Classical-field description of the quantum effects in the light-atom interaction
Rashkovskiy, Sergey A
2016-01-01
In this paper I show that light-atom interaction can be described using purely classical field theory without any quantization. In particular, atom excitation by light that accounts for damping due to spontaneous emission is fully described in the framework of classical field theory. I show that three well-known laws of the photoelectric effect can also be derived and that all of its basic properties can be described within classical field theory.
Dressing the Post-Newtonian two-body problem and Classical Effective Field Theory
Kol, Barak
2009-01-01
We apply a dressed perturbation theory to better organize and economize the computation of high orders of the 2-body effective action of an inspiralling Post-Newtonian gravitating binary. We use the effective field theory approach with the non-relativistic field decomposition (NRG fields). For that purpose we develop quite generally the dressing theory of a non-linear classical field theory coupled to point-like sources. We introduce dressed charges and propagators, but unlike the quantum theory there are no dressed bulk vertices. The dressed quantities are found to obey recursive integral equations which succinctly encode parts of the diagrammatic expansion, and are the classical version of the Schwinger-Dyson equations. Actually, the classical equations are somewhat stronger since they involve only finitely many quantities, unlike the quantum theory. Classical diagrams are shown to factorize exactly when they contain non-linear world-line vertices, and we classify all the possible topologies of irreducible ...
Fu, Jian; Xu, Yingying; Dong, Hongtao
2010-01-01
We demonstrate that n classical fields modulated with n different pseudorandom phase sequences can constitute a 2^n-dimensional Hilbert space that contains tensor product structure. By using classical fields modulated with pseudorandom phase sequences, we discuss effective simulation of Bell states and GHZ state, and apply both correlation analysis and von Neumann entropy to characterize the simulation. We obtain similar results with the cases in quantum mechanics and find that the conclusions can be easily generalized to n quantum particles. The research on simulation of quantum entanglement may be important, for it not only provides useful insights into fundamental features of quantum entanglement, but also yields new insights into quantum computation.
Dressing the post-Newtonian two-body problem and classical effective field theory
Kol, Barak; Smolkin, Michael
2009-12-01
We apply a dressed perturbation theory to better organize and economize the computation of high orders of the 2-body effective action of an inspiralling post-Newtonian (PN) gravitating binary. We use the effective field theory approach with the nonrelativistic field decomposition (NRG fields). For that purpose we develop quite generally the dressing theory of a nonlinear classical field theory coupled to pointlike sources. We introduce dressed charges and propagators, but unlike the quantum theory there are no dressed bulk vertices. The dressed quantities are found to obey recursive integral equations which succinctly encode parts of the diagrammatic expansion, and are the classical version of the Schwinger-Dyson equations. Actually, the classical equations are somewhat stronger since they involve only finitely many quantities, unlike the quantum theory. Classical diagrams are shown to factorize exactly when they contain nonlinear worldline vertices, and we classify all the possible topologies of irreducible diagrams for low loop numbers. We apply the dressing program to our post-Newtonian case of interest. The dressed charges consist of the dressed energy-momentum tensor after a nonrelativistic decomposition, and we compute all dressed charges (in the harmonic gauge) appearing up to 2PN in the 2-body effective action (and more). We determine the irreducible skeleton diagrams up to 3PN and we employ the dressed charges to compute several terms beyond 2PN.
A generalisation of classical electrodynamics for the prediction of scalar field effects
van Vlaenderen, K J
2003-01-01
Within the framework of Classical Electrodynamics (CED) it is common practice to choose freely an arbitrary gauge condition with respect to a gauge transformation of the electromagnetic potentials. The Lorenz gauge condition allows for the derivation of the inhomogeneous potential wave equations (IPWE), but this also means that scalar derivatives of the electromagnetic potentials are considered to be \\emph{unphysical}. However, these scalar expressions might have the meaning of a new physical field, $\\mathsf S$. If this is the case, then a generalised CED is required such that scalar field effects are predicted and such that experiments can be performed in order to verify or falsify this generalised CED. The IPWE are viewed as a generalised Gauss law and a generalised Ampe\\`re law, that also contain derivatives of $\\mathsf S$, after reformulating the IPWE in terms of fields. Some recent experiment show positive results that are in qualitative agreement with the presented predictions of scalar field effects, b...
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Based on the cascade two-photon laser dynamic equation derived with the technique of quantum Langevin operators with the considerations of coherently prepared three-level atoms and the classical field injected into the cavity, we numerically study the effects of atomic coherence and classical field on the chaotic dynamics of a two-photon laser. Lyapunov exponent and bifurcation diagram calculations show that the Lorenz chaos and hyperchaos can be induced or inhibited by the atomic coherence and the classical field via crisis or Hopf bifurcations.
Classical and quantum effective theories
Polonyi, Janos
2014-01-01
A generalization of the action principle of classical mechanics, motivated by the Closed Time Path (CTP) scheme of quantum field theory, is presented to deal with initial condition problems and dissipative forces. The similarities of the classical and the quantum cases are underlined. In particular, effective interactions which describe classical dissipative forces represent the system-environment entanglement. The relation between the traditional effective theories and their CTP extension is briefly discussed and few qualitative examples are mentioned.
Mera-Adasme, Raúl; Sadeghian, Keyarash; Sundholm, Dage; Ochsenfeld, Christian
2014-11-20
Classical force-field parameters of the metal site of metalloproteins usually comprise only the partial charges of the involved atoms, as well as the bond-stretching and bending parameters of the metal-ligand interactions. Although for certain metal ligands such as histidine residues, the torsional motions at the metal site play an important role for the dynamics of the protein, no such terms have been considered to be crucial in the parametrization of the force fields, and they have therefore been omitted in the parametrization. In this work, we have optimized AMBER-compatible force-field parameters for the reduced state of the metal site of copper, zinc superoxide dismutase (SOD1) and assessed the effect of including torsional parameters for the histidine-metal interactions in molecular dynamics simulations. On the basis of the obtained results, we recommend that torsion parameters of the metal site are included when processes at the metal site are investigated or when free-energy calculations are performed. As the torsion parameters mainly affect the structure of the metal site, other kinds of structural studies can be performed without considering the torsional parameters of the metal site.
Advances In Classical Field Theory
Yahalom, Asher
2011-01-01
Classical field theory is employed by physicists to describe a wide variety of physical phenomena. These include electromagnetism, fluid dynamics, gravitation and quantum mechanics. The central entity of field theory is the field which is usually a multi component function of space and time. Those multi component functions are usually grouped together as vector fields as in the case in electromagnetic theory and fluid dynamics, in other cases they are grouped as tensors as in theories of gravitation and yet in other cases they are grouped as complex functions as in the case of quantum mechanic
Classic and Quantum Capacitances in Bernal Bilayer and Trilayer Graphene Field Effect Transistor
Directory of Open Access Journals (Sweden)
Hatef Sadeghi
2013-01-01
Full Text Available Our focus in this study is on characterizing the capacitance voltage (C-V behavior of Bernal stacking bilayer graphene (BG and trilayer graphene (TG as the channel of FET devices. The analytical models of quantum capacitance (QC of BG and TG are presented. Although QC is smaller than the classic capacitance in conventional devices, its contribution to the total metal oxide semiconductor capacitor in graphene-based FET devices becomes significant in the nanoscale. Our calculation shows that QC increases with gate voltage in both BG and TG and decreases with temperature with some fluctuations. However, in bilayer graphene the fluctuation is higher due to its tunable band structure with external electric fields. In similar temperature and size, QC in metal oxide BG is higher than metal oxide TG configuration. Moreover, in both BG and TG, total capacitance is more affected by classic capacitance as the distance between gate electrode and channel increases. However, QC is more dominant when the channel becomes thinner into the nanoscale, and therefore we mostly deal with quantum capacitance in top gate in contrast with bottom gate that the classic capacitance is dominant.
From classical to quantum fields
Baulieu, Laurent; Sénéor, Roland
2017-01-01
Quantum Field Theory has become the universal language of most modern theoretical physics. This introductory textbook shows how this beautiful theory offers the correct mathematical framework to describe and understand the fundamental interactions of elementary particles. The book begins with a brief reminder of basic classical field theories, electrodynamics and general relativity, as well as their symmetry properties, and proceeds with the principles of quantisation following Feynman's path integral approach. Special care is used at every step to illustrate the correct mathematical formulation of the underlying assumptions. Gauge theories and the problems encountered in their quantisation are discussed in detail. The last chapters contain a full description of the Standard Model of particle physics and the attempts to go beyond it, such as grand unified theories and supersymmetry. Written for advanced undergraduate and beginning graduate students in physics and mathematics, the book could also serve as a re...
Quantum field theory from classical statistics
Wetterich, C
2011-01-01
An Ising-type classical statistical model is shown to describe quantum fermions. For a suitable time-evolution law for the probability distribution of the Ising-spins our model describes a quantum field theory for Dirac spinors in external electromagnetic fields, corresponding to a mean field approximation to quantum electrodynamics. All quantum features for the motion of an arbitrary number of electrons and positrons, including the characteristic interference effects for two-fermion states, are described by the classical statistical model. For one-particle states in the non-relativistic approximation we derive the Schr\\"odinger equation for a particle in a potential from the time evolution law for the probability distribution of the Ising-spins. Thus all characteristic quantum features, as interference in a double slit experiment, tunneling or discrete energy levels for stationary states, are derived from a classical statistical ensemble. Concerning the particle-wave-duality of quantum mechanics, the discret...
Semi-classical noise investigation for sub-40nm metal-oxide-semiconductor field-effect transistors
Energy Technology Data Exchange (ETDEWEB)
Spathis, C., E-mail: cspathis@ece.upatras.gr; Birbas, A.; Georgakopoulou, K. [Department of Electrical and Computer Engineering, University of Patras, Patras 26500 (Greece)
2015-08-15
Device white noise levels in short channel Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) dictate the performance and reliability of high-frequency circuits ranging from high-speed microprocessors to Low-Noise Amplifiers (LNAs) and microwave circuits. Recent experimental noise measurements with very short devices demonstrate the existence of suppressed shot noise, contrary to the predictions of classical channel thermal noise models. In this work we show that, as the dimensions continue to shrink, shot noise has to be considered when the channel resistance becomes comparable to the barrier resistance at the source-channel junction. By adopting a semi-classical approach and taking retrospectively into account transport, short-channel and quantum effects, we investigate the partitioning between shot and thermal noise, and formulate a predictive model that describes the noise characteristics of modern devices.
Semi-classical noise investigation for sub-40nm metal-oxide-semiconductor field-effect transistors
International Nuclear Information System (INIS)
Device white noise levels in short channel Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) dictate the performance and reliability of high-frequency circuits ranging from high-speed microprocessors to Low-Noise Amplifiers (LNAs) and microwave circuits. Recent experimental noise measurements with very short devices demonstrate the existence of suppressed shot noise, contrary to the predictions of classical channel thermal noise models. In this work we show that, as the dimensions continue to shrink, shot noise has to be considered when the channel resistance becomes comparable to the barrier resistance at the source-channel junction. By adopting a semi-classical approach and taking retrospectively into account transport, short-channel and quantum effects, we investigate the partitioning between shot and thermal noise, and formulate a predictive model that describes the noise characteristics of modern devices
A Time-Dependent Classical Solution of C=1 String Field Theory and Non-Perturbative Effects
Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R.
1993-01-01
We describe a real-time classical solution of $c=1$ string field theory written in terms of the phase space density, $u(p,q,t)$, of the equivalent fermion theory. The solution corresponds to tunnelling of a single fermion above the filled fermi sea and leads to amplitudes that go as $\\exp(- C/ \\gst)$. We discuss how one can use this technique to describe non-perturbative effects in the Marinari-Parisi model. We also discuss implications of this type of solution for the two-dimensional black hole.
International Nuclear Information System (INIS)
We study the Casimir energy density of the Klein-Gordon-field in the case of two static geometries. We model the effect by coupling the free quantum field to a static classical scalar field. We work out the dependence on the coupling λ, including the limit λ=∞ (Dirichlet boundary condition). The chosen geometries are described by a δ-funktion (σ(x)=δ(x3)) and a step function of finite height (σ(x)(1)/(2ε)1[ε,ε](x3)), respectively. In the area outside the support of the background the density energy converges; calculations for the distorted area lead to divergent surface terms. (orig.)
On the tomographic description of classical fields
International Nuclear Information System (INIS)
After a general description of the tomographic picture for classical systems, a tomographic description of free classical scalar fields is proposed both in a finite cavity and the continuum. The tomographic description is constructed in analogy with the classical tomographic picture of an ensemble of harmonic oscillators. The tomograms of a number of relevant states such as the canonical distribution, the classical counterpart of quantum coherent states and a new family of so-called Gauss–Laguerre states, are discussed. Finally the Liouville equation for field states is described in the tomographic picture offering an alternative description of the dynamics of the system that can be extended naturally to other fields.
On the tomographic description of classical fields
Energy Technology Data Exchange (ETDEWEB)
Ibort, A., E-mail: albertoi@math.uc3m.es [Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid (Spain); López-Yela, A., E-mail: alyela@math.uc3m.es [Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid (Spain); Man' ko, V.I., E-mail: manko@na.infn.it [P.N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, G., E-mail: marmo@na.infn.it [Dipartimento di Scienze Fisiche dell' Università “Federico II” e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Naples (Italy); Simoni, A., E-mail: simoni@na.infn.it [Dipartimento di Scienze Fisiche dell' Università “Federico II” e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Naples (Italy); Sudarshan, E.C.G., E-mail: bhamathig@gmail.com [Physics Department, Center for Particle Physics, University of Texas, Austin, TX 78712 (United States); Ventriglia, F., E-mail: ventriglia@na.infn.it [Dipartimento di Scienze Fisiche dell' Università “Federico II” e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Naples (Italy)
2012-03-26
After a general description of the tomographic picture for classical systems, a tomographic description of free classical scalar fields is proposed both in a finite cavity and the continuum. The tomographic description is constructed in analogy with the classical tomographic picture of an ensemble of harmonic oscillators. The tomograms of a number of relevant states such as the canonical distribution, the classical counterpart of quantum coherent states and a new family of so-called Gauss–Laguerre states, are discussed. Finally the Liouville equation for field states is described in the tomographic picture offering an alternative description of the dynamics of the system that can be extended naturally to other fields.
On the tomographic description of classical fields
Ibort, A; Man'ko, V I; Marmo, G; Simoni, A; Sudarshan, E C G; Ventriglia, F
2012-01-01
After a general description of the tomographic picture for classical systems, a tomographic description of free classical scalar fields is proposed both in a finite cavity and the continuum. The tomographic description is constructed in analogy with the classical tomographic picture of an ensemble of harmonic oscillators. The tomograms of a number of relevant states such as the canonical distribution, the classical counterpart of quantum coherent states and a new family of so called Gauss--Laguerre states, are discussed. Finally the Liouville equation for field states is described in the tomographic picture offering an alternative description of the dynamics of the system that can be extended naturally to other fields.
A generalisation of classical electrodynamics for the prediction of scalar field effects
van Vlaenderen, Koen J.
2003-01-01
Within the framework of Classical Electrodynamics (CED) it is common practice to choose freely an arbitrary gauge condition with respect to a gauge transformation of the electromagnetic potentials. The Lorenz gauge condition allows for the derivation of the inhomogeneous potential wave equations (IPWE), but this also means that scalar derivatives of the electromagnetic potentials are considered to be \\emph{unphysical}. However, these scalar expressions might have the meaning of a new physical...
Three Approaches to Classical Thermal Field Theory
Gozzi, E.; Penco, R.
2010-01-01
In this paper we study three different functional approaches to classical thermal field theory, which turn out to be the classical counterparts of three well-known different formulations of quantum thermal field theory: the Closed-Time Path (CTP) formalism, the Thermofield Dynamics (TFD) and the Matsubara approach.
Three approaches to classical thermal field theory
Gozzi, E.; Penco, R.
2011-04-01
In this paper we study three different functional approaches to classical thermal field theory, which turn out to be the classical counterparts of three well-known different formulations of quantum thermal field theory: the closed-time path (CTP) formalism, the thermofield dynamics (TFD) and the Matsubara approach.
Directory of Open Access Journals (Sweden)
Jonathan Miller
2015-01-01
Full Text Available In the framework of quantum field theory, a graviton interacts locally with a quantum state having definite mass, that is, the gravitational mass eigenstate, while a weak boson interacts with a state having definite flavor, that is, the flavor eigenstate. An interaction of a neutrino with an energetic graviton may trigger the collapse of the neutrino to a definite mass eigenstate with probability expressed in terms of PMNS mixing matrix elements. Thus, gravitons would induce quantum decoherence of a coherent neutrino flavor state similarly to how weak bosons induce quantum decoherence of a neutrino in a definite mass state. We demonstrate that such an essentially quantum gravity effect may have strong consequences for neutrino oscillation phenomena in astrophysics due to relatively large scattering cross sections of relativistic neutrinos undergoing large angle radiation of energetic gravitons in gravitational field of a classical massive source (i.e., the quasi-classical case of gravitational Bethe-Heitler scattering. This graviton-induced decoherence is compared to decoherence due to propagation in the presence of the Earth matter effect. Based on this study, we propose a new technique for the indirect detection of energetic gravitons by measuring the flavor composition of astrophysical neutrinos.
The Effect of Electric Fields In A Classic Introductory Physics Treatment of Eddy Current Forces
Salzman, P J; Lea, S M; Burke, John Robert; Lea, Susan M.
2001-01-01
A simple model of eddy currents in which current is computed solely from magnetic forces acting on electrons proves accessible to introductory students and gives a good qualitative account of eddy current forces. However, this model cannot be complete; it ignores the electric fields that drive current outside regions of significant magnetic field. In this paper we show how to extend the model to obtain a boundary value problem for current density. Solution of this problem in polar coordinates shows that the electric field significantly affects the quantitative results and presents an exercise suitable for upper division students. We apply elliptic cylindrical coordinates to generalize the result and offer an exercise useful for teaching graduate students how to use non-standard coordinate systems.
Classical theory of electric and magnetic fields
Good, Roland H
1971-01-01
Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma
Classical-field theory of thermal radiation
Rashkovskiy, Sergey A
2016-01-01
In this paper, using the viewpoint that quantum mechanics can be constructed as a classical field theory without any quantization I build a fully classical theory of thermal radiation. Planck's law for the spectral energy density of thermal radiation and the Einstein A-coefficient for spontaneous emission are derived in the framework of classical field theory without using the concept of "photon". It is shown that the spectral energy density of thermal radiation is apparently not a universal function of frequency, as follows from the Planck's law, but depends weakly on the nature of atoms, while Planck's law is valid only as an approximation in the limit of weak excitation of atoms.
Equilibration properties of classical integrable field theories
De Luca, Andrea; Mussardo, Giuseppe
2016-06-01
We study the equilibration properties of classical integrable field theories at a finite energy density, with a time evolution that starts from initial conditions far from equilibrium. These classical field theories may be regarded as quantum field theories in the regime of high occupation numbers. This observation permits to recover the classical quantities from the quantum ones by taking a proper \\hslash \\to 0 limit. In particular, the time averages of the classical theories can be expressed in terms of a suitable version of the LeClair-Mussardo formula relative to the generalized Gibbs ensemble. For the purposes of handling time averages, our approach provides a solution of the problem of the infinite gap solutions of the inverse scattering method.
Introducing quantum effects in classical theories
Fabris, J C; Rodrigues, D C; Daouda, M H
2015-01-01
In this paper, we explore two different ways of implementing quantum effects in a classical structure. The first one is through an external field. The other one is modifying the classical conservation laws. In both cases, the consequences for the description of the evolution of the universe are discussed.
The classical pion field in a nucleus
Ripka, Georges
2007-01-01
A self-consistent symmetry arises when the nucleon angular momentum j and the isospin t are coupled to a grand spin G. Closed G shells become sources of a classical pion field with a hedgehog shape. Although the amplitude of the pion field, as measured by the chiral angle, is small, it is found to perturb significantly the energies of the nucleon orbits.
The classical theory of fields electromagnetism
Helrich, Carl S
2012-01-01
The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...
Classical lifting processes and multiplicative vector fields
Mackenzie, Kirill; Xu, Ping
1997-01-01
We extend the calculus of multiplicative vector fields and differential forms and their intrinsic derivatives from Lie groups to Lie groupoids; this generalization turns out to include also the classical process of complete lifting from arbitrary manifolds to tangent and cotangent bundles. Using this calculus we give a new description of the Lie bialgebroid structure associated with a Poisson groupoid.
Quantum Back Reaction on a Classical Field
Brout, R; Popescu, S; Parentani, R; Spindel, P; Spindel, Ph.
1995-01-01
We show how to apply post selection in the context of weak measurement of Aharonov and collaborators to construct the quantum back reaction on a classical field. The particular case which we study in this paper is pair creation in an external electric field and the back reaction is the counter field produced by the pair \\underline {as} it is made. The construction leads to a complex electric field obtained from non diagonal matrix elements of the current operator, the interpretation of which is clear in terms of weak measurement. The analogous construction applied to black hole physics (thereby leading to a complex metric) is relegated to a future paper.
Classical Gauged Massless Rarita-Schwinger Fields
Adler, Stephen L
2015-01-01
We show that, in contrast to known results in the massive case, a minimally gauged massless Rarita-Schwinger field yields a consistent classical theory, with a generalized fermionic gauge invariance realized as a canonical transformation. To simplify the algebra, we study a two-component left chiral reduction of the massless theory. We formulate the classical theory in both Lagrangian and Hamiltonian form for a general non-Abelian gauging, and analyze the constraints and the Rarita-Schwinger gauge invariance of the action. An explicit wave front calculation for Abelian gauge fields shows that wave-like modes do not propagate with superluminal velocities. An analysis of Rarita-Schwinger spinor scattering from gauge fields shows that adiabatic decoupling fails in the limit of zero gauge field amplitude, invalidating various "no-go" theorems based on "on-shell" methods that claim to show the impossibility of gauging Rarita-Schwinger fields. Quantization of Rarita-Schwinger fields, using many formulas from this p...
Energy conditions and classical scalar fields
Bellucci, S
2002-01-01
Attention has been recently called upon the fact that the weak and null energy conditions and the second law of thermodynamics are violated in wormhole solutions of Einstein's theory with classical, nonminimally coupled, scalar fields as material source. It is shown that the discussion is only meaningful when ambiguities in the definitions of stress-energy tensor and energy density of a nonminimally coupled scalar are resolved. The three possible approaches are discussed with emphasis on the positivity of the respective energy densities and covariant conservation laws. The root of the ambiguities is traced to the energy localization problem for the gravitational field.
Quantum to classical transition in quantum field theory
Lombardo, F C
1998-01-01
We study the quatum to classical transition process in the context of quantum field theory. Extending the influence functional formalism of Feynman and Vernon, we study the decoherence process for self-interacting quantum fields in flat space. We also use this formalism for arbitrary geometries to analyze the quantum to classical transition in quantum gravity. After summarizing the main results known for the quantum Brownian motion, we consider a self-interacting field theory in Minkowski spacetime. We compute a coarse grained effective action by integrating out the field modes with wavelength shorter than a critical value. From this effective action we obtain the evolution equation for the reduced density matrix (master equation). We compute the diffusion coefficients for this equation and analyze the decoherence induced on the long-wavelength modes. We generalize the results to the case of a conformally coupled scalar field in de Sitter spacetime. We show that the decoherence is effective as long as the cri...
Classical behavior of a scalar field in the inflationary universe
International Nuclear Information System (INIS)
Extending the coarse-graining approach of Starobinsky, we formulate a theory to deal with the dynamics of a scalar field in inflationary universe models. We find a set of classical Langevin equations which describes the large scale behavior of the scalar field, provided that the coarse-grained size is greater than the effective compton wavelength of the scalar field. The corresponding Fokker-Planck equation is also derived which is defined on the phase space of the scalar field. We show that our theory is essentially equivalent to the one-loop field theory in de Sitter space and reduces to that of Starobinsky in a strong limit of the slow roll-over condition. Analysis of a simple Higgs potential model is done and the implications are discussed. (author)
PREFACE: Particles and Fields: Classical and Quantum
Asorey, M.; Clemente-Gallardo, J.; Marmo, G.
2007-07-01
This volume contains some of the contributions to the Conference Particles and Fields: Classical and Quantum, which was held at Jaca (Spain) in September 2006 to honour George Sudarshan on his 75th birthday. Former and current students, associates and friends came to Jaca to share a few wonderful days with George and his family and to present some contributions of their present work as influenced by George's impressive achievements. This book summarizes those scientific contributions which are presented as a modest homage to the master, collaborator and friend. At the social ceremonies various speakers were able to recall instances of his life-long activity in India, the United States and Europe, adding colourful remarks on the friendly and intense atmosphere which surrounded those collaborations, some of which continued for several decades. This meeting would not have been possible without the financial support of several institutions. We are deeply indebted to Universidad de Zaragoza, Ministerio de Educación y Ciencia de España (CICYT), Departamento de Ciencia, Tecnología y Universidad del Gobierno de Aragón, Universitá di Napoli 'Federico II' and Istituto Nazionale di Fisica Nucleare. Finally, we would like to thank the participants, and particularly George's family, for their contribution to the wonderful atmosphere achieved during the Conference. We would like also to acknowledge the authors of the papers collected in the present volume, the members of the Scientific Committee for their guidance and support and the referees for their generous work. M Asorey, J Clemente-Gallardo and G Marmo The Local Organizing Committee George Sudarshan International Advisory Committee A. Ashtekhar (Pennsylvania State University, USA) L. J. Boya (Universidad de Zaragoza, Spain) I. Cirac (Max Planck Institute, Garching, Germany) G. F. Dell Antonio (Universitá di Roma La Sapienza, Italy) A. Galindo (Universidad Complutense de Madrid, Spain) S. L. Glashow (Boston University
The traversable wormhole with classical scalar fields
Kim, S. -W; Kim, S. P.
1999-01-01
We study the Lorentzian static traversable wormholes coupled to quadratic scalar fields. We also obtain the solutions of the scalar fields and matters in the wormhole background and find that the minimal size of the wormhole should be quantized under the appropriate boundary conditions for the positive non-minimal massive scalar field.
Conformal Invariance in Classical Field Theory
Grigore, D. R.
1993-01-01
A geometric generalization of first-order Lagrangian formalism is used to analyse a conformal field theory for an arbitrary primary field. We require that global conformal transformations are Noetherian symmetries and we prove that the action functional can be taken strictly invariant with respect to these transformations. In other words, there does not exists a "Chern-Simons" type Lagrangian for a conformally invariant Lagrangian theory.
Quantum fermions and quantum field theory from classical statistics
Wetterich, C.
2012-01-01
An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schr\\"odinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.
A Tulczyjew triple for classical fields
International Nuclear Information System (INIS)
The geometrical structure known as the Tulczyjew triple has proved to be very useful in describing mechanical systems, even those with singular Lagrangians or subject to constraints. Starting from basic concepts of the variational calculus, we construct the Tulczyjew triple for first-order field theory. The important feature of our approach is that we do not postulate ad hoc the ingredients of the theory, but obtain them as unavoidable consequences of the variational calculus. This picture of field theory is covariant and complete, containing not only the Lagrangian formalism and Euler–Lagrange equations but also the phase space, the phase dynamics and the Hamiltonian formalism. Since the configuration space turns out to be an affine bundle, we have to use affine geometry, in particular the notion of the affine duality. In our formulation, the two maps α and β which constitute the Tulczyjew triple are morphisms of double structures of affine-vector bundles. We also discuss the Legendre transformation, i.e. the transition between the Lagrangian and the Hamiltonian formulation of the first-order field theory. (paper)
A Tulczyjew triple for classical fields
Grabowska, Katarzyna
2012-04-01
The geometrical structure known as the Tulczyjew triple has proved to be very useful in describing mechanical systems, even those with singular Lagrangians or subject to constraints. Starting from basic concepts of the variational calculus, we construct the Tulczyjew triple for first-order field theory. The important feature of our approach is that we do not postulate ad hoc the ingredients of the theory, but obtain them as unavoidable consequences of the variational calculus. This picture of field theory is covariant and complete, containing not only the Lagrangian formalism and Euler-Lagrange equations but also the phase space, the phase dynamics and the Hamiltonian formalism. Since the configuration space turns out to be an affine bundle, we have to use affine geometry, in particular the notion of the affine duality. In our formulation, the two maps α and β which constitute the Tulczyjew triple are morphisms of double structures of affine-vector bundles. We also discuss the Legendre transformation, i.e. the transition between the Lagrangian and the Hamiltonian formulation of the first-order field theory.
Classical solutions of some field theoretic models
International Nuclear Information System (INIS)
In recent years much attention has been paid to simpler fields theories, so chosen that they possess several properties of nonabelian gauge theories. They preserve the conformal invariance of the action and one can define the topological charge for them. They possess nontrivial solutions to the equations of motion. The perturbation theory based on the fluctuations around each solution is characterized by asymptotic freedom. A model called CP sup(n-1) is presented and some models which are its natural generalizations are discussed. (M.F.W.)
Qian, Xiao-Feng; Howell, John C; Eberly, J H
2015-01-01
The growing recognition that entanglement is not exclusively a quantum property, and does not even originate with Schr\\"odinger's famous remark about it [Proc. Camb. Phil. Soc. {\\bf 31}, 555 (1935)], prompts examination of its role in marking the quantum-classical boundary. We have done this by subjecting correlations of classical optical fields to new Bell-analysis experiments, and report here values of the Bell parameter greater than ${\\cal B} = 2.54$. This is many standard deviations outside the limit ${\\cal B} = 2$ established by the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality [Phys. Rev. Lett. {\\bf 23}, 880 (1969)], in agreement with our theoretical classical prediction, and not far from the Tsirelson limit ${\\cal B} = 2.828...$. These results cast a new light on the standard quantum-classical boundary description, and suggest a reinterpretation of it.
Lectures on classical and quantum theory of fields
Energy Technology Data Exchange (ETDEWEB)
Arodz, Henryk; Hadasz, Leszek [Jagiellonian Univ., Krakow (Poland). Inst. Physics
2010-07-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)
Lectures on Classical and Quantum Theory of Fields
Arodź, Henryk
2010-01-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course.
Lectures on classical and quantum theory of fields
International Nuclear Information System (INIS)
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)
Backreaction to wormhole by classical scalar field: Will classical scalar field destroy wormhole?
Kim, Sung-Won
1999-01-01
There are two effects of extra matter fields on the Lorentzian traversable wormhole. The ``primary effect'' says that the extra matter can afford to be a part of source or whole source of the wormhole when the wormhole is being formed. Thus the matter does not affect the stability of wormhole and the wormhole is still safe. If the extra matter is extotic, it can be the whole part of the source of the wormhole. The ``auxiliary effect'' is that the extra matter plays the role of the additional ...
Dynamics of classical and quantum fields an introduction
Setlur, Girish S
2014-01-01
Dynamics of Classical and Quantum Fields: An Introduction focuses on dynamical fields in non-relativistic physics. Written by a physicist for physicists, the book is designed to help readers develop analytical skills related to classical and quantum fields at the non-relativistic level, and think about the concepts and theory through numerous problems. In-depth yet accessible, the book presents new and conventional topics in a self-contained manner that beginners would find useful. A partial list of topics covered includes: Geometrical meaning of Legendre transformation in classical mechanics Dynamical symmetries in the context of Noether's theorem The derivation of the stress energy tensor of the electromagnetic field, the expression for strain energy in elastic bodies, and the Navier Stokes equation Concepts of right and left movers in case of a Fermi gas explained Functional integration is interpreted as a limit of a sequence of ordinary integrations Path integrals for one and two quantum particles and for...
A Classical Solution of Massive Yang-Mills Fields
Mogami, Tsuguo
2016-01-01
Recent researches on the solution of Schwinger-Dyson equations, as well as lattice simulations of pure QCD, suggest that the gluon propagator is massive. In this letter, we assume that the classical counterpart of this massive gluon field may be represented with the equation of motion for Yang-Mills theory with a mass term added. A new classical solution is given for this equation. It is discussed that this solution may have some role in confinement.
On the variational formulation of classical Abelian gauge field theories
International Nuclear Information System (INIS)
It is shown how one can formulate an action principle for classical Abelian gauge theories not by means of gauge potentials and currents but in terms of the gauge invariant field strengths and gauge variant stream potentias. The discussion is on a general formal level in n=s+t space-time dimensions and uses, for brevity, the language of differential forms
Classical Electromagnetic Field Theory in the Presence of Magnetic Sources
Institute of Scientific and Technical Information of China (English)
LI Kang(李康); CHEN Wen-Jun(陈文俊); NAON Carlos M.
2003-01-01
Using two new well-defined four-dimensional potential vectors, we formulate the classical Maxwell field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources.We set up a consistent Lagrangian for the theory. Then from the action principle we obtain both Maxwell's equation and the equation of motion of a dyon moving in the electromagnetic field.
Classical electromagnetic field theory in the presence of magnetic sources
Chen, W J; Naón, C M; Chen, Wen-Jun; Li, Kang
2001-01-01
Using two new well defined 4-dimensional potential vectors, we formulate the classical Maxwell's field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we get both Maxwell's equation and the equation of motion of a dyon moving in the electro-magnetic field.
Scalar Field Dynamics Classical, Quantum and in Between
Salle, M; Vink, Jeroen C
2000-01-01
Using a Hartree ensemble approximation, we investigate the dynamics of the \\phi^4 model in 1+1 dimensions. We find that the fields initially thermalize with a Bose-Einstein distribution for the fields. Gradually, however, the distribution changes towards classical equipartition. Using suitable initial conditions quantum thermalization is achieved much faster than the onset of this undesirable equipartition. We also show how the numerical efficiency of our method can be significantly improved.
BOOK REVIEW: Classical Solutions in Quantum Field Theory Classical Solutions in Quantum Field Theory
Mann, Robert
2013-02-01
Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons--kinks, vortices, and magnetic monopoles--and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is rather condensed. It is
Classical and Quantum Gauged Massless Rarita-Schwinger Fields
Adler, Stephen L
2015-01-01
We show that, in contrast to known results in the massive case, a minimally gauged massless Rarita-Schwinger field yields consistent classical and quantum theories. To simplify the algebra, we study a two component left chiral reduction of the massless theory. We formulate the classical theory in both Lagrangian and Hamiltonian form for a general non-Abelian gauging, and analyze the constraints and the Rarita-Schwinger gauge invariance of the action. An explicit wave front calculation for Abelian gauge fields shows that wave-like modes do not propagate with superluminal velocities. The quantized case is studied in covariant radiation gauge and axial gauge for the Rarita-Schwinger field, by both functional integral and Dirac bracket methods. The constraints have the form needed to apply the Faddeev-Popov method for deriving a functional integral in covariant radiation gauge. The Dirac bracket approach yields consistent Hamilton equations of motion in covariant radiation gauge, and leads to anticommutation rela...
Classical and quantum Big Brake cosmology for scalar field and tachyonic models
Kamenshchik, Alexander Y.; Manti, Serena
2012-01-01
We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical ...
Classical and quantum Big Brake cosmology for scalar field and tachyonic models
Kamenshchik, A.; Manti, S.
2013-01-01
We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical ...
Local gauge invariant Lagrangeans in classical field theories
International Nuclear Information System (INIS)
We investigate the most general local gauge invariant Lagrangean in the framework of classical field theory. We rederive esentially Utiyama's result with a slight generalization. Our proof makes clear the importance of the so called current conditions, i.e. the requirement that the Noether currents are different from zero. This condition is of importance both in the general motivation for the introduction of the Yang-Mills fields and for the actual proof. Some comments are made about the basic mathematical structure of the problem - the gauge group. (author)
Zhang, Jian-Song; Liu, Fen; Chen, Ai-Xi
2016-09-01
We investigate the effects of classical driving fields on the dynamics of purity, spin squeezing, and genuine multipartite entanglement (based on the Peres-Horodecki criterion ) of three two-level atoms within three separated cavities prepared in coherent states in the presence of decoherence. The three qubits are initially entangled and driven by classical fields. We obtain an analytical solution of the present system using the superoperator method. We find that the genuine multipartite entanglement measured by an entanglement monotone based on the Peres-Horodecki criterion can stay zero for a finite time and revive partially later. This phenomenon is similar to the sudden death of entanglement of two qubits and can be controlled efficiently by the classical driving fields. The amount of purity, spin squeezing, and genuine multipartite entanglement decrease with the increase of mean photon number of cavity fields. Particularly, the purity and genuine multipartite entanglement could be simultaneously improved by the classical driving fields. In addition, there is steady state genuine multipartite entanglement which can also be adjusted by the classical driving fields.
Quantum Mind from a Classical Field Theory of the Brain
Zizzi, Paola
2011-01-01
We suggest that, with regard to a theory of quantum mind, brain processes can be described by a classical, dissipative, non-abelian gauge theory. In fact, such a theory has a hidden quantum nature due to its non-abelian character, which is revealed through dissipation, when the theory reduces to a quantum vacuum, where temperatures are of the order of absolute zero, and coherence of quantum states is preserved. We consider in particular the case of pure SU(2) gauge theory with a special anzatz for the gauge field, which breaks Lorentz invariance. In the ansatz, a contraction mapping plays the role of dissipation. In the limit of maximal dissipation, which corresponds to the attractive fixed point of the contraction mapping, the gauge fields reduce, up to constant factors, to the Pauli quantum gates for one-qubit states. Then tubuline-qubits can be processed in the quantum vacuum of the classical field theory of the brain, where decoherence is avoided due to the extremely low temperature. Finally, we interpret...
Lie Groupoids in Classical Field Theory I: Noether's Theorem
Costa, Bruno T; Pêgas, Luiz Henrique P
2015-01-01
In the two papers of this series, we initiate the development of a new approach to implementing the concept of symmetry in classical field theory, based on replacing Lie groups/algebras by Lie groupoids/algebroids, which are the appropriate mathematical tools to describe local symmetries when gauge transformations are combined with space-time transformations. Here, we outline the basis of the program and, as a first step, show how to (re)formulate Noether's theorem about the connection between symmetries and conservation laws in this approach.
Controlling entanglement sudden death in cavity QED by classical driving fields
Zhang, Jian-Song; Xu, Jing-Bo; Lin, Qiang
2008-01-01
We investigate the entanglement dynamics of a quantum system consisting of two-level atoms interacting with vacuum or thermal fields with classical driving fields. We find that the entanglement of the system can be improved by adjusting the classical driving field. The influence of the classical field and the purity of the initial state on the entanglement sudden death is also studied. It is shown that the time of entanglement sudden death can be controlled by the classical driving fields. Pa...
Conformal Field Theory Correlators from Classical Scalar Field Theory on $AdS_{d+1}$
Mück, W; Mueck, Wolfgang
1998-01-01
We use the correspondence between scalar field theory on $AdS_{d+1}$ and a conformal field theory on $R^d$ to calculate the 3- and 4-point functions of the latter. The classical scalar field theory action is evaluated at tree level.
Classical and quantum particle dynamics in univariate background fields
Heinzl, Thomas; King, Ben
2016-01-01
We investigate deviations from the plane wave model in the interaction of charged particles with strong electromagnetic fields. A general result is that integrability of the dynamics is lost when going from lightlike to timelike or spacelike field dependence. For a special scenario in the classical regime we show how the radiation spectrum in the spacelike (undulator) case becomes well-approximated by the plane wave model in the high energy limit, despite the two systems being Lorentz inequivalent. In the quantum problem, there is no analogue of the WKB-exact Volkov solution. Nevertheless, WKB and uniform-WKB approaches give good approximations in all cases considered. Other approaches that reduce the underlying differential equations from second to first order are found to miss the correct physics for situations corresponding to barrier transmission and wide-angle scattering.
Latfield2: A c++ library for classical lattice field theory
David, Daverio; Bevis, Neil
2015-01-01
latfield2 is a C++ library designed to simplify writing parallel codes for solving partial differen- tial equations, developed for application to classical field theories in particle physics and cosmology. It is a significant rewrite of the latfield framework, moving from a slab domain decomposition to a rod decomposition, where the last two dimension of the lattice are scattered into a two dimensional process grid. Parallelism is implemented using the Message Passing Interface (MPI) standard, and hidden in the basic objects of grid-based simulations: Lattice, Site and Field. It comes with an integrated parallel fast Fourier transform, and I/O server class permitting computation to continue during the writing of large files to disk. latfield2 has been used for production runs on tens of thousands of processor elements, and is expected to be scalable to hundreds of thousands.
Geometry of Lagrangian first-order classical field theories
Energy Technology Data Exchange (ETDEWEB)
Echeverria-Enriquez, A. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Munoz-Lecanda, M.C. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Roman-Roy, N. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica
1996-10-01
We construct a lagrangian geometric formulation for first-order field theories using the canonical structures of first-order jet bundles, which are taken as the phase spaces of the systems in consideration. First of all, we construct all the geometric structures associated with a first-order jet bundle and, using them, we develop the lagrangian formalism, defining the canonical forms associated with a lagrangian density and the density of lagrangian energy, obtaining the Euler-Lagrange equations in two equivalent ways: as the result of a variational problem and developing the jet field formalism (which is a formulation more similar to the case of mechanical systems). A statement and proof of Noether`s theorem is also given, using the latter formalism. Finally, some classical examples are briefly studied. (orig.)
Real-time quantum trajectories for classically allowed dynamics in strong laser fields
Plimak, L I
2015-01-01
Both the physical picture of the dynamics of atoms and molecules in intense infrared fields and its theoretical description use the concept of electron trajectories. Here we address a key question which arises in this context: Are distinctly quantum features of these trajectories, such as the complex-valued coordinates, physically relevant in the classically allowed region of phase space, and what is their origin? First, we argue that solutions of classical equations of motion can account for quantum effects. To this end, we construct an exact solution to the classical Hamilton-Jacobi equation which accounts for dynamics of the wave packet, and show that this solution is physically correct in the limit $\\hbar \\to 0$. Second, we show that imaginary components of classical trajectories are directly linked to the finite size of the initial wavepacket in momentum space. This way, if the electronic wavepacket produced by optical tunneling in strong infrared fiels is localised both in coordinate and momentum, its m...
Classical mutual information in mean-field spin glass models
Alba, Vincenzo; Inglis, Stephen; Pollet, Lode
2016-03-01
We investigate the classical Rényi entropy Sn and the associated mutual information In in the Sherrington-Kirkpatrick (S-K) model, which is the paradigm model of mean-field spin glasses. Using classical Monte Carlo simulations and analytical tools we investigate the S-K model in the n -sheet booklet. This is achieved by gluing together n independent copies of the model, and it is the main ingredient for constructing the Rényi entanglement-related quantities. We find a glassy phase at low temperatures, whereas at high temperatures the model exhibits paramagnetic behavior, consistent with the regular S-K model. The temperature of the paramagnetic-glassy transition depends nontrivially on the geometry of the booklet. At high temperatures we provide the exact solution of the model by exploiting the replica symmetry. This is the permutation symmetry among the fictitious replicas that are used to perform disorder averages (via the replica trick). In the glassy phase the replica symmetry has to be broken. Using a generalization of the Parisi solution, we provide analytical results for Sn and In and for standard thermodynamic quantities. Both Sn and In exhibit a volume law in the whole phase diagram. We characterize the behavior of the corresponding densities, Sn/N and In/N , in the thermodynamic limit. Interestingly, at the critical point the mutual information does not exhibit any crossing for different system sizes, in contrast with local spin models.
Gauge-fields and integrated quantum-classical theory
International Nuclear Information System (INIS)
Physical situations in which quantum systems communicate continuously to their classically described environment are not covered by contemporary quantum theory, which requires a temporary separation of quantum degrees of freedom from classical ones. A generalization would be needed to cover these situations. An incomplete proposal is advanced for combining the quantum and classical degrees of freedom into a unified objective description. It is based on the use of certain quantum-classical structures of light that arise from gauge invariance to coordinate the quantum and classical degrees of freedom. Also discussed is the question of where experimenters should look to find phenomena pertaining to the quantum-classical connection. 17 refs
Two-Component Theory of Classical Proca Fields in Curved Spacetimes with Torsionless Affinities
Santos Júnior, S. I.; Cardoso, J. G.
2016-04-01
The world formulation of the full theory of classical Proca fields in generally relativistic spacetimes is reviewed. Subsequently the entire set of field equations is transcribed in a straightforward way into the framework of one of the Infeld-van der Waerden formalisms. Some well-known calculational techniques are then utilized for deriving the wave equations that control the propagation of the fields allowed for. It appears that no interaction couplings between such fields and electromagnetic curvatures are ultimately carried by the wave equations at issue. What results is, in effect, that the only interactions which occur in the theoretical context under consideration involve strictly Proca fields and wave functions for gravitons.
Santos Júnior, S. I.; Cardoso, J. G.
2016-10-01
The world formulation of the full theory of classical Proca fields in generally relativistic spacetimes is reviewed. Subsequently, the entire set of field equations is transcribed in a straightforward way into the framework of one of the Infeld-van der Waerden formalisms. Some well-known calculational techniques are then utilized for deriving the wave equations that control the propagation of the fields allowed for. It appears that no interaction couplings between such fields and electromagnetic curvatures are ultimately carried by the wave equations at issue. What results is, in effect, that the only interactions which occur in the theoretical context under consideration involve strictly Proca fields and wave functions for gravitons.
Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field
Institute of Scientific and Technical Information of China (English)
QIAN Yi; XU Jing-Bo
2012-01-01
We investigate the quantum discord dynamics in a cavity quantum electrodynamics system, which consists of two noninteracting two-level atoms driven by independent optical Gelds and classical fields, and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields. It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields. Finally, the influence of the classical driving field on the fidelity of the system is also examined.%We investigate the quantum discord dynamics in a cavity quantum electrodynamics system,which consists of two noninteracting two-level atoms driven by independent optical fields and classical fields,and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields.It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields.Finally,the influence of the classical driving field on the fidelity of the system is also examined.
Classical dynamics of a charged particle in a laser field beyond the dipole approximation
Jameson, Paul; Khvedelidze, Arsen
2008-01-01
The classical dynamics of a charged particle traveling in a laser field modeled by an elliptically polarized monochromatic electromagnetic plane wave is discussed within the time reparametrization invariant form of the non-relativistic Hamilton-Jacobi theory. The exact parametric representation for a particle's orbit in an arbitrary plane wave background beyond the dipole approximation and including effect of the magnetic field is derived. For an elliptically polarized monochromatic plane wav...
Real-time quantum trajectories for classically allowed dynamics in strong laser fields
Plimak, L. I.; Ivanov, Misha Yu.
2015-10-01
Both the physical picture of the dynamics of atoms and molecules in intense infrared fields and its theoretical description use the concept of electron trajectories. Here, we address a key question which arises in this context: Are distinctly quantum features of these trajectories, such as the complex-valued coordinates, physically relevant in the classically allowed region of phase space, and what is their origin? First, we argue that solutions of classical equations of motion can account for quantum effects. To this end, we construct an exact solution to the classical Hamilton-Jacobi equation which accounts for dynamics of the wave packet, and show that this solution is physically correct in the limit ?. Second, we show that imaginary components of classical trajectories are directly linked to the finite size of the initial wave packet in momentum space. This way, if the electronic wave packet produced by optical tunnelling in strong infrared fields is localised both in coordinate and momentum, its motion after tunnelling ipso facto cannot be described with purely classical trajectories - in contrast to popular models in the literature.
On covariant Poisson brackets in classical field theory
Energy Technology Data Exchange (ETDEWEB)
Forger, Michael [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Salles, Mário O. [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Campus Universitário – Lagoa Nova, BR–59078-970 Natal, RN (Brazil)
2015-10-15
How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra.
A Gauge-theoretical Treatment of the Gravitational Field: Classical
Gomes, Henrique
2008-01-01
In the geometrodynamical setting of general relativity one is concerned mainly with Riemannian metrics over a manifold $M$. We show that for the space Riem$(M)$, we have a natural principal fiber bundle (PFB) structure. This construction makes the gravitational field amenable to exactly the same gauge-theoretic treatment given in [Littlejohn] where it is used to separate rotational and vibrational degrees of freedom of $n$-particle systems, both classically and quantum mechanically. Furthermore, we show how the gauge connection in this PFB setting can be seen as a realization of Mach's Principle of Relative Motion, in accordance with Barbour's et al work on timeless gravitational theories. We show Barbour's reconstruction of GR is obtained by requiring the connection to be the one induced by the deWitt metric in Riem$(M)$. As a simple application of the gauge theory, we put the ADM lagrangian in a Kaluza-Klein context, and from conservation of charge we derive an interesting condition on the three-dimensional...
Vaccinology of classical swine fever: from lab to field
Oirschot, van J.T.
2003-01-01
There are two types of classical swine fever vaccines available: the classical live and the recently developed E2 subunit vaccines. The live Chinese strain vaccine is the most widely used. After a single vaccination, it confers solid immunity within a few days that appears to persist lifelong. The E
Effect of geometry on the classical entanglement in a chaotic optical fiber.
Joseph, Sijo K; Sabuco, Juan; Chew, Lock Yue; Sanjuán, Miguel A F
2015-12-14
The effect of boundary deformation on the classical entanglement which appears in the classical electromagnetic field is considered. A chaotic billiard geometry is used to explore the influence of the mechanical modification of the optical fiber cross-sectional geometry on the production of classical entanglement within the electromagnetic fields. For the experimental realization of our idea, we propose an optical fiber with a cross section that belongs to the family of Robnik chaotic billiards. Our results show that a modification of the fiber geometry from a regular to a chaotic regime can enhance the transverse mode classical entanglement.
Exact classical Doppler effect derived from the photon emission process
Lin, Chyi-Lung; Hsieh, Shang-Lin; Tsai, Chun-Ming
2016-01-01
The concept of photon is not necessary only applied to the relativistic Doppler theory. It may also work well for classical theory. As conservation of momentum and energy are physical laws, if applying these laws gives the exact relativistic Doppler effect, it should also give the exact classical Doppler effect. So far the classical Doppler effect is only obtained by using some approximation, as derived by Fermi in 1932. We show that the exact classical Doppler effect can be derived from the photon emission process in the exact treatment and reveal that these results are the same as those derived from the wave theory of light.
International Nuclear Information System (INIS)
In this paper, a detailed numerical comparison of the high-harmonic generation (HHG) from free electrons in intense laser fields in both classical and semi-classical frameworks has been presented. These two frameworks have been widely used in the literature. It has been found that the HHG spectra display distinct quantitative differences for high-energy electrons. In some special situations, qualitative differences appear. Even if the radiation reaction is included in the electron classical dynamics, no consistent result can be obtained. Hence it should be of critical importance to submit the present HHG theory for high-precision experimental tests, which can help us not only to justify the present theories, but also to check the QED predictions in the high-intensity regime. (paper)
Quantum averaging and resonances: two-level atom in a one-mode classical laser field
Directory of Open Access Journals (Sweden)
M. Amniat-Talab
2007-06-01
Full Text Available We use a nonperturbative method based on quantum averaging and an adapted from of resonant transformations to treat the resonances of the Hamiltonian of a two-level atom interacting with a one-mode classical field in Floquet formalism. We illustrate this method by extraction of effective Hamiltonians of the system in two regimes of weak and strong coupling. The results obtained in the strong-coupling regime, are valid in the whole range of the coupling constant for the one-photon zero-field resonance.
Fu, Jian
2010-01-01
We demonstrate that a tensor product structure could be obtained by introducing pseudorandom phase sequences into classical fields with two orthogonal modes. Using classical fields modulated with pseudorandom phase sequences, we discuss efficient simulation of several typical quantum states, including product state, Bell states, GHZ state, and W state. By performing quadrature demodulation scheme, we could obtain the mode status matrix of the simulating classical fields, based on which we propose a sequence permutation mechanism to reconstruct the simulated quantum states. The research on classical simulation of quantum states is important, for it not only enables potential practical applications in quantum computation, but also provides useful insights into fundamental concepts of quantum mechanics.
Field theory and weak Euler-Lagrange equation for classical particle-field systems
Energy Technology Data Exchange (ETDEWEB)
Qin, Hong [PPPL; Burby, Joshua W [PPPL; Davidson, Ronald C [PPPL
2014-10-01
It is commonly believed that energy-momentum conservation is the result of space-time symmetry. However, for classical particle-field systems, e.g., Klimontovich-Maxwell and Klimontovich- Poisson systems, such a connection hasn't been formally established. The difficulty is due to the fact that particles and the electromagnetic fields reside on different manifolds. To establish the connection, the standard Euler-Lagrange equation needs to be generalized to a weak form. Using this technique, energy-momentum conservation laws that are difficult to find otherwise can be systematically derived.
Force-Field Functor Theory: Classical Force-Fields which Reproduce Equilibrium Quantum Distributions
Directory of Open Access Journals (Sweden)
Ryan eBabbush
2013-10-01
Full Text Available Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory.
Quantum Electrodynamics Basis of Classical-Field High-Harmonic Generation Theory
Institute of Scientific and Technical Information of China (English)
王兵兵; 高靓辉; 傅盘铭; 郭东升; R. R. Freeman
2001-01-01
From the nonperturbative quantum electrodynamics theory, we derive the Landau-Dykhne formula which represents the quantum-mechanical formulation of the three-step model. These studies provide a basis for the classical-field approaches to high-order harmonic generation and justify some assumptions used in classical-field modelling.
Quantization, Classical and Quantum Field Theory and Theta - Functions
Tyurin, Andrey N.
2002-01-01
In the abelian case (the subject of several beautiful books) fixing some combinatorial structure (so called theta structure of level k) one obtains a special basis in the space of sections of canonical polarization powers over the jacobians. These sections can be presented as holomorphic functions on the "abelian Schottky space". This fact provides various applications of these concrete analytic formulas to the integrable systems, classical mechanics and PDE's. Our practical goal is to do the...
Quantum description of classical apparatus; Zeno effect and decoherence
Gurvitz, S A
2003-01-01
We study the measurement process by treating classical detectors entirely quantum mechanically. Transition to the classical description and the mechanism of decoherence is investigated. We concentrate on influence of continuous measurement on decay of unstable systems (quantum Zeno effect). We discuss the experimental consequences of our results and a role of the projection postulate in a measurement process.
A course in mathematical physics 1 and 2 classical dynamical systems and classical field theory
Thirring, Walter
1992-01-01
The last decade has seen a considerable renaissance in the realm of classical dynamical systems, and many things that may have appeared mathematically overly sophisticated at the time of the first appearance of this textbook have since become the everyday tools of working physicists. This new edition is intended to take this development into account. I have also tried to make the book more readable and to eradicate errors. Since the first edition already contained plenty of material for a one semester course, new material was added only when some of the original could be dropped or simplified. Even so, it was necessary to expand the chap ter with the proof of the K-A-M Theorem to make allowances for the cur rent trend in physics. This involved not only the use of more refined mathe matical tools, but also a reevaluation of the word "fundamental. " What was earlier dismissed as a grubby calculation is now seen as the consequence of a deep principle. Even Kepler's laws, which determine the radii of the ...
Motion in classical field theories and the foundations of the self-force problem
Harte, Abraham I
2014-01-01
This article serves as a pedagogical introduction to the problem of motion in classical field theories. The primary focus is on self-interaction: How does an object's own field affect its motion? General laws governing the self-force and self-torque are derived using simple, non-perturbative arguments. The relevant concepts are developed gradually by considering motion in a series of increasingly complicated theories. Newtonian gravity is discussed first, then Klein-Gordon theory, electromagnetism, and finally general relativity. Linear and angular momenta as well as centers of mass are defined in each of these cases. Multipole expansions for the force and torque are then derived to all orders for arbitrarily self-interacting extended objects. These expansions are found to be structurally identical to the laws of motion satisfied by extended test bodies, except that all relevant fields are replaced by effective versions which exclude the self-fields in a particular sense. Regularization methods traditionally ...
Entanglement Entropy Renormalization for the NC scalar field coupled to classical BTZ geometry
Jurić, Tajron
2016-01-01
In this work, we consider a noncommutative (NC) massless scalar field coupled to the classical nonrotational BTZ geometry. In a manner of the theories where the gravity emerges from the underlying scalar field theory, we study the effective action and the entropy derived from this noncommutative model. In particular, the entropy is calculated by making use of the two different approaches, the brick wall method and the heat kernel method designed for spaces with conical singularity. We show that the UV divergent structures of the entropy, obtained through these two different methods, agree with each other. It is also shown that the same renormalization condition that removes the infinities from the effective action can also be used to renormalize the entanglement entropy for the same system. Besides, the interesting feature of the NC model considered here is that it allows an interpretation in terms of an equivalent system comprising of a commutative massive scalar field, but in a modified geometry; that of th...
Quantum Mind from a Classical Field Theory of the Brain
Zizzi, Paola
2011-01-01
We suggest that, with regard to a theory of quantum mind, brain processes can be described by a classical, dissipative, non-abelian gauge theory. In fact, such a theory has a hidden quantum nature due to its non-abelian character, which is revealed through dissipation, when the theory reduces to a quantum vacuum, where temperatures are of the order of absolute zero, and coherence of quantum states is preserved. We consider in particular the case of pure SU(2) gauge theory with a special anzat...
Bose Einstein condensation of the classical axion field in cosmology?
Davidson, Sacha
2013-01-01
The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a bose einstein condensate. Using classical equations of motion during linear structure formation, we explore whether "gravitational thermalisation" can drive axions to a bose einstein condensate. At linear order in G_N, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. From the anisotropic stress, we estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.
The criteria for a solution of the field equations to be a classical limit of a quantum cosmology
Jones, R M
2002-01-01
If the gravitational field is quantized, then a solution of Einstein's field equations is a valid cosmological model only if it corresponds to a classical limit of a quantum cosmology. To determine which solutions are valid requires looking at quantum cosmology in a particular way. Because we infer the geometry by measurements on matter, we can represent the amplitude for any measurement in terms of the amplitude for the matter fields, allowing us to integrate out the gravitational degrees of freedom. Combining that result with a path-integral representation for quantum cosmology leads to an integration over 4-geometries. Even when a semiclassical approximation for the propagator is valid, the amplitude for any measurement includes an integral over the gravitational degrees of freedom. The conditions for a solution of the field equations to be a classical limit of a quantum cosmology are: (1) The effect of the classical action dominates the integration, (2) the action is stationary with respect to variation o...
Bosonic Loop Diagrams as Perturbative Solutions of the Classical Field Equations in $\\phi^4$-Theory
Finster, Felix
2012-01-01
Solutions of the classical $\\phi^4$-theory in Minkowski space-time are analyzed in a perturbation expansion in the nonlinearity. Using the language of Feynman diagrams, the solution of the Cauchy problem is expressed in terms of tree diagrams which involve the retarded Green's function and have one outgoing leg. In order to obtain general tree diagrams, we set up a "classical measurement process" in which a virtual observer of a scattering experiment modifies the field and detects suitable energy differences. By adding a classical stochastic background field, we even obtain all loop diagrams. The expansions are compared with the standard Feynman diagrams of the corresponding quantum field theory.
k-Cosymplectic Classical Field Theories: Tulczyjew and Skinner-Rusk Formulations
Rey, Angel M.; Román-Roy, Narciso; Salgado, Modesto; Vilariño, Silvia
2012-06-01
The k-cosymplectic Lagrangian and Hamiltonian formalisms of first-order classical field theories are reviewed and completed. In particular, they are stated for singular and almost-regular systems. Subsequently, several alternative formulations for k-cosymplectic first-order field theories are developed: First, generalizing the construction of Tulczyjew for mechanics, we give a new interpretation of the classical field equations. Second, the Lagrangian and Hamiltonian formalisms are unified by giving an extension of the Skinner-Rusk formulation on classical mechanics.
Carter subgroups of singular classical groups over finite fields
Institute of Scientific and Technical Information of China (English)
高有; 石新华
2004-01-01
Let Fq be a finite field with qelements whereq = pα. In the present paper, the authors study the existence and structure of Carter subgroups of singular symplectic group Sp (Fq), singular unitary group U ( Fq2 ) and singular orthogonal group O ( Fq ) ( n is even) over finite fields Fq.
Classical solutions in quantum field theory solitons and instantons in high energy physics
Weinberg, Erick J
2012-01-01
Classical solutions play an important role in quantum field theory, high energy physics and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for early universe cosmology. Imaginary-time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on ...
Field theory and weak Euler-Lagrange equation for classical particle-field systems.
Qin, Hong; Burby, Joshua W; Davidson, Ronald C
2014-10-01
It is commonly believed as a fundamental principle that energy-momentum conservation of a physical system is the result of space-time symmetry. However, for classical particle-field systems, e.g., charged particles interacting through self-consistent electromagnetic or electrostatic fields, such a connection has only been cautiously suggested. It has not been formally established. The difficulty is due to the fact that the dynamics of particles and the electromagnetic fields reside on different manifolds. We show how to overcome this difficulty and establish the connection by generalizing the Euler-Lagrange equation, the central component of a field theory, to a so-called weak form. The weak Euler-Lagrange equation induces a new type of flux, called the weak Euler-Lagrange current, which enters conservation laws. Using field theory together with the weak Euler-Lagrange equation developed here, energy-momentum conservation laws that are difficult to find otherwise can be systematically derived from the underlying space-time symmetry.
Fan, Peifeng; Liu, Jian; Xiang, Nong; Yu, Zhi
2016-01-01
A manifestly covariant, or geometric, field theory for relativistic classical particle-field system is developed. The connection between space-time symmetry and energy-momentum conservation laws for the system is established geometrically without splitting the space and time coordinates, i.e., space-time is treated as one identity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that particles and field reside on different manifold. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of electromagnetic fields and also a functional of particles' world-lines. The other difficulty associated with the geometric setting is due to the mass-shell condition. The standard Euler-Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell condition is imposed. For the particle-field system, the geometric EL equation is further generalized into a w...
A course in mathematical physics 2 classical field theory
Thirring, Walter
1978-01-01
In the past decade the language and methods ofmodern differential geometry have been increasingly used in theoretical physics. What seemed extravagant when this book first appeared 12 years ago, as lecture notes, is now a commonplace. This fact has strengthened my belief that today students of theoretical physics have to learn that language-and the sooner the better. Afterall, they willbe the professors ofthe twenty-first century and it would be absurd if they were to teach then the mathematics of the nineteenth century. Thus for this new edition I did not change the mathematical language. Apart from correcting some mistakes I have only added a section on gauge theories. In the last decade it has become evident that these theories describe fundamental interactions, and on the classical level their structure is suffi cientlyclear to qualify them for the minimum amount ofknowledge required by a theoretician. It is with much regret that I had to refrain from in corporating the interesting developments in Kal...
Measuring a piecewise constant axion field in classical electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Obukhov, Yuri N. [Institute for Theoretical Physics, University of Cologne, 50923 Cologne (Germany)]. E-mail: yo@thp.uni-koeln.de; Hehl, Friedrich W. [Institute for Theoretical Physics, University of Cologne, 50923 Cologne (Germany)
2005-06-27
In order to settle the problem of the 'Post constraint' in material media, we consider the propagation of a plane electromagnetic wave in a medium with a piecewise constant axion field. Although a constant axion field does not affect the wave propagation in a homogeneous medium, we show that the reflection and transmission of a wave at an interface between the two media is sensitive to the difference of the axion values. This observation can be used to determine experimentally the axion piece in matter despite the fact that a constant axion value does not contribute to the Maxwell equations.
Measuring a piecewise constant axion field in classical electrodynamics
Obukhov, Yu N; Obukhov, Yuri N.; Hehl, Friedrich W.
2005-01-01
In order to settle the problem of the "Post constraint" in material media, we consider the propagation of a plane electromagnetic wave in a medium with a piecewise constant axion field. Although a constant axion field does not affect the wave propagation in a homogeneous medium, we show that the reflection and transmission of a wave at an interface between the two media is sensitive to the difference of the axion values. This observation can be used to determine experimentally the axion piece in matter despite the fact that a constant axion value does not contribute to the Maxwell equations.
Classical Field-Theoretical approach to the non-linear q-Klein-Gordon Equation
Plastino, A
2016-01-01
In the wake of efforts made in [EPL {\\bf 97}, 41001 (2012)], we extend them here by developing a classical field theory (FT)to the q-Klein-Gordon equation advanced in [Phys. Rev. Lett. {\\bf 106}, 140601 (2011)]. This makes it possible to generate a hipotetical conjecture regarding black matter. We also develop the classical field theory for a q-Schrodinger equation, different from the one in [EPL {\\bf 97}, 41001 (2012)], that was deduced in [Phys. Lett. A {\\bf 379}, 2690 (2015)] from the hypergeometric differential equation. Our two classical theories reduce to the usual quantum FT for $q\\rightarrow 1$.
Synthetic Lorentz force in classical atomic gases via Doppler effect and radiation pressure
Dubček, T; Jukić, D; Aumiler, D; Ban, T; Buljan, H
2014-01-01
We theoretically predict a novel type of synthetic Lorentz force for classical (cold) atomic gases, which is based on the Doppler effect and radiation pressure. A fairly uniform and strong force can be constructed for gases in macroscopic volumes of several cubic millimeters and more. This opens the possibility to mimic classical charged gases in magnetic fields, such as those in a tokamak, in cold atom experiments.
Classical trajectory perspective of atomic ionization in strong laser fields semiclassical modeling
Liu, Jie
2014-01-01
The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers...
Classical dynamics of a charged particle in a laser field beyond the dipole approximation
Jameson, Paul
2008-01-01
The classical dynamics of a charged particle traveling in a laser field modeled by an elliptically polarized monochromatic electromagnetic plane wave is discussed within the time reparametrization invariant form of the non-relativistic Hamilton-Jacobi theory. The exact parametric representation for a particle's orbit in an arbitrary plane wave background beyond the dipole approximation and including effect of the magnetic field is derived. For an elliptically polarized monochromatic plane wave the particle's trajectory, as an explicit function of the laboratory frame's time, is given in terms of the Jacobian elliptic functions, whose modulus is proportional to the laser's intensity and depends on the polarization of radiation. It is shown that the system exposes the ``intensity duality'', correspondence between the motion in the backgrounds with various intensities. In virtue of the modular properties of the Jacobian functions, by starting with the representative ``fundamental solution'' and applying a certai...
Dynamics of an electron spin in strong classical and quantized electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Skoromnik, Oleg
2014-07-09
The electron motion in the presence of a strong classical and quantized pulse of an electromagnetic field is studied with a special emphasis on the spin degree of freedom. It is shown that the Hamiltonian of this system can be separated into two parts with the help of canonical transformations of the field variables, namely the interaction between an electron and a single collective mode of the field and fluctuations relatively to this collective mode. The application of perturbation theory to the fluctuations allows the conditions of applicability of the single-mode approximation for the quantized external field to be formulated. Furthermore, within this approximation the electron spin evolution is investigated. In addition to fast spin oscillations at the laser frequency, a second time scale is identified due to the intensity-dependent emissions and absorptions of field quanta, that is collapse and revival dynamics. The effect is observable at the experimentally feasible intensity of 10{sup 18} Wcm{sup 2}. After this, we switch to the regime of higher intensities, when the fluctuations of the external field can be neglected. We investigate the asymmetries in the electron scattering arising due to the electron polarization and pulse duration, and constrain the optimal conditions for the asymmetry observation.
Zatloukal, Václav
2016-04-01
Classical field theory is considered as a theory of unparametrized surfaces embedded in a configuration space, which accommodates, in a symmetric way, spacetime positions and field values. Dynamics is defined by a (Hamiltonian) constraint between multivector-valued generalized momenta, and points in the configuration space. Starting from a variational principle, we derive local equations of motion, that is, differential equations that determine classical surfaces and momenta. A local Hamilton-Jacobi equation applicable in the field theory then follows readily. The general method is illustrated with three examples: non-relativistic Hamiltonian mechanics, De Donder-Weyl scalar field theory, and string theory.
Reginatto, Marcel
2013-01-01
I consider the formulation of hybrid cosmological models that consists of a classical gravitational field interacting with a quantized massive scalar field in the formalism of ensembles on configuration space. This is a viable approach that provides an alternative to semiclassical gravity. I discuss a particular, highly nonclassical solution in two approximations, minisuperspace and spherically-symmetric midisuperspace. In both cases, the coupling of the quantum scalar field and classical gravitational field leads to a cosmological model which has a quantized radius of the universe.
Gluon-gluon elastic scattering amplitude in classical color field of colliding protons
Cheung, Man-Fung
2011-01-01
We present a formalism for gluon-gluon elastic scattering in the presence of the classical color field of the protons in high energy collision. The classical field is obtained by solving the classical Yang-Mills equation in the covariant gauge and treated as a prescribed background for the quantum gluons involved in the scattering process. The interaction between the classical field and the quantum gluon modifies the gluon propagator, and, in turn, the $gg\\rightarrow gg$ amplitude. The modified gluon propagator is derived to the first non-zero order of the classical field using the Gaussian approximation in Color Glass Condensate and shown to satisfy the generalized Slavnov-Taylor identity. This formalism is the theoretical basis for our recently proposed classical color field modified minijet model where we show that the $pp$ and $\\pbar p$ cross section data from $\\sqrt{s}=5$ GeV to 30 TeV can be satisfactorily fitted and the model predicts a $(\\ln s)^2$ behavior for large $s$, which saturates the asymptotic...
Aspects of integrability in a classical model for non-interacting fermionic fields
Grosse-Holz, Simon; Richter, Klaus; Urbina, Juan Diego
2015-01-01
In this work we investigate the issue of integrability in a classical model for noninteracting fermionic fields. This model is constructed via classical-quantum correspondence obtained from the semiclassical treatment of the quantum system. Our main finding is that the classical system, contrary to the quantum system, is not integrablein general. Regarding this contrast it is clear that in general classical models for fermionic quantum systems have to be handled with care. Further numerical investigation of the system showed that there may be islands of stability in the phase space. We also investigated a similar model that is used in theoretical chemistry and found this one to be most probably integrable, although also here the integrability is not assured by the quantum-classical correspondence principle.
Rydberg atoms in external fields as an example of open quantum systems with classical chaos
International Nuclear Information System (INIS)
We examine the quantum spectra of hydrogen atoms in external magnetic and electric fields above the ionization threshold with respect to signatures of classical chaos characteristics of open systems. The spectra are obtained by calculating wavefunctions and photionization cross sections in the continuum region with the aid of the complex-coordinate-rotation method. We find that the photoionization cross sections exhibit strong Ericson fluctuations, a quantum feature characteristic of classically chaotic scattering, in energy-field regions where classical trajectory calculations reveal a fractal dependence of the classical ionization time on the initial conditions. We also compare the nearest-neighbour-spacing distributions of complex resonance energies with predictions of random-matrix theories and find that our results are well reproduced by a Ginibre distribution. (author)
Violation of the Born Rule: Implications for the Classical Electromagnetic Field
Kastner, R E
2016-01-01
It is shown that violation of the Born Rule leads to a breakdown of the correspondence between the quantum electromagnetic field and its classical counterpart. Specifically, the relationship of the quantum coherent state to the classical electromagnetic field turns out to imply that if the Born Rule were violated, this could result in apparent deviations from the energy conservation law applying to the field and its sources (Poynting's Theorem). The result suggests that the Born Rule is just as fundamental a law of Nature as are the conservation laws.
Institute of Scientific and Technical Information of China (English)
Jiansong Zhang; Aixi Chen
2011-01-01
We investigate the entanglement dynamics of a quantum system consisting of two two-level atoms in a cavity with classical driving fields in the presence of white noise. The cavity is initially prepared in the vacuum state. Generally, the entanglement of two atoms decreases with the intensity of the thermal fields and the coupling strength of the two-level atoms to the thermal fields. However, we find that the entanglement of the quantum system can be enhanced by adjusting the frequency and the strength of the classical driving fields in the presence of white noise.%@@ We investigate the entanglement dynamics of a quantum system consisting of two two-level atoms in a cavity with classical driving fields in the presence of white noise.The cavity is initially prepared in the vacuum state.Generally, the entanglement of two atoms decreases with the intensity of the thermal fields and the coupling 8trength of the two-level atoms to the thermal fields.However, we find that the entanglement of the quantum system can be enhanced by adjusting the frequency and the strength of the classical driving fields in the presence of white noise.
Classical trajectory perspective of atomic ionization in strong laser fields. Semiclassical modeling
International Nuclear Information System (INIS)
Dealing with timely and interesting issues in strong laser physics. Illustrates complex strong field atomic ionization with the simple semiclassical model of classical trajectory perspective for the first time. Provides a theoretical model that can be used to account for recent experiments. The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.
Classical and Quantum Szilard Engine under Generalized Uncertainty Principle Effect
Chen, Chih-Wei
2016-01-01
We studied the Szilard engine under the effect of generalized uncertainty principle (GUP). In the classical Szilard engine, the work done by the engine is reduced by the GUP effect via a modified ideal gas law. In the quantum Szilard engine, the correction comes from the shifted eigen energy due to the nonlinear momentum dependence. We studied its effect on both bosonic and fermionic molecules.
Mahajan, Gaurang
2007-01-01
The quantum theory of a harmonic oscillator with a time dependent frequency arises in several important physical problems, especially in the study of quantum field theory in an external background. While the mathematics of this system is straightforward, several conceptual issues arise in such a study. We present a general formalism to address some of the conceptual issues like the emergence of classicality, definition of particle content, back reaction etc. In particular, we parametrize the wave function in terms of a complex number (which we call excitation parameter) and express all physically relevant quantities in terms it. Many of the notions -- like those of particle number density, effective Lagrangian etc., which are usually defined using asymptotic in-out states -- are generalized as time-dependent concepts and we show that these generalized definitions lead to useful and reasonable results. Having developed the general formalism we apply it to several examples. Exact analytic expressions are found ...
Jurić, Tajron; Samsarov, Andjelo
2016-05-01
In this work, we consider a noncommutative (NC) massless scalar field coupled to the classical nonrotational BTZ geometry. In a manner of the theories where the gravity emerges from the underlying scalar field theory, we study the effective action and the entropy derived from this noncommutative model. In particular, the entropy is calculated by making use of the two different approaches, the brick-wall method and the heat kernel method designed for spaces with conical singularity. We show that the UV divergent structures of the entropy obtained through these two different methods agree with each other. It is also shown that the same renormalization condition that removes the infinities from the effective action can also be used to renormalize the entanglement entropy for the same system. Besides, the interesting feature of the NC model considered here is that it allows an interpretation in terms of an equivalent system comprising a commutative massive scalar field but in a modified geometry: that of the rotational BTZ black hole, the result that hints at a duality between the commutative and noncommutative systems in the background of a BTZ black hole.
Classical Electromagnetic Fields from Quantum Sources in Heavy-Ion Collisions
Holliday, Robert
2016-01-01
Electromagnetic fields are generated in high energy nuclear collisions by spectator valence protons. These fields are traditionally computed by integrating the Maxwell equations with point sources. One might expect that such an approach is valid at distances much larger than the proton size and thus such a classical approach should work well for almost the entire interaction region in the case of heavy nuclei. We argue that, in fact, the contrary is true: due to the quantum diffusion of the proton wave function, the classical approximation breaks down at distances of the order of the system size. As a result, the electromagnetic field (in vacuum) is present in the interaction region in the form of a traveling wave for much longer time than it was previously anticipated. Additionally, the quantum treatment of the sources removes the short-distance divergence of the field, making it possible to compute the maximal field strength achievable at a given collision energy.
Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation
Scheck, Florian
2012-01-01
The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...
Quantum-classical correspondence of a field induced KAM-type transition: A QTM approach
Indian Academy of Sciences (India)
P K Chattaraj; S Sengupta; S Giri
2008-01-01
A transition from regular to chaotic behaviour in the dynamics of a classical Henon-Heiles oscillator in the presence of an external field is shown to have a similar quantum signature when studied using the pertaining phase portraits and the associated Kolmogorov-Sinai-Lyapunov entropies obtained through the corresponding Bohmian trajectories.
Apparent Paradoxes in Classical Electrodynamics: A Fluid Medium in an Electromagnetic Field
Kholmetskii, A. L.; Yarman, T.
2008-01-01
In this paper we analyse a number of teaching paradoxes of classical electrodynamics, dealing with the relativistic transformation of energy and momentum for a fluid medium in an external electromagnetic field. In particular, we consider a moving parallel plate charged capacitor, where the electric attraction of its plates is balanced by the…
On the classical limit of self-interacting quantum field Hamiltonians with cutoffs
AMMARI, Zied; Zerzeri, Maher
2012-01-01
We study, using Hepp's method, the propagation of coherent states for a general class of self interacting bosonic quantum field theories with spatial cutoffs. This includes models with non-polynomial interactions in the field variables. We show indeed that the time evolution of coherent states, in the classical limit, is well approximated by time-dependent affine Bogoliubov unitary transformations. Our analysis relies on a non-polynomial Wick quantization and a specific hypercontractive estim...
Kuwahara, Y; Nakamura, Y; Yamanaka, Y
2013-01-01
The $2 \\times 2$-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [Phys. Rev. Lett. 110, 174301 (2013)]. We show that the Galley's Hamilto...
Numerical study of chiral plasma instability within the classical statistical field theory approach
Buividovich, P. V.; Ulybyshev, M. V.
2016-07-01
We report on a numerical study of real-time dynamics of electromagnetically interacting chirally imbalanced lattice Dirac fermions within the classical statistical field theory approach. Namely, we perform exact simulations of the real-time quantum evolution of fermionic fields coupled to classical electromagnetic fields, which are in turn coupled to the vacuum expectation value of the fermionic electric current. We use Wilson-Dirac Hamiltonian for fermions, and noncompact action for the gauge field. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, the electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to transform to helicity of the electromagnetic field. By performing simulations on large lattices we show that in most cases this decay process is accompanied by the inverse cascade phenomenon, which transfers energy from short-wavelength to long-wavelength electromagnetic fields. In some simulations, however, we observe a very clear signature of inverse cascade for the helical magnetic fields that is not accompanied by the axial charge decay. This suggests that the relation between the inverse cascade and axial charge decay is not as straightforward as predicted by the simplest form of anomalous Maxwell equations.
The classical wormhole solution and wormhole wavefunction with a nonlinear Born-Infeld scalar field
Lu, H. Q.; Shen, L. M.; Ji, P. (Ping); Ji, G. F.; Sun, N. J.
2002-01-01
On this paper we consider the classical wormhole solution of the Born-Infeld scalar field. The corresponding classical wormhole solution can be obtained analytically for both very small and large $\\dot{\\phi}$. At the extreme limits of small $\\dot{\\phi}$ the wormhole solution has the same format as one obtained by Giddings and Strominger[10]. At the extreme limits of large $\\dot{\\phi}$ the wormhole solution is a new one. The wormhole wavefunctions can also be obtained for both very small and l...
Classical dynamics of a charged particle in a laser field beyond the dipole approximation
Jameson, Paul; Khvedelidze, Arsen
2008-05-01
The classical dynamics of a charged particle traveling in a laser field modeled by an elliptically polarized monochromatic electromagnetic plane wave is discussed within the time reparametrization invariant form of the nonrelativistic Hamilton-Jacobi theory. The exact parametric representation for a particle’s orbit in an arbitrary plane wave background beyond the dipole approximation and including effect of the magnetic field is derived. For an elliptically polarized monochromatic plane wave the particle’s trajectory, as an explicit function of the laboratory frame’s time, is given in terms of the Jacobian elliptic functions, whose modulus is proportional to the laser’s intensity and depends on the polarization of radiation. It is shown that the system exposes the intensity duality, correspondence between the motion in the backgrounds with various intensities. In virtue of the modular properties of the Jacobian functions, by starting with the representative “fundamental solution” and applying a certain modular transformation one can obtain the particle’s orbit in the monochromatic plane wave background with arbitrarily prescribed characteristics.
Classical and quantum effects in noble metal and graphene plasmonics
DEFF Research Database (Denmark)
Mortensen, N. Asger
2015-01-01
Plasmonics — the interaction of light with free electrons in metals — is commonly understood within classical electrodynamics using local-response constitutive laws (such as Ohm's law). However, the tight localization of plasmons to small volumes is revealing intriguing new physics such as noncla......Plasmonics — the interaction of light with free electrons in metals — is commonly understood within classical electrodynamics using local-response constitutive laws (such as Ohm's law). However, the tight localization of plasmons to small volumes is revealing intriguing new physics...... such as nonclassical electrodynamics with a nonlocal response of the plasmons. Nonlocal effects are being explored both theoretically and experimentally in different charge-conducting material systems with examples ranging from sub-10 nanometer noble metal particles to one-atom thin disks of doped graphene....
Pseudo-classical transport in a sheared magnetic field: Theory and simulation
Energy Technology Data Exchange (ETDEWEB)
Nevins, W.M.; Harte, J.; Gell, Y.
1979-11-01
The cross-field transport due to the trapping of electrons in a finite amplitude wave (pseudo-classical transport) is investigated. Both finite wave frequencies and magnetic shear are included. The single particle orbit equations are solved to obtain the trapping criterion as well as the trapped particle orbit width and bounce frequency. Using a random walk model, the scaling of the pseudo-classical transport coefficients with the parameters of the plasma and wave are deduced. This scaling is employed to extend a previous calculation of the transport coefficients to include magnetic shear which is found to reduce these transport coefficients. Computer simulations of this transport process are presented. The measured transport rates are in very good agreement with the previous kinetic calculation in the absence of magnetic shear and with this extension of pseudo-classical transport theory which includes magnetic shear.
Back-Reaction of Classical Fields on Black Hole Area Law
Huang, Wung-Hong
2015-01-01
We study the back-reaction of classical Maxwell field and massive scalar field on the BTZ black hole entropy. The exact values of the modification which correct the black hole area law are found. We discuss the similar properties between the scalar and Maxwell field which is investigated in both of Coulomb gauge and Lorentz gauge. The dependences of mass and mode number on the black hole entropy are illustrated. We also study the back-reaction by D branes, which is described by DBI action, and explicitly check that the classical solution which gives the black hole entropy precisely corrects the black hole area law. Our results extend the calculations of the generalized gravitational entropy proposed in recent by Lewkowycz and Maldacena [1].
Spatial Wilson loops in the classical field of high-energy heavy-ion collisions
Petreska, Elena
2013-01-01
It has been previously shown numerically that the expectation value of the magnetic Wilson loop at the initial time of a heavy-ion collision exhibits area law scaling. This was obtained for a classical non-Abelian gauge field in the forward light cone and for loops of area $A\\gsim 2/Q_s^2$. Here, we present an analytic calculation of the spatial Wilson loop evaluated in the classical field of a collision within perturbation theory. We show that the leading diagram corresponds to two sources, for both projectile and target, whose field is evaluated at second order in the gauge potential. We find that in ``naive'' perturbation theory without screening the magnetic flux through a loop is proportional to the square of its area.
Dodonov, V V
2016-01-01
An exact infinite set of coupled ordinary differential equations, describing the evolution of the modes of the classical electromagnetic field inside an ideal cavity, containing a thin slab with the time-dependent conductivity $\\sigma(t)$ and dielectric permittivity $\\varepsilon(t)$, is derived for the dispersion-less media. This problem is analyzed in connection with the attempts to simulate the so called Dynamical Casimir Effect in three-dimensional electromagnetic cavities, containing a thin semiconductor slab, periodically illuminated by strong laser pulses. Therefore it is assumed that functions $\\sigma(t)$ and $\\delta\\varepsilon(t)=\\varepsilon(t)-\\varepsilon(0)$ are different from zero during short time intervals (pulses) only. The main goal is to find the conditions, under which the initial nonzero classical field could be amplified after a single pulse (or a series of pulses). Approximate solutions to the dynamical equations are obtained in the cases of "small" and "big" maximal values of the function...
Directory of Open Access Journals (Sweden)
Chuen-An Tang
2014-01-01
Full Text Available The purposes of this study are to test reliabilities and validities of classics-reading curriculum (CRC scale, classics-reading promotion (CRP scale, and classics-reading effect (CRE scale and to examine the relationships between CRC, CRP, and CRE in elementary schools through applying CORPS framework. The pilot sample and formal sample contain 141 and 500 participants from elementary school faculties and classics-reading volunteers in the north, central, south, and east regions of Taiwan. The findings indicate that Cronbach α coefficients of curriculum cognition (CC, curriculum teaching (CT, inside-school promotion (IP, outside-school promotion (EP, learning effect (LE, and class management effect (CME subscales are .88, .85, .93, .91, .91, .94, respectively, through exploratory factor analysis and they have good internal reliabilities and construct validities, respectively, through confirmatory factor analysis. Moreover, CC, CT, IP, and EP have positive influences on LE (standardized coefficients .34, .25, .14, and .22 and on CME (standardized coefficients .41, .14, .14, and .20, respectively. CC, CT, IP, and EP can explain 69% of LE and 61% of CME. The model is supported by the data. Lastly, this study proposes some suggestions regarding the classics-reading education for elementary schools.
AMMARI, Zied; Falconi, Marco
2016-01-01
In the mid Sixties Edward Nelson proved the existence of a consistent quantum field theory that describes the Yukawa-like interaction of a non-relativistic nucleon field with a relativistic meson field. Since then it is thought, despite the renormalization procedure involved in the construction, that the quantum dynamics should be governed in the classical limit by a Schr\\"odinger-Klein-Gordon system with Yukawa coupling. In the present paper we prove this fact in the form of a Bohr correspon...
Kuwahara, Y.; Nakamura, Y.; Yamanaka, Y.
2013-12-01
The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [1]. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.
Energy Technology Data Exchange (ETDEWEB)
Kuwahara, Y., E-mail: a.kuwahara1224@asagi.waseda.jp; Nakamura, Y., E-mail: nakamura@aoni.waseda.jp; Yamanaka, Y., E-mail: yamanaka@waseda.jp
2013-12-09
The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.
Current-carrying plasma and the magnetic field ambiguity in classical MHD theory
International Nuclear Information System (INIS)
An ambiguity in the classical theoretical framework used for computing magnetohydrostatic equilibrium is pointed out and analyzed. This inconsistency implies that some proposed solutions of the magnetohydrodynamic (MHD) equations may not represent actual magnetic fields of plasma currents in the geometry considered. The root of the inconsistency is that the magnetostatic field equation and the magnetohydrostatic equations are not invariant under the same transformations. There are two types of problems where inconsistencies have arisen in the literature: (a) unphysical magnetic fields are postulated inside a plasma current; and (b) vacuum magnetic fields are postulated that are not gradient fields. In both cases, magnetic fields are obtained which cannot be created in the laboratory. This inconsistency is traced back to a mishandling of the mathematical structure of the magnetic field equation. The magnetic field rvec B is a vector potential for the current density distribution rvec j, just as rvec A is a vector potential for rvec B. Nevertheless, whereas a gauge transformation on rvec A is unobservable (gauge invariant), the analogous gauge transformation in the rvec B vector (gradient field transformation) is indeed observable and changes the Lorentz force. Following Alfven, the authors characterize plasmas mathematically through the field lines of the current density distribution vector. Classical MHD theory, by contrast, is concerned strictly with magnetic field lines. They show here how this magnetic field approach can lead to inconsistencies when applied to plasmas. A resolution of entrenched ambiguities is made possible by using the current fiber description to derive a corrected Grad-Shafranov plasma equilibrium equation
Khrennikov, Andrei
2016-01-01
The scientific methodology based on two descriptive levels, ontic (reality as it is ) and epistemic (observational), is briefly presented. Following Schr\\"odinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be inaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity - the quantum state ("wave function"). The correspondence PCSFT to QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and th...
Xiao, Jie; Guo, Zhaoli; Cai, Chao
2013-10-01
Outside the classical receptive field (CRF), there exists a broad non-classical receptive field (NCRF). The response of the central neuron is affected not only by the stimulus inside the CRF, but also modulated by the stimulus surrounding it. The contextual modulation is mediated by horizontal connections across the visual cortex. In this paper, a contour detection method inspired by the visual mechanism in the primary visual cortex (V1) is proposed. The method is divided in three steps. Firstly, the response of every single visual neuron in V1 is computed by local energy. Secondly, the facilitation and suppression (the contextual influence) on a neuron through horizontal interactions are obtained by constructing a two neighbor modulating functions. Finally, the total output response of one neuron to complex visual stimuli is acquired by combing the influence of local visual context on the neuron and energy response by itself. We tested it on natural image and encouraging results were acquired.
Measuring the Magnetic Field on the Classical T Tauri Star TW Hydrae
Yang, H; Valenti, J A
2005-01-01
We present infrared (IR) and optical echelle spectra of the Classical T Tauri star TW Hydrae. Using the optical data, we perform detailed spectrum synthesis to fit atomic and molecular absorption lines and determine key stellar parameters: Teff = 4126 \\pm 24 K, log g = 4.84 \\pm 0.16, [M/H] = -0.10 \\pm 0.12, vsini = 5.8 \\pm 0.6 km/s. The IR spectrum is used to look for Zeeman broadening of photospheric absorption lines. We fit four Zeeman sensitive Ti I lines near 2.2 microns and find the average value of the magnetic field over the entire surface is 2.61 \\pm 0.23 kG. In addition, several nearby magnetically insensitive CO lines show no excess broadening above that produced by stellar rotation and instrumental broadening, reinforcing the magnetic interpretation for the width of the Ti I lines. We carry out extensive tests to quantify systematic errors in our analysis technique which may result from inaccurate knowledge of the effective temperature or gravity, finding that reasonable errors in these quantities ...
Classical Monte-Carlo simulation for Rydberg states ionization in strong field
Carrat, Vincent; Magnuson, Eric; Gallagher, Thomas
2016-05-01
The resilience of Rydberg states against ionization has fascinated physicists for a long time. One might expect that the loosely bound electron would be ionized by modest electromagnetic field. However, experiments show that a notable fraction of neutral atoms survive in Rydberg states when exposed to strong microwave or laser fields. Energy transfer between the field and the photoelectron occurs when the electron is close to the ionic core and depends on the phase of the field. Since those states have orbital times that can be larger than the field pulse duration, these energy exchanges will only occur a few times. While we can experimentally control the initial time when we create the Rydberg states and as a consequence the initial energy transfer from the field, our classical calculation suggests that the phase when the electron is returning to the ionic core on the next orbit is chaotic. Statistically the electron only has a 50% chance to gain energy which may lead to ionization. Additionally the population tends to accumulate in very high n states where ionization is less likely due to fewer rescattering events. Though incomplete, this classical Monte-Carlo simulation provides useful insights for understanding the experimental observations. This work has been entirely performed at University of Virginia and is supported by the U. S. Department of Energy, Office of Basic energy Sciences.
On the existence of classical solutions for stationary extended mean field games
Gomes, Diogo A.
2014-04-01
In this paper we consider extended stationary mean-field games, that is mean-field games which depend on the velocity field of the players. We prove various a-priori estimates which generalize the results for quasi-variational mean-field games in Gomes et al. (2012). In addition we use adjoint method techniques to obtain higher regularity bounds. Then we establish the existence of smooth solutions under fairly general conditions by applying the continuity method. When applied to standard stationary mean-field games as in Lasry and Lions (2006), Gomes and Sanchez-Morgado (2011) or Gomes et al. (2012) this paper yields various new estimates and regularity properties not available previously. We discuss additionally several examples where the existence of classical solutions can be proved. © 2013 Elsevier Ltd. All rights reserved.
One-dimensional classical diffusion in a random force field with weakly concentrated absorbers
Texier, Christophe; Hagendorf, Christian
2009-01-01
A one-dimensional model of classical diffusion in a random force field with a weak concentration $\\rho$ of absorbers is studied. The force field is taken as a Gaussian white noise with $\\mean{\\phi(x)}=0$ and $\\mean{\\phi(x)\\phi(x')}=g \\delta(x-x')$. Our analysis relies on the relation between the Fokker-Planck operator and a quantum Hamiltonian in which absorption leads to breaking of supersymmetry. Using a Lifshits argument, it is shown that the average return probability is a power law $\\sme...
The quench map in an integrable classical field theory: nonlinear Schrödinger equation
Caudrelier, Vincent; Doyon, Benjamin
2016-11-01
We study the non-equilibrium dynamics obtained by an abrupt change (a quench) in the parameters of an integrable classical field theory, the nonlinear Schrödinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the quench map which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux–Bäcklund transformations, Gelfand–Levitan–Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the quantization of our classical approach to the quantum quench problem.
A New Semi-Symmetric Uniﬁed Field Theory of the Classical Fields of Gravity and Electromagnetism
Directory of Open Access Journals (Sweden)
Suhendro I.
2007-10-01
Full Text Available We attempt to present a classical theoretical framework in which the gravitational and electromagnetic fields are unified as intrinsic geometric objects in the space-time manifold. For this purpose, we first present the preliminary geometric considerations dealing with the metric differential geometry of Cartan connections. The unified field theory is then developed as an extension of the general theory of relativity based on a semi- symmetric Cartan connection which is meant to be as close as possible structurally to the symmetric connection of the Einstein-Riemann space-time.
Analysis of classical phase space and energy transfer for two rotating dipoles in an electric field
González-Férez, Rosario; Salas, J Pablo; Schmelcher, Peter
2016-01-01
We explore the classical dynamics of two interacting rotating dipoles that are fixed in the space and exposed to an external homogeneous electric field. Kinetic energy transfer mechanisms between the dipoles are investigated varying both the amount of initial excess kinetic energy of one of them and the strength of the electric field. In the field-free case, and depending on the initial excess energy an abrupt transition between equipartition and non-equipartition regimes is encountered. The study of the phase space structure of the system as well as the formulation of the Hamiltonian in an appropriate coordinate frame provide a thorough understanding of this sharp transition. When the electric field is turned on, the kinetic energy transfer mechanism is significantly more complex and the system goes through different regimes of equipartition and non-equipartition of the energy including chaotic behavior.
Mean-field approximation for spacing distribution functions in classical systems
González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.
2012-01-01
We propose a mean-field method to calculate approximately the spacing distribution functions p(n)(s) in one-dimensional classical many-particle systems. We compare our method with two other commonly used methods, the independent interval approximation and the extended Wigner surmise. In our mean-field approach, p(n)(s) is calculated from a set of Langevin equations, which are decoupled by using a mean-field approximation. We find that in spite of its simplicity, the mean-field approximation provides good results in several systems. We offer many examples illustrating that the three previously mentioned methods give a reasonable description of the statistical behavior of the system. The physical interpretation of each method is also discussed.
Zarei, Mohammad Hossein
2016-01-01
Although creating a unified theory in Elementary Particles Physics is still an open problem, there are a lot of attempts for unifying other fields of physics. Following such unifications, we regard a two dimensional (2D) classical $\\Phi^{4}$ field theory model to study several field theories with different symmetries in various dimensions. While the completeness of this model has been already proved by a mapping between statistical mechanics and quantum information theory, here, we take into account a fundamental systematic approach with purely mathematical basis to re-derive such completeness in a general manner. Due to simplicity and generality, we believe that our method leads to a general approach which can be understood by other physical communities as well as quantum information theorists. Furthermore, our proof of the completeness is not only a proof-of-principle, but also an interesting algorithmic proof. We consider a discrete version of a general field theory as an arbitrary polynomial function of f...
Finite size effect on classical ideal gas revisited
Ghosh, P.; Ghosh, S.; Mitra, J.; Bera, N.
2015-09-01
Finite size effects on classical ideal gas are revisited. The micro-canonical partition function for a collection of ideal particles confined in a box is evaluated using Euler-Maclaurin’s as well as Poisson's summation formula. In Poisson's summation formula there are some exponential terms which are absent in Euler-Maclaurin’s formula. In the thermodynamic limit the exponential correction is negligibly small but in the macro/nano dimensions and at low temperatures they may have a great significance. The consequences of finite size effects have been illustrated by redoing the calculations in one and three dimensions keeping the exponential corrections. Global and local thermodynamic properties, diffusion driven by the finite size effect, and effect on speed of sound have been discussed. Thermo-size effects, similar to thermoelectric effects, have been described in detail and may be a theoretical basis with which to design nano-scaled devices. This paper can also be very helpful for undergraduate and graduate students in physics and chemistry as an instructive exercise for a good course in statistical mechanics.
Parametric Instability of Classical Yang-Mills Fields in an Expanding Geometry
Tsutsui, Shoichiro; Ohnishi, Akira
2015-01-01
We investigate the instability of classical Yang-Mills field in an expanding geometry under a color magnetic background field within the linear regime. We consider homogeneous, boost-invariant and time-dependent color magnetic fields simulating the glasma configuration. We introduce the conformal coordinates which enable us to map an expanding problem approximately into a nonexpanding problem. We find that the fluctuations with finite longitudinal momenta can grow exponentially due to parametric instability. Fluctuations with finite transverse momenta can also show parametric instability, but their momenta are restricted to be small. The most unstable modes start to grow exponentially in the early stage of the dynamics and they may affect the thermalization in heavy-ion collisions.
Parametric instability of classical Yang-Mills fields in an expanding geometry
Tsutsui, Shoichiro; Kunihiro, Teiji; Ohnishi, Akira
2016-07-01
We investigate the instability of a classical Yang-Mills field in an expanding geometry under a color magnetic background field within the linear regime. We consider homogeneous, boost-invariant, and time-dependent color magnetic fields simulating the glasma configuration. We introduce the conformal coordinates which enable us to map an expanding problem approximately into a nonexpanding problem. We find that the fluctuations with finite longitudinal momenta can grow exponentially due to parametric instability. Fluctuations with finite transverse momenta can also show parametric instability, but their momenta are restricted to be small. The most unstable modes start to grow exponentially in the early stage of the dynamics, and they may affect the thermalization in heavy-ion collisions.
A Langevin Approach to a Classical Brownian Oscillator in an Electromagnetic Field
Espinoza Ortiz, J. S.; Bauke, F. C.; Lagos, R. E.
2016-08-01
We consider a charged Brownian particle bounded by an harmonic potential, embedded in a Markovian heat bath and driven from equilibrium by external electric and magnetic fields. We develop a quaternionic-like (or Pauli spinor-like) representation, hitherto exploited in classical Lorentz related dynamics. Within this formalism, in a very straight forward and elegant fashion, we compute the exact solution for the resulting generalized Langevin equation, for the case of a constant magnetic field. For the case the source electromagnetic fields satisfy Maxwell's equations, yielding spinor-like Mathieu equations, we compute the solutions within the JWKB approximation. With the solutions at hand we further compute spatial, velocities and crossed time correlations. In particular we study the (kinetically defined) nonequilbrium temperature. Therefore, we can display the system's time evolution towards equilibrium or towards non equilibrium (steady or not) states.
Li, Jianxiong; Thumm, Uwe
2016-05-01
During the IR-streaked XUV photoemission from nanoparticles, the net IR electric field varies over the spatial extension of the target, an effect that for metallic particles is further enhanced by strong induced plasmonic polarization. This spatial dependence prevents the convenient use of ``Volkov states'' [solutions of the time-dependent Schrödinger equation for a free electron in a spatially homogeneous (cw) electromagnetic field] as approximate final states in quantum-mechanical photoemission calculations. To obtain the wave function of a free electron in a spatially inhomogeneous electromagnetic field, we propose a semi-classical approach based on time-dependent WKB theory. Generalizing ordinary Volkov states, this method provides a simple expression for modeling the final photoelectron state. We employ such generalized Volkov states to calculate the streaked photoelectron spectra from gold nanospheres and assess their accurary. Supported by the NSD-EPSCoR program, NSF, and the USDoE.
Field-testing of the ICHD-3 beta diagnostic criteria for classical trigeminal neuralgia
DEFF Research Database (Denmark)
Maarbjerg, Stine; Sørensen, Morten Togo; Gozalov, Aydin;
2015-01-01
INTRODUCTION: We aimed to field-test the beta version of the third edition of the International Classification of Headache Disorders (ICHD-3 beta) diagnostic criteria for classical trigeminal neuralgia (TN). The proposed beta draft of the 11th version of the International Classification of Diseases...... (ICD-11 beta) is almost exclusively based on the ICHD-3 beta classification structure although slightly abbreviated. We compared sensitivity and specificity to ICHD-2 criteria, and evaluated the needs for revision. METHODS: Clinical characteristics were systematically and prospectively collected from...
Kamboj, Aman; Patel, Chhabi L.; Chaturvedi, V.K.; Saini, Mohini; Praveen K. Gupta
2014-01-01
We report the complete genome sequence of an Indian field isolate of classical swine fever virus (CSFV) belonging to predominant subgenotype 1.1 prevalent in India. This report will help in understanding the molecular diversity of CSFV strains circulating worldwide and to select and develop a suitable vaccine candidate for classical swine fever (CSF) control in India.
Cosmological consequences of classical flavor-space locked gauge field radiation
Bielefeld, Jannis; Caldwell, Robert R.
2015-06-01
We propose a classical SU(2) gauge field in a flavor-space locked configuration as a species of radiation in the early Universe and show that it would have a significant imprint on a primordial stochastic gravitational wave spectrum. In the flavor-space locked configuration, the electric and magnetic fields of each flavor are parallel and mutually orthogonal to other flavors, with isotropic and homogeneous stress energy. Due to the non-Abelian coupling, the gauge field breaks the symmetry between left- and right-circularly polarized gravitational waves. This broken chiral symmetry results in a unique signal: nonzero cross-correlation of the cosmic microwave background temperature and polarization, T B and E B , both of which should be zero in the standard, chiral symmetric case. We forecast the ability of current and future cosmic microwave background experiments to constrain this model. Furthermore, a wide range of behavior is shown to emerge, depending on the gauge field coupling, abundance, and allocation into electric and magnetic field energy density. The fluctuation power of primordial gravitational waves oscillates back and forth into fluctuations of the gauge field. In certain cases, the gravitational wave spectrum is shown to be suppressed or amplified by up to an order of magnitude depending on the initial conditions of the gauge field.
Relativistic and nonrelativistic classical field theory on fivedimensional space-time
International Nuclear Information System (INIS)
This paper is a sequel to earlier ones in which, on the one hand, classical field theories were described on a curved Newtonian space-time, and on the other hand, the Newtonian gravitation theory was formulated on a fivedimensional space-time with a metric of signature and a covariantly constant vector field. Here we show that Lagrangians for matter fields are easily formulated on this extended space-time from simple invariance arguments and that stress-energy tensors can be derived from them in the usual manner so that four-dimensional space-time expressions are obtained that are consistent in the relativistic as well as in the Newtonian case. In the former the theory is equivalent to General Relativity. When the magnitude of the distinguished vector field vanishes equations for the (covariant) Newtonian limit follow. We demonstrate this here explicity in the case of the Klein-Gordon/Schroedinger and the Dirac field and its covariant nonrelativistic analogue, the Levy-Leblond field. Especially in the latter example the covariant Newtonian theory simplifies dramatically in this fivedimensional form
Classical color field modified minijet model for $pp$ and $\\bar{p} p$ total cross section
Cheung, Man-Fung
2011-01-01
In a recent paper, we have evaluated the $gg\\rightarrow gg$ scattering amplitude in the presence of classical color field generated by the colliding protons in the leading order approximation within the pQCD. In this work, we show that this amplitude can be resumed to obtain the classical color field modified $gg \\rightarrow gg$ elastic scattering amplitude. This modified amplitude is suppressed when the longitudinal momentum fraction, $x$, of the incident gluon is small. Minijet cross section is calculated using the modified amplitude. We show that the $pp$ and $\\bar{p} p$ cross section from $\\sqrt{s} = 5$ GeV to 30 TeV can be described as a sum of a hard component contributed by the modified minijet model and a soft component due to the exchange of the pomeron and of the I=0 exchange-degenerate $\\omega$ and $f$ trajectories. The predicted cross section has a $\\ln^2 s$ asymptotic behavior which satisfies Froissart bound.
Magnetic properties of a classical XY spin dimer in a "planar" magnetic field
Ciftja, Orion; Prenga, Dode
2016-10-01
Single-molecule magnetism originates from the strong intra-molecular magnetic coupling of a small number of interacting spins. Such spins generally interact very weakly with the neighboring spins in the other molecules of the compound, therefore, inter-molecular spin couplings are negligible. In certain cases the number of magnetically coupled spins is as small as a dimer, a system that can be considered the smallest nanomagnet capable of storing non-trivial magnetic information on the molecular level. Additional interesting patterns arise if the spin motion is confined to a two-dimensional space. In such a scenario, clusters consisting of spins with large-spin values are particularly attractive since their magnetic interactions can be described well in terms of classical Heisenberg XY spins. In this work we calculate exactly the magnetic properties of a nanomagnetic dimer of classical XY spins in a "planar" external magnetic field. The problem is solved by employing a mathematical approach whose idea is the introduction of auxiliary spin variables into the starting expression of the partition function. Results for the total internal energy, total magnetic moment, spin-spin correlation function and zero-field magnetic susceptibility can serve as a basis to understand the magnetic properties of large-spin dimer building blocks.
The Quench Map in an Integrable Classical Field Theory: Nonlinear Schr\\"odinger Equation
Caudrelier, Vincent
2016-01-01
We study the non-equilibrium dynamics obtained by an abrupt change (a {\\em quench}) in the parameters of an integrable classical field theory, the nonlinear Schr\\"odinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the {\\em quench map} which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux-B\\"acklund transformations, Gelfand-Levitan-Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the ...
Axiomatics of classical electrodynamics and its relation to gauge field theory
Gronwald, F; Nitsch, J; Gronwald, Frank; Hehl, Friedrich W.
2005-01-01
We give a concise axiomatic introduction into the fundamental structure of classical electrodynamics: It is based on electric charge conservation, the Lorentz force, magnetic flux conservation, and the existence of local and linear constitutive relations. The {\\it inhomogeneous} Maxwell equations, expressed in terms of $D^i$ and $H_i$, turn out to be a consequence of electric charge conservation, whereas the {\\it homogeneous} Maxwell equations, expressed in terms of $E_i$ and $B^i$, are derived from magnetic flux conservation and special relativity theory. The excitations $D^i$ and $H_i$, by means of constitutive relations, are linked to the field strengths $E_i$ and $B^i$. Eventually, we point out how this axiomatic approach is related to the framework of gauge field theory.
Classical and quantum theory of the massive spin-two field
Koenigstein, Adrian; Giacosa, Francesco; Rischke, Dirk H.
2016-05-01
In this paper, we review classical and quantum field theory of massive non-interacting spin-two fields. We derive the equations of motion and Fierz-Pauli constraints via three different methods: the eigenvalue equations for the Casimir invariants of the Poincaré group, a Lagrangian approach, and a covariant Hamilton formalism. We also present the conserved quantities, the solution of the equations of motion in terms of polarization tensors, and the tree-level propagator. We then discuss canonical quantization by postulating commutation relations for creation and annihilation operators. We express the energy, momentum, and spin operators in terms of the former. As an application, quark-antiquark currents for tensor mesons are presented. In particular, the current for tensor mesons with quantum numbers JPC =2-+ is, to our knowledge, given here for the first time.
Classical and quantum theory of the massive spin-two field
Koenigstein, Adrian; Rischke, Dirk H
2015-01-01
In this paper, we review classical and quantum field theory of massive non-interacting spin-two fields. We derive the equations of motion and Fierz-Pauli constraints via three different methods: the eigenvalue equations for the Casimir invariants of the Poincar\\'{e} group, a Lagrangian approach, and a covariant Hamilton formalism. We also present the conserved quantities, the solution of the equations of motion in terms of polarization tensors, and the tree-level propagator. We then discuss canonical quantization by postulating commutation relations for creation and annihilation operators. We express the energy, momentum, and spin operators in terms of the former. As an application, quark-antiquark currents for tensor mesons are presented. In particular, the current for tensor mesons with quantum numbers $J^{PC}=2^{-+}$ is, to our knowledge, given here for the first time.
Effects of complex parameters on classical trajectories of Hamiltonian systems
Indian Academy of Sciences (India)
Asiri Nanayakkara; Thilagarajah Mathanaranjan
2014-06-01
Anderson et al have shown that for complex energies, the classical trajectories of real quartic potentials are closed and periodic only on a discrete set of eigencurves. Moreover, recently it was revealed that when time is complex $t(t = t_r e^{i_})$, certain real Hermitian systems possess close periodic trajectories only for a discrete set of values of . On the other hand, it is generally true that even for real energies, classical trajectories of non-PT symmetric Hamiltonians with complex parameters are mostly non-periodic and open. In this paper, we show that for given real energy, the classical trajectories of complex quartic Hamiltonians $H = p^2 + ax^4 + bx^k$ (where is real, is complex and = 1 or 2) are closed and periodic only for a discrete set of parameter curves in the complex -plane. It was further found that given complex parameter , the classical trajectories are periodic for a discrete set of real energies (i.e., classical energy gets discretized or quantized by imposing the condition that trajectories are periodic and closed). Moreover, we show that for real and positive energies (continuous), the classical trajectories of complex Hamiltonian $H = p^2 + x^4$, ($= _r$ e$^{i}$) are periodic when $ = 4 \\tan^{−1}$[($n/(2m + n)$)] for $\\forall n$ and $m \\mathbb{Z}$.
Exact solution of the classical mechanical quadratic Zeeman effect
Indian Academy of Sciences (India)
Sambhu N Datta; Anshu Pandey
2007-06-01
We address the curious problem of quadratic Zeeman effect at the classical mechanical level. The problem has been very well understood for decades, but an analytical solution of the equations of motion is still to be found. This state of affairs persists because the simultaneous presence of the Coulombic and quadratic terms lowers the dynamical symmetry. Energy and orbital angular momentum are still constants of motion. We find the exact solutions by introducing the concept of an image ellipse. The quadratic effect leads to a dilation of space–time, and a one-to-one correspondence is observed for pairs of physical quantities like energy and angular momentum, and the maximum and minimum distances from the Coulomb center for the Zeeman orbit and the corresponding pairs for the image ellipse. Thus, instead of finding additional conserved quantities, we find constants of motion for an additional dynamics, namely, the image problem. The trajectory is open, in agreement with Bertrand's theorem, but necessarily bound. A stable unbound trajectory does not exist for real values of energy and angular momentum. The radial distance, the angle covered in the plane of the orbit, and the time are uniquely determined by introducing further the concept of an image circle. While the radial distance is defined in a closed form as a transcendental function of the image-circular angle, the corresponding orbit angle and time variables are found in the form of two convergent series expansions. The latter two variables are especially contracted, thereby leading to a precession of the open cycles around the Coulomb center. It is expected that the space–time dilation effect observed here would somehow influence the solution of the quantum mechanical problem at the non-relativistic level.
Energy Technology Data Exchange (ETDEWEB)
Mendes, Raissa F.P.; Matsas, George E.A.; Lima, William C.C. [Universidade Estadual Paulista Julio de Mesquita Filho (IFT/UNESP), Sao Paulo, SP (Brazil); Vanzella, Daniel A.T. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Instituto de Fisica
2013-07-01
Full text: Recently, it has been shown that certain space-time evolutions can induce an exponential growth of the vacuum fluctuations of some non-minimally coupled free scalar fields (PRL 104, 161102). This 'vacuum awakening mechanism' may have consequences, in particular, to astrophysics, since the vacuum energy density of the scalar field can grow as large as the nuclear density of neutron stars in few milliseconds once the effect is triggered (PRL 105, 151102). Conversely, the existence of classes of non-minimally coupled scalar fields can be unfavored by the determination of the mass-radius ratio of relativistic stars with known equations of state. For this latter purpose, it is relevant to know if the main features described in the original works are preserved when assumptions such as spherical symmetry or staticity are relaxed. In this presentation, we discuss this mechanism in the context of spheroidal and rotating thin shells, in order to investigate the consequences of deviations from spherical symmetry and staticity on the triggering of the effect. We also make explicit the relation between this vacuum awakening effect and the related classical instability, approached for instance by a quasi-normal mode analysis, and show how quantum fluctuations can be simulated by classical perturbations of a corresponding amplitude. (author)
Aventura ranch field: A classic stratigraphic trap - James Lime, Van Zandt County, Texas
Energy Technology Data Exchange (ETDEWEB)
Jones, A.; Palmer, J.T. (Palmer Petroleum, Inc., Shreveport, LA (United States))
1993-09-01
Aventura Ranch field, found September 10, 1990, is the most recent significant James Lime discovery in the East Texas basin. Current estimates indicate recoverable reserves of 20 bcf of gas and 1.5 million bbl of condensate. The field represents a classic stratigraphic trap, formed by a facies change from downdip porous and permeable grainstones, terminating updip into carbonate mudstones, wackestones, and unrelated grainstones. The James Lime formation consists of poorly sorted, low-porosity lime wackestone/mudstones, and well-sorted reservoir lime grainstones. The reservoir consists of two facies: (1) skeletal grainstones, and (2) oolitic grainstones. The skeletal grainstones are interpreted as deposits adjacent to the James Lime reef core. The oolitic grainstones were deposited as high-energy shoals or bars in shallow, agitated water, possible paralleling the skeletal grainstones adjacent of the reef. Both interparticle and intraparticle porosity are present in the grainstone facies. Microporosity also is evident and is responsible for suppressing most of the induction log resistivity throughout the field. Resistivity as low as 1.5 ohms is found to be hydrocarbon productive. Subsequent to the development of the Fairway field, a large James Lime stratigraphic trap had been sought for many years, resulting in only the minor discovery of North Athens field. Several dry holes had been drilled amazingly close to the currently productive area. Perseverance and persistence finally paid off with the discovery of Aventura Ranch field. Currently, the field is producing 6 million ft[sup 3] of gas and 425 bbl of condensate a day.
Parametric Instability of Classical Yang-Mills Fields under Color Magnetic Background
Tsutsui, Shoichiro; Kunihiro, Teiji; Ohnishi, Akira
2014-01-01
We investigate instabilities of classical Yang-Mills fields in a time-dependent spatially homogeneous color magnetic background field in a non-expanding geometry for elucidating the earliest stage dynamics of ultra-relativistic heavy-ion collisions. The background gauge field configuration considered in this article is spatially homogeneous and temporally periodic, and is alluded by Berges-Scheffler-Schlichting-Sexty (BSSS). We discuss the whole structure of instability bands of fluctuations around the BSSS background gauge field on the basis of Floquet theory, which enables us to discuss the stability in a systematic way. We find various instability bands on the $(p_z, p_T)$-plane. These instability bands are caused by parametric resonance despite the fact that the momentum dependence of the growth rate for $|\\mathbf{p}| \\leq \\sqrt{B}$ is similar to a Nielsen-Olesen instability. Moreover, some of instability bands are found to emerge not only in the low momentum but also in the high momentum region; typicall...
A classical picture of anomalous effects in a Tokamak
Hirano, K.
1984-01-01
Atomic collisions between plasma ions and a very small amount of neutral particles remaining in a hot plasma plays a very important role for plasma transports and may be an origin of anomalous effects observed in a Tokamak such as the diffusion coefficient independent of the field strength, a rapid plasma density increase during gas puffing and current penetration with anomalously high speed in the start-up phase. The Ohm's law derived by Cowling is used for the analysis.
Mück, W
1998-01-01
We use the AdS/CFT correspondence to calculate CFT correlation functions of vector and spinor fields. The connection between the AdS and boundary fields is properly treated via a Dirichlet boundary value problem.
Gauge bridges in classical field theory; Eichbruecken in der klassischen Feldtheorie
Energy Technology Data Exchange (ETDEWEB)
Jakobs, S.
2009-03-15
In this thesis Poisson structures of two classical gauge field theories (Maxwell-Klein-Gordon- and Maxwell-Dirac-system) are constructed using the parametrix construction of Green's functions. Parametrices for the Maxwell-Klein-Gordon- and Maxwell-Dirac-system are constructed in Minkowski space and this construction is later generalized to curved space times for the Maxwell-Klein-Gordon-system. With these Green's functions Poisson brackets will be defined as Peierls brackets. Finally non-local, gauge invariant observables, the so-called 'gauge bridges'are constructed. Gauge bridges are the matrix elements of holonomy operators. It is shown, that these emerge from Poisson brackets of local, gauge invariant observables. (orig.)
Perez, Uzziel; Sugon, Quirino M; McNamara, Daniel J; Yoshikawa, Akimasa
2015-01-01
We studied the orbit of an electron revolving around an infinitely massive nucleus of a large classical Hydrogen atom subject to an AC electric field oscillating perpendicular to the electron's circular orbit. Using perturbation theory in geometric algebra, we show that the equation of motion of the electron perpendicular to the unperturbed orbital plane satisfies a forced simple harmonic oscillator equation found in Lorentz dispersion law in Optics. We show that even though we did not introduce a damping term, the initial orbital position and velocity of the electron results to a solution whose absorbed energies are finite at the dominant resonant frequency $\\omega=\\omega_0$; the electron slowly increases its amplitude of oscillation until it becomes ionized. We computed the average power absorbed by the electron both at the perturbing frequency and at the electron's orbital frequency. We graphed the trace of the angular momentum vector at different frequencies. We showed that at different perturbing frequen...
Magnetic fields and accretion flows on the classical T Tauri star V2129 Oph
Donati, JF; Gregory, SG; Petit, P; Bouvier, J; Dougados, C; Ménard, F; Cameron, AC; Harries, TJ; Jeffers, SV; Paletou, F
2007-01-01
From observations collected with the ESPaDOnS spectropolarimeter, we report the discovery of magnetic fields at the surface of the mildly accreting classical T Tauri star V2129 Oph. Zeeman signatures are detected, both in photospheric lines and in the emission lines formed at the base of the accretion funnels linking the disc to the protostar, and monitored over the whole rotation cycle of V2129 Oph. We observe that rotational modulation dominates the temporal variations of both unpolarized and circularly polarized line profiles. We reconstruct the large-scale magnetic topology at the surface of V2129 Oph from both sets of Zeeman signatures simultaneously. We find it to be rather complex, with a dominant octupolar component and a weak dipole of strengths 1.2 and 0.35 kG, respectively, both slightly tilted with respect to the rotation axis. The large-scale field is anchored in a pair of 2-kG unipolar radial field spots located at high latitudes and coinciding with cool dark polar spots at photospheric level. T...
On the Classical String Solutions and String/Field Theory Duality
Aleksandrova, D.; Bozhilov, P.
2003-01-01
We classify almost all classical string configurations, considered in the framework of the semi-classical limit of the string/gauge theory duality. Then, we describe a procedure for obtaining the conserved quantities and the exact classical string solutions in general string theory backgrounds, when the string embedding coordinates depend non-linearly on the worldsheet time parameter.
Effective quantum field theories in general spacetimes
Raab, Andreas
2008-01-01
We introduce regular charts as physical reference frames in spacetime, and we show that general spacetimes can always be fully captured by regular charts. Effective quantum field theories (QFTs) can be conveniently defined in regular reference frames, and the definition is independent of specific background metric and independent of specific regular reference frame. As a consequence, coupling to classical gravity is possible in effective QFTs without getting back-reaction effects. Moreover, w...
Nonsequential double ionization as a completely classical photoelectric effect.
Ho, Phay J; Panfili, R; Haan, S L; Eberly, J H
2005-03-11
We introduce a unified and simplified theory of atomic double ionization. Our results show that at high laser intensities (I>/=10(14) W/cm(2)) purely classical correlation is strong enough to account for all of the main features observed in experiments to date.
Directory of Open Access Journals (Sweden)
José Geraldo Pereira da Cruz
2010-06-01
Full Text Available In the wild, animals are exposed to an ever-changing array of sensory stimuli. The captive environment, by contrast, is generally much more impoverished in terms of the cues it offers the animals housed within. In a bid to remedy this, and promote better welfare, mice (Mus musculus were exposed to two conditions: no auditory stimulation, and stimulation with classical music. In all experiments, a battery of behavior tests was used. The results demonstrated significantly decreased immobility in the forced swim, increased enclosed arm entries in the plus-maze, and decreased immobility in the open-field, in animals that had been pre-exposed to music 24h earlier, suggesting that changes in mouse motor activity were caused by classical music. This study led to the conclusion that environmental enrichment may have profound effects on the behavior of mice in behavioral tests, and that classical music can be a relatively simple method of contributing to the well-being of captive mice, but it can affect the results of experiments such as forced swimming.
Yoo, Jejoong; Wilson, James; Aksimentiev, Aleksei
2016-10-01
Calcium ions (Ca(2+) ) play key roles in various fundamental biological processes such as cell signaling and brain function. Molecular dynamics (MD) simulations have been used to study such interactions, however, the accuracy of the Ca(2+) models provided by the standard MD force fields has not been rigorously tested. Here, we assess the performance of the Ca(2+) models from the most popular classical force fields AMBER and CHARMM by computing the osmotic pressure of model compounds and the free energy of DNA-DNA interactions. In the simulations performed using the two standard models, Ca(2+) ions are seen to form artificial clusters with chloride, acetate, and phosphate species; the osmotic pressure of CaAc2 and CaCl2 solutions is a small fraction of the experimental values for both force fields. Using the standard parameterization of Ca(2+) ions in the simulations of Ca(2+) -mediated DNA-DNA interactions leads to qualitatively wrong outcomes: both AMBER and CHARMM simulations suggest strong inter-DNA attraction whereas, in experiment, DNA molecules repel one another. The artificial attraction of Ca(2+) to DNA phosphate is strong enough to affect the direction of the electric field-driven translocation of DNA through a solid-state nanopore. To address these shortcomings of the standard Ca(2+) model, we introduce a custom model of a hydrated Ca(2+) ion and show that using our model brings the results of the above MD simulations in quantitative agreement with experiment. Our improved model of Ca(2+) can be readily applied to MD simulations of various biomolecular systems, including nucleic acids, proteins and lipid bilayer membranes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 752-763, 2016. PMID:27144470
Liao, Qing-Hong; Zhang, Qi; Xu, Juan; Yan, Qiu-Rong; Liu, Ye; Chen, An
2016-06-01
We have studied the dynamics and transfer of the entanglement of the two identical atoms simultaneously interacting with vacuum field by employing the dressed-state representation. The two atoms are driven by classical fields. The influence of the initial entanglement degree of two atoms, the coupling strength between the atom and the classical field and the detuning between the atomic transition frequency and the frequency of classical field on the entanglement and atomic linear entropy is discussed. The initial entanglement of the two atoms can be transferred into the entanglement between the atom and cavity field when the dissipation is neglected. The maximally entangled state between the atoms and cavity field can be obtained under some certain conditions. The time of disentanglement of two atoms can be controlled and manipulated by adjusting the detuning and classical driving fields. Moreover, the larger the cavity decay rate is, the more quickly the entanglement of the two atoms decays. Supported by National Natural Science Foundation of China under Grant Nos. 11247213, 61368002, 11304010, 11264030, 61168001, China Postdoctoral Science Foundation under Grant No. 2013M531558, Jiangxi Postdoctoral Research Project under Grant No. 2013KY33, the Natural Science Foundation of Jiangxi Province under Grant No. 20142BAB217001, the Foundation for Young Scientists of Jiangxi Province (Jinggang Star) under Grant No. 20122BCB23002, the Research Foundation of the Education Department of Jiangxi Province under Grant Nos. GJJ13051, GJJ13057, and the Graduate Innovation Special Fund of Nanchang University under Grant No. cx2015137
Energy Technology Data Exchange (ETDEWEB)
Teo, L P [Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya, 63100, Selangor Darul Ehsan (Malaysia)], E-mail: lpteo@mmu.edu.my
2009-03-13
In this paper, the finite-temperature Casimir force acting on a two-dimensional Casimir piston due to an electromagnetic field is computed. It was found that if mixed boundary conditions are assumed on the piston and its opposite wall, then the Casimir force always tends to restore the piston toward the equilibrium position, regardless of the boundary conditions assumed on the walls transverse to the piston. In contrast, if pure boundary conditions are assumed on the piston and the opposite wall, then the Casimir force always tends to pull the piston toward the closer wall and away from the equilibrium position. The nature of the force is not affected by temperature. However, in the high-temperature regime, the magnitude of the Casimir force grows linearly with respect to temperature. This shows that the Casimir effect has a classical limit as has been observed in other literature.
Numerical calculation of classical and non-classical electrostatic potentials
Christensen, D; Neyenhuis, B; Christensen, Dan; Durfee, Dallin S.; Neyenhuis, Brian
2006-01-01
We present a numerical exercise in which classical and non-classical electrostatic potentials were calculated. The non-classical fields take into account effects due to a possible non-zero photon rest mass. We show that in the limit of small photon rest mass, both the classical and non-classical potential can be found by solving Poisson's equation twice, using the first calculation as a source term in the second calculation. Our results support the assumptions in a recent proposal to use ion interferometry to search for a non-zero photon rest mass.
Construction of classical and quantum integrable field models unravelling hidden possibilities
Indian Academy of Sciences (India)
Anjan Kundu
2015-11-01
Reviewing briefly the concept of classical and quantum integrable systems, we propose an alternative Lax operator approach, leading to quasi-higher-dimensional integrable model, unravelling some hidden dimensions in integrable systems. As an example, we construct a novel integrable quasi-two-dimensional NLS equation at the classical and the quantum levels with intriguing application in rogue wave modelling.
Indian Academy of Sciences (India)
Aparna Saha; Bidhan Chandra Bag; Pranab Sarkar
2007-03-01
We present a numerical investigation of the tunneling dynamics of a particle moving in a bistable potential with fluctuating barrier which is coupled to a non-integrable classical system and study the interplay between classical chaos and barrier fluctuation in the tunneling dynamics. We found that the coupling of the quantum system with the classical subsystem decreases the tunneling rate irrespective of whether the classical subsystem is regular or chaotic and also irrespective of the fact that whether the barrier fluctuates or not. Presence of classical chaos always enhances the tunneling rate constant. The effect of barrier fluctuation on the tunneling rate in a mixed quantum-classical system is to suppress the tunneling rate. In contrast to the case of regular subsystem, the suppression arising due to barrier fluctuation is more visible when the subsystem is chaotic.
Kalinin, A. V.; Grigor'ev, E. E.; Zhidkov, A. A.; Terent'ev, A. M.
2014-04-01
We study a one-dimensional stationary system of equations comprising the continuity equation for the ion concentration with the recombination effects taken into account and the Gauss law for the electric field. This system gives a simplified description of various phenomena in ionized medium theory and is used, in particular, for modeling of the electrode effect in the atmospheric surface layers with the turbulent diffusion effects neglected. Using the integral of the system and a phase portrait in the ion concentration plane, we offer a complete classification of types of solutions of the system, examine their properties, and deduce some analytical relations between the ion concentration and the electric field. The basic equations of classical electrode effect theory are obtained for some classes of solutions within the framework of this approach. Correct formulations of the problems are discussed. New classes of solutions, for which there are layers with infinitely increasing conductivity and charge density are described. The Appendix illustrates, in both analytical and graphical form, the results obtained in the main part of this paper on the basis of qualitative reasoning for parameters close to real. Analytical expressions for the fields and ion concentrations are given for all types of solutions. Relations for the distances between electrodes and analytical relations describing the properties of the spatially localized solutions are presented.
Torrielli, Alessandro
2016-08-01
We review some essential aspects of classically integrable systems. The detailed outline of the sections consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schrödinger model, principal chiral field); 4. Features of classical r-matrices: Belavin–Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel’fand–Levitan–Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.
Institute of Scientific and Technical Information of China (English)
SHAO Xiao-Qiang; ZHANG Shou
2008-01-01
We propose a scheme for one-step generation of cluster states with atoms sent through a thermal cavity with strong classical driving field, based on the resonant atom-cavity interaction so that the operating time is sharply short, which is important in the view of decoherence.
Effect of preoperative biliary drainage on outcome of classical pancreaticoduodenectomy
Institute of Scientific and Technical Information of China (English)
Chandra Shekhar Bhati; Chandrashekhar Kubal; Pankaj Kumar Sihag; Ankur Atal Gupta; Raj Kamal Jenav; Nicholas G Inston; Jagdish M Mehta
2007-01-01
AIM: To investigate the role of preoperative biliary drainage (PBD) in the outcome of classical pancreaticodu odenectomy.METHODS: A 10-year retrospective data analysis was performed on patients (n = 48) undergoing pancreaticoduodenectomy from March 1994 to March 2004 in department of surgery at SMS medical college, Jaipur, India. Demographic variables, details of preoperative stenting, operative procedure and post operative complications were noted.RESULTS: Preoperative biliary drainage was performed in 21 patients (43.5%). The incidence of septic complications was significantly higher in patients with biliary stent placement (P ＜ 0.05, 0 vs 4). This group of patients also had a significantly higher minor biliary leak rate. Mortality and hospital stay in each group was comparable.CONCLUSION: Within this study population the use of PBD by endoscopic stenting was associated with a high incidence of infective complications. These findings do not support the routine use of biliary stenting in patients prior to pancreatico-duodenectomy.
Modeling quantization effects in field effect transistors
International Nuclear Information System (INIS)
Numerical simulation in the field of semiconductor device development advanced to a valuable, cost-effective and flexible facility. The most widely used simulators are based on classical models, as they need to satisfy time and memory constraints. To improve the performance of field effect transistors such as MOSFETs and HEMTs these devices are continuously scaled down in their dimensions. Consequently the characteristics of such devices are getting more and more determined by quantum mechanical effects arising from strong transversal fields in the channel. In this work an approach based on a two-dimensional electron gas is used to describe the confinement of the carriers. Quantization is considered in one direction only. For the derivation of a one-dimensional Schroedinger equation in the effective mass framework a non-parabolic correction for the energy dispersion due to Kane is included. For each subband a non-parabolic dispersion relation characterized by subband masses and subband non-parabolicity coefficients is introduced and the parameters are calculated via perturbation theory. The method described in this work has been implemented in a software tool that performs a self-consistent solution of Schroedinger- and Poisson-equation for a one-dimensional cut through a MOS structure or heterostructure. The calculation of the carrier densities is performed assuming Fermi-Dirac statistics. In the case of a MOS structure a metal or a polysilicon gate is considered and an arbitrary gate bulk voltage can be applied. This allows investigating quantum mechanical effects in capacity calculations, to compare the simulated data with measured CV curves and to evaluate the results obtained with a quantum mechanical correction for the classical electron density. The behavior of the defined subband parameters is compared to the value of the mass and the non-parabolicity coefficient from the model due to Kane. Finally the presented characterization of the subbands is applied
Bogenschutz, Michael P
2013-03-01
Recent developments in the study of classic hallucinogens, combined with a re-appraisal of the older literature, have led to a renewal of interest in possible therapeutic applications for these drugs, notably their application in the treatment of addictions. This article will first provide a brief review of the research literature providing direct and indirect support for the possible therapeutic effects of classic hallucinogens such as psilocybin and lysergic acid diethylamide (LSD) in the treatment of addictions. Having provided a rationale for clinical investigation in this area, we discuss design issues in clinical trials using classic hallucinogens, some of which are unique to this class of drug. We then discuss the current status of this field of research and design considerations in future randomized trials. PMID:23627783
Bogenschutz, Michael P
2013-03-01
Recent developments in the study of classic hallucinogens, combined with a re-appraisal of the older literature, have led to a renewal of interest in possible therapeutic applications for these drugs, notably their application in the treatment of addictions. This article will first provide a brief review of the research literature providing direct and indirect support for the possible therapeutic effects of classic hallucinogens such as psilocybin and lysergic acid diethylamide (LSD) in the treatment of addictions. Having provided a rationale for clinical investigation in this area, we discuss design issues in clinical trials using classic hallucinogens, some of which are unique to this class of drug. We then discuss the current status of this field of research and design considerations in future randomized trials.
Institute of Scientific and Technical Information of China (English)
WU Ning; ZHANG Da-Hua
2007-01-01
A systematic method is developed to study the classical motion of a mass point in gravitational gauge field.First,by using Mathematica,a spherical symmetric solution of the field equation of gravitational gauge field is obtained,which is just the traditional Schwarzschild solution.Combining the principle of gauge covariance and Newton's second law of motion,the equation of motion of a mass point in gravitational field is deduced.Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field,we can discuss classical tests of gauge theory of gravity,including the deflection of light by the sun,the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun.It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.
Local equilibria and state transfer of charged classical particles on a helix in an electric field
Plettenberg, J; Zampetaki, A V; Schmelcher, P
2016-01-01
We explore the effects of a homogeneous external electric field on the static properties and dynamical behavior of two charged particles confined to a helix. In contrast to the field-free setup which provides a separation of the center-of-mass and relative motion, the existence of an external force perpendicular to the helix axis couples the center-of-mass to the relative degree of freedom leading to equilibria with a localized center of mass. By tuning the external field various fixed points are created and/or annihilated through different bifurcation scenarios. We provide a detailed analysis of these bifurcations based on which we demonstrate a robust state transfer between essentially arbitrary equilibrium configurations of the two charges that can be induced by making the external force time-dependent.
Effective quantum field theories
International Nuclear Information System (INIS)
Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)
Casimir effects for classical and quantum liquids in slab geometry: A brief review
Energy Technology Data Exchange (ETDEWEB)
Biswas, Shyamal, E-mail: sbsp@uohyd.ac.in [School of Physics, University of Hyderabad, C.R. Rao Road, Gachibowli, Hyderabad-500046 (India)
2015-05-15
We analytically explore Casimir effects for confinement of classical and quantum fluctuations in slab (film) geometry (i) for classical (critical) fluctuations over {sup 4}He liquid around the λ point, and (ii) for quantum (phonon) fluctuations of Bogoliubov excitations over an interacting Bose-Einstein condensate. We also briefly review Casimir effects for confinement of quantum vacuum fluctuations confined to two plates of different geometries.
Classical gluon fields and collective dynamics of color-charge systems
International Nuclear Information System (INIS)
An investigation of color fields that arise in collisions of relativistic heavy ions reveals that, in the non-Abelian case, a change in the color charge leads to the appearance of an extra term that generates a sizable contribution of color-charge glow in chromoelectric and chromomagnetic fields. The possibility of the appearance of a color echo in the scattering of composite color particles belonging to the dipole type is discussed. Arguments are adduced in support of the statement that such effects are of importance in simulating the first stage of ultrarelativistic heavy-ion collisions,where the initial parton state is determined by a high nonequilibrium parton density and by strong local color fluctuations
Classical Gravitational Interactions and Gravitational Lorentz Force
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In quantum gauge theory of gravity, the gravitational field is represented by gravitational gauge field.The field strength of gravitational gauge field has both gravitoelectric component and gravitomagnetic component. In classical level, gauge theory of gravity gives classical Newtonian gravitational interactions in a relativistic form. Besides,it gives gravitational Lorentz force, which is the gravitational force on a moving object in gravitomagnetic field The direction of gravitational Lorentz force is not the same as that of classical gravitational Newtonian force. Effects of gravitational Lorentz force should be detectable, and these effects can be used to discriminate gravitomagnetic field from ordinary electromagnetic magnetic field.
International Nuclear Information System (INIS)
The relevant parameters of two steady-state models of a plasma column, in fusion regime, were analyzed for an ideal Tokamak. The neo-classical transport theory was considered in the banana regime and in the Pfirsch-Schlueter regime. The first model proposes a correction in the numerical coefficients of the transport equations. In the other one, a poloidal current from Pfirsch-Schlueter classical diffusion is considered aiming to satisfy the pressure balance. (M.C.K.)
Useful Pedagogical Applications of the Classical Hall Effect
Houari, Ahmed
2007-01-01
One of the most known phenomena in physics is the Hall effect. This is mainly due to its simplicity and to the wide range of its theoretical and practical applications. To complete the pedagogical utility of the Hall effect in physics teaching, I will apply it here to determine the Faraday constant as a fundamental physical number and the number…
Higgs Effective Field Theories
2016-01-01
The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.
Holographic effective field theories
Martucci, Luca; Zaffaroni, Alberto
2016-06-01
We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.
Horwitz, L. P.; Land, Martin C.; Gill, Tepper; Lusanna, Luca; Salucci, Paolo
2013-04-01
Although the subject of relativistic dynamics has been explored, from both classical and quantum mechanical points of view, since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anomalous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical relativistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There moreover remains the important question of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge's book, The Relativistic Gas, and in Balescu's book on relativistic statistical mechanics. In recent years, the study of high energy plasmas and heavy ion collisions has emphasized the importance of developing the techniques of relativistic mechanics. The results of Lindner et al [Physical Review Letters 95 0040401 (2005)] as well as the more recent proposal of Palacios et al [Phys. Rev. Lett. 103 253001 (2009)] and others, have shown that there must be a quantum theory with coherence in time. Such a theory, manifestly covariant under the transformations of special relativity with an invariant evolution parameter, such as that of Stueckelberg [Helv. Phys. Acta 14 322, 588 (1941); 15 23 (1942); see also R P Feynman Phys. Rev. 80 4401 and J S Schwinger Phys. Rev. 82 664 (1951)] could provide a suitable basis for the study of such questions, as well as many others for which the application of the standard methods of quantum field theory are difficult to manage, involving, in particular
Metwally, N.; Eleuch, H.; Obada, A.-S.
2016-10-01
The entangled behavior of different dimensional systems driven by classical external random field is investigated. The amount of the survival entanglement between the components of each system is quantified. There are different behaviors of entanglement that come into view decay, sudden death, sudden birth and long-lived entanglement. The maximum entangled states which can be generated from any of theses suggested systems are much fragile than the partially entangled ones. The systems of larger dimensions are more robust than those of smaller dimensions systems, where the entanglement decay smoothly, gradually and may vanish for a very short time. For the class of $2\\times 3$ dimensional system, the one parameter family is found to be more robust than the two parameters family. Although the entanglement of driven $ 2 \\times 3$ dimensional system is very sensitive to the classical external random field, one can use them to generate a long-lived entanglement.
Ateto, M. S.
2015-08-01
Entanglement dynamics of two identical non-interacting atoms (qubits) coupled individually with simultaneous classical and quantum fields are studied. The cavity field is filled with a nonlinear Kerr medium and initially prepared in a coherent state. The atoms are initially set up as a Bell-like pure state (BS). We present an approach for diagonalization of time-dependent nonlinear Hamiltonian of the system exactly. Connection between the change in the degree of entanglement and tomography of field state in phase space are also illustrated and interpreted. We demonstrate the possibility of atom-atom (qubit-qubit) entanglement optimization by suitably choosing initial interaction settings. Overall, we show that both classical driving amplitude and detuning as well as Kerr media and initial atomic states acts as the control parameters for the qubit-qubit entanglement. By adjusting of these parameters, accurately, entanglement can be enhanced noticeably and high degree of steady periodical entanglement can be generated. Moreover, starting with initial atomic BSs in presence of classical driving suppresses coherences randomness and considerably accompanied with (for specific values of detuning) slight decrease in their amplitudes. Furthermore, the addition of cross Kerr term suppresses degree of entanglement noticeably, where entanglement creation and enhancement could just be possible if cross Kerr effect is moved out from interaction. Our present approach promises the great advantage of being suitable for large quantum systems of various kinds of nonlinearities.
Karpiuk, Tomasz; Brewczyk, Miroslaw; Gajda, Mariusz; Rzazewski, Kazimierz
2009-01-01
We optimize the classical field approximation of the version described in J. Phys. B 40, R1 (2007) for the oscillations of a Bose gas trapped in a harmonic potential at nonzero temperatures, as experimentally investigated by Jin et al. [Phys. Rev. Lett. 78, 764 (1997)]. Similarly to experiment, the system response to external perturbations strongly depends on the initial temperature and on the symmetry of perturbation. While for lower temperatures the thermal cloud follows the condensed part,...
Gelis, F.; Jeon, S.; Venugopalan, R.
2007-01-01
We develop the formalism discussed previously in hep-ph/0601209 and hep-ph/0605246 to construct a kinetic theory that provides insight into the earliest ``Glasma'' stage of a high energy heavy ion collision. Particles produced from the decay of classical fields in the Glasma obey a Boltzmann equation whose novel features include an inhomogeneous source term and new contributions to the collision term. We discuss the power counting associated with the different terms in the Boltzmann equation ...
"An analysis of the classical Doppler Effect"[1] revisited
Rothenstein, Bernhard; Nafornita, Corina
2004-01-01
After having shown that the formula which describes the Doppler effect in the general case holds only in the case of the "very high" frequency assumption, we derive free of assumptions Doppler formulas for two scenarios presented in the revisited paper.
Production of gluons in the classical field model for heavy ion collisions
Lappi, T
2003-01-01
The initial stages of relativistic heavy ion collisions are studied numerically in the framework of a 2+1 dimensional classical Yang-Mills theory. We calculate the energy and number densities and momentum spectra of the produced gluons. The model is also applied to non central collisions. The numerical results are discussed in the light of RHIC measurements of energy and multiplicity and other theoretical calculations. Some problems of the present approach are pointed out.
Discrete phase space - I: Variational formalism for classical relativistic wave fields
A. Das
2008-01-01
The classical relativistic wave equations are presented as partial difference equations in the arena of covariant discrete phase space. These equations are also expressed as difference-differential equations in discrete phase space and continuous time. The relativistic invariance and covariance of the equations in both versions are established. The partial difference and difference-differential equations are derived as the Euler-Lagrange equations from the variational principle. The differenc...
Múnera, Héctor A.
2016-07-01
It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger's first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding a unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich's unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.
Competing Classical and Quantum Effects in Shape Relaxation of a Metallic Nanostructure
Chen, Dongmin; Okamoto, Hiroshi; Yamada, Toshishi; Biegel, Bryan (Technical Monitor)
2003-01-01
We demonstrate for the first time that the quantum size effect (QSE) plays a competing role along side the classical thermodynamic effect in the shape relaxation of a small metallic island. Together, these effects transforms a lead(Pb) island grown on Si(111) substrate from its initially flattop faceted morphology to a peculiar ring-shape island, a process catalysed by the tip electric field of a scanning tunnelling microscope (STM). We shall show for the first time how QSE affects the relaxation process dynamically. In particular, it leads to a novel strip-flow growth and double-step growth on selective strips of a plateau inside the ring, defined by the substrate steps more than 60?0?3 below. It appears that atoms diffusing on the plateau can clearly (sub i)(deg)sense(sub i)+/- the quantized energy states inside the island and have preferentially attached to regions that further reduces the surface energy as a result of the QSE, limiting its own growth and stabilizing the ring shape. The mechanism proposed here offers a sound explanation for ring shape metal and semiconductor islands observed in other systems as well.
Sokolov, Igor V
2015-01-01
A theory of Symplectic Manifold with Contact Degeneracies (SMCD) was developed in [Zot'ev,2007]. The symplectic geometry uses an anti-symmetric tensor (closed differential form) such as a field tensor used in the classical field theory. The SMCD theory studies degeneracies of such form. In [Zot'ev,2011] the SMCD theory was applied to study a front of an electromagnetic pulsed field propagating into a region with no field. Here, the result of [Zot'ev,2011] is compared with the problem solution obtained using the well-known method presented in Witham, G.B., Linear and nonlinear waves, 1974. It is shown that the SMCD theory prediction is not supported by the result obtained with the Witham method.
International Nuclear Information System (INIS)
The integral expressions for spectral-angular and spectral distributions of the radiation power of heterogeneous charged particles system moving on arbitrary trajectory in nonabsorbable isotropic media media with ε≠1 , μ≠1 are obtained using the Lorentz's self-interaction method. In this method a proper electromagnetic field, acting on electron, is defined as a semi difference between retarded and advanced potentials (Dirac, 1938). The power spectrum of Cherenkov radiation for the linear uniformly moving heterogeneous system of charged particles are obtained. It is found that the expression for the radiation power of heterogeneous system of charged particles becomes simplified when a system of charged particles is homogeneous. In this case the radiation power includes the coherent factor. It is shown what the redistribution effects in energy of the radiation spectrum of the studied system are caused by the coherent factor. The radiation spectrum of the system of electrons moving in a circle in this medium is discrete. The Doppler effect causes the appearance of the new harmonics for the system of electrons moving in a spiral. These harmonics form the region of continuous radiation spectrum. (authors)
Gravity, as a classical regularizator for the Higgs field, and the genesis of rest masses and charge
Szabados, László B
2016-01-01
The classical Einstein--Standard Model system with conformally invariant coupling of the Higgs field to gravity is investigated. We show that, while the \\emph{structure} of the field equations for the matter fields is not changed by the conformal coupling, the energy-momentum tensor changes significantly: It will \\emph{not} be polynomial in the Higgs field, yielding in the observable Universe \\emph{a finite, universal upper bound} for the pointwise norm of the Higgs field in terms of Newton's gravitational constant. This provides a natural cut-off in the field theoretic calculations. The energy-momentum has two singularities: In cosmological spacetimes the usual Big Bang type singularity with diverging matter field variables, and a second, less violent one (`Small Bang'), in which it is only the geometry that is singular but the matter field variables remain finite. In the presence of Friedman--Robertson--Walker symmetries the energy density can have finite local minimum only for Higgs fields whose norm is le...
Open and Closed String field theory interpreted in classical Algebraic Topology
Sullivan, Dennis
2003-01-01
There is an interpretation of open string field theory in algebraic topology. An interpretation of closed string field theory can be deduced from this open string theory to obtain as well the interpretation of open and closed string field theory combined.
The Classic: A Plan for a More Effective Federal and State Health Administration
Hoffman, Frederick L.
2009-01-01
This Classic article is a reprint of the original work by Frederick L. Hoffman, LLD, A Plan for a More Effective Federal and State Health Administration. An accompanying biographical sketch on Frederick L. Hoffman, LLD, is available at DOI 10.1007/s11999-009-1001-9. The Classic Article is ©1919 by the American Public Health Association and is reprinted with permission from Hoffman FL. A plan for a more effective federal and state health administration. Am J Public Health. 1919;9:161–169. The ...
Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars
Orlando, S; Argiroffi, C; Reale, F; Peres, G; Miceli, M; Matsakos, T; Stehle', C; Ibgui, L; de Sa, L; Chie`ze, J P; Lanz, T
2013-01-01
(abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. For weak magnetic fields, a large component of B may develop perpendicular to the stream at the base of the accretion column, limiting the sinking of the shocked plasma into the chromosphere. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields, th...
Quantum and classical aspects of scalar and vector fields around black holes
Wang, Mengjie
2016-01-01
This thesis presents recent studies on test scalar and vector fields around black holes. It is separated in two parts according to the asymptotic properties of the spacetime under study. In the first part, we investigate scalar and Proca fields on an asymptotically flat background. For the Proca field, we obtain a complete set of equations of motion in higher dimensional spherically symmetric backgrounds. These equations are solved numerically, both to compute Hawking radiation spectra and qu...
Horwitz, Lawrence; Hu, Bei-Lok; Lee, Da-Shin; Gill, Tepper; Land, Martin
2011-12-01
Although the subject of relativistic dynamics has been explored from both classical and quantum mechanical points of view since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anamolous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical realtivistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There moreover remains the important question of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge's book, The Relativistic Gas, and in Balescu's book on relativistic statistical mechanics. In recent years, the study of high energy plasmas and heavy ion collisions has emphasized the importance of developing the techniques of relativistic mechanics. The results of Linder et al (Phys. Rev. Lett. 95 0040401 (2005)) as well as the more recent work of Palacios et al (Phys. Rev. Lett. 103 253001 (2009)) and others, have shown that there must be a quantum theory with coherence in time. Such a theory, manifestly covariant under the transformations of special relativity with an invariant evolution parameter, such as that of Stueckelberg (Helv. Phys. Acta 14 322, 588 (1941); 15 23 (1942); see also R P Feynman Phys. Rev. 80 4401 and J S Schwinger Phys. Rev. 82 664 (1951)) could provide a suitable basis for the study of such questions, as well as many others for which the application of the standard methods of quantum field theory are difficult to manage, involving, in particular, local
ForceFit: a code to fit classical force fields to ab-initio potential energy surfaces
Energy Technology Data Exchange (ETDEWEB)
Henson, Neil Jon [Los Alamos National Laboratory; Waldher, Benjamin [WSU; Kuta, Jadwiga [WSU; Clark, Aurora [WSU; Clark, Aurora E [NON LANL
2009-01-01
The ForceFit program package has been developed for fitting classical force field parameters based upon a force matching algorithm to quantum mechanical gradients of configurations that span the potential energy surface of the system. The program, which runs under Unix and is written in C++, is an easy to use, nonproprietary platform that enables gradient fitting of a wide variety of functional force field forms to quantum mechanical information obtained from an array of common electronic structure codes. All aspects of the fitting process are run from a graphical user interface, from the parsing of quantum mechanical data, assembling of a potential energy surface database, setting the force field and variables to be optimized, choosing a molecular mechanics code for comparison to the reference data, and finally, the initiation of a least squares minimization algorithm. Furthermore, the code is based on a modular templated code design that enables the facile addition of new functionality to the program.
Classical enhancement of quantum vacuum fluctuations
De Lorenci, V A
2016-01-01
We propose a mechanism for the enhancement of vacuum fluctuations by means of a classical field. The basic idea is that if an observable quantity depends quadratically upon a quantum field, such as the electric field, then the application of a classical field produces a cross term between the classical and quantum fields. This cross term may be significantly larger than the purely quantum part, but also undergoes fluctuations driven by the quantum field. We illustrate this effect in a model for lightcone fluctuations involving pulses in a nonlinear dielectric. Vacuum electric field fluctuations produce fluctuations in the speed of a probe pulse, and form an analog model for quantum gravity effects. If the material has a nonzero third-order susceptibility, then the fractional light speed fluctuations are proportional to the square of the fluctuating electric field. Hence the application of a classical electric field can enhance the speed fluctuations. We give an example where this enhancement can be an increas...
Bose-Einstein condensation of the classical axion field in cosmology?
International Nuclear Information System (INIS)
The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a Bose-Einstein condensate, and argues that ''gravitational thermalisation'' drives them to a Bose-Einstein condensate during the radiation dominated era. Using classical equations of motion during linear structure formation, we explore whether the gravitational interactions of axions can generate enough entropy. At linear order in GN, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. To quantify the rate of entropy creation we use the anisotropic stress to estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate
Bose-Einstein condensation of the classical axion field in cosmology?
Energy Technology Data Exchange (ETDEWEB)
Davidson, Sacha; Elmer, Martin, E-mail: s.davidson@ipnl.in2p3.fr, E-mail: m.elmer@ipnl.in2p3.fr [IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, 4 rue E. Fermi, Villeurbanne cedex, 69622 (France)
2013-12-01
The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a Bose-Einstein condensate, and argues that ''gravitational thermalisation'' drives them to a Bose-Einstein condensate during the radiation dominated era. Using classical equations of motion during linear structure formation, we explore whether the gravitational interactions of axions can generate enough entropy. At linear order in G{sub N}, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. To quantify the rate of entropy creation we use the anisotropic stress to estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.
Multisymplectic effective General Boundary Field Theory
Arjang, Mona
2013-01-01
The transfer matrix in lattice field theory connects the covariant and the initial data frameworks; in spin foam models, it can be written as a composition of elementary cellular amplitudes/propagators. We present a framework for discrete spacetime classical field theory in which solutions to the field equations over elementary spacetime cells may be amalgamated if they satisfy simple gluing conditions matching the composition rules of cellular amplitudes in spin foam models. Furthermore, the formalism is endowed with a multisymplectic structure responsible for local conservation laws. Some models within our framework are effective theories modeling a system at a given scale. Our framework allows us to study coarse graining and the continuum limit.
Chiou, Dah-Wei; Chen, Tsung-Wei
2015-01-01
It has long been speculated that the Dirac or, more generally, the Dirac-Pauli spinor in the Foldy-Wouthuysen (FW) representation should behave like a classical relativistic spinor in the low-energy limit when the particle-antiparticle interaction is negligible. In the weak-field limit of static and homogeneous electromagnetic fields, we rigorously prove, by applying Kutzelnigg's method inductively on the orders of $1/c$ in the power series, that it is indeed the case: the FW transformation o...
Effects of local anesthesia of the cerebellum on classical fear conditioning in goldfish
Directory of Open Access Journals (Sweden)
Hirano Ruriko
2010-03-01
Full Text Available Abstract Background Besides the amygdala, of which emotion roles have been intensively studied, the cerebellum has also been demonstrated to play a critical role in simple classical fear conditioning in both mammals and fishes. In the present study, we examined the effect of local administration of the anesthetic agent lidocaine into the cerebellum on fear-related, classical heart-rate conditioning in goldfish. Methods The effects of microinjection of the anesthetic agent lidocaine into the cerebellum on fear conditioning were investigated in goldfish. The fear conditioning paradigm was delayed classical conditioning with light as a conditioned stimulus and electric shock as an unconditioned stimulus; cardiac deceleration (bradycardia was the conditioned response. Results Injecting lidocaine into the cerebellum had no effect on the base heart rate, an arousal/orienting response to the novel stimulus (i.e., the first presentation of light, or an unconditioned response to electric shock. However, lidocaine injection greatly impaired acquisition of conditioned bradycardia. Lidocaine injection 60 min before the start of the conditioning procedure showed no effect on acquisition of conditioned bradycardia, indicating that the effect of lidocaine was reversible. Conclusions The present results further confirm the idea that the cerebellum in teleost fish, as in mammals, is critically involved in classical fear conditioning.
Classical Theory of Hot-Electron Transport in Electric and Magnetic Fields
Institute of Scientific and Technical Information of China (English)
WENG Ming-Qi; WU Hang-Sheng
2002-01-01
Balance equation approach to the hot-electron transport in electric and magnetic fields is reformulated.The balance equations are re-derived from the Boltzmann equation. A new expression for the distribution function isreported in the present paper. It is homogeneous steady solution of the Boltzmann equation in constant relaxation timeapproximation. It holds when ωocτ < i or ωc < Te. As an example, the mobility of 2D electron gas in the GaAs-AlGaAsheterojunction is computed as a function of electric field and magnetic field.
Classical Theory of Hot－Electron Transport in Electric and Magnetic Fields
Institute of Scientific and Technical Information of China (English)
WENGMing－Qi; WuHang－Sheng
2002-01-01
Balance equation approach to the hot-electron transport in electric and magnetic fields is reformulated.The balance equations are re-derived from the Boltzmann equation.A new expression for the distribution function is reported in the present paper.It is homogeneous steady solution of the Boltzmann equation in costant relaxation time approximation.It holds when ωT<<1 or ωc<
A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants
Directory of Open Access Journals (Sweden)
James P. Ewen
2016-08-01
Full Text Available For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i accurately predict important properties of long-chain, linear molecules; and (ii reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n-hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP, allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n-hexadecane using equilibrium molecular dynamics (EMD simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-tom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n-hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are
Equations of motion in Double Field Theory: from classical particles to quantum cosmology
Kan, Nahomi; Shiraishi, Kiyoshi
2012-01-01
The equation of motion for a point particle in the background field of double field theory is considered. We find that the motion is described by a geodesic flow in the doubled geometry. Inspired by analysis on the particle motion, we propose a modified model of quantum string cosmology, which includes two scale factors. The report is based on Phys. Rev. D84 (2011) 124049 [arXiv:1108.5795].
Extra-classical tuning predicts stimulus-dependent receptive fields in auditory neurons
Schneider, David M.; Woolley, Sarah M. N.
2011-01-01
The receptive fields of many sensory neurons are sensitive to statistical differences among classes of complex stimuli. For example, excitatory spectral bandwidths of midbrain auditory neurons and the spatial extent of cortical visual neurons differ during the processing of natural stimuli compared to the processing of artificial stimuli. Experimentally characterizing neuronal non-linearities that contribute to stimulus-dependent receptive fields is important for understanding how neurons res...
Energy Technology Data Exchange (ETDEWEB)
Horner, Daniel A.; Miyabe, Shungo; Rescigno, Thomas N; McCurdy, C. William; Morales, Felipe; Martin, Fernando
2008-07-06
Recent experiments on double photoionization of H$_2$ with photon energies between 160 and 240 eV have revealed body-frame angular distributions that suggest classical two-slit interference effects may be present when one electron carries most of the available energy and the second electron is not observed. We report precise quantum mechanical calculations that reproduce the experimental findings. They reveal that the interpretation in terms of classical diffraction is only appropriate atsubstantially higher photon energies. At the energies considered in the experiment we offer an alternative explanation based on the mixing of two non-diffractive contributions by circularly polarized light.
Quantum and classical aspects of scalar and vector fields around black holes
Wang, Mengjie
2016-01-01
This thesis presents recent studies on test scalar and vector fields around black holes. It is separated in two parts according to the asymptotic properties of the spacetime under study. In the first part, we investigate scalar and Proca fields on an asymptotically flat background. For the Proca field, we obtain a complete set of equations of motion in higher dimensional spherically symmetric backgrounds. These equations are solved numerically, both to compute Hawking radiation spectra and quasi-bound states. In the former case, we carry out a precise study of the longitudinal degrees of freedom induced by the field mass. This can be used to improve the model in the black hole event generators currently used at the Large Hadron Collider. Regarding quasi-bound states, we find arbitrarily long lived modes for a charged Proca field, as well as for a charged scalar field, in a Reissner-Nordstr\\"om black hole. The second part of this thesis presents research on superradiant instabilities of scalar and Maxwell fiel...
Who gains, who loses? Welfare effects of classical swine fever epidemics in the Netherlands
Mangen, M.J.J.; Burrell, A.M.
2003-01-01
A sectoral market model and a stochastic epidemiological model were used to simulate the effects of classical swine fever (CSF) epidemics in the Netherlands in 1997-1998. Compulsory EU control measures were implemented. Welfare changes of Dutch stakeholders, as well as government costs, were calcula
Smoothing Effects for the Classical Solutions to the Landau-Fermi-Dirac Equation
Institute of Scientific and Technical Information of China (English)
Shuangqian LIU
2012-01-01
The smoothness of the solutions to the full Landau equation for Fermi-Dirac particles is investigated.It is shown that the classical solutions near equilibrium to the Landau-Fermi-Dirac equation have a regularizing effects in all variables (time,space and velocity),that is,they become immediately smooth with respect to all variables.
Classical swine fever virus (CSFV) harbors three envelope glycoproteins (E(rns), E1 and E2). Previous studies have demonstrated that removal of specific glycosylation sites within these proteins yielded attenuated and immunogenic CSFV mutants. Here we analyzed the effects of lack of glycosylation of...
C-strain vaccination against Classical Swine Fever: effects on epidemic and final screening
Backer, J.A.; Loeffen, W.L.A.; Roermund, van H.J.W.
2013-01-01
In this project it is evaluated how the use of C-strain vaccine instead of E2-subunit vaccine will affect the effectiveness of controlling Classical Swine Fever (CSF). To this end a CSF transmission model was developed that describes virus transmission on three different levels: between animals, bet
Drechsler, Wolfgang; Havas, Peter; Rosenblum, Arnold
1984-02-01
In two recent papers, the general form of the laws of motion for point particles which are multipole sources of the classical coupled Yang-Mills-Higgs fields was determined by Havas, and for the special case of monopole singularities of a Yang-Mills field an iteration procedure was developed by Drechsler and Rosenblum to obtain the equations of motion of mass points, i.e., the laws of motion including the explicit form of the fields of all interacting particles. In this paper we give a detailed derivation of the laws of motion of monopole-dipole singularities of the coupled Yang-Mills-Higgs fields for point particles with mass and spin, following a procedure first applied by Mathisson and developed by Havas. To obtain the equations of motion, a systematic approximation method is developed in the following paper for the solution of the nonlinear field equations and determination of the fields entering the laws of motion found here to any given order in the coupling constant g.
Lyman alpha dominance of the Classical T Tauri FUV Radiation Field
Schindhelm, Eric; Herczeg, Gregory; Bergin, Edwin; Yang, Hao; Brown, Alexander; Brown, Joanna; Linsky, Jeffrey; Valenti, Jeff
2012-01-01
Far-ultraviolet (FUV) radiation plays an important role in determining chemical abundances in protoplanetary disks. HI Lyman alpha is suspected to be the dominant component of the FUV emission from Classical T Tauri Stars (CTTSs), but is difficult to measure directly due to circumstellar and interstellar HI absorption. To better characterize the intrinsic Lyman alpha radiation, we present FUV spectra of 14 CTTSs taken with the Hubble Space Telescope COS and STIS instruments. H2 fluorescence, commonly seen in the spectra of CTTSs, is excited by Lyman alpha photons, providing an indirect measure of the Lyman alpha flux incident upon the warm disk surface. We use observed H2 progression fluxes to reconstruct the CTTS Lyman alpha profiles. The Lyman alpha flux correlates with total measured FUV flux, in agreement with an accretion-related source of FUV emission. With a geometry-independent analysis, we confirm that in accreting T Tauri systems Lyman alpha radiation dominates the FUV flux (~1150 - 1700 Angstroms)....
Ly{alpha} DOMINANCE OF THE CLASSICAL T TAURI FAR-ULTRAVIOLET RADIATION FIELD
Energy Technology Data Exchange (ETDEWEB)
Schindhelm, Eric [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80303 (United States); France, Kevin; Brown, Alexander [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Bergin, Edwin [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Yang Hao [Institute of Astrophysics, Central China Normal University, Wuhan, Hubei 430079 (China); Brown, Joanna M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309 (United States); Valenti, Jeff, E-mail: eric@boulder.swri.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
2012-09-01
Far-ultraviolet (FUV) radiation plays an important role in determining chemical abundances in protoplanetary disks. H I Lyman {alpha} (Ly{alpha}) is suspected to be the dominant component of the FUV emission from Classical T Tauri Stars (CTTSs), but is difficult to measure directly due to circumstellar and interstellar H I absorption. To better characterize the intrinsic Ly{alpha} radiation, we present FUV spectra of 14 CTTSs taken with the Hubble Space Telescope Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph instruments. H{sub 2} fluorescence, commonly seen in the spectra of CTTSs, is excited by Ly{alpha} photons, providing an indirect measure of the Ly{alpha} flux incident upon the warm disk surface. We use observed H{sub 2} progression fluxes to reconstruct the CTTS Ly{alpha} profiles. The Ly{alpha} flux correlates with total measured FUV flux, in agreement with an accretion-related source of FUV emission. With a geometry-independent analysis, we confirm that in accreting T Tauri systems Ly{alpha} radiation dominates the FUV flux ({approx}1150 A -1700 A). In the systems surveyed this one line comprises 70%-90% of the total FUV flux.
Elliptically oscillating classical solution in Higgs potential and the effects on vacuum transitions
Kitadono, Yoshio; Inagaki, Tomohiro
2016-05-01
We investigate oscillating solutions of the equation of motion for the Higgs potential. The solutions are described by Jacobian elliptic functions. Classifying the classical solutions, we evaluate a possible parameter space for the initial conditions. To construct the field theory around the oscillating solutions, quantum fluctuations are introduced. This alternative perturbation method is useful to describe the nontrivial quantum theory around the oscillating state. This perturbation theory reduces to the standard one if we take the solution at the vacuum expectation value. It is shown that the transition probability between the vacuum and multiquanta states is finite as long as the initial field configuration does not start from the true vacuum.
International Nuclear Information System (INIS)
Uvulopalatopharyngoplasty (UPPP) is a commonly used surgical technique for oropharyngeal reconstruction in patients with obstructive sleep apnea (OSA). This procedure can be done either through the classic or the laser-assisted uvulopalatopharyngoplasty (LAUP) technique. The purpose of this study was to evaluate the effect of classic UPPP and LAUP on acoustics of voice and speech nasalance, and to compare the effect of each operation on these two domains. Patients and The study included 27 patients with a mean age of 46 years. All patients were diagnosed with OSA based on polysomnographic examination. Patients were divided into two groups according to the type of surgical procedure. Fifteen patients underwent classic UPPP, whereas 12 patients were subjected to LAUP. A full assessment was done for all patients preoperatively and postoperatively, including auditory perceptual assessment (APA) of voice and speech, objective assessment using acoustic voice analysis and nasometry. Auditory perceptual assessment of speech and voice, acoustic analysis of voice and nasometric analysis of speech did not show statistically significant differences between the preoperative and postoperative evaluations in either group (P>.05).The results of this study demonstrated that in patients with OSA, the surgical technique, whether classic UPPP or LAUP, does not have significant effects on the patients' voice quality or their speech outcomes (Author).
Gao, X.-L.; Zhang, G. Y.
2016-07-01
A non-classical model for a Mindlin plate resting on an elastic foundation is developed in a general form using a modified couple stress theory, a surface elasticity theory and a two-parameter Winkler-Pasternak foundation model. It includes all five kinematic variables possible for a Mindlin plate. The equations of motion and the complete boundary conditions are obtained simultaneously through a variational formulation based on Hamilton's principle, and the microstructure, surface energy and foundation effects are treated in a unified manner. The newly developed model contains one material length-scale parameter to describe the microstructure effect, three surface elastic constants to account for the surface energy effect, and two foundation parameters to capture the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the new model includes the Mindlin plate models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases, recovers the Kirchhoff plate model incorporating the microstructure, surface energy and foundation effects, and degenerates to the Timoshenko beam model including the microstructure effect. To illustrate the new Mindlin plate model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulae derived.
A covariant hierarchy of kinetic equations for classical particles and fields
International Nuclear Information System (INIS)
It is shown that several problems, that are met when constructing a covariant statistical theory, can be circumverted demanding that only the resulting equation for the macroscopic entities are covariant whereas only mathematical meaning is ascribed to concepts as phase space and ensemble density. Accordingly a hierarchy of equations for averaged particle distributions and fields and their correlations is derived. (author)
Energy Technology Data Exchange (ETDEWEB)
Mohammadi, M [Department of Physics, Science and Research Campus Azad University of Tehran, Tehran (Iran, Islamic Republic of); Naderi, M H [Quantum Optics Group, Department of Physics, University of Isfahan, Isfahan (Iran, Islamic Republic of); Soltanolkotabi, M [Quantum Optics Group, Department of Physics, University of Isfahan, Isfahan (Iran, Islamic Republic of)
2007-02-09
The temporal evolution of quantum statistical properties of an interacting atom-radiation field system in the presence of a classical homogeneous gravitational field is investigated within the framework of the Jaynes-Cummings model. To analyse the dynamical evolution of the atom-radiation system a quantum treatment of the internal and external dynamics of the atom is presented based on an alternative su(2) dynamical algebraic structure. By solving the Schroedinger equation in the interaction picture, the evolving state of the system is found by which the influence of the gravitational field on the dynamical behaviour of the atom-radiation system is explored. Assuming that initially the radiation field is prepared in a coherent state and the two-level atom is in a coherent superposition of the excited and ground states, the influence of gravity on the collapses and revivals of the atomic population inversion, atomic dipole squeezing, atomic momentum diffusion, photon counting statistics and quadrature squeezing of the radiation field is studied.
Gao, X.-L.; Zhang, G. Y.
2016-03-01
A new non-classical Kirchhoff plate model is developed using a modified couple stress theory, a surface elasticity theory and a two-parameter elastic foundation model. A variational formulation based on Hamilton's principle is employed, which leads to the simultaneous determination of the equations of motion and the complete boundary conditions and provides a unified treatment of the microstructure, surface energy and foundation effects. The new plate model contains a material length scale parameter to account for the microstructure effect, three surface elastic constants to describe the surface energy effect, and two foundation moduli to represent the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the newly developed plate model includes the models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases and recovers the Bernoulli-Euler beam model incorporating the microstructure, surface energy and foundation effects. To illustrate the new model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulas derived. For the static bending problem, the numerical results reveal that the deflection of the simply supported plate with or without the elastic foundation predicted by the current model is smaller than that predicted by the classical model. Also, it is observed that the difference in the deflection predicted by the new and classical plate models is very large when the plate thickness is sufficiently small, but it is diminishing with the increase of the plate thickness. For the free vibration problem, it is found that the natural frequency predicted by the new plate model with or without the elastic foundation is higher than that predicted by the
Indian Academy of Sciences (India)
Neetu Gupta; B M Deb
2006-12-01
The quantum dynamics of an electron moving under the Henon–Heiles (HH) potential in the presence of external time-dependent (TD) laser fields of varying intensities have been studied by evolving in real time the unperturbed ground-state wave function (, , ) of the HH oscillator. The TD Schröinger equation is solved numerically and the system is allowed to generate its own wave packet. Two kinds of sensitivities, namely, sensitivity to the initial quantum state and to the Hamiltonian, are examined. The threshold intensity of the laser field for an electron moving in the HH potential to reach its continuum is identified and in this region quantum chaos has been diagnosed through a combination of various dynamical signatures such as the autocorrelation function, quantum `phase-space' volume, `phase-space' trajectory, distance function and overlap integral (akin to quantum fidelity or Loschmidt echo), in terms of the sensitivity towards an initial state characterized by a mixture of quantum states (wave packet) brought about by small changes in the Hamiltonian, rather than a `pure' quantum state (a single eigenstate). The similarity between the HH potential and atoms/molecules in intense laser fields is also analyzed.
Quantum and Classical Effects in the Two-Frequency Kicked Rotor with Variable Initial Phase
Mullins, T G; Sadgrove, M P; Hoogerland, M D; Parkins, A S; Leonhardt, R
2004-01-01
We present an investigation into effects exhibited by the two-frequency kicked rotor. Experiments were performed and in addition quantum and classical dynamics were simulated and compared with the experimental results. The experiments involved pulsing the optical standing wave with two pulsing periods of differing frequencies and variable initial phase offset. The ratio of pulsing periods was sampled for rational and irrational values for different experimental runs. In this paper we present these results and examine the measured momentum distributions for the cause of any structures that are seen in the energy as the initial phase offset is changed. Irrational ratios exhibit no significant quantum effects, whereas rational ratios show dynamical localisation (DL) for certain values of the initial phase. However, most of the observed structure is found to be due to classical effects, in particular KAM boundaries, and is therefore not of uniquely quantum origin.
Energy-momentum tensors in classical field theories — A modern perspective
Voicu, Nicoleta
2016-04-01
The paper presents a general geometric approach to energy-momentum tensors in Lagrangian field theories, based on a global Hilbert-type definition. The approach is consistent with the ones defining energy-momentum tensors in terms of hypermomentum maps given by the diffeomorphism invariance of the Lagrangian — and, in a sense, complementary to these, with the advantage of an increased simplicity of proofs and also, opening up new insights on the topic. A special attention is paid to the particular cases of metric and metric-affine theories.
Lachet, V; Teuler, J-M; Rousseau, B
2015-01-01
A classical all-atoms force field for molecular simulations of hydrofluorocarbons (HFCs) has been developed. Lennard-Jones force centers plus point charges are used to represent dispersion-repulsion and electrostatic interactions. Parametrization of this force field has been performed iteratively using three target properties of pentafluorobutane: the quantum energy of an isolated molecule, the dielectric constant in the liquid phase, and the compressed liquid density. The accuracy and transferability of this new force field has been demonstrated through the simulation of different thermophysical properties of several fluorinated compounds, showing significant improvements compared to existing models. This new force field has been applied to study solubilities of several gases in poly(vinylidene fluoride) (PVDF) above the melting temperature of this polymer. The solubility of CH4, CO2, H2S, H2, N2, O2, and H2O at infinite dilution has been computed using test particle insertions in the course of a NpT hybrid Monte Carlo simulation. For CH4, CO2, and their mixtures, some calculations beyond the Henry regime have also been performed using hybrid Monte Carlo simulations in the osmotic ensemble, allowing both swelling and solubility determination. An ideal mixing behavior is observed, with identical solubility coefficients in the mixtures and in pure gas systems.
Energy Technology Data Exchange (ETDEWEB)
Albaugh, Alex [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Demerdash, Omar [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Head-Gordon, Teresa, E-mail: thg@berkeley.edu [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Department of Chemistry, University of California, Berkeley, California 94720 (United States); Department of Bioengineering, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)
2015-11-07
We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the course of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well.
Directory of Open Access Journals (Sweden)
Abdolmajid Mohaqeqi
2014-11-01
Full Text Available After the advent of Islam in Iran, Persian Literature has always been considered as one of the major characteristics of Iranian culture and identity to the extent that some people believe whatever western has achieved in terms of literature – especially English literature – and honors to them originate from rich Persian literature. However, Persian literature has severely been influenced by works of western writers in contemporary era so that even modern Persian story and poem is divided based on western styles. Unfortunately, this situation – that a part of identity of Iranian culture has been drastically affected by alien culture – offends each educated Iranian. Today, a flashback to Iranian classical styles does not meet the need for a development created in literary works. However, it is necessary that tasteful and patriotic people create novel works in Iran’s contemporary literature against the decades-old literary identity of the west through adaptation of past-targeted literature and under the effect of conditions of today modern society in order to recover the lost identity of Iranian literature which other fields are considered as its subset. Therefore, this paper is going to present solutions for modeling the identity of Iranian literature for the next two decades in line with Islamization of universities in order to divide the pure academic literature into pure and applied sub-branches and develop academic literary activities. As a result, the international works would be established based on the columns of Persian literature whose kernel will not to be damaged in the rain and wind of alien cultures. Keywords: Islamic Iranian identity, western philosophy, Persian literature, contemporary literature, art
International Nuclear Information System (INIS)
We optimize the classical field approximation of the version described by M. Brewczyk, M. Gajda, and K. RzaPzewski [J. Phys. B 40, R1 (2007)] for the oscillations of a Bose gas trapped in a harmonic potential at nonzero temperatures, as experimentally investigated by Jin et al. [Phys. Rev. Lett. 78, 764 (1997)]. Similar to experiment, the system response to external perturbations strongly depends on the initial temperature and the symmetry of perturbation. While for lower temperatures the thermal cloud follows the condensed part, for higher temperatures the thermal atoms oscillate rather with their natural frequency, whereas the condensate exhibits a frequency shift toward the thermal cloud frequency (m=0 mode) or in the opposite direction (m=2 mode). In the latter case, for temperatures approaching critical, we find that the condensate begins to oscillate with the frequency of the thermal atoms, as in the m=0 mode. A broad range of frequencies of the perturbing potential is considered.
International Nuclear Information System (INIS)
A quantum/classical time-dependent self-consistent field (Q/C TDSCF) approach is used to simulate the dynamics of collisions of Ar with HCO. We present state-to-state cross sections and thermal rate constants for vibrational transitions. Using this model together with assumptions about the rotational energy transfer and a master equation treatment of the kinetics, the low-pressure thermal rate of collision-induced dissociation (CID) was calculated over the 300 - 4000 K temperature range. A comparison with experiment shows good agreement at high temperatures and poor agreement at low temperatures. The high temperature results were sufficient to obtain an Arrhenius expression for the rate that agrees with all experimental results of which we are aware. copyright 1999 American Institute of Physics
Wrochna, Michał
2014-01-01
We investigate linearized gauge theories on globally hyperbolic spacetimes in the BRST formalism. A consistent definition of the classical phase space and of its Cauchy surface analogue is proposed. We prove it is isomorphic to the phase space in the subsidiary condition approach of Hack and Schenkel in the case of Maxwell, Yang-Mills, and Rarita-Schwinger fields. Defining Hadamard states in the BRST formalism in a standard way, their existence in the Maxwell and Yang-Mills case is concluded from known results in the subsidiary condition (or Gupta-Bleuler) formalism. Within our framework, we also formulate criteria for non-degeneracy of the phase space in terms of BRST cohomology and discuss special cases. These include an example in the Yang-Mills case, where degeneracy is not related to a non-trivial topology of the Cauchy surface.
Effective model hierarchies for dynamic and static classical density functional theories
Energy Technology Data Exchange (ETDEWEB)
Majaniemi, S [Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11100, FI-00076 Aalto (Finland); Provatas, N [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S-4L7 (Canada); Nonomura, M, E-mail: maj@fyslab.hut.f [Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)
2010-09-15
The origin and methodology of deriving effective model hierarchies are presented with applications to solidification of crystalline solids. In particular, it is discussed how the form of the equations of motion and the effective parameters on larger scales can be obtained from the more microscopic models. It will be shown that tying together the dynamic structure of the projection operator formalism with static classical density functional theories can lead to incomplete (mass) transport properties even though the linearized hydrodynamics on large scales is correctly reproduced. To facilitate a more natural way of binding together the dynamics of the macrovariables and classical density functional theory, a dynamic generalization of density functional theory based on the nonequilibrium generating functional is suggested.
Institute of Scientific and Technical Information of China (English)
YAN Jun-Yan; WANG Lin-Cheng; YI Xue-Xi
2011-01-01
We study the quantum discord dynamics of a bipartite composite system in the presence of a dissipative environment and investigate the effect of the interaction between the two subsystems. The results show that the interaction can influence the sudden transition between the quantum correlation and the classical correlation and for the maximally mixed marginals initial states, the sudden transition regime will always exist. The entanglements are also discussed in comparison to the quantum discord in describing the quantum correlations.%@@ We study the quantum discord dynamics of a bipartite composite system in the presence of a dissipative envi- ronment and investigate the effect of the interaction between the two subsystems.The results show that the interaction can influence the sudden transition between the quantum correlation and the classical correlation and for the maximally mixed marginals initial states, the sudden transition regime will always exist.The entangle- ments are also discussed in comparison to the quantum discord in describing the quantum correlations.
Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field
Das, Praloy; Pramanik, Souvik; Ghosh, Subir
2016-11-01
Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac's Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torus knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein-Brillouin-Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr-Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.
Lemkul, Justin A; Huang, Jing; Roux, Benoît; MacKerell, Alexander D
2016-05-11
Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena.
Yoshioka, Yasuo; Suzuki, Osamu; Nishimura, Kazuo; Inoue, Hitoshi; Hara, Tsuneo; Yoshida, Ken; Imai, Atsushi; Tsujimura, Akira; Nonomura, Norio; Ogawa, Kazuhiko
2012-01-01
We aimed to analyse late toxicity associated with external beam radiation therapy (EBRT) for prostate cancer using uniform dose-fractionation and beam arrangement, with the focus on the effect of 3D (CT) simulation and portal field size. We collected data concerning patients with localized prostate adenocarcinoma who had been treated with EBRT at five institutions in Osaka, Japan, between 1998 and 2006. All had been treated with 70 Gy in 35 fractions, using the classical 4-field technique wit...
Institute of Scientific and Technical Information of China (English)
WANG De-Hua
2010-01-01
@@ In a paper published by us,[1] we studied how to extract the closed orbit of the non-hydrogenic atom in parallel electric and magnetic fields. However, there was another paper published in 1996 by Courtney,[2] which studied the initial conditions of closed classical orbits from quantum spectra of hydrogen atom in magnetic field.
Could light harvesting complexes exhibit non-classical effects at room temperature?
Wilde, Mark M; Mizel, Ari
2009-01-01
Mounting experimental and theoretical evidence suggests that coherent quantum effects play a role in the efficient transfer of an excitation from a chlorosome antenna to a reaction center in the Fenna-Matthews-Olson protein complex. However, it is conceivable that a satisfying alternate interpretation of the results is possible in terms of a classical theory. To address this possibility, we consider a class of classical theories satisfying the minimal postulates of macrorealism and frame Leggett-Garg-type tests that could rule them out. Our numerical simulations indicate that even in the presence of decoherence, several tests could exhibit the required violations of the Leggett-Garg inequality. Remarkably, some violations persist even at room temperature for our decoherence model.
Silenko, Alexander J
2014-01-01
The fulfilled derivation of equation of spin precession of a particle possessing magnetic and electric dipole moments uses a fully covariant approach and explicitly separates contributions from classical electrodynamics and from the Thomas effect. The expression of the final equation in terms of the fields in the instantly accompanying frame presents it in a very simple form. The Lorentz transformations of the magnetic and electric dipole moments and the spin are derived from basic equations of classical electrodynamics, namely, from the equation connecting the angular momentum and the magnetic moment and from the Maxwell equations in matter. An antisymmetric four-tensor is constructed from the electric and magnetic dipole moments.
Elliptically Oscillating Classical Solution in Higgs Potential and the Effects on Vacuum Transitions
Kitadono, Yoshio
2015-01-01
We investigate oscillating solutions of the equation of motion for the Higgs potential. The solutions are described by Jacobian elliptic functions. Classifying the classical solutions, we evaluate a possible parameter-space for the initial conditions. In order to construct the field theory around the oscillating solutions quantum fluctuations are introduced. This alternative perturbation method is useful to describe the non-trivial quantum theory around the oscillating state. This perturbation theory reduces to the standard one if we take the solution at the vacuum expectation value. It is shown that the transition probability between the vacuum and multi-quanta states is finite as long as the initial field configuration does not start from the true vacuum.
Energy Technology Data Exchange (ETDEWEB)
Li, W. C.; Song, X.; Feng, J. J.; Zeng, M.; Gao, X. S.; Qin, M. H., E-mail: qinmh@scnu.edu.cn [Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Jia, X. T. [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China)
2015-07-07
In this work, the effects of the random exchange interaction on the phase transitions and phase diagrams of classical frustrated Heisenberg model are investigated by Monte Carlo simulation in order to simulate the chemical doping effect in real materials. It is observed that the antiferromagnetic transitions shift toward low temperature with the increasing magnitude of the random exchange interaction, which can be qualitatively understood from the competitions among local spin states. This study is related to the magnetic properties in the doped iron-based superconductors.
Institute of Scientific and Technical Information of China (English)
洪江庭
2015-01-01
Three vaccines were used to compare immune effect on spleen and lymph tissue and cell line origin classical swine fever vaccine. Forty-five 30-day-old piglets were randomly selected and divided into 3 groups in a scale farm in Xiamen, meanwhile first immunization was carried out, second immunizationafter28 days, group A used spleen and lymph tissue origin classical swine fever vaccine from CQ and group B used spleen and lymph tissue origin vaccine from CD, while group C used cell line origin classical swine fever vaccine from JX, through regular tracking of antibody level to evaluate the immune effect. The results showed: The anti-body positive rate in group C herds was the highest on the 38thday after second immunization, with a significant difference in group A herds.%为比较猪瘟脾淋苗和传代细胞苗的免疫效果，在厦门市同安区某规模猪场，选用代号为CQ、CD和JX 3个厂家生产的猪瘟脾淋苗和传代细胞苗进行免疫效果试验。随机选取45头30日龄断乳仔猪，分为3组，30日龄首免，首免后28 d二免，A组免疫接种CQ厂家的猪瘟脾淋苗，B组免疫接种CD厂家的猪瘟脾淋苗，C组免疫接种JX厂家的猪瘟细胞传代苗，通过定期跟踪3组猪群血清中的抗体水平，评估疫苗的免疫效果。结果显示：3组猪群二免后7d前免疫抗体抗体水平和阳性率无显著差异，38 d后才出现免疫抗体水平和阳性率显著差异，以C组猪群的抗体阳性率最高，A组猪群的抗体阳性率最低。
Effective field theory of dissipative fluids
Crossley, Michael; Liu, Hong
2015-01-01
We develop an effective field theory for dissipative fluids which governs the dynamics of gapless modes associated to conserved quantities. The system is put in a curved spacetime and coupled to external sources for charged currents. The invariance of the hydrodynamical action under gauge symmetries and diffeomorphisms suggests a natural set of dynamical variables which provide a mapping between an emergent "fluid spacetime" and the physical spacetime. An essential aspect of our formulation is to identify the appropriate symmetries in the fluid spacetime. Our theory applies to nonlinear disturbances around a general density matrix. For a thermal density matrix, we require an additional Z_2 symmetry, to which we refer as the local KMS condition. This leads to the standard constraints of hydrodynamics, as well as a nonlinear generalization of the Onsager relations. It also leads to an emergent supersymmetry in the classical statistical regime, with a higher derivative version required for the full quantum regim...
The classical electromagnetic field
Eyges, Leonard
2010-01-01
This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.
Saydanzad, Erfan; Thumm, Uwe
2016-05-01
Attosecond time-resolved (XUV-pump, IR-probe) spectroscopy has been shown to be a powerful method for investigating the electron dynamics in atoms, and this technique is now being transferred to the investigation of electronic excitations, electron propagation, and collective electronic (plasmonic) effects in solids. Based on classical trajectory calculations, we simulated (i) the final photoelectron velocity distribution in order to provide observable velocity-map images for gold nanospheres of 10 and 100 nm diameter and (ii) streaked photoemission spectra. By analyzing our numerical results, we illustrate how spatio-temporal information about the sub-IR-cycle plasmonic and electronic dynamics is encoded in velocity-map images and streaked photoelectron spectra. Supported by the NE/KS NSF-EPSCOR program.
Effective field theories from QCD
International Nuclear Information System (INIS)
We present a method for extracting effective Lagrangians from QCD. The resulting effective Lagrangians are based on exact rewrites of cut-off QCD in terms of these new collective field degrees of freedom. These cut-off Lagrangians are thus 'effective' in the sense that they explicitly contain some of the physical long-distance degrees of freedom from the outset. As an example we discuss the introduction of a new collective field carrying the quantum numbers of the η'-meson. (orig.)
Renormalization and effective field theory
Costello, Kevin
2011-01-01
This book tells mathematicians about an amazing subject invented by physicists and it tells physicists how a master mathematician must proceed in order to understand it. Physicists who know quantum field theory can learn the powerful methodology of mathematical structure, while mathematicians can position themselves to use the magical ideas of quantum field theory in "mathematics" itself. The retelling of the tale mathematically by Kevin Costello is a beautiful tour de force. --Dennis Sullivan This book is quite a remarkable contribution. It should make perturbative quantum field theory accessible to mathematicians. There is a lot of insight in the way the author uses the renormalization group and effective field theory to analyze perturbative renormalization; this may serve as a springboard to a wider use of those topics, hopefully to an eventual nonperturbative understanding. --Edward Witten Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorio...
Quantum features derived from the classical model of a bouncer-walker coupled to a zero-point field
Schwabl, H.; Mesa Pascasio, J.; Fussy, S.; Grössing, G.
2012-05-01
In our bouncer-walker model a quantum is a nonequilibrium steady-state maintained by a permanent throughput of energy. Specifically, we consider a "particle" as a bouncer whose oscillations are phase-locked with those of the energy-momentum reservoir of the zero-point field (ZPF), and we combine this with the random-walk model of the walker, again driven by the ZPF. Starting with this classical toy model of the bouncer-walker we were able to derive fundamental elements of quantum theory [1]. Here this toy model is revisited with special emphasis on the mechanism of emergence. Especially the derivation of the total energy hslashωo and the coupling to the ZPF are clarified. For this we make use of a sub-quantum equipartition theorem. It can further be shown that the couplings of both bouncer and walker to the ZPF are identical. Then we follow this path in accordance with Ref. [2], expanding the view from the particle in its rest frame to a particle in motion. The basic features of ballistic diffusion are derived, especially the diffusion constant D, thus providing a missing link between the different approaches of our previous works [1, 2].
Quantum features derived from the classical model of a bouncer-walker coupled to a zero-point field
Schwabl, Herbert; Fussy, Siegfried; Groessing, Gerhard; 10.1088/1742-6596/361/1/012021
2012-01-01
In our bouncer-walker model a quantum is a nonequilibrium steady-state maintained by a permanent throughput of energy. Specifically, we consider a "particle" as a bouncer whose oscillations are phase-locked with those of the energy-momentum reservoir of the zero-point field (ZPF), and we combine this with the random-walk model of the walker, again driven by the ZPF. Starting with this classical toy model of the bouncer-walker we were able to derive fundamental elements of quantum theory. Here this toy model is revisited with special emphasis on the mechanism of emergence. Especially the derivation of the total energy hbar.omega and the coupling to the ZPF are clarified. For this we make use of a sub-quantum equipartition theorem. It can further be shown that the couplings of both bouncer and walker to the ZPF are identical. Then we follow this path in accordance with previous work, expanding the view from the particle in its rest frame to a particle in motion. The basic features of ballistic diffusion are der...
Quantum effects in strong fields
International Nuclear Information System (INIS)
This work is devoted to quantum effects for photons in spatially inhomogeneous fields. Since the purely analytical solution of the corresponding equations is an unsolved problem even today, a main aspect of this work is to use the worldline formalism for scalar QED to develop numerical algorithms for correlation functions beyond perturbative constructions. In a first step we take a look at the 2-Point photon correlation function, in order to understand effects like vacuum polarization or quantum reflection. For a benchmark test of the numerical algorithm we reproduce analytical results in a constant magnetic background. For inhomogeneous fields we calculate for the first time local refractive indices of the quantum vacuum. In this way we find a new de-focusing effect of inhomogeneous magnetic fields. Furthermore the numerical algorithm confirms analytical results for quantum reflection obtained within the local field approximation. In a second step we take a look at higher N-Point functions, with the help of our numerical algorithm. An interesting effect at the level of the 3-Point function is photon splitting. First investigations show that the Adler theorem remains also approximately valid for inhomogeneous fields.
The Effect of String Tension Variation on the Perceived Pitch of a Classical Guitar
Directory of Open Access Journals (Sweden)
Wanda Jadwiga Lewis
2014-09-01
Full Text Available Actual motion of a vibrating guitar string is a superposition of many possible shapes (modes in which it could vibrate. Each of these modes has a corresponding frequency, and the lowest frequency is associated with a shape idealised as a single wave, referred to as the fundamental mode. The other contributing modes, each with their own progressively higher frequency, are referred to as overtones, or harmonics. By attaching a string to a medium (a soundboard capable of a response to the vibrating string, sound waves are generated. The sound heard is dominated by the fundamental mode, ‘coloured’ by contributions from the overtones, as explained by the classical theory of vibration. The classical theory, however, assumes that the string tension remains constant during vibration, and this cannot be strictly true; when considering just the fundamental mode, string tension will reach two maximum changes, as it oscillates up and down. These changes, occurring twice during the fundamental period match the frequency of the octave higher, 1st overtone. It is therefore plausible to think that the changing tension effect, through increased force on the bridge and, therefore, greater soundboard deflection, could be amplifying the colouring effect of (at least the 1st overtone.In this paper, we examine the possible influence of string tension variation on tonal response of a classical guitar. We use a perturbation model based on the classical result for a string in general vibration in conjunction with a novel method of assessment of plucking force that incorporates the engineering concept of geometric stiffness, to assess the magnitude of the normal force exerted by the string on the bridge. The results of our model show that the effect of tension variation is significantly smaller than that due to the installed initial static tension, and affects predominantly the force contribution arising from the fundamental mode. We, therefore, conclude that string
Kurian, P; Verzegnassi, C.
2015-01-01
We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values fo...
Tunneling field effect transistor technology
Chan, Mansun
2016-01-01
This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.
Rotzien, J. R.; Mayhew, B.; Yospin, S.; Beiki, A.; Tewksbury, C.; Hardman, D.; Bank, C.; Noblett, J.; Semken, S.; Kroeger, G.
2007-12-01
The Navajo Volcanic Field (NVF) is an area of late-Tertiary volcanism along the New Mexico-Arizona border near the Four Corners region of the American Southwest. Among the roughly 80 exhumed diatremes that comprise the NVF, Ship Rock and The Thumb are two diatremes that present an interesting problem concerning magma ascent and emplacement within the NVF. Are the diatremes remnants of classical volcanoes with underlying magma chambers, or are the diatremes formed from buds off of upward propagating dike swarms? The 2006 Keck Consortium Geophysics Project collected non-invasive gravity and magnetic data to image the subsurface of Ship Rock and The Thumb to suggest constraints concerning the formation of these diatremes within the Navajo Volcanic Field. At Ship Rock, we collected over 120 gravity points spaced 500 m apart along 10 lines. We also collected about 65,000 magnetic points that cover an area of 1,570,000 square meters surrounding Ship Rock. The gravity data reveal gravity lows several kilometers away from Ship Rock, probably as a result of thick sedimentary units close to the surface. A steep gradient of 5 mGal/km separates the gravity lows from a strong gravity high immediately to the southwest of Ship Rock. We interpret this gravity high to be uneven basement topography or a magma chamber at depth; further studies are required to determine which of the interpretations is more likely. The Ship Rock magnetic data show the prominent west and northeast dikes extend well beyond their surface outcrops while the southern dike extends only to its visible termination. The magnetic data we collected at The Thumb along ~18 km of lines reveal a linear northeast-southwest trending magnetic anomaly about 105 to 360 nT in amplitude that crosses the diatreme. We interpret the anomaly to be a dike beneath The Thumb. Models of the total field magnetic data suggest a dike at shallow depths of about 0.1 to 4.8 m and widths of about 0.25 to 1.5 m with a steep dip to the
Finite-temperature Casimir effect in piston geometry and its classical limit
Energy Technology Data Exchange (ETDEWEB)
Lim, S.C. [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor Darul Ehsan (Malaysia); Teo, L.P. [Multimedia University, Faculty of Information Technology, Cyberjaya, Selangor Darul Ehsan (Malaysia)
2009-03-15
We consider the Casimir force acting on a d-dimensional rectangular piston due to a massless scalar field with periodic, Dirichlet and Neumann boundary conditions and an electromagnetic field with perfect electric-conductor and perfect magnetic-conductor boundary conditions. The Casimir energy in a rectangular cavity is derived using the cut-off method. It is shown that the divergent part of the Casimir energy does not contribute to the Casimir force acting on the piston, thus renders an unambiguously defined Casimir force acting on the piston. At any temperature, it is found that the Casimir force acting on the piston increases from -{infinity} to 0 when the separation a between the piston and the opposite wall increases from 0 to {infinity}. This implies that the Casimir force is always an attractive force pulling the piston towards the closer wall, and the magnitude of the force gets larger as the separation a gets smaller. Explicit exact expressions for the Casimir force for small and large plate separations and for low and high temperatures are computed. The limits of the Casimir force acting on the piston when some pairs of transversal plates are large are also derived. An interesting result regarding the influence of temperature is that in contrast to the conventional result that the leading term of the Casimir force acting on a wall of a rectangular cavity at high temperature is the Stefan-Boltzmann (or black-body radiation) term which is of order T {sup d+1}, it is found that the contributions of this term from the two regions separating the piston cancel with each other in the case of piston. The high-temperature leading-order term of the Casimir force acting on the piston is of order T, which shows that the Casimir force has a nontrivial classical {Dirac_h}{yields}0 limit. Explicit formulas for the classical limit are computed. (orig.)
Kramer, John R.
2012-01-01
Classical guitar ensembles are increasing in the United States as popular alternatives to band, choir, and orchestra. Classical guitar ensembles are offered at many middle and high schools as fine arts electives as one of the only options for classical guitarists to participate in ensembles. The purpose of this study was to explore the development…
Kadkhodaee, Mehri; Najafi, Atefeh; Seifi, Behjat
2014-11-01
The present study aimed to analyze and compare the effects of classical and remote ischemic postconditioning (POC) on rat renal ischemia/reperfusion (IR)-induced acute kidney injury. After right nephrectomy, male rats were randomly assigned into four groups (n = 8). In the IR group, 45 min of left renal artery occlusion was induced followed by 24 h of reperfusion. In the classical POC group, after induction of 45 min ischemia, 4 cycles of 10 s of intermittent ischemia and reperfusion were applied to the kidney before complete restoring of renal blood. In the remote POC group, 4 cycles of 5 min ischemia and reperfusion of left femoral artery were applied after 45 min renal ischemia and right at the time of renal reperfusion. There was a reduction in renal function (increase in blood urea and creatinine) in the IR group. Application of both forms of POC prevented the IR-induced reduction in renal function and histology. There were also significant improvements in kidney oxidative stress status in both POC groups demonstrated by a reduction in malondialdehyde (MDA) formation and preservation of antioxidant levels comparing to the IR group. We concluded that both methods of POC have protective effects on renal function and histology possibly by a reduction in IR-induced oxidative stress.
Entanglement in Classical Optics
Ghose, Partha
2013-01-01
The emerging field of entanglement or nonseparability in classical optics is reviewed, and its similarities with and differences from quantum entanglement clearly pointed out through a recapitulation of Hilbert spaces in general, the special restrictions on Hilbert spaces imposed in quantum mechanics and the role of Hilbert spaces in classical polarization optics. The production of Bell-like states in classical polarization optics is discussed, and new theorems are proved to discriminate between separable and nonseparable states in classical wave optics where no discreteness is involved. The influence of the Pancharatnam phase on a classical Bell-like state is deived. Finally, to what extent classical polarization optics can be used to simulate quantum information processing tasks is also discussed. This should be of great practical importance because coherence and entanglement are robust in classical optics but not in quantum systems.
Energy Technology Data Exchange (ETDEWEB)
Costella, J.P.; McKellar, B.H.J.; Rawlinson, A.A.
1997-03-01
We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain. (authors). 13 refs., 1 tab.
Hehl, F W; Hehl, Friedrich W.; Obukhov, Yuri N.
2000-01-01
Coulomb comes in quanta, weber may come in quanta. -- We will base classical electrodynamics on electric charge conservation, the Lorentz force, and on magnetic flux conservation. This yields the Maxwell equations. The consequences will be drawn for the interpretation and the dimension of the electric and magnetic fields.
Entanglement in Classical Optics
Ghose, Partha; Mukherjee, Anirban
2013-01-01
The emerging field of entanglement or nonseparability in classical optics is reviewed, and its similarities with and differences from quantum entanglement clearly pointed out through a recapitulation of Hilbert spaces in general, the special restrictions on Hilbert spaces imposed in quantum mechanics and the role of Hilbert spaces in classical polarization optics. The production of Bell-like states in classical polarization optics is discussed, and new theorems are proved to discriminate betw...
Effect of Markov and Non-Markov Classical Noise on Entanglement Dynamics
Bordone, Paolo; Benedetti, Claudia
2012-01-01
We analyze the effect of a classical noise into the entanglement dynamics between two particles, initially entangled, subject to continuous time quantum walks in a one-dimensional lattice. The noise is modeled by randomizing the transition amplitudes from one site to another. Both Markovian and non-Markovian environments are considered. For the Markov regime an exponential decay of the initial quantum correlation is found, while the loss of coherence of the quantum state increases monotonically with time up to a saturation value depending upon the degrees of freedom of the system. For the non-Markov regime the presence or absence of entanglement revival and entanglement sudden death phenomena is found or deduced depending on the peculiar characteristics of the noise. Our results indicate that the entanglement dynamics in the non-Markovian regime is affected by the persistence of the memory effects of the environment and by its intrinsic features.
A Lagrangian effective field theory
Vlah, Zvonimir; White, Martin; Aviles, Alejandro
2015-01-01
We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tam...
Camara, Jorge G.; Ruszkowski, Joseph M.; Worak, Sandra R.
2008-01-01
Context Music and surgery. Objective To determine the effect of live classical piano music on vital signs of patients undergoing ophthalmic surgery. Design Retrospective case series. Setting and Patients 203 patients who underwent various ophthalmologic procedures in a period during which a piano was present in the operating room of St. Francis Medical Center. [Note: St. Francis Medical Center has recently been renamed Hawaii Medical Center East.] Intervention Demographic data, surgical procedures, and the vital signs of 203 patients who underwent ophthalmic procedures were obtained from patient records. Blood pressure, heart rate, and respiratory rate measured in the preoperative holding area were compared with the same parameters taken in the operating room, with and without exposure to live piano music. A paired t-test was used for statistical analysis. Main outcome measure Mean arterial pressure, heart rate, and respiratory rate. Results 115 patients who were exposed to live piano music showed a statistically significant decrease in mean arterial blood pressure, heart rate, and respiratory rate in the operating room compared with their vital signs measured in the preoperative holding area (P < .0001). The control group of 88 patients not exposed to live piano music showed a statistically significant increase in mean arterial blood pressure (P < .0002) and heart rate and respiratory rate (P < .0001). Conclusion Live classical piano music lowered the blood pressure, heart rate, and respiratory rate in patients undergoing ophthalmic surgery. PMID:18679538
Energy Technology Data Exchange (ETDEWEB)
Fosco, César D. [Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, R8402AGP, Bariloche (Argentina); Lombardo, Fernando C., E-mail: lombardo@df.uba.ar [Departamento de Física Juan José Giambiagi, FCEyN UBA and IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)
2015-12-17
We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation.
Energy Technology Data Exchange (ETDEWEB)
Fosco, Cesar D. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche, Instituto Balseiro, Bariloche (Argentina); Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA y IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2015-12-15
We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)
International Nuclear Information System (INIS)
Models of biological control have a long history of theoretical development that have focused on the interaction of a parasitoid and its host. The host-parasitoid systems have identified several important and general factors affecting the long-term dynamics of interacting populations. However, much less is known about how the initial densities of host-parasitoid populations affect the biological control as well as the stability of host-parasitoid systems. To do this, the classical Nicholson-Bailey model with host self-regulation and parasitoid intergenerational survival rate is used to uncover the effect of initial densities on the successful biological control. The results indicate that the simplest Nicholson-Bailey model has various coexistence with a wide range of parameters, including boundary attractors where the parasitoid population is absent and interior attractors where host-parasitoid coexists. The final stable states of host-parasitoid populations depend on their initial densities as well as their ratios, and those results are confirmed by basins of attraction of initial densities. The results also indicate that the parasitoid intergenerational survival rate increases the stability of the host-parasitoid systems. Therefore, the present research can help us to further understand the dynamical behavior of host-parasitoid interactions, to improve the classical biological control and to make management decisions
Methylation as an epigenetic source of random genetic effects in the classical twin design
Directory of Open Access Journals (Sweden)
Dolan CV
2015-09-01
Full Text Available Conor V Dolan,1,3 Michel G Nivard,1,3 Jenny van Dongen,1,3 Sophie van der Sluis,2 Dorret I Boomsma,1,3,41Department of Biological Psychology, Netherlands Twin Register, VU University Amsterdam, 2Section Complex Trait Genetics, Department of Clinical Genetics, VU Medical Center, 3EMGO+ Institute for Health and Care Research, VU University Medical Center, 4Neuroscience Campus Amsterdam, Amsterdam, the Netherlands Abstract: The epigenetic effects of cytosine methylation on gene expression are an acknowledged source of phenotypic variance. The discordant monozygotic (MZ twin design has been used to demonstrate the role of methylation in disease. Application of the classical twin design, featuring both monozygotic and dizygotic twins, has demonstrated that individual differences in methylation levels are attributable to genetic and environmental (including stochastic factors, with the latter explaining most of the variance. What implications epigenetic sources of variance have for the twin modeling of (non-epigenetic phenotypes such as height and IQ is an open question. One possibility is that epigenetic effects are absorbed by the variance component attributable to unshared environmental. Another possibility is that such effects form an independent source of variance distinguishable in principle from standard genetic and environmental sources. In the present paper, we conceptualized epigenetic processes as giving rise to randomness in the effects of polygenetic influences. This means that the regression coefficient in the regression of the phenotype on the polygenic factor, as specified in the twin model, varies over individuals. We investigate the consequences of ignoring this randomness in the standard twin model. Keywords: classical twin design, epigenetics, methylation, parameter randomness, heritability
Energy Technology Data Exchange (ETDEWEB)
Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado
1997-10-01
The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.
Field enhancement effect of metal probe in evanescent field
Institute of Scientific and Technical Information of China (English)
Xiaogang Hong; Wendong Xu; Xiaogang Li; Chengqiang Zhao; Xiaodong Tang
2009-01-01
Field enhancement effect of metal probe in evanescent field, induced by using a multi-layers structure for exciting surface plasmon resonance (SPR), is analyzed numerically by utilizing two-dimensional (2D) TM wave finite difference time-domain (FDTD) method. In this letter, we used a fundamental mode Gaussian beam to induce evanescent field, and calculated the electric intensity. The results show that compared with the nonmetal probe, the metal probe has a larger field enhancement effect, and its scattering wave induced by field enhancement has a bigger decay coefficient. The field enhancement effect should conclude that the metal probe has an important application in nanolithography.
Classical Statistical Mechanics and Landau Damping
Buchmuller, W; Jakovac, A.
1997-01-01
We study the retarded response function in scalar $\\phi^4$-theory at finite temperature. We find that in the high-temperature limit the imaginary part of the self-energy is given by the classical theory to leading order in the coupling. In particular the plasmon damping rate is a purely classical effect to leading order, as shown by Aarts and Smit. The dominant contribution to Landau damping is given by the propagation of classical fields in a heat bath of non-interacting fields.
Zhen, Shanshan; Yu, Rongjun
2016-01-01
Human risk-taking attitudes can be influenced by two logically equivalent but descriptively different frames, termed the framing effect. The classic hypothetical vignette-based task (Asian disease problem) and a recently developed reward-based gambling task have been widely used to assess individual differences in the framing effect. Previous studies treat framing bias as a stable trait that has genetic basis. However, these two paradigms differ in terms of task domain (loss vs. gain) and task context (vignette-based vs. reward-based) and the convergent validity of these measurements remains unknown. Here, we developed a vignette-based task and a gambling task in both gain and loss domains and tested correlations of the framing effect among these tasks in 159 young adults. Our results revealed no significant correlation between the vignette-based task in the loss domain and the gambling task in the gain domain, indicating low convergent validity. The current findings raise the question of how to measure the framing effect precisely, especially in individual difference studies using large samples and expensive neuroscience methods. Our results suggest that the framing effect is influenced by both task domain and task context and future research should be cautious about the operationalization of the framing effect. PMID:27436680
The effective crystal field potential
Mulak, J
2000-01-01
As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...
Nonequivalence of classical MHC class I loci in ability to direct effective antiviral immunity.
Directory of Open Access Journals (Sweden)
Kevin D Pavelko
2012-02-01
Full Text Available Structural diversity in the peptide binding sites of the redundant classical MHC antigen presenting molecules is strongly selected in humans and mice. Although the encoded antigen presenting molecules overlap in antigen presenting function, differences in polymorphism at the MHC I A, B and C loci in humans and higher primates indicate these loci are not functionally equivalent. The structural basis of these differences is not known. We hypothesize that classical class I loci differ in their ability to direct effective immunity against intracellular pathogens. Using a picornavirus infection model and chimeric H-2 transgenes, we examined locus specific functional determinants distinguishing the ability of class I sister genes to direct effective anti viral immunity. Whereas, parental FVB and transgenic FVB mice expressing the H-2K(b gene are highly susceptible to persisting Theiler's virus infection within the CNS and subsequent demyelination, mice expressing the D(b transgene clear the virus and are protected from demyelination. Remarkably, animals expressing a chimeric transgene, comprised primarily of K(b but encoding the peptide binding domain of D(b, develop a robust anti viral CTL response yet fail to clear virus and develop significant demyelination. Differences in expression of the chimeric K(bα1α2D(b gene (low and D(b (high in the CNS of infected mice mirror expression levels of their endogenous H-2(q counterparts in FVB mice. These findings demonstrate that locus specific elements other than those specifying peptide binding and T cell receptor interaction can determine ability to clear virus infection. This finding provides a basis for understanding locus-specific differences in MHC polymorphism, characterized best in human populations.
Institute of Scientific and Technical Information of China (English)
Xin Jun-Li; Liang Jiu-Qing
2012-01-01
We study quantum-classical correspondence in terms of the coherent wave functions of a charged particle in twodimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits.For both closed and open classical orbits,the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than h is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions,which is not necessarily 2π-periodic.The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value,which results in a common topological phase for all wave functions in the given model.The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization,where the classical orbits are 2π-periodic.
Porto, Stefano; Moortgat-Pick, Gudrid
2013-01-01
Future linear colliders designs, ILC and CLIC, are expected to be powerful machines for the discovery of Physics Beyond the Standard Model and subsequent precision studies. However, due to the intense beams (high luminosity, high energy), strong electromagnetic fields occur in the beam-beam interaction region. In the context of precision high energy physics, the presence of such strong fields may yield sensitive corrections to the observed electron-positron processes. The Furry picture of quantum states gives a conceptually simple tool to treat physics processes in an external field. A generalization of the quasi-classical operator method (QOM) as an approximation is considered too.
Energy Technology Data Exchange (ETDEWEB)
Porto, Stefano [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Hartin, Anthony [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Moortgat-Pick, Gudrid [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-04-15
Future linear colliders designs, ILC and CLIC, are expected to be powerful machines for the discovery of Physics Beyond the Standard Model and subsequent precision studies. However, due to the intense beams (high luminosity, high energy), strong electromagnetic fields occur in the beam-beam interaction region. In the context of precision high energy physics, the presence of such strong fields may yield sensitive corrections to the observed electron-positron processes. The Furry picture of quantum states gives a conceptually simple tool to treat physics processes in an external field. A generalization of the quasi-classical operator method (QOM) as an approximation is considered too.
Effective Field Theory out of Equilibrium: Brownian quantum fields
Boyanovsky, D
2015-01-01
The emergence of an effective field theory out of equilibrium is studied in the case in which a light field --the system-- interacts with very heavy fields in a finite temperature bath. We obtain the reduced density matrix for the light field, its time evolution is determined by an effective action that includes the \\emph{influence action} from correlations of the heavy degrees of freedom. The non-equilibrium effective field theory yields a Langevin equation of motion for the light field in terms of dissipative and noise kernels that obey a generalized fluctuation dissipation relation. These are completely determined by the spectral density of the bath which is analyzed in detail for several cases. At $T=0$ we elucidate the effect of thresholds in the renormalization aspects and the asymptotic emergence of a local effective field theory with unitary time evolution. At $T\
Analysis of geometric phase effects in the quantum-classical Liouville formalism.
Ryabinkin, Ilya G; Hsieh, Chang-Yu; Kapral, Raymond; Izmaylov, Artur F
2014-02-28
We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic states in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.
Bergsten, D. E.; Fleeter, S.
1983-01-01
To be of quantitative value to the designer and analyst, it is necessary to experimentally verify the flow modeling and the numerics inherent in calculation codes being developed to predict the three dimensional flow through turbomachine blade rows. This experimental verification requires that predicted flow fields be correlated with three dimensional data obtained in experiments which model the fundamental phenomena existing in the flow passages of modern turbomachines. The Purdue Annular Cascade Facility was designed specifically to provide these required three dimensional data. The overall three dimensional aerodynamic performance of an instrumented classical airfoil cascade was determined over a range of incidence angle values. This was accomplished utilizing a fully automated exit flow data acquisition and analysis system. The mean wake data, acquired at two downstream axial locations, were analyzed to determine the effect of incidence angle, the three dimensionality of the cascade exit flow field, and the similarity of the wake profiles. The hub, mean, and tip chordwise airfoil surface static pressure distributions determined at each incidence angle are correlated with predictions from the MERIDL and TSONIC computer codes.
Jacobs, Verne
2016-05-01
Semi-classical and quantum-field descriptions for the interaction of light with matter are systematically discussed. Applications of interest include resonant pump-probe optical phenomena, such as electromagnetically induced transparency. In the quantum-mechanical description of matter systems, we introduce a general reduced-density-matrix framework. Time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations are developed in a unified and self-consistent manner, using a Liouville-space operator representation. In the semi-classical description, the electromagnetic field is described as a classical field satisfying the Maxwell equations. Compact Liouville-space operator expressions are derived for the linear and the general (n'th order) non-linear electromagnetic-response tensors describing moving many-electron systems. The tetradic matrix elements of the Liouville-space self-energy operators are evaluated for environmental collisional and radiative interactions. The quantized-field approach is essential for a fully self-consistent quantum-mechanical description. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.
Classical biological control using specialist parasitoids, predators and/or nematodes from the native ranges of cattle fever ticks Rhipicephalus microplus and Rhipicephalus annulatus could complement existing control strategies for this livestock pest in the transboundary region between Mexico and T...
Clayman, Dee L.
1995-01-01
Appraises several databases devoted to classical literature. Thesaurus Linguae Graecae (TLG) contains the entire extant corpus of ancient Greek literature, including works on lexicography and historiography, extending into the 15th century. Other works awaiting completion are the Database of Classical Bibliography and a CD-ROM pictorial dictionary…
Effective field theory out of equilibrium: Brownian quantum fields
International Nuclear Information System (INIS)
The emergence of an effective field theory out of equilibrium is studied in the case in which a light field—the system—interacts with very heavy fields in a finite temperature bath. We obtain the reduced density matrix for the light field, its time evolution is determined by an effective action that includes the influence action from correlations of the heavy degrees of freedom. The non-equilibrium effective field theory yields a Langevin equation of motion for the light field in terms of dissipative and noise kernels that obey a generalized fluctuation dissipation relation. These are completely determined by the spectral density of the bath which is analyzed in detail for several cases. At T = 0 we elucidate the effect of thresholds in the renormalization aspects and the asymptotic emergence of a local effective field theory with unitary time evolution. At T≠0 new ‘anomalous’ thresholds arise, in particular the decay of the environmental heavy fields into the light field leads to dissipative dynamics of the light field. Even when the heavy bath particles are thermally suppressed this dissipative contribution leads to the thermalization of the light field which is confirmed by a quantum kinetics analysis. We obtain the quantum master equation and show explicitly that its solution in the field basis is precisely the influence action that determines the effective non-equilibrium field theory. The Lindblad form of the quantum master equation features time dependent dissipative coefficients. Their time dependence is crucial to extract renormalization effects at asymptotically long time. The dynamics from the quantum master equation is in complete agreement with that of the effective action, Langevin dynamics and quantum kinetics, thus providing a unified framework to effective field theory out of equilibrium
Shao, Weixing; Liu, Shuang; Wu, Faxing; Zhang, Zhi; Dong, Yaqin; Li, Xiaocheng
2015-01-01
We report the complete genome sequence of a field isolate of classical swine fever virus (CSFV), Hunan 23/2013, belonging to the predominant subgenotype 2.1b. This strain was originally isolated from diseased pigs in Hunan Province, China. This report will help in understanding the molecular diversity of CSFV stains circulating in China and in selecting and developing a suitable vaccine candidate for CSF control.
Shao, Weixing; Liu, Shuang; Wu, Faxing; Zhang, Zhi; Dong, Yaqin; Li, Xiaocheng
2015-01-01
We report the complete genome sequence of a field isolate of classical swine fever virus (CSFV), Hunan 23/2013, belonging to the predominant subgenotype 2.1b. This strain was originally isolated from diseased pigs in Hunan Province, China. This report will help in understanding the molecular diversity of CSFV stains circulating in China and in selecting and developing a suitable vaccine candidate for CSF control. PMID:26205876
Constantoudis, Vassilios; Nicolaides, Cleanthes A
2005-02-22
The dissociation dynamics of a dichromatically laser-driven diatomic Morse molecule vibrating in the ground state is investigated by applying tools of the nonlinear theory of classical Hamiltonian systems. Emphasis is placed on the role of the relative phase of the two fields, phi. First, it is found that, just like in quantum mechanics, there is dependence of the dissociation probability on phi. Then, it is demonstrated that addition of the second laser leads to suppression of probability (stabilization), when the intensity of the first laser is kept constant just above or below the single laser dissociation threshold. This "chemical bond hardening" diminishes as phi increases. These effects are investigated and interpreted in terms of modifications in phase space topology. Variations of phi as well as of the intensity of the second laser may cause (i) appearance/disappearance of the stability island corresponding to the common resonance with the lowest energy and (ii) deformation and movement of the region of Kolmogorov-Arnold-Moser tori that survive from the undriven system. The latter is the main origin in phase space of stabilization and phi dependence. Finally, it is shown that the use of short laser pulses enhances both effects.
Analysis of geometric phase effects in the quantum-classical Liouville formalism
Ryabinkin, Ilya G; Kapral, Raymond; Izmaylov, Artur F
2013-01-01
We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic states in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results i...
[Health effects of electromagnetic fields].
Röösli, Martin
2013-12-01
Use of electricity causes extremely low frequency magnetic fields (ELF-MF) and wireless communication devices emit radiofrequency electromagnetic fields (RF-EMF). Average ELF-MF exposure is mainly determined by high voltage power lines and transformers at home or at the workplace, whereas RF-EMF exposure is mainly caused by devices operating close to the body (mainly mobile and cordless phones). Health effects of EMF are controversially discussed. The IARC classified ELF-MF and RF-EMF as possible carcinogenic. Most consistent epidemiological evidence was found for an association between ELF-MF and childhood leukaemia. If causal, 1 - 4 percent of all childhood leukaemia cases could be attributed to ELF-MF. Epidemiological research provided some indications for an association between ELF-MF and Alzheimer's diseases as well as amyotrophic lateral sclerosis, although not entirely consistent. Regarding mobile phones and brain tumours, some studies observed an increased risk after heavy or long term use on the one hand. On the other hand, brain tumour incidence was not found to have increased in the last decade in Sweden, England or the US. Acute effects of RF-EMF on non-specific symptoms of ill health seem unlikely according to randomized and double blind provocation studies. However, epidemiological research on long term effects is still limited. Although from the current state of the scientific knowledge a large individual health risk from RF-EMF exposure is unlikely, even a small risk would have substantial public health relevance because of the widespread use of wireless communication technologies.
Xin, Jun-Li
2010-01-01
We study the quantum-classical correspondence in terms of coherent wave functions of a charged particle in two-dimensional central-scalar-potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level-space of angular momentum being greater or less than $\\hbar$ is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily $2\\pi$-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The quantum mechanical model of anyon proposed by Wilczek (Phys. Rev. Lette. 48, 1144) becomes a special case of th...
DEFF Research Database (Denmark)
Boklund, Anette; Toft, Nils; Alban, Lis;
2009-01-01
the epidemiological and economic consequences of such control strategies under Danish conditions with respect to herd demographics and geography as well as to investigate the effect of extra biosecurity on farms. We used InterSpread Plus to model the effect of nine different control strategies: the minimum measures......,H.M., Smak,J.A., Pluimers,F.H., 1999. The classical swine fever epidemic 1997-1998 in The Netherlands: descriptive epidemiology, Prev.Vet.Med., 42, 157-184. Fritzemeier,J., Teuffert,J., Greiser,Wilke,I, Staubach,Ch, Schlüter,H., Moennig,V., 2000. Epidemiology of classical swine fever in Germany in the 1990s......, Vet.Microbiol. 77, 29-41. MacKinnon, J.D., 2001. Some clinical and epidemiological aspects of the outbreak of Classical Swine Fe-ver in East Anglia in 2000, State Vet.J,, 11, 2-7....
Spin one-half particles in strong electromagnetic fields: spin effects and radiation reaction
Wen, Meng; Bauke, Heiko
2016-01-01
Various different classical models of electrons including their spin degree of freedom are commonly applied to describe the electron dynamics in strong electromagnetic fields. We demonstrate that different models can lead to different or even contradicting predictions how the spin degree of freedom modifies the electron's orbital motion when the electron moves in strong electromagnetic fields. This discrepancy is rooted in the model-specific energy dependency of the spin induced Stern-Gerlach force acting on the electron. The Frenkel model and the classical Foldy-Wouthuysen model are compared exemplarily in the nonrelativistic and the relativistic limits in order to identify parameter regimes where these classical models make different predictions. This allows for experimental tests of these models. In ultra strong laser setups at parameter regimes where effects of the Stern-Gerlach force become relevant also radiation reaction effects are expected to set in. We incorporate radiation reaction classically via ...
Energy Technology Data Exchange (ETDEWEB)
Dietrich, D.D
2003-09-01
In this work the production of quarks, antiquarks and of gluonic fluctuations is studied in the presence of classical bosonic field. A comparison of the production of anti-quark pairs with the creation of pairs of gluonic quantum fluctuations based on perturbative calculations will be presented here. This analysis is valid for quantum particles with a large momentum compared to the magnitude of the classical vector potential multiplied by the coupling constant. The model contains 3 parameters: the initial magnitude of the gauge field, the coupling constant and the time scale on which the field decays. It appears that none of the species (quark-antiquark pairs, gluonic fluctuation pairs, bosons and fermion-anti fermions) can be neglected from the beginning. A corresponding calculation requires a non-perturbative description of at least the soft fermions. In this thesis the exact expression for fields varying arbitrarily in time is derived. After the full solution has been obtained, various approximation schemes are proposed for different domains, in order to find out into which the situation under consideration falls. There are approximations in the ultraviolet (perturbative), the infrared, and the Abelian (commutative) regime. The exact expression and the lowest orders of the different approximation schemes are evaluated in the presence of the model field with the same parameters as before. (A.C.)
Lectures on Classical Integrability
Torrielli, Alessandro
2016-01-01
We review some essential aspects of classically integrable systems. The detailed outline of the lectures consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schroedinger model, principal chiral field); 4. Features of classical r-matrices: Belavin-Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel'fand-Levitan-Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.
Mould, Richard A
2003-01-01
Preciously given rules allow conscious systems to be included in quantum mechanical systems. There rules are derived from the empirical experience of an observer who witnesses a quantum mechanical interaction leading to the capture of a single particle. In the present paper it is shown that purely classical changes experienced by an observer are consistent with these rules. Three different interactions are considered, two of which combine classical and quantum mechanical changes. The previous...
Effective field theory in nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Martin J. Savage
2000-12-12
I review recent developments in the application of effective field theory to nuclear physics. Emphasis is placed on precision two-body calculations and efforts to formulate the nuclear shell model in terms of an effective field theory.
Effective Field Theory in Nuclear Physics
Savage, Martin J.
2000-01-01
I review recent developments in the application of effective field theory to nuclear physics. Emphasis is placed on precision two-body calculations and efforts to formulate the nuclear shell model in terms of an effective field theory.
Directory of Open Access Journals (Sweden)
B. Kayisoglu
2006-01-01
Full Text Available This study was conducted to investigate the effect of storage period and conditions on chemical properties of boiled grape juice (pekmez produced from the grape variety of Kınalı Yapıncak using classical and vacuum methods. Pekmez samples were stored in 250 cc volumed jars. Products obtained using two different production methods were stored for 10 months in room conditions and at +4 ºC temperature. Starting from the beginning of the storage, mineral analyses were repeated in every two months. Average copper, manganese, phosphorus, and sodium contents in pekmez samples produced by vacuum method were higher than by classical method at the end of storage period. But, calcium content in pekmez samples produced by classical method was higher than that of the other. Zinc, iron, and potassium contents in either vacuum method or classical method were not significantly different. In conclusion; in general, mineral contents were better in pekmez produced by vacuum method than classical method. Phosphor, sodium, potassium, calcium, copper, zinc and manganese contents were affected significantly by storage period, but iron was not. In addition, storage condition did not affect sodium, zinc and iron contents.
Directory of Open Access Journals (Sweden)
Cavallaro Roberto
2006-01-01
Full Text Available Abstract Background A number of reports showed en encouraging remediation in some patients' executive deficits thanks to the use of 'information processing strategies'. Moreover the impact of antipsychotics on cognitive functions of the schizophrenics is an important issue, especially if an integrated psychosocial treatment is needed. The aim of this paper is to evaluate different executive performance and response to verbalization, a strategy of the Wisconsin Card Sorting Test (WCST remediation, in subjects on classical vs atypical antipsychotic (AP treatment. Methods Sixty-three schizophrenic subjects undertook the WCST under standard and modified (verbalization administration. Subjects were stratified by the kind of WCST response (i.e. good, poor and remediable and AP treatment (i.e. atypical vs. classical. Results Subjects on atypical APs showed a better performance than those on classical ones. More poor performers who did not remediate were seen in the sample with classical Aps while subjects who remediated the performance were seen in the subgroup with atypical APs only. An increase of perseverative and total errors was seen in poor performers subjects on classical APs. Conclusion Subjects on atypicals showed a better cognitive pattern in terms of WCST performance. Since the naturalistic assignment of medication we cannot draw conclusions about its effect on cognitive performance and its interaction with cognitive remediation potential. However the data lead us to hypothesize that subjects with potential room for remediation did so with the atypical APs.
Effective gravitational fields in transplackian scattering
Betti, Luca S G
2014-01-01
After a short introduction to the general Quantum Gravity problem, we compare a result from the S-matrix description of gravitational interaction due to Amati, Ciafaloni and Veneziano (ACV) with classical General Relativity results. In Chapter 1, we introduce the metric produced by a massless particle moving at the speed of light. In Chapter 2, we review ACV's semiclassical approach to gravitation and show some of its result. In Chapter 3, we detail the computation of gravitational field expectation values in a high-energy scattering process, following ACV's prescriptions. In Chapter 4, we analyze our results. The main feature is that the leading contributions to the metric computed in terms of the Feynman diagrams deriving from ACV's model perfectly reproduce classical results.
Waugh, Russell F.; Riddoch, Jane V.
2007-01-01
There are few studies measuring the effects on painting quality of playing background classical music at special schools. Primary students with severe intellectual disabilities (N=24) were taught abstract painting in a two-part method. The first part involved a Pictorial Only method and the second, immediately following it, involved a Pictorial…
Lee, Chaohong; Duan, Yiwu; Liu, Wing-Ki; Yuan, Jian-Min; Shi, Lei; Zhu, Xiwen; Gao, Kelin
2001-01-01
Based upon our previous works (Eur.Phys.J.D 6, 319(1999); Chin.Phys.Lett. 18, 236(2001)), we develop a classical approach to calculate the high-order harmonic generation of the laser driven atoms and molecules. The Coulomb singularities in the system have been removed by a regularization procedure. Action-angle variables have been used to generate the initial microcanonical distribution which satisfies the inversion symmetry of the system. The numerical simulation show, within a proper laser ...
Vernocchi, Sara; Battello, Nadia; Schmitz, Stephanie; Revets, Dominique; Billing, Anja M; Turner, Jonathan D; Muller, Claude P
2013-07-01
Glucocorticoids exert rapid nongenomic effects by several mechanisms including the activation of a membrane-bound glucocorticoid receptor (mGR). Here, we report the first proteomic study on the effects of mGR activation by BSA-conjugated cortisol (Cort-BSA). A subset of target proteins in the proteomic data set was validated by Western blot and we found them responding to mGR activation by BSA-conjugated cortisol in three additional cell lines, indicating a conserved effect in cells originating from different tissues. Changes in the proteome of BSA-conjugated cortisol treated CCRF-CEM leukemia cells were associated with early and rapid pro-apoptotic, immune-modulatory and metabolic effects aligning with and possibly "priming" classical activities of the cytosolic glucocorticoid receptor (cGR). PCR arrays investigating target genes of the major signaling pathways indicated that the mGR does not exert its effects through the transcriptional activity of any of the most common kinases in these leukemic cells, but RhoA signaling emerged from our pathway analysis. All cell lines tested displayed very low levels of mGR on their surface. Highly sensitive and specific in situ proximity ligation assay visualized low numbers of mGR even in cells previously thought to be mGR negative. We obtained similar results when using three distinct anti-GR monoclonal antibodies directed against the N-terminal half of the cGR. This strongly suggests that the mGR and the cGR have a high sequence homology and most probably originate from the same gene. Furthermore, the mGR appears to reside in caveolae and its association with caveolin-1 (Cav-1) was clearly detected in two of the four cell lines investigated using double recognition proximity ligation assay. Our results indicate however that Cav-1 is not necessary for membrane localization of the GR since CCRF-CEM and Jurkat cells have a functional mGR, but did not express this caveolar protein. However, if expressed, this membrane protein
Classical, Semi-classical and Quantum Noise
Poor, H; Scully, Marlan
2012-01-01
David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...
Jingjiao Zhang; Xiaodong Su; Mingrong Shen; Zhihua Dai; Lingjun Zhang; Xiyun He; Wenxiu Cheng; Mengyu Cao; Guifu Zou
2013-01-01
Converting light energy to electrical energy in photovoltaic devices relies on the photogenerated electrons and holes separated by the built-in potential in semiconductors. Photo-excited electrons in metal electrodes are usually not considered in this process. Here, we report an enhanced photovoltaic effect in the ferroelectric lanthanum-modified lead zirconate titanate (PLZT) by using low work function metals as the electrodes. We believe that electrons in the metal with low work function co...
Classical Physics and Quantum Loops
Energy Technology Data Exchange (ETDEWEB)
Barry R. Holstein; John F. Donoghue
2004-05-01
The standard picture of the loop expansion associates a factor of h-bar with each loop, suggesting that the tree diagrams are to be associated with classical physics, while loop effects are quantum mechanical in nature. We discuss examples wherein classical effects arise from loop contributions and display the relationship between the classical terms and the long range effects of massless particles.
Graphene nanopore field effect transistors
Energy Technology Data Exchange (ETDEWEB)
Qiu, Wanzhi; Skafidas, Efstratios, E-mail: sskaf@unimelb.edu.au [Centre for Neural Engineering, The University of Melbourne, 203 Bouverie Street, Carlton, Victoria 3053 (Australia); Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria 3010 (Australia)
2014-07-14
Graphene holds great promise for replacing conventional Si material in field effect transistors (FETs) due to its high carrier mobility. Previously proposed graphene FETs either suffer from low ON-state current resulting from constrained channel width or require complex fabrication processes for edge-defecting or doping. Here, we propose an alternative graphene FET structure created on intrinsic metallic armchair-edged graphene nanoribbons with uniform width, where the channel region is made semiconducting by drilling a pore in the interior, and the two ends of the nanoribbon act naturally as connecting electrodes. The proposed GNP-FETs have high ON-state currents due to seamless atomic interface between the channel and electrodes and are able to be created with arbitrarily wide ribbons. In addition, the performance of GNP-FETs can be tuned by varying pore size and ribbon width. As a result, their performance and fabrication process are more predictable and controllable in comparison to schemes based on edge-defects and doping. Using first-principle transport calculations, we show that GNP-FETs can achieve competitive leakage current of ∼70 pA, subthreshold swing of ∼60 mV/decade, and significantly improved On/Off current ratios on the order of 10{sup 5} as compared with other forms of graphene FETs.
The stark effect in intense field. 2
International Nuclear Information System (INIS)
The problem of hydrogen atom in homogeneous electric field is considered. The Stark shifts and widths of atomic levels are computed by summation of divergent perturbation series and by 1/n-expansion - up to E values comparable with the field on the electron orbit. The results of the calculations are presented for the following sequences of states: |n1,0,0>, |0,n2,0>, |n1,n1,0>, as well as for all states with n=2 and 3 (n is the principal quantum number). The Stark shifts and widths of Rydberg states (with n=15-30) in electric field which exceeds the classical ionization threshold are computed. The results of our calculations agree with experiment
Lee, C; Liu, W K; Yuan Jian Min; Shi, L; Zhu, X; Gao, K; Lee, Chaohong; Duan, Yiwu; Liu, Wing-Ki; Yuan, Jian-Min; Shi, Lei; Zhu, Xiwen; Gao, Kelin
2001-01-01
Based upon our previous works (Eur.Phys.J.D 6, 319(1999); Chin.Phys.Lett. 18, 236(2001)), we develop a classical approach to calculate the high-order harmonic generation of the laser driven atoms and molecules. The Coulomb singularities in the system have been removed by a regularization procedure. Action-angle variables have been used to generate the initial microcanonical distribution which satisfies the inversion symmetry of the system. The numerical simulation show, within a proper laser intensity, a harmonic plateau with only odd harmonics appears. At higher intensities, the spectra become noisier because of the existence of chaos. With further increase in laser intensity, ionization takes place, and the high-order harmonics disappear. Thus chaos introduces noise in the spectra, and ionization suppresses the harmonic generation, with the onset of the ionization follows the onset of chaos.
Schwinger, Julian Seymour; Milton, K A; Tsai, W Y
1998-01-01
This text for the graduate classical electrodynamics course was left unfinished upon Julian Schwinger's death in 1994, but was completed by his coauthors, who have brilliantly recreated the excitement of Schwinger's novel approach. Classical Electrodynamics captures Schwinger's inimitable lecturing style, in which everything flows inexorably from what has gone before. An essential resource for both physicists and their students, the book includes a "Reader's Guide", which describes the major themes in each chapter, suggests a possible path through the book, and identifies topics for inclusion
Mould, R A
2003-01-01
Preciously given rules allow conscious systems to be included in quantum mechanical systems. There rules are derived from the empirical experience of an observer who witnesses a quantum mechanical interaction leading to the capture of a single particle. In the present paper it is shown that purely classical changes experienced by an observer are consistent with these rules. Three different interactions are considered, two of which combine classical and quantum mechanical changes. The previously given rules support all of these cases. Key Words: brain states, conscious observer, detector, measurement, probability current, state reduction, von Neumann, wave collapse.
The effect of dynamics on damage spreading in the two-dimensional classical XY model
Energy Technology Data Exchange (ETDEWEB)
Chiu, J.; Teitel, S. (Univ. of Rochester, NY (United States))
1990-01-01
The authors study damage spreading in the classical two-dimensional XY model, using a dynamics and distance measure which preserve the rotational variance of the Hamiltonian. They find only a high temperature random phase and a lower temperature ordered phase, consistent with equilibrium results. Their results contrast to previous results of Golinelli and Derrida.
Staats, Arthur W.; Carlson, Carl G.
This is a bibliography of 81 papers and books published in the years 1957-1970 relevant to the subject of verbally-elicited responses that are in accordance with principles of classical conditioning. Of these publications, 24 are by Staats--one of the bibliographers--and his associates. (MF)
Little, Arlene H.; And Others
1984-01-01
Reports that lengthy interstimulus interval facilitates classical conditioning in very young infants. Infants trained in a single session at 20 days of age exhibited reliable retention of the conditioned eyelid reflex 10 days later, but infants 10 days of age did not. (Author)
Cost-effectiveness of measures to prevent classical swine fever introduction into The Netherlands
Vos, de C.J.; Saatkamp, H.W.; Huirne, R.B.M.
2005-01-01
Recent history has demonstrated that classical swine fever (CSF) epidemics can incur high economic losses, especially for exporting countries that have densely populated pig areas and apply a strategy of non-vaccination, such as The Netherlands. Introduction of CSF virus (CSFV) remains a continuing
Zhang, Jingjiao; Su, Xiaodong; Shen, Mingrong; Dai, Zhihua; Zhang, Lingjun; He, Xiyun; Cheng, Wenxiu; Cao, Mengyu; Zou, Guifu
2013-01-01
Converting light energy to electrical energy in photovoltaic devices relies on the photogenerated electrons and holes separated by the built-in potential in semiconductors. Photo-excited electrons in metal electrodes are usually not considered in this process. Here, we report an enhanced photovoltaic effect in the ferroelectric lanthanum-modified lead zirconate titanate (PLZT) by using low work function metals as the electrodes. We believe that electrons in the metal with low work function could be photo-emitted into PLZT and form the dominant photocurrent in our devices. Under AM1.5 (100 mW/cm²) illumination, the short-circuit current and open-circuit voltage of Mg/PLZT/ITO are about 150 and 2 times of those of Pt/PLZT/ITO, respectively. The photovoltaic response of PLZT capacitor was expanded from ultraviolet to visible spectra, and it may have important impact on design and fabrication of high performance photovoltaic devices based on ferroelectric materials.
Casimir effect for Elko spinor field
Pereira, S H; Santos, Rubia dos
2016-01-01
The Casimir effect for the Elko spinor field in $3+1$ dimension is obtained using Dirichlet boundary conditions. It is shown the existence of a repulsive force four times greater than the case of the scalar field. The precise reason for such differences are highlighted and interpreted, as well as the right parallel of the Casimir effect due to scalar and fermionic fields.
Directory of Open Access Journals (Sweden)
Gholamhossein Heidari
2010-10-01
Full Text Available The purpose of the research was to compare the effect of teaching English through instructional softwares to teaching it through classical methods on students’ academic achievement. The research had an applied aim and its method was quasi-experimental. Statistical population included all the male students of secondary schools of Sari, district-one consisting 934 students and 479 of whom were selected by simple random sampling method. A researcher-made questionnaire with an adequate reliability (a = 0/86 was used for gathering data. The gathered data were analyzed by single-group t test, two dependent groups t test and two independent group t test.The results revealed that not only using instructional softwares were effective on students’ academic achievement but its' effect on students’ academic achievement was more than classical methods as well. Teaching english through instructional softwares highly motivated the students toward language learning.
Batf3 and Id2 have a synergistic effect on Irf8-directed classical CD8α+ dendritic cell development
Jaiswal, Hemant
2013-11-13
Dendritic cells (DCs) are heterogeneous cell populations represented by different subtypes, each varying in terms of gene expression patterns and specific functions. Recent studies identified transcription factors essential for the development of different DC subtypes, yet molecular mechanisms for the developmental program and functions remain poorly understood. In this study, we developed and characterized a mouse DC progenitor-like cell line, designated DC9, from Irf8-/- bone marrow cells as a model for DC development and function. Expression of Irf8 in DC9 cells led to plasmacytoid DCs and CD8α+ DC-like cells, with a concomitant increase in plasmacytoid DC- and CD8α+ DC-specific gene transcripts and induction of type I IFNs and IL12p40 following TLR ligand stimulation. Irf8 expression in DC9 cells led to an increase in Id2 and Batf3 transcript levels, transcription factors shown to be important for the development of CD8α+ DCs. We show that, without Irf8 , expression of Id2 and Batf3 was not sufficient for directing classical CD8α+ DC development. When coexpressed with Irf8, Batf3 and Id2 had a synergistic effect on classical CD8α+ DC development. We demonstrate that Irf8 is upstream of Batf3 and Id2 in the classical CD8α+ DC developmental program and define the hierarchical relationship of transcription factors important for classical CD8α+ DC development.
Perceived effects of the menstrual cycle on young female singers in the Western classical tradition.
Ryan, Maree; Kenny, Dianna T
2009-01-01
This study investigated the perceived effects of the female hormonal cycle on young female classical singers. All the singers, including male controls, were tertiary singing students from the Sydney Conservatorium of Music, Australia, who were selected for entry into vocal study programs by competitive audition. Female participants completed a questionnaire and daily diary in the first and third months of the study. Male controls completed the diary for the first month only. The questionnaire and diary focused on singers' physical symptoms, their mood states, and vocal production. Analysis of the diaries indicated that although 81% of female singers reported regular menstrual cycles and 43% reported using an oral contraceptive, neither of these factors was related to the voice quality variables as measured on the first day of the cycle. Singers who were not taking a contraceptive pill rated their voice quality lower and their mood higher than those on the pill. There was no relationship between temperature recording in the females and day of cycle. Perceived voice quality for female singers was lower on days 1-3 compared to the remainder of the cycle and there was a trend for ratings to improve through days 1-7. The voice parameters for male singers tended to be slightly flatter over the cycle days than for females. Although voice quality in females indicated a tendency to be lower on average during days 24-4 of the cycle, voice quality for males tended to be more alike during the two phases, days 24-4 and days 5-23. Overall, reduced voice quality was associated with more negative mood experiences. The six most severely affected females completed voice recordings of specific vocal tasks on the first day of the cycle and again in midcycle. These recordings were randomly presented to both the participants and expert vocal pedagogues to ascertain whether significant differences in vocal quality were perceptually identifiable. Singers, but not pedagogues, were able to
Viscosity and dissipative hydrodynamics from effective field theory
Grozdanov, Sašo; Polonyi, Janos
2015-05-01
With the goal of deriving dissipative hydrodynamics from an action, we study classical actions for open systems, which follow from the generic structure of effective actions in the Schwinger-Keldysh closed-time-path (CTP) formalism with two time axes and a doubling of degrees of freedom. The central structural feature of such effective actions is the coupling between degrees of freedom on the two time axes. This reflects the fact that from an effective field theory point of view, dissipation is the loss of energy of the low-energy hydrodynamical degrees of freedom to the integrated-out, UV degrees of freedom of the environment. The dynamics of only the hydrodynamical modes may therefore not possess a conserved stress-energy tensor. After a general discussion of the CTP effective actions, we use the variational principle to derive the energy-momentum balance equation for a dissipative fluid from an effective Goldstone action of the long-range hydrodynamical modes. Despite the absence of conserved energy and momentum, we show that we can construct the first-order dissipative stress-energy tensor and derive the Navier-Stokes equations near hydrodynamical equilibrium. The shear viscosity is shown to vanish in the classical theory under consideration, while the bulk viscosity is determined by the form of the effective action. We also discuss the thermodynamics of the system and analyze the entropy production.
Balcı, Nilay Comuk; Yuruk, Zeliha Ozlem; Zeybek, Aslican; Gulsen, Mustafa; Tekindal, Mustafa Agah
2016-04-01
[Purpose] The aim of our study was to compare the initial effects of scapular proprioceptive neuromuscular facilitation techniques and classic exercise interventions with physiotherapy modalities on pain, scapular dyskinesis, range of motion, and function in adhesive capsulitis. [Subjects and Methods] Fifty-three subjects were allocated to 3 groups: scapular proprioceptive neuromuscular facilitation exercies and physiotherapy modalities, classic exercise and physiotherapy modalities, and only physiotherapy modalities. The intervention was applied in a single session. The Visual Analog Scale, Lateral Scapular Slide Test, range of motion and Simple Shoulder Test were evaluated before and just after the one-hour intervention in the same session (all in one session). [Results] All of the groups showed significant differences in shoulder flexion and abduction range of motion and Simple Shoulder Test scores. There were statistically significant differences in Visual Analog Scale scores in the proprioceptive neuromuscular facilitation and control groups, and no treatment method had significant effect on the Lateral Scapular Slide Test results. There were no statistically significant differences between the groups before and after the intervention. [Conclusion] Proprioceptive neuromuscular facilitation, classic exercise, and physiotherapy modalities had immediate effects on adhesive capsulitis in our study. However, there was no additional benefit of exercises in one session over physiotherapy modalities. Also, an effective treatment regimen for shoulder rehabilitation of adhesive capsulitis patients should include scapular exercises.
Rastorguev, A S; Utkin, N D
2016-01-01
Agekyan lambda-factor that accounts for the effect of multiple distant encounters with large impact factors is used for the first time to compute the diffusion coefficients in the velocity space of a stellar system. It is shown that in this case the cumulative effect - the total contribution of distant encounters to the change in the velocity of the test star - is finite, and the logarithmic divergence inherent to the classical description disappears. At the same time, the formulas for the diffusion coefficients, as before, contain the logarithm of the ratio of two independent scale factors that fully characterize the state of the stellar system: the average interparticle distance and the impact parameter of a close encounter. However, the physical meaning of this factor is no longer associated with the classical logarithmic divergence.
International Nuclear Information System (INIS)
We study the classical behavior of an electric dipole in the presence of a uniform magnetic field. Using the Lagrangian formulation, we obtain the equations of motion, whose solutions are represented in terms of Jacobi functions. We also identify two constants of motion, namely, the energy E and a pseudomomentumC→. We obtain a relation between the constants that allows us to suggest the existence of a type of bound states without turning points, which are called trapped states. These results are consistent with and complementary to previous results. - Highlights: • Bound states without turning points. • Lagrangian Formulation for an electric dipole in a magnetic field. • Motion of the center of mass and trapped states. • Constants of motion: pseudomomentum and energy
Energy Technology Data Exchange (ETDEWEB)
Atenas, Boris; Pino, Luis A. del; Curilef, Sergio, E-mail: scurilef@ucn.cl
2014-11-15
We study the classical behavior of an electric dipole in the presence of a uniform magnetic field. Using the Lagrangian formulation, we obtain the equations of motion, whose solutions are represented in terms of Jacobi functions. We also identify two constants of motion, namely, the energy E and a pseudomomentumC{sup →}. We obtain a relation between the constants that allows us to suggest the existence of a type of bound states without turning points, which are called trapped states. These results are consistent with and complementary to previous results. - Highlights: • Bound states without turning points. • Lagrangian Formulation for an electric dipole in a magnetic field. • Motion of the center of mass and trapped states. • Constants of motion: pseudomomentum and energy.
Zhidkov, A.; Masuda, S.; Bulanov, S. S.; Koga, J.; Hosokai, T.; Kodama, R.
2014-05-01
Nonlinear cascade scattering of intense, tightly focused laser pulses by relativistic electrons is studied numerically in the classical approximation including radiation damping for the quantum parameter ⟨ℏωxray⟩/ɛ <1 and an arbitrary radiation parameter χ. The electron's energy loss, along with its being scattered to the side by the ponderomotive force, makes scattering in the vicinity of a high laser field nearly impossible at high electron energies. The use of a second, copropagating laser pulse as a booster is shown to partially solve this problem.
Rainer, A.
2012-01-01
The causes and effects of technical change are investigated in a multi-sector economy. The underlying modelling framework is a hybrid of Classical economic thinking as introduced by Ricardo (1821) and formalised by Sraffa(1960), and of Evolutionary economics following Schumpeter (1934)and Nelson & Winter (1982). The special case of one sector is elaborated at length, leading to several implications concerning economic and legal policy in the presence of ongoing technical change. This inclu...
On String Field Theory and Effective Actions
Giveon, Amit
1992-01-01
A truncation of string field theory is compared with the duality invariant effective action of $D=4, N=4$ heterotic strings to cubic order. The three string vertex must satisfy a set of compatibility conditions. Any cyclic three string vertex is compatible with the $D=4, N=4$ effective field theory. The effective actions may be useful in understanding the non--polynomial structure and the underlying symmetry of covariant closed string field theory, and in addressing issues of background indep...
Electric Field Effect in Intrinsic Josephson Junctions
Koyama, T.
The electric field effect in intrinsic Josephson junction stacks (IJJ's) is investigated on the basis of the capacitively-coupled IJJ model. We clarify the current-voltage characteristics of the IJJ's in the presence of an external electric field. It is predicted that the IJJ's show a dynamical transition to the voltage state as the external electric field is increased.
Effects of speed on temporal patterns in classical style and freestyle cross-country skiing.
Nilsson, Johnny; Tveit, Per; Eikrehagen, Olav
2004-01-01
The purpose was to study the adaptation to speed in the temporal patterns of the movement cycle and determine any differences in velocity, cycle rate and cycle length at the maximum speed level in the different classical style and freestyle cross-country skiing techniques. Eight skilled male cross-country skiers were filmed with a digital video camera in the sagittal plane while skiing on a flat cross-country ski track. The skiers performed three classical style techniques the diagonal stride, kick double poling and the double poling technique and four freestyle techniques paddle dance (gear 2), double dance (gear 3), single dance (gear 4) and combiskate (gear 5) at four different self-selected speed levels slow, medium, fast and their maximum. Cycle duration, cycle rate, cycle length, and relative and absolute cycle phase duration of the different techniques at the different speed levels were analysed by means of a video analysis system. The cycle rate in all tested classical and freestyle techniques was found to increase significantly (p skiing techniques. A minor, not significant, change in cycle length, and the significant increase in cycle rate with speed showed that the classical and freestyle cross-country skiing styles are dependent, to a large extent, on an increase in cycle rate for speed adaptation. A striking finding was the constant relative phase duration with speed, which indicates a simplified neural control of the speed adaptation in both cross-country skiing styles. For the practitioner, the knowledge about the importance of increasing cycle frequency rather than cycle length in the speed adaptation can be used to optimise a rapid increase in speed. The knowledge about the decrease in absolute phase duration, especially the thrust phase duration, points to the need for strength and technique training to enable force production at a high cycle rate and skiing speed. The knowledge that the relative phase duration stays constant with speed may be
Classical Effects of Carrier-Envelope Phase on Nonsequential Double Ionization
Institute of Scientific and Technical Information of China (English)
ZHOU Yue-Ming; LIAO Qing; LAN Peng-Fei; LU Pei-Xiang
2008-01-01
A classical microcanonical 1+1-dimensional model is used to investigate the ion momentum distributions in non-sequential double ionization with linearly polarized few-cycle pulses. We find that the ion momentum distribution has a strong dependence on the carrier-envelope phase of the few-cycle pulse, which is consistent with the experimental results qualitatively. Back analysis shows that the ionization probability of the first electron at different phases and its returning kinetic energy play the main role on the ion momentum distributions.
DEFF Research Database (Denmark)
Boklund, Anette; Toft, Nils; Alban, Lis;
2009-01-01
In 2006, total Danish pork exports were valued at (sic)3.8 billion, corresponding to approximately 5% of the total Danish exports, and an outbreak of a notifiable disease would have dramatic consequences for the agricultural sector in Denmark. Several outbreaks of classical swine fever (CSF) have...... occurred in Europe within the last decade, and different control strategies have been suggested. The objective of this study was to simulate the epidemiological and economic consequences of such control strategies in a CSF epidemic under Danish conditions with respect to herd demographics and geography...
Directory of Open Access Journals (Sweden)
Yu.G.Rudoy
2005-01-01
Full Text Available The concept of effective temperature (ET T*(T0, T is used in order to approximately "quantize" the thermodynamic functions of the dynamical object which is in the thermal equilibrium with thermal bath being at constant temperature T (T0=E0/kB, where E0 is the ground-state energy, kB - Boltzmann constant, is the characteristic ``quantum'' temperature of the system itself. On these grounds the extensive comparative investigation is carried out for the ``standard model'' of statistical mechanics - the one-dimensional harmonic oscillator (HO. Three well-known approaches are considered and their thermodynamic consequences thoroughly studied. These are: the exact quantum, or non-classical Planck-Einstein approach, intermediate, or semiclassical Bloch-Wigner approach and, finally, the pure classical, or Maxwell-Boltzmann approach.
Camic, Charles
2008-01-01
They seem the perfect bookends for the social psychologist's collection of "classics" of the field. Two volumes, nearly identical in shape and weight and exactly a century old in 2008--each professing to usher "social psychology" into the world as they both place the hybrid expression square in their titles but then proceed to stake out the field…
Nuclear Dynamics with Effective Field Theories
Epelbaum, Evgeny
2013-01-01
These are the proceedings of the international workshop on "Nuclear Dynamics with Effective Field Theories" held at Ruhr-Universitaet Bochum, Germany from July 1 to 3, 2013. The workshop focused on effective field theories of low-energy QCD, chiral perturbation theory for nuclear forces as well as few- and many-body physics. Included are a short contribution per talk.
Drechsler, Wolfgang; Havas, Peter; Rosenblum, Arnold
1984-02-01
In the preceding paper, the laws of motion were established for classical particles with spin which are monopole-dipole singularities of Yang-Mills-Higgs fields. In this paper, a systematic approximation scheme is developed for solving the coupled nonlinear field equations in any order and for determining the corresponding equations of motion. In zeroth order the potentials are taken as the usual Liénard-Wiechert and Bhabha-Harish-Chandra potentials (generalized to isospace); in this order the solutions are necessarily Abelian, since the isovector describing the charge is constant. The regularization necessary to obtain expressions finite on the world lines of the particles is achieved by the method of Riesz potentials. All fields are taken as retarded and are expressed in integral form. Omitting dipole interactions, the integrals for the various terms are carried out as far as possible for general motions, including radiation-reaction terms. In first order, the charge isovectors are no longer necessarily constant; thus the solutions are not necessarily Abelian, and it is possible for charge to be radiated away. The cases of time-symmetric field theory and of an action-at-a-distance formulation of the theory are discussed in an appendix.
Biswas, Santu; Sarkar, Sujit; Pandey, Prithvi Raj; Roy, Sudip
2016-02-21
Amino acids can form d and l enantiomers, of which the l enantiomer is abundant in nature. The naturally occurring l enantiomer has a greater preference for a right handed helical conformation, and the d enantiomer for a left handed helical conformation. The other conformations, that is, left handed helical conformations of the l enantiomers and right handed helical conformations of the d enantiomers, are not common. The energetic differences between left and right handed alpha helical peptide chains constructed from enantiomeric amino acids are investigated using quantum chemical calculations (using the M06/6-311g(d,p) level of theory). Further, the performances of commonly used biomolecular force fields (OPLS/AA, CHARMM27/CMAP and AMBER) to represent the different helical conformations (left and right handed) constructed from enantiomeric (D and L) amino acids are evaluated. 5- and 10-mer chains from d and l enantiomers of alanine, leucine, lysine, and glutamic acid, in right and left handed helical conformations, are considered in the study. Thus, in total, 32 α-helical polypeptides (4 amino acids × 4 conformations of 5-mer and 10-mer) are studied. Conclusions, with regards to the performance of the force fields, are derived keeping the quantum optimized geometry as the benchmark, and on the basis of phi and psi angle calculations, hydrogen bond analysis, and different long range helical order parameters. PMID:26863595
Holographic description of the Schwinger effect in electric and magnetic fields
Sato, Yoshiki
2013-01-01
We consider a generalization of the holographic Schwinger effect proposed by Semenoff and Zarembo to the case with constant electric and magnetic fields. There are two ways to turn on magnetic fields, i) the probe D3-brane picture and ii) the string world-sheet picture. In the former picture, magnetic fields both perpendicular and parallel to the electric field are activated by a Lorentz transformation and a spatial rotation. In the latter one, the classical solutions of the string world-sheet corresponding to circular Wilson loops are generalized to contain two additional parameters encoding the presence of magnetic fields.
Energy Technology Data Exchange (ETDEWEB)
Mohammadi, M [Department of Physics, Islamic Azad University-Shahreza Branch, Shahreza, Isfahan (Iran, Islamic Republic of)], E-mail: majid471702@yahoo.com
2009-07-28
The effective mass that approximately describes the influence of a classical homogeneous gravitational field on an interacting atom-radiation field system is determined within the framework of the Jaynes-Cummings model. By taking into account both the atomic motion and the gravitational field, a full quantum treatment of the internal and external dynamics of the atom is presented. By exactly solving the Schroedinger equation in the interaction picture, the evolving state of the system is found. The influence of a classical homogeneous gravitational field on the energy eigenvalues, the effective mass of the atom-radiation field system and the Wigner distribution of the radiation field are studied, when the initial condition is such that the radiation field is prepared in a coherent state and the two-level atom is in a coherent superposition of the excited and ground states.
International Nuclear Information System (INIS)
The integrability of one dimensional classical continuum inhomogeneous biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity on the soliton of an underlying completely integrable spin model are studied. The dynamics of the spin system is expressed in terms of a higher order generalized nonlinear Schroedinger equation through a differential geometric approach which becomes integrable for a particular choice of the biquadratic exchange interaction and for linear inhomogeneity. The effect of nonlinear inhomogeneity on the spin soliton is studied by carrying out a multiple scale perturbation analysis. (author)
Classical electrodynamics of a particle with maximal acceleration corrections
Energy Technology Data Exchange (ETDEWEB)
Feoli, A.; Lambiase, G. [Baronissi, Univ. (Italy). Dipt. di Scienze Fisiche ``E. R. Caianiello``]|[INFN, Naples (Italy); Papini, G. [Regina, Univ. (Canada). Dept. of Physics; Scarpetta, G. [Baronissi, Univ. (Italy). Dipt. di Scienze Fisiche ``E. R. Caianiello``]|[INFN, Naples (Italy)]|[International Institute for Advanced Scientific Studies, Vietri sul Mare (Italy)
1997-06-01
They calculate the first-order maximal acceleration corrections to the classical electrodynamics of a particle in external electromagnetic fields. These include additional dissipation terms, the presence of a critical electric field and the power radiated by the particle. The electric effects are sizeable at the fields that are considered attainable with ultrashort TW laser pulses on plasmas.
The effects of two forms of physical activity on eyeblink classical conditioning.
Green, John T; Chess, Amy C; Burns, Montana; Schachinger, Kira M; Thanellou, Alexandra
2011-05-16
Voluntary exercise, in the form of free access to a running wheel in the home cage, has been shown to improve several forms of learning and memory. Acrobatic training, in the form of learning to traverse an elevated obstacle course, has been shown to induce markers of neural plasticity in the cerebellar cortex in rodents. In three experiments, we examined the effects of these two forms of physical activity on delay eyeblink conditioning in rats. In Experiment 1, exercising rats were given 17 days of free access to a running wheel in their home cage prior to 10 days of delay eyeblink conditioning. Rats that exercised conditioned significantly better and showed a larger reflexive eyeblink unconditioned response to the periocular stimulation unconditioned stimulus than rats that did not exercise. In Experiment 2, exercising rats were given 17 days of free access to a running wheel in their home cage prior to 10 days of explicitly unpaired stimulus presentations. Rats that exercised responded the same to tone, light, and periocular stimulation as rats that did not exercise. In Experiment 3, acrobatic training rats were given 15 days of daily training on an elevated obstacle course prior to 10 days of eyeblink conditioning. Activity control rats underwent 15 days of yoked daily running in an open field. Rats that underwent acrobatic training did not differ in eyeblink conditioning from activity control rats. The ability to measure the learned response precisely, and the well-mapped neural circuitry of eyeblink conditioning offer some advantages for the study of exercise effects on learning and memory.
Powell, Aaron J; Conlee, Erin M; Chang, Douglas G
2014-09-01
With the American Academy of Physical Medicine and Rehabilitation recently celebrating its 75th anniversary, it is an opportune time to assess the impact and influence that physiatric articles and research have had on the field, as well as the greater scientific community. One useful metric of scientific impact is citation count, which is the most common method for analyzing the magnitude of scientific recognition of an individual article. This study presents 2 reading lists of influential physiatric academic journal articles drawn from the Web of Science index based on citation count. The first list contains the top 25 most-cited articles during the last 3 decades from the American Journal of Physical Medicine and Rehabilitation, the Archives of Physical Medicine and Rehabilitation, and PM&R. The second list contains the top 10 articles in 20 different physiatric topical areas. This topical list was generated via an expanded search without limitation of time span or journal. This allowed for the identification of influential physiatric articles not found in the field's 3 major publications from the United States. Although citation index is not a direct measure of quality or importance, it offers one form of quantitative assessment of scientific impact. This assessment contributes to the identification of trends, which illustrate the evolution of scope and focus of physiatry research. The lists of most-cited articles presented in this review can be used to provide historical context to physiatry's existing body of research, direct future evidence-based research efforts, and help guide educators as they select resident reading lists or journal club materials. PMID:25091931
Classic Problems of Probability
Gorroochurn, Prakash
2012-01-01
"A great book, one that I will certainly add to my personal library."—Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexin
Bartelmann, Matthias; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia
2014-01-01
We use the non-equlibrium statistical field theory for classical particles, recently developed by Mazenko and Das and Mazenko, together with the free generating functional we have previously derived for point sets initially correlated in phase space, to calculate the time evolution of power spectra in the free theory, i.e. neglecting particle interactions. We provide expressions taking linear and quadratic momentum correlations into account. Up to this point, the expressions are general with respect to the free propagator of the microscopic degrees of freedom. We then specialise the propagator to that expected for particles in cosmology treated within the Zel'dovich approximation and show that, to linear order in the momentum correlations, the linear growth of the cosmological power spectrum is reproduced. Quadratic momentum correlations return a first contribution to the non-linear evolution of the power spectrum, for which we derive a simple closed expression valid for arbitrary wave numbers. This expressio...
Gao, Yi; Neuhauser, Daniel
2013-05-14
We show how to obtain the correct electronic response of a large system by embedding; a small region is propagated by TDDFT (time-dependent density functional theory) simultaneously with a classical electrodynamics evolution using the Near-Field method over a larger external region. The propagations are coupled through a combined time-dependent density yielding a common Coulomb potential. We show that the embedding correctly describes the plasmonic response of a Mg(0001) slab and its influence on the dynamical charge transfer between an adsorbed H2O molecule and the substrate, giving the same spectral shape as full TDDFT (similar plasmon peak and molecular-dependent differential spectra) with much less computational effort. The results demonstrate that atomistic embedding electrodynamics is promising for nanoplasmonics and nanopolaritonics.
On the effect of rotation on populations of classical Cepheids I. Predictions at solar metallicity
Anderson, R I; Georgy, C; Meynet, G; Mowlavi, N; Eyer, L
2014-01-01
[Abridged] We aim to improve the understanding of Cepheids from an evolutionary perspective and establish the role of rotation in the Cepheid paradigm. In particular, we are interested in the contribution of rotation to the problem of Cepheid masses, and explore testable predictions of quantities that can be confronted with observations. Evolutionary models including a homogeneous and self-consistent treatment of rotation are studied in detail during the crossings of the classical instability strip (IS). The dependence of several parameters on initial rotation is studied. These parameters include mass, luminosity, temperature, lifetimes, equatorial velocity, surface abundances, and rates of period change. Several key results are obtained: i) mass-luminosity (M-L) relations depend on rotation, particularly during the blue loop phase; ii) luminosity increases between crossings of the IS. Hence, Cepheid M-L relations at fixed initial rotation rate depend on crossing number (faster rotation yields greater luminos...
Biological Effect of Magnetic Field in Mice
Institute of Scientific and Technical Information of China (English)
Zhao-Wei ZENG
2005-01-01
Objective: To study the biological effect of magnetic field in mice bodies. Method: With a piece of permanent magnet embeded in mice bodies beside the femoral artery and vein to measure the electrophoretic velocity(um/s). Result: The magnetic field in mice bodies on the experiment group that the electrophoretic velocity is faster more than control and free group.Conclusion:The magnetic field in animal's body can raise the negative electric charges on the surface of erythrocyte to improve the microcirculation, this is the biological effect of magnetic field.
Orbital effect in the stationary axisymmetric field
Institute of Scientific and Technical Information of China (English)
Gong Tian-Xi; Wang Yong-Jiu
2008-01-01
This paper uses an elegant mathematical method to calculate the orbital effects in the axisymmetric field created by the spinning mass with electric charge and a large number of magnetic monopoles. In comparison with that in the Reissner-Nordstrom (R-N) field, the correction terms caused by the spinning mass decrease the advanced effect as the revolution direction of the test particle coincides with that of the Kerr field, however, the correction terms caused by the spinning charged mass increase the advance effect as the revolution direction of the test particle coincides with that of the Kerr-Newman-Kasnya (KNK) field. Generalizing the effect in the axisymmetric field, it obtains interesting results by discussing the parameters of the celestial body, these parameters provide a feasible experimental verification of the general relativity.
Orbital effect in the stationary axisymmetric field
International Nuclear Information System (INIS)
This paper uses an elegant mathematical method to calculate the orbital effects in the axisymmetric field created by the spinning mass with electric charge and a large number of magnetic monopoles. In comparison with that in the Reissner–Nordström (R–N) field, the correction terms caused by the spinning mass decrease the advanced effect as the revolution direction of the test particle coincides with that of the Kerr field, however, the correction terms caused by the spinning charged mass increase the advance effect as the revolution direction of the test particle coincides with that of the Kerr–Newman–Kasnya (KNK) field. Generalizing the effect in the axisymmetric field, it obtains interesting results by discussing the parameters of the celestial body, these parameters provide a feasible experimental verification of the general relativity. (general)
Field-effect ion-transport devices with carbon nanotube channels: schematics and simulations
Energy Technology Data Exchange (ETDEWEB)
Lee, Ju Yul; Kang, Jeong Won; Byun, Ki Ryang; Kang, Eu Seok; Hwang, Ho Jung [Chung-Ang University, Seoul (Korea, Republic of); Lee, Jun Ha; Lee, Hoong Joo [Sangmyung University, Chonan (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Kim, Young Min [Chung-Cheong University, Cheongwon (Korea, Republic of)
2004-08-15
We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that can be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, thermal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.
Energy Technology Data Exchange (ETDEWEB)
Siddiqui, M. Umair, E-mail: musiddiqui@mail.wvu.edu; Thompson, Derek S.; McIlvain, Julianne M.; Short, Zachary D.; Scime, Earl E. [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506 (United States)
2015-12-15
Direct laser induced fluorescence measurements are shown of cross-field ion flows normal to an absorbing boundary that is aligned parallel to the axial magnetic field in a helicon plasma. We show Langmuir and emissive probe measurements of local density and plasma potential in the same region, as well as floating probe spectra near the boundary. With these measurements, we investigate the influence of ion-neutral collisionality on radial ion transport by varying the ratio of the ion gyro-radius, ρ{sub i}, to the ion-neutral collision length, λ, over the range 0.34 ≤ ρ{sub i}λ{sup −1} ≤ 1.60. Classical drift-diffusion transport along density and potential gradients is sufficient to describe flow profiles for most cases. For two parameter regimes (ρ{sub i}λ{sup −1} = 0.65 and 0.44), low-frequency electrostatic fluctuations (f < 10 kHz) and enhanced cross-field bulk ion flow to the boundary are observed.
Classical oscillators in the control of quantum tunneling: Numerical experiments
Kar, Susmita; Bhattacharyya, S. P.
2016-06-01
The dynamics of a classical anharmonic oscillator is exploited to control the tunneling dynamics of a quantum particle to which the classical oscillator is coupled. The mixed quantum classical problem is investigated at a mean-field like level. The anharmonic strength (λ) , particle mass (Mc) and harmonic stiffness (ωc) of the classical controller are explored as possible control parameters for the tunneling dynamics. The strength, the type of coupling between the quantum system and classical controller and the effective frequency of the controller emerge as crucial factors in shaping the nature and extent of the control. A whole spectrum of possibilities starting from enhancement, suppression to complete destruction of tunneling emerge depending on values assigned to the control parameters, the type of coupling and the control configuration used. When classical controller is replaced by a quantum controller, the control landscape becomes much simpler.
International Nuclear Information System (INIS)
A review of tachyons, with particular attention to their classical theory, is presented. The extension of Special Relativity to tachyons in two dimensional is first presented, an elegant model-theory which allows a better understanding also of ordinary physics. Then, the results are extended to the four-dimensional case (particular on tachyon mechanics) that can be derived without assuming the existence of Super-luminal reference-frames. Localizability and the unexpected apparent shape of tachyonic objects are discussed, and it is shown (on the basis of tachyon kinematics) how to solve the common causal paradoxes. In connection with General Relativity, particularly the problem of the apparent superluminal expansions in astrophysics is reviewed. The problem (still open) of the extension of relativitic theories to tachyons in four dimensions is tackled, and the electromagnetic theory of tachyons, a topic that can be relevant also for the experimental side, is reviewed. (Author)
Field emission current from a junction field-effect transistor
International Nuclear Information System (INIS)
Fabrication of a titanium dioxide/carbon nanotube (TiO2/CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO2 nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO2/CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO2/CNT hetero-structure is also investigated, and well modeled
Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu
2008-01-01
A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.
Unusual field and temperature dependence of Hall effect in graphene
Falkovsky, L. A.
2006-01-01
We calculate the classic Hall conductivity and mobility of the undoped and doped (or in the gate voltage) graphene as a function of temperature, magnetic field, and carrier concentration. Carrier collisions with defects and acoustic phonons are taken into account. The Hall resistivity varies almost linearly with temperature. The magnetic field dependence of resistivity and mobility is anomalous in weak magnetic fields. There is the square root contribution from the field in the resistivity. T...
Nonrelativistic Effective Field Theory for Axions
Braaten, Eric; Zhang, Hong
2016-01-01
Axions can be described by a relativistic field theory with a real scalar field $\\phi$ whose self-interaction potential is a periodic function of $\\phi$. Low-energy axions, such as those produced in the early universe by the vacuum misalignment mechanism, can be described more simply by a nonrelativistic effective field theory with a complex scalar field $\\psi$ whose effective potential is a function of $\\psi^*\\psi$. We determine the coefficients in the expansion of the effective potential to fifth order in $\\psi^*\\psi$ by matching low-energy axion scattering amplitudes. In order to describe a Bose-Einstein condensate of axions that is too dense to expand the effective potential in powers of $\\psi^*\\psi$, we develop a sequence of systematically improvable approximations to the effective potential that include terms of all orders in $\\psi^*\\psi$.
Electromagnetic Effects in Superconductors in Gravitational Field
Ahmedov, B. J.; Kagramanova, V. G.
2006-01-01
The general relativistic modifications to the resistive state in superconductors of second type in the presence of a stationary gravitational field are studied. Some superconducting devices that can measure the gravitational field by its red-shift effect on the frequency of radiation are suggested. It has been shown that by varying the orientation of a superconductor with respect to the earth gravitational field, a corresponding varying contribution to AC Josephson frequency would be added by...
ARCH Effect in Classical Market-Timing Models with Lagged Market Variable: the Case of Polish Market
Joanna Olbrys
2011-01-01
The main goal of this study is to present the regressions of the GARCH versions of classical market-timing models of Polish equity funds. We examine the models with lagged values of the market factor as an additional variable because of the Fisher’s effect in the case of the main Warsaw Stock Exchange indexes. The market-timing and selectivity abilities of fund managers are evaluated for the period Jan 2003 – June 2011. Results on both the HAC and the GARCH estimates are qualitatively similar...
Classic writings on instructional technology
Ely, Donald P.; Plomp, Tjeerd
1996-01-01
This paper describes the selection process of 17 articles for inclusion in the book, "Classic Writings on Instructional Technology." The book brings together original "classic" educational technology articles into one volume to document the history of the field through its literature. It is also an
A New Constraint on Effective Field Theories of the QCD Flux Tube
Baker, M
2015-01-01
Effective magnetic $SU(N)$ gauge theory with classical $Z_N$ flux tubes of intrinsic width $\\frac{1}{M}$ is an effective field theory of the long distance quark-antiquark interaction in $SU(N)$ Yang-Mills theory. Long wavelength fluctuations of the $Z_N$ vortices of this theory lead to an effective string theory. In this paper we clarify the connection between effective field theory and effective string theory and we propose a new constraint on these vortices. We first examine the impact of string fluctuations on the classical dual superconductor description of confinement. At inter-quark distances $R\\sim \\frac{1}{M}$ the classical action for a straight flux tube determines the heavy quark potentials. At distances $R \\gg \\frac{1}{M}$ fluctuations of the flux tube axis $\\tilde{x}$ give rise to an effective string theory with an action $S_{eff} (\\tilde{x})$, the classical action for a curved flux tube, evaluated %on the fluctuating vortex sheet $\\tilde{x}$ in the limit $\\frac{1}{M} \\rightarrow 0~$. This action ...
Marsalek, Ondrej; Markland, Thomas E
2016-02-01
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost. PMID:26851913
International Nuclear Information System (INIS)
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost
Energy Technology Data Exchange (ETDEWEB)
Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu [Department of Chemistry, Stanford University, Stanford, California 94305 (United States)
2016-02-07
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.
Effective Field Theory and $\\chi$pt
Holstein, Barry R.
2000-01-01
A brief introduction to the subject of chiral perturbation theory ($\\chi$pt) is given, including a discussion of effective field theory and application to the upcoming Bates virtual Compton scattering measurement.
New constraint on effective field theories of the QCD flux tube
Baker, M.
2016-03-01
Effective magnetic S U (N ) gauge theory with classical ZN flux tubes of intrinsic width 1/M is an effective field theory of the long-distance quark-antiquark interaction in S U (N ) Yang-Mills theory. Long-wavelength fluctuations of the ZN vortices of this theory lead to an effective string theory. In this paper, we clarify the connection between effective field theory and effective string theory, and we propose a new constraint on these vortices. We first examine the impact of string fluctuations on the classical dual superconductor description of confinement. At interquark distances R ˜1/M , the classical action for a straight flux tube determines the heavy quark potentials. At distances R ≫1/M , fluctuations of the flux tube axis x ˜ give rise to an effective string theory with an action Seff(x ˜), the classical action for a curved flux tube, evaluated in the limit 1/M →0 . This action is equal to the Nambu-Goto action. These conclusions are independent of the details of the ZN flux tube. Further, we assume the QCD flux tube satisfies the additional constraint, ∫0∞r d r T/θθ(r ) r2=0 , where T/θθ(r ) r2 is the value of the θ θ component of the stress tensor at a distance r from the axis of an infinite flux tube. Under this constraint, the string tension σ equals the force on a quark in the chromoelectric field E → of an infinite straight flux tube, and the Nambu-Goto action can be represented in terms of the chromodynamic fields of effective magnetic S U (N ) gauge theory, yielding a field theory interpretation of effective string theory.
The Magnetic Field Effect on Planetary Nebulae
Institute of Scientific and Technical Information of China (English)
A. R. Khesali; K. Kokabi
2006-01-01
In our previous work on the 3-dimensional dynamical structure of planetary nebulae the effect of magnetic field was not considered. Recently Jordan et al. have directly detected magnetic fields in the central stars of some planetary nebulae. This discovery supports the hypothesis that the non-spherical shape of most planetary nebulae is caused by magnetic fields in AGB stars. In this study we focus on the role of initially weak toroidal magnetic fields embedded in a stellar wind in altering the shape of the PN. We found that magnetic pressure is probably influential on the observed shape of most PNe.
Magnetic field effects in chemical systems
Rodgers, CT
2009-01-01
Chemical reactions that involve radical intermediates can be influenced by magnetic fields, which act to alter their rate, yield, or product distribution. These effects have been studied extensively in liquids, solids, and constrained media such as micelles. They may be interpreted using the radical pair mechanism (RPM). Such effects are central to the field of spin chemistry of which there have been several detailed and extensive reviews. This review instead presents an introductory account ...
Effective Field Theory for Lattice Nuclei
Barnea, N.; Contessi, L.; Gazit, D.; Pederiva, F.; van Kolck, U.
2013-01-01
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in recent LQCD simulations carried out at pion masses much heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo ...
The effects of ethanol on the developing cerebellum and eyeblink classical conditioning.
Green, John T
2004-01-01
In rats, developmental ethanol exposure has been used to model the central nervous system deficits associated with human fetal alcohol syndrome. Binge-like ethanol exposure of neonatal rats depletes cells in the cerebellum, including Purkinje cells, granule cells, and deep nuclear cells, and produces deficits in simple tests of motor coordination. However, the extent to which anatomical damage is related to behavioral deficits has been difficult to estimate. Eyeblink classical conditioning is known to engage a discrete brain stem-cerebellar circuit, making it an ideal test of cerebellar functional integrity after developmental ethanol exposure. Eyeblink conditioning is a simple form of motor learning in which a neutral stimulus (such as a tone) comes to elicit an eyeblink when repeatedly paired with a stimulus that evokes an eyeblink prior to training (such as mild periorbital stimulation). In eyeblink conditioning, one of the deep cerebellar nuclei, the interpositus nucleus, as well as specific Purkinje cell populations, are sites of convergence for tone conditioned stimulus and somatosensory unconditioned stimulus information, and, together with brain stem nuclei, provide the necessary and sufficient substrate for the learned response. A series of studies have shown that eyeblink conditioning is impaired in both weanling and adult rats given binge-like exposure to ethanol as neonates. In addition, interpositus nucleus neurons from ethanol-exposed rats showed impaired activation during eyeblink conditioning. These deficits are accompanied by a permanent reduction In the deep cerebellar nuclear cell population. Because particular cerebellar cell populations are utilized in well-defined ways during eyeblink conditioning, conclusions regarding the underlying neural substrates of behavioral change after developmental ethanol exposure are greatly strengthened.
Delepine, Nicolas
2013-01-01
Seismic waves may be strongly amplified in deep alluvial basins due to the velocity contrast (or velocity gradient) between the various layers as well as the basin edge effects. In this work, the seismic ground motion in a deep alpine valley (Grenoble basin, French Alps) is investigated through various 'classical' Boundary Element models. This deep valley has a peculiar geometry ("Y"-shaped) and involves a strong velocity gradient between surface geological structures. In the framework of a numerical benchmark [21-23], a representative cross section of the valley has been proposed to investigate 2D site effects through various numerical methods. The 'classical' Boundary Element Method is considered herein to model the strong velocity gradient with a 2D piecewise homogeneous medium. For a large incidence angle, the transfer functions estimated from plane SH waves are close to the one computed with shallow SH point sources. The fundamental frequency is estimated at 0.33 Hz (SH wave) and the agreement with previ...
Magnetic field screening effect in electroweak model
Bakry, A; Zhang, P M; Zou, L P
2014-01-01
It is shown that in the Weinberg-Salam model a magnetic field screening effect for static magnetic solutions takes place. The origin of that phenomenon is conditioned by features of the electro-weak interaction, namely, there is mutual cancellation of Abelian magnetic fields created by the SU(2) gauge fields and Higgs boson. The effect implies monopole charge screening in finite energy system of monopoles and antimonopoles. We consider another manifestation of the screening effect which leads to an essential energy decrease of magnetic solutions. Applying variational method we have found a magnetic field configuration with a topological azimuthal magnetic flux which minimizes the energy functional and possesses a total energy of order 1 TeV. We suppose that corresponding magnetic bound state exists in the electroweak theory and can be detected in experiment.
Pseudoclassical fermionic model and classical solutions
International Nuclear Information System (INIS)
We study classical limit of fermionic fields seen as Grassmann variables and deduce the proper quantization prescription using Dirac's method for constrained systems and investigate quantum meaning of classical solutions for the Thirring model. (author)
Effect of static electric field on cross sections in antiproton impact ionization of atomic helium
International Nuclear Information System (INIS)
We report the effect of static electric fields in different geometrical features on the collisional ionization of helium atoms by antiproton. The Classical Trajectory Monte Carlo (CTMC) method with a model interaction potential has been used to simulate the differential and total ionization cross sections in antiproton–helium atom collisions in the energy range of 10–500 keV with and without electric fields. The calculated ionization cross sections are in reasonable agreement with the recently reported experimental and theoretical results. The effects of the external electric fields are seen to be quite prominent.
The Quantum-Classical and Mind-Brain Linkages: The Quantum Zeno Effect in Binocular Rivalry
Stapp, Henry P
2007-01-01
A quantum mechanical theory of the relationship between perceptions and brain dynamics based on von Neumann's theory of measurments is applied to a recent quantum theoretical treatment of binocular rivaly that makes essential use of the quantum Zeno effect to give good fits to the complex available empirical data. The often-made claim that decoherence effects in the warm, wet, noisy brain must eliminate quantum effects at the macroscopic scale pertaining to perceptions is examined, and it is argued, on the basis of fundamental principles. that the usual decoherence effects will not upset the quantum Zeno effect that is being exploited in the cited work.
Sociology and Classical Liberalism
KLEIN, Daniel; Stern, Lotta
2005-01-01
We advocate the development of a classical-liberal character within professional sociology. The American Sociological Association (ASA) is taken as representative of professional sociology in the United States. We review the ASA’s activities and organizational statements, to show the association’s leftist character. Internal criticism is often very uneasy about leftist domination of the field. We present survey results establishing that, in voting and in policy views, the ASA membership is mo...
The Classical Electron Problem
Gill, T L; Lindesay, J
2001-01-01
In this paper, we construct a parallel image of the conventional Maxwell theory by replacing the observer-time by the proper-time of the source. This formulation is mathematically, but not physically, equivalent to the conventional form. The change induces a new symmetry group which is distinct from, but closely related to the Lorentz group, and fixes the clock of the source for all observers. The new wave equation contains an additional term (dissipative), which arises instantaneously with acceleration. This shows that the origin of radiation reaction is not the action of a "charge" on itself but arises from inertial resistance to changes in motion. This dissipative term is equivalent to an effective mass so that classical radiation has both a massless and a massive part. Hence, at the local level the theory is one of particles and fields but there is no self-energy divergence (nor any of the other problems). We also show that, for any closed system of particles, there is a global inertial frame and unique (...
Global Anomalies and Effective Field Theory
Golkar, Siavash
2015-01-01
We show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on %thermal partition functions and thermal effective field theory where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient. This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functions rather than eta invariants.
Local field effects in periodic metamaterials
Porvatkina, O. V.; Tishchenko, A. A.; Strikhanov, M. N.
2016-08-01
In this article we investigate dielectric and magnetic properties of periodic metamaterials taking into account the so-called local field effect, caused by interaction between single particles the material consists of. We also consider the spatial dispersion effects. As a result, generalized Clausius-Mossotti techniques have been extended to the case of periodic metamaterials; permittivity tensor and permeability tensor were obtained.
Effective lagrangian from bosonic string field theory
International Nuclear Information System (INIS)
We investigate the low-energy effective action from the string field theoretical view point. The low-energy effective lagrangian for the massless mode of bosonic string is determined to the order of α'. We find a term which can not be determined from the S-matrix approach. (author)
The Supersymmetric Effective Field Theory of Inflation
Delacretaz, Luca V; Senatore, Leonardo
2016-01-01
We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable St\\"uckelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplif...
Field emission current from a junction field-effect transistor
Energy Technology Data Exchange (ETDEWEB)
Monshipouri, Mahta; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nano-Physics Research Laboratory, Department of Physics (Iran, Islamic Republic of)
2015-04-15
Fabrication of a titanium dioxide/carbon nanotube (TiO{sub 2}/CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO{sub 2} nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO{sub 2}/CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO{sub 2}/CNT hetero-structure is also investigated, and well modeled.
Frank, Irmgard
2016-01-01
The notion from ab-initio molecular dynamics simulations that nuclear motion is best described by classical Newton dynamics instead of the time-dependent Schr{\\"o}dinger equation is substantiated. In principle a single experiment should bring clarity. Caution is however necessary, as temperature dependent effects must be eliminated when trying to determine the existence of a zero-point energy.
Electromagnetic Effects in Superconductors in Gravitational Field
Ahmedov, B J
2005-01-01
The general relativistic modifications to the resistive state in superconductors of second type in the presence of a stationary gravitational field are studied. Some superconducting devices that can measure the gravitational field by its red-shift effect on the frequency of radiation are suggested. It has been shown that by varying the orientation of a superconductor with respect to the earth gravitational field, a corresponding varying contribution to AC Josephson frequency would be added by gravity. A magnetic flux (being proportional to angular velocity of rotation $\\Omega$) through a rotating hollow superconducting cylinder with the radial gradient of temperature $\
Lattice methods and effective field theory
Nicholson, Amy N
2016-01-01
Lattice field theory is a non-perturbative tool for studying properties of strongly interacting field theories, which is particularly amenable to numerical calculations and has quantifiable systematic errors. In these lectures we apply these techniques to nuclear Effective Field Theory (EFT), a non-relativistic theory for nuclei involving the nucleons as the basic degrees of freedom. The lattice formulation of [1,2] for so-called pionless EFT is discussed in detail, with portions of code included to aid the reader in code development. Systematic and statistical uncertainties of these methods are discussed at length, and extensions beyond pionless EFT are introduced in the final Section.
Effects of collisions on conservation laws in gyrokinetic field theory
International Nuclear Information System (INIS)
Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novel gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations
On the field determination of effective porosity
International Nuclear Information System (INIS)
Effective porosity of geologic materials is a very important parameter for estimating groundwater travel time and modeling contaminant transport in hydrologic systems. Determination of a representative effective porosity for nonideal systems is a problem still challenging hydrogeologists. In this paper, some of the conventional field geophysical and hydrological methods for estimating effective porosity of geologic materials are reviewed. The limitations and uncertainties associated with each method are discussed. 30 refs., 8 figs
Effective Field Theory and Heavy Quark Physics
Neubert, Matthias
2005-01-01
These notes are based on five lectures presented at the 2004 Theoretical Advanced Study Institute (TASI) on ``Physics in D>=4''. After a brief motivation of flavor physics, they provide a pedagogical introduction to effective field theory, the effective weak Lagrangian, and the technology of renormalization-group improved perturbation theory. These general methods are then applied in the context of heavy-quarks physics, introducing the concepts of heavy-quark and soft-collinear effective theory.
Some effects on molybdenite. [Photovoltaic and field effects
Energy Technology Data Exchange (ETDEWEB)
Lagrenaudie, J.
1983-10-01
Natural molybdenite, well crystallized, presents interesting semi-conducting properties like silicon, and a foliated structure producing an important anisotropy. Photovoltaic effect on the edge and field effect are briefly studied. Preparation of crystals is also examined.
International Nuclear Information System (INIS)
Quantum chromodynamics (QCD) is currently our only candidate for a theory of strong-interaction dynamics. But the evidence for it is very scanty. Indeed, QCD has only been experimentally verified in its predictions of scaling violation in deep inelastic neutrino scattering. Yet, research continues on QCD because it is based on a beautiful idea, namely the incorporation of observed particle symmetries via local gauge invariance. Nevertheless QCD, a quantum field theory in 3 + 1 dimensions is still without solution. The sheer difficulty in solving the full quantum problem has led some to various approximations, in the hopes of shedding light on the structure of the theory. (orig./FKS)
Kamboj, Aman; Saini, Mohini; Rajan, Lekshmi S; Patel, Chhabi Lal; Chaturvedi, V K; Gupta, Praveen K
2015-12-15
To develop reverse genetics system of RNA viruses, cloning of full-length viral genome is required which is often challenging due to many steps involved. In this study, we report cloning of full-length cDNA from an Indian field isolate (CSFV/IVRI/VB-131) of classical swine fever virus (CSFV) using in vitro overlap extension PCR and recombination which drastically reduced the number of cloning steps. The genome of CSFV was amplified in six overlapping cDNA fragments, linked by overlap extension PCR and cloned in a bacterial artificial chromosome (BAC) vector using in vitro recombination method to generate full-length cDNA clone. The full-length CSFV cDNA clone was found stable in E. coli Stellar and DH10B cells. The full-length RNA was transcribed in vitro using T7 RNA polymerase and transfected in PK15 cells using Neon-tip electroporator to rescue infectious CSFV. The progeny CSFV was propagated in PK15 cells and found indistinguishable from the parent virus. The expression of CSFV proteins were detected in cytoplasm of PK15 cells infected with progeny CSFV at 72 h post-infection. We concluded that the in vitro overlap extension PCR and recombination method is useful to construct stable full-length cDNA clone of RNA virus in BAC vector. PMID:26478540
Fundamentals of nanoscaled field effect transistors
Chaudhry, Amit
2013-01-01
Fundamentals of Nanoscaled Field Effect Transistors gives comprehensive coverage of the fundamental physical principles and theory behind nanoscale transistors. The specific issues that arise for nanoscale MOSFETs, such as quantum mechanical tunneling and inversion layer quantization, are fully explored. The solutions to these issues, such as high-κ technology, strained-Si technology, alternate devices structures and graphene technology are also given. Some case studies regarding the above issues and solution are also given in the book. In summary, this book: Covers the fundamental principles behind nanoelectronics/microelectronics Includes chapters devoted to solutions tackling the quantum mechanical effects occurring at nanoscale Provides some case studies to understand the issue mathematically Fundamentals of Nanoscaled Field Effect Transistors is an ideal book for researchers and undergraduate and graduate students in the field of microelectronics, nanoelectronics, and electronics.
Electric field effects on droplet burning
Patyal, Advitya; Kyritsis, Dimitrios; Matalon, Moshe
2015-11-01
The effects of an externally applied electric field are studied on the burning characteristics of a spherically symmetric fuel drop including the structure, mass burning rate and extinction characteristics of the diffusion flame. A reduced three-step chemical kinetic mechanism that reflects the chemi-ionization process for general hydrocarbon fuels has been proposed to capture the production and destruction of ions inside the flame zone. Due to the imposed symmetry, the effect of the ionic wind is simply to modify the pressure field. Our study thus focuses exclusively on the effects of Ohmic heating and kinetic effects on the burning process. Two distinguished limits of weak and strong field are identified, highlighting the relative strength of the internal charge barrier compared to the externally applied field, and numerically simulated. For both limits, significantly different charged species distributions are observed. An increase in the mass burning rate is noticed with increasing field in either limit with negligible change in the flame temperature. Increasing external voltages pushes the flame away from the droplet and causes a strengthening of the flame with a reduction in the extinction Damkhöler number.
Fractional Effective Action at strong electromagnetic fields
Kleinert, Hagen; Xue, She-Sheng
2013-01-01
In 1936, Weisskopf showed that for vanishing electric or magnetic fields the strong-field behavior of the one loop Euler-Heisenberg effective Lagrangian of quantum electro dynamics (QED) is logarithmic. Here we generalize this result for different limits of the Lorentz invariants \\(\\vec{E}^2-\\vec{B}^2\\) and \\(\\vec{B}\\cdot\\vec{E}\\). The logarithmic dependence can be interpreted as a lowest-order manifestation of an anomalous power behavior of the effective Lagrangian of QED, with critical exponents \\(\\delta=e^2/(12\\pi)\\) for spinor QED, and \\(\\delta_S=\\delta/4\\) for scalar QED.
MODE I AND MODE II CRACK TIP ASYMPTOTIC FIELDS WITH STRAIN GRADIENT EFFECTS
Institute of Scientific and Technical Information of China (English)
陈少华; 王自强
2001-01-01
The strain gradient effect becomes significant when the size of fracture process zone around a crack tip is comparable to the intrinsic material length l,typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dominant strain field is irrotational. For mode I plane stress crack tip asymptotic field,the stress asymptotic field and the couple stress asymptotic field can not exist simultaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode II plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode II plane stress and plane strain HRR fields,respectively. The increase in stresses is not observed in strain gradient plasticity for mode I and mode II, because the present theory is based only on the rotational gradient of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.
Zhu, Congqing; Yang, Yuhui; Luo, Ming; Yang, Caixia; Wu, Jingjing; Chen, Lina; Liu, Gang; Wen, Tingbin; Zhu, Jun; Xia, Haiping
2015-05-18
Antiaromatic species are substantially less thermodynamically stable than aromatic moieties. Herein, we report the stabilization of two classical antiaromatic frameworks, cyclobutadiene and pentalene, by introducing one metal fragment through the first [2+2] cycloaddition reaction of a late-transition-metal carbyne with alkynes. Experimental observations and theoretical calculations reveal that the metal fragment decreases the antiaromaticity in cyclobutadiene and pentalene simultaneously, leading to air- and moisture-stable products. These molecules show broad absorption from the UV to the near-IR region, resulting in photoacoustic and photothermal effects for metalla-aromatic compounds for the first time. These results will encourage further efforts into the exploration of organometallic compounds for photoacoustic-imaging-guided photothermal therapy.
Semi-classical treatment of $k$-essence effect on cosmic temperature
Bandyopadhyay, Abhijit; Moulik, Arka
2014-01-01
A phenomenological model is described for Cosmic Microwave Background Radiation (CMBR) evolution with dark energy an essential ingredient in the form of a $k-$essence scalar field. The following features of this evolution can be successfully obtained from this model: (a) the {\\it observed} variation of the rate of change of scale factor $a(t)$, i.e. $\\dot a$, with time and (b) the {\\it observed} value of the epoch when the universe went from a decelerating phase to an accelerated phase. These two features have been matched with graphical transcriptions of SNe Ia data. The model also indicates that the evolution is sensitive to the presence of inhomogeneity and this sensitivity increases as one goes further into the past. Further, the value of the inhomogeneity parameter determines the epoch of switch over to an accelerated phase. A positive value of inhomogeneity parameter leads to switch over at earlier epochs, while a negative value leads to switch over at later epochs. If the value of the inhomogeneity par...
Plasma wave instability in a quantum field effect transistor with magnetic field effect
Energy Technology Data Exchange (ETDEWEB)
Zhang, Li-Ping; Xue, Ju-Kui [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China)
2013-08-15
The current-carrying state of a nanometer Field Effect Transistor (FET) may become unstable against the generation of high-frequency plasma waves and lead to generation of terahertz radiation. In this paper, the influences of magnetic field, quantum effects, electron exchange-correlation, and thermal motion of electrons on the instability of the plasma waves in a nanometer FET are reported. We find that, while the electron exchange-correlation suppresses the radiation power, the magnetic field, the quantum effects, and the thermal motion of electrons can enhance the radiation power. The radiation frequency increases with quantum effects and thermal motion of electrons, but decreases with electron exchange-correlation effect. Interestingly, we find that magnetic field can suppress the quantum effects and the thermal motion of electrons and the radiation frequency changes non-monotonely with the magnetic field. These properties could make the nanometer FET advantageous for realization of practical terahertz oscillations.
The Effective Field Theory of Multifield Inflation
Senatore, Leonardo
2010-01-01
We generalize the Effective Field Theory of Inflation to include additional light scalar degrees of freedom that are in their vacuum at the time the modes of interest are crossing the horizon. In order to make the scalars light in a natural way we consider the case where they are the Goldstone bosons of a global symmetry group or are partially protected by an approximate supersymmetry. We write the most general Lagrangian that couples the scalar mode associated to the breaking of time translation during inflation to the additional light scalar fields. This Lagrangian is constrained by diffeomorphism invariance and the additional symmetries that keep the new scalars light. This Lagrangian describes the fluctuations around the time of horizon crossing and it is supplemented with a general parameterization describing how the additional fluctuating fields can affect cosmological perturbations. We find that multifield inflation can reproduce the non-Gaussianities that can be generated in single field inflation but...
The effects of vestibular stimulation and fatigue on postural control in classical ballet dancers.
Hopper, Diana M; Grisbrook, Tiffany L; Newnham, Prudence J; Edwards, Dylan J
2014-01-01
This study aimed to investigate the effects of ballet-specific vestibular stimulation and fatigue on static postural control in ballet dancers and to establish whether these effects differ across varying levels of ballet training. Dancers were divided into three groups: professional, pre-professional, and recreational. Static postural control of 23 dancers was measured on a force platform at baseline and then immediately, 30 seconds, and 60 seconds after vestibular stimulation (pirouettes) and induction of fatigue (repetitive jumps). The professional dancers' balance was unaffected by both the vestibular stimulation and the fatigue task. The pre-professional and recreational dancers' static sway increased following both perturbations. It is concluded that professional dancers are able to compensate for vestibular and fatiguing perturbations due to a higher level of skill-specific motor training. PMID:24844423
Energy Technology Data Exchange (ETDEWEB)
Horner, Daniel A [Los Alamos National Laboratory; Miyabe, S [LBNL; Rescigno, T N [LBNL; Mccurdy, C W [LBNL; Morales, F [MADRID, SPAIN; Martin, F [MADRID, SPAIN
2009-01-01
The authors report a thorough theoretical study of one photon double ionization of H{sub 2}. They suggest that interference effects reported in one photon ionization will be reproducible in the case of double ionization when one of the photons carriers most of the available energy and the other electron is not observed. These calculations reproduce recent double photoionization experiments of H{sub 2}.
Integration of the Equations of Classical Electrode-Effect Theory with Aerosols
Kalinin, A. V.; Leont'ev, N. V.; Terent'ev, A. M.; Umnikov, E. D.
2016-04-01
This paper is devoted to an analytical study of the one-dimensional stationary system of equations for modeling of the electrode effect in the Earth's atmospheric layer with aerosols. New integrals of the system are derived. Using these integrals, the expressions for solutions of the system and estimates of the electrode layer's thickness as a function of the aerosol concentration are obtained for numerical parameters close to real.
Finsler-like structures from Lorentz-breaking classical particles
Russell, Neil
2015-01-01
A method is presented for deducing classical point-particle Lagrange functions corresponding to a class of quartic dispersion relations. Applying this to particles violating Lorentz symmetry in the minimal Standard-Model Extension leads to a variety of novel lagrangians in flat spacetime. Morphisms in these classical systems are studied that echo invariance under field redefinitions in the quantized theory. The Lagrange functions found offer new possibilities for understanding Lorentz-breaking effects by exploring parallels with Finsler-like geometries.
Electric field effects in RUS measurements.
Darling, Timothy W; Allured, Bradley; Tencate, James A; Carpenter, Michael A
2010-02-01
Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material--a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the "statistical residual" strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods. PMID:19850314
Electric Field Effects in RUS Measurements
Energy Technology Data Exchange (ETDEWEB)
Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK
2009-09-21
Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.
Effective Field Theory for Jet Processes.
Becher, Thomas; Neubert, Matthias; Rothen, Lorena; Shao, Ding Yu
2016-05-13
Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet processes in effective field theory, we find that in addition to soft and collinear fields their description requires degrees of freedom that are simultaneously soft and collinear to the jets. These collinear-soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line structure of the associated operators at higher orders. Our effective field theory provides, for the first time, a factorization formula for a cone-jet process, which fully separates the physics at different energy scales. Its renormalization-group equations control all logarithmically enhanced higher-order terms, in particular also the nonglobal logarithms.
An Effective Field Theory for Jet Processes
Becher, Thomas; Rothen, Lorena; Shao, Ding Yu
2015-01-01
Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet processes in effective field theory, we find that in addition to soft and collinear fields their description requires momentum modes which are simultaneously soft and collinear to the jets. These collinear-soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line structure of the associated operators at higher orders. Our effective field theory fully separates the physics at different energy scales. Solving its renormalization-group equations resums all logarithmically enhanced higher-order terms in cone-jet processes, in particular also the non-global logarithms.
Effective Field Theory for Jet Processes
Becher, Thomas; Neubert, Matthias; Rothen, Lorena; Shao, Ding Yu
2016-05-01
Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet processes in effective field theory, we find that in addition to soft and collinear fields their description requires degrees of freedom that are simultaneously soft and collinear to the jets. These collinear-soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line structure of the associated operators at higher orders. Our effective field theory provides, for the first time, a factorization formula for a cone-jet process, which fully separates the physics at different energy scales. Its renormalization-group equations control all logarithmically enhanced higher-order terms, in particular also the nonglobal logarithms.
Effective Field Theory for Jet Processes.
Becher, Thomas; Neubert, Matthias; Rothen, Lorena; Shao, Ding Yu
2016-05-13
Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet processes in effective field theory, we find that in addition to soft and collinear fields their description requires degrees of freedom that are simultaneously soft and collinear to the jets. These collinear-soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line structure of the associated operators at higher orders. Our effective field theory provides, for the first time, a factorization formula for a cone-jet process, which fully separates the physics at different energy scales. Its renormalization-group equations control all logarithmically enhanced higher-order terms, in particular also the nonglobal logarithms. PMID:27232017
Classical Weyl Transverse Gravity
Oda, Ichiro
2016-01-01
We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally-invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally-invariant scalar tensor gravity and the WTDiff gravity is a "fake" symmetry. We find it possible to extend this proof to all matter fields,...
Individual SWCNT based ionic field effect transistor
Pang, Pei; He, Jin; Park, Jae Hyun; Krstic, Predrag; Lindsay, Stuart
2011-03-01
Here we report that the ionic current through a single-walled carbon nanotube (SWCNT) can be effectively gated by a perpendicular electrical field from a top gate electrode, working as ionic field effect transistor. Both our experiment and simulation confirms that the electroosmotic current (EOF) is the main component in the ionic current through the SWCNT and is responsible for the gating effect. We also studied the gating efficiency as a function of solution concentration and pH and demonstrated that the device can work effectively in the physiological relevant condition. This work opens the door to use CNT based nanofluidics for ion and molecule manipulation. This work was supported by the DNA Sequencing Technology Program of the National Human Genome Research Institute (1RC2HG005625-01, 1R21HG004770-01), Arizona Technology Enterprises and the Biodesign Institute.
Effective Field Theory for Rydberg Polaritons.
Gullans, M J; Thompson, J D; Wang, Y; Liang, Q-Y; Vuletić, V; Lukin, M D; Gorshkov, A V
2016-09-01
We develop an effective field theory (EFT) to describe the few- and many-body propagation of one-dimensional Rydberg polaritons. We show that the photonic transmission through the Rydberg medium can be found by mapping the propagation problem to a nonequilibrium quench, where the role of time and space are reversed. We include effective range corrections in the EFT and show that they dominate the dynamics near scattering resonances in the presence of deep bound states. Finally, we show how the long-range nature of the Rydberg-Rydberg interactions induces strong effective N-body interactions between Rydberg polaritons. These results pave the way towards studying nonperturbative effects in quantum field theories using Rydberg polaritons. PMID:27661685
Institute of Scientific and Technical Information of China (English)
方险峰; 张序心; 周萌; 李家文
2010-01-01
This study investigated the growth-regulating effects of progesterone(Prog) on nPR-negative malignant melanoma cells and the possible mechanisms.A375 and A875 cells were cultured and treated with Prog of different concentrations.For signal transduction pathway studies,the cells were pretreated with Prog receptor antagonist(RU486,1×10-7 mol/L) or MAPK inhibitor(U0126,5×10-6 mol/L) for 1 h and then co-incubated with prog(10-9 mol/L) for another 24 h.Indirect immunofluorescence assay,MTT,flow cytometry and Wes...
Classical dynamics a modern perspective
Sudarshan, Ennackal Chandy George
2016-01-01
Classical dynamics is traditionally treated as an early stage in the development of physics, a stage that has long been superseded by more ambitious theories. Here, in this book, classical dynamics is treated as a subject on its own as well as a research frontier. Incorporating insights gained over the past several decades, the essential principles of classical dynamics are presented, while demonstrating that a number of key results originally considered only in the context of quantum theory and particle physics, have their foundations in classical dynamics.Graduate students in physics and practicing physicists will welcome the present approach to classical dynamics that encompasses systems of particles, free and interacting fields, and coupled systems. Lie groups and Lie algebras are incorporated at a basic level and are used in describing space-time symmetry groups. There is an extensive discussion on constrained systems, Dirac brackets and their geometrical interpretation. The Lie-algebraic description of ...
Bioavailability of classical and novel flame retardants: Effect of fullerene presence.
Santín, Giselle; Eljarrat, Ethel; Barceló, Damià
2016-09-15
To understand the behavior of some emerging flame retardants (FRs) in the environment, a nonexhaustive extraction using Tenax was applied to study their behavior in aquatic ecosystems. Desorption of 8 polybrominated diphenyl ethers (PBDEs), 8 methoxylated PBDEs, 3 emerging brominated FRs and 6 halogenated norbornenes from sediments spiked in the laboratory was studied. Results showed that emerging FRs have a similar bioavailability than that of legacy FRs, already banned. In addition, some parameters such as sediment total organic carbon (TOC), aging or nanomaterial (NMs) presence in the sediment were modified in order to study their effects on the bioavailability of FRs. Bioavailability increases with a diminution of sediment TOC, while diminishes with an increase of aging. The study of effect of NM presence was performed at three different pH (acidic, neutral and basic), and for the three scenarios, FR bioavailability decreased with NM presence. The retention of pollutants in the sediment seems to be favoured by NM presence, minimizing their impact on living organisms. PMID:27177136
Foreground effect on the $J$-factor estimation of classical dwarf spheroidal galaxies
Ichikawa, Koji; Matsumoto, Shigeki; Ibe, Masahiro; Sugai, Hajime; Hayashi, Kohei
2016-01-01
The gamma-ray observation of the dwarf spheroidal galaxies (dSphs) is a promising approach to search for the dark matter annihilation (or decay) signal. The dSphs are the nearby satellite galaxies with a clean environment and dense dark matter halo so that they give stringent constraints on the ${\\cal O}(1)$ TeV dark matter. However, recent studies have revealed that current estimation of astrophysical factors relevant for the dark matter searches are not conservative, where the various non-negligible systematic uncertainties are not taken into account. Among them, the effect of foreground stars on the astrophysical factors has not been paid much attention, which becomes more important for deeper and wider stellar surveys in the future. In this article, we assess the effects of the foreground contamination by generating the mock samples of stars and using a model of future spectrographs. We investigate various data cuts to optimize the quality of the data and find that the cuts on the velocity and surface gra...
Ferromagnetic hysteresis and the effective field
Naus, H.W.L.
2002-01-01
The Jiles-Atherton model of the behavior of ferromagnetic materials determines the irreversible magnetization from the effective field by using a differential equation. This paper presents an exact, analytical solution to the equation, one displaying hysteresis. The inclusion of magnetomechanical co
The photoelectric effect in external fields
International Nuclear Information System (INIS)
Atoms and negative ions interacting with laser photons yield a coherent source of photoelectrons. Applying external fields to photoelectrons gives rise to interesting and valuable interference phenomena. We analyze the spatial distribution of the photocurrent using elementary quantum methods. The photoelectric effect is shown to be an interesting example for the use of coherent particle sources in quantum mechanics
The photoelectric effect in external fields
Bracher, C; Kanellopoulos, V; Kleber, M; Kramer, T; Bracher, Christian; Delos, John B.; Kanellopoulos, Vassiliki; Kleber, Manfred; Kramer, Tobias
2005-01-01
Atoms and negative ions interacting with laser photons yield a coherent source of photoelectrons. Applying external fields to photoelectrons gives rise to interesting and valuable interference phenomena. We analyze the spatial distribution of the photocurrent using elementary quantum methods. The photoelectric effect is shown to be an interesting example for the use of coherent particle sources in quantum mechanics.
Effective Field Theory and Finite Density Systems
Furnstahl, R. J.; Rupak, G.; Schaefer, T.
2008-01-01
This review gives an overview of effective field theory (EFT) as applied at finite density, with a focus on nuclear many-body systems. Uniform systems with short-range interactions illustrate the ingredients and virtues of many-body EFT and then the varied frontiers of EFT for finite nuclei and nuclear matter are surveyed.
Insights into genotoxic effects of electromagnetic fields
Focke, Frauke
2008-01-01
The increasing use of appliances, which generate electromagnetic fields (EMFs), has provoked public concern about their safety. Scientific research into possible health effects however produced conflicting results. One of the open questions is whether or not EMF exposure has genotoxic effects. Therefore, the main objective of my thesis was to investigate DNA damage formation and repair, cell cycle progression, apoptosis and DNA damage signalling in cultured human cells under EM...
Veselago lensing in graphene with a p-n junction: Classical versus quantum effects
Energy Technology Data Exchange (ETDEWEB)
Milovanović, S. P., E-mail: slavisa.milovanovic@uantwerpen.be; Moldovan, D., E-mail: dean.moldovan@uantwerpen.be; Peeters, F. M., E-mail: francois.peeters@uantwerpen.be [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)
2015-10-21
The feasibility of Veselago lensing in graphene with a p-n junction is investigated numerically for realistic injection leads. Two different set-ups with two narrow leads are considered with absorbing or reflecting side edges. This allows us to separately determine the influence of scattering on electron focusing for the edges and the p-n interface. Both semiclassical and tight-binding simulations show a distinctive peak in the transmission probability that is attributed to the Veselago lensing effect. We investigate the robustness of this peak on the width of the injector, the position of the p-n interface, and different gate potential profiles. Furthermore, the influence of scattering by both short- and long-range impurities is considered.
The "Ram Effect": A "Non-Classical" Mechanism for Inducing LH Surges in Sheep.
Fabre-Nys, Claude; Chanvallon, Audrey; Dupont, Joëlle; Lardic, Lionel; Lomet, Didier; Martinet, Stéphanie; Scaramuzzi, Rex J
2016-01-01
During spring sheep do not normally ovulate but exposure to a ram can induce ovulation. In some ewes an LH surge is induced immediately after exposure to a ram thus raising questions about the control of this precocious LH surge. Our first aim was to determine the plasma concentrations of oestradiol (E2) E2 in anoestrous ewes before and after the "ram effect" in ewes that had a "precocious" LH surge (starting within 6 hours), a "normal" surge (between 6 and 28h) and "late» surge (not detected by 56h). In another experiment we tested if a small increase in circulating E2 could induce an LH surge in anoestrus ewes. The concentration of E2 significantly was not different at the time of ram introduction among ewes with the three types of LH surge. "Precocious" LH surges were not preceded by a large increase in E2 unlike "normal" surges and small elevations of circulating E2 alone were unable to induce LH surges. These results show that the "precocious" LH surge was not the result of E2 positive feedback. Our second aim was to test if noradrenaline (NA) is involved in the LH response to the "ram effect". Using double labelling for Fos and tyrosine hydroxylase (TH) we showed that exposure of anoestrous ewes to a ram induced a higher density of cells positive for both in the A1 nucleus and the Locus Coeruleus complex compared to unstimulated controls. Finally, the administration by retrodialysis into the preoptic area, of NA increased the proportion of ewes with an LH response to ram odor whereas treatment with the α1 antagonist Prazosin decreased the LH pulse frequency and amplitude induced by a sexually active ram. Collectively these results suggest that in anoestrous ewes NA is involved in ram-induced LH secretion as observed in other induced ovulators.
Di Rosso, María Emilia; Palumbo, María Laura; Genaro, Ana María
2016-07-01
Selective serotonin reuptake inhibitors are frequently used antidepressants. In particular, fluoxetine is usually chosen for the treatment of the symptoms of depression, obsessive-compulsive, panic attack and bulimia nervosa. Antidepressant therapy has been associated with immune dysfunction. However, there is contradictory evidence about the effect of fluoxetine on the immune system. Experimental findings indicate that lymphocytes express the serotonin transporter. Moreover it has been shown that fluoxetine is able to modulate the immune function through a serotonin-dependent pathway and through a novel independent mechanism. In addition, several studies have shown that fluoxetine can alter tumor cell viability. Thus, it was recently demonstrated in vivo that chronic fluoxetine treatment inhibits tumor growth by increasing antitumor T-cell activity. Here we briefly review some of the literature referring to how fluoxetine is able to modify, for better or worse, the functionality of the immune system. These results of our analysis point to the relevance of the novel pharmacological action of this drug as an immunomodulator helping to treat several pathologies in which immune deficiency and/or deregulation is present. PMID:26644208
The effects of open throat technique on long term average spectra (LTAS) of female classical voices.
Mitchell, Helen F; Kenny, Dianna T
2004-01-01
In the third of a series of studies on open throat technique, we compared long term average spectra (LTAS) of six advanced singing students under three conditions: 'optimal' (O), representing maximal open throat, 'sub-optimal' (SO), using reduced open throat, and loud sub-optimal (LSO) to control for the effect of loudness. Using a series of univariate repeated measures ANOVAs with planned orthogonal contrasts, we tested the hypotheses that sound pressure level (SPL) and the ratio of spectral energy in peaks and areas between 0-2 kHz and 2-4 kHz would be reduced in SO and LSO compared to O. There were significant differences between SO and LSO but hypotheses were not confirmed for O. These findings do not accord with differences in vibrato extent and onset between O and SO/LSO (Mitchell and Kenny, in press). These results suggest that while LTAS provides information on energy distribution, measuring spectral energy areas appears to be the most sensitive measure of energy distribution between conditions. Plotting the differences between O and SO/LSO pairs of LTAS clearly indicates the areas of spectral change. The findings from this study also indicate that LTAS are not sufficiently sensitive to measure vocal timbre as they were not consistent with perceptual or other acoustic studies of the same samples. PMID:15370642
Non-Relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity
Wu, Ning
2005-01-01
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we could see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments. And because of...
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The spatiotemporal characteristics of electromagnetic pulses with ultrabroad spectral bandwidth in the far field are analyzed by using classical scalar diffraction theory. The effects of the ratio of the frequency width to the central frequency on the diffraction spatial distribution are discussed. It is concluded that the diffraction spatial dis-tribution of the pulsed radiation gets narrower than a mono-chromatic wave when the frequency width of the pulse is comparable to or larger than its central frequency.
Biological Effect of Magnetic Field in Mice
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
With a piece of magnet embeded in mouse body tomeasure the electrophoretic velocity of erythrocyte for ob-servation onthe biological effect of magnetic field.1Experi mental Material and Method1 .1Experi mental materialUsing permanent magnet was made of alloys fromCe .Co.Cu.Fe .,of which the force of magnetic field is500Gs ,formseems cylinder andthe weight is 0 .5 mg.1 .2Ani mals and groupingThere were eighteen mice that were choosed on ran-dom,theirs weight was 18-22gto divide equallyinthreegroups ,each gro...
Effective field theory for deformed atomic nuclei
Papenbrock, T.; Weidenmüller, H. A.
2016-05-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Dielectric Engineered Tunnel Field-Effect Transistor
Ilatikhameneh, Hesameddin; Tarek A. Ameen; Klimeck, Gerhard; Appenzeller, Joerg; Rahman, Rajib
2015-01-01
The dielectric engineered tunnel field-effect transistor (DE-TFET) as a high performance steep transistor is proposed. In this device, a combination of high-k and low-k dielectrics results in a high electric field at the tunnel junction. As a result a record ON-current of about 1000 uA/um and a subthreshold swing (SS) below 20mV/dec are predicted for WTe2 DE-TFET. The proposed TFET works based on a homojunction channel and electrically doped contacts both of which are immune to interface stat...
Effective field theory for deformed atomic nuclei
Papenbrock, T
2015-01-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband $E2$ transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Institute of Scientific and Technical Information of China (English)
U.GÜVEN
2015-01-01
In this paper, the propagation of longitudinal stress waves under a longitu-dinal magnetic field is addressed using a unified nonlocal elasticity model with two scale coeﬃcients. The analysis of wave motion is mainly based on the Love rod model. The effect of shear is also taken into account in the framework of Bishop’s correction. This analysis shows that the classical theory is not suﬃcient for this subject. However, this unified nonlocal elasticity model solely used in the present study reflects in a manner fairly realistic for the effect of the longitudinal magnetic field on the longitudinal wave propagation.
Effective Field Theory for Rydberg Polaritons
Gullans, M. J.; Y Wang; Thompson, J. D.; Liang, Q. -Y.; Vuletic, V.; Lukin, M. D.; Gorshkov, A.V.
2016-01-01
We study non-perturbative effects in N-body scattering of Rydberg polaritons using effective field theory (EFT). We develop an EFT in one dimension and show how a suitably long medium can be used to prepare shallow N-body bound states. We then derive the effective N-body interaction potential for Rydberg polaritons and the associated N-body contact force that arises in the EFT. We use the contact force to find the leading order corrections to the binding energy of the N-body bound states and ...
Quantum localization of classical mechanics
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
Particle Indistinguishability Symmetry within a Field Theory. Entropic Effects
Directory of Open Access Journals (Sweden)
Jean Pierre Badiali
2009-04-01
Full Text Available In this paper, we briefly discuss a field theory approach of classical statistical mechanics. We show how an essentially entropic functional accounts for fundamental symmetries related to quantum mechanical properties which hold out in the classical limit of the quantum description. Within this framework, energetic and entropic properties are treated at equal level. Based on a series of examples on electrolytes, we illustrate how this framework gives simple interpretations where entropic fluctuations of anions and cations compete with the energetic properties related to the interaction potential.
Anomaly induced effects in a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios; Boyarsky, Alexey [Department of Physics, CERN, Theory Division, 1211 Geneva 23 (Switzerland); Ruchayskiy, Oleg [Ecole Polytechnique Federale de Lausanne, Institute of Theoretical Physics, FSB/ITP/LPPC, BSP 720, CH-1015 Lausanne (Switzerland)], E-mail: oleg.ruchayskiy@epfl.ch
2008-04-11
We consider a modification of electrodynamics by an additional light massive vector field, interacting with the photon via Chern-Simons-like coupling. This theory predicts observable effects for the experiments studying the propagation of light in an external magnetic field, very similar to those, predicted by theories of axion and axion-like particles. We discuss a possible microscopic origin of this theory from a theory with non-trivial gauge anomaly cancellation between massive and light particles (including, for example, millicharged fermions). Due to the conservation of the gauge current, the production of the new vector field is suppressed at high energies. As a result, this theory can avoid both stellar bounds (which exist for axions) and the bounds from CMB considered recently, allowing for positive results in experiments like ALPS, LIPPS, OSQAR, PVLAS-2, BMV, Q and A, etc.
Anomaly induced effects in a magnetic field
Antoniadis, Ignatios; Ruchayskiy, O
2008-01-01
We consider a modification of electrodynamics by an additional light massive vector field, interacting with the photon via Chern-Simons-like coupling. This theory predicts observable effects for the experiments studying the propagation of light in an external magnetic field, very similar to those, predicted by theories of axion and axion-like particles. We discuss a possible microscopic origin of this theory from a theory with non-trivial gauge anomaly cancellation between massive and light particles (including, for example, millicharged fermions). Due to the conservation of the gauge current, the production of the new vector field is suppressed at high energies. As a result, this theory can avoid both stellar bounds (which exist for axions) and the bounds from CMB considered recently, allowing for positive results in experiments like ALPS, LIPPS, OSQAR, PVLAS-2, BMV, Q&A, etc.
Magnetic Catalysis in Graphene Effective Field Theory
DeTar, Carleton; Zafeiropoulos, Savvas
2016-01-01
We report on the first observation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly-interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle. This in turn has been posited to account for the quantum-Hall plateaus that are observed at large magnetic fields.
Classical Transitions for Flux Vacua
Deskins, J Tate; Yang, I-Sheng
2012-01-01
We present the simplest model for classical transitions in flux vacua. A complex field with a spontaneously broken U(1) symmetry is embedded in $M_2\\times S_1$. We numerically construct different winding number vacua, the vortices interpolating between them, and simulate the collisions of these vortices. We show that classical transitions are generic at large boosts, independent of whether or not vortices miss each other in the compact $S_1$.
Studying fringe field effect of a field emitter array
International Nuclear Information System (INIS)
Field emitter arrays on heavy As-doped Si wafer are studied in vacuum nanoelectronics diode configuration. Different shapes of emitters are considered: cone-shaped point-emitters and cylinder-shaped sharp-edge-emitters are compared. Micro scale field enhancement factor on the edge of cylindrical emitter was calculated via home-developed Matlab application and the results are presented. Two types of anode geometry are proposed: plane anode and spherical anode. Experimental and modelling results of surface electric field distribution are presented. The spherical shape of anode allows higher voltage (and higher field emission current) without destructive arcs risk
Quantum-classical interactions through the path integral
Metaxas, Dimitrios
2007-03-01
I consider the case of two interacting scalar fields, ϕ and ψ, and use the path integral formalism in order to treat the first classically and the second quantum-mechanically. I derive the Feynman rules and the resulting equation of motion for the classical field which should be an improvement of the usual semiclassical procedure. As an application I use this method in order to enforce Gauss’s law as a classical equation in a non-Abelian gauge theory. I argue that the theory is renormalizable and equivalent to the usual Yang-Mills theory as far as the gauge field terms are concerned. There are additional terms in the effective action that depend on the Lagrange multiplier field λ that is used to enforce the constraint. These terms and their relation to the confining properties of the theory are discussed.
Plasmon mass scale in classical nonequilibrium gauge theory
Lappi, Tuomas
2016-01-01
Classical lattice Yang-Mills calculations provide a good way to understand different nonequilibrium phenomena in nonperturbatively overoccupied systems. Above the Debye scale the classical theory can be matched smoothly to kinetic theory. The aim of this work is to study the limits of this quasiparticle picture by determining the plasmon mass in classical real time Yang-Mills theory on a lattice in 3 spatial dimensions. We compare three methods to determine the plasmon mass: a hard thermal loop expression in terms of the particle distribution, an effective dispersion relation constructed from fields and their time derivatives, and by measuring oscillations between electric and magnetic field modes after artificially introducing a homogeneous color electric field. We find that a version of the dispersion relation that uses electric fields and their time derivatives agrees with the other methods within 50%.
Kurian, P.; Verzegnassi, C.
2016-01-01
We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values for a realistic electron state is also given. Our findings may be of interest to researchers in spintronics and the field of quantum biology, where electron spin has been implicated on macroscopic time and energy scales.
Classical Maxwellian polarization entanglement
Carroll, John E
2015-01-01
An explanation of polarization entanglement is presented using Maxwells classical electromagnetic theory.Two key features are required to understand these classical origins.The first is that all waves diffract and weakly diffracting waves,with a principal direction of propagation in the laboratory frame, travel along that direction at speeds ever so slightly less than c.This allows nontrivial Lorentz transformations that can act on selected forward F waves or selected waves R traveling in the opposite direction to show that both can arise from a single zero momentum frame where all the waves are transverse to the original principal direction.Such F and R waves then both belong to a single relativistic entity where correlations between the two are unremarkable.The second feature requires the avoidance of using the Coulomb gauge.Waves, tending to plane waves in the limit of zero diffraction,can then be shown to be composed of two coupled sets of E and B fields that demonstrate the classical entanglement of F an...
Strong field effects on physics processes at the Interaction Point of future linear colliders
Hartin, A; Porto, S
2013-01-01
Future lepton colliders will be precision machines whose physics program includes close study of the Higgs sector and searches for new physics via polarised beams. The luminosity requirements of such machines entail very intense lepton bunches at the interaction point with associated strong electromagnetic fields. These strong fields not only lead to obvious phenomena such as beamstrahlung, but also potentially affect every particle physics process via virtual exchange with the bunch fields. For precision studies, strong field effects have to be understood to the sub-percent level. Strong external field effects can be taken into account exactly via the Furry Picture or, in certain limits, via the Quasi-classical Operator method . Significant theoretical development is in progress and here we outline the current state of play.
Effective Field Theories and Lattice QCD
Bernard, C
2015-01-01
I describe some of the many connections between lattice QCD and effective field theories, focusing in particular on chiral effective theory, and, to a lesser extent, Symanzik effective theory. I first discuss the ways in which effective theories have enabled and supported lattice QCD calculations. Particular attention is paid to the inclusion of discretization errors, for a variety of lattice QCD actions, into chiral effective theory. Several other examples of the usefulness of chiral perturbation theory, including the encoding of partial quenching and of twisted boundary conditions, are also described. In the second part of the talk, I turn to results from lattice QCD for the low energy constants of the two- and three-flavor chiral theories. I concentrate here on mesonic quantities, but the dependence of the nucleon mass on the pion mass is also discussed. Finally I describe some recent preliminary lattice QCD calculations by the MILC Collaboration relating to the three-flavor chiral limit.
International Nuclear Information System (INIS)
The effect of intracellular chelatable iron levels and of oxidative stress on nuclear classical cellular glutathione peroxidase (GSHPx-1) RNA nascent chain elongation (run-on transcription) and on the stability of cytoplasmic GSHPx-1 mRNA was investigated in murine erythroleukemia (MEL) cells. The amount in the intracellular low molecular mass iron pool was changed by incubation of MEL cells transformed by Friend virus with iron donors or iron chelators. Transcription in vitro in isolated nuclei from treated cells showed that the treatment with chelators (desferrioxamine (DFO), pyridoxal isonicotinoyl hydrazone) decrease the rate of nuclear GSHPx-1 RNA nascent chain elongation in both un-induced and with 5 mmol hexamethylenebisacetamide to erythroid differentiation induced MEL cells. Iron donors (diferric transferrin,, Fe-PIH or their combination) and t-butyl hydroperoxide (t-BuOOH) had the opposite effect on GSHPx-1 gene transcription in run-on experiments. On the other hand, 50 μmol DFO or 2.5 μmol t-BuOOH did not change the stability of cytoplasmic GSHPx-1 mRNA in both un-induced and induced MEL cells treated with 5 μmol actinomycin D and with or without these agents for 9 h. These findings indicate that iron and oxidative stress play their role at the transcriptional level of GSHPx-1 gene expression. (author)
Effective Field Theory for Lattice Nuclei
Barnea, N.; Contessi, L.; Gazit, D.; Pederiva, F.; van Kolck, U.
2015-02-01
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in LQCD simulations carried out at pion masses heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo methods. Fitting the three leading-order EFT parameters to the deuteron, dineutron, and triton LQCD energies at mπ≈800 MeV , we reproduce the corresponding alpha-particle binding and predict the binding energies of mass-5 and mass-6 ground states.
Effective Field Theory for Lattice Nuclei
Barnea, N; Gazit, D; Pederiva, F; van Kolck, U
2013-01-01
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in recent LQCD simulations carried out at pion masses much heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo methods. Fitting the three leading-order EFT parameters to the deuteron, dineutron and triton LQCD energies at $m_{\\pi}\\approx 800$ MeV, we reproduce the corresponding alpha-particle binding and predict the binding energies of mass-5 and 6 ground states.
Antiferromagnetic Spin Wave Field-Effect Transistor
Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di
2016-04-01
In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.
Nanowire field effect transistors principles and applications
Jeong, Yoon-Ha
2014-01-01
“Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.
Effective Field Theory for Dilute Fermi Systems
Hammer, H. -W.; Furnstahl, R. J.
2000-01-01
The virtues of an effective field theory (EFT) approach to many-body problems are illustrated by deriving the expansion for the energy of an homogeneous, interacting Fermi gas at low density and zero temperature. A renormalization scheme based on dimensional regularization with minimal subtraction leads to a more transparent power-counting procedure and diagrammatic expansion than conventional many-body approaches. Coefficients of terms in the expansion with logarithms of the Fermi momentum a...
Halo Effective Field Theory of 6He
Thapaliya, Arbin; Ji, Chen; Phillips, Daniel
2016-03-01
6He has a cluster structure with a tight 4He (α) core surrounded by two loosely bound neutrons (n) making it a halo nucleus. The leading-order (LO) Halo Effective Field Theory (EFT) [1, 2] calculations using momentum-space Faddeev equations pertinent to a bound 6He were carried out in [3]. In this work, we investigate 6He up to next-to-leading order (NLO) within Halo EFT.
Capture Reactions with Halo Effective Field Theory
Higa, R.
2015-12-01
Loosely bound nuclei far from the stability region emerge as a quantum phenomenon with many universal properties. The connection between these properties and the underlying symmetries can be best explored with halo/cluster EFT, an effective field theory where the softness of the binding momentum and the hardness of the core(s) form the expansion parameter of a given perturbative approach. In the following I highlight a particular application where these ideas are being tested, namely capture reactions.
Quantifying truncation errors in effective field theory
Furnstahl, R. J.; Klco, N.; D. R. Phillips; Wesolowski, S.
2015-01-01
Bayesian procedures designed to quantify truncation errors in perturbative calculations of quantum chromodynamics observables are adapted to expansions in effective field theory (EFT). In the Bayesian approach, such truncation errors are derived from degree-of-belief (DOB) intervals for EFT predictions. Computation of these intervals requires specification of prior probability distributions ("priors") for the expansion coefficients. By encoding expectations about the naturalness of these coef...
Halo Effective Field Theory of 6He
Directory of Open Access Journals (Sweden)
Thapaliya Arbin
2016-01-01
Full Text Available 6He has a cluster structure with a tight 4He (α core surrounded by two loosely bound neutrons (n making it a halo nucleus. The leading-order (LO Halo Effective Field Theory (EFT [1, 2] calculations using momentum-space Faddeev equations pertinent to a bound 6He were carried out in [3]. In this work, we investigate 6He up to next-to-leading order (NLO within Halo EFT.
Introduction to Effective Field Theories in QCD
van Kolck, U.; ABU-RADDAD, L. J.; Cardamone, D. M.
2002-01-01
We present a simple introduction to the techniques of effective field theory (EFT) and their application to QCD. For problems with more than one energy scale, the EFT approach is a useful alternative to more traditional model-building strategies. The most relevant such problem for this discussion is that of making contact between QCD and the hadronic phase of matter. As a simple example, an EFT calculation of the bound states of hydrogen within QED is sketched. A more significant demonstratio...
Evaluation of near-field earthquake effects
Energy Technology Data Exchange (ETDEWEB)
Shrivastava, H.P.
1994-11-01
Structures and equipment, which are qualified for the design basis earthquake (DBE) and have anchorage designed for the DBE loading, do not require an evaluation of the near-field earthquake (NFE) effects. However, safety class 1 acceleration sensitive equipment such as electrical relays must be evaluated for both NFE and DBE since they are known to malfunction when excited by high frequency seismic motions.
Field effect transistors for terahertz imaging
Energy Technology Data Exchange (ETDEWEB)
Knap, Wojciech; Coquillat, Dominique; Teppe, Frederic; Dyakonova, Nina; Nadar, Salman; El Fatimy, Abdel [Universite Montpellier 2, CNRS, UMR 5650 et URM 5207, Montpellier (France); Valusis, Gintaras; Seliuta, Dalius; Kasalynas, Irmantas [Semiconductor Physics Institute, Vilnius (Lithuania); Lusakowski, Jerzy; Karpierz, Krzysztof; Bialek, Marcin [Institute of Experimental Physics, University of Warsaw (Poland)
2009-12-15
Resonant frequencies of the two-dimensional plasma in field effect transistors (FETs) increase with the reduction of the channel dimensions and can reach the terahertz (THz) range for micrometer and sub-micrometer channel lengths. Nonlinearity of the gated electron gas in the transistor channel can be used for the detection of THz radiation. The possibility of tuneable narrow band detection in sub-THz and THz range, related to plasma resonances, has been demonstrated for nanometre gate length transistors at cryogenic temperatures. At room temperatures the plasma oscillations are usually strongly damped, but field effect transistors can still operate as an efficient broadband detectors in the THz range. We present an overview of experimental results on THz detection by field effect transistors made of III-V and Si materials, The material issue is discussed and first room applications of FETs for imaging at frequencies above 1 THz are demonstrated. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Non-relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments.And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.
Argonov, Victor
2014-01-01
We study the motion of a cold atom in a frequency-modulated standing laser wave. If the detuning between the atomic electronic transition and the field is large, the atom moves in a modulated optical potential demonstrating known classical nonlinear effects such as chaos and nonlinear resonances. If the atom-field detuning is small, then two optical potentials emerge in the system, and the atom performs Landau-Zener (LZ) tunnelings between them. It is a radically non-classical behavior. However, we show that classical nonlinear structures in system's phase space (KAM-tori and chaotic layers) survive. Quantum effect of LZ tunnelings only induces small random jumps of trajectories between these structures (dynamical tunneling).
Curiel, Erik
2014-01-01
In the early 1970s it is was realized that there is a striking formal analogy between the Laws of black-hole mechanics and the Laws of classical thermodynamics. Before the discovery of Hawking radiation, however, it was generally thought that the analogy was only formal, and did not reflect a deep connection between gravitational and thermodynamical phenomena. It is still commonly held that the surface gravity of a stationary black hole can be construed as a true physical temperature and its area as a true entropy only when quantum effects are taken into account; in the context of classical general relativity alone, one cannot cogently construe them so. Does the use of quantum field theory in curved spacetime offer the only hope for taking the analogy seriously? I think the answer is `no'. To attempt to justify that answer, I shall begin by arguing that the standard argument to the contrary is not physically well founded, and in any event begs the question. Looking at the various ways that the ideas of "tempe...
Classical and quantum anisotropic Heisenberg antiferromagnets
Directory of Open Access Journals (Sweden)
W. Selke
2009-01-01
Full Text Available We study classical and quantum Heisenberg antiferromagnets with exchange anisotropy of XXZ-type and crystal field single-ion terms of quadratic and quartic form in a field. The magnets display a variety of phases, including the spin-flop (or, in the quantum case, spin-liquid and biconical (corresponding, in the quantum lattice gas description, to supersolid phases. Applying ground-state considerations, Monte Carlo and density matrix renormalization group methods, the impact of quantum effects and lattice dimension is analysed. Interesting critical and multicritical behaviour may occur at quantum and thermal phase transitions.
Gasperl, Anna; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; van der Graaff, Eric; Roitsch, Thomas
2015-01-01
Fructans are polymers of fructose and one of the main constituents of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates. Fructans are involved in cold and drought resistance, regrowth following defoliation and early spring growth, seed filling, have beneficial effects on human health and are used for industrial processes. Perennial ryegrass (Lolium perenne L.) serves as model species to study fructan metabolism. Fructan metabolism is under the control of both synthesis by fructosyltransferases (FTs) and breakdown through fructan exohydrolases (FEHs). The accumulation of fructans can be triggered by high sucrose levels and abiotic stress conditions such as drought and cold stress. However, detailed studies on the mechanisms involved in the regulation of fructan metabolism are scarce. Since different phytohormones, especially abscisic acid (ABA), are known to play an important role in abiotic stress responses, the possible short term regulation of the enzymes involved in fructan metabolism by the five classical phytohormones was investigated. Therefore, the activities of enzymes involved in fructan synthesis and breakdown, the expression levels for the corresponding genes and levels for water-soluble carbohydrates were determined following pulse treatments with ABA, auxin (AUX), ethylene (ET), gibberellic acid (GA), or kinetin (KIN). The most pronounced fast effects were a transient increase of FT activities by AUX, KIN, ABA, and ET, while minor effects were evident for 1-FEH activity with an increased activity in response to KIN and a decrease by GA. Fructan and sucrose levels were not affected. This observed discrepancy demonstrates the importance of determining enzyme activities to obtain insight into the physiological traits and ultimately the plant phenotype. The comparative analyses of activities for seven key enzymes of primary carbohydrate metabolism revealed no co-regulation between enzymes of the fructan and sucrose pool
Directory of Open Access Journals (Sweden)
Anna eGasperl
2016-01-01
Full Text Available Fructans are polymers of fructose and one of the main constituents of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates. Fructans are involved in cold and drought resistance, regrowth following defoliation and early spring growth, seed filling, have beneficial effects on human health and are used for industrial processes. Perennial ryegrass (Lolium perenne L. serves as model species to study fructan metabolism. Fructan metabolism is under the control of both synthesis by fructosyltransferases (FTs and breakdown through fructan exohydrolases (FEHs. The accumulation of fructans can be triggered by high sucrose levels and abiotic stress conditions such as drought and cold stress. However, detailed studies on the mechanisms involved in the regulation of fructan metabolism are scarce. Since different phytohormones, especially abscisic acid (ABA, are known to play an important role in abiotic stress responses, the possible short term regulation of the enzymes involved in fructan metabolism by the five classical phytohormones was investigated. Therefore, the activities of enzymes involved in fructan synthesis and breakdown, the expression levels for the corresponding genes and levels for water-soluble carbohydrates were determined following pulse treatments with ABA, auxin (AUX, ethylene (ET, gibberellic acid (GA or kinetin (KIN. The most pronounced fast effects were a transient increase of FT activities by AUX, KIN, ABA and ET, while minor effects were evident for 1-FEH activity with an increased activity in response to KIN and a decrease by GA. Fructan and sucrose levels were not affected. This observed discrepancy demonstrates the importance of determining enzyme activities to obtain insight into the physiological traits and ultimately the plant phenotype. The comparative analyses of activities for seven key enzymes of primary carbohydrate metabolism revealed no co-regulation between enzymes of the fructan and
Classical Underpinnings of Gravitationally Induced Quantum Interference
Mannheim, P D
1996-01-01
We show that the gravitational modification of the phase of a neutron beam (the COW experiment) has a classical origin, being due to the time delay which classical particles experience in traversing a background gravitational field. Similarly, we show that classical light waves also undergo a phase shift in traversing a gravitational field. We show that the COW experiment respects the equivalence principle even in the presence of quantum mechanics.
Gauge Invariance in Classical Electrodynamics
Engelhardt, W
2005-01-01
The concept of gauge invariance in classical electrodynamics assumes tacitly that Maxwell's equations have unique solutions. By calculating the electromagnetic field of a moving particle both in Lorenz and in Coulomb gauge and directly from the field equations we obtain, however, contradicting solutions. We conclude that the tacit assumption of uniqueness is not justified. The reason for this failure is traced back to the inhomogeneous wave equations which connect the propagating fields and their sources at the same time.
Slavnov-Taylor Identity for the Effective Field Theory of the Color Glass Condensate
Binosi, D.; Quadri, A.; Triantafyllopoulos, D. N.
2014-01-01
We show that a powerful Slavnov-Taylor (ST) identity exists for the Effective Field Theory (EFT) of the Color Glass Condensate (CGC), allowing to control by purely algebraic means the full dependence on the background fields of the fast gluon modes, as well as the correlators of the quantum fluctuations of the classical gluon source. We use this formalism to study the change of the background fast modes (in the Coulomb gauge), induced by the quantum corrections of the semi-fast gluons. We est...
Effective Field Theory for Rydberg Polaritons
Gullans, M J; Thompson, J D; Liang, Q -Y; Vuletic, V; Lukin, M D; Gorshkov, A V
2016-01-01
We study non-perturbative effects in N-body scattering of Rydberg polaritons using effective field theory (EFT). We develop an EFT in one dimension and show how a suitably long medium can be used to prepare shallow N-body bound states. We then derive the effective N-body interaction potential for Rydberg polaritons and the associated N-body contact force that arises in the EFT. We use the contact force to find the leading order corrections to the binding energy of the N-body bound states and determine the photon number at which the EFT description breaks down. We find good agreement throughout between the predictions of EFT and numerical simulations of the exact two and three photon wavefunction transmission.
Effective field theory analysis of Higgs naturalness
Energy Technology Data Exchange (ETDEWEB)
Bar-Shalom, Shaouly [Technion-Israel Inst. of Tech., Haifa (Israel); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Wudka, Jose [Univ. of California, Riverside, CA (United States)
2015-07-20
Assuming the presence of physics beyond the Standard Model ( SM) with a characteristic scale M ~ O (10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the leading 1 -loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff, and determine t he constraints on the corresponding operator coefficients for these effects to alleviate the little hierarchy problem up to the scale of the effective action Λ < M , a condition we denote by “EFT-naturalness”. We also determine the types of physics that can lead to EFT-naturalness and show that these types of new physics are best probed in vector-boson and multiple-Higgs production. The current experimental constraints on these coefficients are also discussed.
Effective Field Theory with Two Higgs Doublets
Crivellin, Andreas; Procura, Massimiliano
2016-01-01
In this article we extend the effective field theory framework describing new physics effects to the case where the underlying low-energy theory is a Two-Higgs-Doublet model. We derive a complete set of independent operators up to dimension six assuming a $Z_2$-invariant CP-conserving Higgs potential. The effects on Higgs and gauge boson masses, mixing angles in the Higgs sector as well as couplings to fermions and gauge bosons are computed. At variance with the case of a single Higgs doublet, we find that pair production of SM-like Higgses, arising through dimension-six operators, is not fixed by fermion-fermion-Higgs couplings and can therefore be sizable.
Indian Academy of Sciences (India)
Ying Tang; Hang Li; Hualing Zhu; Rui Tian; Xiaodan Gao
2016-01-01
In this study, the aggregation kinetics of negatively charged colloidal minerals in Na+, K+, NH+4 , Mg2+, Ca2+ and Cu2+ solutions were measured and Hofmeister effects therein were estimated through total average aggregation (TAA) rates and critical coagulation concentration (CCC). Hofmeister effects of TAA rates increased exponentially with the increase in electric field strength, which cannot be explained by the classical theories (i.e., ionic size, hydration and dispersion forces), indicating strong electric field at colloidal surface was an indispensable factor in studying Hofmeister effects. Meanwhile, Hofmeister series of CCC values Na+ > K+ > NH+4 > Mg2+ > Ca2+ > Cu2+ show fine correlation with the polarization of various cations, implying that onic polarization in strong electric field would be responsible for Hofmeister effects in aggregation of colloidal minerals, and the deduction was confirmed by the calculated results of electrostatic interactions between colloidal minerals.
Exciton effective mass enhancement in coupled quantum wells in electric and magnetic fields
Wilkes, J.; Muljarov, E. A.
2016-02-01
We present a calculation of exciton states in semiconductor coupled quantum wells in the presence of electric and magnetic fields applied perpendicular to the QW plane. The exciton Schrödinger equation is solved in real space in three-dimensions to obtain the Landau levels of both direct and indirect excitons. Calculation of the exciton energy levels and oscillator strengths enables mapping of the electric and magnetic field dependence of the exciton absorption spectrum. For the ground state of the system, we evaluate the Bohr radius, optical lifetime, binding energy and dipole moment. The exciton mass renormalization due to the magnetic field is calculated using a perturbative approach. We predict a non-monotonous dependence of the exciton ground state effective mass on magnetic field. Such a trend is explained in a classical picture, in terms of the ground state tending from an indirect to a direct exciton with increasing magnetic field.
Directory of Open Access Journals (Sweden)
Selene S C Nogueira
Full Text Available Some authors have suggested that environmental unpredictability, accompanied by some sort of signal for behavioral conditioning, can boost activity or foster exploratory behavior, which may increase post-release success in re-introduction programs. Thus, using white-lipped peccary (Tayassu pecari, a vulnerable Neotropical species, as a model, we evaluated an unpredictable feeding schedule. Associating this with the effect of classical conditioning on behavioral activities, we assessed the inclusion of this approach in pre-release training protocols. The experimental design comprised predictable feeding phases (control phases: C1, C2 and C3 and unpredictable feeding phases (U1- signaled and U2- non-signaled. The animals explored more during the signaled and non-signaled unpredictable phases and during the second control phase (C2 than during the other two predictable phases (C1 and C3. The peccaries also spent less time feeding during the signaled unpredictable phase (U1 and the following control phase (C2 than during the other phases. Moreover, they spent more time in aggressive encounters during U1 than the other experimental phases. However, the animals did not show differences in the time they spent on affiliative interactions or in the body weight change during the different phases. The signaled unpredictability, besides improving foraging behavior, showing a prolonged effect on the next control phase (C2, also increased the competition for food. The signaled feeding unpredictability schedule, mimicking wild conditions by eliciting the expression of naturalistic behaviors in pre-release training, may be essential to fully prepare them for survival in the wild.
Extended symmetrical classical electrodynamics.
Fedorov, A V; Kalashnikov, E G
2008-03-01
In this paper, we discuss a modification of classical electrodynamics in which "ordinary" point charges are absent. The modified equations contain additional terms describing the induced charges and currents. The densities of the induced charges and currents depend on the vector k and the vectors of the electromagnetic field, E and B . It is shown that the vectors E and B can be defined in terms of two four-potentials and the components of k are the components of a four-tensor of the third rank. The Lagrangian of the modified electrodynamics is defined. The conditions are derived at which only one four-potential determines the behavior of the electromagnetic field. It is also shown that static modified electrodynamics can describe the electromagnetic field in the inner region of an electric monopole. In the outer region of the electric monopole the electric field is governed by the Maxwell equations. It follows from boundary conditions at the interface between the inner and outer regions of the monopole that the vector k has a discrete spectrum. The electric and magnetic fields, energy, and angular momentum of the monopole are found for different eigenvalues of k .