WorldWideScience

Sample records for cladding oxidation simulation

  1. Oxidation during reflood of reactor core with melting cladding

    Energy Technology Data Exchange (ETDEWEB)

    Siefken, L.J.; Allison, C.M.; Davis, K.L. [and others

    1995-09-01

    Models were recently developed and incorporated into the SCDAP/RELAP5 code for calculating the oxidation of fuel rods during cladding meltdown and reflood. Experiments have shown that a period of intense oxidation may occur when a hot partially oxidized reactor core is reflooded. This paper offers an explanation of the cladding meltdown and oxidation processes that cause this intense period of oxidation. Models for the cladding meltdown and oxidation processes are developed. The models are assessed by simulating a severe fuel damage experiment that involved reflood. The models for cladding meltdown and oxidation were found to improve calculation of the temperature and oxidation of fuel rods during the period in which hot fuel rods are reflooded.

  2. Effect of burnup on the response of stainless steel-clad mixed-oxide fuels to simulated thermal transients

    International Nuclear Information System (INIS)

    Fenske, G.R.; Badyopadhyay, G.

    1981-01-01

    Direct electrical heating experiments were performed on irradiated fuel to study the fuel and cladding response as a function of burnup during a slow thermal transient. The results indicated that the nature and extent of the fuel and cladding behavior depended on the quantity of fission gas retained in the fuel. Fission-gas-driven fuel ejection occurred as the molten cladding flowed down the stack exposing bare, radially unrestrained fuel. The fuel dispersion occurred in the absence of molten fuel and the amount of fuel ejected increased with increasing burnup. 31 refs

  3. Thermal gradient effects on the oxidation of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Klein, A.C.; Reyes, J.N. Jr.; Maguire, M.A.

    1990-01-01

    A Thermal Gradient Test Facility (TGTF) has been designed and constructed to measure the thermal gradient effect on pressurized water reactor (PWR) fuel rod cladding. The TGTF includes a heat flux simulator assembly capable of producing a wide range of PWR operating conditions including water flow velocities and temperatures, water chemistry conditions, cladding temperatures, and heat fluxes ranging to 160 W/cm 2 . It is fully instrumented including a large number of thermocouples both inside the water flow channel and inside the cladding. Two test programs are in progress. First, cladding specimens are pre-oxidized in air at 500 deg. C and in 400 deg. C steam for various lengths of time to develop a range of uniform oxide thicknesses from 1 to 60 micrometers. The pre-oxidized specimens are placed in the TGTF to characterize the oxide thermal conductivity under a variety of water flow and heat flux conditions. Second, to overcome the long exposure times required under typical PWR conditions a series of tests with the addition of high concentrations of lithium hydroxide to the water are being considered. Static autoclave tests have been conducted with lithium hydroxide concentrations ranging from 0 to 2 moles per liter at 300, 330, and 360 deg. C for up to 36 hours. Results for zircaloy-4 show a considerable increase in the weight gain for the exposed samples with oxidation rate enhancement factors as high as 70 times that of pure water. Operation of the TGTF with elevated lithium hydroxide levels will yield real-time information concerning the effects of a heat flux on the oxidation kinetics of zircaloy fuel rod cladding. (author). 5 refs, 5 figs, 2 tabs

  4. Laboratory simulation of rod-to-rod mechanical interactions during postulated loss-of-coolant accidents in a PWR involving cladding oxidation

    International Nuclear Information System (INIS)

    Hindle, E.D.; Haste, T.J.; Harrison, W.R.

    1987-01-01

    Creep deformation of Zircaloy cladding in postulated PWR loss-of-coolant accidents may lead to rod-to-rod mechanical interactions. Tests have been performed in the electrically heated FOURSQUARE rig at 750 0 C and 850 0 C in steam to investigate this effect. Conservatisms inherent in a simple 'square with rounded corners' coolant channel blockage model have been quantified; about 5-10% flow area may remain even at strains which in ideal circumstances would give total blockage. Reduction of average burst strains produced by an oxide layer (up to 13 μm) has been demonstrated, resulting from strain concentration at oxide cracks. (author)

  5. Oxidation properties of laser clad Nb-Al alloys

    International Nuclear Information System (INIS)

    Tewari, S.K.; Mazumder, J.

    1992-01-01

    This paper reports on laser cladding parameters for non-equilibrium synthesis for several ternary and complex Nb-Al base alloys containing Ti, Cr, Si, Ni, B and C that have been established. Phase transformations occurring below 1500 degrees C have been determined using differential thermal analysis. Ductility of the clads is qualitatively evaluated from the extent of cracking around the microhardness indentations. Oxidation resistance of the clads in flowing air is measured at 800 degrees C, 1200 degrees C and 1400 degrees C and parabolic rate constants are calculated. Microstructure of the clads is studied using optical and scanning electron microscopes. X-ray diffraction and EDX techniques are used for identification of the oxides formed and the phases formed in as clad material. Oxide morphology is studied using SEM. Effect of alloying additions on the ductility and oxidation resistance of the laser clad Nb-Al alloys is discussed. The results are compared with those reported in literature for similar alloys produced by conventional processing methods

  6. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    International Nuclear Information System (INIS)

    Zirker, L.R.; Bottcher, J.H.; Shikakura, S.; Tsai, C.L.

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab

  7. Cladding properties under simulated fuel pin transients

    International Nuclear Information System (INIS)

    Hunter, C.W.; Johnson, G.D.

    1975-01-01

    A description is given of the HEDL fuel pin testing program utilizing a recently developed Fuel Cladding Transient Tester (FCTT) to generate the requisite mechanical property information on irradiated and unirradiated fast reactor fuel cladding under temperature ramp conditions. The test procedure is described, and data are presented

  8. Test system to simulate transient overpower LMFBR cladding failure

    International Nuclear Information System (INIS)

    Barrus, H.G.; Feigenbutz, L.V.

    1981-01-01

    One of the HEDL programs has the objective to experimentally characterize fuel pin cladding failure due to cladding rupture or ripping. A new test system has been developed which simulates a transient mechanically-loaded fuel pin failure. In this new system the mechanical load is prototypic of a fuel pellet rapidly expanding against the cladding due to various causes such as fuel thermal expansion, fuel melting, and fuel swelling. This new test system is called the Fuel Cladding Mechanical Interaction Mandrel Loading Test (FCMI/MLT). The FCMI/MLT test system and the method used to rupture cladding specimens very rapidly to simulate a transient event are described. Also described is the automatic data acquisition and control system which is required to control the startup, operation and shutdown of the very fast tests, and needed to acquire and store large quantities of data in a short time

  9. Cladding oxidation during air ingress. Part II: Synthesis of modelling results

    International Nuclear Information System (INIS)

    Beuzet, E.; Haurais, F.; Bals, C.; Coindreau, O.; Fernandez-Moguel, L.; Vasiliev, A.; Park, S.

    2016-01-01

    Highlights: • A state-of-the-art for air oxidation modelling in the frame of severe accident is done. • Air oxidation models from main severe accident codes are detailed. • Simulations from main severe accident codes are compared against experimental results. • Perspectives in terms of need for further model development and experiments are given. - Abstract: Air ingress is a potential risk in some low probable situations of severe accidents in a nuclear power plant. Air is a highly oxidizing atmosphere that can lead to an enhanced Zr-based cladding oxidation and core degradation affecting the release of fission products. This is particularly true speaking about ruthenium release, due to its high radiotoxicity and its ability to form highly volatile oxides in a significant manner in presence of air. The oxygen affinity is decreasing from the Zircaloy cladding, fuel and ruthenium inclusions. It is consequently of great need to understand the phenomena governing cladding oxidation by air as a prerequisite for the source term issues in such scenarios. In the past years, many works have been done on cladding oxidation by air under severe accident conditions. This paper with in addition the paper “Cladding oxidation during air ingress – Part I: Synthesis of experimental results” of this journal issue aim at assessing the state of the art on this phenomenon. In this paper, the modelling of air ingress phenomena in the main severe accident codes (ASTEC, ATHLET-CD, MAAP, MELCOR, RELAP/SCDAPSIM, SOCRAT) is described in details, as well as the validation against the integral experiments QUENCH-10, QUENCH-16 and PARAMETER-SF4. A full review of cladding oxidation by air is thus established.

  10. Semipolar III-nitride laser diodes with zinc oxide cladding.

    Science.gov (United States)

    Myzaferi, Anisa; Reading, Arthur H; Farrell, Robert M; Cohen, Daniel A; Nakamura, Shuji; DenBaars, Steven P

    2017-07-24

    Incorporating transparent conducting oxide (TCO) top cladding layers into III-nitride laser diodes (LDs) improves device design by reducing the growth time and temperature of the p-type layers. We investigate using ZnO instead of ITO as the top cladding TCO of a semipolar (202¯1) III-nitride LD. Numerical modeling indicates that replacing ITO with ZnO reduces the internal loss in a TCO clad LD due to the lower optical absorption in ZnO. Lasing was achieved at 453 nm with a threshold current density of 8.6 kA/cm 2 and a threshold voltage of 10.3 V in a semipolar (202¯1) III-nitride LD with ZnO top cladding.

  11. POST CRITICAL HEAT TRANSFER AND FUEL CLADDING OXIDATION

    Directory of Open Access Journals (Sweden)

    Vojtěch Caha

    2016-12-01

    Full Text Available The knowledge of heat transfer coefficient in the post critical heat flux region in nuclear reactor safety is very important. Although the nuclear reactors normally operate at conditions where critical heat flux (CHF is not reached, accidents where dryout occur are possible. Most serious postulated accidents are a loss of coolant accident or reactivity initiated accident which can lead to CHF or post CHF conditions and possible disruption of core integrity. Moreover, this is also influenced by an oxide layer on the cladding surface. The paper deals with the study of mathematical models and correlations used for heat transfer calculation, especially in post dryout region, and fuel cladding oxidation kinetics of currently operated nuclear reactors. The study is focused on increasing of accuracy and reliability of safety limit calculations (e.g. DNBR or fuel cladding temperature. The paper presents coupled code which was developed for the solution of forced convection flow in heated channel and oxidation of fuel cladding. The code is capable of calculating temperature distribution in the coolant, cladding and fuel and also the thickness of an oxide layer.

  12. Analysis of pellet cladding mechanical interaction using computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, José R.; Suman, Ricardo B.; Faria, Danilo P.; Rodi, Paulo A., E-mail: jose.berretta@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), São Paulo, SP (Brazil). Laboratório de Análise, Avaliação e Gerenciamento de Riscos

    2017-07-01

    During the operation of Pressurized Water Reactors (PWR), specifically under power transients, the fuel pellet experiences many phenomena, such as swelling and thermal expansion. These dimensional changes in the fuel pellet can enable occurrence of contact it and the cladding along the fuel rod. Thus, pellet cladding mechanical interaction (PCMI), due this contact, induces stress increase at the contact points during a period, until the accommodation of the cladding to the stress increases. This accommodation occurs by means of the cladding strain, which can produce failure, if the fuel rod deformation is permanent or the burst limit of the cladding is reached. Therefore, the mechanical behavior of the cladding during the occurrence of PCMI under power transients shall be investigated during the fuel rod design. Considering the Accident Tolerant Fuel program which aims to develop new materials to be used as cladding in PWR, one important design condition to be evaluated is the cladding behavior under PCMI. The purpose of this paper is to analyze the effects of the PCMI on a typical PWR fuel rod geometry with stainless steel cladding under normal power transients using computational simulation (ANSYS code). The PCMI was analyzed considering four geometric situations at the region of interaction between pellet and cladding. The first case, called “perfect fuel model” was used as reference for comparison. In the second case, it was considered the occurrence of a pellet crack with the loss of a chip. The goal for the next two cases was that a pellet chip was positioned into the gap of pellet-cladding, in the situations described in the first two cases. (author)

  13. Monitoring the oxidation of nuclear fuel cladding using Raman spectroscopy

    International Nuclear Information System (INIS)

    Mi, Hongyi; Mikael, Solomon; Allen, Todd; Sridharan, Kumar; Butt, Darryl; Blanchard, James P.; Ma, Zhenqiang

    2014-01-01

    In order to observe Zircaloy-4 (Zr-4) cladding oxidation within a spent fuel canister, cladding oxidized in air at 500 °C was investigated by micro-Raman spectroscopy to measure the oxide layer thickness. Systematic Raman scans were performed to study the relationship between typical Raman spectra and various oxide layer thicknesses. The thicknesses of the oxide layers developed for various exposure times were measured by cross-sectional Scanning Electron Microscopy (SEM). The results of this work reveal that each oxide layer thickness has a corresponding typical Raman spectrum. Detailed analysis suggests that the Raman scattering peaks around wave numbers of 180 cm −1 and 630 cm −1 are the best choices for accurately determining the oxide layer thickness. After Gaussian–Lorentzian deconvolution, these two peaks can be quantitatively represented by four peaks. The intensities of the deconvoluted peaks increase consistently as the oxide layer becomes thicker and sufficiently strong signals are produced, allowing one to distinguish the bare and oxidized cladding samples, as well as samples with different oxide layer thicknesses. Hence, a process that converts sample oxide layer thickness to optical signals can be achieved

  14. Thermal hydraulic-Mechanic Integrated Simulation for Advanced Cladding Thermal Shock Fracture Analysis during Reflood Phase in LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seong Min; Lee, You Ho; Cho, Jae Wan; Lee, Jeong Ik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This study suggested thermal hydraulic-mechanical integrated stress based methodology for analyzing the behavior of ATF type claddings by SiC-Duplex cladding LBLOCA simulation. Also, this paper showed that this methodology could predict real experimental result well. That concept for enhanced safety of LWR called Advanced Accident-Tolerance Fuel Cladding (ATF cladding, ATF) is researched actively. However, current nuclear fuel cladding design criteria for zircaloy cannot be apply to ATF directly because those criteria are mainly based on limiting their oxidation. So, the new methodology for ATF design criteria is necessary. In this study, stress based analysis methodology for ATF cladding design criteria is suggested. By simulating LBLOCA scenario of SiC cladding which is the one of the most promising candidate of ATF. Also we'll confirm our result briefly through comparing some facts from other experiments. This result is validating now. Some of results show good performance with 1-D failure analysis code for SiC fuel cladding that already developed and validated by Lee et al,. It will present in meeting. Furthermore, this simulation presented the possibility of understanding the behavior of cladding deeper. If designer can predict the dangerous region and the time precisely, it may be helpful for designing nuclear fuel cladding geometry and set safety criteria.

  15. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding

    International Nuclear Information System (INIS)

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed

  16. UK experience on fuel and cladding interaction in oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Batey, W [Dounreay Experimental Reactor Establishment, Thurso, Caithness (United Kingdom); Findlay, J R [AERE, Harwell, Didcot, Oxon (United Kingdom)

    1977-04-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed.

  17. UK experience on fuel and cladding interaction in oxide fuels

    International Nuclear Information System (INIS)

    Batey, W.; Findlay, J.R.

    1977-01-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed

  18. General considerations on the oxide fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Pascard, R.

    1977-01-01

    Since the very first experimental irradiations in thermal reactors, performed in view of the future Rapsodie fuel general study, corrosion cladding anomalies were observed. After 10 years of Rapsodie and more than two years of Phenix, performance brought definite confirmation of the chemical reactions between the irradiated fuel and cladding. That is the reason for which the fuel designers express an urgent need for determining the corrosion rates. Semi-empirical laws and mechanisms describing corrosion processes are proposed. Erratic conditions for appearance of the oxide-cladding corrosion are stressed upon. Obviously such a problem can be fully appreciated only by a statistical approach based on a large number of observations on the true LMFBR fuel pins

  19. Hydrogenation and high temperature oxidation of Zirconium claddings

    International Nuclear Information System (INIS)

    Novotny, T.; Perez-Feró, E.; Horváth, M.

    2015-01-01

    In the last few years a new series of experiments started for supporting the new LOCA criteria, considering the proposals of US NRC. The effects which can cause the embrittlement of VVER fuel claddings were reviewed and evaluated in the framework of the project. The purpose of the work was to determine how the fuel cladding’s hydrogen uptake under normal operating conditions, effect the behavior of the cladding under LOCA conditions. As a first step a gas system equipment with gas valves and pressure gauge was built, in which the zirconium alloy can absorb hydrogen under controlled conditions. In this apparatus E110 (produced by electrolytic method, currently used at Paks NPP) and E110G (produced by a new technology) alloys were hydrogenated to predetermined hydrogen contents. According the results of ring compression tests the E110G alloys lose their ductility above 3200 ppm hydrogen content. This limit can be applied to determine the ductile-brittle transition of the nuclear fuel claddings. After the hydrogenation, high temperature oxidation experiments were carried out on the E110G and E110 samples at 1000 °C and 1200 °C. 16 pieces of E110G and 8 samples of E110 with 300 ppm and 600 ppm hydrogen content were tested. The oxidation of the specimens was performed in steam, under isothermal conditions. Based on the ring compression tests load-displacement curves were recorded. The main objective of the compression tests was to determine the ductile-brittle transition. These results were compared to the results of our previous experiments where the samples did not contain hydrogen. The original claddings showed more ductile behavior than the samples with hydrogen content. The higher hydrogen content resulted in a more brittle mechanical behavior. However no significant difference was observed in the oxidation kinetics of the same cladding types with different hydrogen content. The experiments showed that the normal operating hydrogen uptake of the fuel claddings

  20. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    Science.gov (United States)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  1. Oxidation behavior analysis of cladding during severe accidents with combined codes for Qinshan Phase II Nuclear Power Plant

    International Nuclear Information System (INIS)

    Shi, Xingwei; Cao, Xinrong; Liu, Zhengzhi

    2013-01-01

    Highlights: • A new verified oxidation model of cladding has been added in Severe Accident Program (SAP). • A coupled analysis method utilizing RELAP5 and SAP codes has been developed and applied to analyze a SA caused by LBLOCA. • Analysis of cladding oxidation under a SA for Qinshan Phase II Nuclear Power Plant (QSP-II NPP) has been performed by SAP. • Estimation of the production of hydrogen has been achieved by coupled codes. - Abstract: Core behavior at a high temperature is extremely complicated during transition from Design Basic Accident (DBA) to the severe accident (SA) in Light Water Reactors (LWRs). The progression of core damage is strongly affected by the behavior of fuel cladding (oxidation, embrittlement and burst). A Severe Accident Program (SAP) is developed to simulate the process of fuel cladding oxidation, rupture and relocation of core debris based on the oxidation models of cladding, candling of melted material and mechanical slumping of core components. Relying on the thermal–hydraulic boundary parameters calculated by RELAP5 code, analysis of a SA caused by the large break loss-of-coolant accident (LBLOCA) without mitigating measures for Qinshan Phase II Nuclear Power Plant (QSP-II NPP) was performed by SAP for finding the key sequences of accidents, estimating the amount of hydrogen generation and oxidation behavior of the cladding

  2. Development of advanced neutron radiography for inspection on irradiated fuels and materials (2). Observation of hydride and oxide film on zircaloy cladding by using neutron radiography

    International Nuclear Information System (INIS)

    Yasuda, Ryou; Nakata, Masahito; Mastubayashi, Masahito; Harada, Katsuya

    2001-02-01

    Neutron radiography has been used as available diagnosis method of integrity on irradiated fuels, and has not been employed for estimating hydride and oxide film, which are influenced on integrity of Zircaloy cladding. Preliminary tests for PIE were carried out to assess possibility of neutron radiography as evaluation tool for hydrided and oxide film on the cladding. In these experiments, Zircaloy claddings with controlled amount of hydrogen absorption (200, 500, and 1000ppm) and thickness of oxide film were radiographed in center axis and in side directions of cladding tube by neutron imaging plate method. It is noted that thickness of oxide film was formed range from 7 μ m to 70 μ m at various temperatures (973, 1173, and 1323K) under steam atmosphere on the Zircaloy claddings. CT (Computed Tomography) restructure calculation was carried out to obtain cross section image of the claddings non-destructively. The Radiographs were qualitatively investigated about structure formation area and dependence of hydrogen absorption amount on PSL (Photo Simulated Luminescence) and CT values using by image analysis processor. At the results of imaging plate test, obvious difference was not found out between hydride formation (except for 1000ppm cladding) and standard claddings in side direction image. However, on the center axis direction image, outer circumference in the cladding cross-section that corresponded with hydride segregation area became blacker. In the case of oxide film formed cladding images, although oxide film could not find out on all speciments in the radiographs taken at the center axis and side directions, cross-section of claddings heat-processed at 973K showed appreciable blackness increasing with oxide film thickness on the radiographs. On the other hand, there is no effective difference between images of oxide film formed claddings processed at 1173K and 1323K and that of standard cladding. In CT image of 1000ppm hydrogen absorbed cladding, it is

  3. Mechanical Property and Oxidation Behavior of ATF cladding developed in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To realize the coating cladding, coating material (Cr-based alloy) as well as coating technology (3D laser coating and arc ion plating combined with vacuum annealing) can be developed to meet the fuel cladding criteria. The coated Zr cladding can be produced after the optimization of coating technologies. The coated cladding sample showed the good oxidation/corrosion and adhesion properties without the spalling and/or severe interaction with the Zr alloy cladding from the various tests. Thus, it is known that the mechanical property and oxidation behavior of coated cladding concept developed in KAERI is reasonable for applying the ATF cladding in LWRs. At the present time various ATF concepts have been proposed and developing in many countries. The ATF concepts with potentially improved accident performance can be summarized to the coating cladding, Mo-Zr cladding, FeCrAl cladding, and SiCf/SiC cladding. Regarding the cladding performance, ATF cladding concepts will be evaluated with respect to the accident scenarios and normal operations of LWRs as well as to the fuel cladding fabrication.

  4. Study of the response of Zircaloy- 4 cladding to thermal shock during water quenching after double sided steam oxidation at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sawarn, Tapan K., E-mail: sawarn@barc.gov.in; Banerjee, Suparna; Kumar, Sunil

    2016-05-15

    This study investigates the failure of embrittled Zircaloy-4 cladding in a simulated loss of coolant accident condition and correlates it with the evolved stratified microstructure. Isothermal steam oxidation of Zircaloy-4 cladding at high temperatures (900–1200 °C) with soaking periods in the range 60–900 s followed by water quenching was carried out. The combined oxide + oxygen stabilized α-Zr layer thickness and the fraction of the load bearing phase (recrystallised α-Zr grains + prior β-Zr or only prior β-Zr) of clad tube specimens were correlated with the %ECR calculated using Baker-Just equation. Average oxygen concentration of the load bearing phase corresponding to different oxidation conditions was calculated from the average microhardness using an empirical correlation. The results of these experiments are presented in this paper. Thermal shock sustainability of the clad was correlated with the %ECR, combined oxide+α-Zr(O) layer thickness, fraction of the load bearing phase and its average oxygen concentration. - Highlights: • Response of the embrittled Zircaloy-4 clad towards thermal shock, simulated under LOCA condition was investigated. • Thermal shock sustainability of the clad was correlated with its evolved stratified microstructure. • Cladding fails at %ECR value ≥ 29. • To resist the thermal shock, clad should have load bearing phase fraction > 0.44 and average oxygen concentration < 0.69 wt%.

  5. Out-of pile mechanical test: simulating reactivity initiated accident (RIA) of zircaloy-4 cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Ho; Kim, Jun Hwan; Choi, Byoung Kwon; Jeong, Young Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    The ejection or drop of a control rod in a reactivity initiated accident (RIA) causes a sudden increase in reactor power and in turn deposits a large amount of energy into the fuel. In a RIA, cladding tubes bear thermal expansion due to sudden reactivity and may fail from the resulting mechanical damage. Thus, RIA can be one of the safety margin reducers because the oxide on the tubes makes their thickness to support the load less as well as hydrides from the corrosion reduce the ductility of the tubes. In a RIA, the peak of reactor power from reactivity change is about 0.1m second and the temperature of the cladding tubes increases up to 1000 .deg. C in several seconds. Although it is hard to fully simulate the situation, several attempts to measure the change of mechanical properties under a RIA situation has done using a reduction coil, ring tension tests with high speed. This research was done to see the effect of oxide on the change of circumferential strength and ductility of Zircaloy-4 tubes in a RIA. The ring stretch tensile tests were performed with the strain rate of 1/sec and 0.01/s to simulate a transient of the cladding tube under a RIA. Since the test results of the ring tensile test are very sensitive to the lubricant, the tests were also carried out to select a suitable lubricant before the test of oxided specimens.

  6. Evaluation of cladding residual stresses in clad blocks by measurements and numerical simulations

    International Nuclear Information System (INIS)

    Dupas, P.; Moinereau, D.

    1996-01-01

    Reactor pressure vessels are internally clad with austenitic stainless steel. This welding operation generates residual stresses which can have an important role in integrity assessments. In order to evaluate these stresses, an experimental and numerical programme has been conducted. The experiments includes cladding operations, macrographic analyses, temperature and residual stresses measurements with different methods. According to these measurements, transversal stresses (perpendicular to the welding direction) and longitudinal stresses (parallel to the welding direction) are highly tensile in stainless steel and they are compressive in the HAZ. Finite element calculations were used to simulate both welding operations and post weld heat treatment. These calculations coupled the thermal, metallurgical and mechanical aspects in a 2D representation. Different models were studied including effect of generalised plane strain, transformation plasticity, creep and tempering. The transversal stresses calculated are similar to the measured ones, but the longitudinal stresses showed to be very sensitive to the model used. As expected because of the two-dimension model, the longitudinal stresses can't be well estimated. More work is needed to improve measurements of stresses in depth (important differences appeared between the different methods). A predictive model would be also very useful to determine the thermal loading which is at present dependant on measurements. A 3D calculation appears to be necessary to evaluate longitudinal stresses. (orig.)

  7. Models for the Configuration and Integrity of Partially Oxidized Fuel Rod Cladding at High Temperatures

    International Nuclear Information System (INIS)

    Siefken, L.J.

    1999-01-01

    Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from above on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown

  8. Oxide thickness measurement technique for duplex-layer Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    McClelland, R.G.; O'Leary, P.M.

    1992-01-01

    Siemens Nuclear Power Corporation (SNP) is investigating the use of duplex-layer Zircaloy-4 tubing to improve the waterside corrosion resistance of cladding for high-burnup pressurized water reactor (PWR) fuel designs. Standard SNP PWR cladding is typically 0.762-mm (0.030-in.)-thick Zircaloy-4. The SNP duplex cladding is nominally 0.660-mm (0.026-in.)-thick Zircalloy-4 with an ∼0.102-mm (0.004-in.) outer layer of another, more corrosion-resistant, zirconium-based alloy. It is common industry practice to monitor the in-reactor corrosion behavior of Zircaloy cladding by using an eddy-current 'lift-off' technique to measure the oxide thickness on the outer surface of the fuel cladding. The test program evaluated three different cladding samples, all with the same outer diameter and wall thickness: Zircaloy-4 and duplex clad types D2 and D4

  9. Analysis of fuel cladding chemical interaction in mixed oxide fuel pins

    International Nuclear Information System (INIS)

    Weber, J.W.; Dutt, D.S.

    1976-01-01

    An analysis is presented of the observed interaction between mixed oxide 75 wt percent UO 2 --25 wt percent PuO 2 fuel and 316--20 percent CW stainless steel cladding in LMFBR type fuel pins irradiated in EBR-II. A description is given of the test pins and their operating conditions together with, metallographic observations and measurements of the fuel/cladding reaction, and a correlation equation is developed relating depth of cladding attack to temperature and burnup. Some recent data on cladding reaction in fuel pins with low initial O/M in the fuel are given and compared with the correlation equation curves

  10. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Boltax, A [Westinghouse Electric Corporation, Advanced Reactor Division, Madison, PA (United States); Biancheria, A

    1977-04-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  11. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    International Nuclear Information System (INIS)

    Boltax, A.; Biancheria, A.

    1977-01-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  12. RIA simulation tests using driver tube for ATF cladding

    Energy Technology Data Exchange (ETDEWEB)

    Cinbiz, Mahmut N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, N. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, R. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, K. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Pellet-cladding mechanical interaction (PCMI) is a potential failure mechanism for accident-tolerant fuel (ATF) cladding candidates during a reactivity-initiated accident (RIA). This report summarizes Fiscal Year (FY) 2017 research activities that were undertaken to evaluate the PCMI-like hoop-strain-driven mechanical response of ATF cladding candidates. To achieve various RIA-like conditions, a modified-burst test (MBT) device was developed to produce different mechanical pulses. The calibration of the MBT instrument was accomplished by performing mechanical tests on unirradiated Generation-I iron-chromium-aluminum (FeCrAl) alloy samples. Shakedown tests were also conducted in both FY 2016 and FY 2017 using unirradiated hydrided ZIRLO™ tube samples. This milestone report focuses on testing of ATF materials, but the benchmark tests with hydrided ZIRLO™ tube samples are documented in a recent journal article.a For the calibration and benchmark tests, the hoop strain was monitored using strain gauges attached to the sample surface in the hoop direction. A novel digital image correlation (DIC) system composed of a single high-speed camera and an array of six mirrors was developed for the MBT instrument to better resolve the failure behavior of samples and to provide useful data for validation of high-fidelity modeling and simulation tools. The DIC system enable a 360° view of a sample’s outer surface. This feature was added to the instrument to determine the precise failure location on a sample’s surface for strain predictions. The DIC system was tested on several silicon carbide fiber/silicon carbide matrix (SiC/SiC) composite tube samples at various pressurization rates of the driver tube (which correspond to the strain rates for the samples). The hoop strains for various loading conditions were determined for the SiC/SiC composite tube samples. Future work is planned to enhance understanding of the failure behavior of the ATF cladding candidates of age

  13. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    International Nuclear Information System (INIS)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-01-01

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings

  14. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings.

  15. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun, E-mail: pdj@kaeri.re.kr; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2016-12-15

    This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility. - Highlights: • Cr and FeCrAl were coated onto Zr fuel cladding for light water nuclear reactors. • Mo layer between FeCrAl and Zr prevented inter-diffusion at high temperatures. • Coated claddings were tested under loss-of-cooling accident conditions. • Coating improved high-temperature oxidation resistance and mechanical properties.

  16. Deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail.

  17. The deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail. (author)

  18. Mechanical test of E110 cladding material oxidized in hydrogen rich steam atmosphere

    International Nuclear Information System (INIS)

    Windberg, P.; Perez-Fero, E.

    2005-01-01

    The behavior of the fuel cladding under accidental conditions has been studied at the AEKI for more than a decade. Earlier, the effect of oxygen and hydrogen content on the mechanical properties was studied separately. The present experiments can help to understand what kind of processes took place in the cleaning tank at Paks NPP (2003). The purpose of our experiments was to investigate high temperature oxidation of E110 cladding in steam + hydrogen mixture. A high temperature tube furnace was used for oxidation of the samples. The oxidation was carried out at three different temperatures (900 0 C, 1000 0 C, 1100 0 C). The hydrogen content in the steam was varied between 19-36 vol%. The oxygen content of the sample was defined as oxidation ratio. Two sizes (length: 2 and 8 mm) of cladding rings and 100 mm long E110 cladding tubes were oxidized. After the oxidation we made compression and tensile tests for rings, and ballooning experiments for 100 mm long tube. The most important conclusions were the following. Oxidation in H-rich steam atmosphere need longer time to get the same oxidation ratio compared to the steam oxidation without hydrogen. The shorter oxidation time results in a more compact oxide layer. The longer oxidation time leads to a cracked oxide layer. (author)

  19. Oxidation Behavior of FeCrAl -coated Zirconium Cladding prepared by Laser Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il-Hyun; Kim, Hyun-Gil; Choi, Byung-Kwan; Park, Jeong-Yong; Koo, Yang-Hyun; Kim, Jin-Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    From the recent research trends, the ATF cladding concepts for enhanced accident tolerance are divided as follows: Mo-Zr cladding to increase the high temperature strength, cladding coating to increase the high temperature oxidation resistance, FeCrAl alloy and SiC/SiCf material to increase the oxidation resistance and strength at high temperature. To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. A laser coating method supplied with FeCrAl powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a FeCrAl-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  20. Out-of-pile test of zirconium cladding simulating reactivity initiated accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Lee, M. H.; Choi, B. K.; Bang, J. K.; Jung, Y. H. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Mechanical properties of zirconium cladding such as Zircaloy-4 and advanced cladding were evaluated by ring tension test to simulate Reactivity-Initiated Accident (RIA) as an out-pile test. Cladding was hydrided by means of charging hydrogen up to 1000ppm to simulate high-burnup situation, finally fabricated to circumferential tensile specimen. Ring tension test was carried out from 0.01 to 1/sec to keep pace with actual RIA event. The results showed that mechanical strength of zirconium cladding increased at the value of 7.8% but ductility decreased at the 34% as applied strain rate and absorbed hydrogen increased. Further activities regarding out-of-pile testing plans for simulated high-burnup cladding were discussed in this paper.

  1. Air Oxidation Behaviors of Zircaloy-4 Cladding During a LOCA In Spent Fuel Pool

    International Nuclear Information System (INIS)

    Bang, Je Geon; Chun, Tae Hyun; Kim, Sun Ki; Koo, Yang Hyun

    2014-01-01

    It is well known that air oxidation induces a serious degradation of the Zircaloy cladding material, compared with steam oxidation. From the oxidant point of view, in comparison with steam, chemical heat release during oxidation in air is higher by 80%, which may lead to a more rapid degradation of the Zircaloy cladding, and further evolution of the accident.. Additionally, the oxidation kinetics in air is much faster than in steam due to the formation of non-protective oxide layer. From the safety point of view, the barrier effect of the cladding against release of fission products is lost much earlier in air compared to steam. The objective of this study is to investigate the oxidation behaviors of fuel cladding in two different conditions such as isothermal and transient condition and to generate its kinetic data under an accident condition in the spent fuel pool. In this study, the oxidation behaviors and its kinetics of the Zircaloy-4 were investigated in air environment for various air ingress scenarios in the temperature range 600 .deg. C-1,400 .deg. C by thermo-gravimetric analysis. In this study, the oxidation behaviors of the Zircaloy-4 for both isothermal condition and transient condition were investigated in air environment. In comparison with isothermal condition, the retardation of oxidation rate in transient condition was observed at both 1,200 .deg. C and 1,400 .deg. C. This seems to be ascribed to the effect of thin oxide formed during a heating

  2. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes

    KAUST Repository

    Myzaferi, A.

    2016-08-11

    The bottom cladding design of semipolar III-nitride laser diodes is limited by stress relaxation via misfit dislocations that form via the glide of pre-existing threading dislocations (TDs), whereas the top cladding is limited by the growth time and temperature of the p-type layers. These design limitations have individually been addressed by using limited area epitaxy (LAE) to block TD glide in n-type AlGaN bottom cladding layers and by using transparent conducting oxide (TCO) top cladding layers to reduce the growth time and temperature of the p-type layers. In addition, a TCO-based top cladding should have significantly lower resistivity than a conventional p-type (Al)GaN top cladding. In this work, LAE and indium-tin-oxide cladding layers are used simultaneously in a (202⎯⎯1) III-nitride laser structure. Lasing was achieved at 446 nm with a threshold current density of 8.5 kA/cm2 and a threshold voltage of 8.4 V.

  3. Development of ODS (oxide dispersion strengthened) ferritic-martensitic steels for fast reactor fuel cladding

    International Nuclear Information System (INIS)

    Ukai, Shigeharu

    2000-01-01

    In order to attain higher burnup and higher coolant outlet temperature in fast reactor, oxide dispersion strengthened (ODS) ferritic-martensitic steels were developed as a long life fuel cladding. The improvement in formability and ductility, which are indispensable in the cold-rolling method for manufacturing cladding tube, were achieved by controlling the microstructure using techniques such as recrystallization heat-treatment and α to γ phase transformation. The ODS ferritic-martensitic cladding tubes manufactured using these techniques have the highest internal creep rupture strength in the world as ferritic stainless steels. Strength level approaches adequate value at 700degC, which meets the requirement for commercial fast reactors. (author)

  4. Fuel-cladding chemical interaction in mixed-oxide fuels

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Weber, J.W.; Devary, J.L.

    1978-10-01

    The character and extent of fuel-cladding chemical interaction (FCCI) was established for UO 2 -25 wt% PuO 2 clad with 20% cold worked Type 316 stainless steel irradiated at high cladding temperatures to peak burnups greater than 8 atom %. The data base consists of 153 data sets from fuel pins irradiated in EBR-II with peak burnups to 9.5 atom %, local cladding inner surface temperatures to 725 0 C, and exposure times to 415 equivalent full power days. As-fabricated oxygen-to-metal ratios (O/M) ranged from 1.938 to 1.984 with the bulk of the data in the range 1.96 to 1.98. HEDL P-15 pins provided data at low heat rates, approx. 200 W/cm, and P-23 series pins provided data at higher heat rates, approx. 400 W/cm. A design practice for breeder reactors is to consider an initial reduction of 50 microns in cladding thickness to compensate for possible FCCI. This approach was considered to be a conservative approximation in the absence of a comprehensive design correlation for extent of interaction. This work provides to the designer a statistically based correlation for depth of FCCI which reflects the influences of the major fuel and operating parameters on FCCI

  5. Investigations of fuel cladding chemical interaction in irradiated LMFBR type oxide fuel pins

    International Nuclear Information System (INIS)

    Roake, W.E.; Adamson, M.G.; Hilbert, R.F.; Langer, S.

    1977-01-01

    Understanding and controlling the chemical attack of fuel pin cladding by fuel and fission products are major objectives of the U.S. LMFBR Mixed Oxide Irradiation Testing Program. Fuel-cladding chemical interaction (FCCI) has been recognized as an important factor in the ability to achieve goal peak burnups of 8% (80.MWd/kg) in FFTF and in excess of 10% (100.MWd/kg) in the LMFBR demonstration reactors while maintaining coolant bulk outlet temperatures up to ∼60 deg. C (1100 deg. F). In this paper we review pertinent parts of the irradiation program and describe recent observation of FCCI in the fuel pins of this program. One goal of the FCCI investigations is to obtain a sufficiently quantitative understanding of FCCI such that correlations can be developed relating loss of effective cladding thickness to irradiation and fuel pin fabrication parameters. Wastage correlations being developed using different approaches are discussed. Much of the early data on FCCI obtained in the U.S. Mixed Oxide Fuel Program came from capsule tests irradiated in both fast and thermal flux facilities. The fast flux irradiated encapsulated fuel pins continue to provide valuable data and insight into FCCI. Currently, however, bare pins with prototypic fuels and cladding irradiated in the fast flux Experimental Breeder Reactor-II (EBR-II) as multiple pin assemblies under prototypic powers, temperatures and thermal gradients are providing growing quantities of data on FCCI characteristics and cladding thickness losses from FCCI. A few special encapsulated fuel pin tests are being conducted in the General Electric Test Reactor (GETR) and EBR-II, but these are aimed at providing specific information under irradiation conditions not achievable in the fast flux bare pin assemblies or because EBR-II Operation or Safety requirements dictate that the pins be encapsulated. The discussion in this paper is limited to fast flux irradiation test results from encapsulated pins and multiple pin

  6. Investigations of fuel cladding chemical interaction in irradiated LMFBR type oxide fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States); Adamson, M G [General Electric Company, Vallecitos Nuclear Center, Pleasanton, CA (United States); Hilbert, R F; Langer, S

    1977-04-01

    Understanding and controlling the chemical attack of fuel pin cladding by fuel and fission products are major objectives of the U.S. LMFBR Mixed Oxide Irradiation Testing Program. Fuel-cladding chemical interaction (FCCI) has been recognized as an important factor in the ability to achieve goal peak burnups of 8% (80.MWd/kg) in FFTF and in excess of 10% (100.MWd/kg) in the LMFBR demonstration reactors while maintaining coolant bulk outlet temperatures up to {approx}60 deg. C (1100 deg. F). In this paper we review pertinent parts of the irradiation program and describe recent observation of FCCI in the fuel pins of this program. One goal of the FCCI investigations is to obtain a sufficiently quantitative understanding of FCCI such that correlations can be developed relating loss of effective cladding thickness to irradiation and fuel pin fabrication parameters. Wastage correlations being developed using different approaches are discussed. Much of the early data on FCCI obtained in the U.S. Mixed Oxide Fuel Program came from capsule tests irradiated in both fast and thermal flux facilities. The fast flux irradiated encapsulated fuel pins continue to provide valuable data and insight into FCCI. Currently, however, bare pins with prototypic fuels and cladding irradiated in the fast flux Experimental Breeder Reactor-II (EBR-II) as multiple pin assemblies under prototypic powers, temperatures and thermal gradients are providing growing quantities of data on FCCI characteristics and cladding thickness losses from FCCI. A few special encapsulated fuel pin tests are being conducted in the General Electric Test Reactor (GETR) and EBR-II, but these are aimed at providing specific information under irradiation conditions not achievable in the fast flux bare pin assemblies or because EBR-II Operation or Safety requirements dictate that the pins be encapsulated. The discussion in this paper is limited to fast flux irradiation test results from encapsulated pins and multiple pin

  7. Performance of IN-706 and PE-16 cladding in mixed-oxide fuel pins

    International Nuclear Information System (INIS)

    Makenas, B.J.; Lawrence, L.A.; Jensen, B.W.

    1982-05-01

    Iron-nickel base, precipitation-strengthened alloys, IN-706 and PE-16, advanced alloy cladding considered for breeder reactor applications, were irradiated in mixed-oxide fuel pins in the HEDL-P-60 subassembly in EBR-II. Initial selection of candidate advanced alloys was done using only nonfueled materials test results. However, to establish the performance characteristics of the candidate cladding alloys, i.e., dimensional stability and structural integrity under conditions of high neutron flux, elevated temperature, and applied stress, it was necessary to irradiate fuel pins under typical operating conditions. Fuel pins were clad with solution treated IN-706 and PE-16 and irradiated to peak fluences of 6.1 x 10 22 n/cm 2 (E > .1 MeV) and 8.8 x 10 22 n/cm 2 (E > .1 MeV) respectively. Fabrication and operating parameters for the fuel pins with the advanced cladding alloy candidates are summarized. Irradiation of HEDL-P-60 was interrupted with the breach of a pin with IN-706 cladding at 5.1 at % and the test was terminated with cladding breach in a pin with PE-16 cladding at 7.6 at %

  8. Finite element simulation of a novel composite light-weight microporous cladding panel

    Science.gov (United States)

    Tian, Lida; Wang, Dongyan

    2018-04-01

    A novel composite light-weight microporous cladding panel with matched connection detailing is developed. Numerical simulation on the experiment is conducted by ABAQUS. The accuracy and rationality of the finite element model is verified by comparison between the simulation and the experiment results. It is also indicated that the novel composite cladding panel is of desirable bearing capacity, stiffness and deformability under out-of-plane load.

  9. High temperature oxidation test of oxide dispersion strengthened (ODS) steel claddings

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasushi

    2006-07-01

    In a feasibility study of ODS steel cladding, its high temperature oxidation resistance was evaluated. Although addition of Cr is effective for preventing high temperature oxidation, excessively higher amount of Cr leads to embrittlement due to the Cr-rich α' precipitate formation. In the ODS steel developed by the Japan Atomic Energy Agency (JAEA), the Cr content is controlled in 9Cr-ODS martensite and 12Cr-ODS ferrite. In this study, high temperature oxidation test was conducted for ODS steels, and their results were compared with that of conventional austenitic stainless steel and ferritic-martensitic stainless steel. Following results were obtained in this study. (1) 9Cr-ODS martensitic and 12Cr-ODS ferritic steel have superior high temperature oxidation resistance compared to 11mass%Cr PNC-FMS and even 17mass% SUS430 and equivalent to austenitic PNC316. (2) The superior oxidation resistance of ODS steel was attributed to earlier formation of the protective alpha-Cr 2 O 3 layer at the matrix and inner oxide scale interface. The grain size of ODS steel is finer than that of PNC-FMS, so the superior oxidation resistance of ODS steel can be attributed to the enhanced Cr-supplying rate throughout the accelerated grain boundary diffusion. Finely dispersed Y 2 O 3 oxide particles in the ODS steel matrix may also stabilized the adherence between the protective alpha-Cr 2 O 3 layer and the matrix. (author)

  10. Experimental study and modeling of high-temperature oxidation and phase transformation of cladding-tubes made in zirconium alloy

    International Nuclear Information System (INIS)

    Mazeres, Benoit

    2013-01-01

    One of the hypothetical accident studied in the field of the safety studies of Pressurized light Water Reactor (PWR) is the Loss-Of-Coolant-Accident (LOCA). In this scenario, zirconium alloy fuel claddings could undergo an important oxidation at high temperature (T≅ 1200 C) in a steam environment. Cladding tubes constitute the first confinement barrier of radioelements and then it is essential that they keep a certain level of ductility after quenching to ensure their integrity. These properties are directly related to the growth kinetics of both the oxide and the αZr(O) phase and also to the oxygen diffusion profile in the cladding tube after the transient. In this context, this work was dedicated to the understanding and the modeling of the both oxidation phenomenon and oxygen diffusion in zirconium based alloys at high temperature. The numerical tool (EKINOX-Zr) used in this thesis is based on a numerical resolution of a diffusion/reaction problem with equilibrium-conditions on three moving boundaries: gas/oxide, oxide/αZr(O), αZr(O)/βZr. EKINOX-Zr kinetics model is coupled with ThermoCalc software and the Zircobase database to take into account the influence of the alloying elements (Sn, Fe, Cr, Nb) but also the influence of hydrogen on the solubility of oxygen. This study focused on two parts of the LOCA scenario: the influence of a pre-oxide layer (formed in-service) and the effects of hydrogen. Thanks to the link between EKINOX-Zr and the thermodynamic database Zircobase, the hydrogen effects on oxygen solubility limit could be considered in the numerical simulations. Thus, simulations could reproduce the oxygen diffusion profiles measured in pre-hydrided samples. The existence of a thick pre-oxide layer on cladding tubes can induce a reduction of this pre-oxide layer before the growth of a high-temperature one during the high temperature dwell under steam. The first simulations performed using the numerical tool EKINOX-Zr showed that this particular

  11. Chemical Dissolution of Simulant FCA Cladding and Plates

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-08

    The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO3-KF) flowsheets of H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.

  12. Mechanical behavior of fast reactor fuel pin cladding subjected to simulated overpower transients

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.

    1978-06-01

    Cladding mechanical property data for analysis and prediction of fuel pin transient behavior were obtained under experimental conditions in which the temperature ramps of reactor transients were simulated. All cladding specimens were 20% CW Type 316 stainless steel and were cut from EBR-II irradiated fuel pins. It was determined that irradiation degraded the cladding ductility and failure strength. Specimens that had been adjacent to the fuel exhibited the poorest properties. Correlations were developed to describe the effect of neutron fluence on the mechanical behavior of the cladding. Metallographic examinations were conducted to characterize the failure mode and to establish the nature of internal and external surface corrosion. Various mechanisms for the fuel adjacency effect were examined and results for helium concentration profiles were presented. Results from the simulated transient tests were compared with TREAT test results

  13. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    International Nuclear Information System (INIS)

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-01

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  14. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongbing [Univ. of Texas, Austin, TX (United States); Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  15. Sensing characteristics of nanocrystalline bismuth oxide clad-modified fiber optic gas sensor

    Science.gov (United States)

    Manjula, M.; Karthikeyan, B.; Sastikumar, D.

    2017-08-01

    Gas sensing properties of nanocrystalline bismuth oxide clad - modified fiber optic sensor is reported for ammonia, ethanol, methanol and acetone gasses at room temperature. The output of sensor increases or decreases for certain gasses when the concentration of the gas is increased. The sensor exhibits high response and good selectivity to methanol gas. Time response characteristics of the sensor are also reported.

  16. A comparison of Zircaloy oxide thicknesses on Millstone-3 and North Anna-1 PWR fuel cladding

    International Nuclear Information System (INIS)

    Polley, M.V.; Evans, H.E.

    1993-08-01

    High concentrations of lithium in the coolant may enhance the corrosion rate of Zircaloy fuel cladding. In the present work, oxide thicknesses on fuel cladding from the Millstone 3 PWR were compared with those from the North Anna 1 PWR. The intention was to identify whether the higher lithium levels (up to 3.5 ppM) in the Millstone 3 primary coolant during cycles 2 and 3 led to significantly greater oxidation rates than in North Anna 1 which operated generally with lithium levels lower than 2.2 ppM. The comparisons were made by comparing the measurements with code predictions of Zircaloy oxidation in order to factor out the effect of operational variables on the oxide thicknesses achieved. Overall, Millstone 3 oxide thicknesses were found to be approximately 14% greater than North Anna 1 values. However, approximately 29% lower oxide thicknesses were found on reload Millstone 3 rods exposed to one cycle of elevated lithium chemistry than on Millstone 3 initial fuel exposed to one cycle of normal lithium chemistry during cycle 1. Furthermore, oxide thicknesses on Millstone 3 rods exposed to two cycles of elevated lithium chemistry were approximately 36% lower than on Millstone 3 rods exposed to one cycle of normal lithium chemistry plus one cycle of elevated lithium chemistry. Therefore, it cannot be concluded that elevated lithium operation in Millstone 3 led to enhanced Zircaloy fuel clad corrosion

  17. Air oxidation of Zircaloy-4, M5 (registered) and ZIRLOTM cladding alloys at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, M.; Boettcher, M.

    2011-01-01

    The paper presents the results of isothermal and transient oxidation experiments of the advanced cladding alloys M5 (registered) and ZIRLO TM in comparison to Zircaloy-4 in air at temperatures from 973 to 1853 K. Generally, oxidation in air leads to a strong degradation of the cladding material. The main mechanism of this process is the formation of zirconium nitride and its re-oxidation. From the point of view of safety, the barrier effect of the fuel cladding is lost much earlier than during accident transients with a steam atmosphere only. Comparison of the three alloys investigated reveals a qualitatively similar, but quantitatively varying oxidation behavior in air. The mainly parabolic oxidation kinetics, where applicable, is comparable for the three alloys. Strong differences of up to 500% in oxidation rates were observed after transition to linear kinetics at temperatures below 1300 K. The paper presents kinetic rate constants as well as critical times and oxide scale thicknesses at the point of transition from parabolic to linear kinetics.

  18. Effect of the oxidation front penetration on in-clad hydrogen migration

    Science.gov (United States)

    Feria, F.; Herranz, L. E.

    2018-03-01

    In LWR fuel claddings the embrittlement due to hydrogen precipitates (i.e., hydrides) is a degrading mechanism that concerns in nuclear safety, particularly in dry storage. A relevant factor is the radial distribution of the hydrogen absorbed, especially the hydride rim formed. Thus, a reliable assessment of fuel performance should account for hydrogen migration. Based on the current state of modelling of hydrogen dynamics in the cladding, a 1D radial model has been derived and coupled with the FRAPCON code. The model includes the effect of the oxidation front progression on in-clad hydrogen migration, based on experimental observations found (i.e., dissolution/diffusion/re-precipitation of the hydrogen in the matrix ahead of the oxidation front). A remarkable quantitative impact of this new contribution has been shown by analyzing the hydrogen profile across the cladding of several high burnup fuel scenarios (>60 GW d/tU); other potential contributions like thermodiffusion and diffusion in the hydride phase hardly make any difference. Comparisons against PIE measurements allow concluding that the model accuracy notably increases when the effect of the oxidation front is accounted for in the hydride rim formation. In spite of the promising results, further validation would be needed.

  19. High-resolution characterization of oxidation mechanism of zirconium nuclear fuel cladding alloys

    International Nuclear Information System (INIS)

    Hu, J.; Lozano-Perez, S.; Grovenor, C.

    2015-01-01

    Full text of publication follows. Zirconium alloys are used extensively as cladding materials in modern light water reactors to separate the uranium dioxide (UO 2 ) fuel rods and the coolant water in order to prevent the escape of radioactive fission products whilst maintaining heat transfer to the coolant. With increasing demand for high burn-up in modern nuclear reactors, environmental degradation of these alloys is now the life limiting factor for fuel assemblies. As part of the MUZIC-2 collaboration studying oxidation and hydrogen pickup in Zr alloys, several high resolution analysis techniques have been used to study the microstructure of a range of commercial and developmental Zr alloys. The sample used for this investigation was prepared from a Westinghouse TM developmental alloy with composition of Zr-0.9Nb-0.01Sn-0.08Fe (wt %) in the recrystallized condition. The sample was oxidised in an autoclave at EDF Energy under simulated PWR water conditions at 360 C. degrees for 360 days. Using Transmission Electron Microscope (TEM), we have studied the development of the equiaxed-columnar-equiaxed grain structure, and observe that the columnar grains are both longer and show a stronger preferred texture in more corrosion-resistant alloys. Fresnel imaging revealed the existence of both parallel interconnected pores and some vertically interconnected pores along the columnar oxide grain boundaries, which become more disconnected near the metal-oxide interface. Electron Energy Loss Spectroscopy (EELS) provided accurate quantitative analysis of the oxygen concentration across the interface, identifying the existence of local regions of stoichiometric ZrO and Zr 3 O 2 with varying thickness. These observations will be discussed in the context of current models for oxidation in zirconium alloys. (authors)

  20. Thermochemical aspects of fuel-cladding and fuel-coolant interactions in LMFBR oxide fuel pins

    International Nuclear Information System (INIS)

    Adamson, M.G.; Aitken, E.A.; Caputi, R.W.; Potter, P.E.; Mignanelli, M.A.

    1979-01-01

    This paper examines several thermochemical aspects of the fuel-cladding, fuel-coolant and fuel-fission product interactions that occur in LMFBR austenitic stainless steel-clad mixed (U,Pu)-oxide fuel pins during irradiation under normal operating conditions. Results are reported from a variety of high temperature EMF cell experiments in which continuous oxygen activity measurements on reacting and equilibrium mixtures of metal oxides and (excess) liquid alkali metal (Na, K, Cs) were performed. Oxygen potential and 0:M thresholds for Na-fuel reactions are re-evaluated in the light of new measurements and newly-assessed thermochemical data, and the influence on oxygen potential of possible U-Pu segregation between oxide and urano-plutonate (equilibrium) phases has been analyzed. (orig./RW) [de

  1. Aluminum cladding oxidation of prefilmed in-pile fueled experiments

    Energy Technology Data Exchange (ETDEWEB)

    Marcum, W.R., E-mail: marcumw@engr.orst.edu [Oregon State University, School of Nuclear Science and Engineering, 116 Radiation Center, Corvallis, OR 97331 (United States); Wachs, D.M.; Robinson, A.B.; Lillo, M.A. [Idaho National Laboratory, Nuclear Fuels & Materials Department, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2016-04-01

    A series of fueled irradiation experiments were recently completed within the Advanced Test Reactor Full size plate In center flux trap Position (AFIP) and Gas Test Loop (GTL) campaigns. The conduct of the AFIP experiments supports ongoing efforts within the global threat reduction initiative (GTRI) to qualify a new ultra-high loading density low enriched uranium-molybdenum fuel. This study details the characterization of oxide growth on the fueled AFIP experiments and cross-correlates the empirically measured oxide thickness values to existing oxide growth correlations and convective heat transfer correlations that have traditionally been utilized for such an application. This study adds new and valuable empirical data to the scientific community with respect to oxide growth measurements of highly irradiated experiments, of which there is presently very limited data. Additionally, the predicted oxide thickness values are reconstructed to produce an oxide thickness distribution across the length of each fueled experiment (a new application and presentation of information that has not previously been obtainable in open literature); the predicted distributions are compared against experimental data and in general agree well with the exception of select outliers. - Highlights: • New experimental data is presented on oxide layer thickness of irradiated aluminum fuel. • Five oxide growth correlations and four convective heat transfer correlations are used to compute the oxide layer thickness. • The oxide layer thickness distribution is predicted via correlation for each respective experiment. • The measured experiment and predicted distributions correlate well, with few outliers.

  2. A Prediction Study of Aluminum Alloy Oxidation of the Fuel Cladding in Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tahk, Y. W.; Oh, J. Y.; Lee, B. H.; Seo, C. G.; Chae, H. T.; Yim, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    U{sub 3}Si{sub 2}-Al dispersion fuel with Al cladding will be used for Jordan Research and Training Reactor (JRTR). Aluminum alloy cladding experiences the oxidation layer growth on the surface during the reactor operation. The formation of oxides on the cladding affects fuel performance by increasing fuel temperature. According to the current JRTR fuel management scheme and operation strategy for 5 MW power, a fresh fuel is discharged after 900 effective full power days (EFPD) with 18 cycles of 50 days loading. For the proper prediction of the aluminum oxide thickness of fuel cladding during the long residence time, a reliable model is needed. In this work, several oxide thickness prediction models are compared with the measured data from in-pile test by RERTR program. Moreover, specific parametric studies and a preliminary prediction of the aluminum alloy oxidation using the latest model are performed for JRTR fuel

  3. Study of the response of Zircaloy cladding to thermal shock during water quenching after double sided steam oxidation at elevated temperatures

    International Nuclear Information System (INIS)

    Banerjee, Suparna; Sawarn, Tapan K.; Kumar, Sunil

    2015-01-01

    This study investigates the failure of embrittled Zircaloy-4 cladding used in the present generation of Indian pressurized heavy water reactors (IPHWRs) in a simulated LOCA condition and its correlation with the evolved stratified microstructure. Isothermal steam oxidation of Zircaloy-4 cladding at high temperatures (900-1200°C) with soaking periods in the range 60-900 seconds followed by water quenching was carried out. None of the pieces broke during quenching except for those heated at 1100, 1150 and 1200°C for longer durations. The combined oxide + oxygen stabilized α-Zr(O) layer thickness and the fraction of the load bearing phase of clad tube specimens were correlated with the %ECR values calculated using Baker-Just equation. Average oxygen concentration of the load bearing prior β-Zr phase corresponding to different oxidation conditions was calculated from the average microhardness values in Vickers scale using an empirical correlation developed by Leistikow. The results of these experiments are presented in this paper. Thermal shock sustainability of the clad was correlated with the %ECR, combined oxide+α-Zr(O) layer thickness, fraction of the prior β-Zr phase and its average oxygen concentration. The thermal shock boundary was observed to be 29% ECR, 0.29 mm combined thickness of ZrO_2+α-Zr(O), 0.16 mm of β-Zr thickness with an average β phase oxygen content of 0.69 wt%. (author)

  4. Creep behavior under internal pressure of zirconium alloy cladding oxidized in steam at high temperature

    International Nuclear Information System (INIS)

    Chosson, Raphael

    2014-01-01

    During hypothetical Loss-Of-Coolant-Accident (LOCA) scenarios, zirconium alloy fuel cladding tubes creep under internal pressure and are oxidized on their outer surface at high temperature (HT). Claddings become stratified materials: zirconia and oxygen-stabilized α phase, called α(O), are formed on the outer surface of the cladding whereas the inner part remains in the β domain. The strengthening effect of oxidation on the cladding creep behavior under internal pressure has been highlighted at HT. In order to model this effect, the creep behavior of each layer had to be determined. This study focused on the characterization of the creep behavior of the α(O) phase at HT, through axial creep tests performed under vacuum on model materials, containing from 2 to 7 wt.% of oxygen and representative of the α(O) phase. For the first time, two creep flow regimes have been observed in this phase. Underlying physical mechanisms and relevant microstructural parameters have been discussed for each regime. The strengthening effect due to oxygen on the α(O) phase creep behavior at HT has been quantified and creep flow equations have been identified. A ductile to brittle transition criterion has been also suggested as a function of temperature and oxygen content. Relevance of the creep flow equations for each layer, identified in this study or from the literature, has been discussed. Then, a finite element model, describing the oxidized cladding as a stratified material, has been built. Based on this model, a fraction of the experimental strengthening during creep is predicted. (author) [fr

  5. Oxidation behavior of fuel cladding tube in spent fuel pool accident condition

    International Nuclear Information System (INIS)

    Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Nakashima, Kazuo; Tojo, Masayuki

    2017-01-01

    In spent fuel pool (SFP) under loss-of-cooling or loss-of-coolant severe accident condition, the spent fuels will be exposed to air and heated by their own residual decay heat. Integrity of fuel cladding is crucial for SFP safety therefore study on cladding oxidation in air at high temperature is important. Zircaloy-2 (Zry2) and zircaloy-4 (Zry4) were applied for thermogravimetric analyses (TGA) in different temperatures in air at different flow rates to evaluate oxidation behavior. Oxidation rate increased with testing temperature. In a range of flow rate of air which is predictable in spent fuel lack during a hypothetical SFP accident, influence of flow rate was not clearly observed below 950degC for the Zry2, or below 1050degC for Zry4. In higher temperature, oxidation rate was higher in high rate condition, and this trend was seen clearer when temperature increased. Oxide layers were carefully examined after the TGA analyses and compared with mass gain data to investigate detail of oxidation process in air. It was revealed that the mass gain data in pre-breakaway regime reflects growth of dense oxide film on specimen surface, meanwhile in post-breakaway regime, it reflects growth of porous oxide layer beneath fracture of the dense oxide film. (author)

  6. Water corrosion test of oxide dispersion strengthened (ODS) steel claddings

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasushi

    2006-07-01

    As a part of feasibility study of ODS steel cladding, its water corrosion resistance was examined under water pool condition. Although addition of Cr is effective for preventing water corrosion, excessive Cr addition leads to embrittlement due to the Cr-rich α' precipitate formation. In the ODS steel developed by the Japan Atomic Energy Agency (JAEA), the Cr content is controlled in 9Cr-ODS martensite and 12Cr-ODS ferrite. In this study, water corrosion test was conducted for these ODS steels, and their results were compared with that of conventional austenitic stainless steel and ferritic-martensitic stainless steel. Following results were obtained in this study. (1) Corrosion rate of 9Cr-ODS martensitic and 12Cr-ODS ferritic steel are significantly small and no pitting was observed. Thus, these ODS steels have superior resistance for water corrosion under the condition of 60degC and pH8-12. (2) It was showed that 9Cr-ODS martensitic steel and 12Cr-ODS ferritic steel have comparable water corrosion resistance to that of PNC316 and PNC-FMS at 60degC for 1,000h under varying pH of 8, 10. Water corrosion resistance of these alloys is slightly larger than that of PNC316 and PNC-FMS at pH12 without significant difference of appearance and uneven condition. (author)

  7. Zircaloy cladding ID/OD oxidation studies. Final report

    International Nuclear Information System (INIS)

    Westerman, R.E.; Hesson, G.M.

    1977-11-01

    The ID/OD oxide ratio that forms on Zircaloy tubing at temperatures relevant to postulated LOCA conditions was measured as a function of time, temperature, and distance from the rupture. The average ratio at the rupture position was less than unity, and decreased with decreasing test time and increasing distance from the point of rupture. The maximum observed ID/OD oxide ratio was 1.4. Ratios in excess of unity were typically found to be a consequence of the OD oxide being thinner than would have been anticipated from the nominal test conditions. Confirmatory data were also obtained on the isothermal oxidation kinetics of Zircaloy. These data are in good agreement with those obtained by other investigators and confirm the conservative nature of the Baker-Just equation that is required for use in licensing calculations

  8. Zircaloy oxidation and cladding deformation in PWR-specific CORA experiments

    International Nuclear Information System (INIS)

    Minato, K.; Hering, W.; Hagen, S.

    1991-07-01

    Out-of-pile bundle experiments (zircaloy 4) are performed in the CORA facility to investigate the behavior of PWR fuel elements during severe fuel damage (SFD) accidents. Within the international cooperation the most significant phenomena such as cladding deformation, oxidation (especially the zirconium/steam reaction), melt formation, melt release, and relocation which were found in all tests have been analyzed. (orig./MM) [de

  9. Numerical Simulation of Temperature Field and Residual Stress Distribution for Laser Cladding Remanufacturing

    Directory of Open Access Journals (Sweden)

    Liang Hua

    2014-05-01

    Full Text Available A three-dimensional finite element model was employed to simulate the cladding process of Ni-Cr-B-Si coatings on 16MnR steel under different parameters of laser power, scanning speed, and spot diameter. The temperature and residual stress distribution, the depth of the heat affected zone (HAZ, and the optimized parameters for laser cladding remanufacturing technology were obtained. The orthogonal experiment and intuitive analysis on the depth of the HAZ were performed to study the influence of different cladding parameters. A new criterion based on the ratio of the maximum tensile residual stress and fracture strength of the substrate was proposed for optimization of the remanufacturing parameters. The result showed well agreement with that of the HAZ analysis.

  10. High-temperature oxidation kinetics of sponge-based E110 cladding alloy

    Science.gov (United States)

    Yan, Yong; Garrison, Benton E.; Howell, Mike; Bell, Gary L.

    2018-02-01

    Two-sided oxidation experiments were recently conducted at 900°C-1200 °C in flowing steam with samples of sponge-based Zr-1Nb alloy E110. Although the old electrolytic E110 tubing exhibited a high degree of susceptibility to nodular corrosion and experienced breakaway oxidation rates in a relatively short time, the new sponge-based E110 demonstrated steam oxidation behavior comparable to Zircaloy-4. Sample weight gain and oxide layer thickness measurements were performed on oxidized E110 specimens and compared to oxygen pickup and oxide layer thickness calculations using the Cathcart-Pawel correlation. Our study shows that the sponge-based E110 follows the parabolic law at temperatures above 1015 °C. At or below 1015 °C, the oxidation rate was very low when compared to Zircaloy-4 and can be represented by a cubic expression. No breakaway oxidation was observed at 1000 °C for oxidation times up to 10,000 s. Arrhenius expressions are given to describe the parabolic rate constants at temperatures above 1015 °C and cubic rate constants are provided for temperatures below 1015 °C. The weight gains calculated by our equations are in excellent agreement with the measured sample weight gains at all test temperatures. In addition to the as-fabricated E110 cladding sample, prehydrided E110 cladding with hydrogen concentrations in the 100-150 wppm range was also investigated. The effect of hydrogen content on sponge-based E110 oxidation kinetics was minimal. No significant difference was found between as-fabricated and hydrided samples with regard to oxygen pickup and oxide layer thickness for hydrogen contents below 150 wppm.

  11. Run-beyond-clad-breach oxide testing in EBR-2

    International Nuclear Information System (INIS)

    Lambert, J.D.B.; Bottcher, J.H.; Strain, R.V.; Gross, K.C.; Lee, M.J.; Webb, J.P.; Colburn, R.P.; Ukai, S.; Nomura, S.; Odo, T.; Shikakura, S.

    1990-01-01

    Fourteen tests sponsored by the US and Japan were used to study reliability of breached LMR oxide fuel pins during continued operation in EBR-II for a range of conditions and parameters. The fuel-sodium reaction product governed pin behavior. It extended primary breaches by swelling and promoted secondary failures, yet it inhibited loss of fuel and fission products and enhanced release of delayed neutrons used in monitoring breach condition. Fission gas and cesium, the main contaminants from failures, could be adequately controlled. This positive EBR-II experience suggested that limited operation with failed fuel may be feasible in commercial LMR's. 16 refs., 14 figs., 4 tabs

  12. Optimization of cladding parameters for resisting corrosion on low carbon steels using simulated annealing algorithm

    Science.gov (United States)

    Balan, A. V.; Shivasankaran, N.; Magibalan, S.

    2018-04-01

    Low carbon steels used in chemical industries are frequently affected by corrosion. Cladding is a surfacing process used for depositing a thick layer of filler metal in a highly corrosive materials to achieve corrosion resistance. Flux cored arc welding (FCAW) is preferred in cladding process due to its augmented efficiency and higher deposition rate. In this cladding process, the effect of corrosion can be minimized by controlling the output responses such as minimizing dilution, penetration and maximizing bead width, reinforcement and ferrite number. This paper deals with the multi-objective optimization of flux cored arc welding responses by controlling the process parameters such as wire feed rate, welding speed, Nozzle to plate distance, welding gun angle for super duplex stainless steel material using simulated annealing technique. Regression equation has been developed and validated using ANOVA technique. The multi-objective optimization of weld bead parameters was carried out using simulated annealing to obtain optimum bead geometry for reducing corrosion. The potentiodynamic polarization test reveals the balanced formation of fine particles of ferrite and autenite content with desensitized nature of the microstructure in the optimized clad bead.

  13. ''Simulation of the testing of cladded steel pieces by focussed ultrasonic transducers''

    International Nuclear Information System (INIS)

    Nadal, J.

    1996-01-01

    The inner surface of vessels of pressurized water reactor is protected from corrosion by a stainless steel cladding hot-layer in many cuts. Therefore, the surface irregularities generate spurious echoes that can either mask or be misinterpreted for echoes from possible defects. Probes are calibrated on a specific reflector (side drilled holes in a steel block). The echo arising from it is used as a reference to quantify echoes measured during an examination. The study aims at simulating echographs of the vessel inspection so as to help the analysis of actual measurements. Three models are developed to compute echoes from cladding surface irregularities, echoes from planar defects and the reference echo, respectively. The radiated field is modelled using the Rayleigh integral, the integration of the incident beam with the cladded surface is treated under Kirchhoffs approximation and the reception of reflected waves involves reciprocity between radiation and reception. An extra physical hypothesis allows a fast algorithm to be developed for simulating the Bscan image obtained by transducer scan. The reference echo is also computed under Kirchhoffs approximation. The field refracted inside the material is modelled by an extension of the Rayleigh integral using the geometrical optics approximation. The model for computing diffracted echoes from crack tips is based upon the Geometric Theory of Diffraction. The model for predicting echoes from cladded surface irregularities has been validated by comparing theoretical predictions with experimental measurements. (author)

  14. Zirconium-barrier cladding attributes

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.; Rand, R.A.; Tucker, R.P.; Cheng, B.; Adamson, R.B.; Davies, J.H.; Armijo, J.S.; Wisner, S.B.

    1987-01-01

    This metallurgical study of Zr-barrier fuel cladding evaluates the importance of three salient attributes: (1) metallurgical bond between the zirconium liner and the Zircaloy substrate, (2) liner thickness (roughly 10% of the total cladding wall), and (3) softness (purity). The effect that each of these attributes has on the pellet-cladding interaction (PCI) resistance of the Zr-barrier fuel was studied by a combination of analytical model calculations and laboratory experiments using an expanding mandrel technique. Each of the attributes is shown to contribute to PCI resistance. The effect of the zirconium liner on fuel behavior during off-normal events in which steam comes in contact with the zirconium surface was studied experimentally. Simulations of loss-of-coolant accident (LOCA) showed that the behavior of Zr-barrier cladding is virtually indistinguishable from that of conventional Zircaloy cladding. If steam contacts the zirconium liner surface through a cladding perforation and the fuel rod is operated under normal power conditions, the zirconium liner is oxidized more rapidly than is Zircaloy, but the oxidation rate returns to the rate of Zircaloy oxidation when the oxide phase reaches the zirconium-Zircaloy metallurgical bond

  15. Effect of the pre-transient oxide on Zy-4 cladding degradation in air and air+steam atmospheres

    International Nuclear Information System (INIS)

    Duriez, C.; Guerain, M.; Lacote, P.; Mermoux, M.

    2015-01-01

    High temperature reactivity in air of Zr based alloys has been mostly investigated with initially bare cladding materials. In this study, attention is paid to the influence of a low temperature pre-oxidation scale aiming to simulate the corrosion scale existing on spent fuel. Different out of pile pre-oxidation methods, inducing significant variation in the pre-oxides microstructure, are compared. The reaction kinetics in air and in mixed air + steam atmospheres, investigated in the 700-950 C. degrees temperature range by thermogravimetry (TGA), shows that a pre-oxide scale formed at low temperature has a protective effect at high temperature by significantly delaying occurrence of the kinetic acceleration, which however still occurs. Efficiency of this protective effect appears to depend on the type of pre-oxide. To better understand the exact role of the pre-oxide, oxygen transport through the pre-oxide has been investigated using the 18 O tracer technique. 18 O distribution maps have been obtained by micro-Raman imaging, which has proved to offer interesting capabilities for that purpose. Results obtained with a 30 μm pre-oxide scale formed at 425 C. degrees in oxygen suggest that, at 850 C. degrees, only the inner part of the scale acts as a barrier against oxidation while the outermost part of the scale (5 to 15 μm in thickness) seems to be permeable to gaseous oxygen. The use of the 18 O isotope tracer technique associated with micro-Raman mapping of the scales is demonstrated to be a powerful method to investigate the transport properties of the scales and will help to gain understanding of the kinetic differences between the different pre-oxides

  16. Interfacing VPSC with finite element codes. Demonstration of irradiation growth simulation in a cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-23

    This Milestone report shows good progress in interfacing VPSC with the FE codes ABAQUS and MOOSE, to perform component-level simulations of irradiation-induced deformation in Zirconium alloys. In this preliminary application, we have performed an irradiation growth simulation in the quarter geometry of a cladding tube. We have benchmarked VPSC-ABAQUS and VPSC-MOOSE predictions with VPSC-SA predictions to verify the accuracy of the VPSCFE interface. Predictions from the FE simulations are in general agreement with VPSC-SA simulations and also with experimental trends.

  17. Oxidation of SiC cladding under Loss of Coolant Accident (LOCA) conditions in LWRs

    International Nuclear Information System (INIS)

    Lee, Y.; Yue, C.; Arnold, R. P.; McKrell, T. J.; Kazimi, M. S.

    2012-01-01

    An experimental assessment of Silicon Carbide (SiC) cladding oxidation rate in steam under conditions representative of Loss of Coolant Accidents (LOCA) in light water reactors (LWRs) was conducted. SiC oxidation tests were performed with monolithic alpha phase tubular samples in a vertical quartz tube at a steam temperature of 1140 deg. C and steam velocity range of 1 to 10 m/sec, at atmospheric pressure. Linear weight loss of SiC samples due to boundary layer controlled reaction of silica scale (SiO 2 volatilization) was experimentally observed. The weight loss rate increased with increasing steam flow rate. Over the range of test conditions, SiC oxidation rates were shown to be about 3 orders of magnitude lower than the oxidation rates of zircaloy 4. A SiC volatilization correlation for developing laminar flow in a vertical channel is formulated. (authors)

  18. 3D Finite Element Simulation of Pellet-Cladding Mechanical Interaction

    International Nuclear Information System (INIS)

    Seo, Sang Kyu; Lee, Sung Uk; Lee, Eun Ho; Yang, Dong Yol; Kim, Hyo Chan; Yang, Dong Yol

    2016-01-01

    In a nuclear power plant, the fuel assembly, which is composed of fuel rods, burns, and the high temperature can generate power. The fuel rod consists of pellets and a cladding that covers the pellets. It is important to understand the pellet-cladding mechanical interaction with regard to nuclear safety. This paper proposes simulation of the PCMI. The gap between the pellets and the cladding, and the contact pressure are very important for conducting thermal analysis. Since the gap conductance is not known, it has to be determined by a suitable method. This paper suggests a solution. In this study, finite element (FE) contact analysis is conducted considering thermal expansion of the pellets. As the contact causes plastic deformation, this aspect is considered in the analysis. A 3D FE module is developed to analyze the PCMI using FORTRAN 90. The plastic deformation due to the contact between the pellets and the cladding is the major physical phenomenon. The simple analytical solution of a cylinder is proposed and compared with the fuel rod performance code results

  19. Clad modified optical fiber gas sensors based on nanocrystalline nickel oxide embedded coatings

    Science.gov (United States)

    Yamini, K.; Renganathan, B.; Ganesan, A. R.; Prakash, T.

    2017-07-01

    A clad modified optical fiber gas sensor for sensing volatile organic compound vapours (VOCs) such as formaldehyde (HCHO), ammonia (NH3), ethanol (C2H5OH) and methanol (CH3OH) up to 500 ppm was studied using nanocrystalline nickel oxide embedded coatings. Prior to the measurements, nickel oxide in two different crystallite sizes such as 24 nm and 76 nm was synthesized by calcination of reverse precipitated nickel hydroxide subsequently at 450 °C and 900 °C for 30 min. Then, samples physical properties were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). Our gas sensing measurement concludes that the lower crystallite size (24 nm) nickel oxide nanocrystals exhibits superior performance to formaldehyde and ethanol vapours as compared with other two VOCs, the observed experimental results were discussed in detail.

  20. Investigation of the high temperature steam oxidation of Zircaloy 4 cladding tubes

    International Nuclear Information System (INIS)

    Leistikow, S.; Berg, H. v.; Kraft, R.; Pott, E.; Schanz, G.

    1979-01-01

    Also for the ORNL Zircaloy 4 cladding material, an intermediate decrease of the proportion of the ZrO 2 /α-phase layer was found, followed by an drastic increase when the breakaway of the ZrO 2 -scale occurred. Other reasons for small divergencies were evaluated, for instance temperature and time measurements, metallographic evaluation of layer thicknesses, consequences of one-sided (ORNL) and double-sided (KfK) oxidation. The so-called anomalous effect of steam oxidation during temperature transients was reproduced qualitatively and-in case that a reduced gain of oxygen was observed-explained by the predominant existence of the monoclinic oxide phase. The creep-rupture tests below 800 0 C showed a moderate prolongation of time-to-rupture when the tests were performed in steam (or after preoxidation in steam) instead of argon. Also slightly reduced maximum circumferential strain could be measured. (orig./RW) [de

  1. High-temperature steam oxidation kinetics of the E110G cladding alloy

    International Nuclear Information System (INIS)

    Király, Márton; Kulacsy, Katalin; Hózer, Zoltán; Perez-Feró, Erzsébet; Novotny, Tamás

    2016-01-01

    In the course of recent years, several experiments were performed at MTA EK (Centre for Energy Research, Hungarian Academy of Sciences) on the isothermal high-temperature oxidation of the improved Russian cladding alloy E110G in steam/argon atmosphere. Using these data and designing additional supporting experiments, the oxidation kinetics of the E110G alloy was investigated in a wide temperature range, between 600 °C and 1200 °C. For short durations (below 500 s) or high temperatures (above 1065 °C) the oxidation kinetics was found to follow a square-root-of-time dependence, while for longer durations and in the intermediate temperature range (800–1000 °C) it was found to approach a cube-root-of-time dependence rather than a square-root one. Based on the results a new best-estimate and a conservative oxidation kinetics model were created. - Highlights: • Steam oxidation kinetics of E110G was studied at MTA EK based on old and new data. • New best-estimate and conservative steam oxidation kinetics were proposed for E110G. • The exponent of oxidation time changed depending on oxidation temperature. • A simple exponential curve was used instead of Arrhenius-type curve for the factor.

  2. Effects of cold worked and fully annealed claddings on fuel failure behaviour

    International Nuclear Information System (INIS)

    Saito, Shinzo; Hoshino, Hiroaki; Shiozawa, Shusaku; Yanagihara, Satoshi

    1979-12-01

    Described are the results of six differently heat-treated Zircaloy clad fuel rod tests in NSRR experiments. The purpose of the test is to examine the extent of simulating irradiated claddings in mechanical properties by as-cold worked ones and also the effect of fully annealing on the fuel failure bahaviour in a reactivity initiated accident (RIA) condition. As-cold worked cladding does not properly simulated the embrittlement of the irradiated one in a RIA condition, because the cladding is fully annealed before the fuel failure even in the short transient. Therefore, the fuel behaviour such as fuel failure threshold energy, failure mechanism, cladding deformation and cladding oxidation of the fully annealed cladding fuel, as well as that of the as-cold worked cladding fuel, are not much different from that of the standard stress-relieved cladding fuel. (author)

  3. Oxide properties of autoclaved zircaloy cladding tubes investigated by the photoelectric polarization method

    International Nuclear Information System (INIS)

    Nystrand, A.C.

    2000-06-01

    Corrosion of zirconium alloys is an important lifetime limiting factor for the nuclear reactor fuel. The corrosion resistance of a metal is highly dependent on the ability of the surface metal oxide to transport electrons and ions, which is related to the stoichiometry of the oxide and the oxide defect concentration. The Photoelectric Polarization Method (PEP) is a structure sensitive method which earlier has been investigated as a possible method to study the defect structure in zirconium oxides. The purpose of the following work is, by using more optimized experimental equipment, to verify if the PEP method is a suitable method to study the defect structure in zirconium oxides and to predict the corrosion resistance for different zirconium alloys. The conclusions from the experiments are as follows: - The modifications of the experimental setup by means of a new source of light (deuterium lamp) and a new oscilloscope with an amplifier gave distinct Vpep signals. - The photoresponse is negative for all types of cladding and under all kind of oxidation regimes and hence the oxide is a n-type semiconductor with deficiency of oxygen. - The method needs to be verified by testing semiconductors with a known defect concentration

  4. Oxidation of aluminum alloy cladding for research and test reactor fuel

    Science.gov (United States)

    Kim, Yeon Soo; Hofman, G. L.; Robinson, A. B.; Snelgrove, J. L.; Hanan, N.

    2008-08-01

    The oxide thicknesses on aluminum alloy cladding were measured for the test plates from irradiation tests RERTR-6 and 7A in the ATR (advanced test reactor). The measured thicknesses were substantially lower than those of test plates with similar power from other reactors available in the literature. The main reason is believed to be due to the lower pH (pH 5.1-5.3) of the primary coolant water in the ATR than in the other reactors (pH 5.9-6.5) for which we have data. An empirical model for oxide film thickness predictions on aluminum alloy used as fuel cladding in the test reactors was developed as a function of irradiation time, temperature, surface heat flux, pH, and coolant flow rate. The applicable ranges of pH and coolant flow rates cover most research and test reactors. The predictions by the new model are in good agreement with the in-pile test data available in the literature as well as with the RERTR test data measured in the ATR.

  5. Oxidation of aluminum alloy cladding for research and test reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo [Argonne National Laboratory, Nuclear Engineering, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: yskim@anl.gov; Hofman, G.L. [Argonne National Laboratory, Nuclear Engineering, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Robinson, A.B. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Snelgrove, J.L.; Hanan, N. [Argonne National Laboratory, Nuclear Engineering, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2008-08-31

    The oxide thicknesses on aluminum alloy cladding were measured for the test plates from irradiation tests RERTR-6 and 7A in the ATR (advanced test reactor). The measured thicknesses were substantially lower than those of test plates with similar power from other reactors available in the literature. The main reason is believed to be due to the lower pH (pH 5.1-5.3) of the primary coolant water in the ATR than in the other reactors (pH 5.9-6.5) for which we have data. An empirical model for oxide film thickness predictions on aluminum alloy used as fuel cladding in the test reactors was developed as a function of irradiation time, temperature, surface heat flux, pH, and coolant flow rate. The applicable ranges of pH and coolant flow rates cover most research and test reactors. The predictions by the new model are in good agreement with the in-pile test data available in the literature as well as with the RERTR test data measured in the ATR.

  6. Effects of Zinc Injection on the Cladding Oxide Thickness in the Domestic Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hak Kyu; Kim, Hong Jin; Shin, Jung Cheol [KEPCO Nuclear Fuel Co. Ltd., Daejeon (Korea, Republic of)

    2013-10-15

    The first commercial plant for zinc injection demonstration was Farley-2 in 1994, and the effect of zinc injection was successfully demonstrated. Since then the PWR with zinc injection has been increased, there are about 80 PWR with zinc injection in the world in 2012. Zinc injection at the high duty plant has potential risk of increasing the cladding oxide thickness. Zinc injection doesn't affect the cladding corrosion directly but it may negatively affect crud deposit in the subcooled boiling region of the fuel. So the effect of zinc injection on fuel integrity has been evaluated. For low duty plant it is confirmed that zinc injection doesn't affect the fuel integrity. For high duty plant Callaway in U. S. and Vandellos II in Spain were successfully demonstrated but the experience with zinc injection of high duty plant was still lacking. Thus EPRI recommend the fuel surveillance programs for the high duty plant to apply zinc. The High Duty Core Index (HDCI) of most domestic nuclear power plant is above 150 Btu/ft{sup 2}-gal- .deg. F. Those plants with a HDCI of 150 Btu/ft{sup 2}-gal- .deg. F or greater may be considered as 'high duty'. As aforementioned, the experience with zinc injection of high duty plant was lacking. Thus to apply zinc injection in domestic plant with high duty, prudent approach is needed. In this study the effect of zinc injection in Hanul unit 1 with a HDCI of around 150 Btu/ft{sup 2}-gal- .deg. F was evaluated. And in the next study the effect of zinc injection in the plant of HDCI of around 200 Btu/ft{sup 2}-gal- .deg. F will be evaluated. Zinc injection had not caused any increase in oxide thickness in Hanul unit 1. Most of the oxide thickness measurement data with zinc injection are well within the non-zinc injection database. And the computer code which was developed based on non-zinc injection database well predicts oxide thickness for fuel rod with zinc injection. Thus, it can be concluded that zinc injection doesn

  7. Effects of Zinc Injection on the Cladding Oxide Thickness in the Domestic Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yoon, Hak Kyu; Kim, Hong Jin; Shin, Jung Cheol

    2013-01-01

    The first commercial plant for zinc injection demonstration was Farley-2 in 1994, and the effect of zinc injection was successfully demonstrated. Since then the PWR with zinc injection has been increased, there are about 80 PWR with zinc injection in the world in 2012. Zinc injection at the high duty plant has potential risk of increasing the cladding oxide thickness. Zinc injection doesn't affect the cladding corrosion directly but it may negatively affect crud deposit in the subcooled boiling region of the fuel. So the effect of zinc injection on fuel integrity has been evaluated. For low duty plant it is confirmed that zinc injection doesn't affect the fuel integrity. For high duty plant Callaway in U. S. and Vandellos II in Spain were successfully demonstrated but the experience with zinc injection of high duty plant was still lacking. Thus EPRI recommend the fuel surveillance programs for the high duty plant to apply zinc. The High Duty Core Index (HDCI) of most domestic nuclear power plant is above 150 Btu/ft 2 -gal- .deg. F. Those plants with a HDCI of 150 Btu/ft 2 -gal- .deg. F or greater may be considered as 'high duty'. As aforementioned, the experience with zinc injection of high duty plant was lacking. Thus to apply zinc injection in domestic plant with high duty, prudent approach is needed. In this study the effect of zinc injection in Hanul unit 1 with a HDCI of around 150 Btu/ft 2 -gal- .deg. F was evaluated. And in the next study the effect of zinc injection in the plant of HDCI of around 200 Btu/ft 2 -gal- .deg. F will be evaluated. Zinc injection had not caused any increase in oxide thickness in Hanul unit 1. Most of the oxide thickness measurement data with zinc injection are well within the non-zinc injection database. And the computer code which was developed based on non-zinc injection database well predicts oxide thickness for fuel rod with zinc injection. Thus, it can be concluded that zinc injection doesn't accelerate clad corrosion. Based

  8. Irradiation behavior evaluation of oxide dispersion strengthened ferritic steel cladding tubes irradiated in JOYO

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Shinichiro, E-mail: yamashita.shinichiro@jaea.go.jp; Yano, Yasuhide; Ohtsuka, Satoshi; Yoshitake, Tsunemitsu; Kaito, Takeji; Koyama, Shin-ichi; Tanaka, Kenya

    2013-11-15

    Irradiation behavior of ODS steel cladding tubes was evaluated for the further progress in understanding of the neutron-irradiation effects on ODS steel. Two types of ODS (9Cr–ODS{sub F}/M, 12Cr–ODS{sub F}) steel cladding tubes with differences in basic compositions and matrix phases were irradiated in JOYO. Post-irradiation examination data concerning hardness, ring tensile property, and microstructure were obtained. Hardness measurement after irradiation showed that there was an apparent irradiation temperature dependence on hardness for 9Cr–ODS{sub F}/M steel whereas no distinct temperature dependence for 12Cr–ODS{sub F} steel. Also, there was no significant change in tensile strengths after irradiation below 923 K, but those above 1023 K up to 6.6 × 10{sup 26} n/m{sup 2} (E > 0.1 MeV) were decreased by about 20%. TEM observations showed that the radiation-induced defect cluster formation during irradiation was suppressed because of high density sink site for defect such as initially-existed dislocation, and precipitate interfaces. In addition, oxide particles were stable up to the maximum doses of this irradiation test.

  9. Studies of Corrosion of Cladding Materials in Simulated BWR-environment Using Impedance Measurements. Part I: Measurements in the Pre-transition Region

    International Nuclear Information System (INIS)

    Forsberg, Stefan; Ahlberg, Elisabet; Andersson, Ulf

    2004-09-01

    The corrosion of three Zircaloy 2 cladding materials, LK2, LK2+ and LK3, have been studied in-situ in an autoclave using electrochemical impedance spectroscopy. Measurements were performed in simulated BWR water at temperatures up to 288 deg C. The impedance spectra were successfully modelled using equivalent circuits. When the oxide grew thicker during the experiments, a change-over from one to two time constants was seen, showing that a layered structure was formed. Oxide thickness, oxide conductivity and effective donor density were evaluated from the impedance data. The calculated oxide thickness at the end of the experiments was consistent with the value obtained from SEM. It was shown that the difference in oxide growth rate between the investigated materials is small in the pre-transition region. The effective donor density, which is a measure of electronic conductivity, was found to be lower for the LK3 material compared to the other two materials

  10. Evaluation of simulated-LOCA tests that produced large fuel cladding ballooning

    International Nuclear Information System (INIS)

    Powers, D.A.; Meyer, R.O.

    1979-02-01

    A description is given of the NRC review and evaluation of simulated-LOCA tests that produced large axially extended ballooing in Zircaloy fuel cladding. Technical summaries are presented on the likelihood of the transient that was used in the tests, the effects of temperature variations on strain localization, and the results of other similar experiments. It is concluded that (a) the large axially extended deformations were an artifact of the experimental technique, (b) current NRC licensing positions are not invalidated by this new information, and (c) no new research programs are needed to study this phenomenon

  11. Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for SCWR in superheated steam

    International Nuclear Information System (INIS)

    Abe, Hiroshi; Hong, Seung Mo; Watanabe, Yutaka

    2014-01-01

    Highlights: • Effect of cold work on oxidation kinetics was clearly observed for 15Cr–20Ni SS. • The tube-shaped 15Cr–20Ni SS showed very good oxidation resistance. • The machined layer by cold drawing has a significant role to mitigate oxidation. - Abstract: Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for supercritical-water-cooled reactor (SCWR), including three types of 15Cr–20Ni stainless steels (1520 SSs), in the temperature range of 700–780 °C superheated steam have been investigated. Effect of temperature, dissolved oxygen (DO), degree of cold work (CW), and machined layer by cold drawing process on the oxidation kinetics assuming power-law kinetics are discussed. Characteristics of oxide layers and its relation to oxidation behaviors are also discussed. The effect of DO on the weight gain behavior in superheated steam at 700 °C was minor for all specimens at least up to 200 ppb DO. The tube-shaped specimens of 1520 SSs showed very good oxidation resistance at 700–780 °C. There was no clear difference in the oxidation kinetics among the three investigated types of 1520 SSs. The machined layer formed at the tube surface has a significant role to mitigate oxidation in superheated steam. A fine-grained microstructure near the surface due to recrystallization by cold drawing process is effective to form the protective Cr 2 O 3 layer. It has been suggested that since Cr diffusion in the outside surface of tubes is accelerated as a result of an increased dislocation density and/or grain refinement by cold drawing, tube specimens show very slow oxidation kinetics. Breakdown of the protective Cr 2 O 3 layer and nodule oxide formation were partly observed on the tube-shaped specimens of 15Cr–20Ni SSs. The reliability of Cr 2 O 3 layer has to be carefully examined to predict the oxidation kinetics after long-term exposure

  12. Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for SCWR in superheated steam

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroshi, E-mail: hiroshi.abe@qse.tohoku.ac.jp; Hong, Seung Mo; Watanabe, Yutaka

    2014-12-15

    Highlights: • Effect of cold work on oxidation kinetics was clearly observed for 15Cr–20Ni SS. • The tube-shaped 15Cr–20Ni SS showed very good oxidation resistance. • The machined layer by cold drawing has a significant role to mitigate oxidation. - Abstract: Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for supercritical-water-cooled reactor (SCWR), including three types of 15Cr–20Ni stainless steels (1520 SSs), in the temperature range of 700–780 °C superheated steam have been investigated. Effect of temperature, dissolved oxygen (DO), degree of cold work (CW), and machined layer by cold drawing process on the oxidation kinetics assuming power-law kinetics are discussed. Characteristics of oxide layers and its relation to oxidation behaviors are also discussed. The effect of DO on the weight gain behavior in superheated steam at 700 °C was minor for all specimens at least up to 200 ppb DO. The tube-shaped specimens of 1520 SSs showed very good oxidation resistance at 700–780 °C. There was no clear difference in the oxidation kinetics among the three investigated types of 1520 SSs. The machined layer formed at the tube surface has a significant role to mitigate oxidation in superheated steam. A fine-grained microstructure near the surface due to recrystallization by cold drawing process is effective to form the protective Cr{sub 2}O{sub 3} layer. It has been suggested that since Cr diffusion in the outside surface of tubes is accelerated as a result of an increased dislocation density and/or grain refinement by cold drawing, tube specimens show very slow oxidation kinetics. Breakdown of the protective Cr{sub 2}O{sub 3} layer and nodule oxide formation were partly observed on the tube-shaped specimens of 15Cr–20Ni SSs. The reliability of Cr{sub 2}O{sub 3} layer has to be carefully examined to predict the oxidation kinetics after long-term exposure.

  13. Development of oxide dispersion strengthened 9Cr ferritic-martensitic steel clad tube for fast reactor

    International Nuclear Information System (INIS)

    Laha, K.; Saroja, S.; Mathew, M.D.; Jayakumar, T.; Vijay, R.; Venugopal Reddy, A.; Lakshminarayana, B.; Kapoor, Komal; Jha, S.K.; Tonpe, S.S.

    2012-01-01

    One of the key issues in the economical operation of FBR is to achieve high burn-up of fuel (200-250 GWd/t) which considerably reduces the fuel cycle cost. This imposes stringent requirements of void swelling resistance upto 200 dpa for the core structural materials. Presently used alloy 09 (a modified austenitic stainless steel, 15Cr-15Ni-Ti) for PFBR has void swelling limit less than 150 dpa. Because of the inherent void swelling resistance, 9-12Cr steels ferritic/martensitic steels are qualified for irradiation upto 200 dpa but their low creep strength at temperatures above 600 deg C restricts their application as a clad material. Oxide dispersion strengthening is found to be promising means of extending the creep resistance of ferritic/martensitic steels beyond 650 deg C without sacrificing the inherent advantages of high thermal conductivity and low swelling of ferritic steels

  14. Effect of cladding defect size on the oxidation of irradiated spent LWR [light-water reactor] fuel below 3690C

    International Nuclear Information System (INIS)

    Einziger, R.E.; Strain, R.V.

    1984-01-01

    Tests on spent fuel fragments and rod segments were conducted between 250 and 360 0 C to relate temperature, defect size, and fuel oxidation rate with time-to-cladding-splitting. Defect sizes from 760 μm diameter down to 8 μm, the size of an SCC type breach, were used. Above 283 0 C, the time-to-cladding-splitting was longer for the smaller defects. The enhancement of the incubation time by smaller defects steadily decreased with temperature and was not detected at 250 0 C. 18 refs., 10 figs., 4 tabs

  15. Mechanisms of damage to the oxide layer of cladding of fuel rods under accident conditions like RI

    International Nuclear Information System (INIS)

    Busser, Vincent

    2009-01-01

    During reactivity initiated accident, the importance of cladding tube oxidation on its thermomechanical behavior has been investigated. After RIA tests in experimental reactors oxide damage including radial cracking and spallation of the outer oxide layer has been evidenced. This work aims at better understanding the key mechanisms controlling these phenomena. Laboratory air-oxidation of Zircaloy-4 cladding tubes has been performed at 470 C. SEM micrographs show that radial cracks are initiated from the outer surface of the oxide layer and propagated radially towards the oxide-metal interface. A model predicting the stress evolution within the oxide and the depth of crack has been developed and validated on literature tests and tests of this study. Ring compression tests were used for the experimental study of the oxide degradation under mechanical loading. Experimental data revealed three mechanisms: densification of the radial crack network, propagation of these radial cracks, branching and spallation of oxide fragments. The influence of the circumferential cracks, periodically distributed in the oxide layer, on the stress distribution in oxide fragments has been analysed using finite element modelling. The determining influence of these cracks on the maximum stress oxide fragments has been demonstrated. (author)

  16. Simulation of the thermomechanical interaction between pellet and cladding and fission gas release

    International Nuclear Information System (INIS)

    Denis, Alicia C.; Soba, Alejandro

    2000-01-01

    This paper summarizes the present status of a computer code that simulates some of the main phenomena occurring in a fuel element of a nuclear power reactor throughout its life. Temperature distribution, thermal expansion, elastic and plastic strains, creep, mechanical interaction between pellet and cladding, fission gas release, swelling and densification are modeled. Thermal expansion gives origin to elastic or plastic strains, which adequately describe the bamboo effect. The code assumes an axial symmetric rod and hence, cylindrical finite elements are employed for the discretization. The fission gas inventory is calculated by means of a diffusion model, which assumes spherical grains and uses also a finite element scheme. Once the temperature distribution in the pellet and the cladding is obtained and in order to reduce the calculation time, the rod is divided into five cylindrical rings where the temperature is averaged. In each ring the gas diffusion problem is solved in one representative grain and the results are then extended to the whole ring. The pressure, increased by the released gas, interacts with the stress field. Densification and swelling due to solid and gaseous fission products are also considered. Experiments, particularly those of the FUMEX series, are simulated with this code. A good agreement is obtained for the fuel center line temperature, the inside rod pressure and the fractional gas release. (author)

  17. 3D FE simulation of PCMI (Pellet-Cladding Mechanical Interaction) considering frictionless contact

    International Nuclear Information System (INIS)

    Seo, Sang-Kyu; Lee, Sung-Uk; Lee, Eun-Ho; Yang, Dong-Yol; Kim, Hyo-Chan; Yang, Yong-Sik

    2014-01-01

    The goal of this code is coupling every aspect of physical phenomenon. Monodimensional FE model has been made for METEOR. It is good to evaluate the global behavior in high burn up levels. However, the multi-dimensional PCI analysis code is necessary to precisely analyze the stress distribution especially in case of the crack analysis. CAST3M 3D finite element code has been developed considering thermo-mechanical interaction in detail for TOUTATIS code. The advanced multidimensional code called ALCYONE has been developed considering chemical-physics and thermomechanical aspects. Although there are many codes that analyze pellet and cladding interaction, it is difficult to consider every physical aspect. In this paper, pellet to cladding mechanical interaction in 3D has been simulated with frictionless contact using the developed module, which is written in FORTRANN90. In this paper, 3D PCMI FE model is simulated with frictionless contact and elastic deformation. From the frictionless contact analysis, the interfacial pressure has been calculated and then this is used to obtain the solid heat coefficient which is a main factor to analyze the thermal distribution

  18. Use of ion beams to simulate reaction of reactor fuels with their cladding

    International Nuclear Information System (INIS)

    Birtcher, R.C.; Baldo, P.

    2006-01-01

    Processes occurring within reactor cores are not amenable to direct experimental observation. Among major concerns are damage, fission gas accumulation and reaction between the fuel and its cladding all of which lead to swelling. These questions can be investigated through simulation with ion beams. As an example, we discuss the irradiation driven interaction of uranium-molybdenum alloys, intended for use as low-enrichment reactor fuels, with aluminum, which is used as fuel cladding. Uranium-molybdenum coated with a 100 nm thin film of aluminum was irradiated with 3 MeV Kr ions to simulate fission fragment damage. Mixing and diffusion of aluminum was followed as a function of irradiation with RBS and nuclear reaction analysis using the 27 Al(p,γ) 28 Si reaction which occurs at a proton energy of 991.9 keV. During irradiation at 150 deg. C, aluminum diffused into the uranium alloy at a irradiation driven diffusion rate of 30 nm 2 /dpa. At a dose of 90 dpa, uranium diffusion into the aluminum layer resulted in formation of an aluminide phase at the initial interface. The thickness of this phase grew until it consumed the aluminum layer. The rapid diffusion of Al into these reactor fuels may offer explanation of the observation that porosity is not observed in the fuel particles but on their periphery

  19. High-temperature air oxidation of E110 and Zr-1%Nb alloys claddings with coatings

    International Nuclear Information System (INIS)

    Kuprin, A.S.; Belous, V.A.; Voyevodin, V.N.; Bryk, V.V.; Vasilenko, R.L.; Ovcharenko, V.D.; Tolmachova, G.N.; V'yugov, P.N.

    2014-01-01

    Results of experimental study of the influence of protective vacuum-arc claddings on the base of compounds zirconium-chromium and of its nitrides on air oxidation resistance at temperatures 660, 770, 900, 1020, 1100 deg C during 3600 s. of tubes produced of zirconium alloys E110 and Zr-1%Nb (calcium-thermal alloy of Ukrainian production) are presented. Change of hardness, the width of oxide layer and depth of oxygen penetration into alloys from the side of coating and without coating are investigated by the methods of nanoindentation and by scanning electron microscopy. It is shown that the thickness of oxide layer in zirconium alloys at temperatures 1020 and 1100 deg C from the side of the coating doesn't exceed 5 μm, and from the unprotected side reaches the value of ≥ 120 μm with porous and rough structure. Tubes with coatings save their shape completely independently of the type of alloy; tubes without coatings deform with the production of through cracks

  20. Flow-Induced Vibration Measurement of an Inner Cladding Tube in a Simulated Dual-Cooled Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kim, Hyung Kyu; Yoon, Kyung Ho; Lee, Young Ho; Kim, Jae Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    To create an internal coolant flow passage in a dual cooled fuel rod, an inner cladding tube cannot have intermediate supports enough to relieve its vibration. Thus it can be suffered from a flow-induced vibration (FIV) more severely than an outer cladding tube which will be supported by series of spacer grids. It may cause a fatigue failure at welding joints on the cladding's end plug or fluid elastic instability of long, slender inner cladding due to decrease of a critical flow velocity. This is one of the challenging technical issues when a dual cooled fuel assembly is to be realized into a conventional reactor core To study an actual vibration phenomenon of a dual cooled fuel rod, FIV tests using a small-scale test bundle are being carried out. Measurement results of inner cladding tube of two typically simulated rods are presented. Causes of the differences in the vibration amplitude and response spectrum of the inner cladding tube in terms of intermediate support condition and pellet stacking are discussed.

  1. Performance-based ECCS cladding acceptance criteria: A new simulation approach

    International Nuclear Information System (INIS)

    Zoino, A.; Alfonsi, A.; Rabiti, C.; Szilard, R.H.; Giannetti, F.; Caruso, G.

    2017-01-01

    Highlights: • A new methodology to demonstrate compliance with the new ECCS acceptance criteria is described. • A wide spectrum of fuel rod initial burnup states can be analysed in the design phase. • The coupled suite PHISICS/RELAP5-3D has been used in the analyses. • A demo simulation of the equilibrium cycle, load-following and a LOCA analysis has been performed. - Abstract: The U.S. Nuclear Regulatory Commission is currently proposing rulemaking to revise the Loss Of Coolant Accident (LOCA) and therefore the Emergency Core Cooling System (ECCS) acceptance criteria, to include the effects of higher burnup on cladding performance as well as to address other technical issues. As motivated by the new rule, the need to use advanced cladding designs may be a result. A loss of operational margin may result due to the more restrictive cladding embrittlement criteria. Initial and future compliance with the rule may significantly increase vendor workload and licensee cost, as a spectrum of fuel rod initial burnup states may need to be analyzed to demonstrate compliance. Consequently, there will be an increased focus on licensee decision making related to LOCA analysis to minimize cost and impact, and to manage margin. The study here presented has been part of a big project used to investigate technical issues and approaches for future industrial applications within the Risk-Informed Safety Margin Characterization (RISMC) Pathway. Specifically, the primary aim of this study is to lay out a roadmap to demonstrate the application of the new methodology. The present analysis shows a simplified version of the methodology of an industrial application on the Core Design and the Multi-Cycle Analysis.

  2. Synchrotron X-ray diffraction investigations on strains in the oxide layer of an irradiated Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Chollet, Mélanie; Valance, Stéphane; Abolhassani, Sousan; Stein, Gene; Grolimund, Daniel; Martin, Matthias; Bertsch, Johannes

    2017-01-01

    For the first time the microstructure of the oxide layer of a Zircaloy-2 cladding after 9 cycles of irradiation in a boiling water reactor has been analyzed with synchrotron micro-X-ray diffraction. Crystallographic strains of the monoclinic and to some extent of the tetragonal ZrO 2 are depicted through the thick oxide layer. Thin layers of sub-oxide at the oxide-metal interface as found for autoclave-tested samples and described in the literature, have not been observed in this material maybe resulting from irradiation damage. Shifts of selected diffraction peaks of the monoclinic oxide show that the uniform strain produced during oxidation is orientated in the lattice and displays variations along the oxide layer. Diffraction peaks and their shifts from families of diffracting planes could be translated into a virtual tensor. This virtual tensor exhibits changes through the oxide layer passing by tensile or compressive components. - Highlights: •A Zircaloy-2 cladding irradiated 9 cycles was investigated thanks to synchrotron X-ray diffraction. •Microstructure and uniform strain through the oxide layer is revealed. •The m-ZrO 2 uniform strain is oriented presenting compression along the (−111) plane. •Virtual tensor is built based on reflecting planes of families of grains. •Tensor components vary from tensile to compressive along the oxide layer.

  3. Synchrotron X-ray diffraction investigations on strains in the oxide layer of an irradiated Zircaloy fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Chollet, Mélanie, E-mail: melanie.chollet@psi.ch [Paul Scherrer Institute, NES, 5232 Villigen (Switzerland); Valance, Stéphane; Abolhassani, Sousan; Stein, Gene [Paul Scherrer Institute, NES, 5232 Villigen (Switzerland); Grolimund, Daniel [Paul Scherrer Institute, SLS, 5232 Villigen (Switzerland); Martin, Matthias; Bertsch, Johannes [Paul Scherrer Institute, NES, 5232 Villigen (Switzerland)

    2017-05-15

    For the first time the microstructure of the oxide layer of a Zircaloy-2 cladding after 9 cycles of irradiation in a boiling water reactor has been analyzed with synchrotron micro-X-ray diffraction. Crystallographic strains of the monoclinic and to some extent of the tetragonal ZrO{sub 2} are depicted through the thick oxide layer. Thin layers of sub-oxide at the oxide-metal interface as found for autoclave-tested samples and described in the literature, have not been observed in this material maybe resulting from irradiation damage. Shifts of selected diffraction peaks of the monoclinic oxide show that the uniform strain produced during oxidation is orientated in the lattice and displays variations along the oxide layer. Diffraction peaks and their shifts from families of diffracting planes could be translated into a virtual tensor. This virtual tensor exhibits changes through the oxide layer passing by tensile or compressive components. - Highlights: •A Zircaloy-2 cladding irradiated 9 cycles was investigated thanks to synchrotron X-ray diffraction. •Microstructure and uniform strain through the oxide layer is revealed. •The m-ZrO{sub 2} uniform strain is oriented presenting compression along the (−111) plane. •Virtual tensor is built based on reflecting planes of families of grains. •Tensor components vary from tensile to compressive along the oxide layer.

  4. Simulation of pellet-cladding interaction with the Pleiades fuel performance software environment

    International Nuclear Information System (INIS)

    Michel, B.; Nonon, C.; Sercombe, J.; Michel, F.; Marelle, V.

    2013-01-01

    This paper focuses on the PLEIADES fuel performance software environment and its application to the modeling of pellet-cladding interaction (PCI). The PLEIADES platform has been under development for 10 yr; a unified software environment, including the multidimensional finite element solver CAST3M, has been used to develop eight computation schemes now under operation. Among the latter, the ALCYONE application is devoted to pressurized water reactor fuel rod behavior. This application provides a three-dimensional (3-D) model for a detailed analysis of fuel element behavior and enables validation through comparing simulation and post-irradiation examination results (cladding residual diameter and ridges, dishing filling, pellet cracking, etc.). These last years the 3-D computation scheme of the ALCYONE application has been enriched with a complete set of physical models to take into account thermomechanical and chemical-physical behavior of the fuel element under irradiation. These models have been validated through the ALCYONE application on a large experimental database composed of approximately 400 study cases. The strong point of the ALCYONE application concerns the local approach of stress-corrosion-cracking rupture under PCI, which can be computed with the 3-D finite element solver. Further developments for PCI modeling in the PLEIADES platform are devoted to a new mesh refinement method for assessing stress-and-strain concentration (multigrid technique) and a new component for assessing fission product chemical recombination. (authors)

  5. Modeling of mechanical behavior of quenched zirconium-based nuclear fuel claddings after a high temperature oxidation

    International Nuclear Information System (INIS)

    Cabrera-Salcedo, A.

    2012-01-01

    During the second stage of Loss Of Coolant Accident (LOCA) in Pressurized Water Reactors (PWR) zirconium-based fuel claddings undergo a high temperature oxidation (up to 1200 C), then a water quench. After a single-side steam oxidation followed by a direct quench, the cladding is composed of three layers: an oxide (Zirconia) outer layer (formed at HT), always brittle at Room Temperature (RT), an intermediate oxygen stabilized alpha layer, always brittle at RT, called alpha(O), and an inner 'prior-beta' layer, which is the only layer able to keep some significant Post Quench (PQ) ductility at RT. However, hydrogen absorbed because of service exposure or during the LOCA transient, concentrates in this layer and may leads to its embrittlement. To estimate the PQ mechanical properties of these materials, Ring Compression Tests (RCT) are widely used because of their simplicity. Small sample size makes RCTs advantageous when a comparison with irradiated samples is required. Despite their good reproducibility, these tests are difficult to interpret as they often present two or more load drops on the engineering load-displacement curve. Laboratories disagree about their interpretation. This study proposes an original fracture scenario for a stratified PQ cladding tested by RCT, and its associated FE model. Strong oxygen content gradient effect on layers mechanical properties is taken into account in the model. PQ thermal stresses resulting from water quench of HT oxidized cladding are investigated, as well as progressive damage of three layers during an RCT. The proposed scenario is based on interrupted RCT analysis, post- RCT sample's outer layers observation for damage evaluation, RCTs of prior-beta single-layer rings, and mechanical behavior of especially chemically adjusted samples. The force displacement curves appearance is correctly reproduced using the obtained FE model. The proposed fracture scenario elucidates RCTs of quenched zirconium-based nuclear fuel

  6. Strengthening effect of reduced graphene oxide in steel clad copper rod

    Science.gov (United States)

    Gao, Haitao; Liu, Xianghua; Ai, Zhengrong; Zhang, Shilong; Liu, Lizhong

    2016-11-01

    Reduced graphene oxide has been extensively used as reinforcing agent owing to their high mechanical properties. In this work, an attempt is made to synthesize steel clad copper rod reinforced with reduced graphene oxide (RGO) by the combination of powder-in-tube and intermediate annealing (IA). Experiments show that the Fe/RGO/Cu composites manifest better mechanical properties than Fe/Cu composites. In the process of groove rolling, RGO acts as effective binder, which can greatly improve the adhesive strength of copper scrap and two metals. Moreover, the strengthening effect of RGO is tightly related to its dispersion state. The RGO diffuses much more uniformly on the metallic substrate under the IA temperature of 1100 °C than 800 °C, which can be characterized by less deformation twins appearing at the interface of core copper and the formation of Fe-RGO-Cu transition belt at the bonding interface. In this case, the peak hardness, tensile strength and shear strength of Fe/RGO/Cu composites are 52 HV, 125 and 41 MPa higher than those of the Fe/Cu composites, respectively. The difference of strengthening effect and mechanisms of RGO under 800 and 1100 °C of IA are systematically discussed by referring to experimental results.

  7. Computer simulation of oxides

    International Nuclear Information System (INIS)

    Rowley, A.

    1998-01-01

    An ionic interaction model is developed which accounts for the effects of the ionic environment upon the electron densities of both cations and anions through changes in their size and shape and is transferable between materials. These variations are represented by additional dynamical variables which are handled within the model using the techniques of the Car-Parrinello method. The model parameters are determined as far as possible by input from external ab initio electronic structure calculations directed at examining the individual effects of the ionic environment upon the ions, particularly the oxide ion. Techniques for the evaluation of dipolar and quadrupolar Ewald sums in non-cubic simulation cells and the calculation of the pressure due to the terms in the potential are presented. This model is applied to the description of the perfect crystal properties and phonon dispersion curves of MgO. Consideration of the high symmetry phonon modes allows parameterization of the remaining model parameters in an unambiguous fashion. The same procedure is used to obtain parameters for CaO. These two parameter sets are examined to determine how they may be used to generate the parameters for SrO and simple scaling relationships based on ionic radii and polarizabilities are formulated. The transferability of the model to Cr 2 O 3 is investigated using parameters generated from the alkaline earth oxides. The importance of lower symmetry model terms, particularly quadrupolar interactions, at the low symmetry ion sites in the crystal structure is demonstrated. The correct ground-state crystal structure is predicted and the calculated surface energies and relaxation phenomena are found to agree well with previous ab initio studies. The model is applied to GeO 2 as a strong test of its applicability to ion environments far different from those encountered in MgO. An good description of the crystal structures is obtained and the interplay of dipolar and quadrupolar effects is

  8. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes

    KAUST Repository

    Myzaferi, A.; Reading, A. H.; Cohen, D. A.; Farrell, R. M.; Nakamura, S.; Speck, J. S.; DenBaars, S. P.

    2016-01-01

    The bottom cladding design of semipolar III-nitride laser diodes is limited by stress relaxation via misfit dislocations that form via the glide of pre-existing threading dislocations (TDs), whereas the top cladding is limited by the growth time

  9. The pellet-cladding contact in a fuel rod and its simulation by finite elements

    International Nuclear Information System (INIS)

    Tanajura, C.A.S.

    1988-01-01

    A model to analyse the mechanical behavior of a fuel rod of a PWR is presented. We drew our attention to the phenomenon of pellet-pellet and pellet-cladding contact by taking advantage of a model which assumes the hypotheses of axisymmetry, elastic behavior with infinitesimal deformations and changes of the material properties with temperature. It also includes the effects of swelling and initial relocation. The problem of contact gives rise to a variational formulation which employs Lagrangian multipliers. With this approach an iterative scheme is constructed to obtain the solution. The finite element method is applied to space discretization. The model sensibility to some parameters and its performance concerning fuel rod behavior is discussed by means of numerical simulations. (author) [pt

  10. Interaction of an iridium-clad RTG heat source unit with a simulated terrestrial environment

    International Nuclear Information System (INIS)

    Patterson, J.H.; Herrera, B.; Nelson, G.B.; Matlack, G.M.; Waterbury, G.R.

    1976-02-01

    An iridium-clad, 100-W 238 PuO 2 sphere, a prototype for the multihundred-watt radioisotope thermoelectric generator, was exposed for 1 y to a simulated temperate humid climate in an environmental test chamber containing sandy soil. The hot sphere sank into the soil after the first rain, then gradually acquired a hard crust around it as a result of the rainwater reacting with the hot soil during successive rains. Time and temperature profiles of the sphere were recorded during the weekly rains, and the air and rainwater that percolated through the soil were monitored for plutonium. No plutonium was released from the sphere. Aside from the crust formation, very little reaction occurred between the hot iridium shell and the soil

  11. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  12. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    International Nuclear Information System (INIS)

    Zirker, Larry; Jerred, Nathan; Charit, Indrajit; Cole, James

    2012-01-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  13. Prediction model for oxide thickness on aluminum alloy cladding during irradiation

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Hofman, G.L.; Hanan, N.A.; Snelgrove, J.L.

    2003-01-01

    An empirical model predicting the oxide film thickness on aluminum alloy cladding during irradiation has been developed as a function of irradiation time, temperature, heat flux, pH, and coolant flow rate. The existing models in the literature are neither consistent among themselves nor fit the measured data very well. They also lack versatility for various reactor situations such as a pH other than 5, high coolant flow rates, and fuel life longer than ∼1200 hrs. Particularly, they were not intended for use in irradiation situations. The newly developed model is applicable to these in-reactor situations as well as ex-reactor tests, and has a more accurate prediction capability. The new model demonstrated with consistent predictions to the measured data of UMUS and SIMONE fuel tests performed in the HFR, Petten, tests results from the ORR, and IRIS tests from the OSIRIS and to the data from the out-of-pile tests available in the literature as well. (author)

  14. Design of photonic crystal surface emitting lasers with indium-tin-oxide top claddings

    Science.gov (United States)

    Huang, Shen-Che; Hong, Kuo-Bin; Chiu, Han-Lun; Lan, Shao-Wun; Chang, Tsu-Chi; Li, Heng; Lu, Tien-Chang

    2018-02-01

    Electrically pumped GaAs-based photonic crystal surface emitting lasers were fabricated using a simple fabrication process by directly capping the indium-tin-oxide transparent conducting thin film as the top cladding layer upon a photonic crystal layer. Optimization of the separate-confinement heterostructures of a laser structure is crucial to improving characteristics by providing advantageous optical confinements. The turn-on voltage, series resistance, threshold current, and slope efficiency of the laser with a 100 × 100 μm2 photonic crystal area operated at room temperature were 1.3 V, 1.5 Ω, 121 mA, and 0.2 W/A, respectively. Furthermore, we demonstrated a single-lobed lasing wavelength of 928.6 nm at 200 mA and a wavelength redshift rate of 0.05 nm/K in temperature-dependent measurements. The device exhibited the maximum output power of approximately 400 mW at an injection current of 2 A; moreover, divergence angles of less than 1° for the unpolarized circular-shaped laser beam were measured at various injection currents. Overall, the low threshold current, excellent beam quality, small divergence, high output power, and high-operating-temperature (up to 343 K) of our devices indicate that they can potentially fill the requirements for next-generation light sources and optoelectronic devices.

  15. Analysis of clad motion observed in loss of flow accident simulation experiments

    International Nuclear Information System (INIS)

    Henkel, P.R.

    1987-01-01

    The clad motion observed in the first two STAR experiments is analysed. The movies reveal that at moderate temperatures molten cladding does not wet fresh fuel (within an argon gas atmosphere). The prevailing flow regime consists of single waves contacting the fuel pins and entrained drops. Entrainment is possible already at gas velocities of order 40-50 m/s. A multichannel clad motion model is presented that accounts for both flow modes. (author)

  16. Simulation of a pellet-clad mechanical interaction with ABAQUS and its verification

    International Nuclear Information System (INIS)

    Cheon, J.-S.; Lee, B.-H.; Koo, Y.-H.; Sohn, D.-S.; Oh, J.-Y.

    2003-01-01

    Pellet-clad mechanical interaction (PCMI) during power transients for MOX fuel is modelled by a FE method. The PCMI model predicts well clad elongation during power ramp and relaxation during power hold except the fuel behaviour during a power decrease. Higher fiction factor results in the earlier occurrence of PCMI and more enhanced clad elongation. The relaxation is dependent on the irradiation creep rate of the pellet and axial compressive force. Verification of the PCMI model was done using recent MOX experimental data. Temperature and clad elongation for the fuel rod can be evaluated in a reasonable way

  17. Modelling the gas transport and chemical processes related to clad oxidation and hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, R O; Rashid, Y R [ANATECH Research Corp., San Diego, CA (United States)

    1997-08-01

    Models are developed for the gas transport and chemical processes associated with the ingress of steam into a LWR fuel rod through a small defect. These models are used to determine the cladding regions in a defective fuel rod which are susceptible to massive hydriding and the creation of sunburst hydrides. The brittle nature of zirconium hydrides (ZrH{sub 2}) in these susceptible regions produces weak spots in the cladding which can act as initiation sites for cladding cracks under certain cladding stress conditions caused by fuel cladding mechanical interaction. The modeling of the axial gas transport is based on gaseous bimolar diffusion coupled with convective mass transport using the mass continuity equation. Hydrogen production is considered from steam reaction with cladding inner surface, fission products and internal components. Eventually, the production of hydrogen and its diffusion along the length results in high hydrogen concentration in locations remote from the primary defect. Under these conditions, the hydrogen can attack the cladding inner surface and breakdown the protective ZrO{sub 2} layer locally, initiating massive localized hydriding leading to sunburst hydride. The developed hydrogen evolution model is combined with a general purpose fuel behavior program to integrate the effects of power and burnup into the hydriding kinetics. Only in this manner can the behavior of a defected fuel rod be modeled to determine the conditions the result in fuel rod degradation. (author). 14 refs, 6 figs.

  18. High Temperature Steam Oxidation Testing of Candidate Accident Tolerant Fuel Cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nelson, Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parkison, Adam [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2013-12-23

    The Fuel Cycle Research and Development (FCRD) program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels in order to overcome the inherent shortcomings of light water reactor (LWR) fuels when exposed to beyond design basis accident conditions. The campaign has invested in development of experimental infrastructure within the Department of Energy complex capable of chronicling the performance of a wide range of concepts under prototypic accident conditions. This report summarizes progress made at Oak Ridge National Laboratory (ORNL) and Los Alamos National Laboratory (LANL) in FY13 toward these goals. Alternative fuel cladding materials to Zircaloy for accident tolerance and a significantly extended safety margin requires oxidation resistance to steam or steam-H2 environments at ≥1200°C for short times. At ORNL, prior work focused attention on SiC, FeCr and FeCrAl as the most promising candidates for further development. Also, it was observed that elevated pressure and H2 additions had minor effects on alloy steam oxidation resistance, thus, 1 bar steam was adequate for screening potential candidates. Commercial Fe-20Cr-5Al alloys remain protective up to 1475°C in steam and CVD SiC up to 1700°C in steam. Alloy development has focused on Fe-Cr-Mn-Si-Y and Fe-Cr-Al-Y alloys with the aluminaforming alloys showing more promise. At 1200°C, ferritic binary Fe-Cr alloys required ≥25% Cr to be protective for this application. With minor alloy additions to Fe-Cr, more than 20%Cr was still required, which makes the alloy susceptible to α’ embrittlement. Based on current results, a Fe-15Cr-5Al-Y composition was selected for initial tube fabrication and welding for irradiation experiments in FY14. Evaluations of chemical vapor deposited (CVD) SiC were conducted up to 1700°C in steam. The reaction of H2O with the alumina reaction tube at 1700°C resulted in Al(OH)3

  19. Simulation of pellet-cladding thermomechanical interaction and fission gas release

    International Nuclear Information System (INIS)

    Denis, Alicia; Soba, Alejandro

    2003-01-01

    This paper summarizes the present status of a computer code that describes some of the main phenomena occurring in a nuclear fuel rod throughout its life. Temperature distribution, thermal expansion, elastic and plastic strains, creep, mechanical interaction between pellet and cladding, fission gas release, gas mixing, swelling, and densification are modeled. The modular structure of the code allows for the incorporation of models to simulate different phenomena and material properties. Collapsible rods can be also simulated. The code is bidimensional, assumes cylindrical symmetry for the rod and uses the finite element method to integrate the differential equations. The stress-strain and heat conduction problems are nonlinear due to plasticity and to the temperature dependence of the thermal conductivity. The fission gas inventory is calculated with a diffusion model, assuming spherical grains and using a one-dimensional finite element scheme. Pressure increase, swelling and densification are coupled with the stress field. Good results are obtained for the simulation of the irradiation tests of the first argentine prototypes of MOX fuels, where the bamboo effect is clearly observed, and of the FUMEX series for the fuel centerline temperature, the inside rod pressure and the fractional gas release.

  20. RELAP5 model to simulate the thermal-hydraulic effects of grid spacers and cladding rupture during reflood

    Energy Technology Data Exchange (ETDEWEB)

    Nithianandan, C.K.; Klingenfus, J.A.; Reilly, S.S. [B& W Nuclear Technologies, Lynchburg, VA (United States)

    1995-09-01

    Droplet breakup at spacer grids and a cladding swelled and ruptured locations plays an important role in the cooling of nuclear fuel rods during the reflooding period of a loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). During the reflood phase, a spacer grid affects the thermal-hydraulic system behavior through increased turbulence, droplet breakup due to impact on grid straps, grid rewetting, and liquid holdup due to grid form losses. Recently, models to simulate spacer grid effects and blockage and rupture effects on system thermal hydraulics were added to the B&W Nuclear Technologies (BWNT) version of the RELAP5/MOD2 computer code. Several FLECHT-SEASET forced reflood tests, CCTF Tests C1-19 and C2-6, SCTF Test S3-15, and G2 Test 561 were simulated using RELAP5/MOD2-B&W to verify the applicability of the model at the cladding swelled and rupture locations. The results demonstrate the importance of modeling the thermal-hydraulic effects due to grids, and clad swelling and rupture to correctly predict the clad temperature response during the reflood phase of large break LOCA. The RELAP5 models and the test results are described in this paper.

  1. Fuel-cladding chemical interaction correlation for mixed-oxide fuel pins

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1986-10-01

    A revised wastage correlation was developed for FCCI with fabrication and operating parameters. The expansion of the data base to 305 data sets provided sufficient data to employ normal statistical techniques for calculation of confidence levels without unduly penalizing predictions. The correlation based on 316 SS cladding also adequately accounts for limited measured depths of interaction for fuel pins with D9 and HTq cladding

  2. Steam oxidation of Zr 1% Nb clads of VVER fuels in high temperature

    International Nuclear Information System (INIS)

    Solyanyj, V.I.; Bibilashvili, Yu.K.; Dranenko, V.V.; Levin, A.Ya.; Izrajlevskij, L.B.; Morozov, A.M.

    1984-01-01

    In a wide range of accident conditions processes of clad corrosion effected by steam are rather intensive and in many respects influence the safety of NPP and the after-accident dismantling of a reactor core. This paper discusses the results of comprehensive studies into corrosion behaviour of Zr 1%Nb clads of VVER-type fuels at high temperatures. These studies are a continuation of previous work and the base for the design modelling of corrosion processes

  3. A thermodynamic model for the attack behaviour in stainless steel clad oxide fuel pins

    International Nuclear Information System (INIS)

    Goetzmann, O.

    1979-01-01

    So far, post irradiation examination of burnt fuel pins has not revealed a clear cut picture of the cladding attack situation. For seemingly same conditions sometimes attack occurs, sometimes not. This model tries to depict the reaction possibilities along the inner cladding wall on the basis of thermodynamic facts in the fuel pin. It shows how the thermodynamic driving force for attack changes along the fuel column, and with different initial and operational conditions. Two criteria for attack are postulated: attack as a result of the direct reaction of reactive elements with cladding components; and attack as a result of the action of a special agent (CsOH). In defining a reaction potenial the oxygen potential, the temperature conditions (cladding temperature and fuel surface temperature), and the fission products are involved. For the determination of the oxygen potential at the cladding, three models for the redistribution of oxygen across the fuel/clad gap are offered. The effect of various parameters, like rod power, gap conductance, oxygen potential, inner wall temperature, on the thermodynamic potential for attack is analysed. (Auth.)

  4. Nonequilibrium synthesis of NbAl3 and Nb-Al-V alloys by laser cladding. II - Oxidation behavior

    Science.gov (United States)

    Haasch, R. T.; Tewari, S. K.; Sircar, S.; Loxton, C. M.; Mazumder, J.

    1992-01-01

    Isothermal oxidation behaviors of NbAl3 alloy synthesized by laser cladding were investigated at temperatures between 800 and 1400 C, and the effect of vanadium microalloying on the oxidation of the laser-clad alloy was examined. The oxidation kinetics of the two alloys were monitored using thermal gravimetric weight gain data, and the bulk and surface chemistries were analyzed using XRD and XPS, respectively. It was found that NbAl3 did not form an exclusive layer of protective Al2O3. The oxidation products at 800 C were found to be a mixture of Nb2O5 and Al2O3. At 1200 C, a mixture of NbAlO4, Nb2O5, and Al2O3 formed; and at 1400 C, a mixture of NbAlO4, Al2O3, NbO2, NbO(2.432), and Nb2O5 formed. The addition of V led to a dramatic increase of the oxidation rate, which may be related to the formation of (Nb, V)2O5 and VO2, which grows in preference to protective Al2O3.

  5. Preliminary study of mechanical behavior for Cr coated Zr-4 Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do-Hyoung; Kim, Hak-Sung [Hanyang Univ., Seoul (Korea, Republic of); Kim, Hyo-Chan; Yang, Yong-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To decrease the oxidation rate of Zr-based alloy components, many concepts of accident tolerant fuel (ATF) such as Mo-Zr cladding, SiC/SiCf cladding and iron-based alloy cladding are under development. One of the promised concept is the coated cladding which can remarkably increase the corrosion and wear resistance. Recently, KAERI is developing the Cr coated Zircaloy cladding as accident tolerance cladding. To coat the Cr powder on the Zircaloy, 3D laser coating technology has been employed because it is possible to make a coated layer on the tubular cladding surface by controlling the 3-diminational axis. Therefore, for this work, the mechanical integrity of Cr coated Zircaloy should be evaluated to predict the safety of fuel cladding during the operating or accident of nuclear reactor. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr, which were referred from the literatures and experimental reports. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr. The pellet-clad mechanical interaction (PCMI) properties of Cr coated Zr-4 cladding were investigated by thermo-mechanical finite element analysis (FEA) simulation. The mechanical properties of Zr-4 and Cr was validated by simulation of ring compression test (RCT) of fuel cladding.

  6. A simulation study on the multi-pass rolling bond of 316L/Q345R stainless clad plate

    Directory of Open Access Journals (Sweden)

    Qin Qin

    2015-07-01

    Full Text Available This article describes an investigation into interface bonding research of 316L/Q345R stainless clad plate. A three-dimensional thermal–elastic–plastic model has been established using finite element analysis to model the multi-pass hot rolling process. Results of the model have been compared with those obtained from a rolling experiment of stainless clad plate. The comparisons of temperature and profile of the rolled stainless clad plate have indicated a satisfactory accuracy of finite element analysis simulation. Effects on interface bonding by different parameters including pre-heating temperature, multi-pass thickness reduction rules, rolling speed, covering rate, and different assemble patterns were analyzed systematically. The results show that higher temperature and larger thickness reduction are beneficial to achieve the bonding in vacuum hot rolling process. The critical reduction in the bond at the temperature of 1200 °C is 28%, and the critical thickness reduction reduces by about 2% when the temperature increases by 50 °C during the range from 1000 °C to 1250 °C. And the relationship between the minimum pass number and thickness reduction has been suggested. The results also indicate that large covering rate in the assemble pattern of outer soft and inner hard is beneficial to achieve the bond of stainless clad plate.

  7. Ceramic Coatings for Clad (The C3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sickafus, Kurt E. [Univ. of Tennessee, Knoxville, TN (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Miller, Larry [Univ. of Tennessee, Knoxville, TN (United States); Weber, Bill [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States); Patel, Maulik [Univ. of Tennessee, Knoxville, TN (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Wolfe, Doug [Pennsylvania State Univ., University Park, PA (United States); Fratoni, Max [Univ. of California, Berkeley, CA (United States); Raj, Rishi [Univ. of Colorado, Boulder, CO (United States); Plunkett, Kenneth [Univ. of Colorado, Boulder, CO (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Hollis, Kendall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Chris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Comstock, Robert [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Partezana, Jonna [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Whittle, Karl [Univ. of Sheffield (United Kingdom); Preuss, Michael [Univ. of Manchester (United Kingdom); Withers, Philip [Univ. of Manchester (United Kingdom); Wilkinson, Angus [Univ. of Oxford (United Kingdom); Donnelly, Stephen [Univ. of Huddersfield (United Kingdom); Riley, Daniel [Australian Nuclear Science and Technology Organisation, Syndney (Australia)

    2017-02-14

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectives of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as

  8. Simulation of pellet-cladding thermomechanical interaction and fission gas release

    International Nuclear Information System (INIS)

    Denis, A.; Soba, A.

    2001-01-01

    This paper summarizes the present status of a computer code that describes some of the main phenomena occurring in a nuclear fuel element throughout its life. Temperature distribution, thermal expansion, elastic and plastic strains, creep, mechanical interaction between pellet and cladding, fission gas release, swelling and densification are modelized. The code assumes an axi-symmetric rod and hence, cylindrical finite elements are employed for the discretization. Due to the temperature dependence of the thermal conductivity, the heat conduction problem is non-linear. Thermal expansion gives origin to elastic or plastic strains, which adequately describe the bamboo effect. Plasticity renders the stress-strain problem non linear. The fission gas inventory is calculated by means of a diffusion model, which assumes spherical grains and uses a finite element scheme. In order to reduce the calculation time, the rod is divided into five cylindrical rings where the temperature is averaged. In each ring the gas diffusion problem is solved in one grain and the results are then extended to the whole ring. The pressure, increased by the released gas, interacts with the stress field. Densification and swelling due to solid and gaseous fission products are also considered. Experiments, particularly those of the FUMEX series, are simulated with this code. A good agreement is obtained for the fuel center line temperature, the inside rod pressure and the fractional gas release. (author)

  9. Investigation of Y2O3 distribution in the welded joints of the fast reactor fuel claddings made of oxide dispersion strengthened steel

    International Nuclear Information System (INIS)

    Tabakin, E.M.; Kuz'min, S.V.; Ivanovich, Yu.V.; Ukai, Sh.; Kaito, T.; Seki, M.

    2007-01-01

    The study results of Y 2 O 3 distribution in welded joints of claddings from oxide dispersion strengthened steel produced by the technique of powder metallurgy are given in this paper. Change of content and distribution uniformity of yttrium oxide in welds in comparison with metal shell is the result of using flash welding of thin-walled fuel claddings. It is shown that concentration and yttrium oxide distribution uniformity in the cross section of weld, made by pulse laser welding is more high as compared with argon-arc welding [ru

  10. Structural cladding /clad structures

    DEFF Research Database (Denmark)

    Beim, Anne

    2012-01-01

    Structural Cladding /Clad Structures: Studies in Tectonic Building Practice A. Beim CINARK – Centre for Industrialized Architecture, Institute of Architectural Technology, The Royal Danish Academy of Fine Arts School of Architecture, Copenhagen, Denmark ABSTRACT: With point of departure in the pr......Structural Cladding /Clad Structures: Studies in Tectonic Building Practice A. Beim CINARK – Centre for Industrialized Architecture, Institute of Architectural Technology, The Royal Danish Academy of Fine Arts School of Architecture, Copenhagen, Denmark ABSTRACT: With point of departure...... to analyze, compare, and discuss how these various construction solutions point out strategies for development based on fundamentally different mindsets. The research questions address the following issues: How to learn from traditional construction principles: When do we see limitations of tectonic maneuver......, to ask for more restrictive building codes. As an example, in Denmark there are series of increasing demands in the current building legislations that are focused at enhancing the energy performance of buildings, which consequently foster rigid insulation standards and ask for improvement of air...

  11. Oxidation of Zircaloy Fuel Cladding in Water-Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Digby; Urquidi-Macdonald, Mirna; Chen, Yingzi; Ai, Jiahe; Park, Pilyeon; Kim, Han-Sang

    2006-12-12

    Our work involved the continued development of the theory of passivity and passivity breakdown, in the form of the Point Defect Model, with emphasis on zirconium and zirconium alloys in reactor coolant environments, the measurement of critically-important parameters, and the development of a code that can be used by reactor operators to actively manage the accumulation of corrosion damage to the fuel cladding and other components in the heat transport circuits in both BWRs and PWRs. In addition, the modified boiling crevice model has been further developed to describe the accumulation of solutes in porous deposits (CRUD) on fuel under boiling (BWRs) and nucleate boiling (PWRs) conditions, in order to accurately describe the environment that is contact with the Zircaloy cladding. In the current report, we have derived expressions for the total steady-state current density and the partial anodic and cathodic current densities to establish a deterministic basis for describing Zircaloy oxidation. The models are “deterministic” because the relevant natural laws are satisfied explicitly, most importantly the conversation of mass and charge and the equivalence of mass and charge (Faraday’s law). Cathodic reactions (oxygen reduction and hydrogen evolution) are also included in the models, because there is evidence that they control the rate of the overall passive film formation process. Under open circuit conditions, the cathodic reactions, which must occur at the same rate as the zirconium oxidation reaction, are instrumental in determining the corrosion potential and hence the thickness of the barrier and outer layers of the passive film. Controlled hydrodynamic methods have been used to measure important parameters in the modified Point Defect Model (PDM), which is now being used to describe the growth and breakdown of the passive film on zirconium and on Zircaloy fuel sheathing in BWRs and PWRs coolant environments. The modified PDMs recognize the existence of a

  12. Laser cladding in-situ carbide particle reinforced Fe-based composite coatings with rare earth oxide addition

    Institute of Scientific and Technical Information of China (English)

    吴朝锋; 马明星; 刘文今; 钟敏霖; 张红军; 张伟明

    2009-01-01

    Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal surface with various volume fractions of ceramic particles.Recent literatures showed that laser melting of powder mixture containing carbon and carbide-forming elements,was favorable for the formation of in-situ synthesized carbide particles.In this paper,rare earth oxide(RE2O3) was added into t...

  13. High temperature steam oxidation of Al3Ti-based alloys for the oxidation-resistant surface layer on Zr fuel claddings

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; Kim, Il-Hyun; Jung, Yang-Il; Kim, Hyun-Gil; Park, Dong-Jun; Choi, Byung-Kwon

    2013-01-01

    We investigated the feasibility to apply Al 3 Ti-based alloys as the surface layer for improving the oxidation resistance of Zr fuel claddings under accident conditions. Two types of Al 3 Ti-based alloys with the compositions of Al–25Ti–10Cr and Al–21Ti–23Cr in atomic percent were prepared by arc-melting followed by homogenization annealing at 1423 K for 48 h. Al–25Ti–10Cr alloy showed an L1 2 quasi-single phase microstructure with a lot of needle-shaped minor phase and pores. Al–21Ti–23Cr alloy consisted of an L1 2 matrix and Cr 2 Al as the second phase. Al 3 Ti-based alloys showed an extremely low oxidation rate in a 1473 K steam for up to 7200 s when compared to Zircaloy-4. Both alloys exhibited almost the same oxidation rate in the early stage of oxidation, but Al–25Ti–10Cr showed a little lower oxidation rate after 4000 s than Al–21Ti–23Cr. The difference in the oxidation rate between two types of Al 3 Ti-based alloys was too marginal to distinguish the oxidation behavior of each alloy. The resultant oxide exhibited almost the same characteristics in both alloys even though the microstructure was explicitly distinguished from each other. The crystal structure of the oxide formed up to 2000 s was identified as Al 2 O 3 in both alloys. The oxide morphology consisted of columnar grains whose length was almost identical to the average oxide thickness. On the basis of the results obtained, it is considered that Al 3 Ti-based alloy is one of the promising candidates for the oxidation-resistant surface layer on Zr fuel claddings

  14. Surface protection of light metals by one-step laser cladding with oxide ceramics

    Science.gov (United States)

    Nowotny, S.; Richter, A.; Tangermann, K.

    1999-06-01

    Today, intricate problems of surface treatment can be solved through precision cladding using advanced laser technology. Metallic and carbide coatings have been produced with high-power lasers for years, and current investigations show that laser cladding is also a promising technique for the production of dense and precisely localized ceramic layers. In the present work, powders based on Al2O3 and ZrO2 were used to clad aluminum and titanium light alloys. The compact layers are up to 1 mm thick and show a nonporous cast structure as well as a homogeneous network of vertical cracks. The high adhesive strength is due to several chemical and mechanical bonding mechanisms and can exceed that of plasmasprayed coatings. Compared to thermal spray techniques, the material deposition is strictly focused onto small functional areas of the workpiece. Thus, being a precision technique, laser cladding is not recommended for large-area coatings. Examples of applications are turbine components and filigree parts of pump casings.

  15. Oxidation behavior of laser-clad NiAlCrHf alloys

    International Nuclear Information System (INIS)

    Ribaudo, C.R.

    1991-01-01

    Laser cladding is the process where a mechanical mixture of powders is rapidly melted and fused to a solid substrate using a CO 2 laser. The effects of laser cladding upon scale retention on NiAlCrHf alloys after cyclic and isothermal exposure to air were investigated. The stress developed in the scale during cooling after exposure was estimated using a thermoelastic model. Additions of up to ∼2 1/2 wt % Hf increasingly promote retention of scales grown at 1,200C. Laser-clad samples containing ∼2 1/2 wt % Hf retained almost-intact scales. The improvement in scale retention is due to improved toughness in scales containing hafnia-rich polycrystallites possibly via microcracking initiated by anisotropic thermal contraction of the hafnia. Laser cladding provides a large concentration of ∼1 μm Hf-rich particles that are precursors of the hafnia in the scale as well as a fine-dendrite spacing that reduced the mean free distance between particles

  16. Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures during Drying and Transfer Operations

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Miles [Univ. of Nevada, Reno, NV (United States)

    2017-03-31

    Radial hydride formation in high-burnup used fuel cladding has the potential to radically reduce its ductility and suitability for long-term storage and eventual transport. To avoid this formation, the maximum post-reactor temperature must remain sufficiently low to limit the cladding hoop stress, and so that hydrogen from the existing circumferential hydrides will not dissolve and become available to re-precipitate into radial hydrides under the slow cooling conditions during drying, transfer and early dry-cask storage. The objective of this research is to develop and experimentallybenchmark computational fluid dynamics simulations of heat transfer in post-pool-storage drying operations, when high-burnup fuel cladding is likely to experience its highest temperature. These benchmarked tools can play a key role in evaluating dry cask storage systems for extended storage of high-burnup fuels and post-storage transportation, including fuel retrievability. The benchmarked tools will be used to aid the design of efficient drying processes, as well as estimate variations of surface temperatures as a means of inferring helium integrity inside the canister or cask. This work will be conducted effectively because the principal investigator has experience developing these types of simulations, and has constructed a test facility that can be used to benchmark them.

  17. High-temperature steam-oxidation behavior of Zr-1Nb-1Sn-0.1Fe cladding tube at temperatures of 800-1000

    International Nuclear Information System (INIS)

    Lee, Cheol Min; Cho, Tae Won; Jeong, Gwan Yoon; Kim, Mi Jin; Kim, Ji Hyeon; Lee, Hee Jae; Sohn, Dong Seong; Mok, Yong Kyoon

    2016-01-01

    To prevent cladding failure, NRC issued a regulation Title 10 § 50.46, which specifies cladding temperature of 1204 .deg. C and 17% ECR should not be exceeded. The fundamental reason of the mechanical degradation of cladding is the formation of the oxide which is brittle. Theoretically, the oxide layer is formed following parabolic rate. However, from many experiments, sub-parabolic rates are often observed. There have been many suggestions so far; chemical and stress gradient across the oxide layer could initiate the sub-parabolic rate, the phase transformation of Zirconium dioxide from tetragonal to monoclinic could be the reason, change of the grain size of Zirconium dioxide could cause the cubic oxidation rate, and there is a suggestion that if electron migration is the major mechanism of the oxide growth, then the subparabolic rate can show up. However, the reason why the sub-parabolic rate appears is still not certain. Another important degradation mechanism is breakaway oxidation. A clear explanation that why the breakaway oxidation appears is still not clear. Most of the people believe the phase transformation of Zirconium dioxide cause instability within the oxide, which causes breakaway oxidation to appear. However, how much effect is caused from the phase transformation is not so sure. In this study, detailed analysis about the oxidation kinetics and the breakaway oxidation of Zr-1Nb-1Sn- 0.1Fe were carried out at temperatures between 800 - 1000 .deg. C.

  18. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding

    Science.gov (United States)

    Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao

    2016-09-01

    To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.

  19. A Prediction Study on Oxidation of Aluminum Alloy Cladding of U{sub 3}Si{sub 2}-Al Fuel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Tahk, Y.W.; Lee, B.H.; Oh, J.Y.; Park, J.H.; Yim, J.S. [Research Reactor Design and Engineering Div., Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2011-07-01

    U{sub 3}Si{sub 2}-Al dispersion fuel with aluminum alloy cladding will be used for the Jordan Research and Training Reactor (JRTR). Aluminum alloy cladding undergoes corrosion at slow rates under operational status. This causes thinning of the cladding walls and impairs heat transfer to the coolant. Predictions of the aluminum oxide thickness of the fuel cladding and the maximum temperature difference across the oxide film are needed for reliability evaluation based on the design criteria and limits which prohibit spallation of oxide film. In this work, several oxide thickness prediction models were compared with the measured data of in-pile test results from RERTR program. Moreover, specific parametric studies and a preliminary prediction of the aluminum alloy oxidation using the latest model were performed for JRTR fuel. According to the current JRTR fuel management scheme and operation strategy for 5 MW power, fresh fuel is discharged after 900 effective full power days (EFPD), which is too long a span to predict oxidation properly without an elaborate model. The latest model developed by Kim et al. is in good agreement with the recent in-pile test data as well as with the out-of-pile test data available in the literature, and is one of the best predictors for the oxidation of aluminum alloy cladding in various operating condition. Accordingly, this model was chosen for estimating the oxide film thickness. Through the preliminarily evaluation, water pH level is to be controlled lower than 6.2 for the conservativeness in the case of including the effect of anticipated operational occurrences and the spent fuel residence time in the storage rack after discharging. (author)

  20. Watt-level passively Q-switched double-cladding fiber laser based on graphene oxide saturable absorber.

    Science.gov (United States)

    Yu, Zhenhua; Song, Yanrong; Dong, Xinzheng; Li, Yanlin; Tian, Jinrong; Wang, Yonggang

    2013-10-10

    A watt-level passively Q-switched ytterbium-doped double-cladding fiber laser with a graphene oxide (GO) absorber was demonstrated. The structure of the GO saturable absorber mirror (GO-SAM) was of the sandwich type. A maximum output power of 1.8 W was obtained around a wavelength of 1044 nm. To the best of our knowledge, this is the highest output power in Q-switched fiber lasers based on a GO saturable absorber. The pure GO was protected from the oxygen in the air so that the damage threshold of the GO-SAM was effectively raised. The gain fiber was a D-shaped ytterbium-doped double-cladding fiber. The pulse repetition rates were tuned from 120 to 215 kHz with pump powers from 3.89 to 7.8 W. The maximum pulse energy was 8.37 μJ at a pulse width of 1.7 μs.

  1. Stress concentration during pellet cladding interaction: Comparison of closed-form solutions with 2D(r,θ) finite element simulations

    International Nuclear Information System (INIS)

    Sercombe, Jérôme; Masson, Renaud; Helfer, Thomas

    2013-01-01

    Highlights: • This paper presents closed-formed solutions concerning pellet cladding interaction. • First, the opening of a radial crack in a pellet fragment is estimated. • Second, the stresses in the cladding in front of the pellet crack are calculated. • The closed-formed solutions are found in good agreement with 2D FE simulations. • They are then used in the fuel code ALCYONE to model PCI during power ramps. -- Abstract: This paper presents two closed-form solutions that can be used to enrich the mechanical description of fuel pellets and cladding behavior in standard one-dimensional based fuel performance codes. The first one is concerned with the estimation of the opening of a radial crack in a pellet fragment induced by the radial thermal gradient in the pellet and limited by the pellet-clad contact pressure. The second one describes the stress distribution in a cladding bore in front of an opening pellet crack. A linear angular variation of the pellet-clad contact pressure and a constant prescribed radial displacement are considered. The closed-form solutions are checked by comparison to independent finite element models of the pellet fragment and of the cladding. Their ability to describe non-axisymmetric displacement and stress fields during loading histories representative of base irradiation and power ramps is then demonstrated by cross-comparison with the 2D pellet fragment-cladding model of the multi-dimensional fuel performance code ALCYONE. The calculated radial crack opening profiles at different times and the hoop stress concentration in the cladding at the top of the ramp are found in good agreement with ALCYONE

  2. An attempt for a unified description of mechanical testing on Zircaloy-4 cladding subjected to simulated LOCA transient

    Directory of Open Access Journals (Sweden)

    Desquines Jean

    2016-01-01

    Full Text Available During a Loss Of Coolant Accident (LOCA, an important safety requirement is that the reflooding of the core by the emergency core cooling system should not lead to a complete rupture of the fuel rods. Several types of mechanical tests are usually performed in the industry to determine the degree of cladding embrittlement, such as ring compression tests or four-point bending of rodlets. Many other tests can be found in the open literature. However, there is presently no real intrinsic understanding of the failure conditions in these tests which would allow translation of the results from one kind of mechanical testing to another. The present study is an attempt to provide a unified description of the failure not directly depending on the tested geometry. This effort aims at providing a better understanding of the link between several existing safety criteria relying on very different mechanical testing. To achieve this objective, the failure mechanisms of pre-oxidized and pre-hydrided cladding samples are characterized by comparing the behavior of two different mechanical tests: Axial Tensile (AT test and “C”-shaped Ring Compression Test (CCT. The failure of samples in both cases can be described by usual linear elastic fracture mechanics theory. Using interrupted mechanical tests, metallographic examinations have evidenced that a set of parallel cracks are nucleated at the inner and outer surface of the samples just before failure, crossing both the oxide layer and the oxygen rich alpha layer. The stress intensity factors for multiple crack geometry are determined for both AT and CCT samples using finite element calculations. After each mechanical test performed on high temperature steam oxidized samples, metallography is then used to individually determine the crack depth and crack spacing. Using these two important parameters and considering the applied load at fracture, the stress intensity factor at failure is derived for each tested

  3. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  4. Review of experimental data for modelling LWR fuel cladding behaviour under loss of coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2007-02-15

    Extensive range of experiments has been conducted in the past to quantitatively identify and understand the behaviour of fuel rod under loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs). The obtained experimental data provide the basis for the current emergency core cooling system acceptance criteria under LOCA conditions for LWRs. The results of recent experiments indicate that the cladding alloy composition and high burnup effects influence LOCA acceptance criteria margins. In this report, we review some past important and recent experimental results. We first discuss the background to acceptance criteria for LOCA, namely, clad embrittlement phenomenology, clad embrittlement criteria (limitations on maximum clad oxidation and peak clad temperature) and the experimental bases for the criteria. Two broad kinds of test have been carried out under LOCA conditions: (i) Separate effect tests to study clad oxidation, clad deformation and rupture, and zirconium alloy allotropic phase transition during LOCA. (ii) Integral LOCA tests, in which the entire LOCA sequence is simulated on a single rod or a multi-rod array in a fuel bundle, in laboratory or in a tests and results are discussed and empirical correlations deduced from these tests and quantitative models are conferred. In particular, the impact of niobium in zirconium base clad and hydrogen content of the clad on allotropic phase transformation during LOCA and also the burst stress are discussed. We review some recent LOCA integral test results with emphasis on thermal shock tests. Finally, suggestions for modelling and further evaluation of certain experimental results are made.

  5. Influences of Cr content and PWHT on microstructure and oxidation behavior of stainless steel weld overlay cladding materials in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X.Y.; Ding, X.F. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Lu, Y.H., E-mail: lu_yonghao@mater.ustb.edu.cn [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Zhu, P. [Suzhou Nuclear Power Research Institute Co. Ltd., 1788 Xihuan Road, 215004 Suzhou (China); Shoji, T. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Fracture and Reliability Research Institute, Tohoku University, 6-6-01 Aramaki Aoba, Aoba-ku, Sendai City 980-8579 (Japan)

    2015-12-15

    Influences of Cr content and post weld heat treatment (PWHT) on microstructure and oxidation behavior of stainless steel cladding materials in high temperature water were investigated. The amounts of metal oxidized and dissolved were estimated to compare the oxidation behaviors of cladding materials with different Cr contents and PWHT. The results indicated that higher Cr content led to formation of more ferrite content, and carbides were found along δ/γ phase interface after PWHT. Higher Cr content enhanced the pitting resistance and compactness of the oxide film to reduce metal amount oxidized and dissolved, which mitigated the weight changes and the formation of Fe-rich oxides. PWHT promoted more and deeper pitting holes along the δ/γ phase interface due to formation of carbides, which resulted in an increase in metal amount oxidized and dissolved, and were also responsible for more Fe-rich oxides and higher weight changes. - Highlights: • The amounts of metal oxidized and metal dissolved were estimated. • Higher Cr content increased ferrite content and PWHT led to formation of carbides. • PWHT promoted more and deeper pitting holes along the δ/γ phase interface. • Lower Cr content and PWHT promoted the metal amounts oxidized and dissolved. • Lower Cr content and PWHT increased weight changes and Fe-rich film formation.

  6. Study of reactions between fuel (mixed oxide (UPu)Osub(2-x)) and cladding (stainless-steel) in reactors: influence of iodine compounds

    International Nuclear Information System (INIS)

    Aubert, Michel.

    1976-03-01

    The influence of iodine compounds on the development of the oxide-cladding reaction was examined. The action of iodine, cesium and cesium iodide on type 316 stainless was determined in the presence or absence of uranium oxide or mixed uranium-plutonium oxide type fuel in a closed system, isothermal or with a temperature gradient. The study of the stainless steel iodine reactions was developed in particular. These experiments showed that cesium combines with uranium oxide to give cesium uranate Cs 2 U 2 O 7 ; it is not unreasonable to suppose that cesium urano-plutonate Cs 2 (U,Pu) 2 O 7 could be formed inside the pile. It was then shown that cesium iodide in the presence of sufficiently non-stoichiometric mixed oxide could contribute towards the degradation of the stainless steel cladding. Under these conditions the reaction is accompained by a transport of manganese, chromium and iron into the hot parts of the fuel by a Van-Arkel type mechanism. This might explain the presence of metallic precipitates in the fuel, but the role assigned to molybdenum iodide in the same phenomenon is considered unlikely. Finally it is proposed to deposit a thin layer of manganese metal on the inner surface of the cladding in order to minimize the action of fission products (CsI, Te) [fr

  7. Corrosion studies of carbon steel under impinging jets of simulated slurries of neutralized current acid waste (NCAW) and neutralized cladding removal waste (NCRW)

    International Nuclear Information System (INIS)

    Smith, H.D.; Elmore, M.R.

    1992-01-01

    Plans for the disposal of radioactive liquid and solid wastes presently stored in double-shell tanks at the Hanford Site call for retrieval and processing of the waste to create forms suitable for permanent disposal. Waste will be retrieved from a tank using a submerged slurry pump in conjunction with one or more rotating slurry jet mixer pumps. Pacific Northwest Laboratory (PNL) has conducted tests using simulated waste slurries to assess the effects of a impinging slurry jet on the corrosion rate of the tank wall and floor, an action that could potentially compromise the tank's structural integrity. Corrosion processes were investigated on a laboratory scale with a simulated neutralized cladding removal waste (NCRW) slurry and in a subsequent test with simulated neutralized current acid waste (NCAW) slurry. The test slurries simulated the actual NCRW and NCAW both chemically and physically. The tests simulated those conditions expected to exist in the respective double-shell tanks during waste retrieval operations. Results of both tests indicate that, because of the action of the mixer pump slurry jets, the waste retrieval operations proposed for NCAW and NCRW will moderately accelerate corrosion of the tank wall and floor. Based on the corrosion of initially unoxidized test specimens, and the removal of corrosion products from those specimens, the maximum time-averaged corrosion rates of carbon steel in both waste simulants for the length of the test was ∼4 mil/yr. The protective oxide layer that exists in each storage tank is expected to inhibit corrosion of the carbon steel

  8. Effect of surface oxidation of ZIRLO fuel cladding tube on crud deposition

    International Nuclear Information System (INIS)

    Park, Moon Sic; Baek, Seung Heon; Shim, Hee-Sang; Kim, Jung Gu; Hur, Do Haeng

    2016-01-01

    Crud has often led a lot of problems in the primary coolant system such as fuel cladding corrosion, power distortion and reduction, and radio-activity build-up of out-of-core [2-3]. Although a crud-induced localized corrosion (CILC) is a severe accident, in which fuel is leaked into the coolant, it is rarely happened but a crud-induced power shift (CIPS) has frequently occurred in worldwide PWR plants. CIPS, or power axial offset anomaly (AOA) has long been realized in the nuclear industry since early 1970s. In late 1980s, severe AOA phenomena were found in Callaway plants in U. S. and later in many power plants around the world. The axial offset (AO) is defined by the power distortion between the top half of the core and the bottom half of the core. When the plant exceeds acceptable limit of 3% in AO value, it is judged as AOA occurrence and this is forced to reduce power or shutdown. AOA is caused by a hideout for large accumulation of boron into porous crud and its formation is accelerated by increased sub-cooled nucleate boiling (SNB) with sufficient corrosion product supply. Crud has often led a lot of problems in the primary coolant system such as fuel cladding corrosion, power distortion and reduction, and radio-activity build-up of out-of-core. Although a crud-induced localized corrosion (CILC) is a severe accident, in which fuel is leaked into the coolant, it is rarely happened but a crud-induced power shift (CIPS) has frequently occurred in worldwide PWR plants. CIPS, or power axial offset anomaly (AOA) has long been realized in the nuclear industry since early 1970s. In late 1980s, severe AOA phenomena were found in Callaway plants in U. S. and later in many power plants around the world. The axial offset (AO) is defined by the power distortion between the top half of the core and the bottom half of the core. When the plant exceeds acceptable limit of 3% in AO value, it is judged as AOA occurrence and this is forced to reduce power or shutdown. AOA is

  9. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding.

    Science.gov (United States)

    Zhuang, Qiaoqiao; Zhang, Peilei; Li, Mingchuan; Yan, Hua; Yu, Zhishui; Lu, Qinghua

    2017-10-30

    The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti₂Ni and Ti₅Si₃ phases exist in all coatings, and some samples have TiSi₂ phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness)) and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti₂Ni and reinforcement phases of Ti₅Si₃ and TiSi₂, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO₂, Al₂O₃ and SiO₂. Phases Ti₂Ni, Ti₅Si₃, TiSi₂ and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding.

  10. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Qiaoqiao Zhuang

    2017-10-01

    Full Text Available The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy and EDS (energy dispersive spectrometer. It has been found that Ti2Ni and Ti5Si3 phases exist in all coatings, and some samples have TiSi2 phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti2Ni and reinforcement phases of Ti5Si3 and TiSi2, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO2, Al2O3 and SiO2. Phases Ti2Ni, Ti5Si3, TiSi2 and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding.

  11. Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling

    International Nuclear Information System (INIS)

    Zhao, Yanhua; Sun, Jie; Li, Jianfeng

    2014-01-01

    Highlights: • A novel laser cladding powder is developed which can reduce the machining vibration. • The machining vibrations of coating are reduced and the chatter is avoided occurring. • The vibration-suppressing mechanism is analyzed. • The hardness and wear resistance of coatings are improved significantly. - Abstract: Laser cladding, which can increase the hardness and wear resistance of the used components, is widely used in remanufacture and sustainable manufacturing field. Generally, laser cladding layer should to be machined to meet the function as well as the assembly requirements. Milling is an effective mean for precision machining. However, there exist great differences of physical and mechanical performances between laser cladding layer and substrate material, including microstructure, hardness, wear resistance, etc. This produces some new milling problems for laser cladding layer, such as machining vibration which may lead to low productivity and worse surface integrity. Thus, it is necessary to develop a novel laser cladding powder which can improve the surface hardness and wear resistance, while reducing the machining vibration in milling. Laser cladding layer was prepared by FeCr alloy and La 2 O 3 mixed powder. The effect of La 2 O 3 on the coating properties was investigated. Signal analysis methods of the time and frequency domain were used to evaluate the effect of the La 2 O 3 on machining vibration in the side milling laser cladding layer. The key findings of this study are: (a) with the La 2 O 3 content increasing, the grain size decreases dramatically and the microstructure of laser cladding layer are refine; (b) the hardness and wear resistance of the coatings with La 2 O 3 are improved significantly; and (c) the machining vibrations of laser cladding layer with La 2 O 3 are obviously reduced and the chatter is effectively avoided occurring

  12. Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanhua, E-mail: zhaoyanhua_007@163.com [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061 (China); Sun, Jie, E-mail: sunjie@sdu.edu.cn [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061 (China); Li, Jianfeng [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-12-01

    Highlights: • A novel laser cladding powder is developed which can reduce the machining vibration. • The machining vibrations of coating are reduced and the chatter is avoided occurring. • The vibration-suppressing mechanism is analyzed. • The hardness and wear resistance of coatings are improved significantly. - Abstract: Laser cladding, which can increase the hardness and wear resistance of the used components, is widely used in remanufacture and sustainable manufacturing field. Generally, laser cladding layer should to be machined to meet the function as well as the assembly requirements. Milling is an effective mean for precision machining. However, there exist great differences of physical and mechanical performances between laser cladding layer and substrate material, including microstructure, hardness, wear resistance, etc. This produces some new milling problems for laser cladding layer, such as machining vibration which may lead to low productivity and worse surface integrity. Thus, it is necessary to develop a novel laser cladding powder which can improve the surface hardness and wear resistance, while reducing the machining vibration in milling. Laser cladding layer was prepared by FeCr alloy and La{sub 2}O{sub 3} mixed powder. The effect of La{sub 2}O{sub 3} on the coating properties was investigated. Signal analysis methods of the time and frequency domain were used to evaluate the effect of the La{sub 2}O{sub 3} on machining vibration in the side milling laser cladding layer. The key findings of this study are: (a) with the La{sub 2}O{sub 3} content increasing, the grain size decreases dramatically and the microstructure of laser cladding layer are refine; (b) the hardness and wear resistance of the coatings with La{sub 2}O{sub 3} are improved significantly; and (c) the machining vibrations of laser cladding layer with La{sub 2}O{sub 3} are obviously reduced and the chatter is effectively avoided occurring.

  13. Crack behavior of oxidation resistant coating layer on Zircaloy-4 for accident tolerant fuel claddings

    International Nuclear Information System (INIS)

    Park, Jung Hwan; Kim, Eui Jung; Jung, Yang Il; Park, Dong Jun; Kim, Hyun Gil; Park, Jeong Yong; Yang, Jae Ho

    2016-01-01

    Terrani et al. reported the oxidation resistance of Fe-based alloys for protecting zirconium alloys from the rapid oxidation in a high-temperature steam environment. Kim and co-workers also reported the corrosion behavior of Cr coated zirconium alloy using a plasma spray and laser beam scanning. Cracks are developed by tensile stress, and this significantly deteriorates the oxidation resistance. This tensile stress is possibly generated by the thermal cycle or bending or the irradiation growth of zirconium. In this study, Cr was deposited by AIP on to Zircaloy-4 plate, and the crack behavior of Cr coated Zircaloy-4 under uni-axial tensile strain was observed. In addition, the strain of the as-deposited state was calculated by iso-inclination method. Coating began to crack at 8% of applied strain. It is assumed that a well-densified structure by AIP tends to be resistant to cracking under tensile strain.

  14. Crack behavior of oxidation resistant coating layer on Zircaloy-4 for accident tolerant fuel claddings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hwan; Kim, Eui Jung; Jung, Yang Il; Park, Dong Jun; Kim, Hyun Gil; Park, Jeong Yong; Yang, Jae Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Terrani et al. reported the oxidation resistance of Fe-based alloys for protecting zirconium alloys from the rapid oxidation in a high-temperature steam environment. Kim and co-workers also reported the corrosion behavior of Cr coated zirconium alloy using a plasma spray and laser beam scanning. Cracks are developed by tensile stress, and this significantly deteriorates the oxidation resistance. This tensile stress is possibly generated by the thermal cycle or bending or the irradiation growth of zirconium. In this study, Cr was deposited by AIP on to Zircaloy-4 plate, and the crack behavior of Cr coated Zircaloy-4 under uni-axial tensile strain was observed. In addition, the strain of the as-deposited state was calculated by iso-inclination method. Coating began to crack at 8% of applied strain. It is assumed that a well-densified structure by AIP tends to be resistant to cracking under tensile strain.

  15. Initial Cladding Condition

    International Nuclear Information System (INIS)

    Siegmann, E.

    2000-01-01

    The purpose of this analysis is to describe the condition of commercial Zircaloy clad fuel as it is received at the Yucca Mountain Project (YMP) site. Most commercial nuclear fuel is encased in Zircaloy cladding. This analysis is developed to describe cladding degradation from the expected failure modes. This includes reactor operation impacts including incipient failures, potential degradation after reactor operation during spent fuel storage in pool and dry storage and impacts due to transportation. Degradation modes include cladding creep, and delayed hydride cracking during dry storage and transportation. Mechanical stresses from fuel handling and transportation vibrations are also included. This Analysis and Model Report (AMR) does not address any potential damage to assemblies that might occur at the YMP surface facilities. Ranges and uncertainties have been defined. This analysis will be the initial boundary condition for the analysis of cladding degradation inside the repository. In accordance with AP-2.13Q, ''Technical Product Development Planning'', a work plan (CRWMS M andO 2000c) was developed, issued, and utilized in the preparation of this document. There are constraints, caveats and limitations to this analysis. This cladding degradation analysis is based on commercial Pressurized Water Reactor (PWR) fuel with Zircaloy cladding but is applicable to Boiling Water Reactor (BWR) fuel. Reactor operating experience for both PWRs and BWRs is used to establish fuel reliability from reactor operation. It is limited to fuel exposed to normal operation and anticipated operational occurrences (i.e. events which are anticipated to occur within a reactor lifetime), and not to fuel that has been exposed to severe accidents. Fuel burnup projections have been limited to the current commercial reactor licensing environment with restrictions on fuel enrichment, oxide coating thickness and rod plenum pressures. The information provided in this analysis will be used in

  16. Deformation behavior of laser welds in high temperature oxidation resistant Fe–Cr–Al alloys for fuel cladding applications

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G., E-mail: fieldkg@ornl.gov; Gussev, Maxim N., E-mail: gussevmn@ornl.gov; Yamamoto, Yukinori, E-mail: yamamotoy@ornl.gov; Snead, Lance L., E-mail: sneadll@ornl.gov

    2014-11-15

    Ferritic-structured Fe–Cr–Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe–(13–17.5)Cr–(3–4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  17. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications

    Science.gov (United States)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Snead, Lance L.

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  18. Diffusion in cladding materials

    International Nuclear Information System (INIS)

    Anand, M.S.; Pande, B.M.; Agarwala, R.P.

    1992-01-01

    Aluminium has been used as a cladding material in most research reactors because its low neutron absorption cross section and ease of fabrication. However, it is not suitable for cladding in power reactors and as such zircaloy-2 is normally used as a clad because it can withstand high temperature. It has low neutron absorption cross section, good oxidation, corrosion, creep properties and possesses good mechanical strength. With the passage of time, further development in this branch of science took place and designers started looking for better neutron economy and less hydrogen pickup in PHW reactors. The motion of fission products in the cladding material could pose a problem after long operation. In order to understand their behaviour under reactor environment, it is essential to study first the diffusion under normal conditions. These studies will throw light on the interaction of defects with impurities which would in turn help in understanding the mechanism of diffusion. In this article, it is intended to discuss the diffusion behaviour of impurities in cladding materials.(i.e. aluminium, zircaloy-2, zirconium-niobium alloy etc.). (author). 94 refs., 4 figs., 3 tabs

  19. Numerical simulation of the cladding of a ferritic block with a stainless steel. Study of post-weld heat treatment

    International Nuclear Information System (INIS)

    Dupas, P.; Carayol, R.

    1994-06-01

    This report presents the calculation results of post-weld heat treatment, using the SYSWELD finite element program. Starting from the metallurgical and mechanical states obtained after welding, we performed a numerical heat treatment over the clad block. The principle is to relieve residual stresses by transforming elastic energy into plastic or viscoplastic energy. Increasing the temperature may lead to this result by decreasing yield stress, by creep or by changes of material properties due to structural transformations. Another way of relieving stresses is the transformation plasticity, but we don't use it in our simulation. Some experimental results lead us to believe we should have stresses from 200 to 300 MPa in the weld metal and from - 100 to 100 MPa in the HAZ, whatever are the stresses before heat treatment. Moreover, transverse and longitudinal stresses should have similar values and profile in depth. As in welding simulation, heat treatment calculations are two dimensional. They can be split in a thermo-metallurgical calculation followed by a mechanical one. The following parameters are studied : metallurgy, plastic and viscoplastic behaviour, plane strain or generalized plane strain model. The creep model used in SYSWELD has been more particularly studied. We also study the possibility to simplify calculations by simulating only the cooling, starting from no stresses at 610 deg C, which is a usual method in crack assessment. (authors). 23 refs., 52 figs., 3 annexes

  20. Modeling deformation and failure of fast reactor cladding during simulated accident transients

    International Nuclear Information System (INIS)

    Kramer, J.M.; Dimelfi, R.J.

    1981-01-01

    An analysis is made of burst experiments performed on neutron irradiated cladding tubes. This is done by employing a generalized Voce equation to describe the mechanical deformation of type 316 stainless steel, combined with an empirical creep crack growth law, each modified to account for the effects of irradiation matrix hardening, and irradiation induced grain boundary embrittlement, respectively. The results of this analysis indicate that for large initial hoop stress, failure occurs at relatively low temperature and is controlled by the onset of plastic instability. The increase in failure temperature of irradiated material, in low temperature region, is due to irradiation strengthening. Failure in the case of relatively small initial hoop stress occurs at high temperature where the Voce equation reduces to a power law creep formula. The ductility of irradiated material, in this high temperature region, is adequately described through the use of an empirical intergranular crack growth law used in conjunction with the creep law. The effect of neutron irradiation is to reduce the activation energy for crack propagation from the value for creep to some lower value correlated to independent Dorn rupture parameter measurements. The result is a predicted reduced ductility which translates into a reduction in failure temperature at a given hoop stress value for irradiated material. (orig.)

  1. Oxide particle size distribution from shearing irradiated and unirradiated LWR fuels in Zircaloy and stainless steel cladding: significance for risk assessment

    International Nuclear Information System (INIS)

    Davis, W. Jr.; West, G.A.; Stacy, R.G.

    1979-01-01

    Sieve fractionation was performed with oxide particles dislodged during shearing of unirradiated or irradiated fuel bundles or single rods of UO 2 or 96 to 97% ThO 2 --3 to 4% UO 2 . Analyses of these data by nonlinear least-squares techniques demonstrated that the particle size distribution is lognormal. Variables involved in the numerical analyses include lognormal median size, lognormal standard deviation, and shear cut length. Sieve-fractionation data are presented for unirradiated bundles of stainless-steel-clad or Zircaloy-2-clad UO 2 or ThO 2 --UO 2 sheared into lengths from 0.5 to 2.0 in. Data are also presented for irradiated single rods (sheared into lengths of 0.25 to 2.0 in.) of Zircaloy-2-clad UO 2 from BWRs and of Zircaloy-4-clad UO 2 from PWRs. Median particle sizes of UO 2 from shearing irradiated stainless-steel-clad fuel ranged from 103 to 182 μm; particle sizes of ThO 2 --UO 2 , under these same conditions, ranged from 137 to 202 μm. Similarly, median particle sizes of UO 2 from shearing unirradiated Zircaloy-2-clad fuel ranged from 230 to 957 μm. Irradiation levels of fuels from reactors ranged from 9,000 to 28,000 MWd/MTU. In general, particle sizes from shearing these irradiated fuels are larger than those from the unirradiated fuels. In addition, variations in particle size parameters pertaining to samples of a single vendor varied as much as those between different vendors. The fraction of fuel dislodged from the cladding is nearly proportional to the reciprocal of the shear cut length, until the cut length attains some minimum value below which all fuel is dislodged. Particles of fuel are generally elongated with a long-to-short axis ratio usually less than 3. Using parameters of the lognormal distribution deduced from experimental data, realistic estimates can be made of fractions of dislodged fuel having dimensions less than specified values

  2. Oxide particle size distribution from shearing irradiated and unirradiated LWR fuels in Zircaloy and stainless steel cladding: significance for risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W. Jr.; West, G.A.; Stacy, R.G.

    1979-03-22

    Sieve fractionation was performed with oxide particles dislodged during shearing of unirradiated or irradiated fuel bundles or single rods of UO/sub 2/ or 96 to 97% ThO/sub 2/--3 to 4% UO/sub 2/. Analyses of these data by nonlinear least-squares techniques demonstrated that the particle size distribution is lognormal. Variables involved in the numerical analyses include lognormal median size, lognormal standard deviation, and shear cut length. Sieve-fractionation data are presented for unirradiated bundles of stainless-steel-clad or Zircaloy-2-clad UO/sub 2/ or ThO/sub 2/--UO/sub 2/ sheared into lengths from 0.5 to 2.0 in. Data are also presented for irradiated single rods (sheared into lengths of 0.25 to 2.0 in.) of Zircaloy-2-clad UO/sub 2/ from BWRs and of Zircaloy-4-clad UO/sub 2/ from PWRs. Median particle sizes of UO/sub 2/ from shearing irradiated stainless-steel-clad fuel ranged from 103 to 182 ..mu..m; particle sizes of ThO/sub 2/--UO/sub 2/, under these same conditions, ranged from 137 to 202 ..mu..m. Similarly, median particle sizes of UO/sub 2/ from shearing unirradiated Zircaloy-2-clad fuel ranged from 230 to 957 ..mu..m. Irradiation levels of fuels from reactors ranged from 9,000 to 28,000 MWd/MTU. In general, particle sizes from shearing these irradiated fuels are larger than those from the unirradiated fuels; however, unirradiated fuel from vendors was not available for performing comparative shearing experiments. In addition, variations in particle size parameters pertaining to samples of a single vendor varied as much as those between different vendors. The fraction of fuel dislodged from the cladding is nearly proportional to the reciprocal of the shear cut length, until the cut length attains some minimum value below which all fuel is dislodged. Particles of fuel are generally elongated with a long-to-short axis ratio usually less than 3. Using parameters of the lognormal distribution estimates can be made of fractions of dislodged fuel having

  3. Simulation of Time-Varying Spatially Uniform Pressure and Near-Surface Wind Flows on Building Components and Cladding

    Directory of Open Access Journals (Sweden)

    Seraphy Y. Shen

    2017-05-01

    Full Text Available This paper describes a new full-scale (FS testing apparatus for conducting performance evaluations of FS building envelope systems. The simulator can generate spatially uniform, time-varying pressure conditions associated with Saffir–Simpson Hurricane Wind Scale Category 5 winds while compensating for large air leakage through the specimen and also operate a high-speed wind tunnel, both with dynamic control. This paper presents system details, operating characteristics, and an early case study on the performance of large sectional door systems under wind pressure loading. Failure mechanisms are discussed, and finite element modeling is validated for two specimens. It demonstrates successful dynamic load control for large component and cladding systems, as well as simulation of flows near the building surface. These capabilities serve to complement other FS wind tunnel facilities by offering tools to generate ultimate load conditions on portions of the building. Further, the paper successfully demonstrates the utility of combining physical testing and computational analysis as a matter of routine, which underscores the potential of evolving FS testing to encompass cyber–physical approaches.

  4. High-power blue laser diodes with indium tin oxide cladding on semipolar (202{sup ¯}1{sup ¯}) GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Pourhashemi, A., E-mail: pourhashemi@engr.ucsb.edu; Farrell, R. M.; Cohen, D. A.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); DenBaars, S. P.; Nakamura, S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2015-03-16

    We demonstrate a high power blue laser diode (LD) using indium tin oxide as a cladding layer on semipolar oriented GaN. These devices show peak output powers and external quantum efficiencies comparable to state-of-the-art commercial c-plane devices. Ridge waveguide LDs were fabricated on (202{sup ¯}1{sup ¯}) oriented GaN substrates using InGaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 451 nm at room temperature, an output power of 2.52 W and an external quantum efficiency of 39% were measured from a single facet under a pulsed injection current of 2.34 A. The measured differential quantum efficiency was 50%.

  5. Stress intensity factor at the tip of cladding incipient crack in RIA-simulating experiments for high-burnup PWR fuels

    International Nuclear Information System (INIS)

    Udagawa, Yutaka; Suzuki, Motoe; Sugiyama, Tomoyuki; Fuketa, Toyoshi

    2009-01-01

    RIA-simulating experiments for high-burnup PWR fuels have been performed in the NSRR, and the stress intensity factor K 1 at the tip of cladding incipient crack has been evaluated in order to investigate its validity as a PCMI failure threshold under RIA conditions. An incipient crack depth was determined by observation of metallographs. The maximum hydride-rim thickness in the cladding of the test fuel rod was regarded as the incipient crack depth in each test case. Hoop stress in the cladding periphery during the pulse power transient was calculated by the RANNS code. K 1 was calculated based on crack depth and hoop stress. According to the RANNS calculation, PCMI failure cases can be divided into two groups: failure in the elastic phase and failure in the plastic phase. In the former case, elastic deformation was predominant around the incipient crack at failure time. K 1 is available only in this case. In the latter, plastic deformation was predominant around the incipient crack at failure time. Failure in the elastic phase never occurred when K 1 was less than 17 MPa m 1/2 . For failure in the plastic phase, the plastic hoop strain of the cladding periphery at failure time clearly showed a tendency to decrease with incipient crack depth. The combination of K 1 , for failure in the elastic phase, and plastic hoop strain at failure, for failure in the plastic phase, can be an effective index of PCMI failure under RIA conditions. (author)

  6. High temperature mechanisms and kinetics of SiC oxidation under low partial pressures of oxygen: application to the fuel cladding of gas fast reactors

    International Nuclear Information System (INIS)

    Hun, N.

    2011-01-01

    Gas Fast Reactor (GFR) is one of the different Generation IV concepts under investigation for energy production. SiC/SiC composites are candidates of primary interest for a GFR fuel cladding use, thanks to good corrosion resistance among other properties. The mechanisms and kinetics of SiC oxidation under operating conditions have to be identified and quantified as the corrosion can decrease the mechanical properties of the composite. An experimental device has been developed to study the oxidation of silicon carbide under high temperature and low oxygen partial pressure. The results pointed out that not only parabolic oxidation, but also interfacial reactions and volatilization occur under such conditions. After determining the kinetics of each mechanism, as functions of oxygen partial pressure and temperature, the data are used for the modeling of the composites oxidation. The model will be used to predict the lifetime of the composite in operating conditions. (author) [fr

  7. Simulation of the cladding freezing during the loss of flow accident in a Gas-Cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Chu, N.N.; Eggen, D.T.

    1977-06-01

    The accident condition of the stainless steel cladding melting, relocation and freezing, following a loss of flow situation in gas-cooled fast reactors has not been determined yet. An alloy of 50 Pb/ 50 Sn was selected to facilitate experimental procedures because of its workability and its wide phase transition temperature range (183 to 216 0 C) similar to that of stainless steel (1375 to 1500 0 C). The objective of the experiment is to simulate the motion of liquid alloy through a tube and observe the conditions where it solidifies in the tube. The objective of the theoretical model is to use transient heat transfer analysis to describe the freezing front of the moving liquid metal and the plugging of the channel. Tests were conducted in alloy tubes having inside diameters 0.5 to 0.95 cm. Molten solder was poured through the vertically held tubes. The average falling velocity of the melt was measured to be about 89 cm/sec. The distance in the tube where the molten Pb/Sn solidifed across the diameter was measured. This penetration length varies from 20 to 40 cm as the initial liquid temperature ranges from 216 (liquidus point) to 500 0 C. The plugging time is calculated for those temperatures under which data on both the penetration distance and the falling velocity were obtained

  8. Clad-coolant chemical interaction

    International Nuclear Information System (INIS)

    Iglesias, F.C.; Lewis, B.J.; Desgranges, C.; Toffolon, C.

    2015-01-01

    This paper provides an overview of the kinetics for zircaloy clad oxidation behaviour in steam and air during reactor accident conditions. The generation of chemical heat from metal/water reaction is considered. Low-temperature oxidation of zircaloy due to water-side corrosion is further described. (authors)

  9. Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeong Yong; Jeong, Y. H.; Park, S. Y.

    2010-04-01

    The irradiation test for HANA claddings conducted and a series of evaluation for next-HANA claddings as well as their in-pile and out-of pile performances tests were also carried out at Halden research reactor. The 6th irradiation test have been completed successfully in Halden research reactor. As a result, HANA claddings showed high performance, such as corrosion resistance increased by 40% compared to Zircaloy-4. The high performance of HANA claddings in Halden test has enabled lead test rod program as the first step of the commercialization of HANA claddings. DB has been established for thermal and LOCA-related properties. It was confirmed from the thermal shock test that the integrity of HANA claddings was maintained in more expanded region than the criteria regulated by NRC. The manufacturing process of strips was established in order to apply HANA alloys, which were originally developed for the claddings, to the spacer grids. 250 kinds of model alloys for the next-generation claddings were designed and manufactured over 4 times and used to select the preliminary candidate alloys for the next-generation claddings. The selected candidate alloys showed 50% better corrosion resistance and 20% improved high temperature oxidation resistance compared to the foreign advanced claddings. We established the manufacturing condition controlling the performance of the dual-cooled claddings by changing the reduction rate in the cold working steps

  10. Embrittlement of pre-hydrided Zircaloy-4 by steam oxidation under simulated LOCA transients

    Energy Technology Data Exchange (ETDEWEB)

    Desquines, J., E-mail: jean.desquines@irsn.fr; Drouan, D.; Guilbert, S.; Lacote, P.

    2016-02-15

    During a Loss Of Coolant Accident (LOCA), the mechanical behavior of high temperature steam oxidized fuel rods is an important issue. In this study, as-received and pre-hydrided axial tensile samples were steam oxidized in a vertical furnace and water quenched in order to simulate a LOCA transient. The samples were then subjected to a mechanical test to determine the failure conditions. Two different rupture modes were evidenced; the first one associated to linear elastic fracture mechanics and the second one is associated to sample failure without applied load. The oxidized cladding fracture toughness was determined relying on intensive metallographic analysis. The sample failure conditions were then back predicted confirming that the main rupture parameters are well captured.

  11. Analysis of corrosion behavior of KOFA cladding

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Kim, Ki Hang; Seo, Keum Seok; Chung, Jin Gon

    1994-01-01

    The corrosion behavior of KOFA cladding was analyzed using the oxide measurement data of KOFA fuel irradiated up to the fuel rod burnup of 35,000 MWD/MTU for two cycles in Kori-2. Even though KOFA cladding is a standard Zircaloy-4 manufactured by Westinghouse according to the Siemens/KWU's HCW (Highly Cold Worked) standard Zircaloy-4 specification, it was expected that in-pile corrosion behavior of KOFA cladding would not be equivalent to that of Siemens/KWU's cladding due to the differences in such manufacturing processes as cold work and heat treatment. The analysis of measured KOFA cladding oxidation showed that oxidation of KOFA cladding is at least 19 % lower than the design analysis based upon Siemens/KWU's HCW standard Zircaloy-4 cladding. Lower corrosion of KOFA cladding seems to result from the differences in the manufacturing processes and chemical composition although the burnup and oxide layer thickness of the measured fuel rods is relatively low and the amount of the oxidation data base is small

  12. Simulation of Zircaloy cladding deformation under accident conditions derived from analysis of data from Three Mile Island-2

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.; Reynolds, A.E.

    1981-01-01

    A limited series of tests has been carried out based on a published analysis of Three Mile Island data. Zircaloy PWR cladding specimens were pressurised to 6.9 MPa at 500 deg C and heated at 0.2-1.0 deg C/sec in slowly flowing steam until they failed. The temperature at which rupture occurred ranged from 700 to 760 deg C. Three specimens were directly heated, and one was indirectly heated using an internal heater. The lengths of cladding strained greater than 33% ranged from 5.7 to 9.7 times the original diameter

  13. Critical cladding radius for hybrid cladding modes

    Science.gov (United States)

    Guyard, Romain; Leduc, Dominique; Lupi, Cyril; Lecieux, Yann

    2018-05-01

    In this article we explore some properties of the cladding modes guided by a step-index optical fiber. We show that the hybrid modes can be grouped by pairs and that it exists a critical cladding radius for which the modes of a pair share the same electromagnetic structure. We propose a robust method to determine the critical cladding radius and use it to perform a statistical study on the influence of the characteristics of the fiber on the critical cladding radius. Finally we show the importance of the critical cladding radius with respect to the coupling coefficient between the core mode and the cladding modes inside a long period grating.

  14. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil, E-mail: hgkim@kaeri.re.kr; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-10-15

    A 3D laser coating technology using Cr powder was developed for Zr-based alloys considering parameters such as: the laser beam power, inert gas flow, cooling of Zr-based alloys, and Cr powder control. This technology was then applied to Zr cladding tube samples to study the effect of Cr coating on the high-temperature oxidation of Zr-based alloys in a steam environment of 1200 °C for 2000s. It was revealed that the oxide layer thickness formed on the Cr-coated tube surface was about 25-times lower than that formed on a Zircaloy-4 tube surface. In addition, both the ring compression and the tensile tests were performed to evaluate the adhesion properties of the Cr-coated sample. Although some cracks were formed on the Cr-coated layer, the Cr-coated layer had not peeled off after the two tests.

  15. Evolution of the thickness of the aluminum oxide film due to the pH of the cooling water and surface temperature of the fuel elements clad of a nuclear reactor

    International Nuclear Information System (INIS)

    Babiche, Ivan

    2013-01-01

    This paper describes the mechanism of growth of a film of aluminum oxide on an alloy of the same material, which serves as a protective surface being the constituent material of the RP-10 nuclear reactor fuel elements clads. The most influential parameters on the growth of this film are: the pH of the cooling water and the clad surface temperature of the fuel element. For this study, a mathematical model relating the evolution of the aluminum oxide layer thickness over the time, according to the same oxide film using a power law is used. It is concluded that the time of irradiation, the heat flux at the surface of the aluminum material, the speed of the coolant, the thermal conductivity of the oxide, the initial thickness of the oxide layer and the solubility of the protective oxide are parameters affecting in the rate and film formation. (author).

  16. Accident tolerant fuel cladding development: Promise, status, and challenges

    Science.gov (United States)

    Terrani, Kurt A.

    2018-04-01

    The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding technologies, namely coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and silicon carbide fiber-reinforced silicon carbide matrix composite cladding, is offered. Technical challenges and data gaps for each of these cladding technologies are highlighted. Full development towards commercial deployment of these technologies is identified as a high priority for the nuclear industry.

  17. Fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Gueneau, C.; Piron, J.P.; Dumas, J.C.; Bouineau, V.; Iglesias, F.C.; Lewis, B.J.

    2015-01-01

    The chemistry of the nuclear fuel is very complex. Its chemical composition changes with time due to the formation of fission products and depends on the temperature level history within the fuel pellet and the clad during operation. Firstly, in thermal reactors, zircaloy oxidation from reaction with UO 2 fuel under high-temperature conditions will be addressed. Then other fuel-cladding interaction phenomena occurring in fast reactors will be described. Large thermal gradients existing between the centre and the periphery of the pellet induce the radial redistribution of the fuel constituents. The fuel pellet can react with the clad by different corrosion processes which can involve actinide and/or fission product transport via gas, liquid or/and solid phases. All these phenomena are briefly described in the case of different kinds of fuels (oxide, carbide, nitride, metallic) to be used in fast reactors. The way these phenomena are taken into account in fuel performance codes is presented. (authors)

  18. Cladding using a 15 kW CO2 laser

    International Nuclear Information System (INIS)

    Vesely, E.J.; Verma, S.K.

    1989-01-01

    Laser alloying or cladding differs little in principle from the traditional forms of weld overlays, but lasers as a heat source offer some distinct advantages. With the selective heating attainable using high power lasers, good metallurgical bond of the clad layer, minimal dilution and typically, a very fine homogeneous microstructure can be obtained in the clad layer. This is a review of work in laser cladding using the 15 kW CO 2 laser. The authors discuss the ability of the laser clad surface to increase the high temperature oxidation resistance of a low-alloy carbon steel (4140). Examples of clads subjected to high- temperature thermal cycling of nickel-20% aluminum and TaC + 4140 clad low-alloy steel and straight high-temperature oxidation of Stellite 6-304L cladding on a 4140 substrate are given

  19. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  20. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  1. Instrument for measuring fuel cladding strain

    International Nuclear Information System (INIS)

    Billeter, T.R.

    1976-01-01

    Development work to provide instrumentation for the continuous measurement of strain of material specimens such as nuclear fuel cladding has shown that a microwave sensor and associated instrumentation hold promise. The cylindrical sensor body enclosing the specimen results in a coaxial resonator absorbing microwave energy at frequencies dependent upon the diameter of the specimen. Diametral changes of a microinch can be resolved with use of the instrumentation. Very reasonable values of elastic strain were measured at 75 0 F and 1000 0 F for an internally pressurized 20 percent C.W. 316 stainless steel specimen simulating nuclear fuel cladding. The instrument also indicated the creep strain of the same specimen pressurized at 6500 psi and at a temperature of 1000 0 F for a period of 700 hours. Although the indicated strain appears greater than actual, the sensor/specimen unit experienced considerable oxidation even though an inert gas purge persisted throughout the test duration. By monitoring at least two modes of resonance, the measured strain was shown to be nearly independent of sensor temperature. To prevent oxidation, a second test was performed in which the specimen/sensor units were contained in an evacuated enclosure. The strain of the two prepressurized specimens as indicated by the microwave instrumentation agreed very closely with pre- and post-test measurements obtained with use of a laser interferometer

  2. Influence of partial blockage of a BWR bundle on heat transfer, cladding temperature, and quenching during bottom flooding or top spraying under simulated LOCA conditions

    International Nuclear Information System (INIS)

    Brand, B.; Gaul, H.P.; Sarkar, J.

    1982-01-01

    In a test facility with two parallel boiling water reactor fuel assemblies, experiments were carried out with top spray and bottom flooding, simulating loss-of-coolant accident (LOCA) conditions. The flow area restriction, caused by the ballooning of fuel rod cladding within one of the bundles, was provided by blockage plates, which had reductions of 37% in one case and in a second series 70% of the flow area. Test parameters were system pressure (1, 5, and 10 bars), spray (0.68 and 1.02 m 3 /h) and flooding rates (1.5,2, and 3.3 cm/s), power input (520 and 614 kW), and the initial cladding temperature (600 and 800 0 C at midplane) of the heaters. The test results showed no significant variations from those without blockage, except in the blocked region. An enhancement of heat transfer was observed in a close region downstream from the blockage in cases such as bottom flooding and top spray tests. The results will serve the purpose of code verification for reactor LOCA analysis

  3. Some proposed mechanisms for internal cladding corrosion

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Pickering, S.; Whitlow, W.H.

    1977-01-01

    In spite of extensive research during recent years, a comprehensive model for internal cladding corrosion in fast reactor oxide fuel pins has not yet been established. In this paper, a model is proposed which accounts for many of the features normally associated with this type of corrosion. The model is composed of a number of parts which describe the chronological sequence of events at the fuel/cladding interface. The corrosion reaction is visualised as being primarily chemical in character, involving the cladding steel, the fuel and the more aggressive fission products, notably caesium in the presence of oxygen. The model attempts to explain how corrosion starts, how it depends on the oxygen potential, why it occurs non-uniformly; also covered are phase changes within the cladding steel and morphological features such as the intergranular form of attack and the distribution of corrosion products in the fuel/cladding gap. (author)

  4. Some proposed mechanisms for internal cladding corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M H; Pickering, S; Whitlow, W H [EURATOM (United Kingdom)

    1977-04-01

    In spite of extensive research during recent years, a comprehensive model for internal cladding corrosion in fast reactor oxide fuel pins has not yet been established. In this paper, a model is proposed which accounts for many of the features normally associated with this type of corrosion. The model is composed of a number of parts which describe the chronological sequence of events at the fuel/cladding interface. The corrosion reaction is visualised as being primarily chemical in character, involving the cladding steel, the fuel and the more aggressive fission products, notably caesium in the presence of oxygen. The model attempts to explain how corrosion starts, how it depends on the oxygen potential, why it occurs non-uniformly; also covered are phase changes within the cladding steel and morphological features such as the intergranular form of attack and the distribution of corrosion products in the fuel/cladding gap. (author)

  5. Assessment of oxygen diffusion coefficients by studying high-temperature oxidation behaviour of Zr1Nb fuel cladding in the temperature range of 1100–1300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Négyesi, M., E-mail: negy@seznam.cz [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Chmela, T. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Veselský, T. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Krejčí, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); CHEMCOMEX Praha a.s., Elišky Přemyslovny 379, 156 10 Praha – Zbraslav (Czech Republic); Novotný, L.; Přibyl, A. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Bláhová, O. [New Technologies Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň (Czech Republic); Burda, J. [NRI Rez plc, Husinec-Řež 130, 250 68 Řež (Czech Republic); Siegl, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Vrtílková, V. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic)

    2015-01-15

    The paper deals with high-temperature steam oxidation behaviour of Zr1Nb fuel cladding. First of all, comprehensive experimental program was conducted to provide sufficient experimental data, such as the thicknesses of evolved phase layers and the overall weight gain kinetics, as well as the oxygen concentration and nanohardness values at phase boundaries. Afterwards, oxygen diffusion coefficients in the oxide, in the α-Zr(O) layer, in the double-phase (α + β)-Zr region, and in the β-phase region have been estimated based on the experimental data employing analytical solution of the multiphase moving boundary problem, assuming the equilibrium conditions being fulfilled at the interface boundaries. Eventually, the determined oxygen diffusion coefficients served as input into the in-house numerical code, which was designed to predict the high-temperature oxidation behaviour of Zr1Nb fuel cladding. Very good agreement has been achieved between the numerical calculations and the experimental data.

  6. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    International Nuclear Information System (INIS)

    Chung, H. M.

    2000-01-01

    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10 21 n cm -2 to 5.9 x 10 21 n cm -2 (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest cladding were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed

  7. Statistical mechanical analysis of LMFBR fuel cladding tubes

    International Nuclear Information System (INIS)

    Poncelet, J.-P.; Pay, A.

    1977-01-01

    The most important design requirement on fuel pin cladding for LMFBR's is its mechanical integrity. Disruptive factors include internal pressure from mixed oxide fuel fission gas release, thermal stresses and high temperature creep, neutron-induced differential void-swelling as a source of stress in the cladding and irradiation creep of stainless steel material, corrosion by fission products. Under irradiation these load-restraining mechanisms are accentuated by stainless steel embrittlement and strength alterations. To account for the numerous uncertainties involved in the analysis by theoretical models and computer codes statistical tools are unavoidably requested, i.e. Monte Carlo simulation methods. Thanks to these techniques, uncertainties in nominal characteristics, material properties and environmental conditions can be linked up in a correct way and used for a more accurate conceptual design. First, a thermal creep damage index is set up through a sufficiently sophisticated clad physical analysis including arbitrary time dependence of power and neutron flux as well as effects of sodium temperature, burnup and steel mechanical behavior. Although this strain limit approach implies a more general but time consuming model., on the counterpart the net output is improved and e.g. clad temperature, stress and strain maxima may be easily assessed. A full spectrum of variables are statistically treated to account for their probability distributions. Creep damage probability may be obtained and can contribute to a quantitative fuel probability estimation

  8. Graphite Oxidation Simulation in HTR Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  9. Creep-rupture, steam oxidation and recovery behaviours upon dynamic transients up to 1300 C of cold-worked 304 stainless steel tubes dedicated to nuclear core fuel cladding

    International Nuclear Information System (INIS)

    Portier, L.; Brachet, J.C.; Vandenberghe, V.; Guilbert, T.; Lezaud-Chaillioux, V.; Bernard, C.; Rabeau, V.

    2011-01-01

    An ambitious mechanical tests program was conducted on the fuel rod cladding of the CABRI facility between 2004 and 2009 to re-evaluate the cladding tubes materials behaviour. As an offspring of this major scientific investment several conclusions of interest could be drawn on the 304 stainless steel material. In particular, the specific behaviour of the materials during hypothetical and extreme 'dry-out' conditions was investigated. In such a scenario, the cladding tube materials should experience a very brief incursion at high temperatures, in a steam environment, up to 1300 C, before cladding rewetting. Some of the measurements performed in the range of interest for the safety case were on purpose developed beyond the conservatively safe domain. Some of the results obtained for these non-conventional heating rates, pressures and temperature ranges will be presented. First in order to assess the high temperature creep-rupture material behaviour under internal pressure upon dynamic transient conditions, tests have been performed on cold-worked 304 stainless cladding tubes in a steam environment, for heating rates up to 100 C*s -1 and pressure ramp rates up to 10 bar*s -1 thanks to the use of the EDGAR facility. Other tests performed at a given pressure allowed us to check the steady-state secondary creep rate of the materials in the 1100-1200 C temperature range. It was also possible to determine the rupture strength value and the failure mode as a function of the thermal and pressure loading history applied. It is worth noticing that, for very specific conditions, a surprising pure intergranular brittle failure mode of the clad has been observed. Secondly, in order to check the materials oxidation resistance of the materials, two-side steam oxidation tests have been performed at 1300 C, using the DEZIROX facility. It was shown that, thanks to the use of Ring Compression tests, the 304 cladding tube keeps significant ductility for oxidation times up to at least

  10. Analyses on Silicide Coating for LOCA Resistant Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings.

  11. Analyses on Silicide Coating for LOCA Resistant Cladding

    International Nuclear Information System (INIS)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin

    2015-01-01

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings

  12. Numerical simulation on temperature field of TIG welding for 0Cr18Ni10Ti steel cladding and experimental verification

    International Nuclear Information System (INIS)

    Luo Hongyi; Tang Xian; Luo Zhifu

    2015-01-01

    Aiming at tungsten inert gas (TIG) for 0Cr18Ni10Ti stainless steel cladding for radioactive source, the numerical calculation of welding pool temperature field was carried out through adopting ANSYS software. The numerical model of non-steady TIG welding pool shape was established, the heat enthalpy and Gaussian electric arc heat source model of surface distribution were introduced, and the effects of welding current and welding speed to temperature field distribution were calculated. Comparing the experimental data and the calculation results under different welding currents and speeds, the reliability and correctness of the model were proved. The welding technological parameters of 0Cr18Ni10Ti stainless steel were optimized based on the calculation results and the welding procedure was established. (authors)

  13. Statistical mechanical analysis of LMFBR fuel cladding tubes

    International Nuclear Information System (INIS)

    Poncelet, J.-P.; Pay, A.

    1977-01-01

    The most important design requirement on fuel pin cladding for LMFBR's is its mechanical integrity. Disruptive factors include internal pressure from mixed oxide fuel fission gas release, thermal stresses and high temperature creep, neutron-induced differential void-swelling as a source of stress in the cladding and irradiation creep of stainless steel material, corrosion by fission products. Under irradiation these load-restraining mechanisms are accentuated by stainless steel embrittlement and strength alterations. To account for the numerous uncertainties involved in the analysis by theoretical models and computer codes statistical tools are unavoidably requested, i.e. Monte Carlo simulation methods. Thanks to these techniques, uncertainties in nominal characteristics, material properties and environmental conditions can be linked up in a correct way and used for a more accurate conceptual design. (Auth.)

  14. Corrosion characteristics of K-claddings

    International Nuclear Information System (INIS)

    Park, J. Y.; Choi, B. K.; Jung, Y. H.; Jung, Y. H.

    2004-01-01

    The Improvement of the corrosion resistance of nuclear fuel claddings is the critical issue for the successful development of the high burn-up fuel. KAERI have developed the K-claddings having a superior corrosion resistance by controlling the alloying element addition and optimizing the manufacturing process. The comparative evaluation of the corrosion resistance for K-claddings and the foreign claddings was performed and the effect of the heat treatment on the corrosion behavior of K-claddings was also examined. Corrosion tests were carried out in the conditions of 360 .deg. C pure water, PWR-simulating loop and 400 .deg. C steam, From the results of the corrosion tests, it was found that the corrosion resistance of K-claddings is superior to those of Zry4 and A claddings and K6 showed a better corrosion resistance than K3. The corrosion behavior of K-cladding was strongly influenced by the final annealing rather than the intermediate annealing, and the corrosion resistance increased with decreasing the final annealing temperature

  15. Investigation of Zircaloy-2 oxidation model for SFP accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Yoshiyuki, E-mail: nemoto.yoshiyuki@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirakata, Ohaza, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Kaji, Yoshiyuki; Ogawa, Chihiro; Kondo, Keietsu [Japan Atomic Energy Agency, 2-4 Shirakata, Ohaza, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Nakashima, Kazuo; Kanazawa, Toru; Tojo, Masayuki [Global Nuclear Fuel – Japan Co., Ltd., 2-3-1, Uchikawa, Yokosuka-shi, Kanagawa, 239-0836 (Japan)

    2017-05-15

    The authors previously conducted thermogravimetric analyses on Zircaloy-2 in air. By using the thermogravimetric data, an oxidation model was constructed in this study so that it can be applied for the modeling of cladding degradation in spent fuel pool (SFP) severe accident condition. For its validation, oxidation tests of long cladding tube were conducted, and computational fluid dynamics analyses using the constructed oxidation model were proceeded to simulate the experiments. In the oxidation tests, high temperature thermal gradient along the cladding axis was applied and air flow rates in testing chamber were controlled to simulate hypothetical SFP accidents. The analytical outputs successfully reproduced the growth of oxide film and porous oxide layer on the claddings in oxidation tests, and validity of the oxidation model was proved. Influence of air flow rate for the oxidation behavior was thought negligible in the conditions investigated in this study. - Highlights: •An oxidation model of Zircaloy-2 in air environment was developed. •The oxidation model was validated by the comparison with oxidation tests using long cladding tubes in hypothetical spent fuel pool accident condition. •The oxidation model successfully reproduced the typical oxidation behavior in air.

  16. Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding

    International Nuclear Information System (INIS)

    Tome, Carlos N.; Caro, J.A.; Lebensohn, R.A.; Unal, Cetin; Arsenlis, A.; Marian, J.; Pasamehmetoglu, K.

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.

  17. Method for decontaminating stainless cladding tubes

    International Nuclear Information System (INIS)

    Komatsu, Fumiaki.

    1986-01-01

    Purpose: To form an oxide film over the surface of stainless cladding tubes and to efficiently remove radioactive materials from the steel surface together with the oxide layer by the use of an acid water solution. Method: After the removal of water from cladding tubes that have passed through the re-processing process, an oxide film is formed on the surface of the cladding tubes by heating over 400 deg C in an oxidizing atmosphere and thereafter washed again in an acid water solution. When the cladding tubes are thus oxidized once, the stainless base metal itself is oxidized, an oxide layer of several 10 μm or more being formed thereon. In consequence, since the oxide layer is far inferior in corrosion resistance to stainless metals, a pickling liquid easily penetrates into the stainless metal through the oxide layer, thereby remarkably promoting the peeling of the layer from the base metal surface and also improving the residual radioactive material removing efficiency together. (Takahashi, M.)

  18. Simulation of the selective oxidation process of semiconductors

    International Nuclear Information System (INIS)

    Chahoud, M.

    2012-01-01

    A new approach to simulate the selective oxidation of semiconductors is presented. This approach is based on the so-called b lack box simulation method . This method is usually used to simulate complex processes. The chemical and physical details within the process are not considered. Only the input and output data of the process are relevant for the simulation. A virtual function linking the input and output data has to be found. In the case of selective oxidation the input data are the mask geometry and the oxidation duration whereas the output data are the oxidation thickness distribution. The virtual function is determined as four virtual diffusion processes between the masked und non-masked areas. Each process delivers one part of the oxidation profile. The method is applied successfully on the oxidation system silicon-silicon nitride (Si-Si 3 N 4 ). The fitting parameters are determined through comparison of experimental and simulation results two-dimensionally.(author)

  19. Fuel assembly and fuel cladding tube

    International Nuclear Information System (INIS)

    Tsutsumi, Shinro; Ito, Ken-ichi; Inagaki, Masatoshi; Nakajima, Junjiro.

    1996-01-01

    A fuel cladding tube is a zirconium liner tube formed by lining a pure zirconium layer on the inner side of a zirconium alloy tube. The fuel cladding tube is formed by extrusion molding of a composite billet formed by inserting a pure zirconium billet into a zirconium alloy billet. Accordingly, the pure zirconium layer and the zirconium alloy tube are strongly joined by metal bond. The fuel cladding tube has an external oxide film on the outer surface of the zirconium alloy tube and an internal oxide film on the inner side of the pure zirconium layer. The external oxide film has a thickness preferably of about 1μm. The internal oxide film has a thickness of not more than 10μm, preferably, from 1 to 5μm. With such a constitution, flaws to be formed on both inner and outer surfaces of the cladding tube upon assembling a fuel assembly can be reduced thereby enabling to reduce the amount of hydrogen absorbed to the cladding tube. (I.N.)

  20. Structural, mechanical and corrosion studies of Cr-rich inclusions in 152 cladding of dissimilar metal weld joint

    Science.gov (United States)

    Li, Yifeng; Wang, Jianqiu; Han, En-Hou; Yang, Chengdong

    2018-01-01

    Cr-rich inclusions were discovered in 152 cladding at the inner wall of domestic dissimilar metal weld joint, and their morphologies, microstructures, mechanical properties and corrosion behaviors were systematically characterized by SEM, TEM, nanoindentation and FIB. The results indicate that the Cr-rich inclusions originate from large-size Cr particles in 152 welding electrode flux, and they are 50-150 μm in size in most cases, and there is a continuous transition zone of 2-5 μm in width between the Cr inclusion core and 152 cladding matrix, and the transition zone consists of Ni & Fe-rich dendritic austenite and Cr23C6 and Cr matrix. The transition zone has the highest nanoindentation hardness (7.66 GPa), which is much harder than the inclusion core (5.14 GPa) and 152 cladding (3.71 GPa). In-situ microscopic tensile tests show that cracks initialize preferentially in transition zone, and then propagate into the inclusion core, and creep further into 152 cladding after penetrating the core area. The inclusion core and its transition zone both share similar oxide film structure with nickel-base 152 cladding matrix in simulated primary water, while those two parts present better general corrosion resistance than 152 cladding matrix due to higher Cr concentration.

  1. Internal fuel pin oxidizer

    International Nuclear Information System (INIS)

    Andrews, M.G.

    1978-01-01

    A nuclear fuel pin has positioned within it material which will decompose to release an oxidizing agent which will react with the cladding of the pin and form a protective oxide film on the internal surface of the cladding

  2. Laser cladding with powder

    NARCIS (Netherlands)

    Schneider, M.F.; Schneider, Marcel Fredrik

    1998-01-01

    This thesis is directed to laser cladding with powder and a CO2 laser as heat source. The laser beam intensity profile turned out to be an important pa6 Summary rameter in laser cladding. A numerical model was developed that allows the prediction of the surface temperature distribution that is

  3. Impact of reactor water chemistry on cladding performance

    International Nuclear Information System (INIS)

    Cox, B.

    1997-01-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  4. Impact of reactor water chemistry on cladding performance

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [University of Toronto, Centre for Nuclear Engineering, Toronto, Ontario (Canada)

    1997-07-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  5. Simulation of the chemical state of irradiated oxide fuel; influence of the internal corrosion on the mechanical properties of Zry-4 tubing

    International Nuclear Information System (INIS)

    Hofmann, P.

    1979-03-01

    Zircaloy is not compatible with oxide fuel nor with some fission product elements. Therefore, chemical interaction between the irradiated oxide fuel and the Zry cladding material take place, especially at temperatures that can be reached during reactor incidents (ATWS, LOCA). In order to find out which influence the chemical interaction between the fission products and the Zry cladding material have on the mechanical properties of Zry-4 tubing out-of-pile burst experiments and creep rupture tests have been performed at temperatures >=600 0 C with short tube specimens containing simulated fission products. First of all, assessments of the chemical state of irradiated oxide fuel were performed and a method is described for introducing simulated fission product species into fresh oxide fuel for irradiation tests. As the test results of the out-of-pile studies show, only iodine can lead to a low ductility failure of the Zry-tubing at temperatures >=600 0 C. However, the influence of iodine on the deformation behavior of Zry-tubing can be neglected above 850 0 C. (orig.) [de

  6. Potential effects of gallium on cladding materials

    International Nuclear Information System (INIS)

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented

  7. Cladding embrittlement during postulated loss-of-coolant accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  8. Simulation and Measurement of Through-the-Earth, Extremely Low-Frequency Signals Using Copper-Clad Steel Ground Rods

    OpenAIRE

    Damiano, Nicholas William; Yan, Lincan; Whisner, Bruce; Zhou, Chenming

    2017-01-01

    The underground mining environment can greatly affect radio signal propagation. Understanding how the earth affects signal propagation is a key to evaluating communications systems used during a mine emergency. One type of communication system is through-the-earth, which can utilize extremely low frequencies (ELF). This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating current injection...

  9. Fuel cladding mechanical properties for transient analysis

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.; Hanson, J.E.

    1976-01-01

    Out-of-pile simulated transient tests have been conducted on irradiated fast-reactor fuel pin cladding specimens at heating rates of 10 0 F/s (5.6 0 K/s) and 200 0 F/s (111 0 K/s) to generate mechanical property information for use in describing cladding behavior during off-normal events. Mechanical property data were then analyzed, applying the Larson-Miller Parameter to the effects of heating rate and neutron fluence. Data from simulated transient tests on TREAT-tested fuel pins demonstrate that Plant Protective System termination of 3$/s transients prevents significant damage to cladding. The breach opening produced during simulated transient testing is shown to decrease in size with increasing neutron fluence

  10. Clad Degradation- Summary and Abstraction for LA

    International Nuclear Information System (INIS)

    D. Stahl

    2004-01-01

    component models, developed for the two stages noted above, that are used as inputs to TSPA-LA. The model concludes that less than two percent of the fuel, including all of the stainless-steel clad fuel, received at the repository is failed (perforated) upon receipt at the repository. All failed fuel is assumed to axially split upon waste package failure exposing the fuel to oxidation from the in-package environment. TSPA-LA then calculates the release of radionuclides from the exposed volume of oxidized fuel

  11. Simulation of atomistic processes during silicon oxidation

    OpenAIRE

    Bongiorno, Angelo

    2003-01-01

    Silicon dioxide (SiO2) films grown on silicon monocrystal (Si) substrates form the gate oxides in current Si-based microelectronics devices. The understanding at the atomic scale of both the silicon oxidation process and the properties of the Si(100)-SiO2 interface is of significant importance in state-of-the-art silicon microelectronics manufacturing. These two topics are intimately coupled and are both addressed in this theoretical investigation mainly through first-principles calculations....

  12. Rectangular-cladding silicon slot waveguide with improved nonlinear performance

    Science.gov (United States)

    Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong

    2018-04-01

    Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.

  13. Chemical interaction between the oxide and the clad in PHENIX fuel at burnup up to 60,000 MWd/t

    International Nuclear Information System (INIS)

    Conte, M.; Marcon, J.P.

    1977-01-01

    In every fuel element there is a potential problem of chemical interaction between the fissile portion and the clad. As a matter of fact, even if the choice of materials is made after having established a satisfactory chemical compatibility between the fuel- (UO 2 (U,Pu)O 2 , (U,Pu) C, . . .) and the clad (stainless steel, zircaloy, . . . ) out of pile, it is difficult to guarantee this compatibility after operation in the reactor due, on one hand, to the presence of fission products and, on the other hand, to impurities which are always present in the fuel to a greater or lesser degree. The fuel element currently chosen for the sodium-cooled fast reactors ((U,Pu)O 2 in stainless steel clad) does not avoid this problem, in particular because of the relatively high temperatures envisioned for this type of reactor - the clad temperature is about 650 deg. C. Since it is considered as a demonstration reactor, Phenix should be able to provide additional information on this phenomenon, and one will see that we have been able to shed light on some points which the experiments or irradiations made to date have been unable to explain. However, before presenting the experimental results obtained with Phenix fuel end drawing conclusions, we shall give a brief resume of the expected behavior of this fuel with respect to the phenomenon of interest. (author)

  14. Contribution to the study of the pseudobinary Zr1Nb-Oxygen phase diagram by local oxygen measurements of Zr1Nb fuel cladding after high temperature oxidation

    Czech Academy of Sciences Publication Activity Database

    Negyesi, M.; Burda, J.; Klouček, V.; Lorinčík, Jan; Sopoušek, J.; Kabátová, J.; Novotný, L.; Linhart, S.; Chmela, T.; Siegl, J.; Vrtílková, V.

    2012-01-01

    Roč. 420, 1-3 (2012), s. 314-319 ISSN 0022-3115 Institutional research plan: CEZ:AV0Z20670512 Keywords : Zr1Nb * oxygen * fuel cladding Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.211, year: 2012

  15. Application of Coating Technology for Accident Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. As an improved coating technology compared to a previous study, a 3D laser coating technology supplied with Cr powders is considered to make a coated cladding because it is possible to make a coated layer on the tubular cladding surface by controlling the 3-diminational axis. We are systematically studying the laser beam power, inert gas flow, cooling of the cladding tube, and powder control as key points to develop 3D laser coating technology. After Cr-coating on the Zr-based cladding, ring compression and ring tensile tests were performed to evaluate the adhesion property between a coated layer and Zr-based alloy tube at room temperature (RT), and a high-temperature oxidation test was conducted to evaluate the oxidation behavior at 1200 .deg. C of the coated tube samples. A 3D laser coating method supplied with Cr powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a Cr-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  16. Simulation and Measurement of Through-the-Earth, Extremely Low-Frequency Signals Using Copper-Clad Steel Ground Rods.

    Science.gov (United States)

    Damiano, Nicholas William; Yan, Lincan; Whisner, Bruce; Zhou, Chenming

    2017-01-01

    The underground mining environment can greatly affect radio signal propagation. Understanding how the earth affects signal propagation is a key to evaluating communications systems used during a mine emergency. One type of communication system is through-the-earth, which can utilize extremely low frequencies (ELF). This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating current injection at ELF, and in particular, ground contact impedance. Measurements were taken at an outside surface testing location. The results obtained from modeling and measurement are characterized by electrode impedance, and the voltage received between two distant electrodes. This paper concludes with a discussion of design considerations found to affect low-frequency communication systems utilizing ground rods to inject a current into the earth.

  17. Stone cladding engineering

    National Research Council Canada - National Science Library

    Camposinhos, Rui de Sousa

    2014-01-01

    .... Straightforward formulae are provided for computing action on cladding, with special emphasis on the effect of seismic forces, including an extensive general methodology applied to non-structural elements...

  18. Cladding creepdown under compression

    International Nuclear Information System (INIS)

    Hobson, D.O.

    1977-01-01

    Light-water power reactors use Zircaloy tubing as cladding to contain the UO 2 fuel pellets. In-service operating conditions impose an external hydrostatic force on the cladding, causing it to creep down into eventual contact with the fuel. Knowledge of the rate of such creepdown is of great importance to modelers of fuel element performance. An experimental system was devised for studying creepdown that meets several severe requirements by providing (1) correct stress state, (2) multiple positions for measuring radial displacement of the cladding surface, (3) high-precision data, and (4) an experimental configuration compact enough to fit in-reactor. A microcomputer-controlled, eddy-current monitoring system was developed for this study and has proven highly successful in measuring cladding deformation with time at temperatures of 371 0 C (700 0 F) and higher, and at pressures as high as 21 MPa

  19. Reaction in air and in nitrogen of pre-oxidised Zircaloy-4 and M5™ claddings

    Energy Technology Data Exchange (ETDEWEB)

    Duriez, C., E-mail: christian.duriez@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SEREX-LE2M, Centre de Cadarache, St Paul-Lez-Durance 13115 (France); Drouan, D. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SEREX-LE2M, Centre de Cadarache, St Paul-Lez-Durance 13115 (France); Pouzadoux, G. [Université Technologique de Troyes, BP 2060, Troyes 10010 (France)

    2013-10-15

    High temperature reactivity in air and in nitrogen of pre-oxidised Zircaloy-4 and M5™ claddings has been studied by thermogravimetry. Claddings were pre-oxidised at low temperature with the aim of simulating spent fuel. Different pre-oxidation modes, inducing significant variation in the pre-oxides microstructure, were compared. The behaviour in air, investigated in the 850–1000 °C temperature range, was found to be strongly dependant on the type of pre-oxide: the compact pre-oxide formed in autoclave (at temperature, pressure, and water chemistry representative of PWR conditions) significantly slows down the degradation in air compared to the bare alloys; on the contrary, a pre-oxide formed at 500 °C at ambient pressure, either in oxygen or in steam, favours the initiation of post-breakaway type oxidation, which in air is associated with nitride formation. The behaviour in nitrogen has been investigated in the 800–1200 °C temperature range, with Zircaloy-4 pre-oxidised at 500 °C in O{sub 2}. Reactivity is low up to 1000 °C but becomes very significant at the highest temperatures investigated, 1100 and 1200 °C. Finally, cladding segments first reacted in N{sub 2} at 1100 °C, were exposed to air and show fast oxidation even at the lowest temperature investigated (600 °C)

  20. Effects of pellet-to-cladding gap design parameters on the reliability of high burnup PWR fuel rods under steady state and transient conditions

    International Nuclear Information System (INIS)

    Tas, Fatma Burcu; Ergun, Sule

    2013-01-01

    Highlights: • Fuel performance of a typical Pressurized Water Reactor rod is analyzed. • Steady state fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • Transient fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • The optimum pellet to cladding gap thickness and gap gas pressure values of the simulated fuel are determined. • The effects of pellet to cladding gap design parameters on nuclear fuel reliability are examined. - Abstract: As an important improvement in the light water nuclear reactor operations, the nuclear fuel burnup rate is increased in recent decades and this increase causes heavier duty for the nuclear fuel. Since the high burnup fuel is exposed to very high thermal and mechanical stresses and since it operates in an environment with high radiation for about 18 month cycles, it carries the risk of losing its integrity. In this study; it is aimed to determine the effects of pellet–cladding gap thickness and gap pressure on reliability of high burnup nuclear fuel in Pressurized Water Reactors (PWRs) under steady state operation conditions and suggest optimum values for the examined parameters only and validate these suggestions for a transient condition. In the presented study, fuel performance was analyzed by examining the effects of pellet–cladding gap thickness and gap pressure on the integrity of high burnup fuels. This work is carried out for a typical Westinghouse type PWR fuel. The steady state conditions were modeled and simulated with FRAPCON-3.4a steady state fuel performance code and the FRAPTRAN-1.4 fuel transient code was used to calculate transient fuel behavior. The analysis included the changes in the important nuclear fuel design limitations such as the centerline temperature, cladding stress, strain and oxidation with the change in pellet–cladding gap thickness and initial pellet–cladding gap gas

  1. Process for surface treatment of zirconium-containing cladding materials for fuel element or other components for nuclear reactors

    International Nuclear Information System (INIS)

    Videm, K.G.; Lunde, L.R.; Kooyman, H.H.

    1975-01-01

    A process for the surface treatment of zirconium-base cladding materials for fuel elements or other components for nuclear reactors is described. The treatment includes pickling the cladding material in a fluoride-containing bath, and then applying a protective coating through oxidation to the pickled cladding material. The fluoride-containing contaminants which remain on the surface of the cladding material during pickling are removed or rendered harmless by anodic oxidation

  2. Plasma spheroidization and cladding of powders

    Energy Technology Data Exchange (ETDEWEB)

    Petrunichev, V.A.; Averin, V.V.; Sorokin, L.M.; Koroleva, E.B.

    1987-02-01

    With reference to experimental results for nickel and chromium alloys, it is shown that complex alloy powders can be spheroidized in plasma discharges using an argon plasma with hydrogen. The spheroidizing process is accompanied by the reduction of surface oxides, with uniform element distribution within the particles; the granulometric composition of the particles is preserved. It is also shown that plasma technology can be used for producing metal-clad oxide and carbide powders, which improve the performance of cermets and coatings.

  3. Oxidation behaviors of the TiNi/Ti_2Ni matrix composite coatings with different contents of TaC addition fabricated on Ti6Al4V by laser cladding

    International Nuclear Information System (INIS)

    Lv, Y.H.; Li, J.; Tao, Y.F.; Hu, L.F.

    2016-01-01

    The TiNi/Ti_2Ni matrix composite coatings were fabricated on Ti6Al4V by laser cladding the mixtures of NiCrBSi and different contents of TaC (0 wt%, 5 wt%, 15 wt%, 30 wt% and 40 wt%). Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffractometry (XRD) were used to examine the microstructures of the coatings. Oxidation behaviors of these coatings were also investigated at 800 °C for 50 h in air. The results showed that the coating without TaC addition was mainly composed of TiNi/Ti_2Ni as the matrix and TiC/TiB_2/TiB as the reinforcement. TaC was dissolved completely and precipitated again during laser cladding. Ta and C from the added TaC mainly existed as the solute atoms in the solid solutions of TiC, TiB_2 and TiB in the coatings with TaC addition. The addition of TaC refined the microstructures of the coatings. In the oxidation test, the oxidation process was divided into the violent oxidation stage and the slow oxidation stage. The oxidation rates of the substrate and the coatings with different contents of TaC (0, 5, 15, 30, 40 wt%) were 0.644, 0.287, 0.173, 0.161, 0.223 and 0.072 mg cm"−"2 h"−"1 in the first stage, 0.884, 0.215, 0.136, 0.126, 0.108 and 0.040 mg"2 cm"−"4 h"−"1 in the second stage, respectively. The weight gain of these samples were 6.70, 3.30, 2.86, 2.64, 2.41 and 1.69 mg cm"−"2, respectively after the whole oxidation test. The oxidation film formed on the surface of the coating without TaC addition mainly consisted of TiO_2, Al_2O_3, and a small amount of NiO, Cr_2O_3 and SiO_2. Moreover, Ta_2O_5 was also formed on the surfaces of these coatings with different contents of TaC. The oxides formed during the oxidation test were supposed to be responsible for the improvement in oxidation resistance of these coatings. - Highlights: • The composite coatings with TaC addition were fabricated on Ti6Al4V by laser cladding. • Effect of TaC addition on microstructural evolution of the coatings was

  4. Oxidation behaviors of the TiNi/Ti{sub 2}Ni matrix composite coatings with different contents of TaC addition fabricated on Ti6Al4V by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Y.H.; Li, J., E-mail: jacob_lijun@sina.com; Tao, Y.F.; Hu, L.F.

    2016-09-15

    The TiNi/Ti{sub 2}Ni matrix composite coatings were fabricated on Ti6Al4V by laser cladding the mixtures of NiCrBSi and different contents of TaC (0 wt%, 5 wt%, 15 wt%, 30 wt% and 40 wt%). Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffractometry (XRD) were used to examine the microstructures of the coatings. Oxidation behaviors of these coatings were also investigated at 800 °C for 50 h in air. The results showed that the coating without TaC addition was mainly composed of TiNi/Ti{sub 2}Ni as the matrix and TiC/TiB{sub 2}/TiB as the reinforcement. TaC was dissolved completely and precipitated again during laser cladding. Ta and C from the added TaC mainly existed as the solute atoms in the solid solutions of TiC, TiB{sub 2} and TiB in the coatings with TaC addition. The addition of TaC refined the microstructures of the coatings. In the oxidation test, the oxidation process was divided into the violent oxidation stage and the slow oxidation stage. The oxidation rates of the substrate and the coatings with different contents of TaC (0, 5, 15, 30, 40 wt%) were 0.644, 0.287, 0.173, 0.161, 0.223 and 0.072 mg cm{sup −2} h{sup −1} in the first stage, 0.884, 0.215, 0.136, 0.126, 0.108 and 0.040 mg{sup 2} cm{sup −4} h{sup −1} in the second stage, respectively. The weight gain of these samples were 6.70, 3.30, 2.86, 2.64, 2.41 and 1.69 mg cm{sup −2}, respectively after the whole oxidation test. The oxidation film formed on the surface of the coating without TaC addition mainly consisted of TiO{sub 2}, Al{sub 2}O{sub 3}, and a small amount of NiO, Cr{sub 2}O{sub 3} and SiO{sub 2}. Moreover, Ta{sub 2}O{sub 5} was also formed on the surfaces of these coatings with different contents of TaC. The oxides formed during the oxidation test were supposed to be responsible for the improvement in oxidation resistance of these coatings. - Highlights: • The composite coatings with TaC addition were fabricated on Ti6Al4V by laser

  5. Modeling of cladding and fuel motion in a loss of flow situation for GCFR safety analysis. Technical progress report (annual), June 15, 1974--March 15, 1975

    International Nuclear Information System (INIS)

    Eggen, D.T.

    1975-01-01

    During the first nine months of the project, methods and apparatus were developed to study the freezeout of molten cladding in a cooler blanket region. Three tests were run in which a mass of molten material from a simulated core region of a GCFR flowed into a bundle of simulated blanket elements. In all cases plugging occurred in or before the first grid-spacer. Theories and preliminary models are in accord with these observations. These tests have been done with a 50/50-Pb/Sn alloy simulating the cladding and spacer grids and alumina simulating the fuel. Materials are being obtained for tests with stainless steel cladding and spacers. Development is progressing well on an electrically-heated fuel element which will be used to study the melting and motion of cladding in the core region for a loss of flow accident. Preliminary models is being developed to calculate the motion and freezeout of flowing cladding in the blanket region. The SAS-GAS and Argus codes are being adapted for uses in conjunction with model development on the project. A survey of fission gas effects in oxide during TOP cases was prepared and other codes (LIFE) were reviewed for possible value on the project. A set of reference physical parameters is being developed for the various materials used in the analysis and experiments. (U.S.)

  6. Laser cladding of turbine blades

    International Nuclear Information System (INIS)

    Shepeleva, L.; Medres, B.; Kaplan, W.D.; Bamberger, M.

    2000-01-01

    A comparative study of two different techniques for the application of wear-resistant coatings for contact surfaces of shroud shelves of gas turbine engine blades (GTE) has been conducted. Wear-resistant coatings were applied on In713 by laser cladding with direct injection of the cladding powder into the melt pool. Laser cladding was conducted with a TRUMPF-2500, CW-CO 2 laser. The laser cladding was compared with commercially available plasma cladding with wire. Both plasma and laser cladded zones were characterized by optical and scanning electron microscopy. It was found that the laser cladded zone has a higher microhardness value (650-820 HV) compared with that of the plasma treated material (420-440 HV). This is a result of the significant reduction in grain size in the case of laser cladding. Unlike the plasma cladded zones, the laser treated material is free of micropores and microcracks. (orig.)

  7. Fuel cladding behavior under rapid loading conditions

    Science.gov (United States)

    Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.

    2016-02-01

    A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.

  8. Investigation on fuel-cladding chemical interaction in metal fuel for FBR

    International Nuclear Information System (INIS)

    Inagaki, Kenta; Nakamura, Kinya; Ogata, Takanari; Uwaba, Tomoyuki

    2013-01-01

    During steady-state irradiation of metallic fuel in fast reactors, rare-earth fission products can react with stainless steel cladding at the fuel-cladding interface. The authors conducted isothermal annealing tests with some diffusion couples to investigate the structure of the wastage layer formed at the interface. Candidate cladding alloys, ferritic-martensitic steel (PNC-FMS) and oxide-dispersion-strengthened (ODS) steel were assembled with rare-earth alloys, RE5 : La-Ce-Pr-Nd-Sm, which simulate the fission yield of rare-earth fission products. The diffusion couples were isothermally annealed in the temperature range of 500-650°C for up to 170 h. In both RE5/ODS-steel and RE5/PNC-FMS couples, the wastage layer of the two-phase region of the (Fe, Cr) 17 RE 2 matrix phase with the precipitation of the (Fe, RE, Cr) phase was formed. The structure was similar to that formed in RE5/Fe-12Cr and RE5/HT9 couples, which implies that the reaction between REs and steel is not significantly influenced by the minor alloying elements within the candidate cladding materials. It was also clarified that the increase in the wastage layer thickness was diffusion-controlled. The temperature dependence of the reaction rate constants were formulated, which can be the basis for the quantification of the wastage layer growth. (author)

  9. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti_3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    International Nuclear Information System (INIS)

    Liu, Hongxi; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-01-01

    High temperature anti-oxidation TiN/Ti_3Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO_2 laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti_3Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti_3Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti_3Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV_0_._2. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti_3Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti_3Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al_2O_3 and TiO_2. The laser cladding TiN/Ti_3Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti_3Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti_3Al intermetallic coating is mainly composed of α-Ti, TiN and Ti_3Al phases. • The

  10. Advanced in-situ characterisation of corrosion properties of LWR fuel cladding materials

    International Nuclear Information System (INIS)

    Arilahti, E.; Bojinov, M.; Beverskog, B.

    1999-01-01

    The trend towards higher fuel burnups imposes a demand for better corrosion and hydriding resistance of cladding materials. Development of new and improved cladding materials is a long process. There is a lack of fast and reliable in-situ techniques to investigate zirconium alloys in simulated or in-core LWR coolant conditions. This paper describes a Thin Layer Electrode (TLE) arrangement suitable for in-situ characterization of oxide films formed on fuel cladding materials. This arrangement enables us to carry out: Versatile Thin Layer Electrochemical measurements, including: (i) Thin Layer Electrochemical impedance Spectroscopic (TLEIS) measurements to characterize the oxidation kinetics and mechanisms of metals and the properties of their oxide films in aqueous environments. These measurements can also be performed in low conductivity electrolytes. (ii) Thin-Layer Wall-Jet (TLWJ) measurements, which give the possibility to detect soluble reaction products and to evaluate the influence of novel water chemistry additions on their release. Solid Contact measurements: (i) Contact Electric Resistance (CER) measurements to investigate the electronic properties of surface films on the basis of d.c. resistance measurements. (i) Contact Electric impedance (CEI) measurements to study the electronic properties of surface films using a.c. perturbation. All the above listed measurements can be performed using one single measurement device developed at VTT. This device can be conveniently inserted into an autoclave. Its geometry is currently being optimized in cooperation with the OECD Halden Reactor Project. In addition, the applicability of the device for in-core measurements has been investigated in a joint feasibility study performed by VTT and JRC Petten. Results of some autoclave studies of the effect of LiOH concentration on the stability of fuel cladding oxide films are presented in this paper. (author)

  11. Electra-Clad

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    The study relates to the use of building-integrated photovoltaics. The Electra-Clad project sought to use steel-based cladding as a substrate for direct fabrication of a fully integrated solar panel of a design similar to the ICP standard glass-based panel. The five interrelated phases of the project are described. The study successfully demonstrated that the principles of the panel design are achievable and sound. But, despite intensive trials, a commercially realistic solar performance has not been achieved: the main failing was the poor solar conversion efficiency as the active area of the panel was increased in size. The problem lies with the coating used on the steel cladding substrates and it was concluded that a new type of coating will be required. ICP Solar Technologies UK carried out the work under contract to the DTI.

  12. Nuclear fuel cladding material

    International Nuclear Information System (INIS)

    Nakahigashi, Shigeo.

    1982-01-01

    Purpose: To largely improve the durability and the safety of fuel cladding material. Constitution: Diffusion preventive layers, e.g., aluminum or the like are covered on both sides of a zirconium alloy base layer of thin material, and corrosion resistant layers, e.g., copper or the like are covered thereon. This thin plate material is intimately wound in a circularly tubular shape in a plurality of layers to form a fuel cladding tube. With such construction, corrosion of the tube due to fuel and impurity can be prevented by the corrosion resistant layers, and the diffusion of the corrosion resistant material to the zirconium alloy can be prevented by the diffusion preventive layers. Since a plurality of layers are cladded, even if the corrosion resistant layers are damaged or cracked due to stress corrosion, only one layer is damaged or cracked, but the other layers are not affected. (Sekiya, K.)

  13. Some aspects of the utilization of zicaloy and austenitic steel as cladding material for PWR reactor fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Perrotta, J.A.

    1985-01-01

    The behaviour under irradiation of fuel rods for light water reactors was simulated by using fuel performance codes. Two types of cladding were analyzed: zircaloy and austenitic stainless steel. The fuel performance codes, originally made for zircaloy cladding, were adapted for austenitic stainless steel. The simulation results for the two types of cladding are presented, compared and discussed. (F.E.) [pt

  14. Simulation with GOTHIC of experiments Oxidation of fuel in Air

    International Nuclear Information System (INIS)

    Martinez-Murillo Mendez, J. C.

    2012-01-01

    In the present work has been addressed for the first time la simulation with the GOTHIC code, experiments oxidation and ignition of SFP in phase 1. This work represents a solid starting point for analysis of specific degradation of fuel in the pools of our facilities.

  15. Thermal-hydraulics analysis of a PWR reactor using zircaloy and carbide silicon reinforced with type S fibers as fuel claddings: Simulation of a channel blockage transient

    Energy Technology Data Exchange (ETDEWEB)

    Matuck, Vinicius; Ramos, Mario C.; Faria, Rochkhudson B.; Reis, Patricia A.L.; Costa, Antonella L.; Pereira, Claubia, E-mail: rochkdefaria@yahoo.com.br, E-mail: matuck747@gmail.com, E-mail: patricialire@yahoo.com.br, E-mail: marc5663@gmail.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    A detailed thermal-hydraulic reactor model using as reference data from the Angra 2 Final Safety Analysis Report (FSAR) has been developed and SiC reinforced with Hi-Nicalon type S fibers (SiC HNS) was used as fuel cladding. The goal is to compare its behavior from the thermal viewpoint with the Zircaloy, at the steady- state and transient conditions. The RELAP-3D was used to perform the thermal-hydraulic analysis and a blockage transient has been investigated at full power operation. The transient considered is related to total obstruction of a core cooling channel of one fuel assembly. The calculations were performed using a point kinetic model. The reactor behavior after this transient was analyzed and the time evolution of cladding and coolant temperatures mass flow and void fraction are presented. (author)

  16. Reduction of Bragg-grating-induced coupling to cladding modes

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Bjarklev, Anders Overgaard; Soccolich, C.E.

    1999-01-01

    gratings in a depressed-cladding fiber are compared with simulations. The model gives good agreement with the measured transmission spectrum and accounts for the pronounced coupling to asymmetrical cladding modes, even when the grating is written with the smallest possible blaze. The asymmetry causing...... this is accounted for by the unavoidable attenuation of the UV light. It is found for the considered fiber designs that a high numerical-aperture fiber increases the spectral separation between the Bragg resonance and the onset of cladding-mode losses. A depressed-cladding fiber reduces the coupling strength......We discuss fiber designs that have been suggested for the reduction of Bragg-grating induced coupling to cladding modes. The discussion is based on a theoretical approach that includes the effect of asymmetry in the UV-induced index grating, made by UV-side writing. Experimental results from...

  17. Estimation of penetration depth of fission products in cladding Hull

    International Nuclear Information System (INIS)

    Kim, Hee Moon; Jung, Yang Hong; Yoo, Byong Ok; Choo, Yong Sun; Hong, Kwon Pyo

    2005-01-01

    A disposal and a reprocessing for spent fuel rod with high burnup need de-cladding procedure. Pellet in this rod has been separated from a cladding hull to reduce a radioactivity of hull by chemical and mechanical methods. But fission products and actinides(U,Pu) still remain inside of cladding hull by chemical bonding and fission spike, which is called as 'contamination'. More specific removal of this contamination would have been considered. In this study, the sorts of fission products and penetration depth in hull were observed by EPMA test. To analyze this behavior, SRIM 2000 code was also used as energies of fission products and an oxide thickness of hull

  18. Simulated LOCA Test and Characterization Study Related to High Burn-Up Issue

    International Nuclear Information System (INIS)

    Park, D. J.; Jung, Y. I.; Choi, B. K.; Park, S. Y.; Kim, H. G.; Park, J. Y.

    2012-01-01

    For the safety evaluation of fuel cladding during the injection of emergency core coolant, simulated Loss-of-coolant accident (LOCA) test was performed by using Zircaloy-4 fuel cladding samples. Zircaloy-4 tube samples with and without prehydring were oxidized in a steam environment with the test temperature of 1200 .deg. C. Prehydrided cladding was prepared from as-fabricated Zircaloy-4 to study the effects of hydrogen on mechanical properties of cladding during high temperature oxidation and quench conditions. In order to measure the ductility of the tube samples embrittled by quenching water, ring compression test was carried out by using 8 mm ring sample sectioned from oxidized tube sample and microstructural analysis was also performed after simulated LOCA test. The results showed that hydrogen increases oxygen solubility and pickup rate in the beta layer. This reduces ductility of prehydrided fuel cladding compared with as-fabricated cladding. Trend in ductility decrease for prehydrided sample under simulated LOCA condition was very similar with data obtained from tests conducted using irradiated high burn-up fuel claddings

  19. Simulation of uranium and plutonium oxides compounds obtained in plasma

    Science.gov (United States)

    Novoselov, Ivan Yu.; Karengin, Alexander G.; Babaev, Renat G.

    2018-03-01

    The aim of this paper is to carry out thermodynamic simulation of mixed plutonium and uranium oxides compounds obtained after plasma treatment of plutonium and uranium nitrates and to determine optimal water-salt-organic mixture composition as well as conditions for their plasma treatment (temperature, air mass fraction). Authors conclude that it needs to complete the treatment of nitric solutions in form of water-salt-organic mixtures to guarantee energy saving obtainment of oxide compounds for mixed-oxide fuel and explain the choice of chemical composition of water-salt-organic mixture. It has been confirmed that temperature of 1200 °C is optimal to practice the process. Authors have demonstrated that condensed products after plasma treatment of water-salt-organic mixture contains targeted products (uranium and plutonium oxides) and gaseous products are environmental friendly. In conclusion basic operational modes for practicing the process are showed.

  20. Heterogeneous oxidation of mercury in simulated post combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Glenn A. Norton; Hongqun Yang; Robert C. Brown; Dennis L. Laudal; Grant E. Dunham; John Erjavec [Iowa State University, Ames, IA (United States). Center for Sustainable Environmental Technologies

    2003-01-01

    Heterogeneous mercury oxidation was studied by exposing whole fly ash samples and magnetic, nonmagnetic, and size-classified fly ash fractions to elemental mercury vapor in simulated flue gas streams. Fly ash from sub-bituminous Wyodak-Anderson PRB coal and bituminous Blacksville coal were used. Scanning electron microscopy, X-ray diffraction, thermogravimetric analyses, and BET N{sub 2} isothermal sorption analyses were performed to characterize the fly ash samples. Mercury speciation downstream from the ash was determined using the Ontario Hydro method. Results showed that the presence of fly ash was critical for mercury oxidation, and the surface area of the ash appears to be an important parameter. However, for a given fly ash, there were generally no major differences in catalytic oxidation potential between different fly ash fractions. This includes fractions enriched in unburned carbon and iron oxides. The presence of NO{sub 2}, HCl, and SO{sub 2} resulted in greater levels of mercury oxidation, while NO inhibited mercury oxidation. The gas matrix affected mercury oxidation more than the fly ash composition. 21 refs., 10 figs., 2 tabs.

  1. Breaking up of pure and simulated 'burnt' mixed oxide fuel by chemical interaction with oxidized sodium

    International Nuclear Information System (INIS)

    Besnard, R.; Chaudat, J.P.

    1983-01-01

    A large experimental program have permitted to investigate the behaviour of mixed oxide fuel coming in contact with hot oxidized sodium. The kinetic of the reaction, the size and the chemical nature of the particules after interaction have been studied. The main part of experiments have been performed using mixed oxide fuel non irradiated at first and with simulated fission products afterwards. Complementary informations have been obtained with UO 2 fuel pellets. After description of the experimental devices, the results are discussed and the importance of the main parameters, like temperature and fission products effect, are pointed out. (orig.)

  2. Development of Mechanical Improvement of the Cladding by Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Han, J G; Lee, S B [Sungkyunkwan University, Seoul (Korea, Republic of); Kim, S H [Kangwon University, Chunchon (Korea, Republic of); Song, G [Suwon College, Suwon (Korea, Republic of)

    1997-07-01

    In this research we analyzed the state of art related to the surface treatment method of nuclear fuel cladding for the development of the surface treatment technique of nuclear fuel cladding by ion beam while investigating major causes of the leakage of fuel rods. Ion implantation simulation code called TRIM-95 was used to decide basic parameters ion beams and wetup an appropriate process for ion implantation. For the mechanical properties measurements, a high temperature wear resistance tester, a fretting wear tester, and a fretting fatigue resistance tester were constructed. Using these testers, some mechanical properties as micro hardness, wear resistance against AISI52100 and AI{sub 2}O{sub 3} balls, and fretting properties were measured and analyzed for the implanted materials as a function of ion dose and processing temperature. Effect of the oxygen atmosphere was measured in the nitrogen implantation. Auger electron spectroscopy(AES) was applied for the depth profile, and X-ray diffraction was used for the nitrogen and oxide measurements. 48 refs., 7 tabs., 46 figs. (author)

  3. A Novel Method of Modeling the Deformation Resistance for Clad Sheet

    International Nuclear Information System (INIS)

    Hu Jianliang; Yi Youping; Xie Mantang

    2011-01-01

    Because of the excellent thermal conductivity, the clad sheet (3003/4004/3003) of aluminum alloy is extensively used in various heat exchangers, such as radiator, motorcar air conditioning, evaporator, and so on. The deformation resistance model plays an important role in designing the process parameters of hot continuous rolling. However, the complex behaviors of the plastic deformation of the clad sheet make the modeling very difficult. In this work, a novel method for modeling the deformation resistance of clad sheet was proposed by combining the finite element analysis with experiments. The deformation resistance model of aluminum 3003 and 4004 was proposed through hot compression test on the Gleeble-1500 thermo-simulation machine. And the deformation resistance model of clad sheet was proposed through finite element analysis using DEFORM-2D software. The relationship between cladding ratio and the deformation resistance was discussed in detail. The results of hot compression simulation demonstrate that the cladding ratio has great effects on the resistance of the clad sheet. Taking the cladding ratio into consideration, the mathematical model of the deformation resistance for clad sheet has been proved to have perfect forecasting precision of different cladding ratio. Therefore, the presented model can be used to predict the rolling force of clad sheet during the hot continuous rolling process.

  4. Assessment of thin-walled cladding tube mechanical properties by segmented expanding Mandrel test

    International Nuclear Information System (INIS)

    Nilsson, Karl-Fredrik

    2015-01-01

    This paper presents the principles of the segmented expanding mandrel test for thin-walled cladding tubes, which can be used as a basic material characterisation test to determine stress-strain curves and ductility or as a test to simulate mechanical pellet-cladding interaction. The paper discusses the strengths and weaknesses of the test method and it illustrates how the test can be used to simulate hydride reorientations in zirconium claddings and quantify how hydride reorientation affects ductility. (authors)

  5. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  6. Experimental assessment of fuel-cladding interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-29

    A range of fuel concepts designed to better tolerate accident scenarios and reactor transients are currently undergoing fundamental development at national laboratories as well as university and industrial partners. Pellet-clad mechanical and chemical interaction can be expected to affect fuel failure rates experienced during steady state operation, as well as dramatically impact the response of the fuel form under loss of coolant and other accident scenarios. The importance of this aspect of fuel design prompted research initiated by AFC in FY14 to begin exploratory efforts to characterize this phenomenon for candidate fuelcladding systems of immediate interest. Continued efforts in FY15 and FY17 aimed to better understand and simulate initial pellet-clad interaction with little-to-no pressure on the pellet-clad interface. Reported here are the results from 1000 h heat treatments at 400, 500, and 600°C of diffusion couples pairing UN with a FeCrAl alloy, SiC, and Zr-based cladding candidate sealed in evacuated quartz ampoules. No gross reactions were observed, though trace elemental contaminants were identified.

  7. Experimental and calculation results of the integral reflood test QUENCH-14 with M5 (registered) cladding tubes

    International Nuclear Information System (INIS)

    Stuckert, J.; Birchley, J.; Grosse, M.; Jaeckel, B.; Steinbrueck, M.

    2010-01-01

    The QUENCH-14 experiment investigated the effect of M5 (registered) cladding material on bundle oxidation and core reflood, in comparison with tests QUENCH-06 (ISP-45) that used standard Zircaloy-4 and QUENCH-12 that used VVER E110-claddings. The PWR bundle configuration of QUENCH-14 with a single unheated rod, 20 heated rods, and four corner rods was otherwise identical to QUENCH-06. The test was conducted in principle with the same protocol as QUENCH-06, so that the effects of the change of cladding material could be observed more easily. Pre-test calculations were performed by the Paul Scherrer Institut (Switzerland) using the SCDAPSIM, SCDAP/RELAP5 and MELCOR codes. Follow-on post-test analyses were performed using SCDAP/RELAP5 and MELCOR as part of an ongoing programme of model validation and code assessment. Alternative oxidation correlations were used to examine the possible influence of the M5 (registered) cladding material on hydrogen generation, in comparison with Zircaloy-4. The experiment started with a pre-oxidation phase in steam, lasting ∼3000 s at ∼1500 K peak bundle temperature. After a further temperature increase to maximum bundle temperature of 2073 K the bundle was flooded with 2 g/s/rod water from the bottom. The peak temperature of ∼2300 K was measured on the bundle shroud, shortly after quench initiation. The electrical power was reduced to average value of 2 W/cm during the reflood phase to simulate effective decay heat level. Complete bundle cooling was reached in 300 s after reflood initiation. The development of the oxide layer growth during the test was essentially defined by measurements performed on the three Zircaloy-4 corner rods withdrawn successively from the bundle. The withdrawal of Zircaloy-4 and E110 corner rods after the test allowed a comparison of the different alloys in one test. One heated rod with M5 cladding was withdrawn after the test for a detailed analysis of oxidation degree and measurement of absorbed

  8. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti{sub 3}Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-06-15

    High temperature anti-oxidation TiN/Ti{sub 3}Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO{sub 2} laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti{sub 3}Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti{sub 3}Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti{sub 3}Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV{sub 0.2}. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti{sub 3}Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti{sub 3}Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al{sub 2}O{sub 3} and TiO{sub 2}. The laser cladding TiN/Ti{sub 3}Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti{sub 3}Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti{sub 3}Al intermetallic

  9. Pressurized water reactor fuel performance problems connected with fuel cladding corrosion processes

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.

    2008-01-01

    Generally, Pressurized Water Reactor (WWER, PWR) Fuel Element Performance is connected with fuel cladding corrosion and crud deposition processes. By transient to extended fuel cycles in nuclear power reactors, aiming to achieve higher burnup and better fuel utilization, the role of these processes increases significantly. This evolution modifies the chemical and electrochemical conditions in the reactor primary system, including change of fuel claddings' environment. The higher duty cores are always attended with increased boiling (sub-cooled nucleate boiling) mainly on the feed fuel assemblies. This boiling process on fuel cladding surfaces can cause different consequences on fuel element cladding's environment characteristics. In the case of boiling at the cladding surfaces without or with some cover of corrosion product deposition, the behavior of gases dissolved in water phase is strongly influenced by the vapor generation. The increase of vapor partial pressure will reduce the partial pressures of dissolved gases and will cause their stripping out. By these circumstances the concentrations of dissolved gases in cladding wall water layer can dramatically decrease, including also the case by which all dissolved gases to be stripped out. On the other hand it is known that the hydrogen is added to primary coolant in order to avoid the production of oxidants by radiolysis of water. It is clear that if boiling strips out dissolved hydrogen, the creation of oxidizing conditions at the cladding surfaces will be favored. In this case the local production of oxidants will be a result from local processes of water radiolysis, by which not only both oxygen (O 2 ) and hydrogen (H 2 ) but also hydrogen peroxide (H 2 O 2 ) will be produced. While these hydrogen and oxygen will be stripped out preferentially by boiling, the bigger part of hydrogen peroxide will remain in wall water phase and will act as the most important factor for creation of oxidizing conditions in fuel

  10. Effects of spacers on blockage of coolant channels in clad melting accidents

    Energy Technology Data Exchange (ETDEWEB)

    Eggen, D. T.; Scale, T.; Hsieh, S. [Northwestern Univ., Evanston, IL (United States). The Technological Inst.

    1977-07-01

    The elements and configuration of these assemblies are representative of the current design for a GCFR. The fuel elements are stainless-steel clad, mixed-oxide spaced by a grid structure on 250 mm centers with a pitch of 9.5 mm, diameter, 7.2 mm, and cladding thickness, 0.5 m. Three series of experiments have been conducted to study the flow and disposition of molten cladding metal into a lower powered blanket region of the reactor following a loss of flow situation. The first two series used a simulant fuel-element bundle to simplify the experimental procedure and make visual observation possible. The 'fuel' was simulated by mullite rods 6.4 mm in diameter and 610 mm long. These were clad with a 50 Pb/50 Sn alloy tubing which was drawn onto the 'fuel'. The first series used cast spacers with webs of about 0.5-0.55 mm thickness placed 175 and 425 mm from the top end of the assembly. The second series used grid spacers fabricated of 0.25 mm alloy strips. This provided a more accurate representation of the hydraulic diameter. The bundle was encased in a hexagonal glass tube. The bundle was at 22/sup 0/C and the molten alloy was poured at a temperature of 260/sup 0/C (35/sup 0/C superheat). Motion pictures recorded the experiments and the bundle was sectioned for observation. The third set of experiments was done with a stainless steel bundle of 37 elements fabricated of mullite rods, 7.14 mm diameter. The stainless steel cladding had an O.D. of 8.41 mm. The element pitch was 11.1 mm. The grid spacers were prototypic. The experiment was conducted in an inert-gas tube furnace. The 'core fuel' cladding was melted in an induction furnace and the molten liquid flowed through the center seven element channels. X-ray pictures were taken after the tests and the bundle was sectioned for further study.

  11. Dissolution of uranium oxide materials in simulated lung fluid

    International Nuclear Information System (INIS)

    Scripsick, R.C.; Soderholm, S.C.

    1985-01-01

    Depleted uranium (DU) oxide aerosols prepared in the laboratory and collected in the field were tested to characterize their dissolution in simulated lung fluid and to determine how dissolution is affected by aerosol preparation. DU, a by-product of the uranium fuel cycle, has been selected by the US military for use in several types of munitions. During development, manufacture, testing, and use of these munitions, opportunities exist for inhalation exposure to various (usually oxide) aerosol forms of DU. The hazard potential associated with such exposures is closely related to the chemical form, the size of the DU aerosol material, and its dissolution properties. Five DU sample materials produced by exposing uranium alloy penetrators to certain controlled oxidation atmospheres were studied (oxidation temperatures ranged from 500 to 900 0 C). In addition, two DU sample materials collected in the field were provided by the US Air Force. All sample materials were generated as aerosols and the respirable fraction was separated and collected. Data suggest that under some conditions a rapidly dissolving U 3 O 8 fraction may be formed concurrent with the production of UO 2

  12. Development of Silicide Coating on Molybdenum Alloy Cladding

    International Nuclear Information System (INIS)

    Lim, Woojin; Ryu, Ho Jin

    2015-01-01

    The molybdenum alloy is considered as one of the accident tolerant fuel (ATF) cladding materials due to its high temperature mechanical properties. However, molybdenum has a weak oxidation resistance at elevated temperatures. To modify the oxidation resistance of molybdenum cladding, silicide coating on the cladding is considered. Molybdenum silicide layers are oxidized to SiO 2 in an oxidation atmosphere. The SiO 2 protective layer isolates the substrate from the oxidizing atmosphere. Pack cementation deposition technique is widely adopted for silicide coating for molybdenum alloys due to its simple procedure, homogeneous coating quality and chemical compatibility. In this study, the pack cementation method was conducted to develop molybdenum silicide layers on molybdenum alloys. It was found that the Mo 3 Si layer was deposited on substrate instead of MoSi 2 because of short holding time. It means that through the extension of holding time, MoSi 2 layer can be formed on molybdenum substrate to enhance the oxidation resistance of molybdenum. The accident tolerant fuel (ATF) concept is to delay the process following an accident by reducing the oxidation rate at high temperatures and to delay swelling and rupture of fuel claddings. The current research for Atf can be categorized into three groups: First, modification of existing zirconium-based alloy cladding by improving the high temperature oxidation resistance and strength. Second, replacing Zirconium based alloys with alternative metallic materials such as refractory elements with high temperature oxidation resistance and strength. Third, designing alternative fuel structures using ceramic and composite systems

  13. Technical committee meeting on fuel and cladding interaction. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-04-01

    Experiments and experiences concerning fuel-cladding interaction in thermal and fast neutron flux burnup are dealt with. A number of results from in-pile and out-of pile experiments with different fuel pins with cladding made of different stainless steels showed the importance of corrosion process, dependent on the burnup, core temperature, metal-oxide ratio, and other steady state parameters in the core of fast reactors (most frequently LMFBRs). This is of importance for fuel pins design and fabrication. Mixed oxide fuel is treated in many cases.

  14. Technical committee meeting on fuel and cladding interaction. Summary report

    International Nuclear Information System (INIS)

    1977-04-01

    Experiments and experiences concerning fuel-cladding interaction in thermal and fast neutron flux burnup are dealt with. A number of results from in-pile and out-of pile experiments with different fuel pins with cladding made of different stainless steels showed the importance of corrosion process, dependent on the burnup, core temperature, metal-oxide ratio, and other steady state parameters in the core of fast reactors (most frequently LMFBRs). This is of importance for fuel pins design and fabrication. Mixed oxide fuel is treated in many cases

  15. DECONTAMINATION OF ZIRCALOY SPENT FUEL CLADDING HULLS

    International Nuclear Information System (INIS)

    Rudisill, T; John Mickalonis, J

    2006-01-01

    The reprocessing of commercial spent nuclear fuel (SNF) generates a Zircaloy cladding hull waste which requires disposal as a high level waste in the geologic repository. The hulls are primarily contaminated with fission products and actinides from the fuel. During fuel irradiation, these contaminants are deposited in a thin layer of zirconium oxide (ZrO 2 ) which forms on the cladding surface at the elevated temperatures present in a nuclear reactor. Therefore, if the hulls are treated to remove the ZrO 2 layer, a majority of the contamination will be removed and the hulls could potentially meet acceptance criteria for disposal as a low level waste (LLW). Discard of the hulls as a LLW would result in significant savings due to the high costs associated with geologic disposal. To assess the feasibility of decontaminating spent fuel cladding hulls, two treatment processes developed for dissolving fuels containing zirconium (Zr) metal or alloys were evaluated. Small-scale dissolution experiments were performed using the ZIRFLEX process which employs a boiling ammonium fluoride (NH 4 F)/ammonium nitrate (NH 4 NO 3 ) solution to dissolve Zr or Zircaloy cladding and a hydrofluoric acid (HF) process developed for complete dissolution of Zr-containing fuels. The feasibility experiments were performed using Zircaloy-4 metal coupons which were electrochemically oxidized to produce a thin ZrO 2 layer on the surface. Once the oxide layer was in place, the ease of removing the layer using methods based on the two processes was evaluated. The ZIRFLEX and HF dissolution processes were both successful in removing a 0.2 mm (thick) oxide layer from Zircaloy-4 coupons. Although the ZIRFLEX process was effective in removing the oxide layer, two potential shortcomings were identified. The formation of ammonium hexafluorozirconate ((NH 4 ) 2 ZrF 6 ) on the metal surface prior to dissolution in the bulk solution could hinder the decontamination process by obstructing the removal of

  16. Cold spray deposition of Ti{sub 2}AlC coatings for improved nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Benjamin R. [University of Wisconsin, Madison, WI (United States); Garcia-Diaz, Brenda L. [Savannah River National Laboratory, Aiken, SC (United States); Hauch, Benjamin [University of Wisconsin, Madison, WI (United States); Olson, Luke C.; Sindelar, Robert L. [Savannah River National Laboratory, Aiken, SC (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [University of Wisconsin, Madison, WI (United States)

    2015-11-15

    Coatings of Ti{sub 2}AlC MAX phase compound have been successfully deposited on Zircaloy-4 (Zry-4) test flats, with the goal of enhancing the accident tolerance of LWR fuel cladding. Low temperature powder spray process, also known as cold spray, has been used to deposit coatings ∼90 μm in thickness using powder particles of <20 μm. X-ray diffraction analysis showed the phase-content of the deposited coatings to be identical to the powders indicating that no phase transformation or oxidation had occurred during the coating deposition process. The coating exhibited a high hardness of about 800 H{sub K} and pin-on-disk wear tests using abrasive ruby ball counter-surface showed the wear resistance of the coating to be significantly superior to the Zry-4 substrate. Scratch tests revealed the coatings to be well-adhered to the Zry-4 substrate. Such mechanical integrity is required for claddings from the standpoint of fretting wear resistance and resisting wear handling and insertion. Air oxidation tests at 700 °C and simulated LOCA tests at 1005 °C in steam environment showed the coatings to be significantly more oxidation resistant compared to Zry-4 suggesting that such coatings can potentially provide accident tolerance to nuclear fuel cladding. - Highlights: • Deposited Ti{sub 2}AlC coatings on Zircaloy-4 substrates with a low pressure powder spray process, also known as cold spray. • Coatings have high hardness and wear resistance for both damage resistance during rod insertion and fretting wear resistance. • The oxidation resistance of Ti{sub 2}AlC coated Zircaloy-4 at 700 °C and 1005 °C was significantly superior to uncoated Zircaloy. • Cold spray of Ti{sub 2}AlC demonstrates considerable promise as a near-term solution for accident tolerant Zr-alloy fuel claddings.

  17. Discrete Event System Based Pyroprocessing Modeling and Simulation: Oxide Reduction

    International Nuclear Information System (INIS)

    Lee, H. J.; Ko, W. I.; Choi, S. Y.; Kim, S. K.; Hur, J. M.; Choi, E. Y.; Im, H. S.; Park, K. I.; Kim, I. T.

    2014-01-01

    Dynamic changes according to the batch operation cannot be predicted in an equilibrium material flow. This study began to build a dynamic material balance model based on the previously developed pyroprocessing flowsheet. As a mid- and long-term research, an integrated pyroprocessing simulator is being developed at the Korea Atomic Energy Research Institute (KAERI) to cope with a review on the technical feasibility, safeguards assessment, conceptual design of facility, and economic feasibility evaluation. The most fundamental thing in such a simulator development is to establish the dynamic material flow framework. This study focused on the operation modeling of pyroprocessing to implement a dynamic material flow. As a case study, oxide reduction was investigated in terms of a dynamic material flow. DES based modeling was applied to build a pyroprocessing operation model. A dynamic material flow as the basic framework for an integrated pyroprocessing was successfully implemented through ExtendSim's internal database and item blocks. Complex operation logic behavior was verified, for example, an oxide reduction process in terms of dynamic material flow. Compared to the equilibrium material flow, a model-based dynamic material flow provides such detailed information that a careful analysis of every batch is necessary to confirm the dynamic material balance results. With the default scenario of oxide reduction, the batch mass balance was verified in comparison with a one-year equilibrium mass balance. This study is still under progress with a mid-and long-term goal, the development of a multi-purpose pyroprocessing simulator that is able to cope with safeguards assessment, economic feasibility, technical evaluation, conceptual design, and support of licensing for a future pyroprocessing facility

  18. The characteristics of anodic coating of Al-alloy claddings

    International Nuclear Information System (INIS)

    Yang Yong; Zou Benhui; Guo Hong; Du Yanhua; Bai Zhiyong; Cai Zhenfang

    2014-01-01

    Aluminum alloy claddings of research reactor fuel elements should be corroded by sodium hydroxide solution and anodized in sulfuric acid solution, but there are often some uneven color phenomena on surfaces, and sometimes regions of 'black and white stripes' appear. In order to study the relationship of colorful stripes on coatings and the surface morphology of aluminum alloy claddings corroded by sodium hydroxide solution, surface microstructures and second phase particles of the aluminum alloy claddings, which were corroded by sodium hydroxide solution, are investigated metallographically and via SEM analysis; Meanwhile, thickness, microstructure, chemical composition and construction of anodic oxidation coatings on aluminum coatings are analyzed. It is shown that: 1) the darker the surface color of corroded aluminum alloy claddings is, the darker of anodic oxidation coating; 2) there are many micro-pores on anodized oxidation coatings, which is much similar to that of corroded aluminum alloy claddings according to the morphology and distribution. So, it can be deduced that the surface morphology of anodic coatings is inherited from the corroded surfaces. (authors)

  19. Mechanical response of FFTF reference and P1 cladding tubes under transient heating

    International Nuclear Information System (INIS)

    Youngahl, C.A.; Ariman, T.; Lepacek, B.E.

    1977-01-01

    Burst tests of Type 316 stainless steel cladding tube samples subjected to increasing temperature and relatively constant internal pressure were conducted to assist in the pretest analysis of the P1 experiment performed in the Sodium Loop Safety Facility. This paper reports and analyzes the burst test results and those of subsequent transient heating work. The use of a modified extensometer in obtaining mechanical response data for stainless steel in the high temperature range is illustrated, some of such data is provided, and the potential of further experiments and analysis is indicated. Tubing of the same design as Fast Flux Test Facility (FFTF) cladding (20% cold worked, 0.230 in. OD, 15 mil wall) was tested as-received and after annealing or electrolytic thinning. P1 tubing (38% cold worked, 0.230 in. OD, 10 mil wall) was tested before and after aging under conditions anticipated in the P1 reactor experiment. The P1 cladding was designed to simulate FFTF tubing that had experienced irradiation embrittlement and attack by cesium oxide and sodium impurities

  20. Material Selection for Accident Tolerant Fuel Cladding

    International Nuclear Information System (INIS)

    Pint, Bruce A.; Terrani, Kurt A.; Yamamoto, Yukinori; Snead, Lance Lewis

    2015-01-01

    Alternative cladding materials to Zr-based alloys are being investigated for accident tolerance, which can be defined as > 100X improvement (compared to Zr-based alloys) in oxidation resistance to steam or steam-H 2 environments at ≥1473 K (1200°C) for short times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti 2 AlC form a protective alumina scale in steam. However, commercial Ti 2 AlC that was not single phase, formed a much thicker oxide at 1200°C in steam and significant TiO 2 , and therefore Ti 2 AlC may be challenging to form as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation-assisted α' formation. The composition effects and critical limits to retaining protective scale formation at > 1400°C are still being evaluated.

  1. Material Selection for Accident Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Alternative cladding materials to Zr-based alloys are being investigated for accident tolerance, which can be defined as > 100X improvement (compared to Zr-based alloys) in oxidation resistance to steam or steam-H2 environments at ≥ 1200°C for short times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti2AlC form a protective alumina scale in steam. However, commercial Ti2AlC that was not single phase, formed a much thicker oxide at 1200°C in steam and significant TiO2, and therefore Ti2AlC may be challenging to form as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation-assisted α´ formation. The composition effects and critical limits to retaining protective scale formation at > 1400°C are still being evaluated.

  2. Cladding tube manufacturing technology

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report A lloy Development for High Burnup Cladding . Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs

  3. Cladding tube manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, B.J.; Kim, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report 'Alloy Development for High Burnup Cladding.' Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs.

  4. Characterization of SiC–SiC composites for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C.P., E-mail: Christian.Deck@ga.com; Jacobsen, G.M.; Sheeder, J.; Gutierrez, O.; Zhang, J.; Stone, J.; Khalifa, H.E.; Back, C.A.

    2015-11-15

    Silicon carbide (SiC) is being investigated for accident tolerant fuel cladding applications due to its high temperature strength, exceptional stability under irradiation, and reduced oxidation compared to Zircaloy under accident conditions. An engineered cladding design combining monolithic SiC and SiC–SiC composite layers could offer a tough, hermetic structure to provide improved performance and safety, with a failure rate comparable to current Zircaloy cladding. Modeling and design efforts require a thorough understanding of the properties and structure of SiC-based cladding. Furthermore, both fabrication and characterization of long, thin-walled SiC–SiC tubes to meet application requirements are challenging. In this work, mechanical and thermal properties of unirradiated, as-fabricated SiC-based cladding structures were measured, and permeability and dimensional control were assessed. In order to account for the tubular geometry of the cladding designs, development and modification of several characterization methods were required.

  5. Fuel clad chemical interactions in fast reactor MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R., E-mail: rvis@igcar.gov.in

    2014-01-15

    Clad corrosion being one of the factors limiting the life of a mixed-oxide fast reactor fuel element pin at high burn-up, some aspects known about the key elements (oxygen, cesium, tellurium, iodine) in the clad-attack are discussed and many Fuel–Clad-Chemical-Interaction (FCCI) models available in the literature are also discussed. Based on its relatively superior predictive ability, the HEDL (Hanford Engineering Development Laboratory) relation is recommended: d/μm = ({0.507 ⋅ [B/(at.% fission)] ⋅ (T/K-705) ⋅ [(O/M)_i-1.935]} + 20.5) for (O/M){sub i} ⩽ 1.98. A new model is proposed for (O/M){sub i} ⩾ 1.98: d/μm = [B/(at.% fission)] ⋅ (T/K-800){sup 0.5} ⋅ [(O/M){sub i}-1.94] ⋅ [P/(W cm{sup −1})]{sup 0.5}. Here, d is the maximum depth of clad attack, B is the burn-up, T is the clad inner surface temperature, (O/M){sub i} is the initial oxygen-to-(uranium + plutonium) ratio, and P is the linear power rating. For fuels with [n(Pu)/n(M = U + Pu)] > 0.25, multiplication factors f are recommended to consider the potential increase in the depth of clad-attack.

  6. Development Status of Accident Tolerant Fuel Cladding for LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hydrogen explosions and the release of radionuclides are caused by severe damage of current nuclear fuels, which are composed of fuel pellets and fuel cladding, during an accident. To reduce the damage to the public, the fuels have to enhance their integrity under an accident environment. Enhanced accident tolerance fuels (ATFs) can tolerate a loss of active cooling in the reactor core for a considerably longer time period during design-basis and beyond design-basis events while maintaining or improving the fuel performance during normal operations as well as operational transients, in comparison with the current UO{sub 2}-Zr alloy system used in the LWR. Surface modified Zr cladding as a new concept was suggested to apply an enhanced ATF cladding. The aim of the partial ODS treatment is to increase the high-temperature strength to suppress the ballooning/rupture behavior of fuel cladding during an accident event. The target of the surface coating is to increase the corrosion resistance during normal operation and increase the oxidation resistance during an accident event. The partial ODS treatment of Zircaloy-4 cladding can be produced using a laser beam scanning method with Y2O3 powder, and the surface Cr-alloy and Cr/FeCrAl coating on Zircaloy-4 cladding can be obtained after the development of 3D laser coating and arc ion plating technologies.

  7. Evaluations of Mo-alloy for light water reactor fuel cladding to enhance accident tolerance

    Directory of Open Access Journals (Sweden)

    Cheng Bo

    2016-01-01

    Full Text Available Molybdenum based alloy is selected as a candidate to enhance tolerance of fuel to severe loss of coolant accidents due to its high melting temperature of ∼2600 °C and ability to maintain sufficient mechanical strength at temperatures exceeding 1200 °C. An outer layer of either a Zr-alloy or Al-containing stainless steel is designed to provide corrosion resistance under normal operation and oxidation resistance in steam exceeding 1000 °C for 24 hours under severe loss of coolant accidents. Due to its higher neutron absorption cross-sections, the Mo-alloy cladding is designed to be less than half the thickness of the current Zr-alloy cladding. A feasibility study has been undertaken to demonstrate (1 fabricability of long, thin wall Mo-alloy tubes, (2 formability of a protective outer coating, (3 weldability of Mo tube to endcaps, (4 corrosion resistance in autoclaves with simulated LWR coolant, (5 oxidation resistance to steam at 1000–1500 °C, and (6 sufficient axial and diametral strength and ductility. High purity Mo as well as Mo + La2O3 ODS alloy have been successfully fabricated into ∼2-meter long tubes for the feasibility study. Preliminary results are encouraging, and hence rodlets with Mo-alloy cladding containing fuel pellets have been under preparation for irradiation at the Advanced Test Reactor (ATR in Idaho National Laboratory. Additional efforts are underway to enhance the Mo cladding mechanical properties via process optimization. Oxidation tests to temperatures up to 1500 °C, and burst and creep tests up to 1000 °C are also underway. In addition, some Mo disks in close contact with UO2 from a previous irradiation program (to >100 GWd/MTU at the Halden Reactor have been subjected to post-irradiation examination to evaluate the chemical compatibility of Mo with irradiated UO2 and fission products. This paper will provide an update on results from the feasibility study and discuss the attributes of the

  8. Computer simulation of the structure and properties of non-crystalline oxides

    International Nuclear Information System (INIS)

    Belashchenko, D.K.

    1997-01-01

    The structure data and some properties of non-crystalline (liquid and amorphous) oxide systems are discussed that were obtained using computer simulation methods. The simple oxide models, the homological serii of simple oxides, the models of binary and multi-components oxide systems are considered. Also the results of the simulation of ionic transfer in electric field are discussed. Ionic theory of oxides allows to predict the structure, thermodynamic and other properties for many oxide systems except the phosphate and vanadate oxides and some others

  9. Alloy development for high burnup cladding (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    An overview on current alloy development for high burnup PWR fuel cladding is given. It is mainly based on literature data. First, the reasons for an increase of the current mean discharge burnup from 35 MWd / kg(U) to 70 MWd / kg(U) are outlined. From the material data, it is shown that a batch average burnup of 60-70 MWd / kg(U), as aimed by many fuel vendors, can not be achieved with stand (=ASTM-) Zry-4 cladding tubes without violating accepted design criteria. Specifically criteria which limit maximum oxide scale thickness and maximum hydrogen content, and to a less degree, maximum creep and growth rate, can not be achieved. The development potential of standard Zry-4 is shown. Even when taking advantage of this potential, it is shown that an 'improved' Zry-4 is reaching its limits when it achieves the target burnup. The behavior of some Zr alloys outside the ASTM range is shown, and the advantages and disadvantages of the 3 alloy groups (ZrSn+transition metals, ZrNb, ZrSnNb+transition metals) which are currently considered to have the development potential for high burnup cladding materials are depicted. Finally, conclusions are drawn. (author). 14 refs., 11 tabs., 82 figs.

  10. CASTI handbook of cladding technology. 2. ed.

    International Nuclear Information System (INIS)

    Smith, L.; Celant, M.

    2000-01-01

    This updated (2000) CASTI handbook covers all aspects of clad products - the different means of manufacture, properties and applications in various industries. Topics include: an introduction to cladding technology, clad plate, clad pipes, bends, clad fittings, specification requirements of clad products, welding clad products, clad product application and case histories from around the world. Unique to this book is the documentation of case histories of major cladding projects from around the world and how the technology of that day has withstood the demands of time. Filled with over 100 photos and graphics illustrating the various cladding technology examples and products, this book truly documents the most recent technologies in the field of cladding technology used worldwide

  11. Modeling of Zircaloy cladding degradation under repository conditions

    International Nuclear Information System (INIS)

    Santanam, L.; Raghavan, S.; Chin, B.A.

    1989-07-01

    Two potential degradation mechanisms, creep and stress corrosion cracking, of Zircaloy cladding during repository storage of spent nuclear fuel have been investigated. The deformation and fracture map methodology has been used to predict maximum allowable initial storage temperatures to achieve a thousand year life without rupture as a function of spent-fuel history. A stress analysis of fuel rods has been performed. Stresses in the outer zirconium oxide layer and the inner Zircaloy tube have been predicted for typical internal pressurization, oxide layer thickness, volume expansion from formation of the oxide layer and thermal expansion coefficients of the cladding and oxide. Stress relaxation occurring in-reactor has also been taken into account. The calculations indicate that for the anticipated storage conditions investigated, the outer zirconium oxide layer is in a state of compression thus making it unlikely that stress corrosion cracking of the exterior surface will occur. 20 refs., 6 figs., 9 tabs

  12. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2013-01-01

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide

  13. Stone cladding engineering

    CERN Document Server

    Sousa Camposinhos, Rui de

    2014-01-01

    This volume presents new methodologies for the design of dimension stone based on the concepts of structural design while preserving the excellence of stonemasonry practice in façade engineering. Straightforward formulae are provided for computing action on cladding, with special emphasis on the effect of seismic forces, including an extensive general methodology applied to non-structural elements. Based on the Load and Resistance Factor Design Format (LRDF), minimum slab thickness formulae are presented that take into consideration stress concentrations analysis based on the Finite Element Method (FEM) for the most commonly used modern anchorage systems. Calculation examples allow designers to solve several anchorage engineering problems in a detailed and objective manner, underlining the key parameters. The design of the anchorage metal parts, either in stainless steel or aluminum, is also presented.

  14. On LMFBR corrosion. Part II: Consideration of the in-reactor fuel-cladding system

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Pickering, S.; Walker, C.T.; Whitlow, W.H.

    1976-05-01

    The scientific and technological aspects of LMFBR cladding corrosion are discussed in detail. Emphasis is placed on the influence of the irradiation environment and the effect of fuel and filler-gas impurities on the corrosion process. These studies are complemented by a concise review of out-of-pile simulation experiments that endeavour to clarify the role of the aggressive fission products cesium, tellurium and iodine. The principal models for cladding corrosion are presented and critically assessed. Areas of uncertainty are exposed and some pertinent experiments are suggested. Consideration is also given to some new observations regarding the role of stress in fuel-cladding reactions and the formation of ferrite in the corrosion zone of the cladding during irradiation. Finally, two technological solutions to the problem of cladding corrosion are proposed. These are based on the use of an oxygen buffer in the fuel and the application of a protective coating to the inner surface of the cladding

  15. Ab initio molecular dynamics simulation of aqueous solution of nitric oxide in different formal oxidation states

    Science.gov (United States)

    Venâncio, Mateus F.; Rocha, Willian R.

    2015-10-01

    Ab initio molecular dynamics simulations were used to investigate the early chemical events involved in the dynamics of nitric oxide (NOrad), nitrosonium cation (NO+) and nitroxide anion (NO-) in aqueous solution. The NO+ ion is very reactive in aqueous solution having a lifetime of ∼4 × 10-13 s, which is shorter than the value of 3 × 10-10 s predicted experimentally. The NO+ reacts generating the nitrous acid as an intermediate and the NO2- ion as the final product. The dynamics of NOrad revealed the reversibly formation of a transient anion radical species HONOrad -.

  16. Rheological evaluation of pretreated cladding removal waste

    International Nuclear Information System (INIS)

    McCarthy, D.; Chan, M.K.C.; Lokken, R.O.

    1986-01-01

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid

  17. Investigation of in-pile formed corrosion films on zircaloy fuel-rod claddings by impedance spectroscopy and galvanostatic anodization

    International Nuclear Information System (INIS)

    Gebhardt, O.

    1993-01-01

    Hot-cell investigations have been executed to study the corrosion behaviour of irradiated Zircaloy fuel-rod claddings by impedance spectroscopy and galvanostatic anodization. The thickness of the compact oxide at the metal/oxide interface and the thickness of the minimum barrier oxide have been determined at different positions along the claddings. As shown by analysis, both quantities first increase and then decrease with increasing thickness of the total oxide. (author) 6 figs., 33 refs

  18. Resistance welding of ODS cladding fuel a nuclear reactor of the fourth generation

    International Nuclear Information System (INIS)

    Corpace, F.

    2011-01-01

    ODS steels (Oxide Dispersion Strengthened) are candidate materials for fuel cladding in Sodium Fast Reactors (SFR), one of the studied concepts for the fourth generation of nuclear power plants. These materials possess good mechanical properties at high temperatures due to a dispersion of nano-meter-sized oxides into the matrix. Previous studies have shown that melting can induce a decrease in mechanical properties at high temperatures due to modifications of the nano-meter-sized oxide dispersion. Therefore the fusion welding techniques are not recommended and the solid state bonding has to be evaluated. This study is focused on resistance upset welding. Welding experiments and numerical simulations of the process are coupled in this thesis. All laboratory tests (experimental and numerical) are built using the experimental design method to evaluate the effects of the process parameters on the welding and on the weld. A 20Cr ODS steel is used for the experimental protocol. The first part is dedicated to the study of the influence of the process parameters on the welding process. The numerical simulations show that the welding steps can be divided in three stages. First, the contact temperature between the faying surfaces increases. The process is then driven in the second stage by the pieces geometry and especially the current constriction due to the thinness of the clad compared to the massive plug. Therefore, the heat generation is mainly located in the clad part out of the electrode leading to its collapse which is the third stage of the welding step. The evaluation of the process parameters influence on the physical phenomena (thermal, mechanical...) occurring during the welding step, allows adjusting them in order to influence thermal and mechanical solicitations undergone by the pieces during the welding process. The second part consists in studying the influence of physical phenomena on the welds. In the process parameter range, some welds exhibit compactness

  19. Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

    2009-03-02

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form

  20. Semi-empirical corrosion model for Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Nadeem Elahi, Waseem; Atif Rana, Muhammad

    2015-01-01

    The Zircaloy-4 cladding tube in Pressurize Water Reactors (PWRs) bears corrosion due to fast neutron flux, coolant temperature, and water chemistry. The thickness of Zircaloy-4 cladding tube may be decreased due to the increase in corrosion penetration which may affect the integrity of the fuel rod. The tin content and inter-metallic particles sizes has been found significantly in the magnitude of oxide thickness. In present study we have developed a Semiempirical corrosion model by modifying the Arrhenius equation for corrosion as a function of acceleration factor for tin content and accumulative annealing. This developed model has been incorporated into fuel performance computer code. The cladding oxide thickness data obtained from the Semi-empirical corrosion model has been compared with the experimental results i.e., numerous cases of measured cladding oxide thickness from UO 2 fuel rods, irradiated in various PWRs. The results of the both studies lie within the error band of 20μm, which confirms the validity of the developed Semi-empirical corrosion model. Key words: Corrosion, Zircaloy-4, tin content, accumulative annealing factor, Semi-empirical, PWR. (author)

  1. Performance of refractory alloy-clad fuel pins

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Millhollen, M.K.

    1984-12-01

    This paper discusses objectives and basic design of two fuel-cladding tests being conducted in support of SP-100 technology development. Two of the current space nuclear power concepts use conventional pin type designs, where a coolant removes the heat from the core and transports it to an out-of-core energy conversion system. An extensive irradiation testing program was conducted in the 1950's and 1960's to develop fuel pins for space nuclear reactors. The program emphasized refractory metal clad uranium nitride (UN), uranium carbide (UC), uranium oxide (UO 2 ), and metal matrix fuels (UCZr and BeO-UO 2 ). Based on this earlier work, studies presented here show that UN and UO 2 fuels in conjunction with several refractory metal cladding materials demonstrated high potential for meeting space reactor requirements and that UC could serve as an alternative but higher risk fuel

  2. Secondary hydriding of defected zircaloy-clad fuel rods

    International Nuclear Information System (INIS)

    Olander, D.R.; Vaknin, S.

    1993-01-01

    The phenomenon of secondary hydriding in LWR fuel rods is critically reviewed. The current understanding of the process is summarized with emphasis on the sources of hydrogen in the rod provided by chemical reaction of water (steam) introduced via a primary defect in the cladding. As often noted in the literature, the role of hydrogen peroxide produced by steam radiolysis is to provide sources of hydrogen by cladding and fuel oxidation that are absent without fission-fragment irradiation of the gas. Quantitative description of the evolution of the chemical state inside the fuel rod is achieved by combining the chemical kinetics of the reactions between the gas and the fuel and cladding with the transport by diffusion of components of the gas in the gap. The chemistry-gas transport model provides the framework into which therate constants of the reactions between the gases in the gap and the fuel and cladding are incorporated. The output of the model calculation is the H 2 0/H 2 ratio in the gas and the degree of claddingand fuel oxidation as functions of distance from the primary defect. This output, when combined with a criterion for the onset of massive hydriding of the cladding, can provide a prediction of the time and location of a potential secondary hydriding failure. The chemistry-gas transport model is the starting point for mechanical and H-in-Zr migration analyses intended to determine the nature of the cladding failure caused by the development of the massive hydride on the inner wall

  3. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, W., E-mail: wyman.zhuang@dsto.defence.gov.au [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Liu, Q.; Djugum, R.; Sharp, P.K. [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Paradowska, A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2232 (Australia)

    2014-11-30

    Highlights: • Deep surface rolling as a post-repair enhancement technology was applied to the laser cladded 7075-T651 aluminium alloy specimens that simulated corrosion damage blend-out repair. • The residual stresses induced by the deep surface rolling process were measured. • The deep surface rolling process can introduce deep and high magnitude compressive residual stresses beyond the laser clad and substrate interface. • Spectrum fatigue test showed the fatigue life was significantly increased by deep surface rolling. - Abstract: Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface.

  4. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    International Nuclear Information System (INIS)

    Zhuang, W.; Liu, Q.; Djugum, R.; Sharp, P.K.; Paradowska, A.

    2014-01-01

    Highlights: • Deep surface rolling as a post-repair enhancement technology was applied to the laser cladded 7075-T651 aluminium alloy specimens that simulated corrosion damage blend-out repair. • The residual stresses induced by the deep surface rolling process were measured. • The deep surface rolling process can introduce deep and high magnitude compressive residual stresses beyond the laser clad and substrate interface. • Spectrum fatigue test showed the fatigue life was significantly increased by deep surface rolling. - Abstract: Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface

  5. Hygrothermal performance of ventilated wooden cladding

    Energy Technology Data Exchange (ETDEWEB)

    Nore, Kristine

    2009-10-15

    ; temperature, wooden moisture content, time of surface wetness, relative humidity in cavities and wind-driven rain (WDR). Four years have been analysed and recalculated by numerical simulation. The moderate climate of Trondheim provides thorough boundary conditions for hygrothermal analyses of building envelopes. The WDR was measured in the cardinal directions in a free field and on each facade of the test house. Eight WDR gauges were mounted on the west facing wall with the highest amount of WDR. The WDR measurements are provided in a database on the web that is available for the validation of WDR simulations. A statistical analysis investigated which climate parameters contributed most to the fluctuations of the moisture content in the wood. It was found that air temperature, global radiation and wind velocity were the three main parameters. WDR was the fourth most important parameter. WDR only defines moistening and not drying, which might be the reason for not being a determinate parameter for the fluctuations in the moisture content in the wood. The time of wetness was further investigated and compared to WDR. The surface wetness sensor measures describes periods with liquid water moistening more accurately and includes the period with free water on the surface after rain and by condensation. The importance of the wind velocity led to a separate CFD study of the air flow in the cavities when including the bulk wind flow around the test house. The cavity flow is not measured at the test house. The CFD study resulted in a function describing the air change rate of the ventilated cavities dependent on wind velocity, wind direction and cavity opening. The function was tested in WUFI 1D calculations. The calculations showed good correlation with measured data when including air change rate in calculations of cavity temperature and RH. It was intended to measure the moisture profile in the wood cladding with moisture pins, by measuring the electrical resistance in different

  6. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19). Application of dynamic mean-field density functional theory

    NARCIS (Netherlands)

    van Vlimmeren, BAC; Maurits, NM; Zvelindovsky, AV; Sevink, GJA; Fraaije, JGEM

    1999-01-01

    We simulate the microphase separation dynamics of aqueous solutions of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19) by a dynamic variant of mean-field density functional theory for

  7. Clad Treatment in KARMA Code and Library

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-yeup; Lee, Hae-chan; Woo, Hae-seuk [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2016-05-15

    Zirconium is the main components in clad materials. The subgroup parameters of zirconium were generated with effective cross section which obtained by using flux distribution in clad region. It decreases absorption reaction rate differences with reference MCNP results. Use of composite nuclide is acceptable to increase efficiency but should be limited to specific target composition. Therefore, the use of the composite nuclide of Zircaloy-2 should be limited when HANA clad material is used for clad. Either using explicit components or generating composite nuclide for HANA is suggested. This paper investigates the clad analysis model for KARMA whether current method is applicable to HANA clad material.

  8. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    Science.gov (United States)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2018-02-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  9. Atomistic simulations of the radiation resistance of oxides

    International Nuclear Information System (INIS)

    Chartier, A.; Van Brutzel, L.; Crocombette, J.-P.

    2012-01-01

    Fluorite compounds such as urania and ceria, or related compounds such as pyrochlores and also spinels show different behaviors under irradiations, which ranges from perfect radiation resistance to crystalline phase change or even complete amorphization depending on their structure and/or their composition. Displacement cascades – dedicated to the understanding of the ballistic regime and performed by empirical potentials molecular dynamics simulations – have revealed that the remaining damages of the above mentioned oxides are reduced to point defects unlike what is observed in zircon and zirconolite, which directly amorphize during the cascade. The variable behavior of these point defects is the key of the various responses of these materials to irradiations. This behavior can be investigated by two specific molecular dynamics methodologies that will be reviewed here: (i) the method of point defects accumulation as a function of temperature that gives access to the dose effects and to the critical doses for amorphization; (ii) the study Frenkel pairs life-time – i.e. their time of recombination as function of temperature – that may be used as a tool to understand the results obtained in displacements cascades or to identify the microscopic mechanisms responsible for the amorphization/re-crystallization during the point defects accumulations.

  10. Experimental Setup with Transient Behavior of Fuel Cladding of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Hun; Kim, Jun Hwan; Kim, June-Hyung; Ryu, Woo Seog; Park, Sang Gyu; Kim, Sung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Nowadays, in Korea, advanced cladding such as FC92 is developed and its transient behaviors are required for the safety analysis of SFR. Design and safety analyses of sodium-cooled fast reactor (SFR) require understanding fuel pin responses to a wide range of off-normal events. In a loss-of-flow (LOF) or transient over-power (TOP), the temperature of the cladding is rapidly increased above its steady-state service temperature. Transient tests have been performed in sections of fuel pin cladding and a large data base has been established for austenitic stainless steel such as 20% cold-worked 316 SS and ferritic/martensitic steels such as HT9. This paper summarizes the technical status of transient testing facilities and their results. Previous researches showed the transient behaviors of HT9 cladding. For the safety analyses in SFR in Korea, simulated transient tests with newly developed FC92 as well as HT9 cladding are being carried out.

  11. Iodine induced stress corrosion cracking of zircaloy cladding tubes

    International Nuclear Information System (INIS)

    Brunisholz, L.; Lemaignan, C.

    1984-01-01

    Iodine is considered as one of the major fission products responsible for PCI failure of Zry cladding by stress corrosion cracking (SCC). Usual analysis of SCC involves both initiation and growth as sequential processes. In order to analyse initiation and growth independently and to be able to apply the procedures of fracture mechanics to the design of cladding, with respect to SCC, stress corrosion tests of Zry cladding tubes were undertaken with a small fatigue crack (approx. 200 μm) induced in the inner wall of each tube before pressurization. Details are given on the techniques used to induce the fatigue crack, the pressurization test procedure and the results obtained on stress releaved or recrystallized Zry 4 tubings. It is shown that the Ksub(ISCC) values obtained during these experiments are in good agreement with those obtained from large DCB fracture mechanics samples. Conclusions will be drawn on the applicability of linear elastic fracture mechanics (LEFM) to cladding design and related safety analysis. The work now underway is aimed at obtaining better understanding of the initiation step. It includes the irradiation of Zry samples with heavy ions to simulate the effect of recoil fragments implanted in the inner surface of the cladding, that could create a brittle layer of about 10 μm

  12. Corrosion behaviour of zircaloy 4 fuel rod cladding in EDF power plants

    Energy Technology Data Exchange (ETDEWEB)

    Romary, H; Deydier, D [EDF, Direction de l` Equipment SEPTEN, Villeurbanne (France)

    1997-02-01

    Since the beginning of the French nuclear program, a surveillance of fuel has been carried out in order to evaluate the fuel behaviour under irradiation. Until now, nuclear fuels provided by suppliers have met EDF requirements concerning fuel behaviour and reliability. But, the need to minimize the costs and to increase the flexibility of the power plants led EDF to the definition of new targets: optimization of the core management and fuel cycle economy. The fuel behaviour experience shows that some of these new requirements cannot be fully fulfilled by the present standard fuel due to some technological limits. Particularly, burnup enhancement is limited by the oxidation and the hydriding of the Zircaloy 4 fuel rod cladding. Also, fuel suppliers and EDF need to have a better knowledge of the Zy-4 cladding behaviour in order to define the existing margins and the limiting factors. For this reason, in-reactor fuel characterization programs have been set up by fuel suppliers and EDF for a few years. This paper presents the main results and conclusions of EDF experience on Zy-4 in-reactor corrosion behaviour. Data obtained from oxide layer or zirconia thickness measurements show that corrosion performance of Zy-4 fuel rod cladding, as irradiated until now in EDF reactors, is satisfactory but not sufficient to meet the future needs. The fuel suppliers propose in order to improve the corrosion resistance of fuel rod cladding, low tin Zy-4 cladding and then optimized Zy-4 cladding. Irradiation of these claddings are ongoing. The available corrosion data show the better in-reactor corrosion resistance of optimized Zy-4 fuel rod cladding compared to the standard Zy-4 cladding. The scheduled fuel surveillance program will confirm if the optimized Zy-4 fuel rod cladding will meet the requirements for the future high burnup and high flexibility fuel. (author). 10 refs, 19 figs, 4 tabs.

  13. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    Science.gov (United States)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  14. Clad Degradation - FEPs Screening Arguments

    International Nuclear Information System (INIS)

    E. Siegmann

    2004-01-01

    The purpose of this report is to document the screening of the cladding degradation features, events, and processes (FEPs) for commercial spent nuclear fuel (CSNF). This report also addresses the effect of some FEPs on both the cladding and the CSNF, DSNF, and HLW waste forms where it was considered appropriate to address the effects on both materials together. This report summarizes the work of others to screen clad degradation FEPs in a manner consistent with, and used in, the Total System Performance Assessment-License Application (TSPA-LA). This document was prepared according to ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA'' (BSC 2004a [DIRS 167796])

  15. Pin clad strains in Phenix

    International Nuclear Information System (INIS)

    Languille, A.

    1979-07-01

    The Phenix reactor has operated for 4 years in a satisfactory manner. The first 2 sub-assembly loadings contained pins clad in solution treated 316. The principal pin strains are: diametral strain (swelling and irradiation creep), ovality and spiral bending of the pin (interaction of wire and pin cluster and wrapper). A pin cluster irradiated to a dose of 80 dpa F reached a pin diameter strain of 5%. This strain is principally due to swelling (low fission gas pressure). The principal parameters governing the swelling are instantaneous dose, time and temperature for a given type of pin cladding. Other types of steel are or will be irradiated in Phenix. In particular, cold-worked titanium stabilised 316 steel should contribute towards a reduction in the pin clad strains and increase the target burn-up in this reactor. (author)

  16. Chemical interaction of fuel and cladding tubes

    International Nuclear Information System (INIS)

    Kirihara, Tomoo; Yamawaki, Michio; Obata, Naomi; Handa, Muneo.

    1983-01-01

    It was attempted to take up the behavior of nuclear fuel in cores and summarize it by the expert committee on the irradiation behavior of nuclear fuel from fiscal 1978 to fiscal 1980 from the following viewpoints. The behavior of nuclear fuel in cores has been treated separately according to each reactor type, accordingly this point is reconsidered. The clearly understood points and the uncertain points are discriminated. It is made more easily understandable for people in other fields of atomic energy. This report is that of the group on the chemical interaction, and the first report of this committee. The chemical interaction as the behavior of fuel in cores is in the unseparable relation to the mechanical interaction, but this relation is not included in this report. The chemical interaction of fuel and cladding tubes under irradiation shows different phenomena in LWRs and FBRs, and is called SCC and FCC, respectively. But this point of causing the difference must be understood to grasp the behavior of fuel. The mutual comparison of oxide fuels for FBRs and LWRs, the stress corrosion cracking of zircaloy tubes, and fuel-cladding chemical interaction in FBRs are reported. (Kako, I.)

  17. Simulation of nitrous oxide and nitric oxide emissions from tropical primary forests in the Costa Rican Atlantic Zone

    Science.gov (United States)

    Shuguanga Liu; William A. Reiners; Michael Keller; Davis S. Schimel

    2000-01-01

    Nitrous oxide (N2O) and nitric oxide (NO) are important atmospheric trace gases participating in the regulation of global climate and environment. Predictive models on the emissions of N2O and NO emissions from soil into the atmosphere are required. We modified the CENTURY model (Soil Sci. Soc. Am. J., 51 (1987) 1173) to simulate the emissions of N2O and NO from...

  18. Catalytic Oxidation of Mustard Simulants in Basic Solution

    National Research Council Canada - National Science Library

    Richardson, David

    2002-01-01

    .... Variation of bicarbonate source and the cosolvent can allow optimization of substrate solubility and oxidation rates for applications in chemical warfare agent decontamination, Use of surfactants...

  19. Interaction between thorium and potential clad materials

    International Nuclear Information System (INIS)

    Kale, G.B.; Gawde, P.S.; Sengupta, Pranesh

    2005-01-01

    Thorium based fuels are being used for nuclear reactors. The structural stability of fuel-clad assemblies in reactor systems depend upon the nature of interdiffusion reaction between fuel-cladding materials. Interdiffusion reaction thorium and various cladding materials is presented in this paper. (author)

  20. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  1. Report of the advanced neutron source (ANS) aluminum cladding corrosion workshop

    International Nuclear Information System (INIS)

    Hanson, G.H.; Gibson, G.W.; Griess, J.C.; Pawel, R.E.; Pace, N.E.; Ryskamp, J.M.

    1989-02-01

    The Advanced Neutron Source (ANS) Corrosion Workshop on aluminum cladding corrosion in reactor environments is summarized. The Workshop was held to examine the aluminum cladding oxidation studies being conducted in support of the ANS design. This report was written principally to provide a record of the ideas and judgments expressed by the workshop attendees. The ANS operating heat flux is significantly higher than that in existing reactors, and early experiments indicate that there may be an aluminum cladding oxidation problem unique to higher heat fluxes or associated cladding temperatures that, if not solved, may limit the operation of the ANS to unacceptably low power levels. A brief description of the information presented by each speaker is included along with a compilation of the most significant ideas and recommended research areas. The appendixes contain a copy of the workshop agenda and a list of attendees

  2. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    Science.gov (United States)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  3. An internal conical mandrel technique for fracture toughness measurements on nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sainte Catherine, C.; Le Boulch, D.; Carassou, S. [CEA Saclay, DEN/DMN, Bldg 625 P, Gif-Sur-Yvette, F-91191 (France); Lemaignan, C. [CEA Grenoble, 17 rue des Martyrs, Grenoble, F-38054 (France); Ramasubramanian, N. [ECCATEC Inc., 92 Deburn Drive, Toronto, Ontario (Canada)

    2006-07-01

    An understanding of the limiting stress level for crack initiation and propagation in a fuel cladding material is a fundamental requirement for the development of water reactor clad materials. Conventional tests, in use to evaluate fracture properties, are of limited help, because they are adapted from ASTM standards designed for thick materials, which differ significantly from fuel cladding geometry (small diameter thin-walled tubing). The Internal Conical Mandrel (ICM) test described here is designed to simulate the effect of fuel pellet diametrical increase on a cladding with an existing axial through-wall crack. It consists in forcing a cone, having a tapered increase in diameter, inside the Zircaloy cladding with an initial axial crack. The aim of this work is to quantify the crack initiation and propagation criteria for fuel cladding material. The crack propagation is monitored by a video system for obtaining crack extension {delta}a. A finite-element (FE) simulation of the ICM test is performed in order to derive J integrals. A node release technique is applied during the FE simulation for crack propagation and the J-resistance curves (J-{delta}a) are generated. This paper presents the test methodology, the J computation validation, and results for cold-worked stress relieved Zircaloy-4 cladding at 20 deg. and 300 deg. C and also for Al 7050-T7651 aluminum alloy tubing at 20 deg. C. (authors)

  4. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Post test investigations of bundle test ESBU-2A

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Wallenfels, K.P.; Buescher, B.

    1986-11-01

    This KfK report describes the post test investigation of bundle experiment ESBU-2a. ESBU-2a was the second of two bundle tests on the temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of the program of out-of-pile experiments performed within the frame work of the PNS-Severe Fuel Damage program. The bundle was composed of a 3x3 fuel rod array of our fuel rod simulators (central tungsten heater, UO 2 -ring pellet and zircaloy cladding). The length was 0.4 meter. The bundle was heated to a maximum temperature of 2175 0 C. Molten cladding which dissolved part of the UO 2 pellets and slumped away from the already oxidized cladding formed a lump in the lower part of the bundle. After the test the bundle was embedded in epoxy and sectioned with a diamand saw, in the region of the refrozen melt. The cross sections were investigated by metallographic examination. The refrozen (U,Zr,O) melt consists variously of three phases with increasing oxygen content (metallic α-Zry, metallic (U,Zr) alloy and a (U,Zr)O 2 mixed oxide), two phases (α-Zry, (U,Zr)O 2 mixed oxide), or one phase ((U,Zr)O 2 mixed oxide). The cross sections show the increasing oxidation of the cladding with increasing elevation (temperature). A strong azimuthal dependency of the oxidation is found. In regions where the initial oxidized cladding is contacted by the melt one can recognize the interaction between the metallic melt and ZrO 2 of the cladding. Oxygen is taken away from the ZrO 2 . If the melt is in direct contact with steam a relatively well defined oxide layer is formed. (orig.) [de

  5. Analysis of Chlorogenic Acid Oxidation Pathway in Simulated ...

    African Journals Online (AJOL)

    Purpose: To investigate the pathways involved in the oxidation of chlorogenic acid (CA) and phenol metabolism in honeysuckle buds. Methods: A model that mimics CA oxidation by honeysuckle polyphenol oxidase (PPO) by controlling the reaction temperature or reaction duration was employed, and the resulting products ...

  6. Analysis of Chlorogenic Acid Oxidation Pathway in Simulated ...

    African Journals Online (AJOL)

    Keywords: Honeysuckle, Chlorogenic acid, Enzymatic browning, Mimic system, Oxidation pathway, ... enzymatic oxidation of CA is the major cause of ..... to the concentration of catechol, o-quinone and current at PPO-modified microcylinder biosensor for diffusion- kinetic model. J Electroanal Chem 2011; 660: 200-208.

  7. ZIRCONIUM-CLADDING OF THORIUM

    Science.gov (United States)

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  8. Development of high performance cladding

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    2003-01-01

    The developments of superior next-generation light water reactor are requested on the basis of general view points, such as improvement of safety, economics, reduction of radiation waste and effective utilization of plutonium, until 2030 year in which conventional reactor plants should be renovate. Improvements of stainless steel cladding for conventional high burn-up reactor to more than 100 GWd/t, developments of manufacturing technology for reduced moderation-light water reactor (RMWR) of breeding ratio beyond 1.0 and researches of water-materials interaction on super critical pressure-water cooled reactor are carried out in Japan Atomic Energy Research Institute. Stable austenite stainless steel has been selected for fuel element cladding of advanced boiling water reactor (ABWR). The austenite stain less has the superiority for anti-irradiation properties, corrosion resistance and mechanical strength. A hard spectrum of neutron energy up above 0.1 MeV takes place in core of the reduced moderation-light water reactor, as liquid metal-fast breeding reactor (LMFBR). High performance cladding for the RMWR fuel elements is required to get anti-irradiation properties, corrosion resistance and mechanical strength also. Slow strain rate test (SSRT) of SUS 304 and SUS 316 are carried out for studying stress corrosion cracking (SCC). Irradiation tests in LMFBR are intended to obtain irradiation data for damaged quantity of the cladding materials. (M. Suetake)

  9. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

    OpenAIRE

    Bo Cheng; Young-Jin Kim; Peter Chou

    2016-01-01

    In severe loss of coolant accidents (LOCA), similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconium alloy fuel cladding materials are rapidly heated due to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident managem...

  10. Effect of water chemistry and fuel operation parameters on Zr + 1% Nb cladding corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Kritsky, V G; Petrik, N G; Berezina, I G; Doilnitsina, V V [VNIPIET, St. Petersburg (Russian Federation)

    1997-02-01

    In-pile corrosion of Zr + 1%Nb fuel cladding has been studied. Zr-oxide and hydroxide solubilities at various temperatures and pH values have been calculated and correlations obtained between post-transition corrosion and the solubilities nodular corrosion and fuel operation parameters, as well as between the rate of fuel cladding degradation and water chemistry. Extrapolations of fuel assemblies behaviour to higher burnups have also performed. (author). 12 refs, 11 figs.

  11. Plasma spheroidizing and cladding of powders

    International Nuclear Information System (INIS)

    Petrunichev, V.A.; Averin, V.V.; Sorokin, L.M.; Koroleva, E.B.

    1987-01-01

    Arc and high-frequency plasmatrons are used for spheroidizing nickel and chromium-base alloy particles. Different plasma-forming medium compositions are used in the arc variant and the effect of these media on the plasma treatment product is demonstrated. For a high-frequency plasmatron, a long time of plasma contact with the powder leads to the transfer of the part of the material from the treated particles into vaporous state with subsequent condensation at the outlet from the discharge zone. Results of investigations into the formation of metal coatings on oxide and carbide particles during plasma-arc action are also presented. Representative data on the output of particles with coating are obtained and factors, providing for the optimal particle cladding conditions, are indicated

  12. First results on T91 claddings with and without modified FeCrAlY coatings exposed in PbBi under varying conditions

    International Nuclear Information System (INIS)

    Weisenburger, A.; Heinzel, A.; Miller, G.; Rousanov, A.

    2008-01-01

    It is well known that at temperatures above 500 deg C low activation austenitic steels suffer from severe corrosion in lead or lead-bismuth. Low activation martensitic steels instead form under similar conditions concerning temperature and oxygen content thick oxide scales that periodically may span off. Both groups of materials are therefore restricted to areas having lower temperature load. For parts that are intended to be used in high-temperature regions, like claddings, surface protection has to be applied. From gas turbines the role of elements forming thin stable oxide scales is well understood. The concept chosen here for thermally high loaded parts, the claddings, is the deposition of a FeCrAlY coating of about 30 vt,m thickness that is afterwards re-melted applying a pulsed electron beam (GESA). The beam energy is adjusted in a way to melt the entire coating together with a few thin region of the bulk to create a perfect intermixing at the boundary. This results in a new surface area of the cladding with an aluminium content of the order of 5 wt.% that will be sufficiently high to grow thin stable oxide scales. This concept is proven for austenitic cladding materials like 1.4970 as well as for martensitic ones like T91. In long-term corrosion tests the compatibility to Pb or PbBi, the resistance against corrosion and severe oxidation, was clearly demonstrated. No negative response of such a modified coating on the mechanical properties and the stability under irradiation has been observed as of yet. This paper will focus on the surface modification process, the corrosion results thus far obtained and on the evaluation of some mechanical properties. For example, the swelling of the fuel by irradiation will lead during operation to an increase of the internal pressure. This is simulated in experiments where an internal pressure of defined value was applied on T91 cladding tubes. The influence of flow velocity between to 3 m/s on the oxidation behaviour of T

  13. Simulation of atmospheric oxidation capacity in Houston, Texas

    Science.gov (United States)

    Air quality model simulations are performed and evaluated for Houston using the Community Multiscale Air Quality (CMAQ) model. The simulations use two different emissions estimates: the EPA 2005 National Emissions Inventory (NEI) and the Texas Commission on Environmental Quality ...

  14. Study on the improvement of nuclear fuel cladding reliability

    International Nuclear Information System (INIS)

    Rheem, Karp Soon; Han, Jung Ho; Jeong, Yong Hwan; Lee, Deok Hyun

    1987-12-01

    In order to improve the nuclear fuel cladding reliability for high burn-up fuels, the corrosion resistance of laser beam surface treated and β-quenched zircaloys and the mechanical characteristics including fatigue, burst, and out-of-pile PCMI characteristics of heat treated zircaloys were investigated. In addition, the inadiation characteristics of Ko-Ri reactor fuel claddings was examined. It was found that the wasteside corrosion resistance of commercial zircaloys was improved remarkably by laser beam surface treatment. The out-of-pile transient cladding failures were investigated in terms of hoop stress versus time-to-failures by means of mandrel loading units at 25 deg C and 325 deg C. Fatigue characteristics of the β-quenched and as-received zircaloy cladding were investigated by using an internal oil pressurization method which can simulate the load-following operation cycle. The results were in good agreement with the existing data obtained by conventional methods for commercial zircaloys. Burst tests were performed with commercial and the β-quenched zircaloys in high pressure argon gas atmosphere as a function of burst temperature. The burst stress decreased linearly in the α phase region up to 600 deg C and hereafter the decrement of the burst stress decreased gradually with temperature in the β-phase region. For the first time, the burst characteristic of the irradiated zircaloy-4 cladding tubes released from Ko-Ri nuclear power unit 1 was investigated, and attempts were made to trace the cause of cladding failures by examining the failed structure and fret marks by debris. (Author)

  15. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  16. Study of laser cladding nuclear valve parts

    International Nuclear Information System (INIS)

    Shi Shihong; Wang Xinlin; Huang Guodong

    1998-12-01

    The mechanism of laser cladding is discussed by using heat transfer model of laser cladding, heat conduction model of laser cladding and convective transfer mass model of laser melt-pool. Subsequently the laser cladding speed limit and the influence of laser cladding parameters on cladding layer structure is analyzed. A 5 kW with CO 2 transverse flow is used in the research for cladding treatment of sealing surface of stop valve parts of nuclear power stations. The laser cladding layer is found to be 3.0 mm thick. The cladding surface is smooth and has no such defects as crack, gas pore, etc. A series of comparisons with plasma spurt welding and arc bead welding has been performed. The results show that there are higher grain grade and hardness, lower dilution and better performances of resistance to abrasion, wear and of anti-erosion in the laser cladding layer. The new technology of laser cladding can obviously improve the quality of nuclear valve parts. Consequently it is possible to lengthen the service life of nuclear valve and to raise the safety and reliability of the production system

  17. The deformation of Zircaloy PWR cladding with low internal pressures, under mainly convective cooling by steam

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.; Reynolds, A.E.

    1981-08-01

    Simulated PWR fuel rods clad with Zircaloy-4 were tested under convective steam cooling conditions, by pressurising to 0.69-2.07MPa (100-300lb/in 2 ), then ramping at 10 0 C/s to various temperatures in the region 800-955 0 C and holding until either 600 s elapsed or rupture occurred. The length of cladding strained 33% or more was greatest (about 20 times the original diameter) when the initial internal pressure was 1.38+-0.17 PMa (200+-25lb/in 2 ), and the temperature 885 0 C. It is thought that this results from oxidation strengthening of the surface layers acting as an additional mechanism for stabilising the deformation and/or partial superplastic deformation. To avoid adjacent rods in a fuel assembly touching at any temperature, the pressure would have to be less than about 1MPa (145 1b/in 2 ). If the pressure was 1.38MPa (200lb/in 2 ) then the rods would not swell sufficiently to touch if the temperature did not exceed about 840 0 C. (author)

  18. Obtention of the constitutive equation of hydride blisters in fuel cladding from nanoindentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Martin Rengel, M.A., E-mail: mamartin.rengel@upm.es [E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, c/ Profesor Aranguren, 3, E-28040 Madrid (Spain); Gomez, F.J., E-mail: javier.gomez@amsimulation.com [Advanced Material Simulation, AMS, Bilbao (Spain); Rico, A., E-mail: alvaro.rico@urjc.es [DIMME, Universidad Rey Juan Carlos, Mostoles (Spain); Ruiz-Hervias, J. [E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, c/ Profesor Aranguren, 3, E-28040 Madrid (Spain); Rodriguez, J. [DIMME, Universidad Rey Juan Carlos, Mostoles (Spain)

    2017-04-15

    It is well known that the presence of hydrides in nuclear fuel cladding may reduce its mechanical and fracture properties. This situation may be worsened as a consequence of the formation of hydride blisters. These blisters are zones with an extremely high hydrogen concentration and they are usually associated to the oxide spalling which may occur at the outer surface of the cladding. In this work, a method which allows us to reproduce, in a reliable way, hydride blisters in the laboratory has been devised. Depth-sensing indentation tests with a spherical indenter were conducted on a hydride blister produced in the laboratory with the aim of measuring its mechanical behaviour. The plastic stress-strain curve of the hydride blister was calculated for first time by combining depth-sensing indentation tests results with an iterative algorithm using finite element simulations. The algorithm employed reduces, in each iteration, the differences between the numerical and the experimental results by modifying the stress-strain curve. In this way, an almost perfect adjustment of the experimental data was achieved after several iterations. The calculation of the constitutive equation of the blister from nanoindentation tests, may involve a lack of uniqueness. To evaluate it, a method based on the optimization of parameters of analytical equations has been proposed in this paper. An estimation of the error which involves this method is also provided.

  19. Capabilities to improve corrosion resistance of fuel claddings by using powerful laser and plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, V. M., E-mail: borisov@triniti.ru; Trofimov, V. N.; Sapozhkov, A. Yu.; Kuzmenko, V. A.; Mikhaylov, V. B.; Cherkovets, V. Ye.; Yakushkin, A. A. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Yakushin, V. L.; Dzhumayev, P. S. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The treatment conditions of fuel claddings of the E110 alloy by using powerful UV or IR laser radiation, which lead to the increase in the corrosion resistance at the high-temperature (T = 1100°C) oxidation simulating a loss-of-coolant accident, are determined. The possibility of the complete suppression of corrosion under these conditions by using pulsed laser deposition of a Cr layer is demonstrated. The behavior of protective coatings of Al, Al{sub 2}O{sub 3}, and Cr planted on steel EP823 by pulsed laser deposition, which is planned to be used in the BREST-OD-300, is studied. The methods of the almost complete suppression of corrosion in liquid lead to the temperature of 720°C are shown.

  20. Experimental investigation and thermodynamic simulation of the uranium oxide-zirconium oxide-iron oxide system in air

    Czech Academy of Sciences Publication Activity Database

    Petrov, Y. B.; Udalov, Y. P.; Šubrt, Jan; Bakardjieva, Snejana; Sázavský, P.; Kiselová, M.; Selucký, P.; Bezdička, Petr; Joumeau, C.; Piluso, P.

    2011-01-01

    Roč. 37, č. 2 (2011), s. 212-229 ISSN 1087-6596 Institutional research plan: CEZ:AV0Z40320502 Keywords : uranium oxide * zirconium oxide * iron oxide * fusibility curve * oxygen partial pressure * crystallization * phase composition Subject RIV: CA - Inorganic Chemistry Impact factor: 0.492, year: 2011

  1. Examination of Zircaloy-clad spent fuel after extended pool storage

    International Nuclear Information System (INIS)

    Bradley, E.R.; Bailey, W.J.; Johnson, A.B. Jr.; Lowry, L.M.

    1981-09-01

    This report presents the results from metallurgical examinations of Zircaloy-clad fuel rods from two bundles (0551 and 0074) of Shippingport PWR Core 1 blanket fuel after extended water storage. Both bundles were exposed to water in the reactor from late 1957 until discharge. The estimated average burnups were 346 GJ/kgU (4000 MWd/MTU) for bundle 0551 and 1550 GJ/kgU (18,000 MWd/MTU) for bundle 0074. Fuel rods from bundle 0551 were stored in deionized water for nearly 21 yr prior to examination in 1980, representing the world's oldest pool-stored Zircaloy-clad fuel. Bundle 0074 has been stored in deionized water since reactor discharge in 1964. Data from the current metallurgical examinations enable a direct assessment of extended pool storage effects because the metallurgical condition of similar fuel rods was investigated and documented soon after reactor discharge. Data from current and past examinations were compared, and no significant degradation of the Zircaloy cladding was indicated after almost 21 yr in water storage. The cladding dimensions and mechanical properties, fission gas release, hydrogen contents of the cladding, and external oxide film thicknesses that were measured during the current examinations were all within the range of measurements made on fuel bundles soon after reactor discharge. The appearance of the external surfaces and the microstructures of the fuel and cladding were also similar to those reported previously. In addition, no evidence of accelerated corrosion or hydride redistribution in the cladding was observed

  2. Early implementation of SiC cladding fuel performance models in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    SiC-based ceramic matrix composites (CMCs) [5–8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation due to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.

  3. Prediction of failure of highly irradiated Zircaloy clad tubes under reactivity initiated accidents

    International Nuclear Information System (INIS)

    Jernkvist, L.O.

    2003-01-01

    This paper deals with failure of irradiated Zircaloy tubes under the heat-up stage of a reactivity initiated accident (RIA). More precisely, by use of a model for plastic strain localization and necking failure, we theoretically analyse the effects of local surface defects on clad ductility and survivability under RIA. The results show that even very shallow surface defects, e.g. arising from a non-uniform or partially spilled oxide layer, have a strong limiting effect on clad ductility. Moreover, in presence of surface defects, the ability of the clad tube to expand radially without necking failure is found to be extremely sensitive to the stress biaxiality ratio σ zz /σ θθ , which is here assumed to be in the range from 0 to 1. The results of our analysis are compared with clad ductility data available in literature, and their consequences for clad failure prediction under RIA are discussed. In particular, the results raise serious concerns regarding the applicability of failure criteria, which are based on clad strain energy density. These criteria do not capture the observed sensitivity to stress biaxiality on clad failure propensity. (author)

  4. Potential for fuel melting and cladding thermal failure during a PCM event in LWRs

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Croucher, D.W.

    1979-01-01

    The primary concern in nuclear reactor safety is to ensure that no conceivable accident, whether initiated by a failure of the reactor system or by incorrect operation, will lead to a dangerous release of radiation to the environment. A number of hypothesized off-normal power or cooling conditions, generally termed as power-cooling-mismatch (PCM) accidents, are considered in the safety analysis of light water reactors (LWRs). During a PCM accident, film boiling may occur at the cladding surface and cause a rapid temperature increase in the fuel and the cladding, perhaps producing embrittlement of the zircaloy cladding by oxidation. Molten fuel may be produced at the center of the pellets, extrude radially through open cracks in the outer, unmelted portion of the pellet and relocate in the fuel-cladding gap. If the amount of extruded molten fuel is sufficient to establish contact with the cladding, which is at a high temperature during film boiling, the zircaloy cladding may melt. The present work assesses the potential for central fuel melting and thermal failure of the zircaloy cladding due to melting upon being contacted by extruded molten UO 2 -fuel during a PCM event

  5. Gallium-cladding compatibility testing plan. Phases 1 and 2: Test plan for gallium corrosion tests. Revision 2

    International Nuclear Information System (INIS)

    Wilson, D.F.; Morris, R.N.

    1998-05-01

    This test plan is a Level-2 document as defined in the Fissile Materials Disposition Program Light-Water-Reactor Mixed-Oxide Fuel Irradiation Test Project Plan. The plan summarizes and updates the projected Phases 1 and 2 Gallium-Cladding compatibility corrosion testing and the following post-test examination. This work will characterize the reactions and changes, if any, in mechanical properties that occur between Zircaloy clad and gallium or gallium oxide in the temperature range 30--700 C

  6. Review of zircaloy oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, F.C. [Royal Military College of Canada, Kingston, Ontario (Canada); Lewis, B.J. [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada)

    2013-07-01

    This paper provides an overview of the kinetics for Zircaloy clad oxidation behaviour in steam and air during reactor accident conditions. The generation of chemical heat from metal/water reaction is considered. The effect of internal clad oxidation due to Zircaloy/UO{sub 2} interaction is also discussed. Low-temperature oxidation of Zircaloy due to water-side corrosion is further described. (author)

  7. Laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Designing efficient nitrous oxide sampling strategies in agroecosystems using simulation models

    Science.gov (United States)

    Debasish Saha; Armen R. Kemanian; Benjamin M. Rau; Paul R. Adler; Felipe Montes

    2017-01-01

    Annual cumulative soil nitrous oxide (N2O) emissions calculated from discrete chamber-based flux measurements have unknown uncertainty. We used outputs from simulations obtained with an agroecosystem model to design sampling strategies that yield accurate cumulative N2O flux estimates with a known uncertainty level. Daily soil N2O fluxes were simulated for Ames, IA (...

  9. Laser cladding of quasicrystalline alloys

    International Nuclear Information System (INIS)

    Audebert, F.; Sirkin, H.; Colaco, R.; Vilar, R.

    1998-01-01

    Quasicrystals are a new class of ordinated structures with metastable characteristics room temperature. Quasicrystalline phases can be obtained by rapid quenching from the melt of some alloys. In general, quasicrystals present properties which make these alloys promising for wear and corrosion resistant coatings applications. During the last years, the development of quasicrystalline coatings by means of thermal spray techniques has been impulsed. However, no references have been found of their application by means of laser techniques. In this work four claddings of quasicrystalline compositions formed over aluminium substrate, produced by a continuous CO 2 laser using simultaneous powders mixture injection are presented. The claddings were characterized by X ray diffraction, scanning electron microscopy and Vickers microhardness. (Author) 18 refs

  10. CLAD DEGRADATION - FEPS SCREENING ARGUMENTS

    International Nuclear Information System (INIS)

    R. Schreiner

    2004-01-01

    The purpose of this report is to evaluate and document the screening of the clad degradation features, events, and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment-License Application (TSPA-LA). This report also addresses the effect of certain FEPs on both the cladding and the commercial spent nuclear fuel (CSNF), DOE-owned spent nuclear fuel (DSNF), and defense high-level waste (DHLW) waste forms, as appropriate to address the effects on multiple materials and both components (FEPs 2.1.09.09.0A, 2.1.09.11.0A, 2.1.11.05.0A, 2.1.12.02.0A, and 2.1.12.03.0A). These FEPs are expected to affect the repository performance during the postclosure regulatory period of 10,000 years after permanent closure. Table 1-1 provides the list of cladding FEPs, including their screening decisions (include or exclude). The primary purpose of this report is to identify and document the analysis, screening decision, and TSPA-LA disposition (for included FEPs) or screening argument (for excluded FEPs) for these FEPs related to clad degradation. In some cases, where a FEP covers multiple technical areas and is shared with other FEP reports, this report may provide only a partial technical basis for the screening of the FEP. The full technical basis for shared FEPs is addressed collectively by the sharing FEP reports. The screening decisions and associated TSPA-LA dispositions or screening arguments from all of the FEP reports are cataloged in a project-specific FEPs database

  11. Oxide fuel fabrication technology development of the FaCT project (5). Current status on 9Cr-ODS steel cladding development for high burn-up fast reactor fuel

    International Nuclear Information System (INIS)

    Ohtsuka, Satoshi; Kaito, Takeji; Yano, Yasuhide; Yamashita, Shinichiro; Ogawa, Ryuichiro; Uwaba, Tomoyuki; Koyama, Shinichi; Tanaka, Kenya

    2011-01-01

    This paper describes evaluation results of in-reactor integrity of 9Cr and 12Cr-ODS steel cladding tubes and the plan for reliability improvement in homogeneous tube production, both of which are key points for the commercialized use of ODS steels as long-life fuel cladding tubes. A fuel assembly in the BOR-60 irradiation test including 9Cr and 12Cr-ODS fuel pins has achieved the highest burn-up, i.e. peak burn-up of 11.9at% and peak neutron dose of 51dpa, without any fuel pin rupture and microstructure instability. In another fuel assembly containing 9Cr and 12Cr-ODS steel fuel pins whose peak burn-up was 10.5at%, one 9Cr-ODS steel fuel pin failed near the upper end of the fuel column. A peculiar microstructure change occurred in the vicinity of the ruptured area. The primary cause of this fuel pin rupture and microstructure change was shown to be the presence of metallic Cr inclusions in the 9Cr-ODS steel tube, which had passed an ultrasonic inspection test for defects. In the next stage from 2011 to 2013, the fabrication technology of full pre-alloy 9Cr-ODS steel cladding tube will be developed, where the handling of elemental powder is prohibited in the process. (author)

  12. Underclad cracks growth under fatigue loading in stainless steel cladding

    International Nuclear Information System (INIS)

    Bernard, J.L.; Bodson, F.; Doule, A.; Slama, G.; Bramat, M.; Doucet, J.P.; Maltrud, F.

    1981-01-01

    Hydrogen induced cracks have been found in HAZ of PWR vessel nozzles under stainless steel cladding. Fatigue tests were performed to collect a large amount of data on the possible propagation of this type of flaws. Tests were conducted in two steps. The aim of the first step was to set up the experimental equipment and to device an adequate method for following cracks during fatigue loading. Clad plates with electroerosion machined slots were used for this purpose. The second step was then undertaken with material taken out of an actual nozzle containing hydrogen induced cracks in the HAZ under stainless steel cladding or flaws simulated by electroerosion machined slots. The test loadings were comparable to in service loadings of the nozzles. Special attention was taken to get representative R ratios. Again for the sake of representativity, the tests were performed at 300 0 C (In service temperature) and the hydrotest was simulated. The main results are: It was possible to follow the whole failure process by combining non-destructive examinations during fatigue testing and fractographic observations of broken specimens. Different striation patterns, before and after air has penetrated the actual embedded cracks were observed. Numerical simulation of fatigue crack growth of actual or simulated defects were consistent with experimental data, provided mainly that defect shape, effect of R ratio and of environment were taken into account. (orig.)

  13. Controls of nitrous oxide emission after simulated cattle urine deposition

    DEFF Research Database (Denmark)

    Baral, Khagendra Raj; Thomsen, Anton Gårde; Olesen, Jørgen E

    2014-01-01

    Urine deposited during grazing is a significant source of atmospheric nitrous oxide (N2O). The potential for N2O emissions from urine patches is high, and a better understanding of controls is needed. This study investigated soil nitrogen (N) dynamics and N2O emissions from cattle urine...

  14. Calculation of hydrogen and oxygen uptake in fuel rod cladding during severe accidents using the integral diffusion method -- Preliminary design report

    International Nuclear Information System (INIS)

    Siefken, L.J.

    1999-01-01

    Preliminary designs are described for models of hydrogen and oxygen uptake in fuel rod cladding during severe accidents. Calculation of the uptake involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the cladding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental results are presented that show a rapid uptake of hydrogen in the event of dissolution of the oxide layer and a rapid release of hydrogen in the event of cracking of the oxide layer. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. The uptake of hydrogen is limited to the equilibrium solubility calculated by applying Sievert's law. The uptake of hydrogen is an exothermic reaction that accelerates the heatup of a fuel rod. An embrittlement criteria is described that accounts for hydrogen and oxygen concentration and the extent of oxidation. A design is described for implementing the models for hydrogen and oxygen uptake and cladding embrittlement into the programming framework of the SCDAP/RELAP5 code. A test matrix is described for assessing the impact of the proposed models on the calculated behavior of fuel rods in severe accident conditions. This report is a revision and reissue of the report entitled; ''Preliminary Design Report for Modeling of Hydrogen Uptake in Fuel Rod Cladding During Severe Accidents.''

  15. Review and evaluation of cladding attack of LMFBR fuel

    International Nuclear Information System (INIS)

    Koizumi, M.; Nagai, S.; Furuya, H.; Muto, T.

    1977-01-01

    The behavior of cladding inner wall corrosion during irradiation was evaluated in terms of fuel density, fuel form, O/M ratio, plutonium concentration, cladding composition, cladding pretreatment, cladding inner diameter, burnup and cladding inner wall temperature. Factors which influence the corrosion are O/M ratio (oxygen to metal ratio), burn up, cladding inner diameter and cladding inner wall temperature. Maximum cladding inner wall corrosion depth was formulated as a function of O/M ratio, burn up and cladding inner wall temperature

  16. Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-04-01

    Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific focus of concern is performance during a shipment drop accident. Tests at Savannah River National Laboratory (SRNL) are being performed to characterize the properties of fuel clad relative to a mechanical accident condition such as a container drop. Unirradiated ZIRLO tubing samples have been charged with a range of hydride levels to simulate actual fuel rod levels. Samples of the hydrogen charged tubes were exposed to a radial hydride growth treatment (RHGT) consisting of heating to 400°C, applying initial hoop stresses of 90 to 170 MPa with controlled cooling and producing hydride precipitates. Initial samples have been tested using both a) ring compression test (RCT) which is shown to be sensitive to radial hydride and b) three-point bend tests which are less sensitive to radial hydride effects. Hydrides are generated in Zirconium based fuel cladding as a result of coolant (water) oxidation of the clad, hydrogen release, and a portion of the released (nascent) hydrogen absorbed into the clad and eventually exceeding the hydrogen solubility limit. The orientation of the hydrides relative to the subsequent normal and accident strains has a significant impact on the failure susceptability. In this study the impacts of stress, temperature and hydrogen levels are evaluated in reference to the propensity for hydride reorientation from the circumferential to the radial orientation. In addition the effects of radial hydrides on the Quasi Ductile Brittle Transition Temperature (DBTT) were measured. The results suggest that a) the severity of the radial hydride impact is related to the hydrogen level-peak temperature combination (for example at a peak drying temperature of 400°C; 800 PPM hydrogen has less of an impact/ less radial hydride fraction than 200 PPM hydrogen for the same thermal

  17. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction ESSI-4 ESSI-11

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauscheck, H.; Wallenfels, K.P.; Buescher, B.J.

    1985-03-01

    The tests had the initial heatup rate as main parameter. The experimental arrangement consisted of a fuel rod simulator (central tungsten heater, UO 2 ring pellets and zircaloy cladding), a zircaloy shroud and the fiber ceramic insulation. A steam flow of ca. 20 g/min was introduced at the lower end of the bundle. A temperature escalation was observed in every test. The maximum cladding surface temperature in the single rod tests never exceeded 2200 0 C. The escalation began in the upper region of the rods and moved down the rods, opposite to the direction of steam flow. For fast initial heatup rates, the runoff of molten zircaloy was a limiting process for the escalation. For slow heatup rates, the formation of a protective oxide layer reduced the reaction rate. The test with less insulation thickness showed a reduction of the escalation. A stronger influence was found for the gap between shroud and insulation. This is caused by convection heat losses to the steam circulating in this gap by natural convection. Removal of the gap between shroud and insulation in essentially the same experimental arrangement produced a faster escalation. The posttest appearance of the fuel rod simulators showed that, at slow heatup rates oxidation of the cladding was complete, and the fuel rod was relatively intact. Conversely, at fast heatup rates, relatively little cladding oxidation with extensive dissolution of the UO 2 pellets and runoff of molten cladding was observed. (orig./HP) [de

  18. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Y., E-mail: yano.yasuhide@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T. [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Ukai, S.; Oono, N. [Materials Science and Engineering, Faculty of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo, Hokkaido, 060-8628 (Japan); Kimura, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hayashi, S. [Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Torimaru, T. [Nippon Nuclear Fuel Development Co., Ltd., 2163, Narita-cho, Oarai-machi, Ibaraki, 311-1313 (Japan)

    2017-04-15

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900–1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  19. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Science.gov (United States)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  20. About criteria of inadmissible embrittlement of zirconium fuel cladding during LOCA in the PWRs

    International Nuclear Information System (INIS)

    Osmachkin, V.S.

    1999-01-01

    According the licensing procedures the designers of the PWRs reactor have to prove the meeting of special safety requirements. One criteria on effectiveness of the Emergency Core Cooling System is not to exceeding some limited conditions of the fuel cladding during LOCA accidents (typical example T m ax o C, ECR<0,17 and oth.). The damage of fuel element in the core during LOCA is caused by the oxidation of the cladding, its embrittlement and thermal shock stresses after initiation of the heat removal by a cold water from emergency core cooling system. In the paper the conservatism in criteria to avoid brittle ruptures of the fuel elements is discussed. Taking into account the influence of fuel burnup on the property of the cladding and a potential presence of air in the steam, it is believed that criteria of survivability of the zircaloy fuel cladding during LOCA may not be enough conservative.(author)

  1. Fundamentals and industrial applications of high power laser beam cladding

    International Nuclear Information System (INIS)

    Bruck, G.J.

    1988-01-01

    Laser beam cladding has been refined such that clad characteristics are precisely determined through routine process control. This paper reviews the state of the art of laser cladding optical equipment, as well as the fundamental process/clad relationships that have been developed for high power processing. Major categories of industrial laser cladding are described with examples chose to highlight particular process attributes

  2. Unirradiated cladding rip-propagation tests

    International Nuclear Information System (INIS)

    Hu, W.L.; Hunter, C.W.

    1981-04-01

    The size of cladding rips which develop when a fuel pin fails can affect the subassembly cooling and determine how rapidly fuel escapes from the pin. The object of the Cladding Rip Propagation Test (CRPT) was to quantify the failure development of cladding so that a more realistic fuel pin failure modeling may be performed. The test results for unirradiated 20% CS 316 stainless steel cladding show significantly different rip propagation behavior at different temperatures. At room temperature, the rip growth is stable as the rip extension increases monotonically with the applied deformation. At 500 0 C, the rip propagation becomes unstable after a short period of stable rip propagation. The rapid propagation rate is approximately 200 m/s, and the critical rip length is 9 mm. At test temperatures above 850 0 C, the cladding exhibits very high failure resistances, and failure occurs by multiple cracking at high cladding deformation. 13 figures

  3. Effect of laser power on clad metal in laser-TIG combined metal cladding

    Science.gov (United States)

    Utsumi, Akihiro; Hino, Takanori; Matsuda, Jun; Tasoda, Takashi; Yoneda, Masafumi; Katsumura, Munehide; Yano, Tetsuo; Araki, Takao

    2003-03-01

    TIG arc welding has been used to date as a method for clad welding of white metal as bearing material. We propose a new clad welding process that combines a CO2 laser and a TIG arc, as a method for cladding at high speed. We hypothesized that this method would permit appropriate control of the melted quantity of base metal by varying the laser power. We carried out cladding while varying the laser power, and investigated the structure near the boundary between the clad layer and the base metal. Using the laser-TIG combined cladding, we found we were able to control appropriately the degree of dilution with the base metal. By applying this result to subsequent cladding, we were able to obtain a clad layer of high quality, which was slightly diluted with the base metal.

  4. Allowable peak heat-up cladding temperature for spent fuel integrity during interim-dry storage

    Directory of Open Access Journals (Sweden)

    Ki-Nam Jang

    2017-12-01

    Full Text Available To investigate allowable peak cladding temperature and hoop stress for maintenance of cladding integrity during interim-dry storage and subsequent transport, zirconium alloy cladding tubes were hydrogen-charged to generate 250 ppm and 500 ppm hydrogen contents, simulating spent nuclear fuel degradation. The hydrogen-charged specimens were heated to four peak temperatures of 250°C, 300°C, 350°C, and 400°C, and then cooled to room temperature at cooling rates of 0.3 °C/min under three tensile hoop stresses of 80 MPa, 100 MPa, and 120 MPa. The cool-down specimens showed that high peak heat-up temperature led to lower hydrogen content and that larger tensile hoop stress generated larger radial hydride fraction and consequently lower plastic elongation. Based on these out-of-pile cladding tube test results only, it may be said that peak cladding temperature should be limited to a level < 250°C, regardless of the cladding hoop stress, to ensure cladding integrity during interim-dry storage and subsequent transport.

  5. Inner wall attack and its inhibition method for FBR fuel pin cladding at high burnup

    International Nuclear Information System (INIS)

    Xu Yongli; Long Bin; Li Jingang; Wan Jiaying

    1998-01-01

    The inner wall attack of the modified 316-Ti S.S. cladding tubes manufactured in China used FBR at 10at.% burnup was investigated by means of the out of pile simulation tests. The inner surface morphologies of the cladding tubes attached by fission products Cs, Te, I and Se at 700 deg. C under lower and high oxygen potentials were observed respectively, and the depth of attack was also measured. The burst strength, maximum circum expansion and the appearances of fracture were measured and observed respectively for the cladding tubes attacked by fission products. Based on the mechanism of FBR fuel cladding chemical interaction (FCCI), Cr, Zr and Nb were used as the oxygen absorbers respectively, in order to inhibit the inner wall attack of the cladding tubes. The corrosion morphologies and depth, the penetration depth of the fission products in the inner surface of the cladding tubes were detected. The inhibition effectiveness of the oxygen absorbers for the inner wall attack of the cladding tubes was evaluated. (author)

  6. LASER SURFACE CLADDING FOR STRUCTURAL REPAIR

    OpenAIRE

    SANTANU PAUL

    2018-01-01

    Laser cladding is a powder deposition technique, which is used to deposit layers of clad material on a substrate to improve its surface properties. It has widespread application in the repair of dies and molds used in the automobile industry. These molds and dies are subjected to cyclic thermo-mechanical loading and therefore undergo localized damage and wear. The final clad quality and integrity is influenced by various physical phenomena, namely, melt pool morphology, microst...

  7. The chemical energy unit partial oxidation reactor operation simulation modeling

    Science.gov (United States)

    Mrakin, A. N.; Selivanov, A. A.; Batrakov, P. A.; Sotnikov, D. G.

    2018-01-01

    The chemical energy unit scheme for synthesis gas, electric and heat energy production which is possible to be used both for the chemical industry on-site facilities and under field conditions is represented in the paper. The partial oxidation reactor gasification process mathematical model is described and reaction products composition and temperature determining algorithm flow diagram is shown. The developed software product verification showed good convergence of the experimental values and calculations according to the other programmes: the temperature determining relative discrepancy amounted from 4 to 5 %, while the absolute composition discrepancy ranged from 1 to 3%. The synthesis gas composition was found out practically not to depend on the supplied into the partial oxidation reactor (POR) water vapour enthalpy and compressor air pressure increase ratio. Moreover, air consumption coefficient α increase from 0.7 to 0.9 was found out to decrease synthesis gas target components (carbon and hydrogen oxides) specific yield by nearly 2 times and synthesis gas target components required ratio was revealed to be seen in the water vapour specific consumption area (from 5 to 6 kg/kg of fuel).

  8. Development of advanced claddings for suppressing the hydrogen emission in accident conditions. Development of advanced claddings for suppressing the hydrogen emission in the accident condition

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; KIM, Hyun-Gil; JUNG, Yang-Il; PARK, Dong-Jun; KOO, Yang-Hyun

    2013-01-01

    The development of accident-tolerant fuels can be a breakthrough to help solve the challenge facing nuclear fuels. One of the goals to be reached with accident-tolerant fuels is to reduce the hydrogen emission in the accident condition by improving the high-temperature oxidation resistance of claddings. KAERI launched a new project to develop the accident-tolerant fuel claddings with the primary objective to suppress the hydrogen emission even in severe accident conditions. Two concepts are now being considered as hydrogen-suppressed cladding. In concept 1, the surface modification technique was used to improve the oxidation resistance of Zr claddings. Like in concept 2, the metal-ceramic hybrid cladding which has a ceramic composite layer between the Zr inner layer and the outer surface coating is being developed. The high-temperature steam oxidation behaviour was investigated for several candidate materials for the surface modification of Zr claddings. From the oxidation tests carried out in 1 200 deg. C steam, it was found that the high-temperature steam oxidation resistance of Cr and Si was much higher than that of zircaloy-4. Al 3 Ti-based alloys also showed extremely low-oxidation rate compared to zircaloy-4. One important part in the surface modification is to develop the surface coating technology where the optimum process needs to be established depending on the surface layer materials. Several candidate materials were coated on the Zr alloy specimens by a laser beam scanning (LBS), a plasma spray (PS) and a PS followed by LBS and subject to the high-temperature steam oxidation test. It was found that Cr and Si coating layers were effective in protecting Zr-alloys from the oxidation. The corrosion behaviour of the candidate materials in normal reactor operation condition such as 360 deg. C water will be investigated after the screening test in the high-temperature steam. The metal-ceramic hybrid cladding consisted of three major parts; a Zr liner, a

  9. Nuclear-powered pacemaker fuel cladding study

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1976-07-01

    The fabrication of fuel capsules with refractory metal and alloy clads used in nuclear-powered cardiac pacemakers precludes the expedient dissolution of the clad in inorganic acid solutions. An experiment to measure penetration rates of acids on commonly used fuel pellet clads indicated that it is not impossible, but that it would be very difficult to dissolve the multiple cladding. This work was performed because of a suggestion that a 238 PuO 2 -powered pacemaker could be transformed into a terrorism weapon

  10. Laser surface cladding:a literature survey

    OpenAIRE

    Gedda, Hans

    2000-01-01

    This work consists of a literature survey of a laser surface cladding in order to investigate techniques to improve the cladding rate for the process. The high local heat input caused by the high power density of the laser generates stresses and the process is consider as slow when large areas are processed. To avoid these disadvantages the laser cladding process velocity can be increased three or four times by use of preheated wire instead of the powder delivery system. If laser cladding is ...

  11. Modelling cladding response to changing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tulkki, Ville; Ikonen, Timo [VTT Technical Research Centre of Finland ltd (Finland)

    2016-11-15

    The cladding of the nuclear fuel is subjected to varying conditions during fuel reactor life. Load drops and reversals can be modelled by taking cladding viscoelastic behaviour into account. Viscoelastic contribution to the deformation of metals is usually considered small enough to be ignored, and in many applications it merely contributes to the primary part of the creep curve. With nuclear fuel cladding the high temperature and irradiation as well as the need to analyse the variable load all emphasise the need to also inspect the viscoelasticity of the cladding.

  12. Pulsed Laser Cladding of Ni Based Powder

    Science.gov (United States)

    Pascu, A.; Stanciu, E. M.; Croitoru, C.; Roata, I. C.; Tierean, M. H.

    2017-06-01

    The aim of this paper is to optimize the operational parameters and quality of one step Metco Inconel 718 atomized powder laser cladded tracks, deposited on AISI 316 stainless steel substrate by means of a 1064 nm high power pulsed laser, together with a Precitec cladding head manipulated by a CLOOS 7 axes robot. The optimization of parameters and cladding quality has been assessed through Taguchi interaction matrix and graphical output. The study demonstrates that very good cladded layers with low dilution and increased mechanical proprieties could be fabricated using low laser energy density by involving a pulsed laser.

  13. Cladding creepdown model for FRAPCON-2

    International Nuclear Information System (INIS)

    Shah, V.N.; Tolli, J.E.

    1985-02-01

    This report presents a cladding deformation model developed to analyze cladding creepdown during steady state operation in both a pressurized water reactor (PWR) and a boiling water reactor (BWR). This model accounts for variations in zircaloy cladding heat treatment; cold worked and stress relieved material, typically used in a PWR, and fully recrystallized material, typically used in a BWR. The model calculates cladding creepdown as a function of hoop stress, fast neutron flux, exposure time, and temperature. This report also presents a comparison between cladding creep calculations by this model and corresponding measurements from the KWU/CE program, ORNL HOBBIE experiments, and EPRI/Westinghouse Engineering cooperative project. The comparisons show that the model calculates cladding creep strains well. The analyses of non-fueled rods by FRAPCON-2 show that the cladding creepdown model was correctly incorporated. Also, analysis of a PWR rod test case shows that the FRAPCON-2 code can analyze pellet-cladding mechanical interaction caused by cladding creepdown and fuel swelling

  14. Protective claddings for high strength chromium alloys

    Science.gov (United States)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  15. Morphology control of anodic ZrO2 layer for the prevention of H2 production from Zr-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y. J.; Park, J. W.; Cho, S. O. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    Since the Fukushima disaster happened, studies on accident-resistant nuclear fuel has been carried out actively. There has been an attempt to protect zircaloy fuel cladding by coating SiC. Research on producing oxide layer that can block fuel cladding from water on the surface of zircaloy fuel cladding by means of anodizing to reduce the rate of oxidation of fuel cladding at Loss Of Coolant Accident (LOCA) is an significant ongoing study subject. Applying nanostructured oxide layer to the prevention of thermal deformation of oxide layer was already suggested in our research group, the reasons of which is nanoporous structure is better than nanotube structure in terms of corrosion-resistant structure because nanotube structure can be easily peeled off. In this study, methods which are able to control morphology between nanoporous and nanotube structure were conducted by changing the anodizing conditions. Hence, Using glycerol and ammonium fluoride, Zircaloy-4 was anodized by varying water contents and applied voltage. It reveals that the alloy transition from nanoporous structure to nanotube structure can be changed by varying water contents of anodizing solution and applied voltage. Anodizing conditions determining nanoporous structure were obtained. According to the mechanism already suggested, nanoporous oxide layer that can seal the fuel cladding perfectly, and increase critical heat flux (CHF) due to large surface area is easily produced. This results obtained in this paper expected to be facilitated fabrication of accident-resistant nuclear fuel cladding.

  16. Interactions of Zircaloy cladding with gallium: 1998 midyear status

    International Nuclear Information System (INIS)

    Wilson, D.F.; DiStefano, J.R.; Strizak, J.P.; King, J.F.; Manneschmidt, E.T.

    1998-06-01

    A program has been implemented to evaluate the effect of gallium in mixed-oxide (MOX) fuel derived from weapons-grade (WG) plutonium on Zircaloy cladding performance. The objective is to demonstrate that low levels of gallium will not compromise the performance of the MOX fuel system in a light-water reactor. The graded, four-phase experimental program was designed to evaluate the performance of prototypic Zircaloy cladding materials against (1) liquid gallium (Phase 1), (2) various concentrations of Ga 2 O 3 (Phase 2), (3) centrally heated surrogate fuel pellets with expected levels of gallium (Phase 3), and (4) centrally heated prototypic MOX fuel pellets (Phase 4). This status report describes the results of a series of tests for Phases 1 and 2. Three types of tests are being performed: (1) corrosion, (2) liquid metal embrittlement, and (3) corrosion-mechanical. These tests will determine corrosion mechanisms, thresholds for temperature and concentration of gallium that may delineate behavioral regimes, and changes in the mechanical properties of Zircaloy. Initial results have generally been favorable for the use of WG-MOX fuel. The MOX fuel cladding, Zircaloy, does react with gallium to form intermetallic compounds at ≥300 C; however, this reaction is limited by the mass of gallium and is therefore not expected to be significant with a low level (parts per million) of gallium in the MOX fuel. Although continued migration of gallium into the initially formed intermetallic compound can result in large stresses that may lead to distortion, this was shown to be extremely unlikely because of the low mass of gallium or gallium oxide present and expected clad temperatures below 400 C. Furthermore, no evidence for grain boundary penetration by gallium has been observed

  17. Interactions of zircaloy cladding with gallium -- 1997 status

    International Nuclear Information System (INIS)

    Wilson, D.F.; DiStefano, J.R.; King, J.F.; Manneschmidt, E.T.; Strizak, J.P.

    1997-11-01

    A four phase program has been implemented to evaluate the effect of gallium in mixed oxide (MOX) fuel derived from weapons grade (WG) plutonium on Zircaloy cladding performance. The objective is to demonstrate that low levels of gallium will not compromise the performance of the MOX fuel system in LWR. This graded, four phase experimental program will evaluate the performance of prototypic Zircaloy cladding materials against: (1) liquid gallium (Phase 1), (2) various concentrations of Ga 2 O 3 (Phase 2), (3) centrally heated surrogate fuel pellets with expected levels of gallium (Phase 3), and (4) centrally heated prototypic MOX fuel pellets (Phase 4). This status report describes the results of an initial series of tests for phases 1 and 2. Three types of tests are being performed: (1) corrosion, (2) liquid metal embrittlement (LME), and (3) corrosion mechanical. These tests are designed to determine the corrosion mechanisms, thresholds for temperature and concentration of gallium that may delineate behavioral regimes, and changes in mechanical properties of Zircaloy. Initial results have generally been favorable for the use of WG-MOX fuel. The MOX fuel cladding, Zircaloy, does react with gallium to form intermetallic compounds at ≥ 300 C; however, this reaction is limited by the mass of gallium and is therefore not expected to be significant with a low level (in parts per million) of gallium in the MOX fuel. While continued migration of gallium into the initially formed intermetallic compound results in large stresses that can lead to distortion, this is also highly unlikely because of the low mass of gallium or gallium oxide present and expected clad temperatures below 400 C. Furthermore, no evidence for grain boundary penetration by gallium has been observed

  18. Simulated drought influences oxidative stress in Zea mays seedlings ...

    African Journals Online (AJOL)

    Drought is an abiotic factor that limits the productivity of crop plants survival and productivity. This study was conducted to evaluate the effects of simulated drought on the malondialdehyde (MDA) and antioxidant enzymes activity in Zea mays. Seedlings were grown for 8 weeks in nursery bags filled with sandy-loam soil in ...

  19. Simulation and experimental approach to CVD-FBR aluminide coatings on ferritic steels under steam oxidation

    International Nuclear Information System (INIS)

    Leal, J.; Alcala, G.; Bolivar, F.J.; Sanchez, L.; Hierro, M.P.; Perez, F.J.

    2008-01-01

    The ferritic steels used to produce structural components for steam turbines are susceptible to strong corrosion and creep damage due to the extreme working conditions pushed to increase the process efficiency and to reduce pollutants release. The response of aluminide coatings on the P-92 ferritic steel, deposited by CVD-FBR, during oxidation in a simulated steam environment was studied. The analyses were performed at 650 deg. C in order to simulate the working conditions of a steam turbine, and 800 deg. C in order to produce a critical accelerated oxidation test. The Thermo-Calc software was used to predict the different solid phases that could be generated during the oxidation process, in both, coated and uncoated samples. In order to validate the thermodynamic results, the oxides scales produced during steam tests were characterized by different techniques such as XRD, SEM and EDS. The preliminary results obtained are discussed in the present work

  20. Interaction of oxides of nitrogen and aromatic hydrocarbons under simulated atmospheric conditions

    International Nuclear Information System (INIS)

    Obrien, R.J.; Green, P.J.; Doty, R.A.; Vanderzanden, J.W.; Easton, R.R.; Irwin, R.P.

    1979-01-01

    The reactions of nitrogen oxides with aromatic hydrocarbons under simulated atmospheric conditions are investigated. Gaseous reaction products formed when toluene is irradiated under simulated atmospheric conditions in the presence of nitrogen oxides were analyzed by gas chromatography. Reaction products detected include acetylene, water, acetaldehyde, acetone, toluene, benzaldehyde, ortho-, meta- and para-cresol, benzyl nitrate and meta- and para-nitrotoluene. Reaction mechanisms yielding the various products are illustrated. The assumption that all the nitrogen oxides observed to be lost from the reaction products can be accounted for by nitric acid formation in the absence of ozone formation is verified by a model in which the hydroxyl radical is assumed to be the only means of removing toluene. Under conditions in which ozone is formed, nitrogen oxide loss is accounted for by ozone formation in addition to nitric acid formation

  1. Out-of-pile experiments on the high-temperature behavior of Zircaloy-4 clad fuel rods

    International Nuclear Information System (INIS)

    Hagen, S.

    1984-01-01

    Out-of-pile experiments have been performed to investigate the escalation in temperature of Zircaloy-clad fuel rods during heatup in steam due to the exothermal Zircaloy steam reaction. In these tests single Zircaloy/uranium dioxide (UO 2 ) fuel rod simulators surrounded with a Zircaloy shroud--simulating the Zircaloy of neighboring rods--were heated inside a fiber ceramic insulation. The initial heating rates were varied from 0.3 to 2.5 K/s. In every test an escalation of the temperature rise rate was observed. The maximum measured surface temperature was about 2200 0 C. The temperature decreased after the maximum had been reached without decreasing the input electric power. The temperature decreases were due to inherent processes including the runoff of molten Zircaloy. The escalation process was influenced by the temperature behavior of the shroud, which was itself affected by the insulation and steam cooling. Damage to the fuel rods increased with increasing heatup rate. Fro slow heatup rates nearly no interaction between the oxidized cladding and UO 2 was observed, while for fast heatup rates the entire annular pellet was dissolved by molten Zircaloy

  2. Nuclear fuel rod with burnable plate and pellet-clad interaction fix

    International Nuclear Information System (INIS)

    Boyle, R.F.

    1987-01-01

    This patent describes a nuclear fuel rod comprising a metallic tubular cladding containing nuclear fuel pellets, the pellets containing enriched uranium-235. The improvement described here comprises: ceramic wafers, each wafter comprising a sintered mixture of gadolinium oxide and uranium dioxide, the uranium oxide having no more uranium-235 than is present in natural uranium dioxide. Each of the wafers is axially disposed between a major portion of adjacent the nuclear fuel pellets, whereby the wafers freeze out volatile fission products produced by the nuclear fuel and prevent interaction of the fission products with the metallic tubing cladding

  3. Experimental and simulation analysis of hydrogen production by partial oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Sikander, U. [National Univ. of Science and Technology, Islamabad (Pakistan)

    2014-10-15

    Partial oxidation of methanol is the only self-sustaining process for onboard production of hydrogen. For this a fixed bed catalytic reactor is designed, based on heterogeneous catalytic reaction. To develop an optimized process, simulation is carried out using ASPEN HYSYS v 7.1. Reaction kinetics is developed on the basis of Langmuir Hinshel wood model. 45:55:5 of CuO: ZnO: Al/sub 2/O/sub 3/ is used as a catalyst. Simulation results are studied in detail to understand the phenomenon of partial oxidation of methanol inside the reactor. An experimental rig is developed for hydrogen production through partial oxidation of methanol. Results obtained from process simulation and experimental work; are compared with each other. (author)

  4. Steel billet reheat simulation with growth of oxide layer and investigation on zone temperature sensitivity

    International Nuclear Information System (INIS)

    Dubey, Satish Kumar; Srinivasan, P.

    2014-01-01

    This paper presents a three-dimensional heat conduction numerical model and simulation of steel billet reheating in a reheat furnace. The model considers the growth of oxide scale on the billet surfaces. Control-volume approach and implicit scheme of finite difference method are used to discretize the transient heat conduction equation. The model is validated with analytical results subject to limited conditions. Simulations are carried out for predictions of three-dimensional temperature filed in the billet and oxide scale growth on the billet surfaces. The model predictions are in agreement with expected trends. It was found that the effect of oxide scale on billet heating is considerable. In order to investigate the effect of zone temperatures on the responses, a parametric sensitivity subject to six responses of interest are carried out using analysis of mean approach. The simulation approach and parametric study presented will be useful and applicable to the steel industry.

  5. Laser performance and modeling of RE3+:YAG double-clad crystalline fiber waveguides

    Science.gov (United States)

    Li, Da; Lee, Huai-Chuan; Meissner, Stephanie K.; Meissner, Helmuth E.

    2018-02-01

    We report on laser performance of ceramic Yb:YAG and single crystal Tm:YAG double-clad crystalline fiber waveguide (CFW) lasers towards the goal of demonstrating the design and manufacturing strategy of scaling to high output power. The laser component is a double-clad CFW, with RE3+:YAG (RE = Yb, Tm respectively) core, un-doped YAG inner cladding, and ceramic spinel or sapphire outer cladding. Laser performance of the CFW has been demonstrated with 53.6% slope efficiency and 27.5-W stable output power at 1030-nm for Yb:YAG CFW, and 31.6% slope efficiency and 46.7-W stable output power at 2019-nm for Tm:YAG CFW, respectively. Adhesive-Free Bond (AFB®) technology enables a designable refractive index difference between core and inner cladding, and designable core and inner cladding sizes, which are essential for single transverse mode CFW propagation. To guide further development of CFW designs, we present thermal modeling, power scaling and design of single transverse mode operation of double-clad CFWs and redefine the single-mode operation criterion for the double-clad structure design. The power scaling modeling of double-clad CFW shows that in order to achieve the maximum possible output power limited by the physical properties, including diode brightness, thermal lens effect, and simulated Brillion scattering, the length of waveguide is in the range of 0.5 2 meters. The length of an individual CFW is limited by single crystal growth and doping uniformity to about 100 to 200 mm lengths, and also by availability of starting crystals and manufacturing complexity. To overcome the limitation of CFW lengths, end-to-end proximity-coupling of CFWs is introduced.

  6. FeCrAl/Zr dual layer fuel cladding for improved safety margin under accident scenario

    International Nuclear Information System (INIS)

    Park, D.J.; Park, J.H.; Jung, Y.I.; Kim, H.G.; Park, J.Y.; Koo, Y.H.

    2014-01-01

    For application of advanced steel as a cladding material in light water reactor (LWR), FeCrAl/Zr dual layer tube was manufactured by using a hot isostatic pressing (HIP) method. To optimize HIP condition for joining both FeCrAl and Zr alloys, HIP was carried out under various temperature conditions. Tensile test and 3-point bend test performed for measuring mechanical properties of HIPed sample. To better understand microstructural characteristics in interface region between two alloys, SEM and TEM study were conducted by using HIPed sample with different process conditions. Based on this optimization study and analyzed results, optimized HIP condition was determined and FeCrAl/Zr dual layer fuel cladding having same wall thickness with current LWR fuel cladding was manufactured. Simulated loss-of-coolant accident test was carried out using FeCrAl/Zr dual layer cladding sample and fuel integrity was measured by mechanical test. (authors)

  7. Effect of reactor chemistry and operating variables on fuel cladding corrosion in PWRs

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Lee, Sang Hee

    1997-01-01

    As the nuclear industry extends the fuel cycle length, waterside corrosion of zircaloy cladding has become a limiting factor in PWR fuel design. Many plant chemistry factors such as, higher lithium/boron concentration in the primary coolant can influence the corrosion behavior of zircaloy cladding. The chemistry effect can be amplified in higher duty fuel, particularlywhen surface boiling occurs. Local boiling can result in increased crud deposition on fuel cladding which may induce axial power offset anomalies (AOA), recently reported in several PWR units. In this study, the effect of reactor chemistry and operating variables on Zircaloy cladding corrosion is investigated and simulation studies are performed to evaluate the optimal primary chemistry condition for extended cycle operation. (author). 8 refs., 3 tabs., 16 figs

  8. Failure analysis of fusion clad alloy system AA3003/AA6xxx sheet under bending

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Y., E-mail: shiyh@mcmaster.ca [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Jin, H. [Novelis Global Technology Center, P.O. Box 8400, Kingston, Ontario, Canada K7L 5L9 (Canada); Wu, P.D. [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Lloyd, D.J. [Aluminum Materials Consultants, 106 Nicholsons Point Road, Bath, Ontario, Canada K0H 1G0 (Canada); Embury, D. [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2014-07-29

    An ingot of AA6xxx Al–Si–Mg–Cu alloy clad with AA3003 Al–Mn alloy was co-cast by Fusion technology. Bending tests and numerical modeling were performed to investigate the potential for sub-surface cracking for this laminate system. To simulate particle-induced crack initiation and growth, both random and stringer particles have been selected to mimic the particle distribution in the tested samples. The morphology of cracking in the model was similar to that observed in clad sheet tested in the Cantilever bend test. The crack initiated in the core close to the clad-core interface where the strain in the core is highest, between particles or near particles and propagates along local shear bands in the core, while the clad layer experiences extreme thinning before failure.

  9. Catalytic Activity and Deactivation of SO2 Oxidation Catalysts in Simulated Power Plant Flue Gases

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Chrissanthopoulos, Asthanassios; Eriksen, Kim Michael

    1997-01-01

    The catalyst deactivation and the simultaneious formation of compounds in commercial SO2 oxidation catalysts have been studied by combined activity measurements and in situ EPR spectroscopy in the temperature range 350-480 C in wet and dry simulated power plant flue gas.......The catalyst deactivation and the simultaneious formation of compounds in commercial SO2 oxidation catalysts have been studied by combined activity measurements and in situ EPR spectroscopy in the temperature range 350-480 C in wet and dry simulated power plant flue gas....

  10. Development of a mechanistically based computer simulation of nitrogen oxide absorption in packed towers

    International Nuclear Information System (INIS)

    Counce, R.M.

    1981-01-01

    A computer simulation for nitrogen oxide (NO/sub x/) scrubbing in packed towers was developed for use in process design and process control. This simulation implements a mechanistically based mathematical model, which was formulated from (1) an exhaustive literature review; (2) previous NO/sub x/ scrubbing experience with sieve-plate towers; and (3) comparisons of sequential sets of experiments. Nitrogen oxide scrubbing is characterized by simultaneous absorption and desorption phenomena: the model development is based on experiments designed to feature these two phenomena. The model was then successfully tested in experiments designed to put it in jeopardy

  11. The electronic and optical properties of warm dense nitrous oxide using quantum molecular dynamics simulations

    International Nuclear Information System (INIS)

    Zhang Yujuan; Wang Cong; Zhang Ping

    2012-01-01

    First-principles molecular-dynamics simulations based on density-functional theory have been used to study the electronic and optical properties of fluid nitrous oxide under extreme conditions. Systematic descriptions of pair-correlation function, atomic structure, and the charge density distribution are used to investigate the dissociation of fluid nitrous oxide. The electrical and optical properties are derived from the Kubo-Greenwood formula. It is found that the nonmetal-metal transition for fluid nitrous oxide can be directly associated to the dissociation and has significant influence on the optical properties of the fluid.

  12. FY 2014 Status Report: of Vibration Testing of Clad Fuel (M4FT-14OR0805033)

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [ORNL

    2014-03-28

    The DOE Used Fuel Disposition Campaign (UFDC) tasked Oak Ridge National Laboratory (ORNL) to investigate the behavior of light-water-reactor (LWR) fuel cladding material performance related to extended storage and transportation of UNF. ORNL has been tasked to perform a systematic study on UNF integrity under simulated normal conditions of transportation (NCT) by using the recently developed hot-cell testing equipment, Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT). To support the testing on actual high-burnup UNF, fast-neutron irradiation of pre-hydrided zirconium-alloy cladding in the High Flux Isotope Reactor (HFIR) at elevated temperatures will be used to simulate the effects of high-burnup on fuel cladding for help in understanding the cladding materials properties relevant to extended storage and subsequent transportation. The irradiated pre-hydrided metallic materials testing will generate baseline data to benchmark hot-cell testing of the actual high-burnup UNF cladding. More importantly, the HFIR-irradiated samples will be free of alpha contamination and can be provided to researchers who do not have hot cell facilities to handle highly contaminated high-burnup UNF cladding to support their research projects for the UFDC.

  13. Asymptotic Method for Cladding Stress Evaluation in PCMI

    International Nuclear Information System (INIS)

    Kim, Hyungkyu; Kim, Jaeyong; Yoon, Kyungho; Lee, Kanghee; Kang, Heungseok

    2014-01-01

    A PCMI (Pellet Cladding Mechanical Interaction) failure was first reported in the GETR (General Electric Test Reactor) at Vacellitos in 1963, and such failures are still occurring. Since the high stress values in the cladding tube has been of a crucial concern in PCMI studies, there have been many researches on the stress analysis of a cladding tube pressed by a pellet. Typical works can be found in some references. It has often been assumed, however, that the cracks in the pellet were equally spaced and the pellet was a rigid body. In addition, the friction coefficient was arbitrarily chosen so that a slipping between the pellets and cladding tube could not be logically defined. Moreover, the stress intensification due to the sharp edge of a pellet fragment has never been realistically considered. These problems above drove us to launch a framework of a PCMI study particularly on stress analysis technology to improve the present analysis method incorporating the actual PCMI conditions such as the stress intensification, arbitrary distribution of the pellet cracks, material properties (esp. pellet) and slipping behavior of the pellet/cladding interface. As a first step of this work, this paper introduces an asymptotic method that was originally developed for a stress analysis in the vicinity of a sharp notch of a homogeneous body. The intrinsic reason for applying this method is to simulate the stress singularity that is expected to take place at the sharp edge of a pellet fragment due to cracking during irradiation. As a first attempt of this work, an eigenvalue problem is formulated in the case of adhered contact, and the generalized stress intensity factors are defined and evaluated. Although some works obviously remain to be accomplished, for the present framework on the PCMI analysis (e. g., slipping behaviour, contact force etc.), it was addressed that the asymptotic method can produce the stress values that cause the cladding tube failure in PCMI more

  14. BWR fuel clad behaviour following LOCA

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Vyas, K.N.; Dinesh Babu, R.

    1996-01-01

    Flow and pressure through the fuel coolant channel reduce rapidly following a loss of coolant accident. Due to stored energy and decay heat, fuel and cladding temperatures rise rapidly. Increase in clad temperature causes deterioration of mechanical properties of clad material. This coupled with increase of pressure inside the cladding due to accumulation of fission gases and de-pressurization of coolant causes the cladding to balloon. This phenomenon is important as it can reduce or completely block the flow passages in a fuel assembly causing reduction of emergency coolant flow. Behaviour of a BWR clad is analyzed in a design basis LOCA. Fuel and clad temperatures following a LOCA are calculated. Fission gas release and pressure is estimated using well established models. An elasto-plastic analysis of clad tube is carried out to determine plastic strains and corresponding deformations using finite-element technique. Analysis of neighbouring pins gives an estimate of flow areas available for emergency coolant flow. (author). 7 refs, 6 figs, 3 tabs

  15. Development of advanced zirconium fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Young Hwan; Park, S. Y.; Lee, M. H.

    2007-04-01

    This report includes the manufacturing technology developed for HANA TM claddings, a series of their characterization results as well as the results of their in-pile and out-of pile performances tests which were carried out to develop some fuel claddings for a high burn-up (70,000MWd/mtU) which are competitive in the world market. Some of the HANA TM claddings, which had been manufactured based on the results from the 1st and 2nd phases of the project, have been tested in a research reactor in Halden of Norway for an in-pile performance qualification. The results of the in-pile test showed that the performance of the HANA TM claddings for corrosion and creep was better than 50% compared to that of Zircaloy-4 or A cladding. It was also found that the out-of pile performance of the HANA TM claddings for such as LOCA and RIA in some accident conditions corrosion creep, tensile, burst and fatigue was superior or equivalent to that of the Zircaloy-4 or A cladding. The project also produced the other many data which were required to get a license for an in-pile test of HANA TM claddings in a commercial reactor. The data for the qualification or characterization were provided for KNFC to assist their activities to get the license for the in-pile test of HANA TM Lead Test Rods(LTR) in a commercial reactor

  16. Cladding Alloys for Fluoride Salt Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Walker, Larry R [ORNL; Santella, Michael L [ORNL; Holcomb, David Eugene [ORNL

    2011-06-01

    This report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for cladding large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high-power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for cladding inaccessible surfaces such as the interior surfaces of heat exchangers. An initial evaluation for performed on the quality of nickel claddings processed using the two selected cladding techniques.

  17. Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing

    Science.gov (United States)

    Chen, Hui; Buric, Michael; Ohodnicki, Paul R.; Nakano, Jinichiro; Liu, Bo; Chorpening, Benjamin T.

    2018-03-01

    The potential to use single-crystal sapphire optical fiber as an alternative to silica optical fibers for sensing in high-temperature, high-pressure, and chemically aggressive harsh environments has been recognized for several decades. A key technological barrier to the widespread deployment of harsh environment sensors constructed with sapphire optical fibers has been the lack of an optical cladding that is durable under these conditions. However, researchers have not yet succeeded in incorporating a high-temperature cladding process into the typical fabrication process for single-crystal sapphire fibers, which generally involves seed-initiated fiber growth from the molten oxide state. While a number of advances in fabrication of a cladding after fiber-growth have been made over the last four decades, none have successfully transitioned to a commercial manufacturing process. This paper reviews the various strategies and techniques for fabricating an optically clad sapphire fiber which have been proposed and explored in published research. The limitations of current approaches and future prospects for sapphire fiber cladding are discussed, including fabrication methods and materials. The aim is to provide an understanding of the past research into optical cladding of sapphire fibers and to assess possible material systems for future research on this challenging problem for harsh environment sensors.

  18. Study on the Standard Establishment for the Integrity Assessment of Nuclear Fuel Cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S-S; Kim, S-H; Jung, Y-K; Yang, C-Y; Kim, I-G; Choi, Y-H; Kim, H-J; Kim, M-W; Rho, B-H [KINS, Daejeon (Korea, Republic of)

    2008-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is the final report.

  19. Study on the standard establishment for the integrity assessment of nuclear fuel cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. S.; Kim, S. H.; Jung, Y. K.; Yang, C. Y.; Kim, I. G.; Choi, Y. H.; Kim, H. J.; Kim, M. W.; Rho, B. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is 2nd term report.

  20. Pyrite oxidation under simulated acid rain weathering conditions.

    Science.gov (United States)

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  1. Flaw behavior in mechanically loaded clad plates

    International Nuclear Information System (INIS)

    Iskander, S.K.; Robinson, G.C.; Oland, C.B.

    1989-01-01

    A small crack near the inner surface of clad nuclear reactor pressure vessels is an important consideration in the safety assessment of the structural integrity of the vessel. Four-point bend tests on large plate specimens, conforming to ASTM specification for pressure vessel plates, alloy steels, quenched and tempered, Mn-Mo and Mn-Mo-Ni (A533) grade B six clad and two unclad with stainless steels 308, 309 and 312 weld wires, were performed to determine the effect of cladding upon the propagation of small surface cracks subjected to stress states. Results indicated that the tough surface layer composed of cladding and/or heat-affected zone has enhanced the load-bearing capacity of plates under conditions where unclad plates have ruptured. The results are interpreted in terms of fracture mechanics. The behavior of flaws in clad reactor pressure vessels is examined in the light of the test results. 11 refs., 8 figs., 2 tabs

  2. Correlation of waterside corrosion and cladding microstructure in high-burnup fuel and gadolinia rods

    International Nuclear Information System (INIS)

    Chung, H.M.

    1989-09-01

    Waterside corrosion of the Zircaloy cladding has been examined in high-burnup fuel rods from several BWRs and PWRs, as well as in 3 wt % gadolinia burnable poison rods obtained from a BWR. The corrosion behavior of the high-burnup rods was then correlated with results from a microstructural characterization of the cladding by optical, scanning-electron, and transmission-electron microscopy (OM, SEM, and TEM). OM and SEM examination of the BWR fuel cladding showed both uniform and nodular oxide layers 2 to 45 μm in thickness after burnups of 11 to 30 MWd/kgU. For one of the BWRs, which was operated at 307 degree C rather than the normal 288 degree C, a relatively thick (50 to 70 μm) uniform oxide, rather than nodular oxides, was observed after a burnup of 27 to 30 MWd/kgU. TEM characterization revealed a number of microstructural features that occurred in association with the intermetallic precipitates in the cladding metal, apparently as a result of irradiation-induced or -enhanced processes. The BWR rods that exhibited white nodular oxides contained large precipitates (300 to 700 nm in size) that were partially amorphized during service, indicating that a distribution of the large intermetallic precipitates is conductive to nodular oxidation. 23 refs., 9 figs

  3. Corrosion of pre-oxidized nickel alloy X-750 in simulated BWR environment

    Energy Technology Data Exchange (ETDEWEB)

    Tuzi, Silvia, E-mail: silvia.tuzi@chalmers.se [Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Lai, Haiping [Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Göransson, Kenneth [Westinghouse Electric Sweden AB, SE-721 63 Västerås (Sweden); Thuvander, Mattias; Stiller, Krystyna [Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2017-04-01

    Samples of pre-oxidized Alloy X-750 were exposed to a simulated boiling water reactor environment in an autoclave at a temperature of 286 °C and a pressure of 80 bar for four weeks. The effect of alloy iron content on corrosion was investigated by comparing samples with 5 and 8 wt% Fe, respectively. In addition, the effect of two different surface pre-treatments was investigated. The microstructure of the formed oxide scales was studied using mainly electron microscopy. The results showed positive effects of an increased Fe content and of removing the deformed surface layer by pickling. After four weeks of exposure the oxide scale consists of oxides formed in three different ways. The oxide formed during pre-oxidization at 700 °C, mainly consisting of chromia, is partly still present. There is also an outer oxide consisting of NiFe{sub 2}O{sub 4} crystals, reaching a maximum size of 3 μm, which has formed by precipitation of dissolved metal ions. Finally, there is an inner nanocrystalline and porous oxide, with a metallic content reflecting the alloy composition, which has formed by corrosion.

  4. Fabrication and use of zircaloy/tantalum-sheathed cladding thermocouples and molybdenum/rhenium-sheathed fuel centerline thermocouples

    International Nuclear Information System (INIS)

    Wilkins, S.C.; Sepold, L.K.

    1985-01-01

    The thermocouples described in this report are zircaloy/tantalum-sheathed and molybdenum/rhenium alloy-sheathed instruments intended for fuel rod cladding and fuel centerline temperature measurements, respectively. Both types incorporate beryllium oxide insulation and tungsten/rhenium alloy thermoelements. These thermocouples, operated at temperatures of 2000 0 C and above, were developed for use in the internationally sponsored Severe Fuel Damage test series in the Power Burst Facility. The fabrication steps for both thermocouple types are described in detail. A laser-welding attachment technique for the cladding-type thermocouple is presented, and experience with alternate materials for cladding and fuel therocouples is discussed

  5. Temporal nitrous oxide emissions from beef cattle feedlot manure following a simulated rainfall event

    Science.gov (United States)

    A pilot-scale, recirculating-flow-through, non-steady-state (RFT-NSS) chamber system was designed for quantifying nitrous oxide (N2O) emissions from simulated open-lot beef cattle feedlot pens. The system employed five 1 square meter steel pans. A lid was placed systematically on each pan and heads...

  6. The Simulation of an Oxidation-Reduction Titration Curve with Computer Algebra

    Science.gov (United States)

    Whiteley, Richard V., Jr.

    2015-01-01

    Although the simulation of an oxidation/reduction titration curve is an important exercise in an undergraduate course in quantitative analysis, that exercise is frequently simplified to accommodate computational limitations. With the use of readily available computer algebra systems, however, such curves for complicated systems can be generated…

  7. Molecular Dynamics Simulation to Investigate the Interaction of Asphaltene and Oxide in Aggregate

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-01-01

    Full Text Available The asphalt-aggregate interface interaction (AAI plays a significant role in the overall performances of asphalt mixture, which is caused due to the complicated physicochemical processes and is influenced by various factors, including the acid-base property of aggregates. In order to analyze the effects of the chemical constitution of aggregate on the AAI, the average structure C65H74N2S2 is selected to represent the asphaltene in asphalt and magnesium oxide (MgO, calcium oxide (CaO, aluminium sesquioxide (Al2O3, and silicon dioxide (SiO2 are selected to represent the major oxides in aggregate. The molecular models are established for asphaltene and the four oxides, respectively, and the molecular dynamics (MD simulation was conducted for the four kinds of asphaltene-oxide system at different temperatures. The interfacial energy in MD simulation is calculated to evaluate the AAI, and higher value means better interaction. The results show that interfacial energy between asphaltene and oxide reaches the maximum value at 25°C and 80°C and the minimum value at 40°C. In addition, the interfacial energy between asphaltene and MgO was found to be the greatest, followed by CaO, Al2O3, and SiO2, which demonstrates that the AAI between asphalt and alkaline aggregates is better than acidic aggregates.

  8. Dynamic measurement of mercury adsorption and oxidation on activated carbon in simulated cement kiln flue gas

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian

    2012-01-01

    of the sulfite converter is short and typically within 2min. Dynamic mercury adsorption and oxidation tests on commercial activated carbons Darco Hg and HOK standard were performed at 150°C using simulated cement kiln gas and a fixed bed reactor system. It is shown that the converter and analyzer system...... are still under development and are investigated in this work. A commercial red brass converter was tested at 180°C and it was found that the red brass chips work in nitrogen atmosphere only, but do not work properly under simulated cement kiln flue gas conditions. Test of the red brass converter using only...... elemental mercury shows that when HCl is present with either SO2 or NOx the mercury measurement after the converter is unstable and lower than the elemental mercury inlet level. The conclusion is that red brass chips cannot fully reduce oxidized mercury to elemental mercury when simulated cement kiln gas...

  9. Fuel-pin cladding transient failure strain criterion

    International Nuclear Information System (INIS)

    Bard, F.E.; Duncan, D.R.; Hunter, C.W.

    1983-01-01

    A criterion for cladding failure based on accumulated strain was developed for mixed uranium-plutonium oxide fuel pins and used to interpret the calculated strain results from failed transient fuel pin experiments conducted in the Transient Reactor Test (TREAT) facility. The new STRAIN criterion replaced a stress-based criterion that depends on the DORN parameter and that incorrectly predicted fuel pin failure for transient tested fuel pins. This paper describes the STRAIN criterion and compares its prediction with those of the stress-based criterion

  10. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...... for various biosensing applications, however a thorough study of the sensor configurations has not been presented, but is the main subject of this thesis. Optical sensors are generally well suited for bio-sensing asthey show high sensitivity and give an immediate response for minute changes in the refractive...... index of a sample, due to the high sensitivity of optical bio-sensors detection of non-labeled biological objects can be performed. The majority of opticalsensors presented in the literature and commercially available optical sensors are based on evanescent wave sensing, however most of these sensors...

  11. Model-based inversion for the characterization of crack-like defects detected by ultrasound in a cladded component; Etude d'une methode d'inversion basee sur la simulation pour la caracterisation de fissures detectees par ultrasons dans un composant revetu

    Energy Technology Data Exchange (ETDEWEB)

    Haiat, G

    2004-03-01

    This work deals with the inversion of ultrasonic data. The industrial context of the study in the non destructive evaluation of the internal walls of French reactor pressure vessels. Those inspections aim at detecting and characterizing cracks. Ultrasonic data correspond to echographic responses obtained with a transducer acting in pulse echo mode. Cracks are detected by crack tip diffraction effect. The analysis of measured data can become difficult because of the presence of a cladding, which surface is irregular. Moreover, its constituting material differs from the one of the reactor vessel. A model-based inverse method uses simulation of propagation and of diffraction of ultrasound taking into account the irregular properties of the cladding surface, as well as the heterogeneous nature of the component. The method developed was implemented and tested on a set of representative cases. Its performances were evaluated by the analysis of experimental results. The precision obtained in the laboratory on experimental cases treated is conform with industrial expectations motivating this study. (author)

  12. An example of coupling behaviour-damage-environment in polycrystals. Application to Pellet-Cladding Interaction

    International Nuclear Information System (INIS)

    Diard, Olivier

    2001-01-01

    Zircaloy-4 cladding is the first containment barrier for fission products, and its integrity must therefore be ensured in nominal and accidental situations. However, stress corrosion induced cracks may appear due to a strong pellet-cladding interaction. It is therefore important to model this interaction and crack growth and propagation to establish non-damage criteria. Thus, this research thesis aims at developing a modelling covering both issues (pellet-cladding interaction, and stress corrosion cracking) and allowing macroscopic and microscopic scales to be coupled. After a bibliographical synthesis on iodine-induced stress corrosion cracking and similar phenomena, the author presents the model proposed for the pellet-cladding interaction: phenomena to be taken into account, phenomenological and macroscopic behaviour laws used respectively for pellet and cladding. An extended version of an existing cladding viscoplastic model is proposed. Stress and strain fields in the cladding are obtained, notably in the contact zone. In the next part, the author presents various numerical tools developed or used to model multi-crystalline aggregates, and the model of crystalline plasticity used to simulate cladding behaviour at the microstructure scale. Effects of mesh density, element types and anisotropic elasticity are also discussed. The next chapter addresses the mechanical-chemical coupling. Some coupling formulas are presented for simple cases in order to define the effective diffusion coefficient. The last part reports the modelling of intergranular damage: definition of a damage criterion at the granular scale, assessment of stresses at grain boundaries, and effect of crystallographic neighbouring. A model of grain boundary damage is also proposed. This model is assessed on Failure Mechanics test samples and on simple microstructures. The application of the whole numerical model is reported [fr

  13. Experimental Setup for Reflood Quench of Accident Tolerant Fuel Claddings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan; Lee, Kwan Geun; In, Wang Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The concept of accident tolerant fuel (ATF) is a solution to suppress the hydrogen generation in loss of coolant accident (LOCA) situation without safety injection, which was the critical incident in the severe accident in the Fukushima. The changes in fuel and cladding materials may cause a significant difference in reactor performance in long term operation. Properties in terms of material science and engineering have been tested and showed promising results. However, numerous tests are still required to ensure the design performance and safety. Thermal hydraulic tests including boiling and quenching are partly confirmed, but not yet complete. We have been establishing the experimental setup to confirm the properties in the terms of thermal hydraulics. Design considerations and preliminary tests are introduced in this paper. An experimental setup to test thermal hydraulic characteristics of new ATF claddings are established and tested. The W heater set inside the cladding is working properly, exceeding 690 W/m linear power with thermocouples and insulating ceramic sheaths inside. The coolant injection control was also working in good conditions. The setup is about to complete and going to simulate quenching behavior of the ATF in the LOCA situation.

  14. Task Group E: fuel-cladding interface reactions. Second quarterly report

    International Nuclear Information System (INIS)

    Kangilaski, M.; Adamson, M.G.

    1974-01-01

    An interim assessment of possible interactions and their consequences in the various fuel systems was completed. The assessment discusses the interactions of advanced cladding alloys with: (1) helium bonded mixed oxides; (2) helium and sodium bonded mixed carbides; and (3) helium and sodium bonded mixed nitrides

  15. Fuel cladding mechanical interaction during power ramps

    International Nuclear Information System (INIS)

    Guerin, Y.

    1985-01-01

    Mechanical interaction between fuel and cladding may occur as a consequence of two types of phenomenon: i) fuel swelling especially at levels of caesium accumulation, and ii) thermal differential expansion during power changes. Slow overpower ramps which may occur during incidental events are of course one of the circumstances responsible for this second type of fuel cladding mechanical interaction (FCMI). Experiments and analysis of this problem that have been done at C.E.A. allow to determine the main parameters which will fix the level of stress and the risk of damage induced by the fuel in the cladding during overpower transients

  16. Status of test results of electrochemical organic oxidation of a tank 241-SY-101 simulated waste

    International Nuclear Information System (INIS)

    Colby, S.A.

    1994-06-01

    This report presents scoping test results of an electrochemical waste pretreatment process to oxidize organic compounds contained in the Hanford Site's radioactive waste storage tanks. Electrochemical oxidation was tested on laboratory scale to destroy organics that are thought to pose safety concerns, using a nonradioactive, simulated tank waste. Minimal development work has been applied to alkaline electrochemical organic destruction. Most electrochemical work has been directed towards acidic electrolysis, as in the metal purification industry, and silver catalyzed oxidation. Alkaline electrochemistry has traditionally been associated with the following: (1) inefficient power use, (2) electrode fouling, and (3) solids handling problems. Tests using a laboratory scale electrochemical cell oxidized surrogate organics by applying a DC electrical current to the simulated tank waste via anode and cathode electrodes. The analytical data suggest that alkaline electrolysis oxidizes the organics into inorganic carbonate and smaller carbon chain refractory organics. Electrolysis treats the waste without adding chemical reagents and at ambient conditions of temperature and pressure. Cell performance was not affected by varying operating conditions and supplemental electrolyte additions

  17. Chemical compatibility between cladding alloys and advanced fuels

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1975-05-01

    The National Advanced Fuels Program requires chemical, mechanical, and thermophysical properties data for cladding alloys. The compatibility behavior of cladding alloys with advanced fuels is critically reviewed. in carbide fuel pins, the principal compatibility problem is cladding carburization, diffusion of carbon into the cladding matrix accompanied by carbide precipitation. Carburization changes the mechanical properties of the cladding alloy. The extent of carburization increases in sodium (versus gas) bonded fuels. The depth of carburization increases with increasing sesquicarbide (M 2 C 3 ) content of the fuel. In nitride fuel pins, the principal compatibility problem is cladding nitriding, diffusion of nitrogen into the cladding matrix accompanied by nitride precipitation. Nitriding changes the mechanical properties of the cladding alloy. In both carbide and nitride fuel pins, fission products do not migrate appreciably to the cladding and do not appear to contribute to cladding attack. 77 references. (U.S.)

  18. Model simulating oxidation of Zircalot-4 at 400 (C in water vapor. Influence of thermal cycling and structure

    International Nuclear Information System (INIS)

    Garcia, Eduardo A.; Beranguer, G.

    1998-01-01

    This work gives a model simulating the oxidation of Zircaloy-4 in water vapor at 400 (C with different precipitates and granular sizes. The model combines diffusion with inter linked porosity, defining also an interface in the oxide separating phases of inter linked porosity from non inter linked porosity in the (PI/PnL) oxide, which spreads in a discrete way in time and is capable of reproducing kinetics of experimental oxidation

  19. Reoxidation of uranium in electrolytically reduced simulated oxide fuel during residual salt distillation

    International Nuclear Information System (INIS)

    Eun-Young Choi; Jin-Mok Hur; Min Ku Jeon; University of Science and Technology, Yuseong-gu, Daejeon

    2017-01-01

    We report that residual salt removal by high-temperature distillation causes partial reoxidation of uranium metal to uranium oxide in electrolytically reduced simulated oxide fuel. Specifically, the content of uranium metal in the above product decreases with increasing distillation temperatures, which can be attributed to reoxidation by Li 2 O contained in residual salt (LiCl). Additionally, we estimate the fractions of Li 2 O reacted with uranium metal under these conditions, showing that they decrease with decreasing temperature, and calculate some thermodynamic parameters of the above reoxidation. (author)

  20. Effects of operating conditions on molten-salt electrorefining for zirconium recovery from irradiated Zircaloy-4 cladding of pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaeyeong, E-mail: d486916@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Choi, Sungyeol [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Sohn, Sungjune [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Kwang-Rag [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Hwang, Il Soon [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2014-08-15

    Highlights: • Computational simulation on electrorefining of irradiated Zircaloy-4 cladding. • Composition of irradiated Zircaloy-4 cladding of pressurized water reactor. • Redox behavior of elements in irradiated Zircaloy cladding during electrorefining. • Effect of electrorefining operating conditions on decontamination factor. - Abstract: To reduce the final waste volume from used nuclear fuel assembly, it is significant to decontaminate irradiated cladding. Electrorefining in high temperature molten salt could be one of volume decontamination processes for the cladding. This study examines the effect of operating conditions on decontamination factor in electrorefining of irradiated Zircaloy-4 cladding of pressurized water reactor. One-dimensional time-dependent electrochemical reaction code, REFIN, was utilized for simulating irradiated cladding electrorefining. Composition of irradiated Zircaloy was estimated based on ORIGEN-2 and other literatures. Co and U were considered in electrorefining simulation with major elements of Zircaloy-4 to represent activation products and actinides penetrating into the cladding respectively. Total 240 cases of electrorefining are simulated including 8 diffusion boundary layer thicknesses, 10 concentrations of contaminated molten salt and 3 termination conditions. Decontamination factors for each case were evaluated and it is revealed that the radioactivity of Co-60 in recovered zirconium on cathode could decrease below the clearance level when initial concentration of chlorides except ZrCl{sub 4} is lower than 1 × 10{sup −11} weight fraction if electrorefining is finished before anode potential reaches −1.8 V (vs. Cl{sub 2}/Cl{sup −})

  1. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Hanae Shimo

    2015-06-01

    Full Text Available Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs.

  2. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes.

    Science.gov (United States)

    Shimo, Hanae; Arjunan, Satya Nanda Vel; Machiyama, Hiroaki; Nishino, Taiko; Suematsu, Makoto; Fujita, Hideaki; Tomita, Masaru; Takahashi, Koichi

    2015-06-01

    Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs.

  3. Friction Surface Cladding of AA1050 on AA2024-T351; influence of clad layer thickness and tool rotation rate

    NARCIS (Netherlands)

    Liu, Shaojie; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko

    2015-01-01

    Friction Surfacing Cladding (FSC) is a recently developed solid state process to deposit thin metallic clad layers on a substrate. The process employs a rotating tool with a central opening to supply clad material and support the distribution and bonding of the clad material to the substrate. The

  4. Studies on nitric oxide removal in simulated gas compositions under plasma-dielectric/catalytic discharges

    International Nuclear Information System (INIS)

    Rajanikanth, B.S.; Rout, Satyabrata

    2001-01-01

    Application of pulsed electrical discharges for gas cleaning is gaining prominence, mainly from the energy consideration point of view. This present paper presents recent work on applying the electrical discharge plasma technology for treating gaseous pollutants, in general, and nitric oxide, in particular, as this is one of the major contributors to air pollution. The present work focuses attention on pulsed electrical discharge technique for nitric oxide removal from simulated gas compositions and study of effect of packed dielectric pellets, with and without a coating of catalyst, on the removal process. Experiments were conducted in a cylindrical corona reactor energized by repetitive high voltage pulses. The effects of various parameters, viz. pulse voltage magnitude, pulse frequency, initial nitric oxide concentration and gas mixture composition on nitric oxide removal efficiency, are discussed. When the reactors were filled with different dielectric pellets like, barium titanate, alumina, and alumina coated with palladium catalyst, the improvement in nitric oxide removal efficiency is studied and discussed. The power dissipated in the reactor and the energy consumed per nitric oxide molecule removed was calculated. Further results and comparative study of various cases are presented in the paper

  5. MODELLING OF NUCLEAR FUEL CLADDING TUBES CORROSION

    Directory of Open Access Journals (Sweden)

    Miroslav Cech

    2016-12-01

    Full Text Available This paper describes materials made of zirconium-based alloys used for nuclear fuel cladding fabrication. It is focused on corrosion problems their theoretical description and modeling in nuclear engineering.

  6. Method of processing spent fuel cladding tubes

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Ouchi, Atsuhiro; Imahashi, Hiromichi.

    1986-01-01

    Purpose: To decrease the residual activity of spent fuel cladding tubes in a short period of time and enable safety storage with simple storage equipments. Constitution: Spent fuel cladding tubes made of zirconium alloys discharged from a nuclear fuel reprocessing step are exposed to a grain boundary embrittling atmosphere to cause grain boundary destruction. This causes grain boundary fractures to the zirconium crystal grains as the matrix of nuclear fuels and then precipitation products precipitated to the grain boundary fractures are removed. The zirconium constituting the nuclear fuel cladding tube and other ingredient elements contained in the precipitation products are separated in this removing step and they are separately stored respectively. As a result, zirconium constituting most part of the composition of the spent nuclear fuel cladding tubes can be stored safely at a low activity level. (Takahashi, M.)

  7. GSGG edge cladding development: Final technical report

    International Nuclear Information System (INIS)

    Izumitani, T.; Meissner, H.E.; Toratani, H.

    1986-01-01

    The objectives of this project have been: (1) Investigate the possibility of chemical etching of GSGG crystal slabs to obtain increased strength. (2) Design and construct a simplified mold assembly for casting cladding glass to the edges of crystal slabs of different dimensions. (3) Conduct casting experiments to evaluate the redesigned mold assembly and to determine stresses as function of thermal expansion coefficient of cladding glass. (4) Clad larger sizes of GGG slabs as they become available. These tasks have been achieved. Chemical etching of GSGG slabs does not appear possible with any other acid than H 3 PO 4 at temperatures above 300 0 C. A mold assembly has been constructed which allowed casting cladding glass around the edges of the largest GGG slabs available (10 x 20 x 160 mm) without causing breakage through the annealing step

  8. Duplex stainless steel surface bay laser cladding

    International Nuclear Information System (INIS)

    Amigo, V.; Pineda, Y.; Segovia, F.; Vicente, A.

    2004-01-01

    Laser cladding is one of the most promising techniques to restore damaged surfaces and achieve properties similar to those of the base metal. In this work, duplex stainless steels have been cladded by a nickel alloy under different processing conditions. The influence of the beam speed and defocusing variables ha been evaluated in the microstructure both of the cladding and heat affected zone, HAZ. These results have been correlated to mechanical properties by means of microhardness measurements from cladding area to base metal through the interface. This technique has shown to be very appropriate to obtain controlled mechanical properties as they are determined by the solidification microstructure, originated by the transfer of mass and heat in the system. (Author) 21 refs

  9. Corrosion behaviour of cladded nickel base alloys

    International Nuclear Information System (INIS)

    Brandl, W.; Ruczinski, D.; Nolde, M.; Blum, J.

    1995-01-01

    As a consequence of the high cost of nickel base alloys their use as surface layers is convenient. In this paper the properties of SA-as well as RES-cladded NiMo 16Cr16Ti and NiCr21Mo14W being produced in single and multi-layer technique are compared and discussed with respect to their corrosion behaviour. Decisive criteria describing the qualities of the claddings are the mass loss, the susceptibility against intergranular corrosion and the pitting corrosion resistance. The results prove that RES cladding is the most suitable technique to produce corrosion resistant nickel base coatings. The corrosion behaviour of a two-layer RES deposition shows a better resistance against pitting than a three layer SAW cladding. 7 refs

  10. CREEP STRAIN CORRELATION FOR IRRADIATED CLADDING

    International Nuclear Information System (INIS)

    P. Macheret

    2001-01-01

    In an attempt to predict the creep deformation of spent nuclear fuel cladding under the repository conditions, different correlations have been developed. One of them, which will be referred to as Murty's correlation in the following, and whose expression is given in Henningson (1998), was developed on the basis of experimental points related to unirradiated Zircaloy cladding (Henningson 1998, p. 56). The objective of this calculation is to adapt Murty's correlation to experimental points pertaining to irradiated Zircaloy cladding. The scope of the calculation is provided by the range of experimental parameters characterized by Zircaloy cladding temperature between 292 C and 420 C, hoop stress between 50 and 630 MPa, and test time extending to 8000 h. As for the burnup of the experimental samples, it ranges between 0.478 and 64 MWd/kgU (i.e., megawatt day per kilogram of uranium), but this is not a parameter of the adapted correlation

  11. International symposium on fuel rod simulators: development and application

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W. (comp.)

    1981-05-01

    Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

  12. Multimillion atom simulations of dynamics of oxidation of an aluminum nanoparticle and nanoindentation on ceramics.

    Science.gov (United States)

    Vashishta, Priya; Kalia, Rajiv K; Nakano, Aiichiro

    2006-03-02

    We have developed a first-principles-based hierarchical simulation framework, which seamlessly integrates (1) a quantum mechanical description based on the density functional theory (DFT), (2) multilevel molecular dynamics (MD) simulations based on a reactive force field (ReaxFF) that describes chemical reactions and polarization, a nonreactive force field that employs dynamic atomic charges, and an effective force field (EFF), and (3) an atomistically informed continuum model to reach macroscopic length scales. For scalable hierarchical simulations, we have developed parallel linear-scaling algorithms for (1) DFT calculation based on a divide-and-conquer algorithm on adaptive multigrids, (2) chemically reactive MD based on a fast ReaxFF (F-ReaxFF) algorithm, and (3) EFF-MD based on a space-time multiresolution MD (MRMD) algorithm. On 1920 Intel Itanium2 processors, we have demonstrated 1.4 million atom (0.12 trillion grid points) DFT, 0.56 billion atom F-ReaxFF, and 18.9 billion atom MRMD calculations, with parallel efficiency as high as 0.953. Through the use of these algorithms, multimillion atom MD simulations have been performed to study the oxidation of an aluminum nanoparticle. Structural and dynamic correlations in the oxide region are calculated as well as the evolution of charges, surface oxide thickness, diffusivities of atoms, and local stresses. In the microcanonical ensemble, the oxidizing reaction becomes explosive in both molecular and atomic oxygen environments, due to the enormous energy release associated with Al-O bonding. In the canonical ensemble, an amorphous oxide layer of a thickness of approximately 40 angstroms is formed after 466 ps, in good agreement with experiments. Simulations have been performed to study nanoindentation on crystalline, amorphous, and nanocrystalline silicon nitride and silicon carbide. Simulation on nanocrystalline silicon carbide reveals unusual deformation mechanisms in brittle nanophase materials, due to

  13. Gate-last TiN/HfO2 band edge effective work functions using low-temperature anneals and selective cladding to control interface composition

    KAUST Repository

    Hinkle, C. L.

    2012-04-09

    Silicon N-metal-oxide-semiconductor (NMOS) and P-metal-oxide-semiconductor (PMOS) band edge effective work functions and the correspondingly low threshold voltages (Vt) are demonstrated using standard fab materials and processes in a gate-last scheme employing low-temperature anneals and selective cladding layers. Al diffusion from the cladding to the TiN/HfO2interface during forming gas anneal together with low O concentration in the TiN enables low NMOS Vt. The use of non-migrating W cladding along with experimentally detected N-induced dipoles, produced by increased oxygen in the TiN, facilitates low PMOS Vt.

  14. Gate-last TiN/HfO2 band edge effective work functions using low-temperature anneals and selective cladding to control interface composition

    KAUST Repository

    Hinkle, C. L.; Galatage, R. V.; Chapman, R. A.; Vogel, E. M.; Alshareef, Husam N.; Freeman, C.; Christensen, M.; Wimmer, E.; Niimi, H.; Li-Fatou, A.; Shaw, J. B.; Chambers, J. J.

    2012-01-01

    Silicon N-metal-oxide-semiconductor (NMOS) and P-metal-oxide-semiconductor (PMOS) band edge effective work functions and the correspondingly low threshold voltages (Vt) are demonstrated using standard fab materials and processes in a gate-last scheme employing low-temperature anneals and selective cladding layers. Al diffusion from the cladding to the TiN/HfO2interface during forming gas anneal together with low O concentration in the TiN enables low NMOS Vt. The use of non-migrating W cladding along with experimentally detected N-induced dipoles, produced by increased oxygen in the TiN, facilitates low PMOS Vt.

  15. Raman and XPS characterization of fuel-cladding interactions using miniature specimens

    International Nuclear Information System (INIS)

    Windisch, C.F.; Henager, C.H.; Engelhard, M.H.; Bennett, W.D.

    2009-01-01

    A combination of laser Raman spectroscopy and X-ray photoelectron spectroscopy was applied in a study of fuel-cladding chemical interactions on miniature oxide-coated HT-9 disks at elevated temperature. The experiments were intended as a preliminary step toward the development of a quick-screening technique for candidate alloys for cladding materials and actinide-based mixed oxide fuel mixtures. The results indicated that laser Raman spectroscopy was capable of determining the major oxides on HT-9 and how they changed in composition due to heating. However, X-ray photoelectron spectroscopy was necessary to identify the role of the metallic phases and provide depth resolution. Using the two techniques the kinetics of chromia growth were shown to be affected by the presence of an applied oxide coating. A single replacement reaction involving residual reduced metal within the coating was also identified

  16. Analysis experiment in the mechanical non-oxidization decladding of the simulated spent fuel

    International Nuclear Information System (INIS)

    Jung, Jae Hoo; Yoon, Ji Sup; Hong, Dong Hee; Kim, Young Hwan; Lee, Jong Youl; Park, Gee Yung; Kim, Do Woo

    2000-11-01

    A decladding process, the first process of the fuel recycling, is accomplished by two different methods, chemical(wet type) method and mechanical(dry type) method. The chemical method is widely used in the existing commercial reprocessing plants because of its high efficiency, however, this process generates a lot of liquid radioactive wastes. To deal with this problem, the mechanical decladding process using the pressing mechanism is considered in this research. The pressing type decladding process is to extract the fuel pellet by inserting the pin into the fuel clad and by pressing out the fuel pellet. The pressing type decladding device equipped with two manually driven handles had been developed in the first step, and the performance of this device had been tested by using the simulated fuel rods filled with the plaster instead of spent fuel pellet. The experimental result showed that the best fuel extraction and recovery rate can be obtaind with the pellet size of 30 mm. In the second step, the manually driven handle had been replaced with the motor drive machanism. Also, the design of the device had been modified in consideration of the remote operation, in consideration of the hot cell operation. Several problems had been revealed such as the dust generation, difficulty in quantification of fuel mass, contamination of a spring module, difficulty in remote disassembly of the servo motor, and inaccurate positioning of the rotary plate. Considering these problems, the design has been again modified, at this year, by installing a dust collection device, a brushing mechanism, a countermeter, a pellet recognization sensor; by modifying the positioning mechanism of the rotary plate; and by modularizing the press pin mechanism. Also, in this modification, the 3 dimensional graphic design method has been adopted. with this modifications, the improved mechanical decladding device has been developed and its performance is investigated through a series of experiments

  17. Optimization of metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, N.; Horvath, R.; Pedersen, H.C.

    2005-01-01

    The present paper deals with the optimization of metal-clad waveguides for sensor applications to achieve high sensitivity for adlayer and refractive index measurements. By using the Fresnel reflection coefficients both the angular shift and the width of the resonances in the sensorgrams are taken...... into account. Our optimization shows that it is possible for metal-clad waveguides to achieve a sensitivity improvement of 600% compared to surface-plasmon-resonance sensors....

  18. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

    Directory of Open Access Journals (Sweden)

    Bo Cheng

    2016-02-01

    Full Text Available In severe loss of coolant accidents (LOCA, similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconium alloy fuel cladding materials are rapidly heated due to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in 1,200–1,500°C steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstrated corrosion resistance. As these composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Mo alloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are

  19. Laser cladding technology to small diameter pipes

    International Nuclear Information System (INIS)

    Fujimagari, H.; Hagiwara, M.; Kojima, T.

    2000-01-01

    A laser cladding method which produces a highly corrosion-resistant material coating layers (cladding) on the austenitic stainless steel (type 304 SS) pipe inner surface was developed to prevent SCC (stress corrosion cracking) occurrence. This technology is applicable to a narrow and long distance area from operators, because of the good accessibility of the YAG (yttrium-aluminum-garnet) laser beam that can be transmitted through an optical fiber. In this method a mixed paste metallic powder and heating-resistive organic solvent are firstly placed on the inner surface of a small pipe, and then a YAG laser beam transmitted through an optical fiber irradiates to the pasted area. A mixed paste will be melted and form a cladding layer subsequently. A cladding layer shows as excellent corrosion resistance property. This laser cladding (LC) method had already applied to several domestic nuclear power plants and had obtained a good reputation. This report introduces the outline of laser cladding technology, the developed equipment for practical application in the field, and the circumstance in actual plant application. (orig.)

  20. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emmanuel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Forsmann, Bryan [Boise State Univ., ID (United States); Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Henley, Jody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  1. Influence of processing variables and alloy chemistry on the corrosion behavior of ZIRLO nuclear fuel cladding

    International Nuclear Information System (INIS)

    Comstock, R.J.; Sabol, G.P.; Schoenberger, G.

    1996-01-01

    Variations in the thermal heat treatments used during the fabrication of ZIRLO (Zr-1Nb-1Sn-0.1Fe) fuel clad tubing and in ZIRLO alloy chemistry were explored to develop a further understanding of the relationship between processing, microstructure, and cladding corrosion performance. Heat treatment variables included intermediate tube annealing temperatures as well as a beta-phase heat treatment during the latter stages of the tube reduction schedule. Chemistry variables included deviations in niobium and tin content from the nominal composition. The effects of both heat treatment and chemistry on corrosion behavior were assessed by autoclave tests in both pure and lithiated water and high-temperature steam. Analytical electron microscopy demonstrated that the best out-reactor corrosion performance is obtained for microstructures containing a fine distribution of beta-niobium and Zr-Nb-Fe particles. Deviations from this microstructure, such as the presence of beta-zirconium phase, tend to degrade corrosion resistance. ZIRLO fuel cladding was irradiated in four commercial reactors. In all cases, the microstructure in the cladding included beta-niobium and Zr-Nb-Fe particles. ZIRLO fuel cladding processed with a late-stage beta heat treatment to further refine the second-phase particle size exhibited in-reactor corrosion behavior that was similar to reference ZIRLO cladding. Variations of the in-reactor corrosion behavior of ZIRLO were correlated to tin content, with higher oxide thickness observed in the ZIRLO cladding containing higher tin. The results of these studies indicate that optimum corrosion performance of ZIRLO is achieved by maintaining a uniform distribution of fine second-phase particles and controlled levels of tin

  2. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    International Nuclear Information System (INIS)

    Perez, Emmanuel; Keiser Jr, Dennis D.; Forsmann, Bryan; Janney, Dawn E.; Henley, Jody; Woolstenhulme, Eric C.

    2016-01-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  3. Monte Carlo radiative transfer simulation of a cavity solar reactor for the reduction of cerium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Villafan-Vidales, H.I.; Arancibia-Bulnes, C.A.; Dehesa-Carrasco, U. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Col. Centro, A.P. 34, Temixco, Morelos 62580 (Mexico); Romero-Paredes, H. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina, A.P. 55-534, Mexico D.F 09340 (Mexico)

    2009-01-15

    Radiative heat transfer in a solar thermochemical reactor for the thermal reduction of cerium oxide is simulated with the Monte Carlo method. The directional characteristics and the power distribution of the concentrated solar radiation that enters the cavity is obtained by carrying out a Monte Carlo ray tracing of a paraboloidal concentrator. It is considered that the reactor contains a gas/particle suspension directly exposed to concentrated solar radiation. The suspension is treated as a non-isothermal, non-gray, absorbing, emitting, and anisotropically scattering medium. The transport coefficients of the particles are obtained from Mie-scattering theory by using the optical properties of cerium oxide. From the simulations, the aperture radius and the particle concentration were optimized to match the characteristics of the considered concentrator. (author)

  4. Oxidation kinetics of simulated metallic spent fuel in air at 200∼300 .deg. C

    International Nuclear Information System (INIS)

    Joo, J. S.; Yoo, K. S.; Jo, I. J.; Kook, D. H.; Lee, E. P.; Lee, J. C.; Bang, K. S.; Kim, H. D.

    2003-01-01

    In order to evaluate the long term storage safety study of the metallic spent fuel, U-5Zr, U-5Ti, U-5Ni, U-5Nb, and U-5Hf simulated metallic uranium alloys, known as corrosion resistant alloys, were fabricated and oxidized in oxygen gas at 200 .deg. C ∼ 300 .deg. C. All simulated metallic uranium alloys were more corrosion resistant than pure uranium metal, and corrosion resistance increases Nb, Ni, Ti, Zr, Hf in that order. The oxidation rates of uranium alloys determined and activation energy was calculated for each alloy. The matrix microstructure of the test specimens were analyzed using OM, SEM, and EPMA. It was concluded that Nb was the best acceptable alloying elements for reducing corrosion of uranium metal, and Ni, Ti were also considered to suitable as candidate

  5. Simulation of the oxidation pathway on Si(100) using high-resolution EELS

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Conor [Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia (CNR-ISM), Rome (Italy); Dipartimento di Fisica, Universita di Roma ' ' Tor Vergata' ' , Roma (Italy); European Theoretical Spectroscopy Facility (ETSF), Roma (Italy); Caramella, Lucia; Onida, Giovanni [Dipartimento di Fisica, Universita degli Studi di Milano (Italy); European Theoretical Spectroscopy Facility (ETSF), Milano (Italy)

    2012-06-15

    We compute high-resolution electron energy loss spectra (HREELS) of possible structural motifs that form during the dynamic oxidation process on Si(100), including the important metastable precursor silanone and an adjacent-dimer bridge (ADB) structure that may seed oxide formation. Spectroscopic fingerprints of single site, silanone, and ''seed'' structures are identified and related to changes in the surface bandstructure of the clean surface. Incorporation of oxygen into the silicon lattice through adsorption and dissociation of water is also examined. Results are compared to available HREELS spectra and surface optical data, which are closely related. Our simulations confirm that HREELS offers complementary evidence to surface optical spectroscopy, and show that its high sensitivity allows it to distinguish between energetically and structurally similar oxidation models. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Experimental simulations of oxidizing conditions and organic decomposition on the surface of Mars

    International Nuclear Information System (INIS)

    Stoker, C.R.; Mancinelli, R.L.; Mckay, C.P.

    1988-01-01

    One important scientific objective of a Mars Rover Sample Return mission would be to look for traces of living and extinct life on Mars. An instrument to search for organic carbon may be the simplest instrument that could screen samples which are interesting from a biological point of view. An experimental program is described which would help to understand the nature of the oxidizing soil on Mars and the mechanism responsible for organic degradation on the Martian surface. This is approached by lab simulations of the actual conditions that occur on Mars, particularly the oxidant production by atmospheric photochemistry, and the combined effects of UV light and oxidants in decomposing organic compounds. The results will be used to formulate models of the photochemistry of the atmospheric, the atmosphere-soil interaction, and the diffusion of reactive compounds into the soils. This information will provide insights and constraints on the design of a sampling strategy to search for organic compounds on Mars

  7. Simulated physical inventory verification exercise at a mixed-oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Reilly, D.; Augustson, R.

    1985-01-01

    A physical inventory verification (PIV) was simulated at a mixed-oxide fuel fabrication facility. Safeguards inspectors from the International Atomic Energy Agency (IAEA) conducted the PIV exercise to test inspection procedures under ''realistic but relaxed'' conditions. Nondestructive assay instrumentation was used to verify the plutonium content of samples covering the range of material types from input powders to final fuel assemblies. This paper describes the activities included in the exercise and discusses the results obtained. 5 refs., 1 fig., 6 tabs

  8. Cylinder-averaged histories of nitrogen oxide in a DI diesel with simulated turbocharging

    Science.gov (United States)

    Donahue, Ronald J.; Borman, Gary L.; Bower, Glenn R.

    1994-10-01

    An experimental study was conducted using the dumping technique (total cylinder sampling) to produce cylinder mass-averaged nitric oxide histories. Data were taken using a four stroke diesel research engine employing a quiescent chamber, high pressure direct injection fuel system, and simulated turbocharging. Two fuels were used to determine fuel cetane number effects. Two loads were run, one at an equivalence ratio of 0.5 and the other at a ratio of 0.3. The engine speed was held constant at 1500 rpm. Under the turbocharged and retarded timing conditions of this study, nitric oxide was produced up to the point of about 85% mass burned. Two different models were used to simulate the engine mn conditions: the phenomenological Hiroyasu spray-combustion model, and the three dimensional, U.W.-ERO modified KIVA-2 computational fluid dynamic code. Both of the models predicted the correct nitric oxide trend. Although the modified KIVA-2 combustion model using Zeldovich kinetics correctly predicted the shapes of the nitric oxide histories, it did not predict the exhaust concentrations without arbitrary adjustment based on experimental values.

  9. Performance testing of refractory alloy-clad fuel elements for space reactors

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Karnesky, R.A.; Millhollen, M.K.

    1985-01-01

    Two fast reactor irradiation tests, SP-1 and SP-2, provide a unique and self-consistent data set with which to evaluate the technical feasibility of potential fuel systems for the SP-100 space reactor. Fuel pins fabricated with leading cladding candidates (Nb-1Zr, PWC-11, and Mo-13Re) and fuel forms (UN and UO 2 ) are operated at temperatures typical of those expected in the SP-100 design. The first US fast reactor irradiated, refractory alloy clad fuel pins, from the SP-1 test, reached 1 at. % burnup in EBR-II in March 1985. At that time selected pins were discharged for interim examination. These examinations confirmed the excellent performance of the Nb-1Zr clad uranium oxide and uranium nitride fuel elements, which are the baseline fuel systems for two SP-100 reactor concepts

  10. SIFAIL: a subprogram to calculate cladding deformation and damage for fast reactor fuel pins

    International Nuclear Information System (INIS)

    Wilson, D.R.; Dutt, D.S.

    1979-05-01

    SIFAIL is a series of subroutines used in conjunction with the thermal performance models of SIEX to assist in the evaluation of mechanical performance of mixed uranium plutonium oxide fuel pins. Cladding deformations due to swelling and creep are calculated. These have been compared to post-irradiation data from fuel pin tests in EBR-II. Several fuel pin cladding failure criteria (cumulative damage, total strain, and thermal creep strain) are evaluated to provide the fuel pin designer with a basis to select design parameters. SIFAIL allows the user many property options for cladding material. Code input is limited to geometric and environmental parameters, with a consistent set of material properties provided by the code. The simplified, yet adequate, thin wall stress--strain calculations provide a reliable estimate of fuel pin mechanical performance, while requiring a small amount of core storage and computer running time

  11. Ultrasonic signal processing for sizing under-clad flaws

    International Nuclear Information System (INIS)

    Shankar, R.; Paradiso, T.J.; Lane, S.S.; Quinn, J.R.

    1985-01-01

    Ultrasonic digital data were collected from underclad cracks in sample pressure vessel specimen blocks. These blocks were weld cladded under different processes to simulate actual conditions in US Pressure Water Reactors. Each crack was represented by a flaw-echo dynamic curve which is a plot of the transducer motion on the surface as a function of the ultrasonic response into the material. Crack depth sizing was performed by identifying in the dynamic curve the crack tip diffraction signals from the upper and lower tips. This paper describes the experimental procedure, digital signal processing methods used and algorithms developed for crack depth sizing

  12. Effect of Antifoam Agent on Oxidative Leaching of Hanford Tank Sludge Simulants

    International Nuclear Information System (INIS)

    Rapko, Brian M.; Jones, Susan A.; Lumetta, Gregg J.; Peterson, Reid A.

    2010-01-01

    Oxidative leaching of simulant tank waste containing an antifoam agent (AFA) to reduce the chromium content of the sludge was tested using permanganate as the oxidant in 0.25 M NaOH solutions. AFA is added to the waste treatment process to prevent foaming. The AFA, Dow Corning Q2-3183A, is a surface-active polymer that consists of polypropylene glycol, polydimethylsiloxane, octylphenoxy polyethoxy ethanol, treated silica, and polyether polyol. Some of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste slurries contain high concentrations of undissolved solids that would exhibit undesirable behavior without AFA addition. These tests were conducted to determine the effect of the AFA on oxidative leaching of Cr(III) in waste by permanganate. It has not previously been determined what effect AFA has on the permanganate reaction. This study was conducted to determine the effect AFA has on the oxidation of the chromium, plus plutonium and other criticality-related elements, specifically Fe, Ni and Mn. During the oxidative leaching process, Mn is added as liquid permanganate solution and is converted to an insoluble solid that precipitates as MnO2 and becomes part of the solid waste. Caustic leaching was performed followed by an oxidative leach at either 25 C or 45 C. Samples of the leachate and solids were collected at each step of the process. Initially, Battelle-Pacific Northwest Division (PNWD) was contracted by Bechtel National, Inc. to perform these further scoping studies on oxidative alkaline leaching. The data obtained from the testing will be used by the WTP operations to develop procedures for permanganate dosing of Hanford tank sludge solids during oxidative leaching. Work was initially conducted under contract number 24590-101-TSA-W000-00004. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) operating Contract DE-AC05-76RL01830. In summary, this report describes work focused on determining

  13. Effect of Antifoam Agent on Oxidative Leaching of Hanford Tank Sludge Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Jones, Susan A.; Lumetta, Gregg J.; Peterson, Reid A.

    2010-02-26

    Oxidative leaching of simulant tank waste containing an antifoam agent (AFA) to reduce the chromium content of the sludge was tested using permanganate as the oxidant in 0.25 M NaOH solutions. AFA is added to the waste treatment process to prevent foaming. The AFA, Dow Corning Q2-3183A, is a surface-active polymer that consists of polypropylene glycol, polydimethylsiloxane, octylphenoxy polyethoxy ethanol, treated silica, and polyether polyol. Some of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste slurries contain high concentrations of undissolved solids that would exhibit undesirable behavior without AFA addition. These tests were conducted to determine the effect of the AFA on oxidative leaching of Cr(III) in waste by permanganate. It has not previously been determined what effect AFA has on the permanganate reaction. This study was conducted to determine the effect AFA has on the oxidation of the chromium, plus plutonium and other criticality-related elements, specifically Fe, Ni and Mn. During the oxidative leaching process, Mn is added as liquid permanganate solution and is converted to an insoluble solid that precipitates as MnO2 and becomes part of the solid waste. Caustic leaching was performed followed by an oxidative leach at either 25°C or 45°C. Samples of the leachate and solids were collected at each step of the process. Initially, Battelle-Pacific Northwest Division (PNWD) was contracted by Bechtel National, Inc. to perform these further scoping studies on oxidative alkaline leaching. The data obtained from the testing will be used by the WTP operations to develop procedures for permanganate dosing of Hanford tank sludge solids during oxidative leaching. Work was initially conducted under contract number 24590-101-TSA-W000-00004. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) operating Contract DE-AC05-76RL01830. In summary, this report describes work focused on

  14. Evaluation of thermocouple fin effect in cladding surface temperature measurement during film boiling

    International Nuclear Information System (INIS)

    Tsuruta, Takaharu; Fujishiro, Toshio

    1984-01-01

    Thermocouple fin effect on surface temperature measurement of a fuel rod has been studied at elevated wall temperatures under film boiling condition in a reactivity initiated accident (RIA) situation. This paper presents an analytical equation to evaluate temperature drops caused by the thermocouple wires attached to cladding surface. The equation yielded the local temperature drop at measuring point depending on thermocouple diameter, cladding temperature, coolant flow condition and vapor film thickness. The temperature drops by the evaluating equation were shown in cases of free and forced convection conditions. The analytical results were compared with the measured data for various thermocouple sizes, and also with the estimated maximum cladding temperature based on the oxidation layer thickness in the cladding outer surface. It was concluded that the temperature drops at above 1,000 0 C in cladding temperature were around 120 and 150 0 C for 0.2 and 0.3 mm diameter Pt-Pt.Rh thermocouples, respectively, under a stagnant coolant condition. The fin effect increases with the decrease of vapor film thickness such as under forced flow cooling or at near the quenching point. (author)

  15. Technology readiness level (TRL) assessment of cladding alloys for advanced nuclear fuels

    International Nuclear Information System (INIS)

    Shepherd, Daniel

    2015-01-01

    Reliable fuel claddings are essential for the safe, sustainable and economic operation of nuclear stations. This paper presents a worldwide TRL assessment of advanced claddings for Gen III and IV reactors following an extensive literature review. Claddings include austenitic, ferritic/martensitic (F/M), reduced activation (RA) and oxide dispersion strengthened (ODS) steels as well as advanced iron-based alloys (Kanthal alloys). Also assessed are alloys of zirconium, nickel (including Hastelloy R ), titanium, chromium, vanadium and refractory metals (Nb, Mo, Ta and W). Comparison is made with Cf/C and SiCf/SiC composites, MAX phase ceramics, cermets and TRISO fuel particle coatings. The results show in general that the higher the maximum operating temperature of the cladding, the lower the TRL. Advanced claddings were found to have lower TRLs than the corresponding fuel materials, and therefore may be the limiting factor in the deployment of advanced fuels and even possibly the entire reactor in the case of Gen IV. (authors)

  16. Protection of spent aluminum-clad research reactor fuels during extended wet storage

    International Nuclear Information System (INIS)

    Fernandes, Stela M.C.; Correa, Olandir V.; Souza, Jose A.; Ramanathan, Lalgudi V.; Antunes, Renato A.

    2013-01-01

    Aluminum-clad spent nuclear fuel from research reactors (RR) is stored in light water filled pools or basins worldwide. Many incidences of pitting corrosion of the fuel cladding has been reported and attributed to synergism in the effect of certain water parameters. Protection of spent Al-clad RR fuel with a conversion coating was proposed in 2008. Preliminary results revealed increased pitting corrosion resistance of cerium oxide coated aluminum alloys AA 1050 and AA 6061, used as RR fuel plate cladding. Further development of conversion coatings for Al alloys was carried out and this paper presents: (a) the preparation and characterization of hydrotalcite (HTC) coatings; (b) the results of laboratory tests in which the corrosion behavior of coated Al alloys in NaCl solutions was determined; (c) the results of field tests in which un-coated, boehmite coated, HTC coated and cerium modified boehmite / HTC coated AA 1050 and AA 6061 coupons were exposed to the IEA-R1 reactor spent fuel basin for extended periods. In these field tests the coupons coated with HTC from a high temperature (HT) bath and subsequently modified with Ce were the most resistant to pitting corrosion. In laboratory tests also, HT- hydrotalcite + Ce coated specimens were the most corrosion resistant in 0.01 M NaCl. The role of cerium in increasing the corrosion resistance imparted by the different conversion coatings of spent Al-clad RR fuel elements is presented. (author)

  17. A Eutectic Melting Study of Double Wall Cladding Tubes of FeCrAl and Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Woojin; Son, Seongmin; Lee, You Ho; Lee, Jeong Ik; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Eun [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The eutectic melting behavior of FeCrAl/Zircaloy-4 double wall cladding tubes was investigated by annealing at various temperatures ranging from 900 .deg. C to 1300 .deg. C. It was found that significant eutectic melting occurred after annealing at temperatures equal to or higher than 1150 .deg. C. It means that an additional diffusion barrier layer is necessary to limit the eutectic melting between FeCrAl and Zircaloy-4 alloy cladding tubes. Coating of FeCrAl layers on the Zr alloy cladding tube is being investigated for the development of accident tolerant fuel by exploiting of both the oxidation resistance of FeCrAl alloys and the neutronic advantages of Zr alloys. Coating of FeCrAl alloys on Zr alloy cladding tubes can be performed by various techniques including thermal spray, laser cladding, and co-extrusion. Son et al. also reported the fabrication of FeCrAl/Zr ally double wall cladding by the shrink fit method. For the double layered cladding tubes, the thermal expansion mismatch between the dissimilar materials, severe deformation or mechanical failure due to the evolution of thermal stresses can occur when there is a thermal cycling. In addition to the thermal stress problems, chemical compatibilities between the two different alloys should be investigated in order to check the stability and thermal margin of the double wall cladding at a high temperature. Generally, it is considered that Zr alloy cladding will maintain its mechanical integrity up to 1204 .deg. C (2200 .deg. F) to satisfy the acceptance criteria for emergency core cooling systems.

  18. Diametral strain of fast reactor MOX fuel pins with austenitic stainless steel cladding irradiated to high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Uwaba, Tomoyuki, E-mail: uwaba.tomoyuki@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan); Ito, Masahiro; Maeda, Koji [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan)

    2011-09-30

    Highlights: > We evaluated diametral strain of fast reactor MOX fuel pins irradiated to 130 GWd/t. > The strain was due to cladding void swelling and irradiation creep. > The irradiation creep was caused by internal gas pressure and PCMI. > The PCMI was associated with pellet swelling by rim structure or by cesium uranate. > The latter effect tended to increase the cumulative damage fraction of the cladding. - Abstract: The C3M irradiation test, which was conducted in the experimental fast reactor, 'Joyo', demonstrated that mixed oxide (MOX) fuel pins with austenitic steel cladding could attain a peak pellet burnup of about 130 GWd/t safely. The test fuel assembly consisted of 61 fuel pins, whose design specifications were similar to those of driver fuel pins of a prototype fast breeder reactor, 'Monju'. The irradiated fuel pins exhibited diametral strain due to cladding void swelling and irradiation creep. The cladding irradiation creep strain were due to the pellet-cladding mechanical interaction (PCMI) as well as the internal gas pressure. From the fuel pin ceramographs and {sup 137}Cs gamma scanning, it was found that the PCMI was associated with the pellet swelling which was enhanced by the rim structure formation or by cesium uranate formation. The PCMI due to cesium uranate, which occurred near the top of the MOX fuel column, significantly affected cladding hoop stress and thermal creep, and the latter effect tended to increase the cumulative damage fraction (CDF) of the cladding though the CDF indicated that the cladding still had some margin to failure due to the creep damage.

  19. Development of advanced LWR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hwan; Park, S. Y.; Lee, M. H. [and others

    2000-04-01

    This report describes the results from evaluating the preliminary Zr-based alloys to develop the advanced Zr-based alloys for the nuclear fuel claddings, which should have good corrosion resistance and mechanical properties at high burn-up over 70,000MWD/MTU. It also includes the results from the basic studies for optimizing the processes which are involved in the development of the advanced Zr-based alloys. Ten(10) kinds of candidates for the alloys of which performance is over that of the existing Zircaloy-4 or ZIRLO alloy were selected out of the preliminary alloys of 150 kinds which were newly designed and repeatedly manufactured and evaluated to find out the promising alloys. First of all, the corrosion tests on the preliminary alloys were carried out to evaluate their performance in both pure water and LiOH solution at 360 deg C and in steam at 400 deg C. The tensile tests were performed on the alloys which proved to be good in the corrosion resistance. The creep behaviors were tested at 400 deg C for 10 days with the application of constant load on the samples which showed good performance in the corrosion resistance and tensile properties. The effect of the final heat treatment and A-parameters as well as Sn or Nb on the corrosion resistance, tensile properties, hardness, microstructures of the alloys was evaluated for some alloys interested. The other basic researches on the oxides, electrochemical properties, corrosion mechanism, and the establishment of the phase diagrams of some alloys were also carried out.

  20. Development of advanced LWR fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan; Park, S. Y.; Lee, M. H.

    2000-04-01

    This report describes the results from evaluating the preliminary Zr-based alloys to develop the advanced Zr-based alloys for the nuclear fuel claddings, which should have good corrosion resistance and mechanical properties at high burn-up over 70,000MWD/MTU. It also includes the results from the basic studies for optimizing the processes which are involved in the development of the advanced Zr-based alloys. Ten(10) kinds of candidates for the alloys of which performance is over that of the existing Zircaloy-4 or ZIRLO alloy were selected out of the preliminary alloys of 150 kinds which were newly designed and repeatedly manufactured and evaluated to find out the promising alloys. First of all, the corrosion tests on the preliminary alloys were carried out to evaluate their performance in both pure water and LiOH solution at 360 deg C and in steam at 400 deg C. The tensile tests were performed on the alloys which proved to be good in the corrosion resistance. The creep behaviors were tested at 400 deg C for 10 days with the application of constant load on the samples which showed good performance in the corrosion resistance and tensile properties. The effect of the final heat treatment and A-parameters as well as Sn or Nb on the corrosion resistance, tensile properties, hardness, microstructures of the alloys was evaluated for some alloys interested. The other basic researches on the oxides, electrochemical properties, corrosion mechanism, and the establishment of the phase diagrams of some alloys were also carried out

  1. Fractal and variability analysis of simulations in ozone level due to oxides of nitrogen and sulphur

    Science.gov (United States)

    Bhardwaj, Rashmi; Pruthi, Dimple

    2017-10-01

    Air pollution refers to the release of pollutants into the air. These pollutants are detrimental to human the planet as a whole. Apart from causing respiratory infections and pulmonary disorders, rising levels of Nitrogen Dioxide is worsening ozone pollution. Formation of Ground-level ozone involves nitrogen oxides and volatile gases in the sunlight. Volatile gases are emitted from vehicles primarily. Ozone is harmful gas and its exposure can trigger serious health effects as it damages lung tissues. In order to decrease the level of ozone, level of oxides leading to ozone formation has to be dealt with. This paper deals with the simulations in ozone due to oxides of nitrogen and sulphur. The data from Central Pollution Control Board shows positive correlation for ozone with oxides of sulphur and nitrogen for RK Puram, Delhi in India where high concentration of ozone has been found. The correlation between ozone and sulphur, nitrogen oxides is moderate during summer while weak during winters. Ozone with nitrogen and sulphur dioxide follow persistent behavior as Hurst exponent is between 0.5 and 1. The fractal dimension for Sulphur dioxide is 1.4957 indicating the Brownian motion. The behavior of ozone is unpredictable as index of predictability is close to zero.

  2. Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming

    International Nuclear Information System (INIS)

    Ni, Meng

    2013-01-01

    Highlights: ► A 2D model is developed for solid oxide fuel cells (SOFCs). ► CH 4 reforming by CO 2 (MCDR) is included. ► SOFC with MCDR shows comparable performance with methane steam reforming SOFC. ► Increasing CO electrochemical oxidation greatly enhances the SOFC performance. ► Effects of potential and temperature on SOFC performance are also discussed. - Abstract: A two-dimensional model is developed to simulate the performance of solid oxide fuel cells (SOFCs) fed with CO 2 and CH 4 mixture. The electrochemical oxidations of both CO and H 2 are included. Important chemical reactions are considered in the model, including methane carbon dioxide reforming (MCDR), reversible water gas shift reaction (WGSR), and methane steam reforming (MSR). It’s found that at a CH 4 /CO 2 molar ratio of 50/50, MCDR and reversible WGSR significantly influence the cell performance while MSR is negligibly small. The performance of SOFC fed with CO 2 /CH 4 mixture is comparable to SOFC running on CH 4 /H 2 O mixtures. The electric output of SOFC can be enhanced by operating the cell at a low operating potential or at a high temperature. In addition, the development of anode catalyst with high activity towards CO electrochemical oxidation is important for SOFC performance enhancement. The model can serve as a useful tool for optimization of the SOFC system running on CH 4 /CO 2 mixtures

  3. Validation and evaluation of common large-area display set (CLADS) performance specification

    Science.gov (United States)

    Hermann, David J.; Gorenflo, Ronald L.

    1998-09-01

    Battelle is under contract with Warner Robins Air Logistics Center to design a Common Large Area Display Set (CLADS) for use in multiple Command, Control, Communications, Computers, and Intelligence (C4I) applications that currently use 19- inch Cathode Ray Tubes (CRTs). Battelle engineers have built and fully tested pre-production prototypes of the CLADS design for AWACS, and are completing pre-production prototype displays for three other platforms simultaneously. With the CLADS design, any display technology that can be packaged to meet the form, fit, and function requirements defined by the Common Large Area Display Head Assembly (CLADHA) performance specification is a candidate for CLADS applications. This technology independent feature reduced the risk of CLADS development, permits life long technology insertion upgrades without unnecessary redesign, and addresses many of the obsolescence problems associated with COTS technology-based acquisition. Performance and environmental testing were performed on the AWACS CLADS and continues on other platforms as a part of the performance specification validation process. A simulator assessment and flight assessment were successfully completed for the AWACS CLADS, and lessons learned from these assessments are being incorporated into the performance specifications. Draft CLADS specifications were released to potential display integrators and manufacturers for review in 1997, and the final version of the performance specifications are scheduled to be released to display integrators and manufacturers in May, 1998. Initial USAF applications include replacements for the E-3 AWACS color monitor assembly, E-8 Joint STARS graphics display unit, and ABCCC airborne color display. Initial U.S. Navy applications include the E-2C ACIS display. For these applications, reliability and maintainability are key objectives. The common design will reduce the cost of operation and maintenance by an estimated 3.3M per year on E-3 AWACS

  4. Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.; Peco, Christian

    2016-09-01

    As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of the cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to

  5. Dynamic simulations on the mitochondrial fatty acid Beta-oxidation network

    Directory of Open Access Journals (Sweden)

    Weinberger Klaus M

    2009-01-01

    Full Text Available Abstract Background The oxidation of fatty acids in mitochondria plays an important role in energy metabolism and genetic disorders of this pathway may cause metabolic diseases. Enzyme deficiencies can block the metabolism at defined reactions in the mitochondrion and lead to accumulation of specific substrates causing severe clinical manifestations. Ten of the disorders directly affecting mitochondrial fatty acid oxidation have been well-defined, implicating episodic hypoketotic hypoglycemia provoked by catabolic stress, multiple organ failure, muscle weakness, or hypertrophic cardiomyopathy. Additionally, syndromes of severe maternal illness (HELLP syndrome and AFLP have been associated with pregnancies carrying a fetus affected by fatty acid oxidation deficiencies. However, little is known about fatty acids kinetics, especially during fasting or exercise when the demand for fatty acid oxidation is increased (catabolic stress. Results A computational kinetic network of 64 reactions with 91 compounds and 301 parameters was constructed to study dynamic properties of mitochondrial fatty acid β-oxidation. Various deficiencies of acyl-CoA dehydrogenase were simulated and verified with measured concentrations of indicative metabolites of screened newborns in Middle Europe and South Australia. The simulated accumulation of specific acyl-CoAs according to the investigated enzyme deficiencies are in agreement with experimental data and findings in literature. Investigation of the dynamic properties of the fatty acid β-oxidation reveals that the formation of acetyl-CoA – substrate for energy production – is highly impaired within the first hours of fasting corresponding to the rapid progress to coma within 1–2 hours. LCAD deficiency exhibits the highest accumulation of fatty acids along with marked increase of these substrates during catabolic stress and the lowest production rate of acetyl-CoA. These findings might confirm gestational loss to

  6. Effects of Cooling Rates on Hydride Reorientation and Mechanical Properties of Zirconium Alloy Claddings under Interim Dry Storage Conditions

    International Nuclear Information System (INIS)

    Min, Su-Jeong; Kim, Myeong-Su; Won, Chu-chin; Kim, Kyu-Tae

    2013-01-01

    As-received Zr-Nb cladding tubes and 600 ppm hydrogen-charged tubes were employed to evaluate the effects of cladding cooling rates on the extent of hydride reorientation from circumferential hydrides to radial ones and mechanical property degradations with the use of cooling rates of 2, 4 and 15 °C/min from 400 °C to room temperature simulating cladding cooling under interim dry storage conditions. The as-received cladding tubes generated nearly the same ultimate tensile strengths and plastic elongations, regardless of the cooling rates, because of a negligible hydrogen content in the cladding. The 600 ppm-H cladding tubes indicate that the slower cooling rate generated the larger radial hydride fraction and the longer radial hydrides, which resulted in greater mechanical performance degradations. The cooling rate of 2 °C/min generates an ultimate tensile strength of 758 MPa and a plastic elongation of 1.0%, whereas the cooling rate of 15 °C/min generates an ultimate tensile strength of 825 MPa and a plastic elongation of 15.0%. These remarkable mechanical property degradations of the 600 ppm-H cladding tubes with the slowest cooling rate may be characterized by cleavage fracture surface appearance enhanced by longer radial hydrides and their higher fraction that have been precipitated through a relatively larger nucleation and growth rate.

  7. Engineered zircaloy cladding modifications for improved accident tolerance of LWR fuel: US DOE NEUP Integrated Research Project

    International Nuclear Information System (INIS)

    Heuser, Brent

    2013-01-01

    An integrated research project (IRP) to fabricate and evaluate modified zircaloy LWR cladding under normal BWR/PWR operation and off-normal events has been funded by the US DOE. The IRP involves three US academic institutions, a US national laboratory, an intermediate stock industrial cladding supplier, and an international academic institution. A combination of computational and experimental protocols will be employed to design and test modified zircaloy cladding with respect to corrosion and accelerated oxide growth, the former associated with normal operation, the latter associated with steam exposure during loss of coolant accidents (LOCAs) and low-pressure core re-floods. Efforts will be made to go beyond design-base accident (DBA) scenarios (cladding temperature equal to or less than 1204 deg. C) during the experimental phase of modified zircaloy performance characterisation. The project anticipates the use of the facilities at ORNL to achieve steam exposure beyond DBA scenarios. In addition, irradiation of down-selected modified cladding candidates in the ATR may be performed. Cladding performance evaluation will be incorporated into a reactor system modelling effort of fuel performance, neutronics, and thermal hydraulics, thereby providing a holistic approach to accident-tolerant nuclear fuel. The proposed IRP brings together personnel, facilities, and capabilities across a wide range of technical areas relevant to the study of modified nuclear fuel and LWR performance during normal operation and off-normal scenarios. Two pathways towards accident-tolerant LWR fuel are envisioned, both based on the modification of existing zircaloy cladding. The first is the modification of the cladding surface by the application of a coating layer designed to shift the M + O→MO reaction away from oxide growth during steam exposure at elevated temperatures. This pathway is referred to as the 'surface coating' solution. The second is the modification of the bulk

  8. A new method of residual stress distribution analysis for corroded Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Godlewski, J.; Cadalbert, R.

    1992-01-01

    An X-ray diffraction method of residual stress measurement is developed to determine the stress level in the metal near the metal/oxide interface of Zircaloy-4 cladding samples oxidized in steam water at 400degC under a pressure of 10.3 MPa. The stress gradient is obtained and the evolution of the average stress is determined as function of the oxidation time. The presence of tetragonal zirconia phase in quite large quantity near the metal/oxide interface could be correlated to the high stress level in the base metal, adjacent to the interface. (author)

  9. A new method for residual stress distribution - analysis of corroded zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Godlewski, J.; Cadalbert, R.

    1992-01-01

    An X-ray diffraction method for residual stress measurement is developed to determine the stress level in the metal near the metal/oxide interface of Zircaloy-4 cladding samples oxidized in steam water at 400 deg C under a pressure of 10.3 MPa. The stress gradient is obtained and the evolution of the average stress is determined as a function of the oxidation time. The presence of tetragonal zirconia phase in quite large quantity near the metal/oxide interface could be correlated to the high stress level in the base metal, adjacent to the interface. 12 refs., 5 figs., 1 tab

  10. Corrosion of research reactor aluminium clad spent fuel in water

    International Nuclear Information System (INIS)

    2003-01-01

    This report describes research performed in ten laboratories within the framework of the IAEA Co-ordinated Research Project on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water. The project consisted of exposure of standard racks of corrosion coupons in the spent fuel pools of the participating research reactor laboratories and the evaluation of the coupons after predetermined exposure times, along with periodic monitoring of the storage water. A group of experts in the field contributed a state of the art review and provided technical supervision of the project. Localized corrosion mechanisms are notoriously difficult to understand, and it was clear from the outset that obtaining consistency in the results and their interpretation from laboratory to laboratory would depend on the development of an excellent set of experimental protocols. These experimental protocols are described in the report together with guidelines for the maintenance of optimum water chemistry to minimize the corrosion of aluminium clad research reactor fuel in wet storage. A large database on corrosion of aluminium clad materials has been generated from the CRP and the SRS corrosion surveillance programme. An evaluation of these data indicates that the most important factors contributing to the corrosion of the aluminium are: (1) High water conductivity (100-200 μS/cm); (2) Aggressive impurity ion concentrations (Cl - ); (3) Deposition of cathodic particles on aluminium (Fe, etc.); (4) Sludge (containing Fe, Cl - and other ions in concentrations greater than ten times the concentrations in the water); (5) Galvanic couples between dissimilar metals (stainless steel-aluminium, aluminium-uranium, etc); (6) Scratches and imperfections (in protective oxide coating on cladding); (7) Poor water circulation. These factors operating both independently and synergistically may cause corrosion of the aluminium. The single most important key to preventing corrosion is maintaining good

  11. Simulating Dynamic Fracture in Oxide Fuel Pellets Using Cohesive Zone Models

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Williamson

    2009-08-01

    It is well known that oxide fuels crack during the first rise to power, with continued fracture occurring during steady operation and especially during power ramps or accidental transients. Fractures have a very strong influence on the stress state in the fuel which, in turn, drives critical phenomena such as fission gas release, fuel creep, and eventual fuel/clad mechanical interaction. Recently, interest has been expressed in discrete fracture methods, such as the cohesive zone approach. Such models are attractive from a mechanistic and physical standpoint, since they reflect the localized nature of cracking. The precise locations where fractures initiate, as well as the crack evolution characteristics, are determined as part of the solution. This paper explores the use of finite element cohesive zone concepts to predict dynamic crack behavior in oxide fuel pellets during power-up, steady operation, and power ramping. The aim of this work is first to provide an assessment of cohesive zone models for application to fuel cracking and explore important numerical issues associated with this fracture approach. A further objective is to provide basic insight into where and when cracks form, how they interact, and how cracking effects the stress field in a fuel pellet. The ABAQUS commercial finite element code, which includes powerful cohesive zone capabilities, was used for this study. Fully-coupled thermo-mechanical behavior is employed, including the effects of thermal expansion, swelling due to solid and gaseous fission products, and thermal creep. Crack initiation is determined by a temperature-dependent maximum stress criterion, based on measured fracture strengths for UO2. Damage evolution is governed by a traction-separation relation, calibrated to data from temperature and burn-up dependent fracture toughness measurements. Numerical models are first developed in 2D based on both axisymmetric (to explore axial cracking) and plane strain (to explore radial

  12. Safety of some fuel cladding materials, alternative to Zr-alloys

    International Nuclear Information System (INIS)

    Hache, Georges; Clement, Bernard; Barrachin, Marc

    2013-01-01

    The Fukushima accident underlined the impact of hydrogen production on LWR core melt accident behaviour. New fuel cladding and structural materials are under development by the industry. IRSN performed a bibliographic study on the behaviour of these materials during LWR core melt accidents. Method This presentation is focused on cladding oxidation by steam and more precisely on: - number of H 2 moles produced per cladding length unit at thermochemical equilibrium; - oxidation kinetics; - heat of reaction; - physic-chemical interactions between material or oxidation products and fuel. Silicon carbide (SiC) - During SiC oxidation by steam, nearly 3 times more explosive gases (CO+H 2 ) moles are produced per cladding length unit at thermochemical equilibrium than for Zr-alloys. - SiC oxidation kinetics below 1700 deg. C: According to early tests performed by NASA and ORNL, the oxidation is linear but slow, there is an effective protection by a thin vitreous SiO 2 layer; these tests underlined the importance of the steam pressure and flow rate. Recently, published MIT and ORNL tests confirm that under large break LOCA conditions (∼5 bars) and up to 1200 deg. C, SiC recession is much slower than for Zr-alloys. Tests under small break conditions (3 inches LOCA: ∼40 bars) were not performed or not published. - SiC oxidation kinetics above 1700 deg. C (melting point of SiO 2 ): Molten SiO 2 loses its protective effect; this is known in the literature as 'catastrophic oxidation by molten oxides'. There will be a cliff-edge effect. For un-inerted containments, H 2 recombiners will be saturated, leading to a risk of CO+H 2 explosion in these containments. - During SiC oxidation by steam, the heat of reaction produced per cladding length unit at thermochemical equilibrium is of the same order of magnitude as for Zr alloys. Molten SiO 2 will interact with UO 2 to form molten mixtures at temperatures well below UO 2 melting temperature. - Calculations were

  13. A pellet-clad interaction failure criterion

    International Nuclear Information System (INIS)

    Howl, D.A.; Coucill, D.N.; Marechal, A.J.C.

    1983-01-01

    A Pellet-Clad Interaction (PCI) failure criterion, enabling the number of fuel rod failures in a reactor core to be determined for a variety of normal and fault conditions, is required for safety analysis. The criterion currently being used for the safety analysis of the Pressurized Water Reactor planned for Sizewell in the UK is defined and justified in this paper. The criterion is based upon a threshold clad stress which diminishes with increasing fast neutron dose. This concept is consistent with the mechanism of clad failure being stress corrosion cracking (SCC); providing excess corrodant is always present, the dominant parameter determining the propagation of SCC defects is stress. In applying the criterion, the SLEUTH-SEER 77 fuel performance computer code is used to calculate the peak clad stress, allowing for concentrations due to pellet hourglassing and the effect of radial cracks in the fuel. The method has been validated by analysis of PCI failures in various in-reactor experiments, particularly in the well-characterised power ramp tests in the Steam Generating Heavy Water Reactor (SGHWR) at Winfrith. It is also in accord with out-of-reactor tests with iodine and irradiated Zircaloy clad, such as those carried out at Kjeller in Norway. (author)

  14. Clad buffer rod sensors for liquid metals

    International Nuclear Information System (INIS)

    Jen, C.-K.; Ihara, I.

    1999-01-01

    Clad buffer rods, consisting of a core and a cladding, have been developed for ultrasonic monitoring of liquid metal processing. The cores of these rods are made of low ultrasonic-loss materials and the claddings are fabricated by thermal spray techniques. The clad geometry ensures proper ultrasonic guidance. The lengths of these rods ranges from tens of centimeters to 1m. On-line ultrasonic level measurements in liquid metals such as magnesium at 700 deg C and aluminum at 960 deg C are presented to demonstrate their operation at high temperature and their high ultrasonic performance. A spherical concave lens is machined at the rod end for improving the spatial resolution. High quality ultrasonic images have been obtained in the liquid zinc at 600 deg C. High spatial resolution is needed for the detection of inclusions in liquid metals during processing. We also show that the elastic properties such as density, longitudinal and shear wave velocities of liquid metals can be measured using a transducer which generates and receives both longitudinal and shear waves and is mounted at the end of a clad buffer rod. (author)

  15. Study of the uniform corrosion of an aluminium alloy used for the fuel cladding of the Jules Horowitz experimental reactor

    International Nuclear Information System (INIS)

    Wintergerst, M.

    2008-01-01

    For the Jules Horowitz new material testing reactor, an aluminium base alloy, AlFeNi, will be used for the cladding of the fuel plates. Taking into account the thermal properties of the alloy and of its oxide, the corrosion of the fuel cans presents many problems. The aim of this thesis is to provide a growing kinetic of the oxide layer at the surface of the AlFeNi fuel can in order to predict the life time of fuel element. Thus the mechanism of degradation of the cladding will be describe in order to integrate the different parameters of the operating reactor. (A.L.B.)

  16. Mechanical performance of SiC three-layer cladding in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Angelici Avincola, Valentina, E-mail: valentina.avincola@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Guenoun, Pierre, E-mail: pguenoun@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Shirvan, Koroush, E-mail: kshirvan@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States)

    2016-12-15

    Highlights: • FEA calculations of the stress distribution in SiC three-layer cladding. • Simulation of SiC mechanical performance under operation and accident conditions. • Failure probability analysis of SiC in steady-state and accident conditions. - Abstract: The silicon carbide cladding concept is currently under investigation with regard to increasing the accident tolerance and economic performance of light-water reactor fuels. In this work, the stress fields in the multi-layered silicon carbide cladding for LWR fuels are calculated using the commercial finite element analysis software ADINA. The material properties under irradiation are implemented as a function of temperature. The cladding is studied under operating and accident conditions, specifically for the loss-of-coolant accident (LOCA). During the LOCA, the blowdown and the reflood phases are modeled, including the quench waterfront. The calculated stresses along the cladding thickness show a high sensitivity to the assumptions regarding material properties. The resulting stresses are compared with experimental data and the probability of failure is calculated considering a Weibull model.

  17. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B [ORNL; Bruffey, Stephanie H [ORNL; DelCul, Guillermo Daniel [ORNL; Walker, Trenton Baird [ORNL

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  18. Modelling anelastic contribution to nuclear fuel cladding creep and stress relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Tulkki, Ville, E-mail: ville.tulkki@vtt.fi; Ikonen, Timo

    2015-10-15

    In fuel behaviour modelling accurate description of the cladding mechanical response is important for both operational and safety considerations. While accuracy is desired, a certain level of simplicity is needed as both computational resources and detailed information on properties of particular cladding may be limited. Most models currently used in the integral codes divide the mechanical response into elastic and viscoplastic contributions. These have difficulties in describing both creep and stress relaxation, and often separate models for the two phenomena are used. In this paper we implement anelastic contribution to the cladding mechanical model, thus enabling consistent modelling of both creep and stress relaxation. We show that the model based on assumption of viscoelastic behaviour can be used to explain several experimental observations in transient situations and compare the model to published set of creep and stress relaxation experiments performed on similar samples. Based on the analysis presented we argue that the inclusion of anelastic contribution to the cladding mechanical models provides a way to improve the simulation of cladding behaviour during operational transients.

  19. Experimental study of effect of initial clad temperature on reflood phenomena during PWR-LOCA

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Murao, Yoshio

    1983-01-01

    Integral system tests with the Cylindrical Core Test Facility (CCTF) were performed to investigate the effect of the initial clad temperature on the reflood phenomena in a PWR-LOCA. The initial peak clad temperatures in these three tests were 871, 968 and 1,047K, respectively. The feedback of the system on the core inlet mass flow rate was estimated to be little influenced by the variation of the initial clad temperature except for the first 20s in the transient. The observed temperature rise from the reflood initiation was lower with the higher initial clad temperature. This qualitatively agreed with the results of the small scale forced feed reflood experiments. However, the magnitude of the temperature rise in CCTF was significantly low due to the high initial core inlet mass flow rate. Also observed were the multi-dimensional thermal behaviors for the three cases in the CCTF wide core. The analysis codes REFLA and TRAC reasonably predicted the effect of the initial clad temperature on the core thermo-hydraulics under the simulated core inlet flow conditions. However, the calculated temperature rise of the maximum powered rod based on the one-dimensional core analysis was higher than that of the average powered rod, which contradicts the tendency observed in CCTF tests. (author)

  20. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, Stephanie H [ORNL; Spencer, Barry B [ORNL; DelCul, Guillermo Daniel [ORNL

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  1. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1996-08-01

    In Phase 1 of this project, a variety of developmental and commercial tubing alloys and claddings was exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF 709, 690 clad, and 671 clad for over 10,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy are being exposed for 4,000, 12,000, and 16,000 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after approximately 4,400 hours of exposure.

  2. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Sweet, Ryan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Maldonado, G. Ivan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  3. In-reactor performance of methods to control fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Weber, E.T.; Gibby, R.L.; Wilson, C.N.; Lawrence, L.A.; Adamson, M.G.

    1979-01-01

    Inner surface corrosion of austenitic stainless steel cladding by oxygen and reactive fission product elements requires a 50 μm wastage allowance in current FBR reference oxide fuel pin design. Elimination or reduction of this wastage allowance could result in better reactor efficiency and economics through improvements in fuel pin performance and reliability. Reduction in cladding thickness and replacement of equivalent volume with fuel result in improved breeding capability. Of the factors affecting fuel-cladding chemical interaction (FCCI), oxygen activity within the fuel pin can be most readily controlled and/or manipulated without degrading fuel pin performance or significantly increasing fuel fabrication costs. There are two major approaches to control oxygen activity within an oxide fuel pin: (1) control of total oxygen inventory and chemical activity (Δ anti GO 2 ) by use of low oxygen-to-metal ratio (O/M) fuel; and (2) incorporation of a material within the fuel pin to provide in-situ control of oxygen activity (Δ anti GO 2 ) and fixation of excess oxygen prior to, or in preference to reaction with the cladding. The paper describes irradiation tests which were conducted in EBR-II and GETR incorporating oxygen buffer/getter materials and very low O/M fuel to control oxygen activity in sealed fuel pins

  4. Electrochemistry coupled to (LC-)MS for the simulation of oxidative biotransformation reactions of PAHs.

    Science.gov (United States)

    Wigger, Tina; Seidel, Albrecht; Karst, Uwe

    2017-06-01

    Electrochemistry coupled to liquid chromatography and mass spectrometry was used for simulating the biological and environmental fate of polycyclic aromatic hydrocarbons (PAHs) as well as for studying the PAH degradation behavior during electrochemical remediation. Pyrene and benzo[a]pyrene were selected as model compounds and oxidized within an electrochemical thin-layer cell equipped with boron-doped diamond electrode. At potentials of 1.2 and 1.6 V vs. Pd/H 2 , quinones were found to be the major oxidation products for both investigated PAHs. These quinones belong to a large group of PAH derivatives referred to as oxygenated PAHs, which have gained increasing attention in recent years due to their high abundance in the environment and their significant toxicity. Separation of oxidation products allowed the identification of two pyrene quinone and three benzo[a]pyrene quinone isomers, all of which are known to be formed via photooxidation and during mammalian metabolism. The good correlation between electrochemically generated PAH quinones and those formed in natural processes was also confirmed by UV irradiation experiments and microsomal incubations. At potentials higher than 2.0 V, further degradation of the initial oxidation products was observed which highlights the capability of electrochemistry to be used as remediation technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Simulation of the oxidative metabolism of diclofenac by electrochemistry/(liquid chromatography/)mass spectrometry.

    Science.gov (United States)

    Faber, Helene; Melles, Daniel; Brauckmann, Christine; Wehe, Christoph Alexander; Wentker, Kristina; Karst, Uwe

    2012-04-01

    Diclofenac is a frequently prescribed drug for rheumatic diseases and muscle pain. In rare cases, it may be associated with a severe hepatotoxicity. In literature, it is discussed whether this toxicity is related to the oxidative phase I metabolism, resulting in electrophilic quinone imines, which can subsequently react with nucleophiles present in the liver in form of glutathione or proteins. In this work, electrochemistry coupled to mass spectrometry is used as a tool for the simulation of the oxidative pathway of diclofenac. Using this purely instrumental approach, diclofenac was oxidized in a thin layer cell equipped with a boron doped diamond working electrode. Sum formulae of generated oxidation products were calculated based on accurate mass measurements with deviations below 2 ppm. Quinone imines from diclofenac were detected using this approach. It could be shown for the first time that these quinone imines do not react with glutathione exclusively but also with larger molecules such as the model protein β-lactoglobulin A. A tryptic digest of the generated drug-protein adduct confirms that the protein is modified at the only free thiol-containing peptide. This simple and purely instrumental set-up offers the possibility of generating reactive metabolites of diclofenac and to assess their reactivity rapidly and easily.

  6. Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.

    Science.gov (United States)

    Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman

    2013-03-25

    We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.

  7. Inspection system for Zircaloy clad fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.; Porter, E.H.; Hansen, H.R.

    1975-10-01

    A description is presented of the design, development, and performance of a remote scanning system for nondestructive examination of fuel rods. Characteristics that are examined include microcracking of fuel rod cladding, fuel-cladding interaction, cladding thickness, fuel rod diameter variation, and fuel rod bowing. Microcracking of both the inner and outer fuel rod surfaces and variations in wall thickness are detected by using a pulsed eddy current technique developed by Argonne National Laboratory (ANL). Fuel rod diameter variation and fuel rod bowing are detected by using two linear variable differential transformers (LVDTs) and a signal conditioning system. The system's mechanical features include variable scanning speeds, a precision indexing system, and a servomechanism to maintain proper probe alignment. Initial results indicate that the system is a very useful mechanism for characterizing irradiated fuel rods

  8. Laser cladding to select new glassy alloys

    International Nuclear Information System (INIS)

    Medrano, L.L.O.; Afonso, C.R.M.; Kiminami, C.S.; Gargarella, P.; Ramasco, B.

    2016-01-01

    A new experimental technique used to analyze the effect of compositional variation and cooling rate in the phase formation in a multicomponent system is the laser cladding. This work have evaluated the use of laser cladding to discover a new bulk metallic glass (BMG) in the Al-Co-Zr system. Coatings with composition variation have made by laser cladding using Al-Co-Zr alloys powders and the samples produced have been characterized by X ray diffraction, microscopy and energy-dispersive X-ray spectroscopy. The results did not show the composition variation as expected, because of incomplete melting during laser process. It was measured a composition variation tendency that allowed the glass forming investigation by the glass formation criterion λ+Δh 1/2 . The results have showed no glass formation in the coating samples, which prove a limited capacity of Zr-Co-Al system to form glass (author)

  9. Stress corrosion testing of irradiated cladding tubes

    International Nuclear Information System (INIS)

    Lunde, L.; Olshausen, K.D.

    1980-01-01

    Samples from two fuel rods with different cladding have been stress corrosion tested by closed-end argon-iodine pressurization at 320 0 C. The fuel rods with stress relieved and recrystallized Zircaloy-2 had received burnups of 10.000 and 20.000 MWd/ton UO 2 , respectively. It was found that the SCC failure stress was unchanged or slightly higher for the irradiated than for the unirradiated control tubes. The tubes failed consistently in the end with the lowest irradiation dose. The diameter increase of the irradiated cladding during the test was 1.1% for the stress-relieved samples and 0.24% for the recrystallized samples. SEM examination revealed no major differences between irradiated and unirradiated cladding. A ''semi-ductile'' fracture zone in recrystallized material is described in some detail. (author)

  10. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    Directory of Open Access Journals (Sweden)

    Farhana Tisa

    2014-01-01

    Full Text Available Simulation of fluidized bed reactor (FBR was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP. The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment.

  11. Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates

    International Nuclear Information System (INIS)

    Zareie Rajani, H.R.; Akbari Mousavi, S.A.A.; Madani Sani, F.

    2013-01-01

    Highlights: ► Both explosive and fusion cladding aggravate the corrosion resistance of Inconel 625. ► Fusion cladding is more detrimental to nonuniform corrosion resistance. ► Single-layered fusion coat does not show any repassivation ability. ► Adding more layers enhance the corrosion resistance of fusion cladding Inconel 625. ► High impact energy spoils the corrosion resistance of explosive cladding Inconel 625. -- Abstract: One of the main concerns in cladding Inconel 625 superalloy on desired substrates is deterioration of corrosion resistance due to cladding process. The present study aims to compare the effect of fusion cladding and explosive cladding procedures on corrosion behavior of Inconel 625 cladding on plain carbon steel as substrate. Also, an attempt has been made to investigate the role of load ratio and numbers of fusion layers in corrosion behavior of explosive and fusion cladding Inconel 625 respectively. In all cases, the cyclic polarization as an electrochemical method has been applied to assess the corrosion behavior. According to the obtained results, both cladding methods aggravate the corrosion resistance of Inconel 625. However, the fusion cladding process is more detrimental to nonuniform corrosion resistance, where the chemical nonuniformity of fusion cladding superalloy issuing from microsegregation, development of secondary phases and contamination of clad through dilution hinders formation of a stable passive layer. Moreover, it is observed that adding more fusion layers can enhance the nonuniform corrosion resistance of fusion cladding Inconel 625, though this resistance still remains weaker than explosive cladding superalloy. Also, the results indicate that raising the impact energy in explosive cladding procedure drops the corrosion resistance of Inconel 625.

  12. Modelling of pellet-clad interaction during power ramps

    International Nuclear Information System (INIS)

    Zhou, G.; Lindback, J.E.; Schutte, H.C.; Jernkvist, L.O.; Massih, A.R.; Massih, A.R.

    2005-01-01

    A computational method to describe the pellet-clad interaction phenomenon is presented. The method accounts for the mechanical contact between fragmented pellets and the zircaloy clad, as well as for chemical reaction of fission products with zircaloy during power ramps. Possible pellet-clad contact states, soft, hard and friction, are taken into account in the computational algorithm. The clad is treated as an elastic-plastic-viscoplastic material with irradiation hardening. Iodine-induced stress corrosion cracking is described by using a fracture mechanics-based model for crack propagation. This integrated approach is used to evaluate two power ramp experiments made on boiling water reactor fuel rods in test reactors. The influence of the pellet-clad coefficient of friction on clad deformation is evaluated and discussed. Also, clad deformations, pellet-clad gap size and fission product gas release for one of the ramped rods are calculated and compared with measured data. (authors)

  13. Multilayer cladding with hyperbolic dispersion for plasmonic waveguides

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    We study the properties of plasmonic waveguides with a dielectric core and multilayer metal-dielectric claddings that possess hyperbolic dispersion. The waveguides hyperbolic multilayer claddings show better performance in comparison to conventional plasmonic waveguides. © OSA 2015....

  14. Contribution to numerical and mechanical modelling of pellet-cladding interaction in nuclear reactor fuel rod

    International Nuclear Information System (INIS)

    Retel, V.

    2002-12-01

    Pressurised water reactor fuel rods (PWR) are the place of nuclear fission, resulting in unstable and radioactive elements. Today, the mechanical loading on the cladding is harder and harder and is partly due to the fuel pellet movement. Then, the mechanical behaviour of the cladding needs to be simulated with models allowing to assess realistic stress and strain fields for all the running conditions. Besides, the mechanical treatment of the fuel pellet needs to be improved. The study is part of a global way of improving the treatment of pellet-cladding interaction (PCI) in the 1D finite elements EDF code named CYRANO3. Non-axisymmetrical multidirectional effects have to be accounted for in a context of unidirectional axisymmetrical finite elements. The aim of this work is double. Firstly a model simulating the effect of stress concentration on the cladding, due to the opening of the radial cracks of fuel, had been added in the code. Then, the fragmented state of fuel material has been taken into account in the thermomechanical calculation, through a model which led the strain and stress relaxation in the pellet due to the fragmentation, be simulated. This model has been implemented in the code for two types of fuel behaviour: elastic and viscoplastic. (author)

  15. FRAPCON analysis of cladding performance during dry storage operations

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, David J.; Geelhood, Kenneth J.

    2018-03-01

    There is an increasing need in the U.S. and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations (ISFSI) or interim storage sites. The NRC limits cladding temperature to 400°C while maintaining cladding hoop stress below 90 MPa in an effort to avoid radial hydride reorientation. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at 400 °C. Results were representative of the majority of U.S. LWR fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.

  16. Evaluation of structural deformations of a mechanical connecting unit oxidizer supplies by thermo-mechanical simulation

    International Nuclear Information System (INIS)

    Kim, Sang Woo

    2016-01-01

    A Mechanical connecting unit (MCU) used in ground facilities for a Liquid propellant rocket (LPR) acts as a bridge between the onboard system and the ground oxidizer filling system. It should be resistant to structural deformations in order to guarantee successful supply of a cryogenic oxidizer and high pressure gases without reduction of sealing capability. The MCU consists of many components and linkages and operates under harsh conditions induced by a cryogenic oxidizer, high pressure gases and other mechanical forces. Thus, the evaluation of structural deformation of the MCU considering complex conditions is expensive and time consuming. The present study efficiently evaluates the structural deformations of the key components of the MCU by Thermo-mechanical simulation (TMS) based on the superposition principle. Deformations due to the mechanical loadings including weights, pressures, and spring forces are firstly evaluated by using a non-linear flexible body simulation module (FFlex) of Multi-body dynamics (MBD) software, RecurDyn. Then, thermal deformations for the deformed geometries obtained by RecurDyn were subsequently calculated. It was conducted by using a Finite element (FE) analysis software, ANSYS. The total deformations for the onboard plate and multi-channel plate in the connecting section due to the mechanical and thermal loadings were successfully evaluated. Moreover, the outer gaps at six points between two plates were calculated and verified by comparison to the measured data. Their values and tendencies showed a good agreement. The author concluded that the TMS using MBD software considering flexible bodies and an FE simulator can efficiently evaluate structural deformations of the MCU operating under the complex load and boundary conditions

  17. Evaluation of structural deformations of a mechanical connecting unit oxidizer supplies by thermo-mechanical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Dept. of Mechanical Engineering, Institute of Machine Convergence Technology, Hankyong National University, Anseong (Korea, Republic of)

    2016-10-15

    A Mechanical connecting unit (MCU) used in ground facilities for a Liquid propellant rocket (LPR) acts as a bridge between the onboard system and the ground oxidizer filling system. It should be resistant to structural deformations in order to guarantee successful supply of a cryogenic oxidizer and high pressure gases without reduction of sealing capability. The MCU consists of many components and linkages and operates under harsh conditions induced by a cryogenic oxidizer, high pressure gases and other mechanical forces. Thus, the evaluation of structural deformation of the MCU considering complex conditions is expensive and time consuming. The present study efficiently evaluates the structural deformations of the key components of the MCU by Thermo-mechanical simulation (TMS) based on the superposition principle. Deformations due to the mechanical loadings including weights, pressures, and spring forces are firstly evaluated by using a non-linear flexible body simulation module (FFlex) of Multi-body dynamics (MBD) software, RecurDyn. Then, thermal deformations for the deformed geometries obtained by RecurDyn were subsequently calculated. It was conducted by using a Finite element (FE) analysis software, ANSYS. The total deformations for the onboard plate and multi-channel plate in the connecting section due to the mechanical and thermal loadings were successfully evaluated. Moreover, the outer gaps at six points between two plates were calculated and verified by comparison to the measured data. Their values and tendencies showed a good agreement. The author concluded that the TMS using MBD software considering flexible bodies and an FE simulator can efficiently evaluate structural deformations of the MCU operating under the complex load and boundary conditions.

  18. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation

    International Nuclear Information System (INIS)

    Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein

    2015-01-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO 2 , ZnO and ZrO 2 ) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. - Highlights: • The mechanism and kinetics of uric acid photo-oxidation by irradiation of sun care agents has been obtained by simulation. • The mechanism has been used for free radical production of TiO 2 (rutile and anatase), ZnO and ZrO 2 . • The ratios of photo-activity of ZnO to anastase, rutile and ZrO have been obtained. • By doubling the initial concentrations of mineral oxide, the rate of reaction was doubled. • The optimum ratio of initial concentration of mineral oxides to uric acid has been obtained

  19. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moradmand Jalali, Hamed; Bashiri, Hadis, E-mail: hbashiri@kashanu.ac.ir; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO{sub 2}, ZnO and ZrO{sub 2}) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. - Highlights: • The mechanism and kinetics of uric acid photo-oxidation by irradiation of sun care agents has been obtained by simulation. • The mechanism has been used for free radical production of TiO{sub 2} (rutile and anatase), ZnO and ZrO{sub 2}. • The ratios of photo-activity of ZnO to anastase, rutile and ZrO have been obtained. • By doubling the initial concentrations of mineral oxide, the rate of reaction was doubled. • The optimum ratio of initial concentration of mineral oxides to uric acid has been obtained.

  20. Evaluation of fast experimental reactor claddings, (2)

    International Nuclear Information System (INIS)

    Miura, Makoto; Nagaki, Hiroshi; Koyama, Masahiro; Tanaka, Yasumasa

    1974-01-01

    Thin-walled fine tubes of Type 316 austenitic stainless steel are used for fuel cladding in Joyo (experimental FBR). The material exhibits the change of the mechanical properties in long-time annealing at high temperature, resulting from the precipitation of carbide in structure. In this connection, the experiment and the results on the changes of the microstructure and mechanical properties (proof stress and hardness) are described. The test specimens are the fuel cladding tubes produced for trial for Joyo core and those for FFTF core made in the U.S.A. They were heated between 400 0 and 850 0 C for 1000 hr in vacuum. (Mori, K.)