-unconditioned stimulus (CS-US associations for both contextual and auditory fear, as well as instrumentally conditioned inhibitory avoidance. PKMzeta inhibition had no effect on postshock freezing, indicating fear expression mediated by the BLA remained intact. Thus, persistent PKMzeta activity is a general mechanism for both appetitively and aversively motivated retention of specific, accurate learned information, but is not required for processing contextual, imprecise

  17. Fear conditioning fragments REM sleep in stress-sensitive Wistar-Kyoto, but not Wistar, rats

    OpenAIRE

    DaSilva, Jamie K.; Lei, Yanlin; Madan, Vibha; Mann, Graziella L.; Richard J. Ross; Tejani-Butt, Shanaz; Morrison, Adrian R.

    2010-01-01

    Pavlovian conditioning is commonly used to investigate the mechanisms of fear learning. Because the Wistar-Kyoto (WKY) rat strain is particularly stress-sensitive, we investigated the effects of a psychological stressor on sleep in WKY compared to Wistar (WIS) rats. Male WKY and WIS rats were either fear-conditioned to tone cues or received electric foot shocks alone. In the fear-conditioning procedure, animals were exposed to 10 tones (800 Hz, 90 dB, 5 sec), each co-terminating with a foot s...

  18. An organization of visual and auditory fear conditioning in the lateral amygdala.

    Science.gov (United States)

    Bergstrom, Hadley C; Johnson, Luke R

    2014-12-01

    Pavlovian fear conditioning is an evolutionary conserved and extensively studied form of associative learning and memory. In mammals, the lateral amygdala (LA) is an essential locus for Pavlovian fear learning and memory. Despite significant progress unraveling the cellular mechanisms responsible for fear conditioning, very little is known about the anatomical organization of neurons encoding fear conditioning in the LA. One key question is how fear conditioning to different sensory stimuli is organized in LA neuronal ensembles. Here we show that Pavlovian fear conditioning, formed through either the auditory or visual sensory modality, activates a similar density of LA neurons expressing a learning-induced phosphorylated extracellular signal-regulated kinase (p-ERK1/2). While the size of the neuron population specific to either memory was similar, the anatomical distribution differed. Several discrete sites in the LA contained a small but significant number of p-ERK1/2-expressing neurons specific to either sensory modality. The sites were anatomically localized to different levels of the longitudinal plane and were independent of both memory strength and the relative size of the activated neuronal population, suggesting some portion of the memory trace for auditory and visually cued fear conditioning is allocated differently in the LA. Presenting the visual stimulus by itself did not activate the same p-ERK1/2 neuron density or pattern, confirming the novelty of light alone cannot account for the specific pattern of activated neurons after visual fear conditioning. Together, these findings reveal an anatomical distribution of visual and auditory fear conditioning at the level of neuronal ensembles in the LA.

  19. Amygdala upregulation of NCAM polysialylation induced by auditory fear conditioning is not required for memory formation, but plays a role in fear extinction.

    Science.gov (United States)

    Markram, Kamila; Lopez Fernandez, Miguel Angel; Abrous, Djoher Nora; Sandi, Carmen

    2007-05-01

    There is much interest to understand the mechanisms leading to the establishment, maintenance, and extinction of fear memories. The amygdala has been critically involved in the processing of fear memories and a number of molecular changes have been implicated in this brain region in relation to fear learning. Although neural cell adhesion molecules (NCAMs) have been hypothesized to play a role, information available about their contribution to fear memories is scarce. We investigate here whether polysialylated NCAM (PSA-NCAM) contributes to auditory fear conditioning in the amygdala. First, PSA-NCAM expression was evaluated in different amygdala nuclei after auditory fear conditioning at two different shock intensities. Results showed that PSA-NCAM expression was increased 24 h post-training only in animals subjected to the highest shock intensity (1mA). Second, PSA-NCAM was cleaved in the basolateral amygdaloid complex through micro-infusions of the enzyme endoneuraminidase N, and the consequences of such treatment were investigated on the acquisition, consolidation, remote memory expression, and extinction of conditioned fear memories. Intra-amygdaloid cleavage of PSA-NCAM did not affect acquisition, consolidation or expression of remote fear memories. However, intra-amygdaloid PSA-NCAM cleavage enhanced fear extinction processes. These results suggest that upregulation of PSA-NCAM is a correlate of fear conditioning that is not necessary for the establishment of fear memory in the amygdala, but participates in mechanisms precluding fear extinction. These findings point out PSA-NCAM as a potential target for the treatment of psychopathologies that involve impairment in fear extinction.

  20. Human Fear Conditioning Conducted in Full Immersion 3-Dimensional Virtual Reality

    OpenAIRE

    Huff, Nicole C.; Zielinski, David J.; Fecteau, Matthew E.; Brady, Rachael; LaBar, Kevin S.

    2010-01-01

    Fear conditioning is a widely used paradigm in non-human animal research to investigate the neural mechanisms underlying fear and anxiety. A major challenge in conducting conditioning studies in humans is the ability to strongly manipulate or simulate the environmental contexts that are associated with conditioned emotional behaviors. In this regard, virtual reality (VR) technology is a promising tool. Yet, adapting this technology to meet experimental constraints requires special accommodati...

  1. Generalization of Conditioned Fear-Potentiated Startle in Humans: Experimental Validation and Clinical Relevance

    OpenAIRE

    Lissek, Shmuel; Biggs, Arter L.; Rabin, Stephanie J.; Cornwell, Brian R.; Ruben P Alvarez; Pine, Daniel S.; Grillon, Christian

    2008-01-01

    Though generalization of conditioned fear has been implicated as a central feature of pathological anxiety, surprisingly little is known about the psychobiology of this learning phenomenon in humans. Whereas animal work has frequently applied methods to examine generalization gradients to study the gradual weakening of the conditioned-fear response as the test stimulus increasingly differs from the conditioned stimulus (CS), to our knowledge no psychobiological studies of such gradients have ...

  2. Classical-Conditioning Demonstrations for Elementary and Advanced Courses.

    Science.gov (United States)

    Abramson, Charles I.; And Others

    1996-01-01

    Describes two new exercises in classical conditioning that use earthworms and houseflies. The animals are available year-round and pose no risk to the students or instructor. The conditioned stimuli are odorants. These elicit a conditioned response of contraction in worms or proboscis extension in flies. (MJP)

  3. Identification of plasticity-associated genes regulated by Pavlovian fear conditioning in the lateral amygdala.

    Science.gov (United States)

    Ploski, Jonathan E; Park, Kevin W; Ping, Junli; Monsey, Melissa S; Schafe, Glenn E

    2010-02-01

    Most recent studies aimed at defining the cellular and molecular mechanisms of Pavlovian fear conditioning have focused on protein kinase signaling pathways and the transcription factor cAMP-response element binding protein (CREB) that promote fear memory consolidation in the lateral nucleus of the amygdala (LA). Despite this progress, there still remains a paucity of information regarding the genes downstream of CREB that are required for long-term fear memory formation in the LA. We have adopted a strategy of using microarray technology to initially identify genes induced within the dentate gyrus following in vivo long-term potentiation (LTP) followed by analysis of whether these same genes are also regulated by fear conditioning within the LA. In the present study, we first identified 34 plasticity-associated genes that are induced within 30 min following LTP induction utilizing a combination of DNA microarray, qRT-PCR, and in situ hybridization. To determine whether these genes are also induced in the LA following Pavlovian fear conditioning, we next exposed rats to an auditory fear conditioning protocol or to control conditions that do not support fear learning followed by qRT-PCR on mRNA from microdissected LA samples. Finally, we asked whether identified genes induced by fear learning in the LA are downstream of the extracellular-regulated kinase/mitogen-activated protein kinase signaling cascade. Collectively, our findings reveal a comprehensive list of genes that represent the first wave of transcription following both LTP induction and fear conditioning that largely belong to a class of genes referred to as 'neuronal activity dependent genes' that are likely calcium, extracellular-regulated kinase/mitogen-activated protein kinase, and CREB-dependent.

  4. Fluoxetine pretreatment promotes neuronal survival and maturation after auditory fear conditioning in the rat amygdala.

    Directory of Open Access Journals (Sweden)

    Lizhu Jiang

    Full Text Available The amygdala is a critical brain region for auditory fear conditioning, which is a stressful condition for experimental rats. Adult neurogenesis in the dentate gyrus (DG of the hippocampus, known to be sensitive to behavioral stress and treatment of the antidepressant fluoxetine (FLX, is involved in the formation of hippocampus-dependent memories. Here, we investigated whether neurogenesis also occurs in the amygdala and contributes to auditory fear memory. In rats showing persistent auditory fear memory following fear conditioning, we found that the survival of new-born cells and the number of new-born cells that differentiated into mature neurons labeled by BrdU and NeuN decreased in the amygdala, but the number of cells that developed into astrocytes labeled by BrdU and GFAP increased. Chronic pretreatment with FLX partially rescued the reduction in neurogenesis in the amygdala and slightly suppressed the maintenance of the long-lasting auditory fear memory 30 days after the fear conditioning. The present results suggest that adult neurogenesis in the amygdala is sensitive to antidepressant treatment and may weaken long-lasting auditory fear memory.

  5. Maltreatment Exposure, Brain Structure, and Fear Conditioning in Children and Adolescents.

    Science.gov (United States)

    McLaughlin, Katie A; Sheridan, Margaret A; Gold, Andrea L; Duys, Andrea; Lambert, Hilary K; Peverill, Matthew; Heleniak, Charlotte; Shechner, Tomer; Wojcieszak, Zuzanna; Pine, Daniel S

    2016-07-01

    Alterations in learning processes and the neural circuitry that supports fear conditioning and extinction represent mechanisms through which trauma exposure might influence risk for psychopathology. Few studies examine how trauma or neural structure relates to fear conditioning in children. Children (n=94) aged 6-18 years, 40.4% (n=38) with exposure to maltreatment (physical abuse, sexual abuse, or domestic violence), completed a fear conditioning paradigm utilizing blue and yellow bells as conditioned stimuli (CS+/CS-) and an aversive alarm noise as the unconditioned stimulus. Skin conductance responses (SCR) and self-reported fear were acquired. Magnetic resonance imaging data were acquired from 60 children. Children without maltreatment exposure exhibited strong differential conditioning to the CS+ vs CS-, based on SCR and self-reported fear. In contrast, maltreated children exhibited blunted SCR to the CS+ and failed to exhibit differential SCR to the CS+ vs CS- during early conditioning. Amygdala and hippocampal volume were reduced among children with maltreatment exposure and were negatively associated with SCR to the CS+ during early conditioning in the total sample, although these associations were negative only among non-maltreated children and were positive among maltreated children. The association of maltreatment with externalizing psychopathology was mediated by this perturbed pattern of fear conditioning. Child maltreatment is associated with failure to discriminate between threat and safety cues during fear conditioning in children. Poor threat-safety discrimination might reflect either enhanced fear generalization or a deficit in associative learning, which may in turn represent a central mechanism underlying the development of maltreatment-related externalizing psychopathology in children. PMID:26677946

  6. Correlations between psychological tests and physiological responses during fear conditioning and renewal

    OpenAIRE

    Martínez Karen G; Castro-Couch Melissa; Franco-Chaves José A; Ojeda-Arce Brenda; Segura Gustavo; Milad Mohammed R; Quirk Gregory J

    2012-01-01

    Abstract Background Anxiety disorders are characterized by specific emotions, thoughts and physiological responses. Little is known, however, about the relationship between psychological/personality indices of anxiety responses to fear stimuli. Methods We studied this relationship in healthy subjects by comparing scores on psychological and personality questionnaires with results of an experimental fear conditioning paradigm using a visual conditioned stimulus (CS). We measured skin conductan...

  7. A novel form of memory for auditory fear conditioning at a low-intensity unconditioned stimulus.

    Directory of Open Access Journals (Sweden)

    Ayumi Kishioka

    Full Text Available Fear is one of the most potent emotional experiences and is an adaptive component of response to potentially threatening stimuli. On the other hand, too much or inappropriate fear accounts for many common psychiatric problems. Cumulative evidence suggests that the amygdala plays a central role in the acquisition, storage and expression of fear memory. Here, we developed an inducible striatal neuron ablation system in transgenic mice. The ablation of striatal neurons in the adult brain hardly affected the auditory fear learning under the standard condition in agreement with previous studies. When conditioned with a low-intensity unconditioned stimulus, however, the formation of long-term fear memory but not short-tem memory was impaired in striatal neuron-ablated mice. Consistently, the ablation of striatal neurons 24 h after conditioning with the low-intensity unconditioned stimulus, when the long-term fear memory was formed, diminished the retention of the long-term memory. Our results reveal a novel form of the auditory fear memory depending on striatal neurons at the low-intensity unconditioned stimulus.

  8. Corticotropin releasing factor type-1 receptor antagonism in the dorsolateral bed nucleus of the stria terminalis disrupts contextually conditioned fear, but not unconditioned fear to a predator odor.

    Science.gov (United States)

    Asok, Arun; Schulkin, Jay; Rosen, Jeffrey B

    2016-08-01

    The bed nucleus of the stria terminalis (BNST) plays a critical role in fear and anxiety. The BNST is important for contextual fear learning, but the mechanisms regulating this function remain unclear. One candidate mechanism is corticotropin-releasing-factor (CRF) acting at CRF type 1 receptors (CRFr1s). Yet, there has been little progress in elucidating if CRFr1s in the BNST are involved in different types of fear (conditioned and/or unconditioned). Therefore, the present study investigated the effect of antalarmin, a potent CRFr1 receptor antagonist, injected intracerebroventricularly (ICV) and into the dorsolateral BNST (LBNST) during single trial contextual fear conditioning or exposure to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT). Neither ICV nor LBNST antalarmin disrupted unconditioned freezing to TMT. In contrast, ICV and LBNST antalarmin disrupted the retention of contextual fear when tested 24h later. Neither ICV nor LBNST antalarmin affected baseline or post-shock freezing-indicating antalarmin does not interfere with the early phases of contextual fear acquisition. Antalarmin did not (1) permanently affect the ability to learn and express contextual fear, (2) change responsivity to footshocks, or (3) affect the ability to freeze. Our findings highlight an important role for CRFr1s within the LBNST during contextually conditioned fear, but not unconditioned predator odor fear. PMID:27153520

  9. S6-4: Visual Awareness Modulated by Conditioned Fear during Bistable Perception

    Directory of Open Access Journals (Sweden)

    Chai-Youn Kim

    2012-10-01

    Full Text Available Bistable perception has been considered as a useful means to study visual awareness since it induces spontaneous fluctuation in awareness despite constant physical stimulation. Whether visual awareness during bistable perception is modulated by emotional valence associated with one of the two visual interpretations has been of great interest. This talk will present results from a couple of recent studies in my lab to investigate this issue. By comparing bistable perception prior to and followed by Pavlovian fear conditioning using disambiguated versions of the ambiguous figure, I and my colleagues found that negative emotional valence associated with one of two interpretations significantly influences conscious visual awareness during bistable perception. Specifically after fear conditioning, participants tended to be consciously aware of the interpretation associated with the aversive stimulation (CS+ longer at a time compared to the other (CS-. This influence of fear conditioning on bistable perception occurs only when the fear conditioning was effective indicated by the participant's differential physiological response (heart rate to CS+ and CS-. Changes in bistable perception after fear conditioning were also found to be correlated positively with the State-Anxiety score. I will also discuss results from the follow-up study showing that visual awareness during bistable perception is also modulated “unconsciously” conditioned fear.

  10. The Role of Nucleus Accumbens Shell in Learning about Neutral versus Excitatory Stimuli during Pavlovian Fear Conditioning

    Science.gov (United States)

    Bradfield, Laura A.; McNally, Gavan P.

    2010-01-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…

  11. The usefulness of olfactory fear conditioning for the study of early emotional and cognitive impairment in reserpine model.

    Science.gov (United States)

    Souza, Rimenez R; França, Sanmara L; Bessa, Marília M; Takahashi, Reinaldo N

    2013-11-01

    Due to the ability for depleting neuronal storages of monoamines, the reserpine model is a suitable approach for the investigation of the neurobiology of neurodegenerative diseases. However, the behavioral effects of low doses of reserpine are not always detected by classic animal tests of cognition, emotion, and sensory ability. In this study, the effects of reserpine (0.5-1.0mg/kg) were evaluated in olfactory fear conditioning, inhibitory avoidance, open-field, elevated plus-maze, and olfactory discrimination. Possible protective effects were also investigated. We found that single administration of reserpine impaired the acquisition of olfactory fear conditioning (in both doses) as well as olfactory discrimination (in the higher dose), while no effects were seen in all other tests. Additionally, we demonstrated that prior exposure to environmental enrichment prevented effects of reserpine in animals tested in olfactory fear conditioning. Altogether, these findings suggest that a combined cognitive, emotional and sensory-dependent task would be more sensitive to the effects of the reserpine model. In addition, the present data support the environmental enrichment as an useful approach for the study of resilience mechanisms in neurodegenerative processes.

  12. Transfer from a Classically Conditioned to an Instrumentally Learned Response.

    Science.gov (United States)

    Whitman, Thomas L.; Taub, Susan Ilene

    The present experiments investigated the effects of several classical conditioning manipulations on the performance of young children in an instrumental discrimination learning situation. Two predictions from general conditioning-extinction theory were tested: (1) acquisition of an instrumental response to a stimulus for a positive reinforcer in a…

  13. Classical conditioning and pain: conditioned analgesia and hyperalgesia.

    Science.gov (United States)

    Miguez, Gonzalo; Laborda, Mario A; Miller, Ralph R

    2014-01-01

    This article reviews situations in which stimuli produce an increase or a decrease in nociceptive responses through basic associative processes and provides an associative account of such changes. Specifically, the literature suggests that cues associated with stress can produce conditioned analgesia or conditioned hyperalgesia, depending on the properties of the conditioned stimulus (e.g., contextual cues and audiovisual cues vs. gustatory and olfactory cues, respectively) and the proprieties of the unconditioned stimulus (e.g., appetitive, aversive, or analgesic, respectively). When such cues are associated with reducers of exogenous pain (e.g., opiates), they typically increase sensitivity to pain. Overall, the evidence concerning conditioned stress-induced analgesia, conditioned hyperalagesia, conditioned tolerance to morphine, and conditioned reduction of morphine analgesia suggests that selective associations between stimuli underlie changes in pain sensitivity.

  14. Plasticity of inhibitory synaptic network interactions in the lateral amygdala upon fear conditioning in mice.

    Science.gov (United States)

    Szinyei, Csaba; Narayanan, Rajeevan T; Pape, Hans-Christian

    2007-02-01

    After fear conditioning, plastic changes of excitatory synaptic transmission occur in the amygdala. Fear-related memory also involves the GABAergic system, although no influence on inhibitory synaptic transmission is known. In the present study we assessed the influence of Pavlovian fear conditioning on the plasticity of GABAergic synaptic interactions in the lateral amygdala (LA) in brain slices prepared from fear-conditioned, pseudo-trained and naïve adult mice. Theta-burst tetanization of thalamic afferent inputs to the LA evoked an input-specific potentiation of inhibitory postsynaptic responses in projection neurons; the cortical input was unaffected. Philanthotoxin (10 microM), an antagonist of Ca2+-permeable AMPA receptors, disabled this plastic phenomenon. Surgical isolation of the LA, extracellular application of a GABA(B) receptor antagonist (CGP 55845A, 10 microM) or an NMDA receptor antagonist (APV, 50 microM), or intracellular application of BAPTA (10 mM), did not influence the plasticity. The plasticity also showed as a potentiation of monosynaptic excitatory responses in putative GABAergic interneurons. Pavlovian fear conditioning, but not pseudo-conditioning, resulted in a significant reduction in this potentiation that was evident 24 h after training. Two weeks after training, the potentiation returned to control levels. In conclusion, a reduction in potentiation of inhibitory synaptic interactions occurs in the LA and may contribute to a shift in synaptic balance towards excitatory signal flow during the processes of fear-memory acquisition or consolidation.

  15. Correlations between psychological tests and physiological responses during fear conditioning and renewal

    Directory of Open Access Journals (Sweden)

    Martínez Karen G

    2012-09-01

    Full Text Available Abstract Background Anxiety disorders are characterized by specific emotions, thoughts and physiological responses. Little is known, however, about the relationship between psychological/personality indices of anxiety responses to fear stimuli. Methods We studied this relationship in healthy subjects by comparing scores on psychological and personality questionnaires with results of an experimental fear conditioning paradigm using a visual conditioned stimulus (CS. We measured skin conductance response (SCR during habituation, conditioning, and extinction; subsequently testing for recall and renewal of fear 24 hours later. Results We found that multiple regression models explained 45% of the variance during conditioning to the CS+, and 24% of the variance during renewal of fear to the CS+. Factors that explained conditioning included lower levels of conscientiousness, increased baseline reactivity (SCL, and response to the shock (UCR. Low levels of extraversion correlated with greater renewal. No model could be found to explain extinction learning or extinction recall to the CS+. Conclusions The lack of correlation of fear extinction with personality and neuropsychological indices suggests that extinction may be less determined by trait variables and cognitive state, and may depend more on the subject’s current emotional state. The negative correlation between fear renewal and extraversion suggests that this personality characteristic may protect against post-treatment relapse of symptoms of anxiety disorders.

  16. Expatriates’ Multiple Fears, from Terrorism to Working Conditions: Development of a Model

    Science.gov (United States)

    Giorgi, Gabriele; Montani, Francesco; Fiz-Perez, Javier; Arcangeli, Giulio; Mucci, Nicola

    2016-01-01

    Companies’ internationalization appears to be fundamental in the current globalized and competitive environment and seems important not only for organizational success, but also for societal development and sustainability. On one hand, global business increases the demand for managers for international assignment. On the other hand, emergent fears, such as terrorism, seem to be developing around the world, enhancing the risk of expatriates’ potential health problems. The purpose of this paper is to examine the relationships between the emergent concept of fear of expatriation with further workplace fears (economic crisis and dangerous working conditions) and with mental health problems. The study uses a quantitative design. Self-reported data were collected from 265 Italian expatriate workers assigned to both Italian and worldwide projects. Structural equation model analyses showed that fear of expatriation mediates the relationship of mental health with fear of economic crisis and with perceived dangerous working conditions. As expected, in addition to fear, worries of expatriation are also related to further fears. Although, the study is based on self-reports and the cross-sectional study design limits the possibility of making causal inferences, the new constructs introduced add to previous research. PMID:27790173

  17. Cerebellum lesion impairs eyeblink-like classical conditioning in goldfish.

    Science.gov (United States)

    Gómez, A; Durán, E; Salas, C; Rodríguez, F

    2010-03-10

    The cerebellum of mammals is an essential component of the neural circuitry underlying classical conditioning of eyeblink and other discrete responses. Although the neuroanatomical organization of the cerebellum is notably well conserved in vertebrates, little is actually known about the cerebellar learning functions in nonmammal vertebrate groups. In this work we studied whether the cerebellum of teleost fish plays a critical role in the classical conditioning of a motor response. In Experiment 1, we classically conditioned goldfish in a procedure analogous to the eyeblink conditioning paradigm commonly used in mammals. Goldfish were able to learn to express an eyeblink-like conditioned response to a predictive light (conditioned stimulus) that was paired with a mild electric shock (unconditioned stimulus). The application of unpaired and extinction control procedures demonstrated that also in teleosts the learning of this motor response depends on associative rules. In Experiment 2 we studied whether classical conditioning of this response is critically dependent on the cerebellum and independent of telencephalic structures as occurs in mammals. Cerebellum lesion prevented the acquisition of the eyeblink-like conditioned response whereas telencephalon ablation did not impair the learning of this response. No deficit was observed following lesions in the performance of the unconditioned response or in the percentage of spontaneous responses. These results suggest that cerebellum ablation in goldfish affects a critical component of the circuitry necessary for the acquisition of the conditioned response but does not interfere with the ability of the animal to perform the response itself. The striking similarity in the role of cerebellum in classical conditioning of a motor response between teleost fish and mammals suggests that this learning function of the cerebellum could be a primitive feature of the vertebrate brain that has been conserved through evolution.

  18. Contextual fear induced by unpredictability in a human fear conditioning preparation is related to the chronic expectation of a threatening US

    NARCIS (Netherlands)

    D. Vansteenwegen; C. Iberico; B. Vervliet; D. Hermans

    2008-01-01

    The present study was set up to investigate cued and contextual fear in situations of (un)predictability in a human fear conditioning paradigm. Forty-nine participants were presented with two different contexts (switching on and off the central lighting of the experimental room). In the predictable

  19. Fear conditioning and extinction across development: Evidence from human studies and animal models☆

    OpenAIRE

    Shechner, Tomer; Hong, Melanie; Britton, Jennifer C.; Pine, Daniel S.; Fox, Nathan A.

    2014-01-01

    The ability to differentiate danger and safety through associative processes emerges early in life. Understanding the mechanisms underlying associative learning of threat and safety can clarify the processes that shape development of normative fears and pathological anxiety. Considerable research has used fear conditioning and extinction paradigms to delineate underlying mechanisms in animals and human adults; however, little is known about these mechanisms in children and adolescents. The cu...

  20. Role of classical conditioning in learning gastrointestinal symptoms

    Institute of Scientific and Technical Information of China (English)

    Ursula Stockhorst; Paul Enck; Sibylle Klosterhalfen

    2007-01-01

    Nausea and/or vomiting are aversive gastrointestinal (GI) symptoms. Nausea and vomiting manifest unconditionally after a nauseogenic experience. However,there is correlative, quasiexperimental and experimental evidence that nausea and vomiting can also be learned via classical (Pavlovian) conditioning and might occur in anticipation of the nauseogenic event. Classical conditioning of nausea can develop with chemotherapy in cancer patients. Initially, nausea and vomiting occur during and after the administration of cytotoxic drugs (post-treatment nausea and vomiting) as unconditioned responses (UR). In addition, 20%-30% of cancer patients receiving chemotherapy report these side effects, despite antiemetic medication, when being re-exposed to the stimuli that usually signal the chemotherapy session and its drug infusion. These symptoms are called anticipatory nausea (AN) and/or anticipatory vomiting (ANV) and are explained by classical conditioning. Moreover,there is recent evidence for the assumption that postchemotherapy nausea is at least partly influenced by learning. After summarizing the relevant assumptions of the conditioning model, revealing that a context can become a conditioned stimulus (CS), the present paper summarizes data that nausea and/or vomiting is acquired by classical conditioning and, consequently,may be alleviated by conditioning techniques. Our own research has focussed on two aspects and is emphasized here. First, a conditioned nausea model was established in healthy humans using body rotation as the nauseainducing treatment. The validity of this motion-sickness model to examine conditioning mechanisms in the acquisition and alleviation of conditioned nausea and associated endocrine and immunological responses is summarized. Results from the rotation-induced motion sickness model showed that gender is an important moderator variable to be considered in further studies.This paper concludes with a review of the application of the demonstrated

  1. Role of classical conditioning in learning gastrointestinal symptoms.

    Science.gov (United States)

    Stockhorst, Ursula; Enck, Paul; Klosterhalfen, Sibylle

    2007-07-01

    Nausea and/or vomiting are aversive gastrointestinal (GI) symptoms. Nausea and vomiting manifest unconditionally after a nauseogenic experience. However, there is correlative, quasiexperimental and experimental evidence that nausea and vomiting can also be learned via classical (Pavlovian) conditioning and might occur in anticipation of the nauseogenic event. Classical conditioning of nausea can develop with chemotherapy in cancer patients. Initially, nausea and vomiting occur during and after the administration of cytotoxic drugs (post-treatment nausea and vomiting) as unconditioned responses (UR). In addition, 20%-30% of cancer patients receiving chemotherapy report these side effects, despite antiemetic medication, when being re-exposed to the stimuli that usually signal the chemotherapy session and its drug infusion. These symptoms are called anticipatory nausea (AN) and/or anticipatory vomiting (ANV) and are explained by classical conditioning. Moreover, there is recent evidence for the assumption that post-chemotherapy nausea is at least partly influenced by learning. After summarizing the relevant assumptions of the conditioning model, revealing that a context can become a conditioned stimulus (CS), the present paper summarizes data that nausea and/or vomiting is acquired by classical conditioning and, consequently, may be alleviated by conditioning techniques. Our own research has focussed on two aspects and is emphasized here. First, a conditioned nausea model was established in healthy humans using body rotation as the nausea-inducing treatment. The validity of this motion-sickness model to examine conditioning mechanisms in the acquisition and alleviation of conditioned nausea and associated endocrine and immunological responses is summarized. Results from the rotation-induced motion sickness model showed that gender is an important moderator variable to be considered in further studies. This paper concludes with a review of the application of the

  2. Allocation of cognitive processing capacity during human autonomic classical conditioning.

    Science.gov (United States)

    Dawson, M E; Schell, A M; Beers, J R; Kelly, A

    1982-09-01

    In each of two experiments, allocation of cognitive processing capacity was measured in college-student subjects during autonomic discrimination classical conditioning. A 7.0-sec delay paradigm was used to establish classically conditioned responses to a reinforced visual conditioned stimulus (CS+). Electrodermal responses were the primary measures of autonomic classical conditioning. Allocation of processing capacity was measured by monitoring performance on a secondary reaction-time (RT) task. The auditory secondary-task RT signal was presented before, and 300, 500, 3500, 6500, and 7500 msec following CS onset. The RT signal was also presented following properly and improperly cued shock unconditioned stimuli (UCSs). Significant discrimination classical conditioning was obtained in both experiments. Comparison with control subjects who did not receive the RT signals indicated that the presence of the RT signals did not interfere with the development of classical conditioning. Four principal findings were obtained with the secondary-task RT measure. First, RTs to signals presented during CS+ were consistently slower than RTs to signals presented during CS-. This finding indicates that greater capacity allocation occurred during CS+ than CS- and is consistent with recent cognitive interpretations of classical conditioning. Second, the largest capacity allocation (i.e., slowing of RTs) occurred 300 msec following CS+ onset. This finding is consistent with the notion that subjects are actively processing the signal properties of the CS+ at 300 msec following CS+ onset. Third, presentation of the UCS when improperly cued (following CS-) significantly increased capacity allocation, whereas presentation of the same UCS when properly cued (following CS+) did not affect capacity allocation. These findings indicate that subjects were actively prepared for the UCS following CS+ but not following CS- and that a surprising UCS elicits greater capacity allocation than does an

  3. Prereactivation propranolol fails to reduce skin conductance reactivity to prepared fear-conditioned stimuli.

    Science.gov (United States)

    Spring, Justin D; Wood, Nellie E; Mueller-Pfeiffer, Christoph; Milad, Mohammed R; Pitman, Roger K; Orr, Scott P

    2015-03-01

    Pharmacologic blockade of memory reconsolidation has been demonstrated in fear-conditioned rodents and humans and may provide a means to reduce fearfulness in anxiety disorders and posttraumatic stress disorder. Studying the efficacy of potential interventions in clinical populations is challenging, creating a need for paradigms within which candidate reconsolidation-blocking interventions can be readily tested. We used videos of biologically prepared conditioned stimuli (tarantulas) to test the efficacy of propranolol in blocking reconsolidation of conditioned fear in healthy young adults. Strong differential conditioning, measured by skin conductance, was observed among a screened subset of participants during acquisition. However, subsequent propranolol failed to reduce reactivity to the reactivated conditioned stimulus. These results are consistent with other recent findings and point to a need for testing other candidate drugs. PMID:25224026

  4. Delayed extinction fails to reduce skin conductance reactivity to fear-conditioned stimuli.

    Science.gov (United States)

    Fricchione, Jon; Greenberg, Mark S; Spring, Justin; Wood, Nellie; Mueller-Pfeiffer, Christoph; Milad, Mohammed R; Pitman, Roger K; Orr, Scott P

    2016-09-01

    A brief 10-min time delay between an initial and subsequent exposure to extinction trials has been found to impair memory reconsolidation in fear-conditioned rodents and humans, providing a potential means to reduce fearfulness in anxiety disorders and posttraumatic stress disorder (PTSD). The present study used videos of biologically prepared, conditioned stimuli (tarantulas) to test the efficacy of delayed extinction in blocking reconsolidation of conditioned fear in healthy young adults. Strong differential conditioning, measured by skin conductance, was observed among a screened subset of participants during acquisition. However, the delayed-extinction intervention failed to reduce reactivity to the conditioned stimulus paired with the extinction delay. These results are partially consistent with other recent, mixed findings and point to a need for testing other candidate interventions designed to interfere with the reconsolidation process. PMID:27314560

  5. The Development of Skin Conductance Fear Conditioning in Children from Ages 3 to 8 Years

    Science.gov (United States)

    Gao, Yu; Raine, Adrian; Venables, Peter H.; Dawson, Michael E.; Mednick, Sarnoff A.

    2010-01-01

    Although fear conditioning is an important psychological construct implicated in behavioral and emotional problems, little is known about how it develops in early childhood. Using a differential, partial reinforcement conditioning paradigm, this longitudinal study assessed skin conductance conditioned responses in 200 children at ages 3, 4, 5, 6,…

  6. From Pavlov to PTSD: The extinction of conditioned fear in rodents, humans, and in anxiety disorders

    Science.gov (United States)

    VanElzakker, Michael B.; Dahlgren, M. Kathryn; Davis, F. Caroline; Dubois, Stacey; Shin, Lisa M.

    2014-01-01

    Nearly 100 years ago, Ivan Pavlov demonstrated that dogs could learn to use a neutral cue to predict a biologically relevant event: after repeated predictive pairings, Pavlov's dogs were conditioned to anticipate food at the sound of a bell, which caused them to salivate. Like sustenance, danger is biologically relevant, and neutral cues can take on great salience when they predict a threat to survival. In anxiety disorders such as posttraumatic stress disorder (PTSD), this type of conditioned fear fails to extinguish, and reminders of traumatic events can cause pathological conditioned fear responses for decades after danger has passed. In this review, we use fear conditioning and extinction studies to draw a direct line from Pavlov to PTSD and other anxiety disorders. We explain how rodent studies have informed neuroimaging studies of healthy humans and humans with PTSD. We describe several genes that have been linked to both PTSD and fear conditioning and extinction and explain how abnormalities in fear conditioning or extinction may reflect a general biomarker of anxiety disorders. Finally, we explore drug and neuromodulation treatments that may enhance therapeutic extinction in anxiety disorders. PMID:24321650

  7. Normal eyeblink classical conditioning in patients with fixed dystonia

    NARCIS (Netherlands)

    Janssen, S.; Veugen, L.C.; Hoffland, B.S.; Kassavetis, P.; Rooijen, D.E. van; Stegeman, D.F.; Edwards, Mark J.; Hilten, J.J. van; Warrenburg, B.P.C. van de

    2014-01-01

    Fixed dystonia without evidence of basal ganglia lesions or neurodegeneration typically affects young women following minor peripheral trauma. We use eyeblink classical conditioning (EBCC) to study whether cerebellar functioning is abnormal in patients with fixed dystonia, since this is part of the

  8. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....

  9. Opioid receptors in the midbrain periaqueductal gray regulate extinction of pavlovian fear conditioning.

    Science.gov (United States)

    McNally, Gavan P; Pigg, Michael; Weidemann, Gabrielle

    2004-08-01

    Four experiments studied the role of opioid receptors in the midbrain periaqueductal gray matter (PAG), an important structure eliciting conditioned fear responses, in the extinction of Pavlovian fear. Rats received pairings of an auditory conditioned stimulus (CS) with a foot shock unconditioned stimulus (US). The freezing conditioned response (CR) elicited by the CS was then extinguished via nonreinforced presentations of the CS. Microinjection of the opioid receptor antagonist naloxone into the ventrolateral PAG (vlPAG) before nonrein-forced CS presentations impaired development of extinction, but such microinjections at the end of extinction did not reinstate an already extinguished freezing CR. This role for opioid receptors in fear extinction was specific to the vlPAG because infusions of naloxone into the dorsal PAG did not impair fear extinction. Finally, the impairment of fear extinction produced by vlPAG infusions of naloxone was dose-dependent. These results show for the first time that the midbrain PAG contributes to fear extinction and specifically identify a role for vlPAG opioid receptors in the acquisition but not the expression of such extinction. Taken together with our previous findings, we suggest that, during fear conditioning, activation of vlPAG opioid receptors contributes to detection of the discrepancy between the actual and expected outcome of the conditioning trial. vlPAG opioid receptors regulate the learning that accrues to the CS and other stimuli present on a trial because they instantiate an associative error correction process influencing US information reaching the site of CS-US convergence in the amygdala. During nonreinforcement, this vlPAG opioid receptor contribution signals extinction.

  10. Transference in view of a classical conditioning model.

    Science.gov (United States)

    Rabinovich, Merav; Kacen, Lea

    2012-01-01

    This article presents a qualitative metasynthetic study, addressing 33 transference case studies, that investigates the interrelationship of the transference concept from psychoanalysis and cognitive-behavioral concepts in an attempt to construct a theoretical platform for clinical integration. Relationship between categories analysis was used to compare Luborsky's (1998) transference components (wish, response from other, and response of self) and cognitive-behavioral ones. Results showed reciprocal relations between transference and classical conditioning. Furthermore, explicit occurrences of distorted thinking due to overgeneralization were found in more than 90% of the cases. A conceptual model describes transference as a conditioned response activated by thematic conditioning, a particular case of classical conditioning that repeatedly pairs a given interpersonal situation with internal thematic stimuli, thus shaping the person's narrative. Theoretical and practical implications are discussed as well.

  11. [The Manifestation of the Anxiety during Fear Conditioning in Wistar Rats].

    Science.gov (United States)

    Pavlova, I V; Rysakova, M P

    2015-01-01

    In order to identify the correlation between anxiety and conditioned fear, the behavior of the same male Wistar rats was compared in three anxiety tests (open field, light-dark box and elevated plus-maze) and in Pavlovian auditory fear conditioning paradigm using correlation, factor and variance analyses. The correlation between anxiety/bravery and locomotion indexes in different tests was not revealed. Positive correlations between grooming, urinations and defecations, rearing in three tests were revealed. These data suggest that animals reacted to various tests differently, resulting, apparently in the emergence of different anxiety levels, specific for each test. Vegetative reactions, inclination to exploration and substituting behavior were more stable characteristics of rats. Anxiety behavior in elevated plus-maze correlated to freezing response to context after fear conditioning, while high-anxiety rats had higher level of freezing to context than low-anxiety rats. The higher freezing response to sound after fear conditioning was found in rats with middle locomotor activity in open field. Conditioned fear to the context and to the sound was associated with different forms of rat anxiety during different tests.

  12. The development of an attentional bias for angry faces following Pavlovian fear conditioning.

    Science.gov (United States)

    Pischek-Simpson, Leah K; Boschen, Mark J; Neumann, David L; Waters, Allison M

    2009-04-01

    Although it is well documented that fear responses develop following aversive Pavlovian conditioning, it is unclear whether fear learning also manifests in the form of attentional biases for fear-related stimuli. Boschen, Parker, and Neumann (Boschen, M. J., Parker, I., & Neumann, D. L. (2007). Changes in implicit associations do not occur simultaneously to Pavlovian conditioning of physiological anxiety responses. Journal of Anxiety Disorders, 21, 788-803.) showed that despite the acquisition of differential skin conductance conditioned responses to angry faces paired (CS+) and unpaired (CS-) with an aversive shock, development of implicit associations was not subsequently observed on the Implicit Association Test. In the present study, participants (N=76) were assigned either to a Shock or NoShock group and completed a similar aversive Pavlovian conditioning procedure with angry face CS+ and CS- stimuli. Participants next completed a visual probe task in which the angry face CS+ and CS- stimuli were paired with angry face control stimuli and neutral faces. Results confirmed that differential fear conditioning was observed in the Shock group but not in the NoShock group, and that the Shock group subsequently showed a selective attentional bias for the angry face CS+ compared with the CS- and control stimuli during the visual probe task. The findings confirm the interplay between learning-based mechanisms and cognitive processes, such as attentional biases, in models of fear acquisition and have implications for treatment of the anxiety disorders.

  13. A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear.

    Science.gov (United States)

    Siegmund, Anja; Wotjak, Carsten T

    2007-11-01

    The pathomechanisms of posttraumatic stress disorder (PTSD) are still unknown, but both fear conditioning and stress sensitisation are supposed to play a crucial role. Hence, valid animal models that model both associative and non-associative components of fear will facilitate elucidation of the biological substrates of the illness, and to develop novel and specific approaches for its prevention and therapy. Here we applied a single electric footshock to C57BL/6N (B6N) and C57BL/6JOla (B6JOla) mice and recorded the conditioned response to contextual trauma reminders (associative fear), the sensitised reaction to a neutral tone in a novel environment (non-associative fear, hyperarousal), social interaction and various emotional behaviours using Modified Holeboard, Test for Novelty-Induced Suppression of Feeding and Forced Swimming Test, after different incubation times (1, 14, 28 days). Freezing generally increased as a function of shock intensity. In B6N mice, sensitised fear was maximal 28 days after trauma and was accompanied by signs of emotional blunting and social withdrawal. B6JOla mice, in contrast, were less susceptible to develop PTSD-like symptoms. The phenotype of B6N exhibited high behavioural variance, allowing distinction between vulnerable and resilient individuals. Only in vulnerable B6N mice, chronic fluoxetine treatment - initiated after an incubation period of 28 days - ameliorated sensitised fear. This new mouse model fulfils common criteria for face and predictive validity and can be used to investigate the biological correlates of individual fear susceptibility, as well as the impact and interrelationship of associative and non-associative fear components in the development and maintenance of PTSD. PMID:17027033

  14. A Different Recruitment of the Lateral and Basolateral Amygdala Promotes Contextual or Elemental Conditioned Association in Pavlovian Fear Conditioning

    Science.gov (United States)

    Calandreau, Ludovic; Desmedt, Aline; Decorte, Laurence; Jaffard, Robert

    2005-01-01

    Convergent data suggest dissociated roles for the lateral (LA) and basolateral (BLA) amygdaloid nuclei in fear conditioning, depending on whether a discrete conditioned stimulus (CS)-unconditional stimulus (US) or context-US association is considered. Here, we show that pretraining inactivation of the BLA selectively impaired conditioning to…

  15. Brain c-Fos immunocytochemistry and cytochrome oxidase histochemistry after a fear conditioning task.

    Science.gov (United States)

    Conejo, Nélida M; González Pardo, Héctor; López, Matías; Cantora, Raúl; Arias, Jorge L

    2007-05-01

    The involvement of the basolateral and the medial amygdala in fear conditioning was evaluated using different markers of neuronal activation. The method described here is a combination of cytochrome oxidase (CO) histochemistry and c-Fos immunocytochemistry on fresh frozen brain sections. Freezing behavior was used as an index of auditory and contextual fear conditioning. As expected, freezing scores were significantly higher in rats exposed to tone-shock pairings in a distinctive environment (conditioned; COND), as compared to rats that did not receive any shocks (UNCD). CO labeling was increased in the basolateral and medial amygdala of the COND group. Conversely, c-Fos expression in the basolateral and medial amygdala was lower in the COND group as compared to the UNCD group. Furthermore, c-Fos expression was particularly high in the medial amygdala of the UNCD group. The data provided by both techniques indicate that these amygdalar nuclei could play different roles on auditory and contextual fear conditioning. PMID:17425902

  16. Delay Eyeblink Classical Conditioning is Impaired in Fragile X Syndrome

    OpenAIRE

    Tobia, Michael J.; Woodruff-Pak, Diana S.

    2009-01-01

    We examined 400 ms delay eyeblink classical conditioning in 20 participants with Fragile X syndrome ages 17-77 years, and 20 age-matched, healthy control participants. The Fragile X group demonstrated impaired learning and abnormal conditioned response timing. Adults with Fragile X (n=16) were also tested at two successive 12-month follow-up sessions to examine reacquisition and long-term retention. Participants in groups older and younger than 45 years demonstrated significant learning durin...

  17. Pavlov's cockroach: classical conditioning of salivation in an insect.

    Directory of Open Access Journals (Sweden)

    Hidehiro Watanabe

    Full Text Available Secretion of saliva to aid swallowing and digestion is an important physiological function found in many vertebrates and invertebrates. Pavlov reported classical conditioning of salivation in dogs a century ago. Conditioning of salivation, however, has been so far reported only in dogs and humans, and its underlying neural mechanisms remain elusive because of the complexity of the mammalian brain. We previously reported that, in cockroaches Periplaneta americana, salivary neurons that control salivation exhibited increased responses to an odor after conditioning trials in which the odor was paired with sucrose solution. However, no direct evidence of conditioning of salivation was obtained. In this study, we investigated the effects of conditioning trials on the level of salivation. Untrained cockroaches exhibited salivary responses to sucrose solution applied to the mouth but not to peppermint or vanilla odor applied to an antenna. After differential conditioning trials in which an odor was paired with sucrose solution and another odor was presented without pairing with sucrose solution, sucrose-associated odor induced an increase in the level of salivation, but the odor presented alone did not. The conditioning effect lasted for one day after conditioning trials. This study demonstrates, for the first time, classical conditioning of salivation in species other than dogs and humans, thereby providing the first evidence of sophisticated neural control of autonomic function in insects. The results provide a useful model system for studying cellular basis of conditioning of salivation in the simpler nervous system of insects.

  18. In vitro classical conditioning of abducens nerve discharge in turtles.

    Science.gov (United States)

    Keifer, J; Armstrong, K E; Houk, J C

    1995-07-01

    In vitro classical conditioning of abducens nerve activity was performed using an isolated turtle brainstem-cerebellum preparation by direct stimulation of the cranial nerves. Using a delayed training procedure, the in vitro preparation was presented with paired stimuli consisting of a 1 sec train stimulus applied to the auditory nerve (CS), which immediately preceded a single shock US applied to the trigeminal nerve. Conditioned and unconditioned responses were recorded in the ipsilateral abducens nerve. Acquisition exhibited a positive slope of conditioned responding in 60% of the preparations. Application of unpaired stimuli consisting of CS-alone, alternate CS and US, or backward conditioning failed to result in conditioning, or resulted in extinction of CRs. Latencies of CR onset were timed such that they occurred midway through the CS. Activity-dependent uptake of the dye sulforhodamine was used to examine the spatial distribution of neurons labeled during conditioning. These data showed label in the cerebellum and red nucleus during conditioning whereas these regions failed to label during unconditioned responses. Furthermore, the principal abducens nucleus labeled heavily during conditioning. These findings suggest the feasibility of examining classical conditioning in a vertebrate in vitro brainstem-cerebellum preparation. It is postulated that the abducens nerve CR represents a behavioral correlate of a blink-related eye movement. Multiple sites of conditioning are hypothesized, including the cerebellorubral circuitry and brainstem pathways that activate the principal abducens nucleus.

  19. A neural network approach to hippocampal function in classical conditioning.

    Science.gov (United States)

    Schmajuk, N A; DiCarlo, J J

    1991-02-01

    Hippocampal participation in classical conditioning in terms of Grossberg's (1975) attentional theory is described. According to the present rendition of this theory, pairing of a conditioned stimulus (CS) with an unconditioned stimulus (US) causes both an association of the sensory representation of the CS with the US (conditioned reinforcement learning) and an association of the sensory representation of the CS with the drive representation of the US (incentive motivation learning). Sensory representations compete among themselves for a limited-capacity short-term memory (STM) that is reflected in a long-term memory storage. The STM regulation hypothesis, which proposes that the hippocampus controls incentive motivation, self-excitation, and competition among sensory representations thereby regulating the contents of a limited capacity STM, is introduced. Under the STM regulation hypothesis, nodes and connections in Grossberg's neural network are mapped onto regional hippocampal-cerebellar circuits. The resulting neural model provides (a) a framework for understanding the dynamics of information processing and storage in the hippocampus and cerebellum during classical conditioning of the rabbit's nictitating membrane, (b) principles for understanding the effect of different hippocampal manipulations on classical conditioning, and (c) numerous novel and testable predictions.

  20. Appetitive behavioral traits and stimulus intensity influence maintenance of conditioned fear

    Directory of Open Access Journals (Sweden)

    Megan eOlshavsky

    2013-12-01

    Full Text Available Individual differences in appetitive learning have long been reported, and generally divide into two classes of responses: cue- vs. reward-directed. The influence of cue- vs. reward-directed phenotypes on aversive cue processing, is less well understood. In the current study, we first categorized rats based on their predominant cue-directed orienting responses during appetitive Pavlovian conditioning. Then, we investigated the effect of phenotype on the latency to exit a familiar dark environment and enter an unfamiliar illuminated open field. Next, we examined whether the two phenotypes responded differently to a reconsolidation updating manipulation (retrieval+extinction after fear conditioning. We report that the rats with a cue-directed (orienting phenotype differentially respond to the open field, and also to fear conditioning, depending on US-intensity. In addition, our findings suggest that, regardless of appetitive phenotype or shock intensity, extinction within the reconsolidation window prevents spontaneous recovery of fear.

  1. L-type Voltage-Gated Calcium Channels in Conditioned Fear: A Genetic and Pharmacological Analysis

    Science.gov (United States)

    McKinney, Brandon C.; Sze, Wilson; White, Jessica A.; Murphy, Geoffrey G.

    2008-01-01

    Using pharmacological approaches, others have suggested that L-type voltage-gated calcium channels (L-VGCCs) mediate both consolidation and extinction of conditioned fear. In the absence of L-VGCC isoform-specific antagonists, we have begun to investigate the subtype-specific role of LVGCCs in consolidation and extinction of conditioned fear…

  2. Extensive Extinction in Multiple Contexts Eliminates the Renewal of Conditioned Fear in Rats

    Science.gov (United States)

    Thomas, Brian L.; Vurbic, Drina; Novak, Cheryl

    2009-01-01

    Two studies examined whether nonreinforcement of a stimulus in multiple contexts, instead of a single context, would decrease renewal of conditioned fear in rats (as assessed by conditioned suppression of lever pressing). In Experiment 1, renewal was measured after 36 nonreinforced CS trials delivered during six extinction sessions in a single…

  3. Stress-induced enhancement of fear conditioning and sensitization facilitates extinction-resistant and habituation-resistant fear behaviors in a novel animal model of posttraumatic stress disorder.

    Science.gov (United States)

    Corley, Michael J; Caruso, Michael J; Takahashi, Lorey K

    2012-01-18

    Posttraumatic stress disorder (PTSD) is characterized by stress-induced symptoms including exaggerated fear memories, hypervigilance and hyperarousal. However, we are unaware of an animal model that investigates these hallmarks of PTSD especially in relation to fear extinction and habituation. Therefore, to develop a valid animal model of PTSD, we exposed rats to different intensities of footshock stress to determine their effects on either auditory predator odor fear extinction or habituation of fear sensitization. In Experiment 1, rats were exposed to acute footshock stress (no shock control, 0.4 mA, or 0.8 mA) immediately prior to auditory fear conditioning training involving the pairing of auditory clicks with a cloth containing cat odor. When presented to the conditioned auditory clicks in the next 5 days of extinction testing conducted in a runway apparatus with a hide box, rats in the two shock groups engaged in higher levels of freezing and head out vigilance-like behavior from the hide box than the no shock control group. This increase in fear behavior during extinction testing was likely due to auditory activation of the conditioned fear state because Experiment 2 demonstrated that conditioned fear behavior was not broadly increased in the absence of the conditioned auditory stimulus. Experiment 3 was then conducted to determine whether acute exposure to stress induces a habituation resistant sensitized fear state. We found that rats exposed to 0.8 mA footshock stress and subsequently tested for 5 days in the runway hide box apparatus with presentations of nonassociative auditory clicks exhibited high initial levels of freezing, followed by head out behavior and culminating in the occurrence of locomotor hyperactivity. In addition, Experiment 4 indicated that without delivery of nonassociative auditory clicks, 0.8 mA footshock stressed rats did not exhibit robust increases in sensitized freezing and locomotor hyperactivity, albeit head out vigilance

  4. Long-term memory of visually cued fear conditioning: roles of the nNOS gene and CREB

    OpenAIRE

    Kelley, Jonathan B.; Anderson, Karen L.; Altmann, Stefanie L.; Itzhak, Yossef

    2010-01-01

    Nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) has a role in late-phase long-term potentiation (LTP) and long-term memory (LTM) formation. Our recent studies implicated NO signaling in contextual and auditory cued fear conditioning. The present study investigated the role of NO signaling in visually cued fear conditioning. First, visually cued fear conditioning was investigated in wild-type (WT) and nNOS knockout (KO) mice. Second, the effects of pharmacological modulator...

  5. Mice selectively bred for High and Low fear behavior show differences in the number of pMAPK (p44/42 ERK) expressing neurons in lateral amygdala following Pavlovian fear conditioning.

    Science.gov (United States)

    Coyner, Jennifer; McGuire, Jennifer L; Parker, Clarissa C; Ursano, Robert J; Palmer, Abraham A; Johnson, Luke R

    2014-07-01

    Individual variability in the acquisition, consolidation and extinction of conditioned fear potentially contributes to the development of fear pathology including posttraumatic stress disorder (PTSD). Pavlovian fear conditioning is a key tool for the study of fundamental aspects of fear learning. Here, we used a selected mouse line of High and Low Pavlovian conditioned fear created from an advanced intercrossed line (AIL) in order to begin to identify the cellular basis of phenotypic divergence in Pavlovian fear conditioning. We investigated whether phosphorylated MAPK (p44/42 ERK/MAPK), a protein kinase required in the amygdala for the acquisition and consolidation of Pavlovian fear memory, is differentially expressed following Pavlovian fear learning in the High and Low fear lines. We found that following Pavlovian auditory fear conditioning, High and Low line mice differ in the number of pMAPK-expressing neurons in the dorsal sub nucleus of the lateral amygdala (LAd). In contrast, this difference was not detected in the ventral medial (LAvm) or ventral lateral (LAvl) amygdala sub nuclei or in control animals. We propose that this apparent increase in plasticity at a known locus of fear memory acquisition and consolidation relates to intrinsic differences between the two fear phenotypes. These data provide important insights into the micronetwork mechanisms encoding phenotypic differences in fear. Understanding the circuit level cellular and molecular mechanisms that underlie individual variability in fear learning is critical for the development of effective treatment of fear-related illnesses such as PTSD.

  6. Delay and trace fear conditioning in a complex virtual learning environment - neural substrates of extinction

    Directory of Open Access Journals (Sweden)

    Heike eEwald

    2014-05-01

    Full Text Available Extinction is an important mechanism to inhibit initially acquired fear responses. There is growing evidence that the ventromedial prefrontal cortex (vmPFC inhibits the amygdala and therefore plays an important role in the extinction of delay fear conditioning. To our knowledge, there is no evidence on the role of the prefrontal cortex in the extinction of trace conditioning up to now. Thus, we compared brain structures involved in the extinction of human delay and trace fear conditioning in a between-subjects-design in an fMRI study. Participants were passively guided through a virtual environment during learning and extinction of conditioned fear. Two different lights served as conditioned stimuli (CS; as unconditioned stimulus (US a mildly painful electric stimulus was delivered. In the delay conditioning group (DCG the US was administered with offset of one light (CS+, whereas in the trace conditioning group (TCG the US was presented 4s after CS+ offset. Both groups showed insular and striatal activation during early extinction, but differed in their prefrontal activation. The vmPFC was mainly activated in the DCG, whereas the TCG showed activation of the dorsolateral prefrontal cortex (dlPFC during extinction. These results point to different extinction processes in delay and trace conditioning. VmPFC activation during extinction of delay conditioning might reflect the inhibition of the fear response. In contrast, dlPFC activation during extinction of trace conditioning may reflect modulation of working memory processes which are involved in bridging the trace interval and hold information in short term memory.

  7. Delay and trace fear conditioning in a complex virtual learning environment-neural substrates of extinction.

    Science.gov (United States)

    Ewald, Heike; Glotzbach-Schoon, Evelyn; Gerdes, Antje B M; Andreatta, Marta; Müller, Mathias; Mühlberger, Andreas; Pauli, Paul

    2014-01-01

    Extinction is an important mechanism to inhibit initially acquired fear responses. There is growing evidence that the ventromedial prefrontal cortex (vmPFC) inhibits the amygdala and therefore plays an important role in the extinction of delay fear conditioning. To our knowledge, there is no evidence on the role of the prefrontal cortex in the extinction of trace conditioning up to now. Thus, we compared brain structures involved in the extinction of human delay and trace fear conditioning in a between-subjects-design in an fMRI study. Participants were passively guided through a virtual environment during learning and extinction of conditioned fear. Two different lights served as conditioned stimuli (CS); as unconditioned stimulus (US) a mildly painful electric stimulus was delivered. In the delay conditioning group (DCG) the US was administered with offset of one light (CS+), whereas in the trace conditioning group (TCG) the US was presented 4 s after CS+ offset. Both groups showed insular and striatal activation during early extinction, but differed in their prefrontal activation. The vmPFC was mainly activated in the DCG, whereas the TCG showed activation of the dorsolateral prefrontal cortex (dlPFC) during extinction. These results point to different extinction processes in delay and trace conditioning. VmPFC activation during extinction of delay conditioning might reflect the inhibition of the fear response. In contrast, dlPFC activation during extinction of trace conditioning may reflect modulation of working memory processes which are involved in bridging the trace interval and hold information in short term memory. PMID:24904363

  8. The development of cued versus contextual conditioning in a predictable and an unpredictable human fear conditioning preparation

    NARCIS (Netherlands)

    C. Iberico; D. Vansteenwegen; B. Vervliet; T. Dirikx; V. Marescau; D. Hermans

    2008-01-01

    In this human fear conditioning study, the online development of conditioned US-expectancy to discrete cues and background contexts was measured in two groups. In the paired group (n = 30), the CS was systematically followed by an aversive shock (US). In the unpaired group (n = 30), CS and US were p

  9. The Role of Muscarinic and Nicotinic Cholinergic Neurotransmission in Aversive Conditioning: Comparing Pavlovian Fear Conditioning and Inhibitory Avoidance

    Science.gov (United States)

    Tinsley, Matthew R.; Quinn, Jennifer J.; Fanselow, Michael S.

    2004-01-01

    Aversive conditioning is an ideal model for studying cholinergic effects on the processes of learning and memory for several reasons. First, deficits produced by selective lesions of the anatomical structures shown to be critical for Pavlovian fear conditioning and inhibitory avoidance (such as the amygdala and hippocampus) resemble those deficits…

  10. Social buffering enhances extinction of conditioned fear responses in male rats.

    Science.gov (United States)

    Mikami, Kaori; Kiyokawa, Yasushi; Takeuchi, Yukari; Mori, Yuji

    2016-09-01

    In social species, the phenomenon in which the presence of conspecific animals mitigates stress responses is called social buffering. We previously reported that social buffering in male rats ameliorated behavioral fear responses, as well as hypothalamic-pituitary-adrenal axis activation, elicited by an auditory conditioned stimulus (CS). However, after social buffering, it is not clear whether rats exhibit fear responses when they are re-exposed to the same CS in the absence of another rat. In the present study, we addressed this issue using an experimental model of extinction. High stress levels during extinction training impaired extinction, suggesting that extinction is enhanced when stress levels during extinction training are low. Therefore, we hypothesized that rats that had received social buffering during extinction training would not show fear responses to a CS, even in the absence of another rat, because social buffering had enhanced the extinction of conditioned fear responses. To test this, we subjected male fear-conditioned rats to extinction training either alone or with a non-conditioned male rat. The subjects were then individually re-exposed to the CS in a recall test. When the subjects individually underwent extinction training, no responses were suppressed in the recall test. Conversely, when the subjects received social buffering during extinction training, freezing and Fos expression in the paraventricular nucleus of the hypothalamus and lateral amygdala were suppressed. Additionally, the effects of social buffering were absent when the recall test was conducted in a different context from the extinction training. The present results suggest that social buffering enhances extinction of conditioned fear responses. PMID:27158024

  11. Social buffering enhances extinction of conditioned fear responses in male rats.

    Science.gov (United States)

    Mikami, Kaori; Kiyokawa, Yasushi; Takeuchi, Yukari; Mori, Yuji

    2016-09-01

    In social species, the phenomenon in which the presence of conspecific animals mitigates stress responses is called social buffering. We previously reported that social buffering in male rats ameliorated behavioral fear responses, as well as hypothalamic-pituitary-adrenal axis activation, elicited by an auditory conditioned stimulus (CS). However, after social buffering, it is not clear whether rats exhibit fear responses when they are re-exposed to the same CS in the absence of another rat. In the present study, we addressed this issue using an experimental model of extinction. High stress levels during extinction training impaired extinction, suggesting that extinction is enhanced when stress levels during extinction training are low. Therefore, we hypothesized that rats that had received social buffering during extinction training would not show fear responses to a CS, even in the absence of another rat, because social buffering had enhanced the extinction of conditioned fear responses. To test this, we subjected male fear-conditioned rats to extinction training either alone or with a non-conditioned male rat. The subjects were then individually re-exposed to the CS in a recall test. When the subjects individually underwent extinction training, no responses were suppressed in the recall test. Conversely, when the subjects received social buffering during extinction training, freezing and Fos expression in the paraventricular nucleus of the hypothalamus and lateral amygdala were suppressed. Additionally, the effects of social buffering were absent when the recall test was conducted in a different context from the extinction training. The present results suggest that social buffering enhances extinction of conditioned fear responses.

  12. Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains.

    Directory of Open Access Journals (Sweden)

    Hadley C Bergstrom

    Full Text Available Understanding the physical encoding of a memory (the engram is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram.

  13. Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains.

    Science.gov (United States)

    Bergstrom, Hadley C; McDonald, Craig G; Johnson, Luke R

    2011-01-12

    Understanding the physical encoding of a memory (the engram) is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram.

  14. CLASSICAL CONDITIONING OF THREE KINDS OF HUMOR IN PUBLICITY

    OpenAIRE

    CAROLINA M. CIFUENTES; JUANITA SÁNCHEZ

    2006-01-01

    Effects of humor in advertisement published in Colombia were investigated in regards to brands,advertisement, purchase intention, recall and recognition.A simultaneous Classical Conditioning procedure was carried out, using Incongruous, Hostile and Allusivehumor associated to three brands. The procedure was applied to 30 university students. Results revealedthat the three kinds of humor work as unconditioning stimulus, generating positive attitudes towardsadvertisement and brand. Humor influe...

  15. Extinction of conditioned fear is better learned and recalled in the morning than in the evening.

    Science.gov (United States)

    Pace-Schott, Edward F; Spencer, Rebecca M C; Vijayakumar, Shilpa; Ahmed, Nafis A K; Verga, Patrick W; Orr, Scott P; Pitman, Roger K; Milad, Mohammed R

    2013-11-01

    Sleep helps emotional memories consolidate and may promote generalization of fear extinction memory. We examined whether extinction learning and memory might differ in the morning and evening due, potentially, to circadian and/or sleep-homeostatic factors. Healthy men (N = 109) in 6 groups completed a 2-session protocol. In Session 1, fear conditioning was followed by extinction learning. Partial reinforcement with mild electric shock produced conditioned skin conductance responses (SCRs) to 2 differently colored lamps (CS+), but not a third color (CS-), within the computer image of a room (conditioning context). One CS+ (CS + E) but not the other (CS + U) was immediately extinguished by un-reinforced presentations in a different room (extinction context). Delay durations of 3 h (within AM or PM), 12 h (morning-to-evening or evening-to-morning) or 24 h (morning-to-morning or evening-to-evening) followed. In Session 2, extinction recall and contextual fear renewal were tested. We observed no significant effects of the delay interval on extinction memory but did observe an effect of time-of-day. Fear extinction was significantly better if learned in the morning (p = .002). Collapsing across CS + type, there was smaller morning differential SCR at both extinction recall (p = .003) and fear renewal (p = .005). Morning extinction recall showed better generalization from the CS + E to CS + U with the response to the CS + U significantly larger than to the CS + E only in the evening (p = .028). Thus, extinction is learned faster and its memory is better generalized in the morning. Cortisol and testosterone showed the expected greater salivary levels in the morning when higher testosterone/cortisol ratio also predicted better extinction learning. Circadian factors may promote morning extinction. Alternatively, evening homeostatic sleep pressure may impede extinction and favor recall of conditioned fear. PMID:23992769

  16. Fear conditioning of SCR but not the startle reflex requires conscious discrimination of threat and safety.

    Science.gov (United States)

    Sevenster, Dieuwke; Beckers, Tom; Kindt, Merel

    2014-01-01

    There is conflicting evidence as to whether awareness is required for conditioning of the skin conductance response (SCR). Recently, Schultz and Helmstetter (2010) reported SCR conditioning in contingency unaware participants by using difficult to discriminate stimuli. These findings are in stark contrast with other observations in human fear conditioning research, showing that SCR predominantly reflects contingency learning. Therefore, we repeated the study by Schultz and Helmstetter and additionally measured conditioning of the startle response, which seems to be less sensitive to declarative knowledge than SCR. While we solely observed SCR conditioning in participants who reported awareness of the contingencies (n = 16) and not in the unaware participants (n = 18), we observed startle conditioning irrespective of awareness. We conclude that SCR but not startle conditioning depends on conscious discriminative fear learning.

  17. Pair exposure with conspecific during fear conditioning induces the link between freezing and passive avoidance behaviors in rats.

    Science.gov (United States)

    Lee, Hyunchan; Noh, Jihyun

    2016-07-01

    Social factor plays an important role in dealing with posttraumatic stress disorder related to excessive physiological fear response and insufficient fear memory extinction of the brain. However, although social circumstances occurred not only during contextual retrieval but also during fear conditioning, most previous studies focused on the advantageous aspects of social buffering in fear retrieval period. To demonstrate the association between fear responses and fear memory from social stimuli during fear conditioning, pair exposed rats with conspecific as social buffering were subjected to a fear conditioning of passive avoidance test to evaluate memory function and freezing behavior. Whereas single exposed rats showed the significant increase of freezing behaviors and passive avoidance behaviors compared to control rats, pair exposed rats showed significant alleviation of the freezing behaviors and passive avoidance behaviors compared to single exposed rats. Furthermore, we determined a significant correlation between freezing and passive avoidance behavioral alteration in pair exposed rats. Taken together, we suggest that pair exposure with conspecific during fear conditioning helps to cope with both freezing response and fear memory systems and their reciprocal interaction has a crucial potential as a resource for the relief of unreasonable stress responses in posttraumatic stress disorder.

  18. Potentiation rather than distraction in a trace fear conditioning procedure.

    Science.gov (United States)

    Pezze, M A; Marshall, H J; Cassaday, H J

    2016-07-01

    Trace conditioning procedures are defined by the introduction of a trace interval between conditioned stimulus (CS, e.g. noise or light) offset and unconditioned stimulus (US, e.g. footshock). The introduction of an additional stimulus as a distractor has been suggested to increase the attentional demands of the task and to extend the usefulness of the behavioural model. In Experiment 1, the CS was noise and the distractor was provided by an intermittent light. In Experiment 2, the CS was light and the distractor was provided by an intermittent noise. In both experiments, the introduction of a 10s trace interval weakened associative learning compared with that seen in a 0s delay conditioned group. However, there was no consistent evidence of distraction. On the contrary, in Experiment 1, associative learning was stronger (in both trace and delay conditioned groups) for rats conditioned also in the presence of the intermittent light. In Experiment 2, there was no such effect when the roles of the stimuli were reversed. The results of Experiment 2 did however confirm the particular salience of the noise stimulus. The finding of increased associative learning dependent on salience is consistent with arousal-mediated effects on associative learning. PMID:27060226

  19. Rapid learning dynamics in individual honeybees during classical conditioning

    Directory of Open Access Journals (Sweden)

    Evren ePamir

    2014-09-01

    Full Text Available Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3,298 animals. We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response in learners, and the high stability of the conditioned response during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.

  20. A Model of Amygdala-Hippocampal-Prefrontal Interaction in Fear Conditioning and Extinction in Animals

    Science.gov (United States)

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard J.; Myers, Catherine E.

    2013-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus…

  1. Fast, transient cardiac accelerations and decelerations during fear conditioning in rats

    NARCIS (Netherlands)

    Knippenberg, J.M.J.; Barry, R.J.; Kuniecki, M.J.; Luijtelaar, E.L.J.M. van

    2011-01-01

    The current study reports on a number of heart rate responses observed in rats subjected to a discriminatory Pavlovian fear conditioning procedure. Rats learned that a series of six auditory pips was followed by a footshock when presented alone, but not when the pip series was preceded by a visual s

  2. Effect of acute Fluoxetine application on a context fear conditioned task in behaviorally restrained rats

    Directory of Open Access Journals (Sweden)

    Laura A . León

    2010-02-01

    Full Text Available In order to study the effect of behavioral or pharmacologically enhanced anxiety on the acquisition of contextual fear conditioning, thirty two Wistar rats (275±25 gm were divided in two groups (behavioral restriction and control. Half of each group received saline solution (ig.; 0.9% or fluoxetine(ig.; 4mg/Kg before the fear conditioning procedure. The two way ANOVA showed significant differences for treatment (F[1,28] = 25.261; P < 0.001. Student Newman-Keuls showed that subjects treated with fluoxetine had lower freezing times. There were no significant differences nor for restriction neither for the interaction between the factors (F[1,28] = 0.115; P = 0.737 y F[1,28] = 0.016; P = 0.899. Thus, the restriction procedure used did not modify the acquisition of the conditioned fear response suggesting that the putative 5-HT enhancement induced is not comparable to that induced by fluoxetine. Acute fluoxetine disrupted the acquisition of the conditioned fear response, suggesting that the mechanism by means of which anxiety disrupts learning could be serotonergic in nature.

  3. The influence of gonadal hormones on conditioned fear extinction in healthy humans.

    Science.gov (United States)

    Milad, M R; Zeidan, M A; Contero, A; Pitman, R K; Klibanski, A; Rauch, S L; Goldstein, J M

    2010-07-14

    Recent rodent studies suggest that gonadal hormones influence extinction of conditioned fear. Here we investigated sex differences in, and the influence of estradiol and progesterone on, fear extinction in healthy humans. Men and women underwent a two-day paradigm in which fear conditioning and extinction learning took place on day 1 and extinction recall was tested on day 2. Visual cues were used as the conditioned stimuli and a mild electric shock was used as the unconditioned stimulus. Skin conductance was recorded throughout the experiment and used to measure conditioned responses (CRs). Blood samples were obtained from all women to measure estradiol and progesterone levels. We found that higher estradiol during extinction learning enhanced subsequent extinction recall but had no effects on fear acquisition or extinction learning itself. Sex differences were only observed during acquisition, with men exhibiting significantly higher CRs. After dividing women into low- and high-estradiol groups, men showed comparable extinction recall to high-estradiol women, and both of these groups showed higher extinction recall than low-estradiol women. Therefore, sex differences in extinction memory emerged only after taking into account women's estradiol levels. Lower estradiol may impair extinction consolidation in women. These findings could have practical applications in the treatment of anxiety disorders through cognitive and behavioral therapies. PMID:20412837

  4. Neural Correlates of Appetitive-Aversive Interactions in Pavlovian Fear Conditioning

    Science.gov (United States)

    Nasser, Helen M.; McNally, Gavan P.

    2013-01-01

    We used Pavlovian counterconditioning in rats to identify the neural mechanisms for appetitive-aversive motivational interactions. In Stage I, rats were trained on conditioned stimulus (CS)-food (unconditioned stimulus [US]) pairings. In Stage II, this appetitive CS was transformed into a fear CS via pairings with footshock. The development of…

  5. Avoided by association: acquisition, extinction, and renewal of avoidance tendencies toward conditioned fear stimuli

    NARCIS (Netherlands)

    A.M. Krypotos; M. Effting; I. Arnaudova; M. Kindt; T. Beckers

    2013-01-01

    Traditional theoretical models hold that avoidance reflects the interplay of Pavlovian and instrumental learning. Here we suggest that avoidance tendencies to intrinsically neutral cues may be established by mere Pavlovian association. Following fear conditioning, in which pictures of one object wer

  6. Effects of Post-Training Hippocampal Injections of Midazolam on Fear Conditioning

    Science.gov (United States)

    Gafford, Georgette M.; Parsons, Ryan G.; Helmstetter, Fred J.

    2005-01-01

    Benzodiazepines have been useful tools for investigating mechanisms underlying learning and memory. The present set of experiments investigates the role of hippocampal GABA[subscript A]/benzodiazepine receptors in memory consolidation using Pavlovian fear conditioning. Rats were prepared with cannulae aimed at the dorsal hippocampus and trained…

  7. The Histone Deacetylase Inhibitor Valproic Acid Enhances Acquisition, Extinction, and Reconsolidation of Conditioned Fear

    Science.gov (United States)

    Bredy, Timothy W.; Barad, Mark

    2008-01-01

    Histone modifications contribute to the epigenetic regulation of gene expression, a process now recognized to be important for the consolidation of long-term memory. Valproic acid (VPA), used for many years as an anticonvulsant and a mood stabilizer, has effects on learning and memory and enhances the extinction of conditioned fear through its…

  8. Blockade of Dopamine Activity in the Nucleus Accumbens Impairs Learning Extinction of Conditioned Fear

    Science.gov (United States)

    Holtzman-Assif, Orit; Laurent, Vincent; Westbrook, R. Frederick

    2010-01-01

    Three experiments used rats to investigate the role of dopamine activity in learning to inhibit conditioned fear responses (freezing) in extinction. In Experiment 1, rats systemically injected with the D2 dopamine antagonist, haloperidol, froze more across multiple extinction sessions and on a drug-free retention test than control rats. In…

  9. Inhibition of prefrontal protein synthesis following recall does not disrupt memory for trace fear conditioning

    Directory of Open Access Journals (Sweden)

    Dash Pramod K

    2006-10-01

    Full Text Available Abstract Background The extent of similarity between consolidation and reconsolidation is not yet fully understood. One of the differences noted is that not every brain region involved in consolidation exhibits reconsolidation. In trace fear conditioning, the hippocampus and the medial prefrontal cortex (mPFC are required for consolidation of long-term memory. We have previously demonstrated that trace fear memory is susceptible to infusion of the protein synthesis inhibitor anisomycin into the hippocampus following recall. In the present study, we examine whether protein synthesis inhibition in the mPFC following recall similarly results in the observation of reconsolidation of trace fear memory. Results Targeted intra-mPFC infusions of anisomycin or vehicle were performed immediately following recall of trace fear memory at 24 hours, or at 30 days, following training in a one-day or a two-day protocol. The present study demonstrates three key findings: 1 trace fear memory does not undergo protein synthesis dependent reconsolidation in the PFC, regardless of the intensity of the training, and 2 regardless of whether the memory is recent or remote, and 3 intra-mPFC inhibition of protein synthesis immediately following training impaired remote (30 days memory. Conclusion These results suggest that not all structures that participate in memory storage are involved in reconsolidation. Alternatively, certain types of memory-related information may reconsolidate, while other components of memory may not.

  10. Reinstatement of an Extinguished Fear Conditioned Response in Infant Rats

    Science.gov (United States)

    Revillo, Damian A.; Trebucq, Gastón; Paglini, Maria G.; Arias, Carlos

    2016-01-01

    Although it is currently accepted that the extinction effect reflects new context-dependent learning, this is not so clear during infancy, because some studies did not find recovery of the extinguished conditioned response (CR) in rodents during this ontogenetic stage. However, recent studies have shown the return of an extinguished CR in infant…

  11. Protocol for studying extinction of conditioned fear in naturally cycling female rats.

    Science.gov (United States)

    Maeng, Lisa Y; Cover, Kara K; Landau, Aaron J; Milad, Mohammed R; Lebron-Milad, Kelimer

    2015-01-01

    Extinction of conditioned fear has been extensively studied in male rodents. Recently, there have been an increasing number of studies indicating that neural mechanisms for certain behavioral tasks and response behaviors are different in females and males. Using females in research studies can represent a challenge because of the variation of gonadal hormones during their estrous cycle. This protocol describes well-established procedures that are useful in investigating the role of estrogen in fear extinction memory consolidation in female rats. Phase of the estrous cycle and exogenous estrogen administration prior to extinction training can influence extinction recall 24 hr later. The vaginal swabbing technique for estrous phase identification described here aids the examination and manipulation of naturally cycling gonadal hormones. The use of this basic rodent model may further delineate the mechanisms by which estrogen can modulate fear extinction memory in females. PMID:25741747

  12. Learning and memory in conditioned fear extinction: effects of D-cycloserine.

    Science.gov (United States)

    Vervliet, Bram

    2008-03-01

    This review addresses the effects of the cognitive enhancer D-cycloserine (DCS) on the memory processes that occur in conditioned fear extinction, which is the experimental model for exposure techniques to reduce clinical anxiety. All reported rat studies show an enhanced fear extinction effect when DCS is administered acutely before or shortly after extinction training. DCS also promotes the generalization of this fear extinction effect. In addition, DCS reduces some forms of relapse (reduced reinstatement, reduced spontaneous recovery), but not others (contextual renewal, rapid reacquisition). It is argued that this pattern of results is best explained by assuming that DCS promotes extinction learning to the background context, resulting in enhanced contextual inhibition. Four human studies have produced mixed results, but some methodological issues complicate the reported failures. It is concluded that DCS is a promising tool as an adjunct to extinction techniques in exposure treatment, but that more pre-clinical and clinical research is needed to fully characterize its behavioral consequences.

  13. Epigenetic modulation of Homer1a transcription regulation in amygdala and hippocampus with pavlovian fear conditioning.

    Science.gov (United States)

    Mahan, Amy L; Mou, Liping; Shah, Nirali; Hu, Jia-Hua; Worley, Paul F; Ressler, Kerry J

    2012-03-28

    The consolidation of conditioned fear involves upregulation of genes necessary for long-term memory formation. An important question remains as to whether this results in part from epigenetic regulation and chromatin modulation. We examined whether Homer1a, which is required for memory formation, is necessary for Pavlovian cued fear conditioning, whether it is downstream of BDNF-TrkB activation, and whether this pathway utilizes histone modifications for activity-dependent transcriptional regulation. We initially found that Homer1a knock-out mice exhibited deficits in cued fear conditioning (5 tone-shock presentations with 70 dB, 6 kHz tones and 0.5 s, 0.6 mA footshocks). We then demonstrated that: (1) Homer1a mRNA increases after fear conditioning in vivo within both amygdala and hippocampus of wild-type mice; (2) it increases after BDNF application to primary hippocampal and amygdala cultures in vitro; and (3) these increases are dependent on transcription and MAPK signaling. Furthermore, using chromatin immunoprecipitation we found that both in vitro and in vivo manipulations result in decreases in Homer1 promoter H3K9 methylation in amygdala cells but increases in Homer1 promoter H3 acetylation in hippocampal cells. However, no changes were observed in H4 acetylation or H3K27 dimethylation. Inhibition of histone deacetylation by sodium butyrate enhanced contextual but not cued fear conditioning and enhanced Homer1 H3 acetylation in the hippocampus. These data provide evidence for dynamic epigenetic regulation of Homer1a following BDNF-induced plasticity and during a BDNF-dependent learning process. Furthermore, upregulation of this gene may be regulated through distinct epigenetic modifications in the hippocampus and amygdala.

  14. Deficient fear conditioning in psychopathy as a function of interpersonal and affective disturbances

    Directory of Open Access Journals (Sweden)

    Ralf eVeit

    2013-10-01

    Full Text Available The diminished fear reactivity is one of the most valid physiological findings in psychopathy research. In a fear conditioning paradigm, with faces as conditioned stimulus (CS and electric shock as unconditioned stimulus (US, we investigated a sample of 14 high psychopathic violent offenders. Event related potentials, skin conductance responses (SCR as well as subjective ratings of the CSs were collected. This study assessed to which extent the different facets of the psychopathy construct contribute to the fear conditioning deficits observed in psychopaths. Participants with high scores on the affective facet subscale of the Psychopathy Checklist-Revised (PCL-R showed weaker conditioned fear responses and lower N100 amplitudes compared to low scorers. In contrast, high scorers on the affective facet rated the CS+ (paired more negatively than low scorers regarding the CS- (unpaired. Regarding the P300, high scores on the interpersonal facet were associated with increased amplitudes to the CS+ compared to the CS-, while the opposed pattern was found with the antisocial facet. Both, the initial and terminal contingent negative variation indicated a divergent pattern: participants with pronounced interpersonal deficits, showed increased cortical negativity to the CS+ compared to the CS-, whereas a reversed CS+/CS- differentiation was found in offenders scoring high on the antisocial facet. The present study revealed that deficient fear conditioning in psychopathy was most pronounced in offenders with high scores on the affective facet. Event related potentials suggest that participants with distinct interpersonal deficits showed increased information processing, whereas the antisocial facet was linked to decreased attention and interest to the CS+. These data indicate that an approach to the facets of psychopathy can help to resolve ambiguous findings in psychopathy research and enables a more precise and useful description of this disorder.

  15. Amygdala kindling disrupts trace and delay fear conditioning with parallel changes in Fos protein expression throughout the limbic brain.

    Science.gov (United States)

    Botterill, J J; Fournier, N M; Guskjolen, A J; Lussier, A L; Marks, W N; Kalynchuk, L E

    2014-04-18

    Amygdala kindling is well known to increase unconditioned fear and anxiety. However, relatively little is known about whether this form of kindling causes functional changes within the neural circuitry that mediates fear learning and the retrieval of fear memories. To address this issue, we examined the effect of short- (i.e., 30 stimulations) and long-term (i.e., 99 stimulations) amygdala kindling in rats on trace and delay fear conditioning, which are aversive learning tasks that rely predominantly on the hippocampus and amygdala, respectively. After memory retrieval, we analyzed the pattern of neural activity with Fos, the protein product of the immediate early gene c-fos. We found that kindling had no effect on acquisition of the trace fear conditioning task but it did selectively impair retrieval of this fear memory. In contrast, kindling disrupted both acquisition and retrieval of fear memory in the delay fear conditioning task. We also found that kindling-induced impairments in memory retrieval were accompanied by decreased Fos expression in several subregions of the hippocampus, parahippocampus, and amygdala. Interestingly, decreased freezing in the trace conditioning task was significantly correlated with dampened Fos expression in hippocampal and parahippocampal regions whereas decreased freezing in the delay conditioning task was significantly correlated with dampened Fos expression in hippocampal, parahippocampal, and amygdaloid circuits. Overall, these results suggest that amygdala kindling promotes functional changes in brain regions involved in specific types of fear learning and memory.

  16. Resting-state connectivity of the amygdala is altered following Pavlovian fear conditioning.

    Science.gov (United States)

    Schultz, Douglas H; Balderston, Nicholas L; Helmstetter, Fred J

    2012-01-01

    Neural plasticity in the amygdala is necessary for the acquisition and storage of memory in Pavlovian fear conditioning, but most neuroimaging studies have focused only on stimulus-evoked responses during the conditioning session. This study examined changes in the resting-state functional connectivity (RSFC) of the amygdala before and after Pavlovian fear conditioning, an emotional learning task. Behavioral results from the conditioning session revealed that participants learned normally and fMRI data recorded during learning identified a number of stimulus-evoked changes that were consistent with previous work. A direct comparison between the pre- and post-conditioning amygdala connectivity revealed a region of dorsal prefrontal cortex (PFC) in the superior frontal gyrus that showed a significant increase in connectivity following the conditioning session. A behavioral measure of explicit memory performance was positively correlated with the change in amygdala connectivity within a neighboring region in the superior frontal gyrus. Additionally, an implicit autonomic measure of conditioning was positively correlated with the change in connectivity between the amygdala and the anterior cingulate cortex (ACC). The resting-state data show that amygdala connectivity is altered following Pavlovian fear conditioning and that these changes are also related to behavioral outcomes. These alterations may reflect the operation of a consolidation process that strengthens neural connections to support memory after the learning event.

  17. Resting-state connectivity of the amygdala is altered following Pavlovian fear conditioning

    Directory of Open Access Journals (Sweden)

    Douglas H Schultz

    2012-08-01

    Full Text Available Neural plasticity in the amygdala is necessary for the acquisition and storage of memory in Pavlovian fear conditioning, but most neuroimaging studies have focused only on stimulus-evoked responses during the conditioning session. This study examined changes in the resting-state functional connectivity (RSFC of the amygdala before and after Pavlovian fear conditioning, an emotional learning task. Behavioral results from the conditioning session revealed that participants learned normally and FMRI data recorded during learning identified a number of stimulus-evoked changes that were consistent with previous work. A direct comparison between the pre and post-conditioning amygdala connectivity revealed a region of dorsal prefrontal cortex (PFC in the superior frontal gyrus that showed a significant increase in connectivity following the conditioning session. A behavioral measure of explicit memory performance was positively correlated with the change in amygdala connectivity within a neighboring region in the superior frontal gyrus. Additionally, an implicit autonomic measure of conditioning was positively correlated with the change in connectivity between the amygdala and the anterior cingulate cortex. The resting-state data show that amygdala connectivity is altered following Pavlovian fear conditioning and that these changes are also related to behavioral outcomes. These alterations may reflect the operation of a consolidation process that strengthens neural connections to support memory after the learning event.

  18. Application of Pavlovian higher-order conditioning to the analysis of the neural substrates of fear conditioning.

    Science.gov (United States)

    Gewirtz, J C; Davis, M

    1998-01-01

    In Pavlovian first-order conditioning, a conditioned response is acquired by pairing a neutral stimulus (S1) with a stimulus that has innate motivational value. In higher-order conditioning, a neutral stimulus (S2) is paired with S1 either after (second-order conditioning) or before (sensory preconditioning) first-order conditioning has been acquired. Thus, in higher-order conditioning the motivational value of the reinforcer is acquired rather than innate. This review describes some of the potential uses of higher-order conditioning in investigating the neural substrates of fearful memories. First, because in second-order fear conditioning S2 is not paired directly with a painful stimulus, any effect of a treatment on the acquisition of fear cannot be attributed to the treatment's possible effects on transmission of nociceptive information. Second, higher-order conditioning provides opportunities for analyzing where and how different types of events, or different aspects of the same events, are represented in the brain.

  19. Sufficient Conditions for Efficient Classical Simulation of Quantum Optics

    Science.gov (United States)

    Rahimi-Keshari, Saleh; Ralph, Timothy C.; Caves, Carlton M.

    2016-04-01

    We provide general sufficient conditions for the efficient classical simulation of quantum-optics experiments that involve inputting states to a quantum process and making measurements at the output. The first condition is based on the negativity of phase-space quasiprobability distributions (PQDs) of the output state of the process and the output measurements; the second one is based on the negativity of PQDs of the input states, the output measurements, and the transition function associated with the process. We show that these conditions provide useful practical tools for investigating the effects of imperfections in implementations of boson sampling. In particular, we apply our formalism to boson-sampling experiments that use single-photon or spontaneous-parametric-down-conversion sources and on-off photodetectors. Considering simple models for loss and noise, we show that above some threshold for the probability of random counts in the photodetectors, these boson-sampling experiments are classically simulatable. We identify mode mismatching as the major source of error contributing to random counts and suggest that this is the chief challenge for implementations of boson sampling of interesting size.

  20. Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning

    OpenAIRE

    Linnman, Clas; Zeidan, Mohamed A.; Pitman, Roger K.; Milad, Mohammed R.

    2011-01-01

    We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differ...

  1. Classic conditioning of the ventilatory responses in rats.

    Science.gov (United States)

    Nsegbe, E; Vardon, G; Perruchet, P; Gallego, J

    1997-10-01

    Recent authors have stressed the role of conditioning in the control of breathing, but experimental evidence of this role is still sparse and contradictory. To establish that classic conditioning of the ventilatory responses can occur in rats, we performed a controlled experiment in which a 1-min tone [conditioned stimulus (CS)] was paired with a hypercapnic stimulus [8.5% CO2, unconditioned stimulus (US)]. The experimental group (n = 9) received five paired CS-US presentations, followed by one CS alone to test conditioning. This sequence was repeated six times. The control group (n = 7) received the same number of CS and US, but each US was delivered 3 min after the CS. We observed that after the CS alone, breath duration was significantly longer in the experimental than in the control group and mean ventilation was significantly lower, thus showing inhibitory conditioning. This conditioning may have resulted from the association between the CS and the inhibitory and aversive effects of CO2. The present results confirmed the high sensitivity of the respiratory controller to conditioning processes.

  2. Contributions of the amygdala central nucleus and ventrolateral periaqueductal grey to freezing and instrumental suppression in Pavlovian fear conditioning.

    Science.gov (United States)

    McDannald, Michael A

    2010-07-29

    In Pavlovian fear conditioning animals receive pairings of a neutral cue and an aversive stimulus such as an electric foot-shock. Through such pairings, the cue will come to elicit a central state of fear that produces a variety of autonomic and behavioral responses, among which are conditioned freezing and suppression of instrumental responding, termed conditioned suppression. The central nucleus of the amygdala (CeA) and the ventrolateral periaqueductal grey (vlPAG) has been strongly implicated in the acquisition and expression of conditioned fear. However, previous work suggests different roles for the CeA and vlPAG in fear learning maybe revealed when fear is assessed with conditioned freezing or conditioned suppression. To further explore this possibility we gave rats selective lesions of either the CeA or vlPAG and trained them in Pavlovian first-order fear conditioning as well as Pavlovian second-order fear conditioning. We concurrently assessed the acquisition of conditioned freezing and conditioned suppression. We found that vlPAG and CeA lesions impaired both first- and second-order conditioned freezing. VlPAG lesions did not impair, and CeA lesions only transiently impaired, first-order conditioned suppression. However, both vlPAG and CeA lesions impaired second-order conditioned suppression. These results suggest that the CeA and vlPAG are critically important to expressing fear through conditioned freezing but play different and less critical roles in expressing fear through conditioned suppression.

  3. Effect of continuous and partial reinforcement on the acquisition and extinction of human conditioned fear.

    Science.gov (United States)

    Grady, Ashley K; Bowen, Kenton H; Hyde, Andrew T; Totsch, Stacie K; Knight, David C

    2016-02-01

    Extinction of Pavlovian conditioned fear in humans is a popular paradigm often used to study learning and memory processes that mediate anxiety-related disorders. Fear extinction studies often only pair the conditioned stimulus (CS) and unconditioned stimulus (UCS) on a subset of acquisition trials (i.e., partial reinforcement/pairing) to prolong extinction (i.e., partial reinforcement extinction effect; PREE) and provide more time to study the process. However, there is limited evidence that the partial pairing procedures typically used during fear conditioning actually extend the extinction process, while there is strong evidence these procedures weaken conditioned response (CR) acquisition. Therefore, determining conditioning procedures that support strong CR acquisition and that also prolong the extinction process would benefit the field. The present study investigated 4 separate CS-UCS pairing procedures to determine methods that support strong conditioning and that also exhibit a PREE. One group (C-C) of participants received continuous CS-UCS pairings; a second group (C-P) received continuous followed by partial CS-UCS pairings; a third group (P-C) received partial followed by continuous CS-UCS pairings; and a fourth group (P-P) received partial CS-UCS pairings during acquisition. A strong skin conductance CR was expressed by C-C and P-C groups but not by C-P and P-P groups at the end of the acquisition phase. The P-C group maintained the CR during extinction. In contrast, the CR extinguished quickly within the C-C group. These findings suggest that partial followed by continuous CS-UCS pairings elicit strong CRs and prolong the extinction process following human fear conditioning.

  4. Effect of continuous and partial reinforcement on the acquisition and extinction of human conditioned fear.

    Science.gov (United States)

    Grady, Ashley K; Bowen, Kenton H; Hyde, Andrew T; Totsch, Stacie K; Knight, David C

    2016-02-01

    Extinction of Pavlovian conditioned fear in humans is a popular paradigm often used to study learning and memory processes that mediate anxiety-related disorders. Fear extinction studies often only pair the conditioned stimulus (CS) and unconditioned stimulus (UCS) on a subset of acquisition trials (i.e., partial reinforcement/pairing) to prolong extinction (i.e., partial reinforcement extinction effect; PREE) and provide more time to study the process. However, there is limited evidence that the partial pairing procedures typically used during fear conditioning actually extend the extinction process, while there is strong evidence these procedures weaken conditioned response (CR) acquisition. Therefore, determining conditioning procedures that support strong CR acquisition and that also prolong the extinction process would benefit the field. The present study investigated 4 separate CS-UCS pairing procedures to determine methods that support strong conditioning and that also exhibit a PREE. One group (C-C) of participants received continuous CS-UCS pairings; a second group (C-P) received continuous followed by partial CS-UCS pairings; a third group (P-C) received partial followed by continuous CS-UCS pairings; and a fourth group (P-P) received partial CS-UCS pairings during acquisition. A strong skin conductance CR was expressed by C-C and P-C groups but not by C-P and P-P groups at the end of the acquisition phase. The P-C group maintained the CR during extinction. In contrast, the CR extinguished quickly within the C-C group. These findings suggest that partial followed by continuous CS-UCS pairings elicit strong CRs and prolong the extinction process following human fear conditioning. PMID:26692449

  5. Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning.

    Science.gov (United States)

    Linnman, Clas; Zeidan, Mohamed A; Pitman, Roger K; Milad, Mohammed R

    2012-02-01

    We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differentially conditioned skin conductance responses. Midbrain and insula resting metabolism negatively predicted midbrain and insula functional reactivity, while dorsal anterior cingulate resting metabolism positively predicted midbrain functional reactivity. We conclude that resting metabolism in limbic areas can predict some aspects of psychophysiological and neuronal reactivity during fear learning. PMID:22207247

  6. Classical and quantum initial conditions for Higgs inflation

    Directory of Open Access Journals (Sweden)

    Alberto Salvio

    2015-11-01

    Full Text Available We investigate whether Higgs inflation can occur in the Standard Model starting from natural initial conditions or not. The Higgs has a non-minimal coupling to the Ricci scalar. We confine our attention to the regime where quantum Einstein gravity effects are small in order to have results that are independent of the ultraviolet completion of gravity. At the classical level we find no tuning is required to have successful Higgs inflation, provided the initial homogeneity condition is satisfied. On the other hand, at the quantum level we obtain that the renormalization for large non-minimal coupling requires an additional degree of freedom, unless a tuning of the initial values of the running parameters is made. In order to see that this effect may change the predictions we finally include such degree of freedom in the field content and show that Starobinsky's R2 inflation dominates over Higgs inflation.

  7. Classical and Quantum Initial Conditions for Higgs Inflation

    CERN Document Server

    Salvio, Alberto

    2015-01-01

    We investigate whether Higgs inflation can occur in the Standard Model starting from natural initial conditions or not. The Higgs has a non-minimal coupling to the Ricci scalar. We confine our attention to the regime where quantum Einstein gravity effects are small in order to have results that are independent of the ultraviolet completion of gravity. At the classical level we find no tuning is required to have a successful Higgs inflation, provided the initial homogeneity condition is satisfied. On the other hand, at the quantum level we obtain that the renormalization of the theory for large non-minimal coupling requires an additional degree of freedom that transforms Higgs inflation into Starobinsky $R^2$ inflation, unless a tuning of the initial values of the running parameters is made.

  8. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits : Reversal by blockade of CRF1 receptors

    NARCIS (Netherlands)

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-01-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the

  9. Olfactory classical conditioning in neonatal mouse pups using thermal stimuli.

    Science.gov (United States)

    Bollen, Bieke; Matrot, Boris; Ramanantsoa, Nelina; Van den Bergh, Omer; D'Hooge, Rudi; Gallego, Jorge

    2012-04-01

    Mouse models are increasingly used to investigate genetic contributions to developmental disorders in children, especially newborns. In particular, early cognitive assessment in newborn mice is critical to evaluate pediatric drug efficacy and toxicity. Unfortunately, methods for behavioral tests in newborn mice are scarce. Therefore, developing such tests for newborn mice is a priority challenge for neurogenetics and pharmacological research. The aim of the present study was to develop a conditioning method well suited to high-throughput cognitive screening in newborn mice. To this end, we developed an odor-preference conditioning test using ambient temperature as an unconditioned stimulus (US) and artificial odors as conditioned stimuli (CS). First, we showed that mouse pups move toward the thermoneutral temperature when offered a choice between a thermoneutral and cold environment, thus showing thermotaxis. Second, we conducted a classical conditioning paradigm in pups aged six to ten days. In terms of central nervous system development, this period corresponds to extreme prematurity to early post-term period in humans. During acquisition, the pups were alternatively exposed to odor CS paired with either cold or warm temperatures. Immediately after acquisition, the pups underwent a two-odor choice test, which showed preference for the odor previously paired with the warm temperature, thus showing conditioning. The proposed paradigm is easy to conduct, and requires modest experimenter interference. The method is well suited for high-throughput screening of early associative disorders in newborn mice.

  10. Gene networks associated with conditional fear in mice identified using a systems genetics approach

    Directory of Open Access Journals (Sweden)

    Eskin Eleazar

    2011-03-01

    Full Text Available Abstract Background Our understanding of the genetic basis of learning and memory remains shrouded in mystery. To explore the genetic networks governing the biology of conditional fear, we used a systems genetics approach to analyze a hybrid mouse diversity panel (HMDP with high mapping resolution. Results A total of 27 behavioral quantitative trait loci were mapped with a false discovery rate of 5%. By integrating fear phenotypes, transcript profiling data from hippocampus and striatum and also genotype information, two gene co-expression networks correlated with context-dependent immobility were identified. We prioritized the key markers and genes in these pathways using intramodular connectivity measures and structural equation modeling. Highly connected genes in the context fear modules included Psmd6, Ube2a and Usp33, suggesting an important role for ubiquitination in learning and memory. In addition, we surveyed the architecture of brain transcript regulation and demonstrated preservation of gene co-expression modules in hippocampus and striatum, while also highlighting important differences. Rps15a, Kif3a, Stard7, 6330503K22RIK, and Plvap were among the individual genes whose transcript abundance were strongly associated with fear phenotypes. Conclusion Application of our multi-faceted mapping strategy permits an increasingly detailed characterization of the genetic networks underlying behavior.

  11. Eyeblink classical conditioning differentiates normal aging from Alzheimer's disease.

    Science.gov (United States)

    Woodruff-Pak, D S

    2001-01-01

    Eyeblink classical conditioning is a useful paradigm for the study of the neurobiology of learning, memory, and aging, which also has application in the differential diagnosis of neurodegenerative diseases expressed in advancing age. Converging evidence from studies of eyeblink conditioning in neurological patients and brain imaging in normal adults document parallels in the neural substrates of this form of associative learning in humans and non-human mammals. Age differences in the short-delay procedure (400 ms CS-US interval) appear in middle age in humans and may be caused at least in part by cerebellar cortical changes such as loss of Purkinje cells. Whereas the hippocampus is not essential for conditioning in the delay procedure, disruption of hippocampal cholinergic neurotransmission impairs acquisition and slows the rate of learning. Alzheimer's disease (AD) profoundly disrupts the hippocampaL cholinergic system, and patients with AD consistently perform poorly in eyeblink conditioning. We hypothesize that disruption of hippocampal cholinergic pathways in AD in addition to age-associated Purkinje cell loss results in severely impaired eyeblink conditioning. The earliest pathology in AD occurs in entorhinal cortical input to hippocampus, and eyeblink conditioning may detect this early disruption before declarative learning and memory circuits become impaired. A case study is presented in which eyeblink conditioning detected impending dementia six years before changes on other screening tests indicated impairment. Because eyeblink conditioning is simple, non-threatening, and non-invasive, it may become a useful addition to test batteries designed to differentiate normal aging from mild cognitive impairment that progresses to AD and AD from other types of dementia.

  12. Role of the Ventral Medial Prefrontal Cortex in Mediating Behavioral Control-Induced Reduction of Later Conditioned Fear

    Science.gov (United States)

    Baratta, Michael V.; Lucero, Thomas R.; Amat, Jose; Watkins, Linda R.; Maier, Steven F.

    2008-01-01

    A prior experience of behavioral control over a stressor interferes with subsequent Pavlovian fear conditioning, and this effect is dependent on the activation of the ventral medial prefrontal cortex (mPFCv) at the time of the initial experience with control. It is unknown whether mPFCv activity is necessary during fear learning and/or testing for…

  13. Within-session analysis of the extinction of pavlovian fear-conditioning using robust regression

    Directory of Open Access Journals (Sweden)

    Vargas-Irwin, Cristina

    2010-06-01

    Full Text Available Traditionally , the analysis of extinction data in fear conditioning experiments has involved the use of standard linear models, mostly ANOVA of between-group differences of subjects that have undergone different extinction protocols, pharmacological manipulations or some other treatment. Although some studies report individual differences in quantities such as suppression rates or freezing percentages, these differences are not included in the statistical modeling. Withinsubject response patterns are then averaged using coarse-grain time windows which can overlook these individual performance dynamics. Here we illustrate an alternative analytical procedure consisting of 2 steps: the estimation of a trend for within-session data and analysis of group differences in trend as main outcome. This procedure is tested on real fear-conditioning extinction data, comparing trend estimates via Ordinary Least Squares (OLS and robust Least Median of Squares (LMS regression estimates, as well as comparing between-group differences and analyzing mean freezing percentage versus LMS slopes as outcomes

  14. Genetics of PTSD: Fear Conditioning as a Model for Future Research.

    Science.gov (United States)

    Amstadter, Ananda B; Nugent, Nicole R; Koenen, Karestan C

    2009-06-01

    In the last decade, the number of publications in psychiatric genetics has nearly tripled but little attention has been paid to the role of genetic factors in the etiology of posttraumatic stress disorder (PTSD). The present review summarizes the current state of genetic research on PTSD. First, we outline information regarding genetic influences provided by family investigations and by twin studies. Second, we propose the fear-conditioning model of PTSD as a framework for the nomination of candidate genes that may be related to the disorder. Third, we review lines of evidence from three neurobiological systems involved in fear conditioning, and we summarize published investigations of genetic variants studied in association with PTSD in these three systems. Finally, we review gene-by-environment interaction research, a promising novel approach to genetic research in PTSD. PMID:19779593

  15. Developmental Effects of Acute, Chronic, and Withdrawal from Chronic Nicotine on Fear Conditioning

    OpenAIRE

    Portugal, George S.; Wilkinson, Derek S.; Turner, Jill R.; Blendy, Julie A; Gould, Thomas J.

    2012-01-01

    Pre-adolescence and adolescence are developmental periods associated with increased vulnerability for tobacco addiction, and exposure to tobacco during these periods may lead to long-lasting changes in behavioral and neuronal plasticity. The present study examined the short- and long-term effects of nicotine and nicotine withdrawal on fear conditioning in pre-adolescent, adolescent, and adult mice, and potential underlying substrates that may mediate the developmental effects of nicotine, suc...

  16. Strain-dependent Effects of Acute, Chronic, and Withdrawal from Chronic Nicotine on Fear Conditioning

    OpenAIRE

    Portugal, George S.; Wilkinson, Derek S.; Justin W Kenney; Sullivan, Colleen; Gould, Thomas J.

    2011-01-01

    The effects of nicotine on cognitive processes such as learning and memory may play an important role in the addictive liability of tobacco. However, it remains unknown whether genetic variability modulates the effects of nicotine on learning and memory. The present study characterized the effects of acute, chronic, and withdrawal from chronic nicotine administration on fear conditioning, somatic signs, and the elevated plus maze in 8 strains of inbred mice. Strain-dependent effects of acute ...

  17. Genetics of PTSD: Fear Conditioning as a Model for Future Research

    OpenAIRE

    Amstadter, Ananda B.; Nugent, Nicole R.; Koenen, Karestan C.

    2009-01-01

    In the last decade, the number of publications in psychiatric genetics has nearly tripled but little attention has been paid to the role of genetic factors in the etiology of posttraumatic stress disorder (PTSD). The present review summarizes the current state of genetic research on PTSD. First, we outline information regarding genetic influences provided by family investigations and by twin studies. Second, we propose the fear-conditioning model of PTSD as a framework for the nomination of c...

  18. Quantum Computer Condition: Stability, Classical Computation and Norms

    CERN Document Server

    Gilbert, G; Thayer, F J; Weinstein, Yu S; Gilbert, Gerald; Hamrick, Michael; Weinstein, Yaakov S.

    2005-01-01

    The Quantum Computer Condition (QCC) provides a rigorous and completely general framework for carrying out analyses of questions pertaining to fault-tolerance in quantum computers. In this paper we apply the QCC to the problem of fluctuations and systematic errors in the values of characteristic parameters in realistic systems. We show that fault-tolerant quantum computation is possible despite variations in these parameters. We also use the QCC to explicitly show that reliable classical computation can be carried out using as input the results of fault-tolerant, but imperfect, quantum computation. Finally, we consider the advantages and disadvantages of the superoperator and diamond norms in connection with application of the QCC to various quantum information-theoretic problems.

  19. CLASSICAL CONDITIONING OF THREE KINDS OF HUMOR IN PUBLICITY

    Directory of Open Access Journals (Sweden)

    CAROLINA M. CIFUENTES

    2006-01-01

    Full Text Available Effects of humor in advertisement published in Colombia were investigated in regards to brands,advertisement, purchase intention, recall and recognition.A simultaneous Classical Conditioning procedure was carried out, using Incongruous, Hostile and Allusivehumor associated to three brands. The procedure was applied to 30 university students. Results revealedthat the three kinds of humor work as unconditioning stimulus, generating positive attitudes towardsadvertisement and brand. Humor influences the purchase intention and recognition, but not the remembranceof brand when compared to neutral advertisement. Incongrous and Hostile Humor generate recognitionand positive attitude towards advertisement and brand. Allusions have a greater effect on purchaseintention than the other ones. Results corroborate the effectiveness of humor as an advertisement tool.

  20. Buchert coarse-graining and the classical energy conditions

    CERN Document Server

    Visser, Matt

    2015-01-01

    So-called "Buchert averaging" is actually a coarse-graining procedure, where fine detail is "smeared out" due to limited spatio-temporal resolution. For technical reasons, (to be explained herein), "averaging" is not really an appropriate term, and I shall consistently describe the process as a "coarse-graining". Because Einstein gravity is nonlinear the coarse-grained Einstein tensor is typically not equal to the Einstein tensor of the coarse-grained spacetime geometry. The discrepancy can be viewed as an "effective" stress-energy, and this "effective" stress-energy often violates the classical energy conditions. To keep otherwise messy technical issues firmly under control, I shall work with conformal-FLRW (CFLRW) cosmologies. These CFLRW-based models are particularly tractable, and are also particularly attractive observationally: the CMB is not distorted. In this CFLRW context one can prove some rigorous theorems regarding the interplay between Buchert coarse-graining, tracelessness of the effective stres...

  1. Differential effects of CB1 receptor agonism in behavioural tests of unconditioned and conditioned fear in adult male rats.

    Science.gov (United States)

    Simone, Jonathan J; Green, Matthew R; Hodges, Travis E; McCormick, Cheryl M

    2015-02-15

    We investigated the effects of the highly selective CB1 receptor agonist ACEA and the CB1 receptor antagonist/inverse agonist AM251 on two behavioural tests of unconditioned fear, the elevated plus maze (EPM) and open field test (OFT), as well as on the recall and extinction of a conditioned auditory fear. Both ACEA and AM251 increased anxiety-like behaviour in the EPM and OFT. There was no effect of either drug on recall of the conditioned fear, and ACEA enhanced and AM251 impaired fear extinction. Further, though both the low (0.1 mg/kg) and high (0.5 mg/kg) dose of ACEA facilitated fear extinction, the low dose attenuated, and the high dose potentiated, fear induced corticosterone release suggesting independent effects of the drug on fear and stress responses. Although the extent to which cannabinoids are anxiogenic or anxiolytic has been proposed to be dose-dependent, these results indicate that the same dose has differential effects across tasks, likely based in differences in sensitivities of CB1 receptors to the agonist in the neural regions subserving unconditioned and conditioned fear.

  2. Contextual change after fear acquisition affects conditioned responding and the time course of extinction learning – Implications for renewal research

    Directory of Open Access Journals (Sweden)

    Rachel eSjouwerman

    2015-12-01

    Full Text Available Context plays a central role in retrieving (fear memories. Accordingly, context manipulations are inherent to most return of fear (ROF paradigms (in particular renewal, involving contextual changes after fear extinction. Context changes are, however, also often embedded during earlier stages of ROF experiments such as context changes between fear acquisition and extinction (e.g. in ABC and ABA renewal. Previous studies using these paradigms have however focused exclusively on the context switch after extinction (i.e. renewal. Thus, the possibility of a general effect of a context switch on conditioned responding that may not be conditional to preceding extinction learning remains unstudied.Hence, the current study investigated the impact of a context switch between fear acquisition and extinction on immediate conditioned responding and on the time-course of extinction learning by using a multimodal approach. A group that underwent contextual change after fear conditioning (AB; n = 36 was compared with a group without a contextual change from acquisition to extinction (AA; n = 149, while measuring autonomic (skin conductance and fear potentiated startle measures and subjective fear ratings. Contextual change between fear acquisition and extinction had a pronounced effect on both immediate conditioned responding and on the time course of extinction learning in skin conductance responses and subjective fear ratings. This may have important implications for the mechanisms underlying and the interpretation of the renewal effect (i.e. contextual switch after extinction. Consequently, future studies should incorporate designs and statistical tests that disentangle general effects of contextual change from genuine ROF effects.

  3. Preparing for an Important Event: Demonstrating the Modern View of Classical Conditioning.

    Science.gov (United States)

    Kohn, Art; Kalat, James W.

    1992-01-01

    Explains a simple classroom demonstration of the modern view of classical conditioning. Suggests that the exercise is a useful demonstration of the view that classical conditioning helps prepare an organism for an upcoming event. Argues that the demonstration can show students that classical conditioning is broader and more intriguing than…

  4. Time course of dorsal and ventral hippocampal involvement in the expression of trace fear conditioning.

    Science.gov (United States)

    Cox, David; Czerniawski, Jennifer; Ree, Fredrick; Otto, Tim

    2013-11-01

    While a number of early studies demonstrated that hippocampal damage attenuates the expression of recent, but not remotely trained tasks, an emerging body of evidence has shown that damage to, or inactivation of, the hippocampus often impairs recall across a wide range of training-testing intervals. Collectively, these data suggest that the time course of hippocampal involvement in the storage or recall of previously-acquired memories may differ according to hippocampal subregion and the particular learning task under consideration. The present study examined the contributions of dorsal (DH) and ventral (VH) hippocampus to the expression of previously-acquired trace fear conditioning, a form of Pavlovian conditioning in which the offset of an initially neutral cue or cues and the onset of an aversive stimulus is separated by a temporal (trace) interval. Specifically, either saline or the GABA-A agonist muscimol was infused into DH or VH prior to testing either 1, 7, 28, or 42 days after trace fear conditioning. The results revealed a marked dissociation: pre-testing inactivation of DH failed to impair performance at any time-point, while pre-testing inactivation of VH impaired performance at all time-points. Importantly, pre-testing inactivation of VH had no effect on the performance of previously-acquired delay conditioning, suggesting that the deficits observed in trace conditioning cannot be attributed to a deficit in performance of the freezing response. Collectively, these data suggest that VH, but not DH, remains a neuroanatomical locus critical to the recall or expression of trace fear conditioning over an extended period of time.

  5. An Overview of Translationally Informed Treatments for Posttraumatic Stress Disorder: Animal Models of Pavlovian Fear Conditioning to Human Clinical Trials.

    Science.gov (United States)

    Bowers, Mallory E; Ressler, Kerry J

    2015-09-01

    Posttraumatic stress disorder manifests after exposure to a traumatic event and is characterized by avoidance/numbing, intrusive symptoms and flashbacks, mood and cognitive disruptions, and hyperarousal/reactivity symptoms. These symptoms reflect dysregulation of the fear system likely caused by poor fear inhibition/extinction, increased generalization, and/or enhanced consolidation or acquisition of fear. These phenotypes can be modeled in animal subjects using Pavlovian fear conditioning, allowing investigation of the underlying neurobiology of normative and pathological fear. Preclinical studies reveal a number of neurotransmitter systems and circuits critical for aversive learning and memory that have informed the development of therapies used in human clinical trials. In this review, we discuss the evidence for a number of established and emerging pharmacotherapies and device-based treatments for posttraumatic stress disorder that have been developed via a bench to bedside translational model.

  6. An Overview of Translationally Informed Treatments for Posttraumatic Stress Disorder: Animal Models of Pavlovian Fear Conditioning to Human Clinical Trials.

    Science.gov (United States)

    Bowers, Mallory E; Ressler, Kerry J

    2015-09-01

    Posttraumatic stress disorder manifests after exposure to a traumatic event and is characterized by avoidance/numbing, intrusive symptoms and flashbacks, mood and cognitive disruptions, and hyperarousal/reactivity symptoms. These symptoms reflect dysregulation of the fear system likely caused by poor fear inhibition/extinction, increased generalization, and/or enhanced consolidation or acquisition of fear. These phenotypes can be modeled in animal subjects using Pavlovian fear conditioning, allowing investigation of the underlying neurobiology of normative and pathological fear. Preclinical studies reveal a number of neurotransmitter systems and circuits critical for aversive learning and memory that have informed the development of therapies used in human clinical trials. In this review, we discuss the evidence for a number of established and emerging pharmacotherapies and device-based treatments for posttraumatic stress disorder that have been developed via a bench to bedside translational model. PMID:26238379

  7. Odor fear conditioning modifies piriform cortex local field potentials both during conditioning and during post-conditioning sleep.

    Directory of Open Access Journals (Sweden)

    Dylan C Barnes

    Full Text Available BACKGROUND: Sleep plays an active role in memory consolidation. Sleep structure (REM/Slow wave activity [SWS] can be modified after learning, and in some cortical circuits, sleep is associated with replay of the learned experience. While the majority of this work has focused on neocortical and hippocampal circuits, the olfactory system may offer unique advantages as a model system for exploring sleep and memory, given the short, non-thalamic pathway from nose to primary olfactory (piriform cortex, and rapid cortex-dependent odor learning. METHODOLOGY/PRINCIPAL FINDINGS: We examined piriform cortical odor responses using local field potentials (LFPs from freely behaving Long-Evans hooded rats over the sleep-wake cycle, and the neuronal modifications that occurred within the piriform cortex both during and after odor-fear conditioning. We also recorded LFPs from naïve animals to characterize sleep activity in the piriform cortex and to analyze transient odor-evoked cortical responses during different sleep stages. Naïve rats in their home cages spent 40% of their time in SWS, during which the piriform cortex was significantly hypo-responsive to odor stimulation compared to awake and REM sleep states. Rats trained in the paired odor-shock conditioning paradigm developed enhanced conditioned odor evoked gamma frequency activity in the piriform cortex over the course of training compared to pseudo-conditioned rats. Furthermore, conditioned rats spent significantly more time in SWS immediately post-training both compared to pre-training days and compared to pseudo-conditioned rats. The increase in SWS immediately after training significantly correlated with the duration of odor-evoked freezing the following day. CONCLUSIONS/SIGNIFICANCE: The rat piriform cortex is hypo-responsive to odors during SWS which accounts for nearly 40% of each 24 hour period. The duration of slow-wave activity in the piriform cortex is enhanced immediately post-conditioning

  8. Low levels of estradiol are associated with elevated conditioned responding during fear extinction and with intrusive memories in daily life.

    Science.gov (United States)

    Wegerer, Melanie; Kerschbaum, Hubert; Blechert, Jens; Wilhelm, Frank H

    2014-12-01

    Posttraumatic stress disorder (PTSD) can be conceptualized as a disorder of emotional memory showing strong (conditioned) responses to trauma reminders and intrusive memories among other symptoms. Women are at greater risk of developing PTSD than men. Recent studies have demonstrated an influence of ovarian steroid hormones in both fear conditioning and intrusive memory paradigms. However, although intrusive memories are considered non-extinguished emotional reactions to trauma reminders, none of the previous studies has investigated effects of ovarian hormones on fear conditioning mechanisms and intrusive memories in conjunction. This may have contributed to an overall inconsistent picture of the role of these hormones in emotional learning and memory. To remedy this, we exposed 37 healthy women with a natural menstrual cycle (during early follicular or luteal cycle phase) to a novel conditioned-intrusion paradigm designed to model real-life traumatic experiences. The paradigm included a differential fear conditioning procedure with short violent film clips as unconditioned stimuli. Intrusive memories about the film clips were assessed ambulatorily on subsequent days. Women with lower levels of estradiol displayed elevated differential conditioned skin conductance responding during fear extinction and showed stronger intrusive memories. The inverse relationship between estradiol and intrusive memories was at least partially accounted for by the conditioned responding observed during fear extinction. Progesterone levels were not associated with either fear acquisition/extinction or with intrusive memories. This suggests that lower levels of estradiol might promote stronger symptoms of PTSD through associative processes. PMID:25463649

  9. Classic conditioning in aged rabbits: delay, trace, and long-delay conditioning.

    Science.gov (United States)

    Solomon, P R; Groccia-Ellison, M E

    1996-06-01

    Young (0.5 years) and aged (2+, 3+, and 4+ years) rabbits underwent acquisition of the classically conditioned nictitating membrane response in a delay (500-ms conditioned stimulus [CS], 400-ms interstimulus interval [ISI]), long-delay (1,000-ms CS, 900-ms ISI), or trace (500-ms CS, 400-ms stimulus-free period) paradigm. Collapsing across age groups, there is a general tendency for animals to acquire trace conditioning more slowly than delay conditioning. Collapsing across conditioning paradigms, there is a general tendency for aged animals to acquire more slowly than younger animals. Of greater significance, however, are the age differences in the different conditioning paradigms. In the delay and long-delay paradigms, significant conditioning deficits first appeared in the 4(+)-year-old group. In the trace conditioning paradigm, significant conditioning deficits became apparent in the 2(+)-year-old animals.

  10. Limbic areas are functionally decoupled and visual cortex takes a more central role during fear conditioning in humans

    OpenAIRE

    Chrysa Lithari; Stephan Moratti; Nathan Weisz

    2016-01-01

    Going beyond the focus on isolated brain regions (e.g. amygdala), recent neuroimaging studies on fear conditioning point to the relevance of a network of mutually interacting brain regions. In the present MEG study we used Graph Theory to uncover changes in the architecture of the brain functional network shaped by fear conditioning. Firstly, induced power analysis revealed differences in local cortical excitability (lower alpha and beta power) between CS+ and CS− localized to somatosensory c...

  11. Eyeblink Classical Conditioning in Alcoholism and Fetal Alcohol Spectrum Disorders.

    Science.gov (United States)

    Cheng, Dominic T; Jacobson, Sandra W; Jacobson, Joseph L; Molteno, Christopher D; Stanton, Mark E; Desmond, John E

    2015-01-01

    Alcoholism is a debilitating disorder that can take a significant toll on health and professional and personal relationships. Excessive alcohol consumption can have a serious impact on both drinkers and developing fetuses, leading to long-term learning impairments. Decades of research in laboratory animals and humans have demonstrated the value of eyeblink classical conditioning (EBC) as a well-characterized model system to study the neural mechanisms underlying associative learning. Behavioral EBC studies in adults with alcohol use disorders and in children with fetal alcohol spectrum disorders report a clear learning deficit in these two patient populations, suggesting alcohol-related damage to the cerebellum and associated structures. Insight into the neural mechanisms underlying these learning impairments has largely stemmed from laboratory animal studies. In this mini-review, we present and discuss exemplary animal findings and data from patient and neuroimaging studies. An improved understanding of the neural mechanisms underlying learning deficits in EBC related to alcoholism and prenatal alcohol exposure has the potential to advance the diagnoses, treatment, and prevention of these and other pediatric and adult disorders.

  12. Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice.

    Directory of Open Access Journals (Sweden)

    Dawn H Loh

    Full Text Available BACKGROUND: Circadian rhythms govern many aspects of physiology and behavior including cognitive processes. Components of neural circuits involved in learning and memory, e.g., the amygdala and the hippocampus, exhibit circadian rhythms in gene expression and signaling pathways. The functional significance of these rhythms is still not understood. In the present study, we sought to determine the impact of transiently disrupting the circadian system by shifting the light/dark (LD cycle. Such "jet lag" treatments alter daily rhythms of gene expression that underlie circadian oscillations as well as disrupt the synchrony between the multiple oscillators found within the body. METHODOLOGY/PRINCIPAL FINDINGS: We subjected adult male C57Bl/6 mice to a contextual fear conditioning protocol either before or after acute phase shifts of the LD cycle. As part of this study, we examined the impact of phase advances and phase delays, and the effects of different magnitudes of phase shifts. Under all conditions tested, we found that recall of fear conditioned behavior was specifically affected by the jet lag. We found that phase shifts potentiated the stress-evoked corticosterone response without altering baseline levels of this hormone. The jet lag treatment did not result in overall sleep deprivation, but altered the temporal distribution of sleep. Finally, we found that prior experience of jet lag helps to compensate for the reduced recall due to acute phase shifts. CONCLUSIONS/SIGNIFICANCE: Acute changes to the LD cycle affect the recall of fear-conditioned behavior. This suggests that a synchronized circadian system may be broadly important for normal cognition and that the consolidation of memories may be particularly sensitive to disruptions of circadian timing.

  13. Systemic or Intra-Amygdala Injection of a Benzodiazepine (Midazolam) Impairs Extinction but Spares Re-Extinction of Conditioned Fear Responses

    Science.gov (United States)

    Hart, Genevra; Harris, Justin A.; Westbrook, R. Frederick

    2009-01-01

    Rats were subjected to one or two cycles of fear conditioning and extinction, injected with a benzodiazepine, midazolam, before the first or second extinction, and tested for long-term inhibition of fear responses (freezing). In Experiment 1, inhibition of context-conditioned fear was spared when midazolam was injected before the second…

  14. Extinction reverses olfactory fear-conditioned increases in neuron number and glomerular size.

    Science.gov (United States)

    Morrison, Filomene G; Dias, Brian G; Ressler, Kerry J

    2015-10-13

    Although much work has investigated the contribution of brain regions such as the amygdala, hippocampus, and prefrontal cortex to the processing of fear learning and memory, fewer studies have examined the role of sensory systems, in particular the olfactory system, in the detection and perception of cues involved in learning and memory. The primary sensory receptive field maps of the olfactory system are exquisitely organized and respond dynamically to cues in the environment, remaining plastic from development through adulthood. We have previously demonstrated that olfactory fear conditioning leads to increased odorant-specific receptor representation in the main olfactory epithelium and in glomeruli within the olfactory bulb. We now demonstrate that olfactory extinction training specific to the conditioned odor stimulus reverses the conditioning-associated freezing behavior and odor learning-induced structural changes in the olfactory epithelium and olfactory bulb in an odorant ligand-specific manner. These data suggest that learning-induced freezing behavior, structural alterations, and enhanced neural sensory representation can be reversed in adult mice following extinction training.

  15. Cannabinoid modulation of chronic mild stress-induced selective enhancement of trace fear conditioning in adolescent rats.

    Science.gov (United States)

    Reich, Christian G; Iskander, Anthony N; Weiss, Michael S

    2013-10-01

    History of stress is considered a major risk factor for the development of major depression and posttraumatic stress disorder (PTSD). Elucidating the neurobiological mechanisms of Pavlovian fear conditioning may provide insight into the etiology of PTSD. In the current study, adolescent male Sprague-Dawley rats were exposed to 3 weeks of a chronic-mild-unpredictable stress (CMS) protocol. Immediately following the CMS, the animals were subjected to hippocampal-dependent (trace and contextual) and hippocampal-independent (delay) fear conditioning. CMS exposure enhanced trace freezing behavior compared to non-stress controls. This effect was not observed in contextual or delay conditioned animals. Given that the endocannabinoid system is negatively affected by CMS procedures, separate groups of stressed rats were administered the CB1 receptor agonist, ACEA (0.1 mg/kg), prior to trace fear conditioning or a memory-recall test. Regardless of administration time, ACEA significantly reduced freezing behavior in stressed animals. Furthermore, when administered during the first memory recall test, ACEA enhanced long-term extinction in both stress and non-stress groups. The results demonstrate that chronic unpredictable stress selectively enhances hippocampal-dependent episodic fear memories. Pathologies of the episodic memory and fear response may increase the susceptibility of developing PTSD. Reduction in fear responses via exogenous activation of the CB1 receptor suggests that a deficiency in the endocannabinoid system contributes to this pathology.

  16. Fear-potentiated startle processing in humans: Parallel fMRI and orbicularis EMG assessment during cue conditioning and extinction.

    Science.gov (United States)

    Lindner, Katja; Neubert, Jörg; Pfannmöller, Jörg; Lotze, Martin; Hamm, Alfons O; Wendt, Julia

    2015-12-01

    Studying neural networks and behavioral indices such as potentiated startle responses during fear conditioning has a long tradition in both animal and human research. However, most of the studies in humans do not link startle potentiation and neural activity during fear acquisition and extinction. Therefore, we examined startle blink responses measured with electromyography (EMG) and brain activity measured with functional MRI simultaneously during differential conditioning. Furthermore, we combined these behavioral fear indices with brain network activity by analyzing the brain activity evoked by the startle probe stimulus presented during conditioned visual threat and safety cues as well as in the absence of visual stimulation. In line with previous research, we found a fear-induced potentiation of the startle blink responses when elicited during a conditioned threat stimulus and a rapid decline of amygdala activity after an initial differentiation of threat and safety cues in early acquisition trials. Increased activation during processing of threat cues was also found in the anterior insula, the anterior cingulate cortex (ACC), and the periaqueductal gray (PAG). More importantly, our results depict an increase of brain activity to probes presented during threatening in comparison to safety cues indicating an involvement of the anterior insula, the ACC, the thalamus, and the PAG in fear-potentiated startle processing during early extinction trials. Our study underlines that parallel assessment of fear-potentiated startle in fMRI paradigms can provide a helpful method to investigate common and distinct processing pathways in humans and animals and, thus, contributes to translational research.

  17. Neuropeptide Y input to the rat basolateral amygdala complex and modulation by conditioned fear.

    Science.gov (United States)

    Leitermann, Randy J; Rostkowski, Amanda B; Urban, Janice H

    2016-08-15

    Within the basolateral amygdaloid complex (BLA), neuropeptide Y (NPY) buffers against protracted anxiety and fear. Although the importance of NPY's actions in the BLA is well documented, little is known about the source(s) of NPY fibers to this region. The current studies identified sources of NPY projections to the BLA by using a combination of anatomical and neurochemical approaches. NPY innervation of the BLA was assessed in rats by examining the degree of NPY coexpression within interneurons or catecholaminergic fibers with somatostatin and tyrosine hydroxylase (TH) or dopamine β-hydroxylase (DβH), respectively. Numerous NPY(+) /somatostatin(+) and NPY(+) /somatostatin(-) fibers were observed, suggesting at least two populations of NPY fibers within the BLA. No colocalization was noted between NPY and TH or DβH immunoreactivities. Additionally, Fluorogold (FG) retrograde tracing with immunohistochemistry was used to identify the precise origin of NPY projections to the BLA. FG(+) /NPY(+) cells were identified within the amygdalostriatal transition area (AStr) and stria terminalis and scattered throughout the bed nucleus of the stria terminalis. The subpopulation of NPY neurons in the AStr also coexpressed somatostatin. Subjecting animals to a conditioned fear paradigm increased NPY gene expression within the AStr, whereas no changes were observed within the BLA or stria terminalis. Overall, these studies identified limbic regions associated with stress circuits providing NPY input to the BLA and demonstrated that a unique NPY projection from the AStr may participate in the regulation of conditioned fear. J. Comp. Neurol. 524:2418-2439, 2016. © 2016 Wiley Periodicals, Inc. PMID:26779765

  18. Effect of the coadministration of citalopram with mirtazapine or atipamezole on rat contextual conditioned fear

    Directory of Open Access Journals (Sweden)

    Masuda T

    2014-02-01

    Full Text Available Takahiro Masuda,1,2 Takeshi Inoue,1 Yan An,1 Naoki Takamura,1,3 Shin Nakagawa,1 Yuji Kitaichi,1 Tsukasa Koyama,1 Ichiro Kusumi1 1Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo Japan; 2Medical Affairs, Dainippon Sumitomo Pharma, Co, Ltd, Tokyo, Japan; 3Regenerative and Cellular Medicine Office, Dainippon Sumitomo Pharma, Co, Ltd, Osaka, Japan Background: Mirtazapine, a noradrenergic and specific serotonergic antidepressant, which blocks the α2-adrenergic autoreceptors and heteroreceptors, has shown anxiolytic properties in clinical trials and preclinical animal experiments. The addition of mirtazapine to selective serotonin reuptake inhibitors (SSRIs is clinically suggested to be more effective for anxiety disorders. In this study, we examined the combined effects of mirtazapine and citalopram, an SSRI, on the freezing behavior of rats, which was induced by contextual conditioned fear as an index of anxiety or fear. Methods: Male Sprague Dawley rats individually received footshocks in a shock chamber, and 24 hours later, they were given citalopram and/or mirtazapine injections. One hour after citalopram and 30 minutes after mirtazapine administration, freezing behavior was analyzed in the same shock chamber without shocks. Results: Mirtazapine decreased freezing in a dose-dependent manner, which is consistent with a previous report; it also enhanced an anxiolytic-like effect at a high dose (30 mg/kg of citalopram. Because mirtazapine blocks α2-adrenoreceptors, the combined effect of atipamezole, a selective α2 receptor antagonist, with citalopram was also examined. Similar to mirtazapine, atipamezole reduced freezing dose-dependently, but the enhancement of citalopram's effects by atipamezole was not clear when compared with mirtazapine. Conclusion: The present findings suggest that mirtazapine has an anxiolytic-like effect and may enhance the anxiolytic-like effect of SSRIs, but this enhancement may not be

  19. Long-term memory for pavlovian fear conditioning requires dopamine in the nucleus accumbens and basolateral amygdala.

    Directory of Open Access Journals (Sweden)

    Jonathan P Fadok

    Full Text Available The neurotransmitter dopamine (DA is essential for learning in a pavlovian fear conditioning paradigm known as fear-potentiated startle (FPS. Mice lacking the ability to synthesize DA fail to learn the association between the conditioned stimulus and the fear-inducing footshock. Previously, we demonstrated that restoration of DA synthesis to neurons of the ventral tegmental area (VTA was sufficient to restore FPS. Here, we used a target-selective viral restoration approach to determine which mesocorticolimbic brain regions receiving DA signaling from the VTA require DA for FPS. We demonstrate that restoration of DA synthesis to both the basolateral amygdala (BLA and nucleus accumbens (NAc is required for long-term memory of FPS. These data provide crucial insight into the dopamine-dependent circuitry involved in the formation of fear-related memory.

  20. Using the conditioned fear stress (CFS) animal model to understand the neurobiological mechanisms and pharmacological treatment of anxiety

    OpenAIRE

    Li, Xiaobai

    2012-01-01

    Summary The mechanisms underlying the etiology and pathophysiology of anxiety disorders — the most prevalent class of mental disorders — remain unclear. Over the last 30 years investigators have used the animal model of conditioned fear stress (CFS) to investigate the brain structures and neurotransmitter systems involved in aversive emotional learning and memory. Recent studies have focused on the neuronal circuitry and cellular mechanisms of fearful emotional experiences. This review descri...

  1. Estradiol levels in women predict skin conductance response but not valence and expectancy ratings in conditioned fear extinction.

    Science.gov (United States)

    White, Emily C; Graham, Bronwyn M

    2016-10-01

    Anxiety disorders are more prevalent in women than men. One contributing factor may be the sex hormone estradiol, which is known to impact the long term recall of conditioned fear extinction, a laboratory procedure that forms the basis of exposure therapy for anxiety disorders. To date, the literature examining estradiol and fear extinction in humans has focused primarily on physiological measures of fear, such as skin conductance response (SCR) and fear potentiated startle. This is surprising, given that models of anxiety identify at least three important components: physiological symptoms, cognitive beliefs, and avoidance behavior. To help address this gap, we exposed women with naturally high (n=20) or low estradiol (n=19), women using hormonal contraceptives (n=16), and a male control group (n=18) to a fear extinction task, and measured SCR, US expectancy and CS valence ratings. During extinction recall, low estradiol was associated with greater recovery of SCR, but was not related to US expectancy or CS evaluation. Importantly, women using hormonal contraceptives showed a dissociation between SCR and cognitive beliefs: they exhibited a greater recovery of SCR during extinction recall, yet reported similar US expectancy and CS valence ratings to the other female groups. This divergence underscores the importance of assessing multiple measures of fear when examining the role of estradiol in human fear extinction, especially when considering the potential of estradiol as an enhancement for psychological treatments for anxiety disorders. PMID:27544848

  2. Impaired extinction of fear conditioning after REM deprivation is magnified by rearing in an enriched environment.

    Science.gov (United States)

    Hunter, Amy Silvestri

    2015-07-01

    Evidence from both human and animal studies indicates that rapid eye movement sleep (REM) is essential for the acquisition and retention of information, particularly of an emotional nature. Learning and memory can also be impacted by manipulation of housing condition such as exposure to an enriched environment (EE). This study investigated the effects of REM deprivation and EE, both separately and combined, on the extinction of conditioned fear in rats. Consistent with prior studies, conditioning was enhanced in EE-reared rats and extinction was impaired in REM deprived rats. In addition, rats exposed to both REM deprivation and EE showed the greatest impairment in extinction, with effects persisting through the first two days of extinction training. This study is the first to explore the combination of REM deprivation and EE and suggests that manipulations that alter sleep, particularly REM, can have persisting deleterious effects on emotional memory processing.

  3. Dissociation of learned helplessness and fear conditioning in mice: a mouse model of depression.

    Directory of Open Access Journals (Sweden)

    Dominic Landgraf

    Full Text Available The state of being helpless is regarded as a central aspect of depression, and therefore the learned helplessness paradigm in rodents is commonly used as an animal model of depression. The term 'learned helplessness' refers to a deficit in escaping from an aversive situation after an animal is exposed to uncontrollable stress specifically, with a control/comparison group having been exposed to an equivalent amount of controllable stress. A key feature of learned helplessness is the transferability of helplessness to different situations, a phenomenon called 'trans-situationality'. However, most studies in mice use learned helplessness protocols in which training and testing occur in the same environment and with the same type of stressor. Consequently, failures to escape may reflect conditioned fear of a particular environment, not a general change of the helpless state of an animal. For mice, there is no established learned helplessness protocol that includes the trans-situationality feature. Here we describe a simple and reliable learned helplessness protocol for mice, in which training and testing are carried out in different environments and with different types of stressors. We show that with our protocol approximately 50% of mice develop learned helplessness that is not attributable to fear conditioning.

  4. The role of "interoceptive" fear conditioning in the development of panic disorder.

    Science.gov (United States)

    De Cort, Klara; Griez, Eric; Büchler, Marjolein; Schruers, Koen

    2012-03-01

    More than 20% of the general population experience a panic attack at least once in their lives; however, only a minority goes on to develop panic disorder (PD). Conditioning mechanisms have been proposed to explain this evolution in persons who are susceptible to developing panic disorder upon a "traumatic" panic attack. According to preparedness theory, some cues are more likely to condition than others, namely, those referring to internal, bodily signals of danger. The aim of the present study was to test this theory in a differential conditioning paradigm, making use of scripts referring to different internal, bodily sensations as conditioned stimulus (CS) and inhalation of 35% CO(2) as unconditioned stimulus (UCS). Thirty-three healthy volunteers were assigned to three scripts conditions: "suffocation," "neutral," or "urgency." During acquisition, one of two versions of a particular script was always followed by an inhalation of 35% CO(2) (CS+) and the other by room air (CS-). Acquisition was followed by a test phase, where only inhalations of room air were administered. In line with our hypothesis, only participants in the suffocation condition exhibited a selective conditioning effect. They were more fearful and showed a significantly higher increase in tidal volume than participants in the two control conditions. Results are discussed with relation to interoceptive conditioning, preparedness, and the possible role of tidal volume in PD. PMID:22304891

  5. Immediate Extinction Causes a Less Durable Loss of Performance than Delayed Extinction following Either Fear or Appetitive Conditioning

    Science.gov (United States)

    Woods, Amanda M.; Bouton, Mark E.

    2008-01-01

    Five experiments with rat subjects compared the effects of immediate and delayed extinction on the durability of extinction learning. Three experiments examined extinction of fear conditioning (using the conditioned emotional response method), and two experiments examined extinction of appetitive conditioning (using the food-cup entry method). In…

  6. Reinstatement of Extinguished Conditioned Responses and Negative Stimulus Valence as a Pathway to Return of Fear in Humans

    Science.gov (United States)

    Dirikx, Trinette; Hermans, Dirk; Vansteenwegen, Debora; Baeyens, Frank; Eelen, Paul

    2004-01-01

    The present study investigated reinstatement of conditioned responses in humans by using a differential Pavlovian conditioning procedure. Evidence for reinstatement was established in a direct (fear rating) and in an indirect measure (secondary reaction time task) of conditioning. Moreover, the amount of reinstatement in the secondary reaction…

  7. Pre-Training Reversible Inactivation of the Basal Amygdala (BA Disrupts Contextual, but Not Auditory, Fear Conditioning, in Rats.

    Directory of Open Access Journals (Sweden)

    Elisa Mari Akagi Jordão

    Full Text Available The basolateral amygdala complex (BLA, including the lateral (LA, basal (BA and accessory basal (AB nuclei, is involved in acquisition of contextual and auditory fear conditioning. The BA is one of the main targets for hippocampal information, a brain structure critical for contextual learning, which integrates several discrete stimuli into a single configural representation. Congruent with the hodology, selective neurotoxic damage to the BA results in impairments in contextual, but not auditory, fear conditioning, similarly to the behavioral impairments found after hippocampal damage. This study evaluated the effects of muscimol-induced reversible inactivation of the BA during a simultaneous contextual and auditory fear conditioning training on later fear responses to both the context and the tone, tested separately, without muscimol administration. As compared to control rats micro-infused with vehicle, subjects micro-infused with muscimol before training exhibited, during testing without muscimol, significant reduction of freezing responses to the conditioned context, but not to the conditioned tone. Therefore, reversible inactivation of the BA during training impaired contextual, but not auditory fear conditioning, thus confirming and extending similar behavioral observations following selective neurotoxic damage to the BA and, in addition, revealing that this effect is not related to the lack of a functional BA during testing.

  8. A pragmatic comparison of noise burst and electric shock unconditioned stimuli for fear conditioning research with many trials.

    Science.gov (United States)

    Sperl, Matthias F J; Panitz, Christian; Hermann, Christiane; Mueller, Erik M

    2016-09-01

    Several methods that are promising for studying the neurophysiology of fear conditioning (e.g., EEG, MEG) require a high number of trials to achieve an adequate signal-to-noise ratio. While electric shock and white noise burst are among the most commonly used unconditioned stimuli (US) in conventional fear conditioning studies with few trials, it is unknown whether these stimuli are equally well suited for paradigms with many trials. Here, N = 32 participants underwent a 260-trial differential fear conditioning and extinction paradigm with a 240-trial recall test 24 h later and neutral faces as conditioned stimuli. In a between-subjects design, either white noise bursts (n = 16) or electric shocks (n = 16) served as US, and intensities were determined using the most common procedure for each US (i.e., a fixed 95 dB noise burst and a work-up procedure for electric shocks, respectively). In addition to differing US types, groups also differed in closely linked US-associated characteristics (e.g., calibration methods, stimulus intensities, timing). Subjective ratings (arousal/valence), skin conductance, and evoked heart period changes (i.e., fear bradycardia) indicated more reliable, extinction-resistant, and stable conditioning in the white noise burst versus electric shock group. In fear conditioning experiments where many trials are presented, white noise burst should serve as US.

  9. A NMDA receptor antagonist, MK-801 impairs consolidating extinction of auditory conditioned fear responses in a Pavlovian model.

    Directory of Open Access Journals (Sweden)

    Jun-Li Liu

    Full Text Available BACKGROUND: In auditory fear conditioning, repeated presentation of the tone in the absence of shock leads to extinction of the acquired fear responses. The glutamate N-methyl-D-aspartate receptor (NMDAR is thought to be involved in the extinction of the conditioned fear responses, but its detailed role in initiating and consolidating or maintaining the fear extinction memory is unclear. Here we investigated this issue by using a NMDAR antagonist, MK-801. METHODS/MAIN FINDINGS: The effects of immediate (beginning at 10 min after the conditioning and delayed (beginning at 24 h after conditioning extinctions were first compared with the finding that delayed extinction caused a better and long-lasting (still significant on the 20(th day after extinction depression on the conditioned fear responses. In a second experiment, MK-801 was intraperitoneally (i.p. injected at 40 min before, 4 h or 12 h after the delayed extinction, corresponding to critical time points for initiating, consolidating or maintaining the fear extinction memory. i.p. injection of MK-801 at either 40 min before or 4 h after delayed extinction resulted in an impairment of initiating and consolidating fear extinction memory, which caused a long lasting increased freezing score that was still significant on the 7th day after extinction, compared with extinction group. However, MK-801 administered at 12 h after the delayed extinction, when robust consolidation has been occurred and stabilized, did not affect the established extinction memory. Furthermore, the changed freezing behaviors was not due to an alteration in general anxiety levels, since MK-801 treatment had no effect on the percentage of open-arm time or open-arm entries in an Elevated Plus Maze (EPM task. CONCLUSIONS/SIGNIFICANCE: Our data suggested that the activation of NMDARs plays important role in initiation and consolidation but not maintenance of fear extinction memory. Together with the fact that NMDA receptor is

  10. Fear conditioning in an abdominal pain model: neural responses during associative learning and extinction in healthy subjects.

    Directory of Open Access Journals (Sweden)

    Joswin Kattoor

    Full Text Available Fear conditioning is relevant for elucidating the pathophysiology of anxiety, but may also be useful in the context of chronic pain syndromes which often overlap with anxiety. Thus far, no fear conditioning studies have employed aversive visceral stimuli from the lower gastrointestinal tract. Therefore, we implemented a fear conditioning paradigm to analyze the conditioned response to rectal pain stimuli using fMRI during associative learning, extinction and reinstatement. In N = 21 healthy humans, visual conditioned stimuli (CS(+ were paired with painful rectal distensions as unconditioned stimuli (US, while different visual stimuli (CS(- were presented without US. During extinction, all CSs were presented without US, whereas during reinstatement, a single, unpaired US was presented. In region-of-interest analyses, conditioned anticipatory neural activation was assessed along with perceived CS-US contingency and CS unpleasantness. Fear conditioning resulted in significant contingency awareness and valence change, i.e., learned unpleasantness of a previously neutral stimulus. This was paralleled by anticipatory activation of the anterior cingulate cortex, the somatosensory cortex and precuneus (all during early acquisition and the amygdala (late acquisition in response to the CS(+. During extinction, anticipatory activation of the dorsolateral prefrontal cortex to the CS(- was observed. In the reinstatement phase, a tendency for parahippocampal activation was found. Fear conditioning with rectal pain stimuli is feasible and leads to learned unpleasantness of previously neutral stimuli. Within the brain, conditioned anticipatory activations are seen in core areas of the central fear network including the amygdala and the anterior cingulate cortex. During extinction, conditioned responses quickly disappear, and learning of new predictive cue properties is paralleled by prefrontal activation. A tendency for parahippocampal activation during

  11. Inactivation of the central nucleus of the amygdala blocks classical conditioning but not conditioning-specific reflex modification of rabbit heart rate.

    Science.gov (United States)

    Burhans, Lauren B; Schreurs, Bernard G

    2013-02-01

    Heart rate (HR) conditioning in rabbits is a widely used model of classical conditioning of autonomic responding that is noted for being similar to the development of conditioned heart rate slowing (bradycardia) in humans. We have shown previously that in addition to HR changes to a tone conditioned stimulus (CS), the HR reflex itself can undergo associative change called conditioning-specific reflex modification (CRM) that manifests when tested in the absence of the CS. Because CRM resembles the conditioned bradycardic response to the CS, we sought to determine if HR conditioning and CRM share a common neural substrate. The central nucleus of the amygdala (CeA) is a critical part of the pathway through which conditioned bradycardia is established. To test whether the CeA is also involved in the acquisition and/or expression of CRM, we inactivated the CeA with muscimol during HR conditioning or CRM testing. CeA inactivation blocked HR conditioning without completely preventing CRM acquisition or expression. These results suggest that the CeA may therefore only play a modulatory role in CRM. Theories on the biological significance of conditioned bradycardia suggest that it may represent a state of hypervigilance that facilitates the detection of new and changing contingencies in the environment. We relate these ideas to our results and discuss how they may be relevant to the hypersensitivity observed in fear conditioning disorders like post-traumatic stress.

  12. Maladaptive behavioral consequences of conditioned fear-generalization: a pronounced, yet sparsely studied, feature of anxiety pathology.

    Science.gov (United States)

    van Meurs, Brian; Wiggert, Nicole; Wicker, Isaac; Lissek, Shmuel

    2014-06-01

    Fear-conditioning experiments in the anxiety disorders focus almost exclusively on passive-emotional, Pavlovian conditioning, rather than active-behavioral, instrumental conditioning. Paradigms eliciting both types of conditioning are needed to study maladaptive, instrumental behaviors resulting from Pavlovian abnormalities found in clinical anxiety. One such Pavlovian abnormality is generalization of fear from a conditioned danger-cue (CS+) to resembling stimuli. Though lab-based findings repeatedly link overgeneralized Pavlovian-fear to clinical anxiety, no study assesses the degree to which Pavlovian overgeneralization corresponds with maladaptive, overgeneralized instrumental-avoidance. The current effort fills this gap by validating a novel fear-potentiated startle paradigm including Pavlovian and instrumental components. The paradigm is embedded in a computer game during which shapes appear on the screen. One shape paired with electric-shock serves as CS+, and other resembling shapes, presented in the absence of shock, serve as generalization stimuli (GSs). During the game, participants choose whether to behaviorally avoid shock at the cost of poorer performance. Avoidance during CS+ is considered adaptive because shock is a real possibility. By contrast, avoidance during GSs is considered maladaptive because shock is not a realistic prospect and thus unnecessarily compromises performance. Results indicate significant Pavlovian-instrumental relations, with greater generalization of Pavlovian fear associated with overgeneralization of maladaptive instrumental-avoidance.

  13. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning.

    Science.gov (United States)

    Schafe, G E; Atkins, C M; Swank, M W; Bauer, E P; Sweatt, J D; LeDoux, J E

    2000-11-01

    Although much has been learned about the neurobiological mechanisms underlying Pavlovian fear conditioning at the systems and cellular levels, relatively little is known about the molecular mechanisms underlying fear memory consolidation. The present experiments evaluated the role of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling cascade in the amygdala during Pavlovian fear conditioning. We first show that ERK/MAPK is transiently activated-phosphorylated in the amygdala, specifically the lateral nucleus (LA), at 60 min, but not 15, 30, or 180 min, after conditioning, and that this activation is attributable to paired presentations of tone and shock rather than to nonassociative auditory stimulation, foot shock sensitization, or unpaired tone-shock presentations. We next show that infusions of U0126, an inhibitor of ERK/MAPK activation, aimed at the LA, dose-dependently impair long-term memory of Pavlovian fear conditioning but leaves short-term memory intact. Finally, we show that bath application of U0126 impairs long-term potentiation in the LA in vitro. Collectively, these results demonstrate that ERK/MAPK activation is necessary for both memory consolidation of Pavlovian fear conditioning and synaptic plasticity in the amygdala.

  14. Exploratory studies of classical conditioning of the preoral cavity in harnessed carpenter ants (Camponotus pennsylvanicus).

    Science.gov (United States)

    Sauer, Dustin L; Abramson, Charles I; Lawson, Adam L

    2002-06-01

    An attempt was made to classically condition the mouthparts of harnessed worker ants (Camponotus pennsylvanicus) in anticipation of feeding. Experiments were designed to investigate classical conditioning with one CS, discrimination between two CSs, and pseudoconditioning. Analysis indicated a small acquisition effect that could be accounted for by pseudoconditioning. The preparation can be used to study nonassociative learning and some instrumental conditioning situations. PMID:12090495

  15. Extending In Vitro Conditioning in "Aplysia" to Analyze Operant and Classical Processes in the Same Preparation

    Science.gov (United States)

    Brembs, Bjorn; Baxter, Douglas A.; Byrne, John H.

    2004-01-01

    Operant and classical conditioning are major processes shaping behavioral responses in all animals. Although the understanding of the mechanisms of classical conditioning has expanded significantly, the understanding of the mechanisms of operant conditioning is more limited. Recent developments in "Aplysia" are helping to narrow the gap in the…

  16. A Classical Conditioning Procedure for the Hearing Assessment of Multiply Handicapped Persons.

    Science.gov (United States)

    Lancioni, Giulio E.; And Others

    1989-01-01

    Hearing assessments of multiply handicapped children/adolescents were conducted using classical conditioning (with an air puff as unconditioned stimulus) and operant conditioning (with a modified visual reinforcement audiometry procedure or edible reinforcement). Findings indicate that classical conditioning was successful with 21 of the 23…

  17. Exploratory studies of classical conditioning of the preoral cavity in harnessed carpenter ants (Camponotus pennsylvanicus).

    Science.gov (United States)

    Sauer, Dustin L; Abramson, Charles I; Lawson, Adam L

    2002-06-01

    An attempt was made to classically condition the mouthparts of harnessed worker ants (Camponotus pennsylvanicus) in anticipation of feeding. Experiments were designed to investigate classical conditioning with one CS, discrimination between two CSs, and pseudoconditioning. Analysis indicated a small acquisition effect that could be accounted for by pseudoconditioning. The preparation can be used to study nonassociative learning and some instrumental conditioning situations.

  18. Systemic mifepristone blocks reconsolidation of cue-conditioned fear; propranolol prevents this effect.

    Science.gov (United States)

    Pitman, Roger K; Milad, Mohammed R; Igoe, Sarah A; Vangel, Mark G; Orr, Scott P; Tsareva, Alina; Gamache, Karine; Nader, Karim

    2011-08-01

    Reducing reconsolidation of reactivated traumatic memories may offer a novel pharmacological treatment for posttraumatic stress disorder (PTSD). Preclinical research is needed to identify candidate drugs. We evaluated the ability of postreactivation mifepristone (RU38486, a glucocorticoid antagonist), alone and in combination with propranolol (a beta-adrenergic blocker), both given systemically, to reduce cue-conditioned fear in rats. On Day 1, a 30-s tone conditioned stimulus (CS) was paired with an electric shock unconditioned stimulus (US). On Day 2, the CS was presented without the US (reactivation), and the freezing conditioned response (CR) was measured. This was immediately followed by subcutaneous injection of vehicle, mifepristone 30 mg/kg, propranolol 10 mg/kg, or both. On Day 3, the CR was again measured as a test of postreactivation long-term memory (PR-LTM). On Day 10, the CR was again measured to evaluate spontaneous recovery. On Day 11, the US was presented alone (reinstatement). On Day 12, the CR was again measured. A fifth group received mifepristone without the CS presentation (nonreactivation) on Day 2. A sixth group was tested four hours after the Day 2 mifepristone injection to measure postreactivation short-term memory. Postreactivation, but not nonreactivation, mifepristone produced a decrement in the CR that did not undergo spontaneous recovery and underwent only modest reinstatement. Mifepristone did not exert its effect when administered concurrently with propranolol. Postreactivation mifepristone did not impair short-term memory. Systemic mifepristone blocks the reconsolidation of cue-conditioned fear in rats. Concurrent administration of propranolol prevents this effect. Postreactivation mifepristone may be a promising treatment for PTSD, but not necessarily in combination with propranolol. PMID:21688892

  19. Encoding of fear learning and memory in distributed neuronal circuits.

    Science.gov (United States)

    Herry, Cyril; Johansen, Joshua P

    2014-12-01

    How sensory information is transformed by learning into adaptive behaviors is a fundamental question in neuroscience. Studies of auditory fear conditioning have revealed much about the formation and expression of emotional memories and have provided important insights into this question. Classical work focused on the amygdala as a central structure for fear conditioning. Recent advances, however, have identified new circuits and neural coding strategies mediating fear learning and the expression of fear behaviors. One area of research has identified key brain regions and neuronal coding mechanisms that regulate the formation, specificity and strength of fear memories. Other work has discovered critical circuits and neuronal dynamics by which fear memories are expressed through a medial prefrontal cortex pathway and coordinated activity across interconnected brain regions. Here we review these recent advances alongside prior work to provide a working model of the extended circuits and neuronal coding mechanisms mediating fear learning and memory.

  20. Encoding of fear learning and memory in distributed neuronal circuits.

    Science.gov (United States)

    Herry, Cyril; Johansen, Joshua P

    2014-12-01

    How sensory information is transformed by learning into adaptive behaviors is a fundamental question in neuroscience. Studies of auditory fear conditioning have revealed much about the formation and expression of emotional memories and have provided important insights into this question. Classical work focused on the amygdala as a central structure for fear conditioning. Recent advances, however, have identified new circuits and neural coding strategies mediating fear learning and the expression of fear behaviors. One area of research has identified key brain regions and neuronal coding mechanisms that regulate the formation, specificity and strength of fear memories. Other work has discovered critical circuits and neuronal dynamics by which fear memories are expressed through a medial prefrontal cortex pathway and coordinated activity across interconnected brain regions. Here we review these recent advances alongside prior work to provide a working model of the extended circuits and neuronal coding mechanisms mediating fear learning and memory. PMID:25413091

  1. Effect of the NMDA antagonist MK-801 on latent inhibition of fear conditioning.

    Science.gov (United States)

    Traverso, Luis M; Ruiz, Gabriel; De la Casa, Luis G

    2012-10-01

    N-methyl-D-aspartate (NMDA) receptors seem to play a central role in learning and memory processes involved in Latent Inhibition (LI). In fact, MK-801, a non-competitive NMDA receptor antagonist, has proved its effectiveness as a drug for attenuating LI when administered before or after stimulus preexposure and conditioning stages. This paper presents three experiments designed to analyze the effect of MK-801 on LI when the drug is administered before (Experiment 1A) or after (Experiment 1B) preexposure and conditioning stages with a conditioned emotional response procedure. Additionally, we analyze the effect of the drug when it was administered before preexposure, before conditioning or before both phases (Experiment 2). The results show that the effect of the drug varied as a function of the dose (with only the highest dose being effective), the moment of administration (with only the drug administered before the experimental treatments being effective), and the phase of procedure (reducing LI when the drug was administered only at preexposure, and disrupting fear conditioning when administered at conditioning). These differences may be due to several factors ranging from the role played by NMDA receptors in the processing of stimuli of different sensorial modalities to the molecular processes triggered by drug administration.

  2. Consequences of adolescent ethanol exposure in male Sprague-Dawley rats on fear conditioning and extinction in adulthood

    Science.gov (United States)

    Broadwater, Margaret A.

    Some evidence suggests that adolescents are more vulnerable than adults to alcohol-induced cognitive deficits and that these deficits may persist into adulthood. Five experiments were conducted to assess long-term consequences of ethanol exposure on tone and context Pavlovian fear conditioning in male Sprague-Dawley rats. Experiment 1 examined age-related differences in sensitivity to ethanol-induced disruptions of fear conditioning to a pre-conditioning ethanol challenge. Experiments 2 examined fear conditioning 22 days after early-mid adolescent (P28-48) or adult (P70-90) exposure to 4 g/kg i.g. ethanol or water given every other day (total of 11 exposures). In Experiment 3, mid-late adolescents (P35-55) were exposed in the same manner to assess whether timing of ethanol exposure within the adolescent period would differentially affect later fear conditioning. Experiment 4 assessed the influence of prior adolescent or adult ethanol exposure on the disrupting effects of a pre-conditioning ethanol challenge. In Experiment 5, neurogenesis (doublecortin---DCX) and cholinergic (choline acetyltransferase---ChAT) markers were measured to assess potential long-term ethanol-induced changes in neural mechanisms important for learning and memory. Results indicated that the long-lasting behavioral effects of ethanol exposure varied depending on exposure age, with early-mid adolescent exposed animals showing attenuated context fear retention (a relatively hippocampal-dependent task), whereas mid-late adolescent and adult exposed animals showed slower context extinction (thought to be reliant on the mPFC). Early-mid adolescent ethanol-exposed animals also had significantly less DCX and ChAT expression than their water-exposed counterparts, possibly contributing to deficits in context fear. Tone fear was not influenced by prior ethanol exposure at any age. In terms of age differences in ethanol sensitivity, adolescents were less sensitive than adults to ethanol

  3. Cholinergic modulation of Pavlovian fear conditioning in rats: differential effects of intrahippocampal infusion of mecamylamine and methyllycaconitine.

    Science.gov (United States)

    Vago, David R; Kesner, Raymond P

    2007-03-01

    The cholinergic system has consistently been implicated in Pavlovian fear conditioning. Considerable work has been done to localize specific nicotinic receptor subtypes in the hippocampus and determine their functional importance; however, the specific function of many of these subtypes has yet to be determined. An alpha7 nicotinic antagonist methyllycaconitine (MLA) (35 microg), and a broad spectrum non-alpha7 nicotinic antagonist mecamylamine (35 microg) was injected directly into the dorsal hippocampus or overlying cortex either 15 min pre-, 1 min post-, or 6h post-fear conditioning. One week after conditioning, retention of contextual and cue (tone) conditioning were assessed. A significant impairment in retention of contextual fear was observed when mecamylamine was injected 15 min pre- and 1 min post-conditioning. No significant impairment was observed when mecamylamine was injected 6h post-conditioning. Likewise, a significant impairment in retention of contextual fear was observed when MLA was injected 1 min post-conditioning; however, in contrast, MLA did not show any significant impairments when injected 15 min pre-conditioning, but did show a significant impairment when injected 6h post-conditioning. There were no significant impairments observed when either drug was injected into overlying cortex. No significant impairments were observed in cue conditioning for either drug. In general, specific temporal dynamics involved in nicotinic receptor function were found relative to time of receptor dysfunction. The results indicate that the greatest deficits in long-term retention (1 week) of contextual fear are produced by central infusion of MLA minutes to hours post-conditioning or mecamylamine within minutes of conditioning.

  4. Reduced Electrodermal Fear Conditioning from Ages 3 to 8 Years Is Associated with Aggressive Behavior at Age 8 Years

    Science.gov (United States)

    Gao, Yu; Raine, Adrian; Venables, Peter H.; Dawson, Michael E.; Mednick, Sarnoff A.

    2010-01-01

    Background: Poor fear conditioning characterizes adult psychopathy and criminality, but it is not known whether it is related to aggressive/antisocial behavior in early childhood. Methods: Using a differential, partial reinforcement conditioning paradigm, electrodermal activity was recorded from 200 male and female children at ages 3, 4, 5, 6, and…

  5. Unconscious classical conditioning of sexual arousal: Evidence for the conditioning of female genital arousal to subliminally presented sexual stimuli

    NARCIS (Netherlands)

    S. Both; M. Spiering; E. Laan; S. Balcome; B. van den Heuvel; W. Everaerd

    2008-01-01

    Introduction. Although the assumption that sexual behavior is at least partly learned is common across theories of sexual behavior, classical conditioning of sexual response in women has been seldom studied. Aim. The study of unconscious classical conditioning of appetitive sexual responses in women

  6. Testing conditions in shock-based contextual fear conditioning influence both the behavioral responses and the activation of circuits potentially involved in contextual avoidance.

    Science.gov (United States)

    Viellard, Juliette; Baldo, Marcus Vinicius C; Canteras, Newton Sabino

    2016-12-15

    Previous studies from our group have shown that risk assessment behaviors are the primary contextual fear responses to predatory and social threats, whereas freezing is the main contextual fear response to physically harmful events. To test contextual fear responses to a predator or aggressive conspecific threat, we developed a model that involves placing the animal in an apparatus where it can avoid the threat-associated environment. Conversely, in studies that use shock-based fear conditioning, the animals are usually confined inside the conditioning chamber during the contextual fear test. In the present study, we tested shock-based contextual fear responses using two different behavioral testing conditions: confining the animal in the conditioning chamber or placing the animal in an apparatus with free access to the conditioning compartment. Our results showed that during the contextual fear test, the animals confined to the shock chamber exhibited significantly more freezing. In contrast, the animals that could avoid the conditioning compartment displayed almost no freezing and exhibited risk assessment responses (i.e., crouch-sniff and stretch postures) and burying behavior. In addition, the animals that were able to avoid the shock chamber had increased Fos expression in the juxtadorsomedial lateral hypothalamic area, the dorsomedial part of the dorsal premammillary nucleus and the lateral and dorsomedial parts of the periaqueductal gray, which are elements of a septo/hippocampal-hypothalamic-brainstem circuit that is putatively involved in mediating contextual avoidance. Overall, the present findings show that testing conditions significantly influence both behavioral responses and the activation of circuits involved in contextual avoidance. PMID:27544875

  7. Sex differences in the relationship between maternal fear of pain and children's conditioned pain modulation

    Directory of Open Access Journals (Sweden)

    Evans S

    2013-03-01

    Full Text Available Subhadra Evans, Laura C Seidman, Kirsten C Lung, Lonnie K Zeltzer, Jennie C TsaoPediatric Pain Program, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USABackground: Parental behaviors, emotions, and cognitions are known to influence children's response to pain. However, prior work has not tested the association between maternal psychological factors and children's responses to a conditioned pain modulation (CPM task. CPM refers to the reduction in perceived pain intensity for a test stimulus following application of a conditioning stimulus to a remote area of the body, and is thought to reflect the descending inhibition of nociceptive signals.Methods: The present study examined sex differences in the association between maternal anxiety about pain and children's CPM responses in 133 healthy children aged 8–17 years. Maternal pain anxiety was assessed using the Pain Anxiety Symptoms Scale-20. In addition to the magnitude of CPM, children's anticipatory anxiety and pain-related fear of the CPM task were measured.Results: Sequential multiple linear regression revealed that even after controlling for child age and general maternal psychological distress, greater maternal pain anxiety was significantly related to greater CPM anticipatory anxiety and pain-related fear in girls, and to less CPM (ie, less pain inhibition in boys.Conclusion: The findings indicate sex-specific relationships between maternal pain anxiety and children's responses to a CPM task over and above that accounted for by the age of the child and the mother's general psychological distress.Keywords: diffuse noxious inhibitory controls, pediatric pain, mother-child relationship, cold pressor, pressure pain, laboratory pain

  8. Increased skin conductance responses and neural activity during fear conditioning are associated with a repressive coping style

    Directory of Open Access Journals (Sweden)

    Tim eKlucken

    2015-06-01

    Full Text Available The investigation of individual differences in coping styles in response to fear conditioning is an important issue for a better understanding of the etiology and treatment of psychiatric disorders. It has been assumed that an avoidant (repressive coping style is characterized by increased emotion regulation efforts in context of fearful stimuli as compared to a more vigilant coping style. However, no study so far has investigated the neural correlates of fear conditioning of repressors and sensitizers.In the present fMRI study, 76 participants were classified as repressors or as sensitizers and were exposed to a fear conditioning paradigm, in which the CS+ predicted electrical stimulation, while another neutral stimulus (CS- did not. In addition, skin conductance responses (SCRs were measured continuously.As the main findings, we found increased neural activations in repressors as compared to sensitizers in the ventromedial prefrontal cortex and the anterior cingulate cortex during fear conditioning. In addition, elevated activity to the CS+ in amygdala, insula, occipital, and orbitofrontal cortex as well as conditioned SCRs were found in repressors.The present results demonstrate increased neural activations in structures linked to emotion down-regulation mechanisms like the ventromedial prefrontal cortex, which may reflect the increased coping effort in repressors. At the same time, repressors showed increased activations in arousal and evaluation-associated structures like the amygdala, the occipital cortex, and the orbitofrontal cortex, which is also mirrored in increased SCRs. The present results support recent assumptions about a two-process model of repression postulating a fast vigilant response to fearful stimuli, but also a second emotion down-regulating process.

  9. Hemodynamic responses in amygdala and hippocampus distinguish between aversive and neutral cues during Pavlovian fear conditioning in behaving rats.

    Science.gov (United States)

    McHugh, Stephen B; Marques-Smith, Andre; Li, Jennifer; Rawlins, J N P; Lowry, John; Conway, Michael; Gilmour, Gary; Tricklebank, Mark; Bannerman, David M

    2013-02-01

    Lesion and electrophysiological studies in rodents have identified the amygdala and hippocampus (HPC) as key structures for Pavlovian fear conditioning, but human functional neuroimaging studies have not consistently found activation of these structures. This could be because hemodynamic responses cannot detect the sparse neuronal activity proposed to underlie conditioned fear. Alternatively, differences in experimental design or fear levels could account for the discrepant findings between rodents and humans. To help distinguish between these alternatives, we used tissue oxygen amperometry to record hemodynamic responses from the basolateral amygdala (BLA), dorsal HPC (dHPC) and ventral HPC (vHPC) in freely-moving rats during the acquisition and extinction of conditioned fear. To enable specific comparison with human studies we used a discriminative paradigm, with one auditory cue [conditioned stimulus (CS)+] that was always followed by footshock, and another auditory cue (CS-) that was never followed by footshock. BLA tissue oxygen signals were significantly higher during CS+ than CS- trials during training and early extinction. In contrast, they were lower during CS+ than CS- trials by the end of extinction. dHPC and vHPC tissue oxygen signals were significantly lower during CS+ than CS- trials throughout extinction. Thus, hemodynamic signals in the amygdala and HPC can detect the different patterns of neuronal activity evoked by threatening vs. neutral stimuli during fear conditioning. Discrepant neuroimaging findings may be due to differences in experimental design and/or fear levels evoked in participants. Our methodology offers a way to improve translation between rodent models and human neuroimaging.

  10. Infant rats can learn time intervals before the maturation of the striatum: evidence from odor fear conditioning

    Directory of Open Access Journals (Sweden)

    Julie eBoulanger Bertolus

    2014-05-01

    Full Text Available Interval timing refers to the ability to perceive, estimate and discriminate durations in the range of seconds to minutes. Very little is currently known about the ontogeny of interval timing throughout development. On the other hand, even though the neural circuit sustaining interval timing is a matter of debate, the striatum has been suggested to be an important component of the system and its maturation occurs around the third post-natal week in rats. The global aim of the present study was to investigate interval timing abilities at an age for which striatum is not yet mature. We used odor fear conditioning, as it can be applied to very young animals. In odor fear conditioning, an odor is presented to the animal and a mild footshock is delivered after a fixed interval. Adult rats have been shown to learn the temporal relationships between the odor and the shock after a few associations. The first aim of the present study was to assess the activity of the striatum during odor fear conditioning using 2-Deoxyglucose autoradiography during development in rats. The data showed that although fear learning was displayed at all tested ages, activation of the striatum was observed in adults but not in juvenile animals. Next, we assessed the presence of evidence of interval timing in ages before and after the inclusion of the striatum into the fear conditioning circuit. We used an experimental setup allowing the simultaneous recording of freezing and respiration that have been demonstrated to be sensitive to interval timing in adult rats. This enabled the detection of duration-related temporal patterns for freezing and/or respiration curves in infants as young as 12 days post-natal during odor-fear conditioning. This suggests that infants are able to encode time durations as well as and as quickly as adults while their striatum is not yet functional. Alternative networks possibly sustaining interval timing in infant rats are discussed.

  11. Repeated exposure to conditioned fear stress increases anxiety and delays sleep recovery following exposure to an acute traumatic stressor

    Directory of Open Access Journals (Sweden)

    Benjamin N Greenwood

    2014-10-01

    Full Text Available Repeated stressor exposure can sensitize physiological responses to novel stressors and facilitate the development of stress-related psychiatric disorders including anxiety. Disruptions in diurnal rhythms of sleep-wake behavior accompany stress-related psychiatric disorders and could contribute to their development. Complex stressors that include fear-eliciting stimuli can be a component of repeated stress experienced by humans, but whether exposure to repeated fear can prime the development of anxiety and sleep disturbances is unknown. In the current study, adult male F344 rats were exposed to either control conditions or repeated contextual fear conditioning for 22 days followed by exposure to either no, mild (10, or severe (100 acute uncontrollable tail shock stress. Exposure to acute stress produced anxiety-like behavior as measured by a reduction in juvenile social exploration and exaggerated shock-elicited freezing in a novel context. Prior exposure to repeated fear enhanced anxiety-like behavior as measured by shock-elicited freezing, but did not alter social exploratory behavior. The potentiation of anxiety produced by prior repeated fear was temporary; exaggerated fear was present 1 day but not 4 days following acute stress. Interestingly, exposure to acute stress reduced REM and NREM sleep during the hours immediately following acute stress. This initial reduction in sleep was followed by robust REM rebound and diurnal rhythm flattening of sleep / wake behavior. Prior repeated fear extended the acute stress-induced REM and NREM sleep loss, impaired REM rebound, and prolonged the flattening of the diurnal rhythm of NREM sleep following acute stressor exposure. These data suggest that impaired recovery of sleep / wake behavior following acute stress could contribute to the mechanisms by which a history of prior repeated stress increases vulnerability to subsequent novel stressors and stress-related disorders.

  12. Using powerpoint to demonstrate human classical salivary conditioning in a classroom situation.

    Science.gov (United States)

    Abramson, Charles I; Brown, Erika A; Langley, Dillon

    2011-02-01

    Classical conditioning is one of the most fundamental types of learning, yet demonstrating its principles in a classroom setting can be challenging. This study introduces using PowerPoint as a new, practical technique that can be used in a classroom setting to demonstrate classical conditioning. The PowerPoint file is flexible and easy to adapt for demonstrating various aspects of classical conditioning (including higher order conditioning) in a concrete manner. Moreover, this study was designed to measure salivation in a more objective and valid way which could be used by student researchers interested in measuring salivation as a conditioned response.

  13. Dynamic competition between large-scale functional networks differentiates fear conditioning and extinction in humans.

    Science.gov (United States)

    Marstaller, Lars; Burianová, Hana; Reutens, David C

    2016-07-01

    The high evolutionary value of learning when to respond to threats or when to inhibit previously learned associations after changing threat contingencies is reflected in dedicated networks in the animal and human brain. Recent evidence further suggests that adaptive learning may be dependent on the dynamic interaction of meta-stable functional brain networks. However, it is still unclear which functional brain networks compete with each other to facilitate associative learning and how changes in threat contingencies affect this competition. The aim of this study was to assess the dynamic competition between large-scale networks related to associative learning in the human brain by combining a repeated differential conditioning and extinction paradigm with independent component analysis of functional magnetic resonance imaging data. The results (i) identify three task-related networks involved in initial and sustained conditioning as well as extinction, and demonstrate that (ii) the two main networks that underlie sustained conditioning and extinction are anti-correlated with each other and (iii) the dynamic competition between these two networks is modulated in response to changes in associative contingencies. These findings provide novel evidence for the view that dynamic competition between large-scale functional networks differentiates fear conditioning from extinction learning in the healthy brain and suggest that dysfunctional network dynamics might contribute to learning-related neuropsychiatric disorders. PMID:27079532

  14. Demonstrating Classical Conditioning in Introductory Psychology: Needles Do Not Always Make Balloons Pop!

    Science.gov (United States)

    Vernoy, Mark W.

    1987-01-01

    Describes a method of teaching classical conditioning to an introductory psychology class which involves demonstrating the conditioned response that occurs when a needle pierces, but does not pop, a balloon. (GEA)

  15. Memory formation for trace fear conditioning requires ubiquitin-proteasome mediated protein degradation in the prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    David S Reis

    2013-10-01

    Full Text Available The cellular mechanisms supporting plasticity during memory consolidation have been a subject of considerable interest. De novo protein and mRNA synthesis in several brain areas are critical, and more recently protein degradation, mediated by the ubiquitin-proteasome system (UPS, has been shown to be important. Previous work clearly establishes a relationship between protein synthesis and protein degradation in the amygdala, but it is unclear whether cortical mechanisms of memory consolidation are similar to those in the amygdala. Recent work demonstrating a critical role for prefrontal cortex (PFC in the acquisition and consolidation of fear memory allows us to address this question. Here we use a PFC-dependent fear conditioning protocol to determine whether UPS mediated protein degradation is necessary for memory consolidation in PFC. Groups of rats were trained with auditory delay or trace fear conditioning and sacrificed 60 min after training. PFC tissue was then analyzed to quantify the amount of polyubiquinated protein. Other animals were trained with similar procedures but were infused with either a proteasome inhibitor (clasto-lactacystin β-lactone or a translation inhibitor (anisomycin in the PFC immediately after training. Our results show increased UPS-mediated protein degradation in the PFC following trace but not delay fear conditioning. Additionally, post-training proteasome or translation inhibition significantly impaired trace but not delay fear memory when tested the next day. Our results further support the idea that the PFC is critical for trace but not delay fear conditioning highlight the role of UPS-mediated degradation as critical for synaptic plasticity.

  16. Fast, transient cardiac accelerations and decelerations during fear conditioning in rats.

    Science.gov (United States)

    Knippenberg, J M J; Barry, R J; Kuniecki, M J; van Luijtelaar, G

    2012-02-01

    The current study reports on a number of heart rate responses observed in rats subjected to a discriminatory Pavlovian fear conditioning procedure. Rats learned that a series of six auditory pips was followed by a footshock when presented alone, but not when the pip series was preceded by a visual safety signal. Each auditory pip in the series evoked a fast transient (transient decelerations are similar to the human Evoked Cardiac Response 1 (ECR1), a brief modest deceleration evoked by simple sensory stimuli that is thought to reflect an early process of stimulus registration. Immediately following these pip-evoked decelerations, modest fast accelerations were observed. These accelerations were larger when the pip series was followed by shock than when it was not followed by shock. We propose a potential linkage between these accelerations and the human acceleratory ECR2 component, which is associated with more elaborate processing following stimulus registration; something likely to take place when the pip series predicts an aversive event. Both the ECR1- and ECR2-like responses were embedded within a slow, gradual heart rate increase across the entire pip series. This tonic increase was significantly larger on trials with footshock and is therefore probably associated with anticipatory fear of the upcoming shock. An additional special type of cardiac response was found to the first pip in the series not preceded by the safety signal; here, a much larger and more sustained deceleration was apparent. This response appears relatable to the prolonged deceleration reported in humans in response to aversive picture content. We discuss the cardiac responses found in rats in the current study in the context of heart rate responses known in the human literature.

  17. c-Jun-N-terminal kinase 1 is necessary for nicotine-induced enhancement of contextual fear conditioning.

    Science.gov (United States)

    Leach, Prescott T; Kenney, Justin W; Gould, Thomas J

    2016-08-01

    Acute nicotine enhances hippocampus-dependent learning. Identifying how acute nicotine improves learning will aid in understanding how nicotine facilitates the development of maladaptive memories that contribute to drug-seeking behaviors, help development of medications to treat disorders associated with cognitive decline, and advance understanding of the neurobiology of learning and memory. The effects of nicotine on learning may involve recruitment of signaling through the c-Jun N-terminal kinase family (JNK 1-3). Learning in the presence of acute nicotine increases the transcription of mitogen-activated protein kinase 8 (MAPK8, also known as JNK1), likely through a CREB-dependent mechanism. The functional significance of JNK1 in the effects of acute nicotine on learning, however, is unknown. The current studies undertook a backward genetic approach to determine the functional contribution JNK1 protein makes to nicotine-enhanced contextual fear conditioning. JNK1 wildtype (WT) and knockout (KO) mice were administered acute nicotine prior to contextual and cued fear conditioning. 24h later, mice were evaluated for hippocampus-dependent (contextual fear conditioning) and hippocampus-independent (cued fear conditioning) memory. Nicotine selectively enhanced contextual conditioning in WT mice, but not in KO mice. Nicotine had no effect on hippocampus-independent learning in either genotype. JNK1 KO and WT mice given saline showed similar levels of learning. These data suggest that JNK1 may be recruited by nicotine and is functionally necessary for the acute effects of nicotine on learning and memory. PMID:27235579

  18. Modulation of gene expression in contextual fear conditioning in the rat.

    Directory of Open Access Journals (Sweden)

    Giuseppe Federighi

    Full Text Available In contextual fear conditioning (CFC a single training leads to long-term memory of context-aversive electrical foot-shocks association. Mid-temporal regions of the brain of trained and naive rats were obtained 2 days after conditioning and screened by two-directional suppression subtractive hybridization. A pool of differentially expressed genes was identified and some of them were randomly selected and confirmed with qRT-PCR assay. These transcripts showed high homology for rat gene sequences coding for proteins involved in different cellular processes. The expression of the selected transcripts was also tested in rats which had freely explored the experimental apparatus (exploration and in rats to which the same number of aversive shocks had been administered in the same apparatus, but temporally compressed so as to make the association between painful stimuli and the apparatus difficult (shock-only. Some genes resulted differentially expressed only in the rats subjected to CFC, others only in exploration or shock-only rats, whereas the gene coding for translocase of outer mitochondrial membrane 20 protein and nardilysin were differentially expressed in both CFC and exploration rats. For example, the expression of stathmin 1 whose transcripts resulted up regulated was also tested to evaluate the transduction and protein localization after conditioning.

  19. Modulation of Gene Expression in Contextual Fear Conditioning in the Rat

    Science.gov (United States)

    Macchi, Monica; Ciampini, Cristina; Bernardi, Rodolfo; Baldi, Elisabetta; Bucherelli, Corrado; Brunelli, Marcello; Scuri, Rossana

    2013-01-01

    In contextual fear conditioning (CFC) a single training leads to long-term memory of context-aversive electrical foot-shocks association. Mid-temporal regions of the brain of trained and naive rats were obtained 2 days after conditioning and screened by two-directional suppression subtractive hybridization. A pool of differentially expressed genes was identified and some of them were randomly selected and confirmed with qRT-PCR assay. These transcripts showed high homology for rat gene sequences coding for proteins involved in different cellular processes. The expression of the selected transcripts was also tested in rats which had freely explored the experimental apparatus (exploration) and in rats to which the same number of aversive shocks had been administered in the same apparatus, but temporally compressed so as to make the association between painful stimuli and the apparatus difficult (shock-only). Some genes resulted differentially expressed only in the rats subjected to CFC, others only in exploration or shock-only rats, whereas the gene coding for translocase of outer mitochondrial membrane 20 protein and nardilysin were differentially expressed in both CFC and exploration rats. For example, the expression of stathmin 1 whose transcripts resulted up regulated was also tested to evaluate the transduction and protein localization after conditioning. PMID:24278235

  20. Cholinergic Modulation during Acquisition of Olfactory Fear Conditioning Alters Learning and Stimulus Generalization in Mice

    Science.gov (United States)

    Pavesi, Eloisa; Gooch, Allison; Lee, Elizabeth; Fletcher, Max L.

    2013-01-01

    We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly…

  1. Sex differences in the neurobiology of fear conditioning and extinction: a preliminary fMRI study of shared sex differences with stress-arousal circuitry

    OpenAIRE

    Lebron-Milad Kelimer; Abbs Brandon; Milad Mohammed R; Linnman Clas; Rougemount-Bücking Ansgar; Zeidan Mohammed A; Holt Daphne J; Goldstein Jill M

    2012-01-01

    Abstract Background The amygdala, hippocampus, medial prefrontal cortex (mPFC) and brain-stem subregions are implicated in fear conditioning and extinction, and are brain regions known to be sexually dimorphic. We used functional magnetic resonance imaging (fMRI) to investigate sex differences in brain activity in these regions during fear conditioning and extinction. Methods Subjects were 12 healthy men comparable to 12 healthy women who underwent a 2-day experiment in a 3 T MR scanner. Fear...

  2. Hippocampal unit activity during classical aversive and appetitive conditioning.

    Science.gov (United States)

    Segal, M; Disterhoft, J F; Olds, J

    1972-02-18

    Rats were trained with a tone being followed by either food or electric shock, on alternate days. Unit activity during application of the conditioned stimulus was recorded from the dorsal hippocampus. The results indicate differentiation of the hippocampal system. Dentate units respond by augmentation to a conditioned stimulus which leads to food and by inhibition to the same stimulus when it precedes electric shock. The hippocampus proper responds by augmentation in both situations. The intensity of the hippocampal response to the conditioned stimulus on the first day of training is higher if the unconditioned stimulus is food than if it is electric shock. These data cast light on the functions of the dorsal dentate-hippocampal connections and the hippocampus proper during aversive and appetitive conditioning.

  3. Development of a Protocol for Studying Premature Onset of Fear as a Feature of Pathological Fear: The Effects of Conditional Stimulus Duration and Counting Behavior

    NARCIS (Netherlands)

    Y. Boddez; K. Takano; J. Gijbels; F. Baeyens; T. Beckers

    2015-01-01

    We propose that the premature onset of fear responding is a potentially important feature of pathological fear. A behavioral protocol to study the temporal regulation of fear in humans is, however, lacking. The present study aims at developing such a protocol for healthy individuals. To this end, we

  4. Distinct Contributions of the Basolateral Amygdala and the Medial Prefrontal Cortex to Learning and Relearning Extinction of Context Conditioned Fear

    Science.gov (United States)

    Laurent, Vincent; Westbrook, R. Frederick

    2008-01-01

    We studied the roles of the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) in learning and relearning to inhibit context conditioned fear (freezing) in extinction. In Experiment 1, pre-extinction BLA infusion of the NMDA receptor (NMDAr) antagonist, ifenprodil, impaired the development and retention of inhibition but…

  5. Fear conditioning and shock intensity: the choice between minimizing the stress induced and reducing the number of animals used

    NARCIS (Netherlands)

    Pietersen, C.Y.; Bosker, F.J; Posterna, F.; Den Boer, J.A.

    2006-01-01

    Many fear conditioning studies use electric shock as the aversive stimulus. The intensity of shocks varies throughout the literature. In this study, shock intensities ranging from 0 to 1.5 mA were used, and the effects on the rats assessed by both behavioural and biochemical stress parameters. Resul

  6. Fear conditioning and shock intensity : the choice between minimizing the stress induced and reducing the number of animals used

    NARCIS (Netherlands)

    Pietersen, CY; Bosker, FJ; Posterna, F; den Boer, JA

    2006-01-01

    Many fear conditioning studies use electric shock as the aversive stimulus. The intensity of shocks varies throughout the literature. In this study, shock intensities ranging from 0 to 1.5 mA were used, and the effects on the rats assessed by both behavioural and biochemical stress parameters. Resul

  7. Pavlovian fear conditioning regulates Thr286 autophosphorylation of Ca2+/calmodulin-dependent protein kinase II at lateral amygdala synapses.

    Science.gov (United States)

    Rodrigues, Sarina M; Farb, Claudia R; Bauer, Elizabeth P; LeDoux, Joseph E; Schafe, Glenn E

    2004-03-31

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in synaptic plasticity and memory formation in a variety of learning systems and species. The present experiments examined the role of CaMKII in the circuitry underlying pavlovian fear conditioning. First, we reveal by immunocytochemical and tract-tracing methods that alphaCaMKII is postsynaptic to auditory thalamic inputs and colocalized with the NR2B subunit of the NMDA receptor. Furthermore, we show that fear conditioning results in an increase of the autophosphorylated (active) form of alphaCaMKII in lateral amygdala (LA) spines. Next, we demonstrate that intra-amygdala infusion of a CaMK inhibitor, 1-[NO-bis-1,5-isoquinolinesulfonyl]-N-methyl-l-tyrosyl-4-phenylpiperazine, KN-62, dose-dependently impairs the acquisition, but not the expression, of auditory and contextual fear conditioning. Finally, in electrophysiological experiments, we demonstrate that an NMDA receptor-dependent form of long-term potentiation at thalamic input synapses to the LA is impaired by bath application of KN-62 in vitro. Together, the results of these experiments provide the first comprehensive view of the role of CaMKII in the amygdala during fear conditioning.

  8. Histone Modifications around Individual BDNF Gene Promoters in Prefrontal Cortex Are Associated with Extinction of Conditioned Fear

    Science.gov (United States)

    Bredy, Timothy W.; Wu, Hao; Crego, Cortney; Zellhoefer, Jessica; Sun, Yi E.; Barad, Mark

    2007-01-01

    Extinction of conditioned fear is an important model both of inhibitory learning and of behavior therapy for human anxiety disorders. Like other forms of learning, extinction learning is long-lasting and depends on regulated gene expression. Epigenetic mechanisms make an important contribution to persistent changes in gene expression; therefore,…

  9. D-Cycloserine Does Not Facilitate Fear Extinction by Reducing Conditioned Stimulus Processing or Promoting Conditioned Inhibition to Contextual Cues

    Science.gov (United States)

    Baker, Kathryn D.; McNally, Gavan P.; Richardson, Rick

    2012-01-01

    The NMDA receptor partial agonist d-cycloserine (DCS) enhances the extinction of learned fear in rats and exposure therapy in humans with anxiety disorders. Despite these benefits, little is known about the mechanisms by which DCS promotes the loss of fear. The present study examined whether DCS augments extinction retention (1) through reductions…

  10. Multimodal assessment of long-term memory recall and reinstatement in a combined cue and context fear conditioning and extinction paradigm in humans.

    Directory of Open Access Journals (Sweden)

    Jan Haaker

    Full Text Available Learning to predict danger via associative learning processes is critical for adaptive behaviour. After successful extinction, persisting fear memories often emerge as returning fear. Investigation of return of fear phenomena, e.g. reinstatement, have only recently began and to date, many critical questions with respect to reinstatement in human populations remain unresolved. Few studies have separated experimental phases in time even though increasing evidence shows that allowing for passage of time (and consolidation between experimental phases has a major impact on the results. In addition, studies have relied on a single psychophysiological dimension only (SCRs/SCL or FPS which hampers comparability between different studies that showed both differential or generalized return of fear following a reinstatement manipulation. In 93 participants, we used a multimodal approach (fear-potentiated startle, skin conductance responses, fear ratings to asses fear conditioning (day 1, extinction (day 2 as well as delayed memory recall and reinstatement (day 8 in a paradigm that probed contextual and cued fear intra-individually. Our findings show persistence of conditioning and extinction memory over time and demonstrate that reinstated fear responses were qualitatively different between dependent variables (subjective fear ratings, FPS, SCRs as well as between cued and contextual CSs. While only the arousal-related measurement (SCRs showed increasing reactions following reinstatement to the cued CSs, no evidence of reinstatement was observed for the subjective ratings and fear-related measurement (FPS. In contrast, for contextual CSs, reinstatement was evident as differential and generalized reinstatement in fear ratings as well as generally elevated physiological fear (FPS and arousal (SCRs related measurements to all contextual CSs (generalized non-differential reinstatement. Returning fear after reinstatement likely depends on a variety of variables

  11. Behavioral determination of stimulus pair discrimination of auditory acoustic and electrical stimuli using a classical conditioning and heart-rate approach.

    Science.gov (United States)

    Morgan, Simeon J; Paolini, Antonio G

    2012-06-06

    Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants and auditory midbrain implants. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices. Several techniques such as reward-based operant conditioning, conditioned avoidance, or classical fear conditioning have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear

  12. Conditional Similarity Reductions of Jimbo-Miwa Equation via the Classical Lie Group Approach

    Institute of Scientific and Technical Information of China (English)

    TANG Xiao-Yan; LIN Ji

    2003-01-01

    Recently, the Clarkson and Kruskal direct method has been modified to find new similarity reductions (conditional similarity reductions) of nonlinear systems and the results obtained by the modified direct method cannot be obtained by the current classical and/or non-classical Lie group approach. In this paper, we show that the conditional similarity reductions of the Jimbo-Miwa equation can be reobtained by adding an additional constraint equation to the original model to form a conditional equation system first and then solving the model system by means of the classical Lie group approach.

  13. Extinction and retrieval+extinction of conditioned fear differentially activate medial prefrontal cortex and amygdala in rats

    Directory of Open Access Journals (Sweden)

    Hongjoo Joanne Lee

    2016-01-01

    Full Text Available Pairing a previously neutral conditioned stimulus (CS; e.g., a tone to an aversive unconditioned stimulus (US; e.g., a footshock leads to associative learning such that the tone alone comes to elicit a conditioned response (e.g., freezing. We have previously shown that an extinction session that occurs within the reconsolidation window (termed retrieval+extinction attenuates fear responding and prevents the return of fear in Pavlovian fear conditioning (Monfils et al., 2009. To date, the mechanisms that explain the different behavioral outcomes between standard extinction and retrieval+extinction remain poorly understood. Here we sought to examine the differential temporal engagement of specific neural systems by these 2 approaches using Arc catFISH (cellular compartment analysis of temporal activity using fluorescence in situ hybridization. Our results demonstrate that extinction and retrieval+extinction lead to differential patterns of expression, suggesting that they engage different networks. These findings provide insight into the neural mechanisms that allow extinction during reconsolidation to prevent the return of fear in rats.

  14. The L-Type Voltage-Gated Calcium Channel Ca[subscript v]1.3 Mediates Consolidation, but Not Extinction, of Contextually Conditioned Fear in Mice

    Science.gov (United States)

    McKinney, Brandon C.; Murphy, Geoffrey G.

    2006-01-01

    Using pharmacological techniques, it has been demonstrated that both consolidation and extinction of Pavlovian fear conditioning are dependent to some extent upon L-type voltage-gated calcium channels (LVGCCs). Although these studies have successfully implicated LVGCCs in Pavlovian fear conditioning, they do not provide information about the…

  15. Age differences in fear retention and extinction in male Sprague-Dawley rats: effects of ethanol challenge during conditioning.

    Science.gov (United States)

    Broadwater, Margaret; Spear, Linda P

    2013-09-01

    Pavlovian fear conditioning is an ideal model to investigate how learning and memory are influenced by alcohol use during adolescence because the neural mechanisms involved have been studied extensively. In Exp 1, adolescent and adult male Sprague-Dawley rats were non-injected or injected with saline, 1 or 1.5 g/kg ethanol intraperitoneally 10 min prior to tone or context conditioning. Twenty-four hours later, animals were tested for tone or context retention and extinction, with examination of extinction retention conducted 24h thereafter. In Exp 2, a context extinction session was inserted between the tone conditioning and the tone fear retention/extinction days to reduce pre-CS baseline freezing levels at test. Basal levels of acquisition, fear retention, extinction, and extinction retention after tone conditioning were similar between adolescent and adult rats. In contrast adolescents showed faster context extinction than adults, while again not differing from adults during context acquisition, retention or extinction retention. In terms of ethanol effects, adolescents were less sensitive to ethanol-induced context retention deficits than adults. No age differences emerged in terms of tone fear retention, with ethanol disrupting tone fear retention at both ages in Exp 1, but at neither age in Exp 2, a difference seemingly due to group differences in pre-CS freezing during tone testing in Exp 1, but not Exp 2. These results suggest that age differences in the acute effects of ethanol on cognitive function are task-specific, and provide further evidence for age differences cognitive functioning in a task thought to be hippocampally related.

  16. Induction of c-Fos expression in the mammillary bodies, anterior thalamus and dorsal hippocampus after fear conditioning.

    Science.gov (United States)

    Conejo, Nélida M; González-Pardo, Héctor; López, Matías; Cantora, Raúl; Arias, Jorge L

    2007-09-14

    The aim of the present study was to provide further evidence on the role of particular subdivisions of the mammillary bodies, anterior thalamus and dorsal hippocampus to contextual and auditory fear conditioning. We used c-Fos expression as a marker of neuronal activation to compare rats that received tone-footshock pairings in a distinctive context (conditioned group) to rats being exposed to both the context and the auditory CS without receiving footshocks (unconditioned group), and naïve rats that were only handled. Fos immunoreactivity was significantly increased only in the anterodorsal thalamic nucleus and the lateral mammillary nucleus of the conditioned group. However, the dorsal hippocampus showed the highest density of c-Fos positive nuclei in the naïve group as compared to the other groups. Together, our data support previous studies indicating a particular involvement of the mammillary bodies and anterior thalamus in fear conditioning. PMID:17683804

  17. The protein kinase KIS impacts gene expression during development and fear conditioning in adult mice.

    Directory of Open Access Journals (Sweden)

    Valérie Manceau

    Full Text Available The brain-enriched protein kinase KIS (product of the gene UHMK1 has been shown to phosphorylate the human splicing factor SF1 in vitro. This phosphorylation in turn favors the formation of a U2AF(65-SF1-RNA complex which occurs at the 3' end of introns at an early stage of spliceosome assembly. Here, we analyzed the effects of KIS knockout on mouse SF1 phosphorylation, physiology, adult behavior, and gene expression in the neonate brain. We found SF1 isoforms are differently expressed in KIS-ko mouse brains and fibroblasts. Re-expression of KIS in fibroblasts restores a wild type distribution of SF1 isoforms, confirming the link between KIS and SF1. Microarray analysis of transcripts in the neonate brain revealed a subtle down-regulation of brain specific genes including cys-loop ligand-gated ion channels and metabolic enzymes. Q-PCR analyses confirmed these defects and point to an increase of pre-mRNA over mRNA ratios, likely due to changes in splicing efficiency. While performing similarly in prepulse inhibition and most other behavioral tests, KIS-ko mice differ in spontaneous activity and contextual fear conditioning. This difference suggests that disregulation of gene expression due to KIS inactivation affects specific brain functions.

  18. Ablation of mouse adult neurogenesis alters olfactory bulb structure and olfactory fear conditioning

    Directory of Open Access Journals (Sweden)

    Matthew Valley

    2009-11-01

    Full Text Available Adult neurogenesis replenishes olfactory bulb (OB interneurons throughout the life of most mammals, yet during this constant fl ux it remains unclear how the OB maintains a constant structure and function. In the mouse OB, we investigated the dynamics of turnover and its impact on olfactory function by ablating adult neurogenesis with an x-ray lesion to the subventricular zone (SVZ. Regardless of the magnitude of the lesion to the SVZ, we found no change in the survival of young adult born granule cells (GCs born after the lesion, and a gradual decrease in the population of GCs born before the lesion. After a lesion producing a 96% reduction of incoming adult born GCs to the OB, we found a diminished behavioral fear response to conditioned odor cues but not to audio cues. Interestingly, despite this behavioral defi cit and gradual anatomical changes, we found no electrophysiological changes in the GC population assayed in vivo through dendro-dendritic synaptic plasticity and odor-evoked local fi eld potential oscillations. These data indicate that turnover in the granule cell layer is generally decoupled from the rate of adult neurogenesis, and that OB adult neurogenesis plays a role in a wide behavioral system extending beyond the OB.

  19. The influence of acute stress on the regulation of conditioned fear

    OpenAIRE

    Raio, Candace M.; Phelps, Elizabeth A.

    2014-01-01

    Fear learning and regulation is a prominent model for describing the pathogenesis of anxiety disorders and stress-related psychopathology. Fear expression can be modulated using a number of regulatory strategies, including extinction, cognitive emotion regulation, avoidance strategies and reconsolidation. In this review, we examine research investigating the effects of acute stress and stress hormones on these regulatory techniques. We focus on what is known about the impact of stress on the ...

  20. Abnormal fear conditioning and amygdala processing in an animal model of autism

    OpenAIRE

    Markram, Kamila; Rinaldi, Tania; La Mendola, Deborah; Sandi, Carmen; Markram, Henry

    2008-01-01

    A core feature of autism spectrum disorders is the impairment in social interactions. Among other brain regions, a deficit in amygdala processing has been suggested to underlie this impairment, but whether the amygdala is processing fear abnormally in autism, is yet not clear. We used the valproic acid (VPA) rat model of autism to (a) screen for autism-like symptoms in rats, (b) test for alterations in amygdala-dependent fear processing, and (c) evaluate neuronal reactivity and synaptic plast...

  1. Testicular hormones do not regulate sexually dimorphic Pavlovian fear conditioning or perforant-path long-term potentiation in adult male rats.

    Science.gov (United States)

    Anagnostaras, S G; Maren, S; DeCola, J P; Lane, N I; Gale, G D; Schlinger, B A; Fanselow, M S

    1998-04-01

    We recently reported that Pavlovian fear conditioning and hippocampal perforant-path long-term potentiation (LTP) are sexually dimorphic in rats. Males show greater contextual fear conditioning, which depends on the hippocampus, as well as greater hippocampal LTP. In order to examine the role of circulating gonadal hormones in adult male rats, animals were castrated in two experiments, and Pavlovian fear conditioning and in vivo perforant-path LTP were examined. It was found that sexually-dimorphic LTP and fear conditioning are not regulated by the activational effects of testicular hormones in adult male rats. That is, in every respect, castrated male rats were similar to intact male rats in Pavlovian fear conditioning and hippocampal LTP. It is likely that sexual dimorphism in this system is established earlier in development by the organizational effects of gonadal hormones.

  2. Stress before Puberty Exerts a Sex- and Age-Related Impact on Auditory and Contextual Fear Conditioning in the Rat

    Directory of Open Access Journals (Sweden)

    Maria Toledo-Rodriguez

    2007-01-01

    Full Text Available Adolescence is a period of major physical, hormonal, and psychological changes. It is also characterized by a significant increase in the incidence of psychopathologies and this increase is gender-specific. Stress during adolescence is associated with the development of psychiatric disorders later in life. In this study, we evaluated the impact of psychogenic stress (exposure to predator odor followed by placement on an elevated platform experienced before puberty (days 28–30 on fear memories and hormonal response of male and female rats during adolescence and early adulthood. Stress before puberty impacted in a sex- and age-specific way on the responses to auditory and contextual fear conditioning in adolescence and adulthood: (a increased conditioned fear to the tone in males during adolescence but not during adulthood; (b impaired extinction to the tone in adult males; and (c reduced freezing responses to the context in adolescent females. Stress before puberty did not influence the corticosterone levels 30 minutes after an additional stressor given in adulthood. These results indicate that stress experienced prior to puberty can exert a sex-related differential impact on fear-related behaviors displayed by individuals during late adolescence and early adulthood.

  3. Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist D,L-2-amino-5-phosphonovaleric acid to the basolateral amygdala.

    Science.gov (United States)

    Fanselow, M S; Kim, J J

    1994-02-01

    Rats, with chronic cannula placed bilaterally in the amygdala, received infusions of the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphonovaleric acid (APV) before contextual Pavlovian fear conditioning. Administration of APV to the basolateral nucleus prevented acquisition of fear. Central nucleus infusions had no effect. It is concluded that an NMDA-mediated process near the basolateral region of the amygdala (e.g., lateral or basolateral nucleus) is essential for the learning of fear.

  4. Pre-test metyrapone impairs memory recall in fear conditioning tasks: lack of interaction with β-adrenergic activity

    Science.gov (United States)

    Careaga, Mariella B. L.; Tiba, Paula A.; Ota, Simone M.; Suchecki, Deborah

    2015-01-01

    Cognitive processes, such as learning and memory, are essential for our adaptation to environmental changes and consequently for survival. Numerous studies indicate that hormones secreted during stressful situations, such as glucocorticoids (GCs), adrenaline and noradrenaline, regulate memory functions, modulating aversive memory consolidation and retrieval, in an interactive and complementary way. Thus, the facilitatory effects of GCs on memory consolidation as well as their suppressive effects on retrieval are substantially explained by this interaction. On the other hand, low levels of GCs are also associated with negative effects on memory consolidation and retrieval and the mechanisms involved are not well understood. The present study sought to investigate the consequences of blocking the rise of GCs on fear memory retrieval in multiple tests, assessing the participation of β-adrenergic signaling on this effect. Metyrapone (GCs synthesis inhibitor; 75 mg/kg), administered 90 min before the first test of contextual or tone fear conditioning (TFC), negatively affected animals’ performances, but this effect did not persist on a subsequent test, when the conditioned response was again expressed. This result suggested that the treatment impaired fear memory retrieval during the first evaluation. The administration immediately after the first test did not affect the animals’ performances in contextual fear conditioning (CFC), suggesting that the drug did not interfere with processes triggered by memory reactivation. Moreover, metyrapone effects were independent of β-adrenergic signaling, since concurrent administration with propranolol (2 mg/kg), a β-adrenergic antagonist, did not modify the effects induced by metyrapone alone. These results demonstrate that pre-test metyrapone administration led to negative effects on fear memory retrieval and this action was independent of a β-adrenergic signaling. PMID:25784866

  5. Pre-test metyrapone impairs memory recall in fear conditioning tasks: lack of interaction with β-adrenergic activity

    Directory of Open Access Journals (Sweden)

    Mariella B.L. Careaga

    2015-03-01

    Full Text Available Cognitive processes, such as learning and memory, are essential for our adaptation to environmental changes and consequently for survival. Numerous studies indicate that hormones secreted during stressful situations, such as glucocorticoids (GCs, adrenaline and noradrenaline, regulate memory functions, modulating aversive memory consolidation and retrieval, in an interactive and complementary way. Thus, the facilitatory effects of GCs on memory consolidation as well as their suppressive effects on retrieval are substantially explained by this interaction. On the other hand, low levels of GCs are also associated with negative effects on memory consolidation and retrieval and the mechanisms involved are not well understood. The present study sought to investigate the consequences of blocking the rise of GCs on fear memory retrieval in multiple tests, assessing the participation of β-adrenergic signaling on this effect. Metyrapone (GCs synthesis inhibitor, administered 90 min before the first test of contextual or auditory fear conditioning, negatively affected animals’ performances, but this effect did not persist on a subsequent test, when the conditioned response was again expressed. This result suggested that the treatment impaired fear memory retrieval during the first evaluation. The administration immediately after the first test did not affect the animals’ performances in contextual fear conditioning, suggesting that the drug did not interfere with processes triggered by memory reactivation. Moreover, metyrapone effects were independent of β-adrenergic signaling, since concurrent administration with propranolol, a β-adrenergic antagonist, did not modify the effects induced by metyrapone alone. These results demonstrate that pre-test metyrapone administration led to negative effects on fear memory retrieval and this action was independent of a β-adrenergic signaling.

  6. Differential modulation of changes in hippocampal-septal synaptic excitability by the amygdala as a function of either elemental or contextual fear conditioning in mice.

    Science.gov (United States)

    Desmedt, A; Garcia, R; Jaffard, R

    1998-01-01

    Recent data obtained using a classic fear conditioning paradigm showed a dissociation between the retention of associations relative to contextual information (dependent on the hippocampal formation) and the retention of elemental associations (dependent on the amygdala). Furthermore, it was reported that conditioned emotional responses (CERs) could be dissociated from the recollection of the learning experience (declarative memory) in humans and from modifications of the hippocampal-septal excitability in animals. Our aim was to determine whether these two systems ("behavioral expression" system and "factual memory" system) interact by examining the consequences of amygdalar lesions (1) on the modifications of hippocampal-septal excitability and (2) on the behavioral expression of fear (freezing) resulting from an aversive conditioning during reexposure to conditional stimuli (CSs). During conditioning, to modulate the predictive nature of the context and of a discrete stimulus (tone) on the unconditional stimulus (US) occurrence, the phasic discrete CS was paired with the US or randomly distributed with regard to the US. After the lesion, the CER was dramatically reduced during reexposure to the CSs, whatever the type of acquisition. However, the changes in hippocampal-septal excitability persisted but were altered. For controls, a decrease in septal excitability was observed during reexposure to the conditioning context only for the "unpaired group" (predictive context case). Conversely, among lesioned subjects this decrease was observed in the "paired group" (predictive discrete CS case), whereas this decrease was significantly reduced in the unpaired group with respect to the matched control group. The amplitude and the direction of these modifications suggest a differential modulation of hippocampal-septal excitability by the amygdala to amplify the contribution of the more predictive association signaling the occurrence of the aversive event.

  7. The role of dopamine in Drosophila larval classical olfactory conditioning.

    Directory of Open Access Journals (Sweden)

    Mareike Selcho

    Full Text Available Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt as well as appetitive (odor-sugar associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive

  8. Classical Conditioning of Eyelid and Mystacial Vibrissae Responses in Conscious Mice

    Science.gov (United States)

    Delgado-Garcia, Jose Maria; Troncoso, Julieta; Munera, Alejandro

    2004-01-01

    The murine vibrissae sensorimotor system has been scrutinized as a target of motor learning through trace classical conditioning. Conditioned eyelid responses were acquired by using weak electrical whisker-pad stimulation as conditioned stimulus (CS) and strong electrical periorbital stimulation as unconditioned stimulus (US). In addition,…

  9. Absence of verbal recall or memory for symptom acquisition in fear and trauma exposure: a conceptual case for fear conditioning and learned nonuse in assessment and treatment.

    Science.gov (United States)

    Seifert, A Ronald

    2012-01-01

    Absence of memory or verbal recall for symptom acquisition in fear and trauma exposure, as well as absence of successful coping behavior for life events, is associated with a number of diagnoses, including traumatic brain injury, posttraumatic stress disorder, pain, and anxiety. The difficulty with diagnosis and treatment planning based on the absence of recall, memory, and successful coping behavior is threefold: (1) these assessments do not distinguish between disruption of behavior and lack of capacity, (2) the absence of verbal recall and memory complicates cognitive-based treatment, and (3) a confounding issue is the same absent behavior can be observed at different times and contexts. While memory of the specific details of the initial traumatic event(s) may not be available to verbal report, the existence of time- and context-dependent relationships for the initial as well as subsequent experiences is arguable. The absence of memory or lack of verbal recall does not rule out measurable physiological bodily responses for the initial trauma(s), nor does it help to establish the effects of subsequent experiences for symptom expression. Also, the absence of memory must include the prospect of fear-based learning that does not require or involve the cortex. It is posited that the literatures of fear conditioning and learned nonuse provide complementary illustrations of how the time and context of the initial trauma(s) and subsequent experiences affect behavior, which is not dependent on the effected individual being able to provide a memory-based verbal report. The replicated clinical application demonstrates that, without scientific demonstration, neither neuroanatomy nor verbal report can be assumed sufficient to predict overt behavior or physiologic responses. For example, while commonly assumed to be predictively so, autonomic nervous system innervation is insufficient to define the unique stimulus- and context-dependent physiological responses of an

  10. Absence of verbal recall or memory for symptom acquisition in fear and trauma exposure: A conceptual case for fear conditioning and learned nonuse in assessment and treatment

    Directory of Open Access Journals (Sweden)

    A. Ronald Seifert, PhD

    2012-12-01

    Full Text Available Absence of memory or verbal recall for symptom acquisition in fear and trauma exposure, as well as absence of successful coping behavior for life events, is associated with a number of diagnoses, including traumatic brain injury, posttraumatic stress disorder, pain, and anxiety. The difficulty with diagnosis and treatment planning based on the absence of recall, memory, and successful coping behavior is threefold: (1 these assessments do not distinguish between disruption of behavior and lack of capacity, (2 the absence of verbal recall and memory complicates cognitive-based treatment, and (3 a confounding issue is the same absent behavior can be observed at different times and contexts. While memory of the specific details of the initial traumatic event(s may not be available to verbal report, the existence of time- and context-dependent relationships for the initial as well as subsequent experiences is arguable. The absence of memory or lack of verbal recall does not rule out measurable physiological bodily responses for the initial trauma(s, nor does it help to establish the effects of subsequent experiences for symptom expression. Also, the absence of memory must include the prospect of fear-based learning that does not require or involve the cortex. It is posited that the literatures of fear conditioning and learned nonuse provide complementary illustrations of how the time and context of the initial trauma(s and subsequent experiences affect behavior, which is not dependent on the effected individual being able to provide a memory-based verbal report. The replicated clinical application demonstrates that, without scientific demonstration, neither neuroanatomy nor verbal report can be assumed sufficient to predict overt behavior or physiologic responses. For example, while commonly assumed to be predictively so, autonomic nervous system innervation is insufficient to define the unique stimulus- and context-dependent physiological responses

  11. Differences in Memory Development among C57BL/6NCrl, 129S2/SvPasCrl, and FVB/NCrl Mice after Delay and Trace Fear Conditioning

    OpenAIRE

    March, Amelia; Borchelt, David; Golde, Todd; Janus, Christopher

    2014-01-01

    Fear-conditioning testing paradigms have been used to study differences in memory formation between inbred mouse strains, including numerous mouse models of human diseases. In this study, we characterized the conditioned fear memory of 3 inbred strains: C57BL/6NCrl, 129S2/SvPasCrl, and FVB/NCrl, obtained from Charles River Laboratories. We used 2 training paradigms: delay conditioning, in which an unconditional stimulus coterminates with the presentation of a conditional stimulus, and trace c...

  12. Oxytocin Signaling in Basolateral and Central Amygdala Nuclei Differentially Regulates the Acquisition, Expression, and Extinction of Context-Conditioned Fear in Rats

    Science.gov (United States)

    Campbell-Smith, Emma J.; Holmes, Nathan M.; Lingawi, Nura W.; Panayi, Marios C.; Westbrook, R. Frederick

    2015-01-01

    The present study investigated how oxytocin (OT) signaling in the central (CeA) and basolateral (BLA) amygdala affects acquisition, expression, and extinction of context-conditioned fear (freezing) in rats. In the first set of experiments, acquisition of fear to a shocked context was impaired by a preconditioning infusion of synthetic OT into the…

  13. Like Extinction, Latent Inhibition of Conditioned Fear in Mice Is Blocked by Systemic Inhibition of L-Type Voltage-Gated Calcium Channels

    Science.gov (United States)

    Blouin, Ashley M.; Cain, Chris K.; Barad, Mike

    2004-01-01

    Having recently shown that extinction of conditioned fear depends on L-type voltage-gated calcium channels (LVGCCs), we have been seeking other protocols that require this unusual induction mechanism. We tested latent inhibition (LI) of fear, because LI resembles extinction except that cue exposures precede, rather than follow, cue-shock pairing.…

  14. A review on experimental and clinical genetic associations studies on fear conditioning, extinction and cognitive-behavioral treatment.

    Science.gov (United States)

    Lonsdorf, T B; Kalisch, R

    2011-09-20

    Fear conditioning and extinction represent basic forms of associative learning with considerable clinical relevance and have been implicated in the pathogenesis of anxiety disorders. There is considerable inter-individual variation in the ability to acquire and extinguish conditioned fear reactions and the study of genetic variants has recently become a focus of research. In this review, we give an overview of the existing genetic association studies on human fear conditioning and extinction in healthy individuals and of related studies on cognitive-behavioral treatment (CBT) and exposure, as well as pathology development after trauma. Variation in the serotonin transporter (5HTT) and the catechol-o-methyltransferase (COMT) genes has consistently been associated with effects in pre-clinical and clinical studies. Interesting new findings, which however require further replication, have been reported for genetic variation in the dopamine transporter (DAT1) and the pituitary adenylate cyclase 1 receptor (ADCYAP1R1) genes, whereas the current picture is inconsistent for variation in the brain-derived neurotrophic factor (BDNF) gene. We end with a discussion of the findings and their limitations, as well as future directions that we hope will aid the field to develop further.

  15. Blocking of orexin receptors in the paraventricular nucleus of the thalamus has no effect on conditioned fear

    Directory of Open Access Journals (Sweden)

    Xinwen eDong

    2015-06-01

    Full Text Available The paraventricular nucleus of the thalamus (PVT projects to the central nucleus of the amygdala and recent experimental evidence indicates a role for the PVT in conditioned fear. Furthermore, the PVT contains a high density of orexin receptors and fibers and acute injections of orexin antagonist into the PVT produce anxiolytic effects. The present study was done to determine if administration of a dual orexin receptor antagonist (DORA in the region of the PVT interfered with the expression of conditioned fear in rats exposed to cued and contextual conditioning paradigms. Infusion of 0.5 µl of the DORA N-biphenyl-2-yl-1-{[(1-methyl-1H-benzimidazol-2yl sulfanyl] acetyl}-L-prolinamide at a concentration of 0.1, 1.0, and 10 nmol had no effect on the freezing produced by exposing rats to an auditory cue or the context associated with foot shock. In contrast, the 1.0 and 10 nmol doses were anxiolytic in the social interaction test. The results of the present study do not support a role for orexin receptors in the PVT in the expression of learned fear. The finding that the 1.0 and 10 nmol doses of DORA in the PVT region were anxiolytic in the social interaction test is consistent with other studies indicating a role for orexins in the PVT in anxiety-like behaviors.

  16. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity during Extinction of Conditioned Fear in Mice

    Science.gov (United States)

    Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni; Cannich, Astrid; Wotjak, Carsten T.

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and…

  17. Abnormal fear conditioning and amygdala processing in an animal model of autism

    DEFF Research Database (Denmark)

    Markram, Kamila; Rinaldi, Tania; La Mendola, Deborah;

    2008-01-01

    acid (VPA) rat model of autism to (a) screen for autism-like symptoms in rats, (b) test for alterations in amygdala-dependent fear processing, and (c) evaluate neuronal reactivity and synaptic plasticity in the lateral amygdala by means of in vitro single-cell electrophysiological recordings. VPA...

  18. Neuronal Correlates of Fear Conditioning in the Bed Nucleus of the Stria Terminalis

    Science.gov (United States)

    Haufler, Darrell; Nagy, Frank Z.; Pare, Denis

    2013-01-01

    Lesion and inactivation studies indicate that the central amygdala (CeA) participates in the expression of cued and contextual fear, whereas the bed nucleus of the stria terminalis (BNST) is only involved in the latter. The basis for this functional dissociation is unclear because CeA and BNST form similar connections with the amygdala and…

  19. Sleep deprivation impairs contextual fear conditioning and attenuates subsequent behavioural, endocrine and neuronal responses

    NARCIS (Netherlands)

    Hagewoud, Roelina; Bultsma, Lillian J.; Barf, R. Paulien; Koolhaas, Jaap M.; Meerlo, Peter

    2011-01-01

    Sleep deprivation (SD) affects hippocampus-dependent memory formation. Several studies in rodents have shown that brief SD immediately following a mild foot shock impairs consolidation of contextual fear memory as reflected in a reduced behavioural freezing response during re-exposure to the shock c

  20. Studies in Early Infant Learning: Classical Conditioning of the Neonatal Heart Rate

    Science.gov (United States)

    Crowell, David H.; And Others

    1976-01-01

    In three experiments, it was demonstrated that human newborn heart rate level can be reliably modified through classical conditioning procedures. Findings support the idea that early learning may occur under a variety of conditions and different theories may account for the results. (Author/SB)

  1. Classical Conditioning and Retention of the Infant's Eyelid Response: Effects of Age and Interstimulus Interval.

    Science.gov (United States)

    Little, Arlene H.; And Others

    1984-01-01

    Reports that lengthy interstimulus interval facilitates classical conditioning in very young infants. Infants trained in a single session at 20 days of age exhibited reliable retention of the conditioned eyelid reflex 10 days later, but infants 10 days of age did not. (Author)

  2. Feeding Behavior of Aplysia: A Model System for Comparing Cellular Mechanisms of Classical and Operant Conditioning

    Science.gov (United States)

    Baxter, Douglas A.; Byrne, John H.

    2006-01-01

    Feeding behavior of Aplysia provides an excellent model system for analyzing and comparing mechanisms underlying appetitive classical conditioning and reward operant conditioning. Behavioral protocols have been developed for both forms of associative learning, both of which increase the occurrence of biting following training. Because the neural…

  3. Viral delivery of shRNA to amygdala neurons leads to neurotoxicity and deficits in Pavlovian fear conditioning.

    Science.gov (United States)

    de Solis, Christopher A; Holehonnur, Roopashri; Banerjee, Anwesha; Luong, Jonathan A; Lella, Srihari K; Ho, Anthony; Pahlavan, Bahram; Ploski, Jonathan E

    2015-10-01

    The use of viral vector technology to deliver short hairpin RNAs (shRNAs) to cells of the nervous system of many model organisms has been widely utilized by neuroscientists to study the influence of genes on behavior. However, there have been numerous reports that delivering shRNAs to the nervous system can lead to neurotoxicity. Here we report the results of a series of experiments where adeno-associated viruses (AAV), that were engineered to express shRNAs designed to target known plasticity associated genes (i.e. Arc, Egr1 and GluN2A) or control shRNAs that were designed not to target any rat gene product for depletion, were delivered to the rat basal and lateral nuclei of the amygdala (BLA), and auditory Pavlovian fear conditioning was examined. In our first set of experiments we found that animals that received AAV (3.16E13-1E13 GC/mL; 1 μl/side), designed to knockdown Arc (shArc), or control shRNAs targeting either luciferase (shLuc), or nothing (shCntrl), exhibited impaired fear conditioning compared to animals that received viruses that did not express shRNAs. Notably, animals that received shArc did not exhibit differences in fear conditioning compared to animals that received control shRNAs despite gene knockdown of Arc. Viruses designed to harbor shRNAs did not induce obvious morphological changes to the cells/tissue of the BLA at any dose of virus tested, but at the highest dose of shRNA virus examined (3.16E13 GC/mL; 1 μl/side), a significant increase in microglia activation occurred as measured by an increase in IBA1 immunoreactivity. In our final set of experiments we infused viruses into the BLA at a titer of (1.60E+12 GC/mL; 1 μl/side), designed to express shArc, shLuc, shCntrl or shRNAs designed to target Egr1 (shEgr1), or GluN2A (shGluN2A), or no shRNA, and found that all groups exhibited impaired fear conditioning compared to the group which received a virus that did not express an shRNA. The shEgr1 and shGluN2A groups exhibited gene

  4. Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the infralimbic prefrontal cortex to the amygdala.

    Directory of Open Access Journals (Sweden)

    David Frausto Peña

    2014-09-01

    Full Text Available Fearful experiences can produce long-lasting and debilitating memories. Extinction of the fear response requires consolidation of new memories that compete with fearful associations. Subjects with posttraumatic stress disorder (PTSD show impaired extinction of conditioned fear, which is associated with decreased ventromedial prefrontal cortex (vmPFC control over amygdala activity. Vagus nerve stimulation (VNS enhances memory consolidation in both rats and humans, and pairing VNS with exposure to conditioned cues enhances the consolidation of extinction learning in rats. Here we investigated whether pairing VNS with extinction learning facilitates plasticity between the infralimbic (IL medial prefrontal cortex and the basolateral complex of the amygdala (BLA. Rats were trained on an auditory fear conditioning task, which was followed by a retention test and one day of extinction training. Vagus nerve stimulation or sham-stimulation was administered concurrently with exposure to the fear-conditioned stimulus and retention of fear conditioning was tested again 24 hours later. VNS-treated rats demonstrated a significant reduction in freezing after a single extinction training session similar to animals that received 5x the number of extinction pairings. To study plasticity in the IL-BLA pathway, we recorded evoked field potentials in the BLA in anesthetized animals 24 h after retention testing. Brief burst stimulation in the IL produced LTD in the BLA field response in fear-conditioned and sham-treated animals. In contrast, the same stimulation resulted in potentiation of the IL-BLA pathway in the VNS-treated group. The present findings suggest that VNS promotes plasticity in the IL-BLA pathway to facilitate extinction of conditioned fear responses.

  5. Special issue on computational models of classical conditioning guest editors' introduction.

    Science.gov (United States)

    Alonso, Eduardo; Schmajuk, Nestor

    2012-09-01

    In the present special issue, the performance of current computational models of classical conditioning was evaluated under three requirements: (1) Models were to be tested against a list of previously agreed-upon phenomena; (2) the parameters were fixed across simulations; and (3) the simulations used to test the models had to be made available. These requirements resulted in three major products: (a) a list of fundamental classical-conditioning results for which there is a consensus about their reliability; (b) the necessary information to evaluate each of the models on the basis of its ordinal successes in accounting for the experimental data; and (c) a repository of computational models ready to generate simulations. We believe that the contents of this issue represent the 2012 state of the art in computational modeling of classical conditioning and provide a way to find promising avenues for future model development.

  6. Ethanol Disrupts Reactivated Contextual Conditioned Fear Memory: Behavioral and Histological Perspectives

    Directory of Open Access Journals (Sweden)

    Iran Goudarzi

    2012-01-01

    Full Text Available Objective: This research study is an attempt to examine whether the administration ofethanol after memory reactivation would modulate subsequent expression of memory inrats. Additionally, we examined whether this administration alters the density of Cornu Ammonis(CA1 and CA3 pyramidal and dentate gyrus (DG granule cells.Materials and Methods: In this experimental study, adult male Wistar rats (200-300 gwere trained in a fear conditioning system using two 1 second, 0.6 mA shocks with aninterval of 180 seconds. Twenty four hours later rats were returned to the chamber for 120seconds. Immediately after reactivation they were injected with ethanol (0.5, 1, 1.5 mg/kg or saline. 1, 7 and 14 days after reactivation, rats were returned to the context for 5minutes. Seconds of freezing (absence of all movement except respiration were scored.In the second experiment (described in the previous paragraph, after test 1, animalswere anesthetized with sodium pentobarbital and perfused transcardially with phosphatebuffer (10 minutes and 4% paraformaldehyde (15 minutes. The brains were postfixed inphosphate-buffered 4% paraformaldehyde (24 hours and 30% sucrose. 10-μm sectionswere stained with cresyl violet.Data were analyzed by 1-and 2-way ANOVA for repeated measurements by means ofSPSS 16.0. Tukey’s post hoc test was performed to determine the source of detectedsignificant differences. P <0 .05 were considered significant. Data are presented as mean± SEM.Results: Findings from the first experiment indicated that ethanol at a dose of 1.5 mg/kgsignificantly impaired recall of memory only in the first test. The density of CA1 and CA3pyramidal and DG granule cells in the ethanol group was decreased (p< 0.01 comparedwith control group respectively 43.7%, 35.8%, and 37.8.Conclusion: The data demonstrate that ethanol exposure impairs post retrieval processes.Moreover, ethanol decreases the density of CA1, CA3 and DG cells. Presumably itwould be a correlation

  7. Sea slugs, subliminal pictures and vegetative state patients: Boundaries of consciousness in classical conditioning.

    Directory of Open Access Journals (Sweden)

    Tristan A Bekinschtein

    2011-12-01

    Full Text Available Classical (trace conditioning is a specific variant of associative learning in which a neutral stimulus leads to the subsequent prediction of an emotionally charged or noxious stimulus after a temporal gap. When conditioning is concurrent with a distraction task, only participants who can report the relationship (the contingency between stimuli explicitly show associative learning. This suggests that consciousness is a prerequisite for trace conditioning. We review and question three main controversies concerning this view. Firstly, virtually all animals, even invertebrate sea slugs, show this type of learning; secondly, unconsciously perceived stimuli may elicit trace conditioning; and thirdly, some vegetative state patients show trace learning. We discuss and analyze these seemingly contradictory arguments to find the theoretical boundaries of consciousness in classical conditioning. We conclude that trace conditioning remains one of the best measures to test conscious processing in the absence of explicit reports.

  8. On the physical meaning of the gauge conditions of Classical Electromagnetism : the hydrodynamics analogue viewpoint

    OpenAIRE

    Rousseaux, Germain

    2003-01-01

    Based on an analogy between Fluid Mechanics and Electromagnetism, we claim that the gauge conditions of Classical Electromagnetism are not equivalent contrary to the common belief. These "gauges" are usually considered as mathematical conditions that one must specify in order to solve any electromagnetic problem. Here, the author shows that these conditions are physical constraints which can be interpreted as electromagnetic continuity equations. As a consequence, light cannot be considered a...

  9. D-cycloserine and the facilitation of extinction of conditioned fear: consequences for reinstatement.

    Science.gov (United States)

    Ledgerwood, Lana; Richardson, Rick; Cranney, Jacquelyn

    2004-06-01

    Several recent studies have reported that D-cycloserine (DCS), a partial N-methyl-D-aspartate agonist, facilitates extinction of learned fear in rats. Other studies have shown that representation of the unconditioned stimulus (US) can reinstate learned fear after extinction. This study examined whether this reinstatement effect occurs in Sprague-Dawley rats given DCS at the time of extinction. Results showed that saline-treated rats exhibited the reinstatement effect but DCS-treated rats did not (Experiments 1 and 2). This lack of reinstatement in DCS-treated rats was not due to residual effects of DCS on either US or context processing (Experiment 3). Overall, these results (a) raise questions about the mechanisms underlying DCS facilitation of extinction and (b) suggest that DCS might have substantial practical benefit.

  10. Increases in the numerical density of GAT-1 positive puncta in the barrel cortex of adult mice after fear conditioning.

    Directory of Open Access Journals (Sweden)

    Ewa Siucinska

    Full Text Available Three days of fear conditioning that combines tactile stimulation of a row of facial vibrissae (conditioned stimulus, CS with a tail shock (unconditioned stimulus, UCS expands the representation of "trained" vibrissae, which can be demonstrated by labeling with 2-deoxyglucose in layer IV of the barrel cortex. We have also shown that functional reorganization of the primary somatosensory cortex (S1 increases GABAergic markers in the hollows of "trained" barrels of the adult mouse. This study investigated how whisker-shock conditioning (CS+UCS affected the expression of puncta of a high-affinity GABA plasma membrane transporter GAT-1 in the barrel cortex of mice 24 h after associative learning paradigm. We found that whisker-shock conditioning (CS+UCS led to increase expression of neuronal and astroglial GAT-1 puncta in the "trained" row compared to controls: Pseudoconditioned, CS-only, UCS-only and Naïve animals. These findings suggest that fear conditioning specifically induces activation of systems regulating cellular levels of the inhibitory neurotransmitter GABA.

  11. Spike-coding mechanisms of cerebellar temporal processing in classical conditioning and voluntary movements.

    Science.gov (United States)

    Yamaguchi, Kenji; Sakurai, Yoshio

    2014-10-01

    Time is a fundamental and critical factor in daily life. Millisecond timing, which is the underlying temporal processing for speaking, dancing, and other activities, is reported to rely on the cerebellum. In this review, we discuss the cerebellar spike-coding mechanisms for temporal processing. Although the contribution of the cerebellum to both classical conditioning and voluntary movements is well known, the difference of the mechanisms for temporal processing between classical conditioning and voluntary movements is not clear. Therefore, we review the evidence of cerebellar temporal processing in studies of classical conditioning and voluntary movements and report the similarities and differences between them. From some studies, which used tasks that can change some of the temporal properties (e.g., the duration of interstimulus intervals) with keeping identical movements, we concluded that classical conditioning and voluntary movements may share a common spike-coding mechanism because simple spikes in Purkinje cells decrease at predicted times for responses regardless of the intervals between responses or stimulation.

  12. Cholinergic Septo-Hippocampal Innervation Is Required for Trace Eyeblink Classical Conditioning

    Science.gov (United States)

    Fontan-Lozano, Angela; Troncoso, Julieta; Munera, Alejandro; Carrion, Angel Manuel; Delgado-Garcia, Jose Maria

    2005-01-01

    We studied the effects of a selective lesion in rats, with 192-IgG-saporin, of the cholinergic neurons located in the medial septum/diagonal band (MSDB) complex on the acquisition of classical and instrumental conditioning paradigms. The MSDB lesion induced a marked deficit in the acquisition, but not in the retrieval, of eyeblink classical…

  13. Repeated Acquisitions and Extinctions in Classical Conditioning of the Rabbit Nictitating Membrane Response

    Science.gov (United States)

    Kehoe, E. James

    2006-01-01

    The rabbit nictitating membrane (NM) response underwent successive stages of acquisition and extinction training in both delay (Experiment 1) and trace (Experiment 2) classical conditioning. In both cases, successive acquisitions became progressively faster, although the largest, most reliable acceleration occurred between the first and second…

  14. Is disgust sensitive to classical conditioning as indexed by facial electromyography and behavioural responses?

    NARCIS (Netherlands)

    Borg, Charmaine; Bosman, Renske C; Engelhard, Iris; Olatunji, Bunmi O; de Jong, Peter J

    2015-01-01

    Earlier studies provided preliminary support for the role of classical conditioning as a pathway of disgust learning, yet this evidence has been limited to self-report. This study included facial electromyographical (EMG) measurements (corrugator and levator muscles) and a behavioural approach task

  15. A Temporal-Specific and Transient cAMP Increase Characterizes Odorant Classical Conditioning

    Science.gov (United States)

    Cui, Wen; Smith, Andrew; Darby-King, Andrea; Harley, Carolyn W.; McLean, John H.

    2007-01-01

    Increases in cyclic adenosine monophosphate (cAMP) are proposed to initiate learning in a wide variety of species. Here, we measure changes in cAMP in the olfactory bulb prior to, during, and following a classically conditioned odor preference trial in rat pups. Measurements were taken up to the point of maximal CREB phosphorylation in olfactory…

  16. Classical Conditioning of Emotional Responses (Meaning, Attitudes, Values, Interests) and Effects on Social Behavior: A Bibliography.

    Science.gov (United States)

    Staats, Arthur W.; Carlson, Carl G.

    This is a bibliography of 81 papers and books published in the years 1957-1970 relevant to the subject of verbally-elicited responses that are in accordance with principles of classical conditioning. Of these publications, 24 are by Staats--one of the bibliographers--and his associates. (MF)

  17. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits: Reversal by blockade of CRF1 receptors.

    Science.gov (United States)

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-10-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the startle reflex. Next, fear acquisition and concomitant development of contextual conditioned fear were monitored during training. To differentiate between developmental and direct effects of reduced SERT functioning, effects of acute and chronic SSRI treatment were studied in adult rats. Considering the known interactions between serotonin and corticotropin-releasing factor (CRF), we studied the effect of the CRFR1 antagonist CP154,526 on behavioral changes observed and determined CRF1 receptor levels in SERT(-/-) rats. SERT(-/-) showed blunted fear potentiation and enhanced contextual fear, which resulted from a deficit in fear acquisition. Paroxetine treatment did not affect acquisition or expression of fear-potentiated startle, suggesting that disturbed fear learning in SERT(-/-) results from developmental changes and not from reduced SERT functioning. Although CRF1 receptor levels did not differ significantly between genotypes, CP154,526 treatment normalized both cue- and contextual fear in SERT(-/-) during acquisition, but not expression of fear-potentiated startle. The disrupted fear acquisition and concomitant increase in contextual conditioned fear-potentiated startle fear in SERT(-/-) resembles the associative learning deficit seen in patients with panic disorder and suggests that normal SERT functioning is crucial for the development of an adequate fear neuro-circuitry. Moreover, the normalization of fear acquisition by CP154,526 suggests a role for central CRF signaling in the generalization of fear.

  18. Is disgust sensitive to classical conditioning as indexed by facial electromyography and behavioural responses?

    Science.gov (United States)

    Borg, Charmaine; Bosman, Renske C; Engelhard, Iris; Olatunji, Bunmi O; de Jong, Peter J

    2016-01-01

    Earlier studies provided preliminary support for the role of classical conditioning as a pathway of disgust learning, yet this evidence has been limited to self-report. This study included facial electromyographical (EMG) measurements (corrugator and levator muscles) and a behavioural approach task to assess participants' motivation-to-eat the actual food items (conditioned stimuli, CS). Food items served as CS and film excerpts of a woman vomiting served as unconditioned stimuli (US). Following acquisition the CS+ (neutral CS paired with US disgust) was rated as more disgusting and less positive. Notably, the conditioned response was transferred to the actual food items as evidenced by participants' reported lowered willingness-to-eat. Participants also showed heightened EMG activity in response to the CS+ which seemed driven by the corrugator indexing a global negative affect. These findings suggest that classical conditioning as a pathway of disgust learning can be reliably observed in subjective but not in disgust-specific physiological responding.

  19. The influence of classical-conditioning procedures on subsequent attention to the conditioned brand

    OpenAIRE

    Janiszewski, C; Warlop, Luk

    1993-01-01

    Three experiments are used to investigate the influence of conditioning procedures on attention to a conditioned stimulus. In experiment 1, scenes presented in a sequence that is consistent with prescribed conditioning procedures are shown to encourage attention to the advertised brands in subsequent product displays. Experiment 2 suggests that differential attention to conditioned brands can be attributed to the signaling properties the brand acquires as a consequence of conditioning. Eviden...

  20. Apomorphine-induced pecking in pigeons classically conditioned to environmental cues

    OpenAIRE

    Delius, Juan; Lindenblatt, Ulrike

    1987-01-01

    The dopamine agonist apomorphine elicits protracted pecking when injected systemically (1 mg/kg) into pigeons. In two experiments it was investigated whether apomorphine would function as an unconditioned stimulus in the classical conditioning of pecking in these animals. An experimental design based on a differentiation procedure was used so that possible pseudoconditioning effects were controlled. Two differently coloured test chambers served as negative (CS-) and positive conditioned (CS+)...

  1. Limbic but not non-limbic kindling impairs conditioned fear and promotes plasticity of NPY and its Y2 receptor.

    Science.gov (United States)

    Botterill, J J; Guskjolen, A J; Marks, W N; Caruncho, H J; Kalynchuk, L E

    2015-11-01

    Epileptic seizures negatively affect cognition. However, the mechanisms that contribute to cognitive impairments after seizures are largely unknown. Here, we examined the effects of long-term kindling (i.e., 99 stimulations) of limbic (basolateral amygdala, dorsal hippocampus) and non-limbic (caudate nucleus) brain sites on conditioned fear and hippocampal plasticity. We first showed that kindling had no effect on acquisition of a hippocampal-dependent trace fear-conditioning task but limbic kindling impaired the retrieval of these fear memories. To determine the relationship between memory and hippocampal neuronal activity, we examined the expression of Fos protein 90 min after memory retrieval (i.e., 4 days after the last kindling stimulation). We found that limbic kindling, but not non-limbic kindling, decreased Fos expression in the granule cell layer, hilus, CA3 pyramidal cell layer, and CA1 pyramidal cell layer. Next, to investigate a mechanism that could contribute to dampen hippocampal neuronal activity in limbic-kindled rats, we focused on the endogenous anticonvulsant neuropeptide Y (NPY), which is expressed in a subset of GABAergic interneurons and can prevent glutamate release through interactions with its Y2 receptor. We found that limbic kindling significantly decreased the number of NPY-immunoreactive cells in several hippocampal subfields despite minimal staining of the neurodegenerative marker Fluoro-Jade B. However, we also noted that limbic kindling enhanced NPY immunoreactivity throughout the mossy fiber pathway. In these same regions, we observed limbic kindling-induced de novo expression of the NPY Y2 receptor. These novel findings demonstrate the site-specific effects of kindling on cognition and NPY plasticity, and they provide evidence that altered hippocampal NPY after limbic seizures coincides with dampened neural activity and cognitive impairments.

  2. A behavioral stages model of classical (Pavlovian) conditioning: application to cognitive aging.

    Science.gov (United States)

    Powell, D A

    1999-01-01

    In the present article, it is argued that a five-stage sequential model of the behavioral and neurophysiological events that occur when organisms are exposed to signals predicting significant events suggests that classical conditioning produces multiple memory traces involving both excitatory and inhibitory processes. Further, these multiple brain structures and associated neurophysiological mechanisms are beginning to be understood; thus, using Pavlovian conditioning techniques to study aging and cognitive functions may provide insights into which brain structures or mechanisms are responsible for more general age-related declines in associative learning and memory. The evidence for this model is briefly reviewed and studies suggesting age-related effects on classical conditioning of various response systems are described within the context of the brain structures implicated by the model.

  3. Experimental challenges to theories of classical conditioning: application of an attentional model of storage and retrieval.

    Science.gov (United States)

    Schmajuk, Nestor A; Larrauri, José A

    2006-01-01

    Several studies have recently challenged the accuracy of traditional models of classical conditioning that account for some experimental data in terms of a storage deficit. Among other results, it has been reported that extinction of the blocking or overshadowing stimulus results in the recovery of the response to the blocked or overshadowed stimulus, backward blocking shows spontaneous recovery, extinction of the training context results in the recovery from latent inhibition, interposing a delay between conditioning and testing in latent inhibition increases latent inhibition, and latent inhibition antagonizes overshadowing. An existing neural network model of classical conditioning (N. A. Schmajuk, Y. Lam, & J. A. Gray, 1996), which includes an attentional mechanism controlling both storage and retrieval of associations, is able to quantitatively describe these results.

  4. Psychiatric Conditions in Parkinson Disease: A Comparison With Classical Psychiatric Disorders.

    Science.gov (United States)

    Buoli, Massimiliano; Caldiroli, Alice; Altamura, Alfredo Carlo

    2016-03-01

    Psychiatric conditions often complicate the outcome of patients affected by Parkinson disease (PD), but they differ from classical psychiatric disorders in terms of underlying biological mechanisms, clinical presentation, and treatment response. The purpose of the present review is to illustrate the biological and clinical aspects of psychiatric conditions associated with PD, with particular reference to the differences with respect to classical psychiatric disorders. A careful search of articles on main databases was performed in order to obtain a comprehensive review about the main psychiatric conditions associated with PD. A manual selection of the articles was then performed in order to consider only those articles that concerned with the topic of the review. Psychiatric conditions in patients with PD present substantial differences with respect to classical psychiatric disorders. Their clinical presentation does not align with the symptom profiles represented by Diagnostic and Statistical Manual for Mental Disorders and International Classification of Diseases. Furthermore, psychiatry treatment guidelines are of poor help in managing psychiatric symptoms of patients with PD. Specific diagnostic tools and treatment guidelines are needed to allow early diagnosis and adequate treatment of psychiatric conditions in comorbidity with PD.

  5. Effects of β-Estradiol on Enhanced Conditioned Fear Induced by Single Prolonged Stress and Shock in Rats

    Directory of Open Access Journals (Sweden)

    Ali Rashidy-Pour

    2012-02-01

    Full Text Available Introduction:This study examined the effects of administration of subcutaneous β-estradiol on PTSD-like symptoms (the enhanced conditioned fear response, CFR that induced by a single-prolonged stress (SPS and shock in rats. Methods: Adult male Wistar rats were exposed to SPS procedure: restraint for 2 h, forced swim for 20 min, and ether anesthesia. Then the rats were placed in fear conditioning system and received 1 mA electric foot shock for 4 s. Following, stressed rats injected with β-estradiol (600 μg/kg or sesame oil. For CFR testing, 24 h later animals were re-exposed to the shock chamber for 3-min without further shock application. Percent of freezing was scored. Following testing, the animals were anesthetized and their brains were removed for histological examination (cell count of the hippocampus that stained with cresyl violet. Results: Our results indicated that rats who received electric shock after the SPS exhibited the CFR. β-estradiol significantly reduced the CFR in the SPS rats as compared with control rats. No significant differences were found in cell count in different regions of the hippocampus between experimental groups. Discussion: Our findings indicated that β-estradiol administration after SPS prevents the enhanced CFR in an animal model of PTSD, suggesting a possible role for β-estradiol in the prevention of PTSD

  6. Rabbit cerebellar slice analysis of long-term depression and its role in classical conditioning.

    Science.gov (United States)

    Schreurs, B G; Alkon, D L

    1993-12-24

    Cerebellar long-term depression (LTD) has been proposed as a mechanism underlying classical conditioning of the rabbit nictitating membrane/eyelid response (NMR). However, LTD has only been obtained reliably when (1) cerebellar slices are bathed in GABA antagonists which abolish disynaptic inhibitory post synaptic potentials, and (2) the temporal sequence of stimulation used in slice or intact preparations is the opposite of that used in classical conditioning. Based on intradendritic Purkinje cell recordings obtained from rabbit cerebellar slices, we report that stimulation of climbing fibers and then parallel fibers in the presence of the GABA antagonist, bicuculline, produced significant depression of parallel fiber excitatory post synaptic potential (epsp) amplitude that continued to increase for at least 20 min after stimulation. However, application of the same stimulation protocol without GABA antagonists produced a brief depression of parallel fiber epsps that disappeared within minutes. Activation of parallel fibers and then climbing fibers in an order opposite to the LTD-producing sequence (i.e. a classical conditioning-like order) produced a brief depression that dissipated quickly. Stimulation of parallel fibers alone produced a small, slowly developing potentiation, but stimulation of parallel fibers during depolarization-induced local dendritic calcium spikes produced significant depression almost immediately which then declined slowly to more modest levels. Finally, stimulation of parallel fibers at frequencies used in in vivo parallel fiber-climbing fiber stimulation experiments (e.g. 100 Hz) produced an immediate and profound long-lasting epsp depression. The depression occurred, however, whether parallel and climbing fibers were stimulated separately (unpaired) or in a classical conditioning-like protocol (paired) where parallel fiber stimulation coterminated with climbing fiber stimulation (10 Hz).(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Transsynaptic EphB/Ephrin-B signaling regulates growth of presynaptic boutons required for classical conditioning.

    Science.gov (United States)

    Li, Wei; Zheng, Zhaoqing; Keifer, Joyce

    2011-06-01

    Learning-related presynaptic remodeling has been documented in only a few systems, and its molecular mechanisms are largely unknown. Here we describe a role for the bidirectional EphB/ephrin-B signaling system in structural plasticity of presynaptic nerve terminals using an in vitro model of classical conditioning. Conditioning or BDNF application induced significant growth of auditory nerve presynaptic boutons that convey the conditioned stimulus to abducens motor neurons. Interestingly, bouton enlargement occurred only for those synapses apposed to motor neuron dendrites rather than to somata. Phosphorylation of ephrin-B1, but not EphB2, was induced by both conditioning and BDNF application and was inhibited by postsynaptic injections of ephrin-B antibody. Finally, suppression of postsynaptic ephrin-B function inhibited presynaptic bouton enlargement that was rescued by activation of EphB2 by ephrin-B1-Fc. These data provide evidence for ephrin-B-induced EphB2 forward signaling in presynaptic structural plasticity during classical conditioning. They also reveal a functional interaction between BDNF/TrkB and the Eph/ephrin signaling systems in the coordination of presynaptic and postsynaptic modifications during conditioning.

  8. Omission of expected reward sensitizes the brain dopaminergic system of classically conditioned Atlantic salmon

    DEFF Research Database (Denmark)

    Vindas, M.A.; Höglund, Erik; Folkedal, O.;

    in fishes. Here we show that the omission of expected reward (OER) leads to increased aggression towards conspecifics in classically conditioned Atlantic salmon (Salmo salar). Furthermore, in response to an acute stressor, OER fish displayed increased dopaminergic (DA) neurotransmission compared to controls....... There was also a general downregulation of dopamine receptor D1 gene expression in the telencephalon of OER groups, which suggests a coping mechanism in response to unbalanced DA metabolism. These results indicate that animals subjected to unpredictable reward conditions develop a senzitation of the DA...

  9. Absence of verbal recall or memory for symptom acquisition in fear and trauma exposure: A conceptual case for fear conditioning and learned nonuse in assessment and treatment

    OpenAIRE

    A. Ronald Seifert, PhD

    2012-01-01

    Absence of memory or verbal recall for symptom acquisition in fear and trauma exposure, as well as absence of successful coping behavior for life events, is associated with a number of diagnoses, including traumatic brain injury, posttraumatic stress disorder, pain, and anxiety. The difficulty with diagnosis and treatment planning based on the absence of recall, memory, and successful coping behavior is threefold: (1) these assessments do not distinguish between disruption of behavior and lac...

  10. Conditioned fear and startle magnitude: effects of different footshock or backshock intensities used in training.

    Science.gov (United States)

    Davis, M; Astrachan, D I

    1978-04-01

    In Experiment 1 four groups of rats received 30 light-shock pairings using footshock intensities of either .2, .4, .8, or 1.6 mA. One day later all rats were tested for startle by presenting tones in the presence or absence of the light CS. Potentiated startle (the difference between startle on light-tone vs tone-alone trials) was nonmonotonically related to the shock intensity used in training, with the greatest potentiation at intermediate shock levels. Experiment 3 demonstrated a similar relationship when backshocks instead of footshocks were used. In Experiment 2 rats were trained with either a moderate or high shock and then given an extended extinction-test session 1 day later. The moderate-shock group showed a gradual decline in potentiated startle over extinction. The high-shock group showed a nonmonotonic extinction curve where potentiation progressively increased toward the middle of extinction and dissipated thereafter. The results suggest that acoustic startle bears an inverted U-shaped relationship to fear and are discussed in relation to other studies concerned with this issue. PMID:670892

  11. Sex differences in the neurobiology of fear conditioning and extinction: a preliminary fMRI study of shared sex differences with stress-arousal circuitry

    Directory of Open Access Journals (Sweden)

    Lebron-Milad Kelimer

    2012-04-01

    Full Text Available Abstract Background The amygdala, hippocampus, medial prefrontal cortex (mPFC and brain-stem subregions are implicated in fear conditioning and extinction, and are brain regions known to be sexually dimorphic. We used functional magnetic resonance imaging (fMRI to investigate sex differences in brain activity in these regions during fear conditioning and extinction. Methods Subjects were 12 healthy men comparable to 12 healthy women who underwent a 2-day experiment in a 3 T MR scanner. Fear conditioning and extinction learning occurred on day 1 and extinction recall occurred on day 2. The conditioned stimuli were visual cues and the unconditioned stimulus was a mild electric shock. Skin conductance responses (SCR were recorded throughout the experiment as an index of the conditioned response. fMRI data (blood-oxygen-level-dependent [BOLD] signal changes were analyzed using SPM8. Results Findings showed no significant sex differences in SCR during any experimental phases. However, during fear conditioning, there were significantly greater BOLD-signal changes in the right amygdala, right rostral anterior cingulate (rACC and dorsal anterior cingulate cortex (dACC in women compared with men. In contrast, men showed significantly greater signal changes in bilateral rACC during extinction recall. Conclusions These results indicate sex differences in brain activation within the fear circuitry of healthy subjects despite similar peripheral autonomic responses. Furthermore, we found that regions where sex differences were previously reported in response to stress, also exhibited sex differences during fear conditioning and extinction.

  12. Conditions for equality between entanglement-assisted and unassisted classical capacities of a quantum channel

    CERN Document Server

    Shirokov, M E

    2011-01-01

    Both necessary and sufficient conditions of coincidence of the entanglement-assisted capacity with the Holevo capacity of a quantum channel are obtained. By using these conditions the equality between these capacities as well as the strict inequality between them are proved for several classes of quantum channel. In particular, it is shown that coincidence of the entanglement-assisted capacity with the Holevo capacity of a quantum channel implies that the $\\chi$-essential part of this channel is entanglement-breaking (the $\\chi$-essential part is defined as a restriction of a channel obtained by discarding all states useless for transmission of classical information). The above conditions and their corollaries are extended to quantum channels with linear constraints. By using these conditions it is shown that the question of coincidence of the entanglement-assisted capacity with the Holevo capacity of a constrained channel depends on the form of the constraint.

  13. Maternal separation enhances conditioned fear and decreases the mRNA levels of the neurotensin receptor 1 gene with hypermethylation of this gene in the rat amygdala.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Toda

    Full Text Available Stress during postnatal development is associated with an increased risk for depression, anxiety disorders, and substance abuse later in life, almost as if mental illness is able to be programed by early life stressors. Recent studies suggest that such "programmed" effects can be caused by epigenetic regulation. With respect to conditioned fear, previous studies have indicated that early life stress influences its development in adulthood, whereas no potential role of epigenetic regulation has been reported. Neurotensin (NTS is an endogenous neuropeptide that has receptors densely located in the amygdala and hippocampus. Recently, NTS systems have constituted an emerging target for the treatment of anxiety. The aim of the present work is to clarify whether the NTS system is involved in the disturbance of conditioned fear in rats stressed by maternal separation (MS. The results showed that MS enhanced freezing behaviors in fear-conditioned stress and reduced the gene expression of NTS receptor (NTSR 1 but not of NTS or NTSR2 in the amygdalas of adult rats. The microinjection of a NTSR1 antagonist into the amygdala increased the percentage of freezing in conditioned fear, whereas the microinjection of NTSR1 agonist decreased freezing. These results suggest that NTSR1 in the amygdala may play a role in the effects of MS on conditioned fear stress in adult rats. Moreover, MS increased DNA methylation in the promoter region of NTSR1 in the amygdala. Taken together, MS may leave epigenetic marks in the NTSR1 gene in the amygdala, which may enhance conditioned fear in adulthood. The MS-induced alternations of DNA methylation in the promoter region of NTSR1 in the amygdala may be associated with vulnerability to the development of anxiety disorders and depression in adulthood.

  14. The Amygdala Is Not Necessary for Unconditioned Stimulus Inflation after Pavlovian Fear Conditioning in Rats

    Science.gov (United States)

    Rabinak, Christine A.; Orsini, Caitlin A.; Zimmerman, Joshua M.; Maren, Stephen

    2009-01-01

    The basolateral complex (BLA) and central nucleus (CEA) of the amygdala play critical roles in associative learning, including Pavlovian conditioning. However, the precise role for these structures in Pavlovian conditioning is not clear. Recent work in appetitive conditioning paradigms suggests that the amygdala, particularly the BLA, has an…

  15. Fear Extinction in Rodents

    OpenAIRE

    Chang, Chun-hui; Knapska, Ewelina; Orsini, Caitlin A.; Rabinak, Christine A.; Zimmerman, Joshua M; Maren, Stephen

    2009-01-01

    Pavlovian conditioning paradigms have become important model systems for understanding the neuroscience of behavior. In particular, studies of the extinction of Pavlovian fear responses are yielding important information about the neural substrates of anxiety disorders in humans. These studies are germane to understanding the neural mechanisms underlying behavioral interventions that suppress fear, including exposure therapy. This chapter described detailed behavioral protocols for examining ...

  16. Role of NPY Y1 receptor on acquisition, consolidation and extinction on contextual fear conditioning: dissociation between anxiety, locomotion and non-emotional memory behavior.

    Science.gov (United States)

    Lach, Gilliard; de Lima, Thereza Christina Monteiro

    2013-07-01

    Neuropeptide Y (NPY) is the most abundant peptide in the central nervous system (CNS) and is densely localized in the brain regions involved in stress, memory, fear and anxiety. Although previous research supports a role for NPY in the mediation of rodent and human emotional behavior, there is currently a lack of information on the effects of low doses of NPY that could have a potential therapeutic advantage, minimizing side-effects such as cognition impairment or sedation. Herein, we assessed the effects of intracerebroventricular (i.c.v.) administration of low doses of NPY, and of the Y1-agonist Leu31Pro34-NPY (LP-NPY) on contextual fear conditioning (CFC), as they have no effect on unconditioned anxiety-like, locomotor activity and non-emotional memory. NPY (3 pmol) and LP-NPY (1 pmol) inhibited freezing behavior when administered in the acquisition or consolidation stages, indicating a reduction of fear. When injected in the extinction phase, only NPY inhibited freezing behavior on CFC. Pre-treatment with the Y1-antagonist BIBO3304 before NPY and LP-NPY was able to prevent the inhibition of fear responses induced by both NPY agonists. Taken together, our results demonstrate robust fear-inhibiting effects of i.c.v. injection of NPY on contextual fear conditioning in rats, a response that is mediated, at least in part, by the Y1 receptor. Moreover, these treatments were unable to change locomotor activity or to show an anxiolytic-like effect, as evaluated in an open-field and an elevated plus-maze. This specific fear reduction effect may underlie resilience systems in the CNS and has potential therapeutic relevance in PTSD.

  17. Classical Conditioning Components of the Orienting Reflex to Words Using Innocuous and Noxious Unconditioned Stimuli Under Different Conditioned Stimulus-Unconditioned Stimulus Intervals

    Science.gov (United States)

    Maltzman, Irving; And Others

    1977-01-01

    Concerns the examination of conditioned stimulus--unconditioned stimulus (CS--UCS) intervals of different lengths. Demonstrates the feasibility of using a forewarned reaction time procedure with an innocuous imperative stimulus for the investigation of classical conditioning. (Editor/RK)

  18. Dorsolateral periaqueductal gray matter CB1 and TRPV1 receptors exert opposite modulation on expression of contextual fear conditioning.

    Science.gov (United States)

    Uliana, D L; Hott, S C; Lisboa, S F; Resstel, L B M

    2016-04-01

    Cannabinoid type 1 (CB1) and Transient Potential Vanilloid type 1 (TRPV1) receptors in the dorsolateral periaqueductal gray (dlPAG) matter are involved in the modulation of conditioned response. Both CB1 and TRPV1 receptors are related to glutamate release and nitric oxide (NO) synthesis. It was previously demonstrated that both NMDA glutamate receptors and NO are involved in the conditioned emotional response. Therefore, one aim of this work was to verify whether dlPAG CB1 and TRPV1 receptors modulate the expression of contextual conditioned emotional response. Moreover, we also investigated the involvement of NMDA receptors and the NO pathway in this response. Male Wistar rats with local dlPAG guide cannula were submitted to contextual fear conditioning. Following 24 h, a polyethylene catheter was implanted in the femoral artery for cardiovascular recordings. After an additional 24 h, drugs were administered in the dlPAG and freezing behavior and autonomic responses were recorded during chamber re-exposure. Both a CB1 antagonist (AM251) and a TRPV1 agonist (Capsaicin; CPS) increased the expression of a conditioned emotional response. This response was prevented by an NMDA antagonist, a preferential neuronal NO synthase inhibitor, an NO scavenger and a soluble guanylate cyclase inhibitor (sGC). Furthermore, pretreatment with a TRPV1 antagonist also prevented the increased conditioned emotional response induced by AM251. Considering that GABA can counterbalance glutamate effects, we also investigated whether GABAA receptors were involved in the effect of a higher dose of AM251. Pretreatment with a GABAA receptor antagonist caused an increased conditioned emotional response by AM251. Our results support the possibility that dlPAG CB1 and TRPV1 receptors are involved in the expression of conditioned emotional response through the NMDA/NO/sGC pathway. Moreover, the opposite effects exerted by GABA and glutamate could produce different outcomes of drugs modulating eCBs.

  19. Further evidence for involvement of the dorsal hippocampus serotonergic and γ-aminobutyric acid (GABA)ergic pathways in the expression of contextual fear conditioning in rats.

    Science.gov (United States)

    Almada, Rafael C; Albrechet-Souza, Lucas; Brandão, Marcus L

    2013-12-01

    Intra-dorsal hippocampus (DH) injections of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a serotonin-1A (5-hydroxytryptamine (5-HT)-1A) receptor agonist, were previously shown to inhibit the expression of contextual fear when administered six hours after conditioning. However, further understanding of the consolidation and expression of aversive memories requires investigations of these and other mechanisms at distinct time points and the regions of the brain to which they are transferred. Thus, the purpose of the present study was to investigate the role of DH serotonergic and γ-aminobutyric acid (GABA)ergic mechanisms in the expression of contextual fear 24 h after conditioning, reflected by fear-potentiated startle (FPS) and freezing behavior. The recruitment of the amygdala and medial prefrontal cortex (mPFC) in these processes was also evaluated by measuring Fos protein immunoreactivity. Although intra-DH injections of 8-OH-DPAT did not produce behavioral changes, muscimol reduced both FPS and the freezing response. Fos protein immunoreactivity revealed that contextual fear promoted wide activation of the mPFC, which was significantly reduced after intra-DH infusions of muscimol. The present findings, together with previous data, indicate that in contrast to 5-HT, which appears to play a role during the early phases of contextual aversive memory consolidation, longer-lasting GABA-mediated mechanisms are recruited during the expression of contextual fear memories.

  20. When Two Paradigms Meet: Does Evaluative Learning Extinguish in Differential Fear Conditioning?

    Science.gov (United States)

    Blechert, Jens; Michael, Tanja; Williams, S. Lloyd; Purkis, Helena M.; Wilhelm, Frank H.

    2008-01-01

    Contemporary theories of Pavlovian conditioning propose a distinction between signal learning (SL), in which a conditioned stimulus (CS) becomes a predictor for a biologically significant unconditioned stimulus (US), and evaluative learning (EL), in which the valence of the US is transferred to the CS. This distinction is based largely on the…

  1. Fear conditioning of SCR but not the startle reflex requires conscious discrimination of threat and safety

    NARCIS (Netherlands)

    D. Sevenster; T. Beckers; M. Kindt

    2014-01-01

    There is conflicting evidence as to whether awareness is required for conditioning of the skin conductance response (SCR). Recently, Schultz and Helmstetter (2010) reported SCR conditioning in contingency unaware participants by using difficult to discriminate stimuli. These findings are in stark co

  2. Role of the hippocampus in contextual memory after classical aversive conditioning in pigeons (C. livia

    Directory of Open Access Journals (Sweden)

    Reis F.

    1999-01-01

    Full Text Available We investigated the effects of hippocampal lesions with ibotenic acid (IBO on the memory of the sound-context-shock association during reexposure to the conditioning context. Twenty-nine adult pigeons were assigned to a non-lesioned control group (CG, N = 7, a sham-lesioned group (SG, N = 7, a hippocampus-lesioned experimental group (EG, N = 7, and to an unpaired nonlesioned group (tone-alone exposure (NG, N = 8. All pigeons were submitted to a 20-min session in the conditioning chamber with three associations of sound (1000 Hz, 85 dB, 1 s and shock (10 mA, 1 s. Experimental and sham lesions were performed 24 h later (EG and SG when EG birds received three bilateral injections (anteroposterior (A, 4.5, 5.25 and 7.0 of IBO (1 µl and 1 µg/µl and SG received one bilateral injection (A, 5.25 of PBS. The animals were reexposed to the training context 5 days after the lesion. Behavior was videotaped for 20 min and analyzed at 30-s intervals. A significantly higher percent rating of immobility was observed for CG (median, 95.1; range, 79.2 to 100.0 and SG (median, 90.0; range, 69.6 to 95.0 compared to EG (median, 11.62; range, 3.83 to 50.1 and NG (median, 7.33; range, 6.2 to 28.1 (P<0.001 in the training context. These results suggest impairment of contextual fear in birds who received lesions one day after conditioning and a role for the hippocampus in the modulation of emotional aversive memories in pigeons.

  3. Enhanced fear expression in a psychopathological mouse model of trait anxiety: pharmacological interventions.

    Directory of Open Access Journals (Sweden)

    Simone B Sartori

    Full Text Available The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB, or normal (NAB anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the α(2,3,5-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i for identifying biological factors underlying misguided conditioned fear responses and (ii for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias.

  4. Facilitated acquisition of standard but not long delay classical eyeblink conditioning in behaviorally inhibited adolescents.

    Science.gov (United States)

    Caulfield, M D; VanMeenen, K M; Servatius, R J

    2015-02-01

    Adolescence is a key age in the development of anxiety disorders. The present study assessed the relationship between behavioral inhibition, a risk factor for anxiety typified by avoidance, and acquisition of the classically conditioned eyeblink response. 168 healthy high school students (mean age 15.7 years, 54% female) were given a battery of self-report measures including the Adult Measure of Behavioural Inhibition (AMBI). The study compared acquisition of three experimental training conditions. Two groups were given paired CS-US training: standard delay of 500-ms or long delay of 1000-ms with CS overlapping and co-terminating with a 50-ms airpuff US. A third group received unpaired training of 1000-ms CS and 50-ms airpuff US. Inhibited individuals showed greater acquisition of the conditioned eyeblink response in the 500-ms CS condition, but not in the paired 1000-ms condition. No differences in spontaneous blinks or reactivity to the stimulus were evident in the 1000-ms unpaired CS condition. Results support a relationship between associative learning and anxiety vulnerability that may be mediated by cerebellar functioning in inhibited individuals.

  5. Novelty-Induced Arousal Enhances Memory for Cued Classical Fear Conditioning: Interactions between Peripheral Adrenergic and Brainstem Glutamatergic Systems

    Science.gov (United States)

    King, Stanley O., II; Williams, Cedric L.

    2009-01-01

    Exposure to novel contexts produce heightened states of arousal and biochemical changes in the brain to consolidate memory. However, processes permitting simple exposure to unfamiliar contexts to elevate sympathetic output and to improve memory are poorly understood. This shortcoming was addressed by examining how novelty-induced changes in…

  6. Experimental Evidence of Classical Conditioning and Microscopic Engrams in an Electroconductive Material

    Science.gov (United States)

    Karbowski, Lukasz M.; Persinger, Michael A.

    2016-01-01

    Synthetic experimental substrates are indispensable tools which can allow researchers to model biological processes non-invasively in three-dimensional space. In this study, we investigated the capacities of an electroconductive material whose properties converge upon those of the brain. An electrically conductive material composed of carbohydrates, proteins, fats, ions, water, and trace amounts of other organic compounds and minerals was classically conditioned as inferred by electrophysiological measurements. Spectral densities evoked during the display of a conditioned stimulus (CS) probe were strongly congruent with those displayed during the conditioned-unconditioned stimulus pairing (CS-UCS). The neutral stimulus consisted of the pulsed light from a LED. The unconditioned stimulus was an alternating current. Interstimulus intervals >130 ms did not result in conditioned responses. Microscopic analysis of the chemically-fixed substratum revealed 10–200 μm wide ‘vessel structures’ within samples exposed to a stimulus. Greater complexity (increased fractal dimensions) was clearly discernable by light microscopy for stained sections of fixed samples that had been conditioned compared to various controls. The denser pixels indicated greater concentration of stain and increased canalization. Implications for learning and memory formation are discussed. PMID:27764215

  7. A Modified Counterconditioning Procedure Prevents the Renewal of Conditioned Fear in Rats

    Science.gov (United States)

    Thomas, Brian L.; Cutler, Marlo; Novak, Cheryl

    2012-01-01

    Two studies using an ABA design examined the Extinction and renewal of conditioned barpress suppression. Following lights-off and foot shock pairings in Context A, rats were placed in Context B and were given either a standard counterconditioning procedure where the lights-off CS was paired with a novel food US delivered freely or a modified…

  8. GABA(A) receptor activation in the CA1 area of the dorsal hippocampus impairs consolidation of conditioned contextual fear in C57BL/6J mice.

    Science.gov (United States)

    Misane, Ilga; Kruis, Ayla; Pieneman, Anton W; Ögren, Sven Ove; Stiedl, Oliver

    2013-02-01

    Local infusion of the GABA(A) receptor agonist muscimol is used for reversible inactivation of septohippocampal brain structures associated with cognitive functions. However, information on the effective duration, affected processes and site(s) of action of muscimol in the hippocampus is lacking. Therefore, the dose- and time-dependent effects of bilateral dorsohippocampal infusion of muscimol (0.01-2.0 μg/mouse) below the CA1 area were examined on processing of fear memory in male C57BL/6J mice. Infusion of muscimol 15 min-6 h but not 9 h or 24 h before training impaired conditioned context-dependent fear tested 24 h or 48 h after training. Post-training infusion of muscimol also impaired context-dependent fear when applied either 4 h or 6 h after training, although with lower efficacy. Muscimol was ineffective when administered immediately, 1 h or 24 h after training. Infusion of muscimol 15 min before training impaired context-dependent fear 4-6 h after training indicating preserved short-term but impaired long-term memory. Regardless of infusion time and dose, muscimol had no effect on tone-dependent (cued) fear memory. The impairment by the fluorescently-labeled muscimol-bodipy (5.3 μg/mouse) were similar to those of an equimolar dose of muscimol (1 μg/mouse). The distribution profile after local infusion indicated that muscimol-bodipy (5.3 μg/mouse) was confined to the CA1 area of the dorsal hippocampus. These results demonstrated that GABA(A) receptor activation in the CA1 area of the dorsal hippocampus causes a long-term memory impairment of conditioned context-dependent fear mediated by a long-lasting (≥6 h) muscimol action most likely affecting consolidation processes.

  9. The Genetic Absence Epilepsy Rats from Strasbourg model of absence epilepsy exhibits alterations in fear conditioning and latent inhibition consistent with psychiatric comorbidities in humans.

    Science.gov (United States)

    Marks, Wendie N; Cavanagh, Mary E; Greba, Quentin; Cain, Stuart M; Snutch, Terrance P; Howland, John G

    2016-01-01

    Behavioural, neurological, and genetic similarities exist in epilepsies, their psychiatric comorbidities, and various psychiatric illnesses, suggesting common aetiological factors. Rodent models of epilepsy are used to characterize the comorbid symptoms apparent in epilepsy and their neurobiological mechanisms. The present study was designed to assess Pavlovian fear conditioning and latent inhibition in a polygenetic rat model of absence epilepsy, i.e. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and the non-epileptic control (NEC) strain. Electrophysiological recordings confirmed the presence of spike-wave discharges in young adult GAERS but not NEC rats. A series of behavioural tests designed to assess anxiety-like behaviour (elevated plus maze, open field, acoustic startle response) and cognition (Pavlovian conditioning and latent inhibition) was subsequently conducted on male and female offspring. Results showed that GAERS exhibited significantly higher anxiety-like behaviour, a characteristic reported previously. In addition, using two protocols that differed in shock intensity, we found that both sexes of GAERS displayed exaggerated cued and contextual Pavlovian fear conditioning and impaired fear extinction. Fear reinstatement to the conditioned stimuli following unsignalled footshocks did not differ between the strains. Male GAERS also showed impaired latent inhibition in a paradigm using Pavlovian fear conditioning, suggesting that they may have altered attention, particularly related to previously irrelevant stimuli in the environment. Neither the female GAERS nor NEC rats showed evidence of latent inhibition in our paradigm. Together, the results suggest that GAERS may be a particularly useful model for assessing therapeutics designed to improve the emotional and cognitive disturbances associated with absence epilepsy.

  10. Nonaware classical conditioning to pictorial facial stimuli in a between-groups paradigm.

    Science.gov (United States)

    Saban, S; Hugdahl, K

    1999-01-01

    The present experiment investigated the effects of aware and nonaware modes of extinction in classical conditioning to facial emotional stimuli. The subjects participated in three different experimental phases. In the first (habituation) phase they were presented with a 500 ms angry face. In the second (acquisition) phase, for half of the subjects the 500 ms face was paired with an aversive noise (experimental group) while for the other half of the subjects the face and the noise presentations were separated by 6-10 s intervals (sensitization control group). In the third (extinction) phase, these two groups were further divided into two subgroups. One subgroup of both the experimental and control group had the face stimulus presented for 30 ms, and immediately masked with a neutral picture. The other two subgroups had the face presented for 500 ms with no mask. The results showed that conditioning only occurred in the experimental subgroups which was indicated by a significant difference between skin conductance responses during habituation and corresponding responses during extinction. Secondly, comparing the experimental and control groups during the extinction phase, a significant conditioning effect was observed for both the aware and nonaware masked modes of extinction for the experimental group. The results suggest that conditioned autonomic responses may be elicited in a nonaware mode. PMID:10381162

  11. Extended necessary condition for local operations and classical communication: Tight bound for all measurements

    Science.gov (United States)

    Cohen, Scott M.

    2015-06-01

    We give a necessary condition that a separable measurement can be implemented by local quantum operations and classical communication (LOCC) in any finite number of rounds of communication, generalizing and strengthening a result obtained previously. That earlier result involved a bound that is tight when the number of measurement operators defining the measurement is relatively small. The present results generalize that bound to one that is tight for any finite number of measurement operators, and we also provide an extension which holds when that number is infinite. We apply these results to the famous example on a 3 ×3 system known as "domino states," which were the first demonstration of nonlocality without entanglement. Our extended necessary condition provides another way of showing that these states cannot be perfectly distinguished by (finite-round) LOCC. It directly shows that this conclusion also holds for their related rotated domino states. We also introduce a class of problems involving the unambiguous discrimination of quantum states, each of which is an example where the states can be optimally discriminated by a separable measurement, but according to our condition, cannot be optimally discriminated by LOCC. These examples nicely illustrate the usefulness of the present results, since our earlier necessary condition, which the present result generalizes, is not strong enough to reach a conclusion in any of these cases.

  12. The effects of ethanol on the developing cerebellum and eyeblink classical conditioning.

    Science.gov (United States)

    Green, John T

    2004-01-01

    In rats, developmental ethanol exposure has been used to model the central nervous system deficits associated with human fetal alcohol syndrome. Binge-like ethanol exposure of neonatal rats depletes cells in the cerebellum, including Purkinje cells, granule cells, and deep nuclear cells, and produces deficits in simple tests of motor coordination. However, the extent to which anatomical damage is related to behavioral deficits has been difficult to estimate. Eyeblink classical conditioning is known to engage a discrete brain stem-cerebellar circuit, making it an ideal test of cerebellar functional integrity after developmental ethanol exposure. Eyeblink conditioning is a simple form of motor learning in which a neutral stimulus (such as a tone) comes to elicit an eyeblink when repeatedly paired with a stimulus that evokes an eyeblink prior to training (such as mild periorbital stimulation). In eyeblink conditioning, one of the deep cerebellar nuclei, the interpositus nucleus, as well as specific Purkinje cell populations, are sites of convergence for tone conditioned stimulus and somatosensory unconditioned stimulus information, and, together with brain stem nuclei, provide the necessary and sufficient substrate for the learned response. A series of studies have shown that eyeblink conditioning is impaired in both weanling and adult rats given binge-like exposure to ethanol as neonates. In addition, interpositus nucleus neurons from ethanol-exposed rats showed impaired activation during eyeblink conditioning. These deficits are accompanied by a permanent reduction In the deep cerebellar nuclear cell population. Because particular cerebellar cell populations are utilized in well-defined ways during eyeblink conditioning, conclusions regarding the underlying neural substrates of behavioral change after developmental ethanol exposure are greatly strengthened.

  13. Interoceptive fear conditioning as a learning model of panic disorder: an experimental evaluation using 20% CO(2)-enriched air in a non-clinical sample.

    Science.gov (United States)

    Acheson, Dean T; Forsyth, John P; Prenoveau, Jason M; Bouton, Mark E

    2007-10-01

    Despite the role afforded interoceptive fear conditioning in etiologic accounts of panic disorder, there are no good experimental demonstrations of such learning in humans. The aim of the present study was to evaluate the interoceptive conditioning account using 20% carbon dioxide (CO(2))-enriched air as an interoceptive conditioned stimulus (CS) (i.e., physiologically inert 5-s exposures) and unconditioned stimulus (US) (i.e., physiologically prepotent 15-s exposures). Healthy participants (N=42) were randomly assigned to one of three conditions: a CS-only, contingent CS-US pairings, or unpaired/non-contingent CS and US presentations. Electrodermal and self-report (e.g., distress, fear) served as indices of conditioned emotional responding. Results showed greater magnitude electrodermal and evaluative fear conditioning in the paired relative to the CS-only condition. The explicitly unpaired condition showed even greater electrodermal and evaluative responding during acquisition, and marked resistance to extinction. The latter results are consistent with the possibility that the unpaired procedure constituted a partial reinforcement procedure in which CO(2) onset was paired with more extended CO(2) exposure on 50% of the trials. Overall, the findings are consistent with contemporary learning theory accounts of panic.

  14. ApoE Isoform-Dependent Deficits in Extinction of Contextual Fear Conditioning

    OpenAIRE

    Olsen, Reid H. J.; Agam, Mati; Davis, Matthew James; Raber, Jacob

    2012-01-01

    The three major human apoE isoforms (apoE2, apoE3, and apoE4) are encoded by distinct alleles (ε2, ε3, and ε4). Compared to ε3, ε4 is associated with increased risk to develop Alzheimer’s disease (AD), cognitive impairments in Parkinson’s disease (PD), and other conditions. In contrast, a recent study indicated an increased susceptibility to the recurring and re-experiencing symptom cluster of Post Traumatic Stress Disorder (PTSD), as well as related memory impairments, in patients carrying a...

  15. Spectral boundary conditions and solitonic solutions in a classical Sellmeier dielectric

    CERN Document Server

    Belgiorno, F; Viganò, A

    2016-01-01

    Electromagnetic field interactions in a dielectric medium represent a longstanding field of investigation, both at the classical level and at the quantum one. We propose a 1+1 dimensional toy-model which consists of an half-line filling dielectric medium, with the aim to set up a simplified situation where technicalities related to gauge invariance and, as a consequence, physics of constrained systems are avoided, and still interesting features appear. In particular, we simulate the electromagnetic field and the polarization field by means of two coupled scalar fields $\\phi$,$\\psi$ respectively, in a Hopfield-like model. We find that, in order to obtain a physically meaningful behaviour for the model, one has to introduce spectral boundary conditions depending on the particle spectrum one is dealing with. This is the first interesting achievement of our analysis. The second relevant achievement is that, by introducing a nonlinear contribution in the polarization field $\\psi$, with the aim of mimicking a third...

  16. Improvement of memory recall by quercetin in rodent contextual fear conditioning and human early-stage Alzheimer's disease patients.

    Science.gov (United States)

    Nakagawa, Toshiyuki; Itoh, Masanori; Ohta, Kazunori; Hayashi, Yuichi; Hayakawa, Miki; Yamada, Yasushi; Akanabe, Hiroshi; Chikaishi, Tokio; Nakagawa, Kiyomi; Itoh, Yoshinori; Muro, Takato; Yanagida, Daisuke; Nakabayashi, Ryo; Mori, Tetsuya; Saito, Kazuki; Ohzawa, Kaori; Suzuki, Chihiro; Li, Shimo; Ueda, Masashi; Wang, Miao-Xing; Nishida, Emika; Islam, Saiful; Tana; Kobori, Masuko; Inuzuka, Takashi

    2016-06-15

    Patients with Alzheimer's disease (AD) experience a wide array of cognitive deficits, which typically include the impairment of explicit memory. In previous studies, the authors reported that a flavonoid, quercetin, reduces the expression of ATF4 and delays memory deterioration in an early-stage AD mouse model. In the present study, the effects of long-term quercetin intake on memory recall were assessed using contextual fear conditioning in aged wild-type mice. In addition, the present study examined whether memory recall was affected by the intake of quercetin-rich onion (a new cultivar of hybrid onion 'Quergold') powder in early-stage AD patients. In-vivo analysis indicated that memory recall was enhanced in aged mice fed a quercetin-containing diet. Memory recall in early-stage AD patients, determined using the Revised Hasegawa Dementia Scale, was significantly improved by the intake of quercetin-rich onion (Quergold) powder for 4 weeks compared with the intake of control onion ('Mashiro' white onion) powder. These results indicate that quercetin might influence memory recall. PMID:27145228

  17. Repeated Exposure to Conditioned Fear Stress Increases Anxiety and Delays Sleep Recovery Following Exposure to an Acute Traumatic Stressor

    OpenAIRE

    Greenwood, Benjamin N.; Thompson, Robert S.; Opp, Mark R.; Fleshner, Monika

    2014-01-01

    Repeated stressor exposure can sensitize physiological responses to novel stressors and facilitate the development of stress-related psychiatric disorders including anxiety. Disruptions in diurnal rhythms of sleep–wake behavior accompany stress-related psychiatric disorders and could contribute to their development. Complex stressors that include fear-eliciting stimuli can be a component of repeated stress experienced by human beings, but whether exposure to repeated fear can prime the develo...

  18. Hyperpolarization-activated, cyclic nucleotide-gated cation channels in Aplysia: Contribution to classical conditioning

    Science.gov (United States)

    Yang, Qizong; Kuzyk, Pavlo; Antonov, Igor; Bostwick, Caleb J.; Kohn, Andrea B.; Moroz, Leonid L.; Hawkins, Robert D.

    2015-01-01

    Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are critical regulators of neuronal excitability, but less is known about their possible roles in synaptic plasticity and memory circuits. Here, we characterized the HCN gene organization, channel properties, distribution, and involvement in associative and nonassociative forms of learning in Aplysia californica. Aplysia has only one HCN gene, which codes for a channel that has many similarities to the mammalian HCN channel. The cloned acHCN gene was expressed in Xenopus oocytes, which displayed a hyperpolarization-induced inward current that was enhanced by cGMP as well as cAMP. Similarly to its homologs in other animals, acHCN is permeable to K+ and Na+ ions, and is selectively blocked by Cs+ and ZD7288. We found that acHCN is predominantly expressed in inter- and motor neurons, including LFS siphon motor neurons, and therefore tested whether HCN channels are involved in simple forms of learning of the siphon-withdrawal reflex in a semiintact preparation. ZD7288 (100 μM) significantly reduced an associative form of learning (classical conditioning) but had no effect on two nonassociative forms of learning (intermediate-term sensitization and unpaired training) or baseline responses. The HCN current is enhanced by nitric oxide (NO), which may explain the postsynaptic role of NO during conditioning. HCN current in turn enhances the NMDA-like current in the motor neurons, suggesting that HCN channels contribute to conditioning through this pathway. PMID:26668355

  19. Hyperpolarization-activated, cyclic nucleotide-gated cation channels in Aplysia: Contribution to classical conditioning.

    Science.gov (United States)

    Yang, Qizong; Kuzyk, Pavlo; Antonov, Igor; Bostwick, Caleb J; Kohn, Andrea B; Moroz, Leonid L; Hawkins, Robert D

    2015-12-29

    Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are critical regulators of neuronal excitability, but less is known about their possible roles in synaptic plasticity and memory circuits. Here, we characterized the HCN gene organization, channel properties, distribution, and involvement in associative and nonassociative forms of learning in Aplysia californica. Aplysia has only one HCN gene, which codes for a channel that has many similarities to the mammalian HCN channel. The cloned acHCN gene was expressed in Xenopus oocytes, which displayed a hyperpolarization-induced inward current that was enhanced by cGMP as well as cAMP. Similarly to its homologs in other animals, acHCN is permeable to K(+) and Na(+) ions, and is selectively blocked by Cs(+) and ZD7288. We found that acHCN is predominantly expressed in inter- and motor neurons, including LFS siphon motor neurons, and therefore tested whether HCN channels are involved in simple forms of learning of the siphon-withdrawal reflex in a semiintact preparation. ZD7288 (100 μM) significantly reduced an associative form of learning (classical conditioning) but had no effect on two nonassociative forms of learning (intermediate-term sensitization and unpaired training) or baseline responses. The HCN current is enhanced by nitric oxide (NO), which may explain the postsynaptic role of NO during conditioning. HCN current in turn enhances the NMDA-like current in the motor neurons, suggesting that HCN channels contribute to conditioning through this pathway.

  20. Bilateral plasticity of Vibrissae SII representation induced by classical conditioning in mice.

    Science.gov (United States)

    Debowska, Weronika; Liguz-Lecznar, Monika; Kossut, Malgorzata

    2011-04-01

    The somatosensory cortex in mice contains primary (SI) and secondary (SII) areas, differing in somatotopic precision, topographic organization, and function. The role of SII in somatosensory processing is still poorly understood. SII is activated bilaterally during attentional tasks and is considered to play a role in tactile memory and sensorimotor integration. We measured the plasticity of SII activation after associative learning based on classical conditioning, in which unilateral stimulation of one row of vibrissae was paired with a tail shock. The training consisted of three daily 10 min sessions, during which 40 pairings were delivered. Cortical activation driven by stimulation of vibrissae was mapped with 2-[(14)C]deoxyglucose (2DG) autoradiography 1 d after the end of conditioning. We reported previously that the conditioning procedure resulted in unilateral enlargement of 2DG-labeled cortical representation of the "trained" row of vibrissae in SI. Here, we measured the width and intensity of the labeled region in SII. We found that both measured parameters in SII increased bilaterally. The increase was observed in cortical layers II/III and IV. Apparently, plasticity in SII is not a simple reflection of changes in SI. It may be attributable to bilateral integrative role of SII, its lesser topographical specificity, and strong involvement in attentional processing.

  1. Project DyAdd: classical eyeblink conditioning in adults with dyslexia and ADHD.

    Science.gov (United States)

    Laasonen, Marja; Kauppinen, Jenni; Leppämäki, Sami; Tani, Pekka; Harno, Hanna; Hokkanen, Laura; Wikgren, Jan

    2012-11-01

    In this study of the project DyAdd (Adult Dyslexia and Attention Deficit Disorder in Finland), classical eyeblink conditioning (EBC) was investigated in both delay and trace paradigms in adults (18-55 years) with dyslexia (n = 37), attention deficit-hyperactivity disorder (ADHD; n = 21), their comorbid combination (n = 8), and healthy controls (n = 35). In addition, the profiles of three participants with a rare autosomal dominant cerebellar disease were assessed (episodic ataxia type 2, EA-2). We found that participants with dyslexia were overall slower learners than controls in eyeblink conditioning. Further, they were the only group that had a reduced number of CRs in mediotemporal-dependent trace paradigm compared to the more cerebellum-dependent delay paradigm. Second, ADHD was found to be related to larger CR amplitude. Third, those with a comorbid condition learned faster and manifested CRs that were not well timed. Fourth, the cerebellar patients showed nearly no conditioning at all. Correlations between EBC and various neuropsychological domains (phonological processing, reading, spelling, arithmetic, executive functions, attention, and fine motor control) over all participants resulted in significant relations only for the delay paradigm: Increased amount of reading errors related with later peak latency and increased amount of self-corrections in fine motor control related with larger response magnitude. Within those who conditioned, relations emerged only for the trace paradigm: better spelling was related to larger response magnitude. These results do not lend support to the cerebellar hypothesis of dyslexia. On the contrary, dyslexia in its pure form seems to be related to a relative dysfunction of a larger hippocampal-cerebellar network. Further, larger responses in the ADHD group are suggested to result from their lowered responding threshold.

  2. Association between oxidative stress and contextual fear conditioning in Carioca high- and low-conditioned freezing rats.

    Science.gov (United States)

    Hassan, Waseem; Gomes, Vitor de Castro; Pinton, Simone; Batista Teixeira da Rocha, Joao; Landeira-Fernandez, J

    2013-05-28

    We recently reported two novel breeding lines of rats known as Carioca high-and low-conditioned freezing (CHF and CLF), based on defensive freezing responses to contextual cues previously associated with electric footshock. The anxiety-like profile of these animals from the 7th generation was tested in the elevated plus maze. The results indicated that CHF animals presented a significantly more "anxious" phenotype compared with CLF animals. Animals from the 12th generation were used to evaluate the oxidative stress status of the cortex, hippocampus, and cerebellum. Reactive oxidative species (ROS) were evaluated using 2,7-dichlorofluorescin diacetate (DCFH-DA; a sensor of reactive oxygen species [ROS]), and the levels of malondialdehyde (MDA), an early marker of lipid peroxidation, were assessed. The results indicated that free radical concentrations and MDA levels were significantly higher in all three brain structures in CHF rats compared with CLF rats. Our data also showed that the hippocampus had the highest reactive species and MDA concentrations compared with the cortex and cerebellum in CHF rats. Animals from the 16th generation were used to evaluate the antioxidant enzyme activity of catalase (CAT) and glutathione peroxidase (GPx) within these three brain structures. The results indicated that CAT activity was lower in the cortex and hippocampus in CHF rats compared with CLF rats. No significant difference was observed in the cerebellum. The enzymatic activity of GPx was significantly decreased in all three structures in CHF rats compared with CLF rats. The hippocampus exhibited the highest GPx activity compared with the other two brain structures. These findings suggest the involvement of a redox system in these two bidirectional lines, and the hippocampus might be one of the prime brain structures involved in this state of oxidative stress imbalance. PMID:23566816

  3. Autonomic control of heart rate and blood pressure in spontaneously hypertensive rats during aversive classical conditioning.

    Science.gov (United States)

    Hatton, D C; Buchholz, R A; Fitzgerald, R D

    1981-12-01

    An examination was made of the heart rate (HR) and blood pressure (BP) responses of 7-9-wk-old spontaneously hypertensive rats (SHR) and genetical control Wistar/Kyoto (WKY) rats during aversive classical conditioning. Subsequent to the development of conditioned responding (CRs), assessments were made of the effects of selective autonomic blockade by methyl atropine (10 mg/kg), phentolamine (2 mg/kg), and propranolol (2 mg/kg). The CR complex in the two strains consisted of pressor BP CRs in conjunction with vagally mediated decelerative HR CRs in the SHR strain and sympathetically mediated accelerative HR CRs in the WKY strain. The decelerative SHR HR CR did not appear to be secondary to baroreceptor reflex activity, although such activity did appear to be involved in the pressor BP and decelerative HR orienting response (OR) and unconditioned response (UR) complex of the SHRs on the initial application of the CS and the US, respectively. Augmented pressor BP ORs, CRs, and URs in the SHRs relative to the WKYs and differential drug effects on BP and HR baselines of the two strains suggested the presence of enhanced sympathetic activity in the SHRs that was not reflected in the SHR decelerative HR CR. Phentolamine unmasked evidence of reflex beta 2-vasodilation deficiency in the SHRs that could have contributed to the enhancement of their BP OR and CR.

  4. Transfer of classical eyeblink conditioning with electrical stimulation of mPFC or tone as conditioned stimulus in guinea pigs.

    Science.gov (United States)

    Yao, Juan; Wu, Guang-Yan; Liu, Guo-Long; Liu, Shu-Lei; Yang, Yi; Wu, Bing; Li, Xuan; Feng, Hua; Sui, Jian-Feng

    2014-11-01

    Learning with a stimulus from one sensory modality can facilitate subsequent learning with a new stimulus from a different sensory modality. To date, the characteristics and mechanism of this phenomenon named transfer effect still remain ambiguous. Our previous work showed that electrical stimulation of medial prefrontal cortex (mPFC) as a conditioned stimulus (CS) could successfully establish classical eyeblink conditioning (EBC). The present study aimed to (1) observe whether transfer of EBC learning would occur when CSs shift between central (mPFC electrical stimulation as a CS, mPFC-CS) and peripheral (tone as a CS, tone CS); (2) compare the difference in transfer effect between the two paradigms, delay EBC (DEBC) and trace EBC (TEBC). A total of 8 groups of guinea pigs were tested in the study, including 4 experimental groups and 4 control groups. Firstly, the experimental groups accepted central (or peripheral) CS paired with corneal airpuff unconditioned stimulus (US); then, CS shifted to the peripheral (or central) and paired with US. The control groups accepted corresponding central (or peripheral) CS and pseudo-paired with US, and then shifted CS from central (or peripheral) to peripheral (or central) and paired with US. The results showed that the acquisition rates of EBC were higher in experimental groups than in control groups after CS switching from central to peripheral or vice versa, and the CR acquisition rate was remarkably higher in DEBC than in TEBC in both transfer ways. The results indicate that EBC transfer can occur between learning established with mPFC-CS and tone CS. Memory of CS-US association for delay paradigm was less disturbed by the sudden switch of CS than for trace paradigm. This study provides new insight into neural mechanisms underlying conditioned reflex as well as the role of mPFC.

  5. Intact neurogenesis is required for benefits of exercise on spatial memory but not motor performance or contextual fear conditioning in C57BL/6J mice.

    Science.gov (United States)

    Clark, P J; Brzezinska, W J; Thomas, M W; Ryzhenko, N A; Toshkov, S A; Rhodes, J S

    2008-09-01

    The mammalian hippocampus continues to generate new neurons throughout life. Experiences such as exercise, anti-depressants, and stress regulate levels of neurogenesis. Exercise increases adult hippocampal neurogenesis and enhances behavioral performance on rotarod, contextual fear and water maze in rodents. To directly test whether intact neurogenesis is required for gains in behavioral performance from exercise in C57BL/6J mice, neurogenesis was reduced using focal gamma irradiation (3 sessions of 5 Gy). Two months after treatment, mice (total n=42 males and 42 females) (Irradiated or Sham), were placed with or without running wheels (Runner or Sedentary) for 54 days. The first 10 days mice received daily injections of bromodeoxyuridine (BrdU) to label dividing cells. The last 14 days mice were tested on water maze (two trials per day for 5 days, then 1 h later probe test), rotarod (four trials per day for 3 days), and contextual fear conditioning (2 days), then measured for neurogenesis using immunohistochemical detection of BrdU and neuronal nuclear protein (NeuN) mature neuronal marker. Consistent with previous studies, in Sham animals, running increased neurogenesis fourfold and gains in performance were observed for the water maze (spatial learning and memory), rotarod (motor performance), and contextual fear (conditioning). These positive results provided the reference to determine whether gains in performance were blocked by irradiation. Irradiation reduced neurogenesis by 50% in both groups, Runner and Sedentary. Irradiation did not affect running or baseline performance on any task. Minimal changes in microglia associated with inflammation (using immunohistochemical detection of cd68) were detected at the time of behavioral testing. Irradiation did not reduce gains in performance on rotarod or contextual fear, however it eliminated gain in performance on the water maze. Results support the hypothesis that intact exercise-induced hippocampal neurogenesis

  6. Long-term memory of visually cued fear conditioning: roles of the neuronal nitric oxide synthase gene and cyclic AMP response element-binding protein.

    Science.gov (United States)

    Kelley, J B; Anderson, K L; Altmann, S L; Itzhak, Y

    2011-02-01

    Nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) has a role in late-phase long-term potentiation (LTP) and long-term memory (LTM) formation. Our recent studies implicated NO signaling in contextual and auditory cued fear conditioning. The present study investigated the role of NO signaling in visually cued fear conditioning. First, visually cued fear conditioning was investigated in wild-type (WT) and nNOS knockout (KO) mice. Second, the effects of pharmacological modulators of NO signaling on the acquisition of visually cued fear conditioning were investigated. Third, plasma levels of corticosterone were measured to determine a relationship between physiological and behavioral responses to fear conditioning. Fourth, levels of extracellular signal-related kinase (ERK1/2) and cyclic AMP response element binding protein (CREB) phosphorylation, downstream of NO signaling, were determined in the amygdala as potential correlates of fear learning. Mice underwent single or multiple (4) spaced trainings that consisted of a visual cue (blinking light) paired with footshock. WT mice acquired cued and contextual LTM following single and multiple trainings. nNOS KO mice acquired neither cued nor contextual LTM following a single training; however, multiple trainings improved contextual but not cued LTM. The selective nNOS inhibitor S-methyl-thiocitrulline (SMTC) impaired cued and contextual LTM in WT mice. The NO donor molsidomine recovered contextual LTM but had no effect on cued LTM in nNOS KO mice. Re-exposure to the visual cue 24 h posttraining elicited freezing response and a marked increase in plasma corticosterone levels in WT but not nNOS KO mice. The expression of CREB phosphorylation (Ser-133) was significantly higher in naive nNOS KO mice than in WT counterparts, and pharmacological modulators of NO had significant effects on levels of CREB phosphorylation and expression. These findings suggest that visual cue-dependent LTM is impaired in nNOS KO

  7. Reinforcement in an in Vitro Analog of Appetitive Classical Conditioning of Feeding Behavior in "Aplysia": Blockade by a Dopamine Antagonist

    Science.gov (United States)

    Reyes, Fredy D.; Mozzachiodi, Riccardo; Baxter, Douglas A.; Byrne, John H.

    2005-01-01

    In a recently developed in vitro analog of appetitive classical conditioning of feeding in "Aplysia," the unconditioned stimulus (US) was electrical stimulation of the esophageal nerve (En). This nerve is rich in dopamine (DA)-containing processes, which suggests that DA mediates reinforcement during appetitive conditioning. To test this…

  8. The use of cognitive enhancers in animal models of fear extinction.

    Science.gov (United States)

    Kaplan, Gary B; Moore, Katherine A

    2011-08-01

    In anxiety disorders, such as posttraumatic stress disorders and phobias, classical conditioning pairs natural (unconditioned) fear-eliciting stimuli with contextual or discrete cues resulting in enduring fear responses to multiple stimuli. Extinction is an active learning process that results in a reduction of conditioned fear responses after conditioned stimuli are no longer paired with unconditioned stimuli. Fear extinction often produces incomplete effects and this highlights the relative permanence of bonds between conditioned stimuli and conditioned fear responses. The animal research literature is rich in its demonstration of cognitive enhancing agents that alter fear extinction. This review specifically examines the fear extinguishing effects of cognitive enhancers that act on gamma-aminobutyric acid (GABA), glutamatergic, cholinergic, adrenergic, dopaminergic, and cannabinoid signaling pathways. It also examines the effects of compounds that alter epigenetic and neurotrophic mechanisms in fear extinction. Of these cognitive enhancers, glutamatergic N-methyl d-aspartate (NMDA) receptor agonists, such as D-cycloserine, have enhanced fear extinction in a context-, dose- and time-dependent manner. Agents that function as glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor agonists, alpha2-adrenergic receptor antagonists (such as yohimbine), neurotrophic factors (brain derived neurotrophic factor or BDNF) and histone deacetylase inhibitors (valproate and sodium butyrate) also improve fear extinction in animals. However, some have anxiogenic effects and their contextual and temporal effects need to be more reliably demonstrated. Various cognitive enhancers produce changes in cortico-amygdala synaptic plasticity through multiple mechanisms and these neural changes enhance fear extinction. We need to better define the changes in neural plasticity produced by these agents in order to develop more effective compounds. In the clinical

  9. Investigating the Role of Hippocampal BDNF in Anxiety Vulnerability Using Classical Eyeblink Conditioning.

    Science.gov (United States)

    Janke, Kellie L; Cominski, Tara P; Kuzhikandathil, Eldo V; Servatius, Richard J; Pang, Kevin C H

    2015-01-01

    Dysregulation of brain-derived neurotrophic factor (BDNF), behavioral inhibition temperament (BI), and small hippocampal volume have been linked to anxiety disorders. Individuals with BI show facilitated acquisition of the classically conditioned eyeblink response (CCER) as compared to non-BI individuals, and a similar pattern is seen in an animal model of BI, the Wistar-Kyoto (WKY) rat. The present study examined the role of hippocampal BDNF in the facilitated delay CCER of WKY rats. Consistent with earlier work, acquisition was facilitated in WKY rats compared to the Sprague Dawley (SD) rats. Facilitated acquisition was associated with increased BDNF, TrkB, and Arc mRNA in the dentate gyrus of SD rats, but learning-induced increases in BDNF and Arc mRNA were significantly smaller in WKY rats. To determine whether reduced hippocampal BDNF in WKY rats was a contributing factor for their facilitated CCER, BDNF or saline infusions were given bilaterally into the dentate gyrus region 1 h prior to training. BDNF infusion did not alter the acquisition of SD rats, but significantly dampened the acquisition of CCER in the WKY rats, such that acquisition was similar to SD rats. Together, these results suggest that inherent differences in the BDNF system play a critical role in the facilitated associative learning exhibited by WKY rats, and potentially individuals with BI. Facilitated associative learning may represent a vulnerability factor in the development of anxiety disorders.

  10. Investigating the role of hippocampal BDNF in anxiety vulnerability using classical eyeblink conditioning

    Directory of Open Access Journals (Sweden)

    Kellie L Janke

    2015-07-01

    Full Text Available Dysregulation of brain-derived neurotrophic factor (BDNF, behavioral inhibition temperament (BI and small hippocampal volume have been linked to anxiety disorders. Individuals with BI show facilitated acquisition of the classically conditioned eyeblink response (CCER as compared to non-BI individuals, and a similar pattern is seen in an animal model of BI, the Wistar-Kyoto (WKY rat. The present study examined the role of hippocampal BDNF in the facilitated delay CCER of WKY rats. Consistent with earlier work, acquisition was facilitated in WKY rats compared to the SD rats. Facilitated acquisition was associated with increased BDNF, TrkB, and Arc mRNA in the dentate gyrus of SD rats, but learning-induced increases in BDNF and Arc mRNA were significantly smaller in WKY rats. To determine if reduced hippocampal BDNF in WKY rats was a contributing factor for their facilitated CCER, BDNF or saline infusions were given bilaterally into the dentate gyrus region one hour prior to training. BDNF infusion did not alter the acquisition of SD rats, but significantly dampened the acquisition of CCER in the WKY rats, such that acquisition was similar to SD rats. Together, these results suggest that inherent differences in the BDNF system play a critical role in the facilitated associative learning exhibited by WKY rats, and potentially individuals with BI. Facilitated associative learning may represent a vulnerability factor in the development of anxiety disorders.

  11. Effects of Exercise and Environmental Complexity on Deficits in Trace and Contextual Fear Conditioning Produced by Neonatal Alcohol Exposure in Rats

    OpenAIRE

    Schreiber, W.B.; St. Cyr, S.A.; Jablonski, S A; Hunt, P S; Klintsova, A.Y.; Stanton, M.E.

    2012-01-01

    In rodents, voluntary exercise and environmental complexity increases hippocampal neurogenesis and reverses spatial learning and long-term potentiation deficits in animals prenatally exposed to alcohol. The present experiment extended these findings to neonatal alcohol exposure and to delay, trace, and contextual fear conditioning. Rats were administered either 5.25 g/kg/day alcohol via gastric intubation or received sham-intubations (SI) between Postnatal Day (PD) 4 and 9 followed by either ...

  12. Overexpression of Homer1a in the basal and lateral amygdala impairs fear conditioning and induces an autism-like social impairment

    OpenAIRE

    Banerjee, Anwesha; Luong, Jonathan A.; Ho, Anthony,; Saib, Aeshah O.; Ploski, Jonathan E.

    2016-01-01

    Background Autism spectrum disorders (ASDs) represent a heterogeneous group of disorders with a wide range of behavioral impairments including social and communication deficits. Apart from these core symptoms, a significant number of ASD individuals display higher levels of anxiety, and some studies indicate that a subset of ASD individuals have a reduced ability to be fear conditioned. Deciphering the molecular basis of ASD has been considerably challenging and it currently remains poorly un...

  13. Neuroleptic Drugs Revert the Contextual Fear Conditioning Deficit Presented by Spontaneously Hypertensive Rats: A Potential Animal Model of Emotional Context Processing in Schizophrenia?

    OpenAIRE

    Calzavara, Mariana Bendlin; Medrano, Wladimir Agostini; Levin, Raquel; Kameda, Sonia Regina; Andersen, Monica Levy; Tufik, Sergio; Silva, Regina Helena; Frussa-Filho, Roberto; Abílio, Vanessa Costhek

    2008-01-01

    Schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD) present abnormalities in emotion processing. A previous study showed that the spontaneously hypertensive rats (SHR), a putative animal model of ADHD, present reduced contextual fear conditioning (CFC). The aim of the present study was to characterize the deficit in CFC presented by SHR. Adult male normotensive Wistar rats and SHR were submitted to the CFC task. Sensitivity of the animals to the shock and the ...

  14. Nicotine Withdrawal Disrupts Both Foreground and Background Contextual Fear Conditioning but not Pre-Pulse Inhibition of the Acoustic Startle Response in C57BL/6 Mice

    OpenAIRE

    André, Jessica M.; Gulick, Danielle; Portugal, George S.; Gould, Thomas J.

    2008-01-01

    Nicotine withdrawal is associated with multiple symptoms such as anxiety, increased appetite, and disrupted cognition in humans. Although animal models have provided insights into the somatic and affective symptoms of nicotine withdrawal, less research has focused on the effects of nicotine withdrawal on cognition. Therefore, in this study, C57BL/6 mice were used to test the effects of withdrawal from chronic nicotine on foreground and background contextual fear conditioning, which present th...

  15. Classical conditioning mechanisms can differentiate between seeing and doing in rats.

    Science.gov (United States)

    Kutlu, Munir G; Schmajuk, Nestor A

    2012-01-01

    We show that the attentional-associative SLG model of classical conditioning, based on the 1996 research of Schmajuk, Lam, and Gray, correctly describes experimental results regarded as evidence of causal learning in rats: (a) interventions attenuate responding following common-cause training but do not interfere on subsequent responding during observation, and (b) interventions do not affect responding after direct-cause training or (c) causal-chain training. According to the model, responding to the weakly attended test stimulus is strongly inhibited by the intervention in the common-cause case. Instead, in the direct-cause and causal-chain cases, the strongly attended test stimulus becomes inhibitory, thereby overshadowing the inhibitory effect of interventions. Most importantly, the model predicted that with relatively few test trials (a) the 2008 results of Experiment 3 by Leising, Wong, Waldmann, and Blaisdell should be similar to those of Dwyer, Starns, and Honey's 2009 Experiment 1, showing that interventions equally affect responding after common-cause and direct-cause training; and (b) the 2006 results of Experiment 2a by Blaisdell, Sawa, Leising, and Waldmann should be similar to those of Dwyer, Starns, and Honey's 2009 Experiment 2, showing that interventions equally affect responding after common-cause and causal-chain training. When those data were made available to us, we confirmed those predictions. In agreement with the SLG associative model, but not with causal model theory, this evidence supports the notion that the attenuation of responding by interventions only following common-cause training is the consequence of well-known learning processes-latent inhibition, sensory preconditioning, conditioned inhibition, protection from extinction, and overshadowing. PMID:22229589

  16. Blocking of orexin receptors in the paraventricular nucleus of the thalamus has no effect on the expression of conditioned fear in rats.

    Science.gov (United States)

    Dong, Xinwen; Li, Yonghui; Kirouac, Gilbert J

    2015-01-01

    The paraventricular nucleus of the thalamus (PVT) projects to the central nucleus of the amygdala and recent experimental evidence indicates a role for the PVT in conditioned fear. Furthermore, the PVT contains a high density of orexin receptors and fibers and acute injections of orexin antagonist into the PVT produce anxiolytic effects. The present study was done to determine if administration of a dual orexin receptor antagonist (DORA) in the region of the PVT interferes with the expression of conditioned fear in rats exposed to cued and contextual conditioning paradigms. Infusion of 0.5 μl of the DORA N-biphenyl-2-yl-1-[(1-methyl-1H-benzimidazol-2yl) sulfanyl] acetyl-L-prolinamide at a concentration of 0.1, 1.0, and 10 nmol had no effect on the freezing produced by exposing rats to an auditory cue or the context associated with foot shock. In contrast, the 1.0 and 10 nmol doses were anxiolytic in the social interaction test. The results of the present study do not support a role for orexin receptors in the PVT in the expression of learned fear. The finding that the 1.0 and 10 nmol doses of DORA in the PVT region were anxiolytic in the social interaction test is consistent with other studies indicating a role for orexins in the PVT in anxiety-like behaviors.

  17. Effects of Storage Time and Condition on Mineral Contents of Grape Pekmez Produced by Vacuum and Classical Methods

    Directory of Open Access Journals (Sweden)

    B. Kayisoglu

    2006-01-01

    Full Text Available This study was conducted to investigate the effect of storage period and conditions on chemical properties of boiled grape juice (pekmez produced from the grape variety of Kınalı Yapıncak using classical and vacuum methods. Pekmez samples were stored in 250 cc volumed jars. Products obtained using two different production methods were stored for 10 months in room conditions and at +4 ºC temperature. Starting from the beginning of the storage, mineral analyses were repeated in every two months. Average copper, manganese, phosphorus, and sodium contents in pekmez samples produced by vacuum method were higher than by classical method at the end of storage period. But, calcium content in pekmez samples produced by classical method was higher than that of the other. Zinc, iron, and potassium contents in either vacuum method or classical method were not significantly different. In conclusion; in general, mineral contents were better in pekmez produced by vacuum method than classical method. Phosphor, sodium, potassium, calcium, copper, zinc and manganese contents were affected significantly by storage period, but iron was not. In addition, storage condition did not affect sodium, zinc and iron contents.

  18. Fear extinction, persistent disruptive behavior and psychopathic traits: fMRI in late adolescence.

    Science.gov (United States)

    Cohn, Moran D; van Lith, Koen; Kindt, Merel; Pape, Louise E; Doreleijers, Theo A H; van den Brink, Wim; Veltman, Dick J; Popma, Arne

    2016-07-01

    Children diagnosed with a Disruptive Behavior Disorder (DBD, i.e. Oppositional Defiant Disorder or Conduct Disorder), especially those with psychopathic traits, are at risk of developing persistent and severe antisocial behavior. Reduced fear conditioning has been proposed to underlie persistent antisocial development. However, we have recently shown that both DBD persisters and desisters are characterized by increased fear conditioning compared with healthy controls (HCs). In this study, we investigated whether brain function during fear extinction is associated with DBD subgroup-membership and psychopathic traits. Adolescents from a childhood arrestee cohort (mean age 17.6 years, s.d. 1.4) who met criteria for a DBD diagnosis during previous assessments were re-assessed and categorized as persistent DBD (n = 25) or desistent DBD (n = 25). Functional MRI during the extinction phase of a classical fear-conditioning task was used to compare regional brain function between these subgroups and 25 matched controls. Both DBD persisters and desisters showed hyperreactivity during fear extinction, when compared with HCs. Impulsive-irresponsible psychopathic traits were positively associated with responses in the fear neurocircuitry and mediated the association between neural activation and group membership. These results suggest that fear acquisition and fear extinction deficits may provide an endophenotype for an emotionally hyperreactive subtype of antisocial development.

  19. Hippocampal Non-Theta-Contingent Eyeblink Classical Conditioning: A Model System for Neurobiological Dysfunction.

    Science.gov (United States)

    Cicchese, Joseph J; Berry, Stephen D

    2016-01-01

    Typical information processing is thought to depend on the integrity of neurobiological oscillations that may underlie coordination and timing of cells and assemblies within and between structures. The 3-7 Hz bandwidth of hippocampal theta rhythm is associated with cognitive processes essential to learning and depends on the integrity of cholinergic, GABAergic, and glutamatergic forebrain systems. Since several significant psychiatric disorders appear to result from dysfunction of medial temporal lobe (MTL) neurochemical systems, preclinical studies on animal models may be an important step in defining and treating such syndromes. Many studies have shown that the amount of hippocampal theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning and attainment of asymptotic performance. Our lab has developed a brain-computer interface that makes eyeblink training trials contingent upon the explicit presence or absence of hippocampal theta. The behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to fourfold increase in learning speed over non-theta states. The non-theta behavioral impairment is accompanied by disruption of the amplitude and synchrony of hippocampal local field potentials, multiple-unit excitation, and single-unit response patterns dependent on theta state. Our findings indicate a significant electrophysiological and behavioral impact of the pretrial state of the hippocampus that suggests an important role for this MTL system in associative learning and a significant deleterious impact in the absence of theta. Here, we focus on the impairments in the non-theta state, integrate them into current models of psychiatric disorders, and suggest how improvement in our understanding of neurobiological oscillations is critical for theories and treatment of psychiatric

  20. Repeated elicitation of the acoustic startle reflex leads to sensitisation in subsequent avoidance behaviour and induces fear conditioning

    Directory of Open Access Journals (Sweden)

    Janik Vincent M

    2011-04-01

    Full Text Available Abstract Background Autonomous reflexes enable animals to respond quickly to potential threats, prevent injury and mediate fight or flight responses. Intense acoustic stimuli with sudden onsets elicit a startle reflex while stimuli of similar intensity but with longer rise times only cause a cardiac defence response. In laboratory settings, habituation appears to affect all of these reflexes so that the response amplitude generally decreases with repeated exposure to the stimulus. The startle reflex has become a model system for the study of the neural basis of simple learning processes and emotional processing and is often used as a diagnostic tool in medical applications. However, previous studies did not allow animals to avoid the stimulus and the evolutionary function and long-term behavioural consequences of repeated startling remain speculative. In this study we investigate the follow-up behaviour associated with the startle reflex in wild-captured animals using an experimental setup that allows individuals to exhibit avoidance behaviour. Results We present evidence that repeated elicitation of the acoustic startle reflex leads to rapid and pronounced sensitisation of sustained spatial avoidance behaviour in grey seals (Halichoerus grypus. Animals developed rapid flight responses, left the exposure pool and showed clear signs of fear conditioning. Once sensitised, seals even avoided a known food source that was close to the sound source. In contrast, animals exposed to non-startling (long rise time stimuli of the same maximum sound pressure habituated and flight responses waned or were absent from the beginning. The startle threshold of grey seals expressed in units of sensation levels was comparable to thresholds reported for other mammals (93 dB. Conclusions Our results demonstrate that the acoustic startle reflex plays a crucial role in mediating flight responses and strongly influences the motivational state of an animal beyond a short

  1. Acquisition of Pavlovian fear conditioning using β-adrenoceptor activation of the dorsal premammillary nucleus as an unconditioned stimulus to mimic live predator-threat exposure.

    Science.gov (United States)

    Pavesi, Eloisa; Canteras, Newton S; Carobrez, Antônio P

    2011-04-01

    In the present work, we sought to mimic the internal state changes in response to a predator threat by pharmacologically stimulating the brain circuit involved in mediating predator fear responses, and explored whether this stimulation would be a valuable unconditioned stimulus (US) in an olfactory fear conditioning paradigm (OFC). The dorsal premammillary nucleus (PMd) is a key brain structure in the neural processing of anti-predatory defensive behavior and has also been shown to mediate the acquisition and expression of anti-predatory contextual conditioning fear responses. Rats were conditioned by pairing the US, which was an intra-PMd microinjection of isoproterenol (ISO; β-adrenoceptor agonist), with amyl acetate odor-the conditioned stimulus (CS). ISO (10 and 40 nmol) induced the acquisition of the OFC and the second-order association by activation of β-1 receptors in the PMd. Furthermore, similar to what had been found for contextual conditioning to a predator threat, atenolol (β-1 receptor antagonist) in the PMd also impaired the acquisition and expression of OFC promoted by ISO. Considering the strong glutamatergic projections from the PMd to the dorsal periaqueductal gray (dPAG), we tested how the glutamatergic blockade of the dPAG would interfere with the OFC induced by ISO. Accordingly, microinjections of NMDA receptor antagonist (AP5, 6 nmol) into the dPAG were able to block both the acquisition, and partially, the expression of the OFC. In conclusion, we have found that PMd β-1 adrenergic stimulation is a good model to mimic predatory threat-induced internal state changes, and works as a US able to mobilize the same systems involved in the acquisition and expression of predator-related contextual conditioning.

  2. Effects of Paradigm and Inter-Stimulus Interval on Age Differences in Eyeblink Classical Conditioning in Rabbits

    Science.gov (United States)

    Woodruff-Pak, Diana S.; Seta, Susan E.; Roker, LaToya A.; Lehr, Melissa A.

    2007-01-01

    The aim of this study was to examine parameters affecting age differences in eyeblink classical conditioning in a large sample of young and middle-aged rabbits. A total of 122 rabbits of mean ages of 4 or 26 mo were tested at inter-stimulus intervals (ISIs) of 600 or 750 msec in the delay or trace paradigms. Paradigm affected both age groups…

  3. Stress before Puberty Exerts a Sex- and Age-Related Impact on Auditory and Contextual Fear Conditioning in the Rat

    OpenAIRE

    2007-01-01

    Adolescence is a period of major physical, hormonal, and psychological changes. It is also characterized by a significant increase in the incidence of psychopathologies and this increase is gender-specific. Stress during adolescence is associated with the development of psychiatric disorders later in life. In this study, we evaluated the impact of psychogenic stress (exposure to predator odor followed by placement on an elevated platform) experienced before puberty (days 28–30) on fear m...

  4. Stress before Puberty Exerts a Sex- and Age-Related Impact on Auditory and Contextual Fear Conditioning in the Rat

    OpenAIRE

    Maria Toledo-Rodriguez; Carmen Sandi

    2007-01-01

    Adolescence is a period of major physical, hormonal, and psychological changes. It is also characterized by a significant increase in the incidence of psychopathologies and this increase is gender-specific. Stress during adolescence is associated with the development of psychiatric disorders later in life. In this study, we evaluated the impact of psychogenic stress (exposure to predator odor followed by placement on an elevated platform) experienced before puberty (days 28–30) on fear memori...

  5. Pharmacological intervention of conditioned fear and its extinction%条件性恐惧消退的药理学干预

    Institute of Scientific and Technical Information of China (English)

    黄任之; 李则宣; 陈欢; 黄月胜; 丁立平

    2012-01-01

    Conditioned fear and its abnormal extinction are involved in the psychopathology of anxiety disorders, such as posttraumatic stress disorder (PTSD). Cognitive enhancing agents have been demonstrated to alter fear extinction in many animal research literatures. The present review has examined the pharmacological role of gamma-aminobutyric acid (GABA), glutamatergic, cholinergic, adrenergic, dopaminergic, and cannabinoid as well as compounds able to alter the epigenetic and neurotrophic mechanism in fear extinction, highlighting great hope for the future treatment of anxiety disorders with new agents based on the fear extinction.%条件性恐惧记忆及其消退的异常参与焦虑障碍如创伤后应激障碍的精神病理机制.大量的动物研究已经展示了药理学手段增强条件性恐惧消退的可能性;对此,本文从作用于gamma-氨基丁酸能、谷氨酸能、胆碱能、肾上腺素能、多巴胺能和大麻素能以及从改变表观遗传学和神经营养机制的药理学方面进行综述,表明临床上开发和使用药理学干预来增强基于消退原理的暴露疗法治疗焦虑障碍可能具有远大的前景.

  6. Accumulation of anthropogenic radionuclides in crops in conditions of water stream and classical hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Mayrapetyan, Khachatur; Hovsepyan, Albert; Daryadar, Mahsa; Alexanyan, Julietta; Tovmasyan, Anahit; Ghalachyan, Laura; Tadevosyan, Anna; Mayrapetyan, Stepan [Institute of Hydroponics Problems, NAS, Noragyugh 108, 0082, Yerevan (Armenia)

    2014-07-01

    Natural and artificial radionuclides (RN) dangerous for health are emitted into ecosystems because of human anthropogenic activities in the field of nuclear energetics. Biologically artificial RN {sup 90}Sr(T{sub 1/2}=28,6 years) and {sup 137}Cs (T{sub 1/2}=30,1 years)are very dangerous. Therefore obtaining radio-ecologically safe raw material of high quality is a very urgent problem now. Taking into account the above mentioned, in order to obtain ecologically safe raw material we carried out comparative radiochemical investigations on essential oil and medicinal plants peppermint(Mentha piperita L.) and sweet basil (Ocimum basilicum L.) grown in new water-stream (continuous, gully, cylindrical) and classical hydroponics, with the aim of revealing accumulation peculiarities of {sup 90}Sr and {sup 137}Cs. The results of experiments have shown that in classical hydroponics peppermint and sweet basil exceeded the same indices of water-stream hydroponics with {sup 90}Sr and {sup 137}Cs content 1,1-1,2; 1,2-1,3 and 1,5-1,8; 1,4-1,8 times, respectively. Moreover, sweet basil exceeded peppermint in water-stream hydroponics {sup 90}Sr 1,3-1,6; {sup 137}Cs 1,2-1,4 times and in classical hydroponics {sup 90}Sr 1,6; {sup 137}Cs 1,2 times. The content of controlled artificial RN in raw material did not exceed the allowed concentration limit (ACL). New water-stream hydroponics system worked out in Institute of Hydroponics Problems is a radio-ecologically more profitable method for producing raw material than classical hydroponics. At the same time water-stream hydroponics system in comparison with classical hydroponics promoted productivity (dry raw material) increase of peppermint and sweet basil 1,1-1,4 times. (authors)

  7. 条件性恐惧记忆消退返回的性别差异%Sex Differences in Extinction Return of Conditioned Fear Memory

    Institute of Scientific and Technical Information of China (English)

    孙楠; 魏艺铭; 李倩; 郑希付

    2012-01-01

    Posttraumatic stress disorder is a kind of anxiety disorder which developed after severe trauma. Conditioned fear model is the most emblematical model of posttraumatic stress disorder. At the present time, the most effective therapy is the exposure therapy which uses extinction training to repress the conditioned fear memory. However, some of the PTSD patients were having relapses after the exposure therapy, these relapses were later named as the extinction return.An experiment was designed to research for sex differences in the extinction return of conditioned fear memory. Forty normal students participated in the experiment, including 20 females and 20 males. Before the actual experiment, the participants had to attend the extinction training session; the participants were trained to consciously establish and extinguish the connection between neutral stimulus and repugnant stimulus. The experiment consisted of pre-exposure, acquisition, extinction, and test phases. The pre-exposure phase required the participants to understand the procedure. In the acquisition phase, the participants would acquire the conditioned fear response via the connection of the neutral stimulus and the repugnant stimulus. In the extinction, the neutral stimulus would be presented alone without the repugnant stimulus. Four hours later, test phase was to examine whether the extinction return would be found, and whether males or females performed differently on the acquisition and extinction of conditioned fear memory.The results were as following: (1) The participants were observed to have obvious extinction return overall when they were tested after 4 hours later during the extinction phase. (2)The extinction return in females was much more significant than in males. (3)The females tended to acquire the conditioned fear memory more effectively and extinguish more slowly than males. But the difference is not significant.The results of this study suggested that the extinction return was a

  8. Consequences of ethanol exposure on cued and contextual fear conditioning and extinction differ depending on timing of exposure during adolescence or adulthood.

    Science.gov (United States)

    Broadwater, Margaret; Spear, Linda P

    2013-11-01

    Some evidence suggests that adolescents are more sensitive than adults to ethanol-induced cognitive deficits and that these effects may be long-lasting. The purpose of Exp 1 was to determine if early-mid adolescent [postnatal day (P) 28-48] intermittent ethanol exposure would affect later learning and memory in a Pavlovian fear conditioning paradigm differently than comparable exposures in adulthood (P70-90). In Exp 2 animals were exposed to ethanol during mid-late adolescence (P35-55) to assess whether age of initiation within the adolescent period would influence learning and memory differentially. Male Sprague-Dawley rats were given 4 g/kg i.g. ethanol (25%) or water every 48 h for a total of 11 exposures. After a 22 day non-ethanol period, animals were fear conditioned to a context (relatively hippocampal-dependent task) or tone (amygdala-dependent task), followed by retention tests and extinction (mPFC-dependent) of this conditioning. Despite similar acquisition, a deficit in context fear retention was evident in animals exposed to ethanol in early adolescence, an effect not observed after a comparable ethanol exposure in mid-late adolescence or adulthood. In contrast, animals that were exposed to ethanol in mid-late adolescence or adulthood showed enhanced resistance to context extinction. Together these findings suggest that repeated ethanol imparts long-lasting consequences on learning and memory, with outcomes that differ depending on age of exposure. These results may reflect differential influence of ethanol on the brain as it changes throughout ontogeny and may have implications for alcohol use not only throughout the developmental period of adolescence, but also in adulthood.

  9. Temporal properties of fear extinction--does time matter?

    Science.gov (United States)

    Golkar, Armita; Bellander, Martin; Öhman, Arne

    2013-02-01

    Fear extinction can be defined as the weakening of the expression of a conditioned response (CR) by extended experience of nonreinforcement. Conceptually, two distinct models have been invoked to account for extinction. R. A. Rescorla and A. R. Wagner (1972, A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement, in A. H. B. W. F. Prokasy (Ed.), Classical conditioning: II. Current research and theory, pp. 64-99, New York, NY, Appleton-Century-Crofts) postulated that the number of exposure trials is the primary determinant of CR decrement, whereas C. R. Gallistel and J. Gibbon (2000, Time, rate, and conditioning, Psychological Review, Vol. 107, pp. 289-344) proposed that the decisive event is the cumulated exposure time to the nonreinforced conditioned stimulus (CS) elapsed after the last CS reinforcement. We evaluated these two accounts in a human differential fear conditioning study in which CR was measured with the fear-potentiated startle response. Cumulated duration of nonreinforcement fails to explain our findings, whereas the number of trials appeared critical. In fact, many CS trials with a duration shorter than the acquisition CS duration facilitated within-session extinction, but this effect did not predict the recovery of fear. PMID:23231494

  10. Learning in a simple biological system: a pilot study of classical conditioning of human macrophages in vitro

    Directory of Open Access Journals (Sweden)

    Nilsonne Gustav

    2011-11-01

    Full Text Available Abstract Recent advances in cell biology and gene regulation suggest mechanisms whereby associative learning could be performed by single cells. Therefore, we explored a model of classical conditioning in human macrophages in vitro. In macrophage cultures, bacterial lipopolysaccharide (LPS; unconditioned stimulus was paired once with streptomycin (conditioned stimulus. Secretion of interleukin-6 (IL-6 was used as response measure. At evocation, conditioning was not observed. Levels of IL-6 were higher only in those cultures that had been exposed to LPS in the learning phase (p's However, habituation was evident, with a 62% loss of the IL-6 response after three LPS presentations (p

  11. Synaptic plasticity and NO-cGMP-PKG signaling regulate pre- and postsynaptic alterations at rat lateral amygdala synapses following fear conditioning.

    Directory of Open Access Journals (Sweden)

    Kristie T Ota

    Full Text Available In vertebrate models of synaptic plasticity, signaling via the putative "retrograde messenger" nitric oxide (NO has been hypothesized to serve as a critical link between functional and structural alterations at pre- and postsynaptic sites. In the present study, we show that auditory Pavlovian fear conditioning is associated with significant and long-lasting increases in the expression of the postsynaptically-localized protein GluR1 and the presynaptically-localized proteins synaptophysin and synapsin in the lateral amygdala (LA within 24 hrs following training. Further, we show that rats given intra-LA infusion of either the NR2B-selective antagonist Ifenprodil, the NOS inhibitor 7-Ni, or the PKG inhibitor Rp-8-Br-PET-cGMPS exhibit significant decreases in training-induced expression of GluR1, synaptophysin, and synapsin immunoreactivity in the LA, while those rats infused with the PKG activator 8-Br-cGMP exhibit a significant increase in these proteins in the LA. In contrast, rats given intra-LA infusion of the NO scavenger c-PTIO exhibit a significant decrease in synapsin and synaptophysin expression in the LA, but no significant impairment in the expression of GluR1. Finally, we show that intra-LA infusions of the ROCK inhibitor Y-27632 or the CaMKII inhibitor KN-93 impair training-induced expression of GluR1, synapsin, and synaptophysin in the LA. These findings suggest that the NO-cGMP-PKG, Rho/ROCK, and CaMKII signaling pathways regulate fear memory consolidation, in part, by promoting both pre- and post-synaptic alterations at LA synapses. They further suggest that synaptic plasticity in the LA during auditory fear conditioning promotes alterations at presynaptic sites via NO-driven "retrograde signaling".

  12. Fear at the Great Wall

    Institute of Scientific and Technical Information of China (English)

    CHARLOTTE; SPIRES

    2011-01-01

    "i’m not going on anything that takes me more than two feet off the ground," Grace was saying.This was classic Grace: She has a morbid fear of—well, everything actually,but in this particular case it was her phobia of heights, heights and cable cars combined specifically.

  13. Fear at the Great Wall

    Institute of Scientific and Technical Information of China (English)

    CHARLOTTE SPIRES

    2011-01-01

    “I’m not going on anything that takes me more than two feet off the ground," Grace was saying.This was classic Grace:She has a morbid fear of-well,everything actually,but in this particular case it was her phobia of heights,heights and cable cars combined specifically.

  14. Placing prediction into the fear circuit

    OpenAIRE

    McNally, Gavan P.; Johansen, Joshua P.; Blair, Hugh T.

    2011-01-01

    Pavlovian fear conditioning depends on synaptic plasticity at amygdala neurons. Here we review recent electrophysiological, molecular, and behavioral evidence suggesting the existence of a distributed neural circuitry regulating amygdala synaptic plasticity during fear learning. This circuitry, which involves projections from the midbrain periaqueductal gray (PAG) region, can be linked to prediction error and expectation modulation of fear learning as described by associative and computationa...

  15. Blocking glucocorticoid receptors at adolescent age prevents enhanced freezing between repeated cue-exposures after conditioned fear in adult mice raised under chronic early life stress.

    Science.gov (United States)

    Arp, J Marit; Ter Horst, Judith P; Loi, Manila; den Blaauwen, Jan; Bangert, Eline; Fernández, Guillén; Joëls, Marian; Oitzl, Melly S; Krugers, Harm J

    2016-09-01

    Early life adversity can have long-lasting impact on learning and memory processes and increase the risk to develop stress-related psychopathologies later in life. In this study we investigated (i) how chronic early life stress (ELS) - elicited by limited nesting and bedding material from postnatal day 2 to 9 - affects conditioned fear in adult mice and (ii) whether these effects can be prevented by blocking glucocorticoid receptors (GRs) at adolescent age. In adult male and female mice, ELS did not affect freezing behavior to the first tone 24h after training in an auditory fear-conditioning paradigm. Exposure to repeated tones 24h after training also resulted in comparable freezing behavior in ELS and control mice, both in males and females. However, male (but not female) ELS compared to control mice showed significantly more freezing behavior between the tone-exposures, i.e. during the cue-off periods. Intraperitoneal administration of the GR antagonist RU38486 during adolescence (on postnatal days 28-30) fully prevented enhanced freezing behavior during the cue-off period in adult ELS males. Western blot analysis revealed no effects of ELS on hippocampal expression of glucocorticoid receptors, neither at postnatal day 28 nor at adult age, when mice were behaviorally tested. We conclude that ELS enhances freezing behavior in adult mice in a potentially safe context after cue-exposure, which can be normalized by brief blockade of glucocorticoid receptors during the critical developmental window of adolescence. PMID:27246249

  16. Classical and remote post-conditioning effects on ischemia/reperfusion-induced acute oxidant kidney injury.

    Science.gov (United States)

    Kadkhodaee, Mehri; Najafi, Atefeh; Seifi, Behjat

    2014-11-01

    The present study aimed to analyze and compare the effects of classical and remote ischemic postconditioning (POC) on rat renal ischemia/reperfusion (IR)-induced acute kidney injury. After right nephrectomy, male rats were randomly assigned into four groups (n = 8). In the IR group, 45 min of left renal artery occlusion was induced followed by 24 h of reperfusion. In the classical POC group, after induction of 45 min ischemia, 4 cycles of 10 s of intermittent ischemia and reperfusion were applied to the kidney before complete restoring of renal blood. In the remote POC group, 4 cycles of 5 min ischemia and reperfusion of left femoral artery were applied after 45 min renal ischemia and right at the time of renal reperfusion. There was a reduction in renal function (increase in blood urea and creatinine) in the IR group. Application of both forms of POC prevented the IR-induced reduction in renal function and histology. There were also significant improvements in kidney oxidative stress status in both POC groups demonstrated by a reduction in malondialdehyde (MDA) formation and preservation of antioxidant levels comparing to the IR group. We concluded that both methods of POC have protective effects on renal function and histology possibly by a reduction in IR-induced oxidative stress.

  17. Contrasts in Infant Classical Eyeblink Conditioning as a Function of Premature Birth

    Science.gov (United States)

    Herbert, Jane S.; Eckerman, Carol O.; Goldstein, Ricki F.; Stanton, Mark E.

    2004-01-01

    The impact of premature birth on associative learning was evaluated using simple delay eyeblink conditioning in which a tone conditional stimulus was paired with an air puff unconditional stimulus. Fourteen preterm (28-31 weeks gestation) and 11 full-term infants completed at least 3 conditioning sessions, 1 week apart, at 5 months of age…

  18. Sex- and dose-dependent effects of calcium ion irradiation on behavioral performance of B6D2F1 mice during contextual fear conditioning training

    Science.gov (United States)

    Raber, Jacob; Weber, Sydney J.; Kronenberg, Amy; Turker, Mitchell S.

    2016-06-01

    The space radiation environment includes energetic charged particles that may impact behavioral and cognitive performance. The relationship between the dose and the ionization density of the various types of charged particles (expressed as linear energy transfer or LET), and cognitive performance is complex. In our earlier work, whole body exposure to 28Si ions (263 MeV/n, LET = 78keV / μ m ; 1.6 Gy) affected contextual fear memory in C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation but this was not the case following exposure to 48Ti ions (1 GeV/n, LET = 107keV / μ m ; 0.2 or 0.4 Gy). As an increased understanding of the impact of charged particle exposures is critical for assessment of risk to the CNS of astronauts during and following missions, in this study we used 40Ca ion beams (942 MeV/n, LET = 90keV / μm) to determine the behavioral and cognitive effects for the LET region between that of Si ions and Ti ions. 40Ca ion exposure reduced baseline activity in a novel environment in a dose-dependent manner, which suggests reduced motivation to explore and/or a diminished level of curiosity in a novel environment. In addition, exposure to 40Ca ions had sex-dependent effects on response to shock. 40Ca ion irradiation reduced the response to shock in female, but not male, mice. In contrast, 40Ca ion irradiation did not affect fear learning, memory, or extinction of fear memory for either gender at the doses employed in this study. Thus 40Ca ion irradiation affected behavioral, but not cognitive, performance. The effects of 40Ca ion irradiation on behavioral performance are relevant, as a combination of novelty and aversive environmental stimuli is pertinent to conditions experienced by astronauts during and following space missions.

  19. Sex- and dose-dependent effects of calcium ion irradiation on behavioral performance of B6D2F1 mice during contextual fear conditioning training.

    Science.gov (United States)

    Raber, Jacob; Weber, Sydney J; Kronenberg, Amy; Turker, Mitchell S

    2016-06-01

    The space radiation environment includes energetic charged particles that may impact behavioral and cognitive performance. The relationship between the dose and the ionization density of the various types of charged particles (expressed as linear energy transfer or LET), and cognitive performance is complex. In our earlier work, whole body exposure to (28)Si ions (263 MeV/n, LET=78keV/μm; 1.6 Gy) affected contextual fear memory in C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation but this was not the case following exposure to (48)Ti ions (1 GeV/n, LET=107keV/μm; 0.2 or 0.4 Gy). As an increased understanding of the impact of charged particle exposures is critical for assessment of risk to the CNS of astronauts during and following missions, in this study we used (40)Ca ion beams (942 MeV/n, LET=90keV/μm) to determine the behavioral and cognitive effects for the LET region between that of Si ions and Ti ions. (40)Ca ion exposure reduced baseline activity in a novel environment in a dose-dependent manner, which suggests reduced motivation to explore and/or a diminished level of curiosity in a novel environment. In addition, exposure to (40)Ca ions had sex-dependent effects on response to shock. (40)Ca ion irradiation reduced the response to shock in female, but not male, mice. In contrast, (40)Ca ion irradiation did not affect fear learning, memory, or extinction of fear memory for either gender at the doses employed in this study. Thus (40)Ca ion irradiation affected behavioral, but not cognitive, performance. The effects of (40)Ca ion irradiation on behavioral performance are relevant, as a combination of novelty and aversive environmental stimuli is pertinent to conditions experienced by astronauts during and following space missions. PMID:27345201

  20. What ethologically based models have taught us about the neural systems underlying fear and anxiety

    Directory of Open Access Journals (Sweden)

    N.S. Canteras

    2012-04-01

    Full Text Available Classical Pavlovian fear conditioning to painful stimuli has provided the generally accepted view of a core system centered in the central amygdala to organize fear responses. Ethologically based models using other sources of threat likely to be expected in a natural environment, such as predators or aggressive dominant conspecifics, have challenged this concept of a unitary core circuit for fear processing. We discuss here what the ethologically based models have told us about the neural systems organizing fear responses. We explored the concept that parallel paths process different classes of threats, and that these different paths influence distinct regions in the periaqueductal gray - a critical element for the organization of all kinds of fear responses. Despite this parallel processing of different kinds of threats, we have discussed an interesting emerging view that common cortical-hippocampal-amygdalar paths seem to be engaged in fear conditioning to painful stimuli, to predators and, perhaps, to aggressive dominant conspecifics as well. Overall, the aim of this review is to bring into focus a more global and comprehensive view of the systems organizing fear responses.

  1. Mice lacking Ras-GRF1 show contextual fear conditioning but not spatial memory impairments: convergent evidence from two independently generated mouse mutant lines

    Directory of Open Access Journals (Sweden)

    Raffaele ed'Isa

    2011-12-01

    Full Text Available Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus. In order to determine the real contribution of Ras-GRF1 to spatial memory we compared in Morris Water Maze learning the Brambilla’s mice with a third mouse line (GENA53 in which a nonsense mutation was introduced in the Ras-GRF1 coding region without additional changes in the genome and we found that memory in this task is normal. Also, we measured both contextual and cued fear conditioning, which were previously reported to be affected in the Brambilla’s mice, and we confirmed that contextual learning but not cued conditioning is impaired in both mouse lines. In addition, we also tested both lines for the first time in conditioned place aversion in the Intellicage, an ecological and remotely controlled behavioral test, and we observed normal learning. Finally, based on previous reports of other mutant lines suggesting that Ras-GRF1 may control body weight, we also measured this non-cognitive phenotype and we confirmed that both Ras-GRF1 deficient mutants are smaller than their control littermates. In conclusion, we demonstrate that Ras-GRF1 has no unique role in spatial memory while its function in contextual fear conditioning is likely to be due not only to its involvement in amygdalar functions but possibly to some distinct hippocampal connections specific to

  2. Expression of the immediate-early gene-encoded protein Egr-1 (zif268) during in vitro classical conditioning.

    Science.gov (United States)

    Mokin, Maxim; Keifer, Joyce

    2005-01-01

    Expression of the immediate-early genes (IEGs) has been shown to be induced by activity-dependent synaptic plasticity or behavioral training and is thought to play an important role in long-term memory. In the present study, we examined the induction and expression of the IEG-encoded protein Egr-1 during an in vitro neural correlate of eyeblink classical conditioning. The results showed that Egr-1 protein expression as determined by immunocytochemistry and Western blot analysis rapidly increased during the early stages of conditioning and remained elevated during the later stages. Further, expression of Egr-1 protein required NMDA receptor activation as it was blocked by bath application of AP-5. These findings suggest that the IEG-encoded proteins such as Egr-1 are activated during relatively simple forms of learning in vertebrates. In this case, Egr-1 may have a functional role in the acquisition phase of conditioning as well as in maintaining expression of conditioned responses.

  3. Enhanced discriminative fear learning of phobia-irrelevant stimuli in spider-fearful individuals

    Directory of Open Access Journals (Sweden)

    Carina eMosig

    2014-10-01

    Full Text Available Avoidance is considered as a central hallmark of all anxiety disorders. The acquisition and expression of avoidance which leads to the maintenance and exacerbation of pathological fear is closely linked to Pavlovian and operant conditioning processes. Changes in conditionability might represent a key feature of all anxiety disorders but the exact nature of these alterations might vary across different disorders. To date, no information is available on specific changes in conditionability for disorder-irrelevant stimuli in specific phobia (SP. The first aim of this study was to investigate changes in fear acquisition and extinction in spider-fearful individuals as compared to non-fearful participants by using the de novo fear conditioning paradigm. Secondly, we aimed to determine whether differences in the magnitude of context-dependent fear retrieval exist between spider-fearful and non-fearful individuals. Our findings point to an enhanced fear discrimination in spider-fearful individuals as compared to non-fearful individuals at both the physiological and subjective level. The enhanced fear discrimination in spider-fearful individuals was neither mediated by increased state anxiety, depression, nor stress tension. Spider-fearful individuals displayed no changes in extinction learning and/or fear retrieval. Surprisingly, we found no evidence for context-dependent modulation of fear retrieval in either group. Here we provide first evidence that spider-fearful individuals show an enhanced discriminative fear learning of phobia-irrelevant (de novo stimuli. Our findings provide novel insights into the role of fear acquisition and expression for the development and maintenance of maladaptive responses in the course of SP.

  4. Sensory prediction or motor control? Application of marr-albus type models of cerebellar function to classical conditioning.

    Science.gov (United States)

    Lepora, Nathan F; Porrill, John; Yeo, Christopher H; Dean, Paul

    2010-01-01

    Marr-Albus adaptive filter models of the cerebellum have been applied successfully to a range of sensory and motor control problems. Here we analyze their properties when applied to classical conditioning of the nictitating membrane response in rabbits. We consider a system-level model of eyeblink conditioning based on the anatomy of the eyeblink circuitry, comprising an adaptive filter model of the cerebellum, a comparator model of the inferior olive and a linear dynamic model of the nictitating membrane plant. To our knowledge, this is the first model that explicitly includes all these principal components, in particular the motor plant that is vital for shaping and timing the behavioral response. Model assumptions and parameters were systematically investigated to disambiguate basic computational capacities of the model from features requiring tuning of properties and parameter values. Without such tuning, the model robustly reproduced a range of behaviors related to sensory prediction, by displaying appropriate trial-level associative learning effects for both single and multiple stimuli, including blocking and conditioned inhibition. In contrast, successful reproduction of the real-time motor behavior depended on appropriate specification of the plant, cerebellum and comparator models. Although some of these properties appear consistent with the system biology, fundamental questions remain about how the biological parameters are chosen if the cerebellar microcircuit applies a common computation to many distinct behavioral tasks. It is possible that the response profiles in classical conditioning of the eyeblink depend upon operant contingencies that have previously prevailed, for example in naturally occurring avoidance movements.

  5. Cdk5 Kinase Activity, Caspase-3 Expression and Synaptic Structural Plasticity in Infra-limbic Cortex of Rats with Conditioned Fear%条件性恐惧大鼠边缘下区Cdk5激酶活性、caspase-3表达以及突触结构的变化

    Institute of Scientific and Technical Information of China (English)

    李培培; 张丽丽; 韦美; 李敏

    2011-01-01

    Classical fear conditioning is a behavioral paradigm that is widely used to study the neuronal mechanisms of post-traumatic stress disorder. Previous studies have clearly identified the medial prefrontal cortex as a key brain area for fear memory traces, but the molecules involving are poorly understood. Recently, the neuronal cyclin dependent kinase 5 (Cdk5) has been implicated in both functional and structural plasticity through affecting ion channel conductance, dendritic spine formation. protein expressions and transcriptions in the postsynaptic neurons. Importantly, dysregulation of Cdk5 has been linked to cell apoptosis, which involves perturbation in synaptic function. How the kinase activity, expression of caspase-3 and synaptic structure have changed in infra-limbic cortex (IL) of conditioned fear? The present study is aimed to answer this question by two experiments.Male adult SD rats were randomly divided into fear group and naive group. Conditioned fear model of rats was established by tone paired foot shock. At the 2nd, 4th and 8th days after fear conditioning, the Cdk5 activity,and expressions of P35 or P25 and caspase-3 in IL area were studied by immunoprecipitation and kinase assay,Western blotting and immunnohistochemical assay. Then the change of synaptic structure at the 8th and 22nd days after conditioned fear was observed with electron microscopy. The results of our experiment 1 showed that Cdk5 activity and expressions of P25 and caspase-3 were all higher in fear group than naive group. In experiment 2, the postsynaptic density (PSD) was thinner in fear group than naive group at the 8th and 22nd days after fear conditioning, but the numerical densities of IL synapse was decreased in fear group at the 22nd day after fear conditioning.Our date suggested that at 8th days after conditioned fear established, the expression of P25 and Cdk5 activity in fear group were higher than naive group, which may lead to the change of synaptic structural

  6. Semantic classical conditioning and brain-computer interface (BCI control: Encoding of affirmative and negative thinking

    Directory of Open Access Journals (Sweden)

    Carolin A. Ruf

    2013-03-01

    Full Text Available The aim of the study was to investigate conditioned electroencephalographic (EEG responses to factually correct and incorrect statements in order to enable binary communication by means of a brain-computer interface (BCI. In two experiments with healthy participants true and false statements (serving as conditioned stimuli, CSs were paired with two different tones which served as unconditioned stimuli (USs. The features of the USs were varied and tested for their effectiveness to elicit differentiable conditioned reactions (CRs. After acquisition of the CRs, these CRs to true and false statements were classified offline using a radial basis function kernel support vector machine. A mean single-trial classification accuracy of 50.5% was achieved for differentiating conditioned yes versus no thinking and mean accuracies of 65.4% for classification of yes and 68.8% for no thinking (both relative to baseline were found using the best US. Analysis of the area under the curve of the conditioned EEG responses revealed significant differences between conditioned yes and no answers. Even though improvements are necessary, these first results indicate that the semantic conditioning paradigm could be a useful basis for further research regarding BCI communication in patients with complete locked-in syndrome (CLIS.

  7. Adolescent and adult rats differ in the amnesic effects of acute ethanol in two hippocampus-dependent tasks: Trace and contextual fear conditioning.

    Science.gov (United States)

    Hunt, Pamela S; Barnet, Robert C

    2016-02-01

    Experience-produced deficits in trace conditioning and context conditioning have been useful tools for examining the role of the hippocampus in learning. It has also been suggested that learning in these tasks is especially vulnerable to neurotoxic effects of alcohol during key developmental periods such as adolescence. In five experiments we systematically examined the presence and source of age-dependent vulnerability to the memory-disrupting effects of acute ethanol in trace conditioning and contextual fear conditioning. In Experiment 1a pre-training ethanol disrupted trace conditioning more strongly in adolescent (postnatal day, PD30-35) than adult rats (PD65-75). In Experiment 1b when pre-training ethanol was accompanied by pre-test ethanol no deficit in trace conditioning was observed in adolescents, suggesting that state-dependent retrieval failure mediated ethanol's disruption of trace conditioning at this age. Experiment 2a and b examined the effect of ethanol pretreatment on context conditioning. Here, adult but not adolescent rats were impaired in conditioned freezing to context cues. Experiment 2c explored state-dependency of this effect. Pre-training ethanol continued to disrupt context conditioning in adults even when ethanol was also administered prior to test. Collectively these findings reveal clear age-dependent and task-dependent vulnerabilities in ethanol's disruptive effects on hippocampus-dependent memory. Adolescents were more disrupted by ethanol in trace conditioning than adults, and adults were more disrupted by ethanol in context conditioning than adolescents. We suggest that adolescents may be more susceptible to changes in internal state (state-dependent retrieval failure) than adults and that ethanol disrupted performance in trace and context conditioning through different mechanisms. Relevance of these findings to theories of hippocampus function is discussed.

  8. Purkinje cell activity during classical conditioning with different conditional stimuli explains central tenet of Rescorla–Wagner model [corrected].

    Science.gov (United States)

    Rasmussen, Anders; Zucca, Riccardo; Johansson, Fredrik; Jirenhed, Dan-Anders; Hesslow, Germund

    2015-11-10

    A central tenet of Rescorla and Wagner's model of associative learning is that the reinforcement value of a paired trial diminishes as the associative strength between the presented stimuli increases. Despite its fundamental importance to behavioral sciences, the neural mechanisms underlying the model have not been fully explored. Here, we present findings that, taken together, can explain why a stronger association leads to a reduced reinforcement value, within the context of eyeblink conditioning. Specifically, we show that learned pause responses in Purkinje cells, which trigger adaptively timed conditioned eyeblinks, suppress the unconditional stimulus (US) signal in a graded manner. Furthermore, by examining how Purkinje cells respond to two distinct conditional stimuli and to a compound stimulus, we provide evidence that could potentially help explain the somewhat counterintuitive overexpectation phenomenon, which was derived from the Rescorla-Wagner model.

  9. Can human autonomic classical conditioning occur without contingency awareness? The critical importance of the trial sequence.

    Science.gov (United States)

    Singh, Kulwinder; Dawson, Michael E; Schell, Anne M; Courtney, Christopher G; Payne, Andrew F H

    2013-04-01

    Most evidence suggests that awareness of the CS-US contingency is necessary for human autonomic conditioning. However, Schultz and Helmstetter (2010) reported unaware skin conductance conditioning using difficult-to-discriminate visual CSs. We sought to replicate these findings with procedures nearly identical to Schultz and Helmstetter among 66 participants. Results replicated the findings of significantly greater autonomic responding to CS+ than CS-; however, participants also demonstrated greater expectancy of shock to CS+ than CS- despite being classified as unaware. The differential expectancy and conditioning occurred only on trials that followed a CS+/CS- alternating sequence. On non-alternating trials, there was significantly higher expectancy and skin conductance responding to CS- compared to CS+. These results indicate that what initially appeared to be unaware differential conditioning was likely due to differential expectancy arising from a predictable trial sequence. These results underscore the critical importance of controlling for trial sequence effects in the study of learning.

  10. The Classical Conditioning of Attitudes: A Comparative Study of Ages 8 to 18

    Science.gov (United States)

    O'Donnell, John M.; Brown, Mari J. K.

    1973-01-01

    Results of this study indicated that attitude conditioning increased with age and that the increase appeared to be a function of contingency awareness and perhaps also a function of the older subjects' having greater facility in transferring symbolic meaning. (Author)

  11. Sensitization to apomorphine in pigeons : unaffected by latent inhibition but still due to classical conditioning

    OpenAIRE

    Wynne, Brigitte; Delius, Juan

    1995-01-01

    When administered apomorphine, pigeons exhibit protracted bouts of pecking behavior. This response is subject to sensitization, as it initially increases with repeated drug injections. The hypothesis is examined that the sensitization is due to a Pavlovian conditioning of the drug-induced pecking to the environment in which it first takes effect. In a first experiment, we attempted to suppress this conditioning by extensively pre-exposing the birds to the test environment and saline injection...

  12. Phosphorylation of mitogen-activated protein kinase by one-trial and multi-trial classical conditioning.

    Science.gov (United States)

    Crow, T; Xue-Bian, J J; Siddiqi, V; Kang, Y; Neary, J T

    1998-05-01

    The pathway supporting the conditioned stimulus (CS) is one site of plasticity that has been studied extensively in conditioned Hermissenda. Several signal transduction pathways have been implicated in classical conditioning of this preparation, although the major emphasis has been on protein kinase C. Here we provide evidence for the activation and phosphorylation of a mitogen-activated protein kinase (MAPK) pathway by one-trial and multi-trial conditioning. A one-trial in vitro conditioning procedure consisting of light (CS) paired with the application of 5-HT results in the increased incorporation of 32PO4 into proteins detected with two-dimensional gel electrophoresis. Two of the phosphoproteins have molecular weights of 44 and 42 kDa, consistent with extracellular signal-regulated protein kinases (ERK1 and ERK2). Phosphorylation of the 44 and 42 kDa proteins by one-trial conditioning was inhibited by pretreatment with PD098059, A MEK1 (ERK-Activating kinase) inhibitor. Assays of ERK activity with brain myelin basic protein as a substrate revealed greater ERK activity for the group that received one-trial conditioning compared with an unpaired control group. Western blot analysis of phosphorylated ERK using antibodies recognizing the dually phosphorylated forms of ERK1 and ERK2 showed an increase in phosphorylation after one-trial conditioning compared with unpaired controls. The increased phosphorylation of ERK after one-trial conditioning was blocked by pretreatment with PD098059. Hermissenda that received 10 or 15 conditioning trials showed significant behavioral suppression compared with pseudo-random controls. After conditioning and behavioral testing, the conditioned animals showed significantly greater phosphorylation of ERK compared with the pseudo-random controls. These results show that the ERK-MAPK signaling pathway is activated in Pavlovian conditioning of Hermissenda.

  13. Finite-temperature Casimir pistons for an electromagnetic field with mixed boundary conditions and its classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Teo, L P [Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya, 63100, Selangor Darul Ehsan (Malaysia)], E-mail: lpteo@mmu.edu.my

    2009-03-13

    In this paper, the finite-temperature Casimir force acting on a two-dimensional Casimir piston due to an electromagnetic field is computed. It was found that if mixed boundary conditions are assumed on the piston and its opposite wall, then the Casimir force always tends to restore the piston toward the equilibrium position, regardless of the boundary conditions assumed on the walls transverse to the piston. In contrast, if pure boundary conditions are assumed on the piston and the opposite wall, then the Casimir force always tends to pull the piston toward the closer wall and away from the equilibrium position. The nature of the force is not affected by temperature. However, in the high-temperature regime, the magnitude of the Casimir force grows linearly with respect to temperature. This shows that the Casimir effect has a classical limit as has been observed in other literature.

  14. Dendritic excitability microzones and occluded long-term depression after classical conditioning of the rabbit's nictitating membrane response.

    Science.gov (United States)

    Schreurs, B G; Tomsic, D; Gusev, P A; Alkon, D L

    1997-01-01

    We made intradendritic recordings in Purkinje cells (n = 164) from parasaggital slices of cerebellar lobule HVI obtained from rabbits given paired presentations of tone and periorbital electrical stimulation (classical conditioning, n = 27) or explicitly unpaired presentations of tone and periorbital stimulation (control, n = 16). Purkinje cell dendritic membrane excitability, assessed by the current required to elicit local dendritic calcium spikes, increased significantly in slices from animals that received classical conditioning. In contrast, membrane potential, input resistance, and amplitude of somatic and dendritic spikes were not different in slices from animals given paired or explicitly unpaired stimulus presentations. The location of cells with low thresholds for local dendritic calcium spikes suggested that there are specific sites for learning-related changes within lobule HVI. These areas may correspond to learning "microzones" and are consistent with locations of learning-related in vivo changes in Purkinje cell activity. Application of 4-aminopyridine, an antagonist of the rapidly inactivating potassium current IA, reduced the threshold for dendritic spikes in slices from naive animals to levels found in slices from trained animals. In cells where thresholds for eliciting parallel fiber-stimulated Purkinje cell excitatory postsynaptic potentials (EPSPs) were measured, levels of parallel fiber stimulation required to elicit a 6-mV EPSP as well as a 4-mV EPSP (n = 30) and a Purkinje cell spike (n = 56) were found to be significantly lower in slices from paired animals than unpaired controls. A classical conditioning procedure was simulated in slices of lobule HVI by pairing a brief, high-frequency train of parallel fiber stimulation (8 pulses, 100 Hz) with a brief, lower frequency train of climbing fiber stimulation (3 pulses, 20 Hz) to the same Purkinje cell. Following paired stimulation of the parallel and climbing fibers, Purkinje cell EPSPs

  15. Balanced plasticity and stability of the electrical properties of a molluscan modulatory interneuron after classical conditioning: a computational study

    Directory of Open Access Journals (Sweden)

    Dimitris Vavoulis

    2010-05-01

    Full Text Available The Cerebral Giant Cells (CGCs are a pair of identified modulatory interneurons in the Central Nervous System of the pond snail Lymnaea stagnalis with an important role in the expression of both unconditioned and conditioned feeding behavior. Following single-trial food-reward classical conditioning, the membrane potential of the CGCs becomes persistently depolarized. This depolarization contributes to the conditioned response by facilitating sensory cell to command neuron synapses, which results in the activation of the feeding network by the conditioned stimulus. Despite the depolarization of the membrane potential, which enables the CGGs to play a key role in learning-induced network plasticity, there is no persistent change in the tonic firing rate or shape of the action potentials, allowing these neurons to retain their normal network function in feeding. In order to understand the ionic mechanisms of this novel combination of plasticity and stability of intrinsic electrical properties, we first constructed and validated a Hodgkin-Huxley-type model of the CGCs. We then used this model to elucidate how learning-induced changes in a somal persistent sodium and a delayed rectifier potassium current lead to a persistent depolarization of the CGCs whilst maintaining their firing rate. Including in the model an additional increase in the conductance of a high-voltage-activated calcium current allowed the spike amplitude and spike duration also to be maintained after conditioning. We conclude therefore that a balanced increase in three identified conductances is sufficient to explain the electrophysiological changes found in the CGCs after classical conditioning.

  16. Whisker-signaled Eyeblink Classical Conditioning in Head-fixed Mice.

    Science.gov (United States)

    Lin, Carmen; Disterhoft, John; Weiss, Craig

    2016-03-30

    Eyeblink conditioning is a common paradigm for investigating the neural mechanisms underlying learning and memory. To better utilize the extensive repertoire of scientific techniques available to study learning and memory at the cellular level, it is ideal to have a stable cranial platform. Because mice do not readily tolerate restraint, they are usually trained while moving about freely in a chamber. Conditioned stimulus (CS) and unconditioned stimulus (US) information are delivered and eyeblink responses recorded via a tether connected to the mouse's head. In the head-fixed apparatus presented here, mice are allowed to run as they desire while their heads are secured to facilitate experimentation. Reliable conditioning of the eyeblink response is obtained with this training apparatus, which allows for the delivery of whisker stimulation as the CS, a periorbital electrical shock as the US, and analysis of electromyographic (EMG) activity from the eyelid to detect blink responses.

  17. The effects of two forms of physical activity on eyeblink classical conditioning.

    Science.gov (United States)

    Green, John T; Chess, Amy C; Burns, Montana; Schachinger, Kira M; Thanellou, Alexandra

    2011-05-16

    Voluntary exercise, in the form of free access to a running wheel in the home cage, has been shown to improve several forms of learning and memory. Acrobatic training, in the form of learning to traverse an elevated obstacle course, has been shown to induce markers of neural plasticity in the cerebellar cortex in rodents. In three experiments, we examined the effects of these two forms of physical activity on delay eyeblink conditioning in rats. In Experiment 1, exercising rats were given 17 days of free access to a running wheel in their home cage prior to 10 days of delay eyeblink conditioning. Rats that exercised conditioned significantly better and showed a larger reflexive eyeblink unconditioned response to the periocular stimulation unconditioned stimulus than rats that did not exercise. In Experiment 2, exercising rats were given 17 days of free access to a running wheel in their home cage prior to 10 days of explicitly unpaired stimulus presentations. Rats that exercised responded the same to tone, light, and periocular stimulation as rats that did not exercise. In Experiment 3, acrobatic training rats were given 15 days of daily training on an elevated obstacle course prior to 10 days of eyeblink conditioning. Activity control rats underwent 15 days of yoked daily running in an open field. Rats that underwent acrobatic training did not differ in eyeblink conditioning from activity control rats. The ability to measure the learned response precisely, and the well-mapped neural circuitry of eyeblink conditioning offer some advantages for the study of exercise effects on learning and memory.

  18. Comparison of a classical with a highly formularized body condition scoring system for dairy cattle

    OpenAIRE

    Isense, A.; Leiber, F.; Bieber, A.; Spengler, A.; Ivemeyer, S.; Maurer, V.; Klocke, Peter

    2014-01-01

    Body condition scoring is a common tool to assess the subcutaneous fat reserves of dairy cows. Because of its subjectivity, which causes limits in repeatability, it is often discussed controversially. Aim of the current study was to evaluate the impact of considering the cows overall appearance on the scoring process and on the validity of the results. Therefore, two different methods to reveal body condition scores (BCS), ‘independent BCS’ (iBCS) and ‘dependent BCS’ (dBCS), were used to asse...

  19. Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step toward standardized procedures.

    Science.gov (United States)

    Matsumoto, Yukihisa; Menzel, Randolf; Sandoz, Jean-Christophe; Giurfa, Martin

    2012-10-15

    The honey bee Apis mellifera has emerged as a robust and influential model for the study of classical conditioning thanks to the existence of a powerful Pavlovian conditioning protocol, the olfactory conditioning of the proboscis extension response (PER). In 2011, the olfactory PER conditioning protocol celebrated its 50 years since it was first introduced by Kimihisa Takeda in 1961. In this protocol, individually harnessed honey bees are trained to associate an odor with sucrose solution. The resulting olfactory learning is fast and induces robust olfactory memories that have been characterized at the behavioral, neuronal and molecular levels. Despite the success of this protocol for studying the bases of learning and memory at these different levels, innumerable procedural variants have arisen throughout the years, which render comparative analyses of behavioral performances difficult. Moreover, because even slight variations in conditioning procedures may introduce significant differences in acquisition and retention performances, we revisit olfactory PER conditioning and define here a standardized framework for experiments using this behavioral protocol. To this end, we present and discuss all the methodological steps and details necessary for successful implementation of olfactory PER conditioning.

  20. Role of nitric oxide in classical conditioning of siphon withdrawal in Aplysia.

    Science.gov (United States)

    Antonov, Igor; Ha, Thomas; Antonova, Irina; Moroz, Leonid L; Hawkins, Robert D

    2007-10-10

    Nitric oxide (NO) is thought to be involved in several forms of learning in vivo and synaptic plasticity in vitro, but very little is known about the role of NO during physiological forms of plasticity that occur during learning. We addressed that question in a simplified preparation of the Aplysia siphon-withdrawal reflex. We first used in situ hybridization to show that the identified L29 facilitator neurons express NO synthase. Furthermore, exogenous NO produced facilitation of sensory-motor neuron EPSPs, and an inhibitor of NO synthase or an NO scavenger blocked behavioral conditioning. Application of the scavenger to the ganglion or injection into a sensory neuron blocked facilitation of the EPSP and changes in the sensory-neuron membrane properties during conditioning. Injection of the scavenger into the motor neuron reduced facilitation without affecting sensory neuron membrane properties, and injection of an inhibitor of NO synthase had no effect. Postsynaptic injection of an inhibitor of exocytosis had effects similar to injection of the scavenger. However, changes in the shape of the EPSP during conditioning were not consistent with postsynaptic AMPA-like receptor insertion but were mimicked by presynaptic spike broadening. These results suggest that NO makes an important contribution during conditioning and acts directly in both the sensory and motor neurons to affect different processes of facilitation at the synapses between them. In addition, they suggest that NO does not come from either the sensory or motor neurons but rather comes from another source, perhaps the L29 interneurons.

  1. Non-classical conditional probability and the quantum no-cloning theorem

    Science.gov (United States)

    Niestegge, Gerd

    2015-09-01

    The quantum mechanical no-cloning theorem for pure states is generalized and transfered to the quantum logics with a conditional probability calculus in a rather abstract, though simple and basic fashion without relying on a tensor product construction or finite dimension as required in other generalizations.

  2. [AMYGDALA: NEUROANATOMY AND NEUROPHYSIOLOGY OF FEAR].

    Science.gov (United States)

    Tsvetkov, E A; Krasnoshchekova, E I; Vesselkin, N P; Kharazova, A D

    2015-01-01

    This work describes neuroanatomical and neurophysiological mechanisms of Pavlovian fear conditioning, focusing on contributions of the amygdala, a subcortical nuclear group, to control of conditioned fear responses. The mechanisms of synaptic plasticity at projections to the amygdala and within amygdala were shown to mediate the formation and retention of fear memory. This work reviews current data on anatomical organization of the amygdala, as well as its afferent and efferent projections, in respect to the role of the amygdala in auditory fear conditioning during which acoustic signals serve as the conditioned stimulus. PMID:26983275

  3. A NECESSARY AND SUFFICIENT CONDITION FOR GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO CAUCHY PROBLEM OF QUASILINEAR HYPERBOLIC SYSTEMS IN DIAGONAL FORM

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This article considers Cauchy problem for quasilinear hyperbolic systems in diagonal form.A necessary and sufficient condition in guaranteeing that Cauchy problem admits a unique global classical solution on t 0 is obtained,and a sharp estimate of the life span for the classical solution is given.

  4. Classical conditioning in borderline personality disorder: an fMRI study.

    Science.gov (United States)

    Krause-Utz, Annegret; Keibel-Mauchnik, Jana; Ebner-Priemer, Ulrich; Bohus, Martin; Schmahl, Christian

    2016-06-01

    Previous research suggests disturbed emotional learning and memory in borderline personality disorder (BPD). Studies investigating the neural correlates of aversive differential delay conditioning in BPD are currently lacking. We aimed to investigate acquisition, within-session extinction, between-session extinction recall, and reacquisition. We expected increased activation in the insula, amygdala, and anterior cingulate, and decreased prefrontal activation in BPD patients. During functional magnetic resonance imaging, 27 medication-free female BPD patients and 26 female healthy controls (HC) performed a differential delay aversive conditioning paradigm. An electric shock served as unconditioned stimulus, two neutral pictures as conditioned stimuli (CS+/CS-). Dependent variables were blood-oxygen-level-dependent response, skin conductance response (SCR), and subjective ratings (valence, arousal). No significant between-group differences in brain activation were found [all p(FDR) > 0.05]. Within-group comparisons for CS+unpaired > CS- revealed increased insula activity in BPD patients but not in HC during early acquisition; during late acquisition, both groups recruited fronto-parietal areas [p(FDR)  CS during extinction. During extinction recall, there was a trend for stronger SCR to CS+ > CS in BPD patients. Amygdala habituation to CS+paired (CS+ in temporal contingency with the aversive event) during acquisition was found in HC but not in patients. Our findings suggest altered temporal response patterns in terms of increased vigilance already during early acquisition and delayed extinction processes in individuals with BPD.

  5. Classical conditioning in borderline personality disorder: an fMRI study.

    Science.gov (United States)

    Krause-Utz, Annegret; Keibel-Mauchnik, Jana; Ebner-Priemer, Ulrich; Bohus, Martin; Schmahl, Christian

    2016-06-01

    Previous research suggests disturbed emotional learning and memory in borderline personality disorder (BPD). Studies investigating the neural correlates of aversive differential delay conditioning in BPD are currently lacking. We aimed to investigate acquisition, within-session extinction, between-session extinction recall, and reacquisition. We expected increased activation in the insula, amygdala, and anterior cingulate, and decreased prefrontal activation in BPD patients. During functional magnetic resonance imaging, 27 medication-free female BPD patients and 26 female healthy controls (HC) performed a differential delay aversive conditioning paradigm. An electric shock served as unconditioned stimulus, two neutral pictures as conditioned stimuli (CS+/CS-). Dependent variables were blood-oxygen-level-dependent response, skin conductance response (SCR), and subjective ratings (valence, arousal). No significant between-group differences in brain activation were found [all p(FDR) > 0.05]. Within-group comparisons for CS+unpaired > CS- revealed increased insula activity in BPD patients but not in HC during early acquisition; during late acquisition, both groups recruited fronto-parietal areas [p(FDR)  CS during extinction. During extinction recall, there was a trend for stronger SCR to CS+ > CS in BPD patients. Amygdala habituation to CS+paired (CS+ in temporal contingency with the aversive event) during acquisition was found in HC but not in patients. Our findings suggest altered temporal response patterns in terms of increased vigilance already during early acquisition and delayed extinction processes in individuals with BPD. PMID:25814470

  6. Forming Competing Fear Learning and Extinction Memories in Adolescence Makes Fear Difficult to Inhibit

    Science.gov (United States)

    Baker, Kathryn D.; Richardson, Rick

    2015-01-01

    Fear inhibition is markedly impaired in adolescent rodents and humans. The present experiments investigated whether this impairment is critically determined by the animal's age at the time of fear learning or their age at fear extinction. Male rats (n = 170) were tested for extinction retention after conditioning and extinction at different ages.…

  7. Autism and classical eyeblink conditioning: Performance changes of the conditioned response related to autism spectrum disorder diagnosis

    Directory of Open Access Journals (Sweden)

    John P Welsh

    2016-08-01

    Full Text Available Changes in the timing performance of conditioned responses (CRs acquired during trace and delay eyeblink conditioning (EBC are presented for diagnostic subgroups of children having autism spectrum disorder (ASD aged 6-15 years. Children diagnosed with autistic disorder (AD were analyzed separately from children diagnosed with either Asperger’s syndrome or Pervasive-developmental disorder not-otherwise-specified (Asp/PDD and compared to an age- and IQ-matched group of children that were typically developing (TD. Within-subject and between-groups contrasts in CR performance on sequential exposure to trace and delay EBC were analyzed to determine whether any differences would expose underlying functional heterogeneities of the cerebral and cerebellar systems in ASD subgroups. The EBC parameters measured were percentage CRs, CR onset latency, and CR peak latency. Neither AD nor Asp/PDD groups were impaired in CR acquisition during trace or delay EBC. AD and Asp/PDD both altered CR timing, but not always in the same way. Although the AD group showed normal CR timing during trace EBC, the Asp/PDD group showed a significant 27 and 28 ms increase in CR onset and peak latency, respectively, during trace EBC. In contrast, the direction of the timing change was opposite during delay EBC, during which the Asp/PDD group showed a significant 29 ms decrease in CR onset latency and the AD group showed a larger 77 ms decrease in CR onset latency. Only the AD group showed a decrease in CR peak latency during delay EBC, demonstrating another difference between AD and Asp/PDD. The difference in CR onset latency during delay EBC for both AD and Asp/PDD was due to an abnormal prevalence of early onset CRs that were intermixed with CRs having normal timing, as observed both in CR onset histograms and mean CR waveforms. In conclusion, significant heterogeneity in EBC performance was apparent within diagnostic groups, and this may indicate that EBC performance can

  8. Sensory prediction or motor control? Application of Marr-Albus type models of cerebellar function to classical conditioning

    Directory of Open Access Journals (Sweden)

    Nathan F Lepora

    2010-10-01

    Full Text Available Marr-Albus adaptive filter models of the cerebellum have been applied successfully to a range of sensory and motor control problems. Here we analyze their properties when applied to classical conditioning of the nictitating membrane response in rabbits. We consider a system-level model of eyeblink conditioning based on the anatomy of the eyeblink circuitry, comprising an adaptive filter model of the cerebellum, a comparator model of the inferior olive and a linear dynamic model of the nictitating membrane plant. To our knowledge, this is the first model that explicitly includes all these principal components, in particular the motor plant that is vital for shaping and timing the behavioral response. Model assumptions and parameters were systematically investigated to disambiguate basic computational capacities of the model from features requiring tuning of properties and parameter values. Without such tuning, the model robustly reproduced a range of behaviors related to sensory prediction, by displaying appropriate trial-level associative learning effects for both single and multiple stimuli, including blocking and conditioned inhibition. In contrast, successful reproduction of the real-time motor behavior depended on appropriate specification of the plant, cerebellum and comparator models. Although some of these properties appear consistent with the system biology, fundamental questions remain about how the biological parameters are chosen if the cerebellar microcircuit applies a common computation to many distinct behavioral tasks. It is possible that the response profiles in classical conditioning of the eyeblink depend upon operant contingencies that have previously prevailed, for example in naturally occurring avoidance movements.

  9. Comparison of a classical with a highly formularized body condition scoring system for dairy cattle.

    Science.gov (United States)

    Isensee, A; Leiber, F; Bieber, A; Spengler, A; Ivemeyer, S; Maurer, V; Klocke, P

    2014-12-01

    Body condition scoring is a common tool to assess the subcutaneous fat reserves of dairy cows. Because of its subjectivity, which causes limits in repeatability, it is often discussed controversially. Aim of the current study was to evaluate the impact of considering the cows overall appearance on the scoring process and on the validity of the results. Therefore, two different methods to reveal body condition scores (BCS), 'independent BCS' (iBCS) and 'dependent BCS' (dBCS), were used to assess 1111 Swiss Brown Cattle. The iBCS and the dBCS systems were both working with the same flowchart with a decision tree structure for visual and palpatory assessment using a scale from 2 to 5 with increment units of 0.25. The iBCS was created strictly complying with the defined frames of the decision tree structure. The system was chosen due to its formularized approach to reduce the influence of subjective impressions. By contrast, the dBCS system, which was in line with common practice, had a more open approach, where - besides the decision tree - the overall impression of the cow's physical appearance was taken into account for generating the final score. Ultrasound measurement of the back fat thickness (BFT) was applied as a validation method. The dBCS turned out to be the better predictor of BFT, explaining 67.3% of the variance. The iBCS was only able to explain 47.3% of the BFT variance. Within the whole data set, only 31.3% of the animals received identical dBCS and iBCS. The pin bone region caused the most deviations between dBCS and iBCS, but also assessing the pelvis line, the hook bones and the ligaments led to divergences in around 20% of the scored animals. The study showed that during the assessment of body condition a strict adherence to a decision tree is a possible source of inexact classifications. Some body regions, especially the pin bones, proved to be particularly challenging for scoring due to difficulties in assessing them. All the more, the inclusion

  10. Cortical spreading depression and involvement of the motor cortex, auditory cortex, and cerebellum in eyeblink classical conditioning of the rabbit.

    Science.gov (United States)

    Case, Gilbert R; Lavond, David G; Thompson, Richard F

    2002-09-01

    The interrelationships of cerebellar and cerebral neural circuits in the eyeblink paradigm were explored with the controlled application of cortical spreading depression (CSD) and lidocaine in the New Zealand albino rabbit. The initial research focus was directed toward the involvement of the motor cortex in the conditioned eyeblink response. However, CSD timing and triangulation results indicate that other areas in the cerebral cortex, particularly the auditory cortex (acoustic conditioned stimulus), appear to be critical for the CSD effect on the eyeblink response. In summary: (1) CSD can be elicited, monitored, and timed and its side effects controlled in 97% of awake rabbits in the right and/or left cerebral hemisphere(s) during eyeblink conditioning. (2) The motor cortex appears to play little or no part in classical conditioning of the eyeblink in the rabbit in the delay paradigm. (3) Inactivating the auditory cortex with CSD or lidocaine temporarily impairs the conditioned response during the first 5 to 15 days of training, but has little effect past that point.

  11. Commentary about fear of movement

    OpenAIRE

    K. Meyer

    2010-01-01

    Chronic pain influences many aspects of a patient’s life and often results in physical disability. There are many concepts to explain this condition of disability. For example, several psychological variables like coping with pain, depression, hypervigilance, catastrophizing and fear avoidance are considered in literature to play an important role. In Vlaeyen’s model of fear avoidance, he proposes that in a first step negative affectivity and threatening illness information could trigger the ...

  12. Expression of freezing and fear-potentiated startle during sustained fear in mice.

    Science.gov (United States)

    Daldrup, T; Remmes, J; Lesting, J; Gaburro, S; Fendt, M; Meuth, P; Kloke, V; Pape, H-C; Seidenbecher, T

    2015-03-01

    Fear-potentiated acoustic startle paradigms have been used to investigate phasic and sustained components of conditioned fear in rats and humans. This study describes a novel training protocol to assess phasic and sustained fear in freely behaving C57BL/6J mice, using freezing and/or fear-potentiated startle as measures of fear, thereby, if needed, allowing in vivo application of various techniques, such as optogenetics, electrophysiology and pharmacological intervention, in freely behaving animals. An auditory Pavlovian fear conditioning paradigm, with pseudo-randomized conditioned-unconditioned stimulus presentations at various durations, is combined with repetitive brief auditory white noise burst presentations during fear memory retrieval 24 h after fear conditioning. Major findings are that (1) a motion sensitive platform built on mechano-electrical transducers enables measurement of startle responses in freely behaving mice, (2) absence or presence of startle stimuli during retrieval as well as unpredictability of a given threat determine phasic and sustained fear response profiles and (3) both freezing and startle responses indicate phasic and sustained components of behavioral fear, with sustained freezing reflecting unpredictability of conditioned stimulus (CS)/unconditioned stimulus (US) pairings. This paradigm and available genetically modified mouse lines will pave the way for investigation of the molecular and neural mechanisms relating to the transition from phasic to sustained fear.

  13. Using eyeblink classical conditioning as a test of the functional consequences of exposure of the developing cerebellum to alcohol.

    Science.gov (United States)

    Green, John T

    2003-01-01

    Exposure of the developing brain to alcohol produces profound Purkinje cell loss in the cerebellum, and deficits in tests of motor coordination. However, the precise relationship between these two sets of findings has been difficult to determine. Eyeblink classical conditioning is known to engage a discrete brainstem-cerebellar circuit, making it an ideal test of cerebellar functional integrity after developmental alcohol exposure. In eyeblink conditioning, one of the deep cerebellar nuclei, the interpositus nucleus, as well as specific Purkinje cell populations, are sites of convergence for CS and US information. A series of studies have shown that eyeblink conditioning is impaired in both weanling and adult rats given binge-like exposure to alcohol as neonates, and that these deficits can be traced, at least in part, to impaired activation of cerebellar interpositus nucleus neurons and to an overall reduction in the deep cerebellar nuclear cell population. Because particular cerebellar cell populations are utilized in well-defined ways during eyeblink conditioning, conclusions regarding specific changes in the mediation of behavior by these cell populations are greatly strengthened. Further studies will be directed towards the impact of early exposure to alcohol on the functionality of specific Purkinje cell populations, as well as towards brainstem areas that process the tone CS and the somatosensory US.

  14. Facing Challenges in Differential Classical Conditioning Research: Benefits of a Hybrid Design for Simultaneous Electrodermal and Electroencephalographic Recording.

    Science.gov (United States)

    Pastor, M Carmen; Rehbein, Maimu Alissa; Junghöfer, Markus; Poy, Rosario; López, Raul; Moltó, Javier

    2015-01-01

    Several challenges make it difficult to simultaneously investigate central and autonomous nervous system correlates of conditioned stimulus (CS) processing in classical conditioning paradigms. Such challenges include, for example, the discrepant requirements of electroencephalography (EEG) and electrodermal activity (EDA) recordings with regard to multiple repetitions of conditions and sufficient trial duration. Here, we propose a MultiCS conditioning set-up, in which we increased the number of CSs, decreased the number of learning trials, and used trials of short and long durations for meeting requirements of simultaneous EEG-EDA recording in a differential aversive conditioning task. Forty-eight participants underwent MultiCS conditioning, in which four neutral faces (CS+) were paired four times each with aversive electric stimulation (unconditioned stimulus) during acquisition, while four different neutral faces (CS-) remained unpaired. When comparing after relative to before learning measurements, EEG revealed an enhanced centro-posterior positivity to CS+ vs. CS- during 368-600 ms, and subjective ratings indicated CS+ to be less pleasant and more arousing than CS-. Furthermore, changes in CS valence and arousal were strong enough to bias subjective ratings when faces of CS+/CS- identity were displayed with different emotional expression (happy, angry) in a post-experimental behavioral task. In contrast to a persistent neural and evaluative CS+/CS- differentiation that sustained multiple unreinforced CS presentations, electrodermal differentiation was rapidly extinguished. Current results suggest that MultiCS conditioning provides a promising paradigm for investigating pre-post-learning changes under minimal influences of extinction and overlearning of simple stimulus features. Our data also revealed methodological pitfalls, such as the possibility of occurring artifacts when combining different acquisition systems for central and peripheral

  15. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    Science.gov (United States)

    Dahms, Rainer N.

    2016-04-01

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing

  16. Synaptic Plasticity and NO-cGMP-PKG Signaling Coordinately Regulate ERK-Driven Gene Expression in the Lateral Amygdala and in the Auditory Thalamus Following Pavlovian Fear Conditioning

    Science.gov (United States)

    Ota, Kristie T.; Monsey, Melissa S.; Wu, Melissa S.; Young, Grace J.; Schafe, Glenn E.

    2010-01-01

    We have recently hypothesized that NO-cGMP-PKG signaling in the lateral nucleus of the amygdala (LA) during auditory fear conditioning coordinately regulates ERK-driven transcriptional changes in both auditory thalamic (MGm/PIN) and LA neurons that serve to promote pre- and postsynaptic alterations at thalamo-LA synapses, respectively. In the…

  17. Surface expression of hippocampal NMDA GluN2B receptors regulated by fear conditioning determines its contribution to memory consolidation in adult rats

    Science.gov (United States)

    Sun, Yan-Yan; Cai, Wei; Yu, Jie; Liu, Shu-Su; Zhuo, Min; Li, Bao-Ming; Zhang, Xue-Han

    2016-01-01

    The number and subtype composition of N-methyl-d-aspartate receptor (NMDAR) at synapses determines their functional properties and role in learning and memory. Genetically increased or decreased amount of GluN2B affects hippocampus-dependent memory in the adult brain. But in some experimental conditions (e.g., memory elicited by a single conditioning trial (1 CS-US)), GluN2B is not a necessary factor, which indicates that the precise role of GluN2B in memory formation requires further exploration. Here, we examined the role of GluN2B in the consolidation of fear memory using two training paradigms. We found that GluN2B was only required for the consolidation of memory elicited by five conditioning trials (5 CS-US), not by 1 CS-US. Strikingly, the expression of membrane GluN2B in CA1was training-strength-dependently increased after conditioning, and that the amount of membrane GluN2B determined its involvement in memory consolidation. Additionally, we demonstrated the increases in the activities of cAMP, ERK, and CREB in the CA1 after conditioning, as well as the enhanced intrinsic excitability and synaptic efficacy in CA1 neurons. Up-regulation of membrane GluN2B contributed to these enhancements. These studies uncover a novel mechanism for the involvement of GluN2B in memory consolidation by its accumulation at the cell surface in response to behavioral training. PMID:27487820

  18. Surface expression of hippocampal NMDA GluN2B receptors regulated by fear conditioning determines its contribution to memory consolidation in adult rats.

    Science.gov (United States)

    Sun, Yan-Yan; Cai, Wei; Yu, Jie; Liu, Shu-Su; Zhuo, Min; Li, Bao-Ming; Zhang, Xue-Han

    2016-01-01

    The number and subtype composition of N-methyl-d-aspartate receptor (NMDAR) at synapses determines their functional properties and role in learning and memory. Genetically increased or decreased amount of GluN2B affects hippocampus-dependent memory in the adult brain. But in some experimental conditions (e.g., memory elicited by a single conditioning trial (1 CS-US)), GluN2B is not a necessary factor, which indicates that the precise role of GluN2B in memory formation requires further exploration. Here, we examined the role of GluN2B in the consolidation of fear memory using two training paradigms. We found that GluN2B was only required for the consolidation of memory elicited by five conditioning trials (5 CS-US), not by 1 CS-US. Strikingly, the expression of membrane GluN2B in CA1was training-strength-dependently increased after conditioning, and that the amount of membrane GluN2B determined its involvement in memory consolidation. Additionally, we demonstrated the increases in the activities of cAMP, ERK, and CREB in the CA1 after conditioning, as well as the enhanced intrinsic excitability and synaptic efficacy in CA1 neurons. Up-regulation of membrane GluN2B contributed to these enhancements. These studies uncover a novel mechanism for the involvement of GluN2B in memory consolidation by its accumulation at the cell surface in response to behavioral training. PMID:27487820

  19. Learned fear, emotional reactivity and fear of heights: a factor analytic map from a large F(2) intercross of Roman rat strains.

    Science.gov (United States)

    Aguilar, Raúl; Gil, Luis; Flint, Jonathan; Gray, Jeffrey A; Dawson, Gerard R; Driscoll, Peter; Giménez-Llort, Lydia; Escorihuela, Rosa M; Fernández-Teruel, Alberto; Tobeña, Adolf

    2002-01-01

    Anxiety-related behaviours were evaluated across various tests in a 800 F(2)-intercross of the Roman high- and low-avoidance inbred rats. These tests either evoke unlearned (open field [OF]; plus-maze [PM]; hole-board [HB]; spontaneous activity [A]; and acoustic startle reflex [ASR]) or learned (classical fear conditioning [CFC]; and shuttlebox avoidance conditioning [SAC]), anxious/fearful responses. Using factor analysis (oblique rotation), we obtained a six-fold solution with 14 variables derived from all tests. These six factors represented SAC, CFC, PM anxiety, PM and OF activity, ASR anxiety, plus a mixed whole of anxious and activity variables (from OF and A), respectively. In searching for a smaller number of meaningful factors, we applied a three-factor solution that coherently corresponded with differentiated facets of fearfulness, rather than with the tests. Results showed that (1) measures of SAC and CFC strongly loaded onto Factor 1, labelled as "Learned Fear"; (2) a blend of almost all variables loaded onto Factor 2, called "Emotional Reactivity"; and (3) open arm behaviour in the PM loaded onto Factor 3, called "Fear of Heights." After discussing limitations of this apparently consistent behavioural map of anxiety, we advance some connections between those factors with quantitative trait loci candidates (genetic markers) as detected in the same sample.

  20. The etiology of fear of heights and its relationship to severity and individual response patterns.

    Science.gov (United States)

    Menzies, R G; Clarke, J C

    1993-05-01

    The acquisition of fear of heights in an undergraduate student sample was investigated. Height-fearful (n = 50) and non-fearful (n = 50) groups were formed on the basis of extreme scores to the heights item on the FSS-III (Wolpe & Lang, Behaviour Research and Therapy, 2, 27-30, 1964). Subjects were then assessed with a battery of measures including the Acrophobia Questionnaire (Cohen, Behaviour Therapy, 18, 17-23, 1977), self-rating of severity (Marks & Mathews, Behaviour Research and Therapy, 17, 263-267, 1979), global rating of severity (Michelson, Behaviour Research and Therapy, 24, 263-275, 1986), and a new comprehensive origins questionnaire constructed by the authors. Results obtained question the significance of simple associative-learning events in the acquisition of fear of heights. Only 18% of fearful Ss were classified as directly conditioned cases. Furthermore, no differences between groups were found in the proportion of Ss who knew other height-fearfuls, had experienced relevant associative-learning events, or the ages at which these events had occurred. Finally, no relationships between mode of acquisition and severity or individual response patterns were obtained. In general, the data were consistent with the non-associative, Darwinian accounts of fear acquisition that continue to attract theorists from a variety of backgrounds (e.g. Bowlby, Attachment and loss. London: Penguin, 1975; Clarke & Jackson, Hypnosis and behaviour therapy: The treatment of anxiety and phobias. New York: Springer, 1983; Marks, Fears, phobias and rituals: Panic anxiety and their disorders. New York, Oxford Univ. Press, 1987). Differences with previous studies in which classical conditioning has accounted for the majority of cases are discussed in terms of the methodological differences across studies.