WorldWideScience

Sample records for clad metals

  1. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...... can only detect substances in the close vicinity to the sensor surface limited to below 200 nm. Bacteria andwhole cells with sizes of micron-scale exceed that range and thus sensors suitable for deepprobe sensing are important. The present thesis deals with optical, planer waveguide sensors for deep...... by Qi et al [Zm Qi et al, Sens. Actuators B 81, 2002] before, however the sensing principle we present results in a broad detection range from gasses to solid materials and is different from the principle suggested by Qi et al with a highlylimited detection range. Metal-clad waveguide sensors...

  2. Optimization of metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, N.; Horvath, R.; Pedersen, H.C.

    2005-01-01

    The present paper deals with the optimization of metal-clad waveguides for sensor applications to achieve high sensitivity for adlayer and refractive index measurements. By using the Fresnel reflection coefficients both the angular shift and the width of the resonances in the sensorgrams are taken...... into account. Our optimization shows that it is possible for metal-clad waveguides to achieve a sensitivity improvement of 600% compared to surface-plasmon-resonance sensors....

  3. The processing and evaluation of clad metals

    Science.gov (United States)

    Forster, James A.; Jha, Sunil; Amatruda, Andrew

    1993-06-01

    Clad metals are a specific form of composites in which the materials are arranged in a layered structure. Cold-roll bonding techniques are employed to produce more than 20,000 tonnes of clad metal laminates each year in the United States. This article is an introductory description of the processing steps in cold-roll bonding, the nature of the bond created in this process, and the methods used to evaluate the bond's strength.

  4. Deep-probe metal-clad waveguide biosensors

    DEFF Research Database (Denmark)

    Skivesen, Nina; Horvath, Robert; Thinggaard, S.;

    2007-01-01

    Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal......-clad waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved....

  5. Clad metals by roll bonding for SOFC interconnects

    Science.gov (United States)

    Chen, L.; Jha, B.; Yang, Zhenguo; Xia, Guang-Guang; Stevenson, Jeffry W.; Singh, Prabhakar

    2006-08-01

    High-temperature oxidation-resistant alloys are currently considered as a candidate material for construction of interconnects in intermediate-temperature solid oxide fuel cells. Among these alloys, however, different groups of alloys demonstrate different advantages and disadvantages, and few, if any, can completely satisfy the stringent requirements for the application. To integrate the advantages and avoid the disadvantages of different groups of alloys, cladding has been proposed as one approach in fabricating metallic layered interconnect structures. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL 453 were selected as examples and manufactured into a clad metal. Its suitability as an interconnect construction material was investigated. This paper provides a brief overview of the cladding approach and discusses the viability of this technology to fabricate the metallic layered-structure interconnects.

  6. Efficient microfluidic photocatalysis in a symmetrical metal-cladding waveguide.

    Science.gov (United States)

    Zhu, Shu; Dai, Hailang; Jiang, Bei; Shen, Zhenhua; Chen, Xianfeng

    2016-02-14

    In this paper, a symmetrical metal-cladding optical waveguide based microfluidic chip with a self-organized and free-standing TiO2 nanotube membrane was utilized to perform efficient photocatalysis. The chip has a microchannel bonded with TiO2 nanotube coated glass. The employment of microfluidic chip for hydrolysis reaction can enable the transfer of mass and photons. Moreover, the incorporation of the double metal-cladding waveguide enhances the light-matter interaction and effectively improves the efficiency of photocatalysis.

  7. Metaliographic Analyses of Laser Cladded WC-Ni and WC-Co Hard-facing Metals

    Institute of Scientific and Technical Information of China (English)

    HKChikwanda; MChiremba; CVanRooyen

    2004-01-01

    Laser cladding is performed to improve the surface properties of metallic machine components. Extensive work is being conducted to investigate the relationships among the cladding parameters, clad powder characteristics and the quality of the clad layer. This work presents some of the metallographic analyses results of WC-Ni and WC-Co clad layers. The clad layers are chayacterised with non-uniform carbide par[icles, mostly WC imbedded in a more ductile matrix. The transition from the clad layer to the subslxate metal had a distinct dilution zone. The ratio of this zone to the clad height was in the range of 10-12% and this still needs robe refined.

  8. Prevention of microcracking by REM addition to alloy 690 filler metal in laser clad welds

    International Nuclear Information System (INIS)

    Effect of REM addition to alloy 690 filler metal on microcracking prevention was verified in laser clad welding. Laser clad welding on alloy 132 weld metal or type 316L stainless steel was conducted using the five different filler metals of alloy 690 varying the La content. Ductility-dip crack occurred in laser clad welding when La-free alloy 690 filler metal was applied. Solidification and liquation cracks occurred contrarily in the laser cladding weld metal when the 0.07mass%La containing filler metal was applied. In case of laser clad welding on alloy 132 weld metal and type 316L stainless steel, the ductility-dip cracking susceptibility decreased, and solidification/liquation cracking susceptibilities increased with increasing the La content in the weld metal. The relation among the microcracking susceptibility, the (P+S) and La contents in every weld pass of the laser clad welding was investigated. Ductility-dip cracks occurred in the compositional range (atomic ratio) of La/(P+S) 0.99(on alloy 132 weld metal), >0.90 (on type 316L stainless steel), while any cracks did not occur at La/(P+S) being between 0.21-0.99 (on alloy 132 weld metal) 0.10-0.90 (on type 316L stainless steel). Laser clad welding test on type 316L stainless steel using alloy 690 filler metal containing the optimum La content verified that any microcracks did not occurred in the laser clad welding metal. (author)

  9. On microstructure and flexural strength of metal-ceramic composite cladding developed through microwave heating

    Science.gov (United States)

    Sharma, Apurbba Kumar; Gupta, Dheeraj

    2012-05-01

    A domestic multimode microwave applicator was used to develop carbide reinforced (tungsten-based) metal-matrix composite cladding on austenitic stainless steel substrate. Cladding was developed through microwave irradiation of the preplaced clad materials at 2.45 GHz for 420 s. Clads show metallurgical bonding with substrate by partial dilution of materials. Back scattered images of clad section confirm uniformly distributed reinforced particles in the metallic matrix. Presence of WC, W2C, NiSi, NiW and Co3W3C phases was detected in the clad. Flexural characteristics show two distinct load transitions attributable to deformations of the matrix and the reinforced particles. Clads fail at the upper transition load; further load is taken by the SS-316 substrate. Clads exhibit good stiffness and good adhesion with the substrate. Multi directional cracks were observed at the clad surface; on further loading, cracks get propagated into the clad thickness without getting peeled-off. Mechanism of clad development has been introduced.

  10. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    The reference fuel for Integral Fast Reactor (IFR) is a ternary U-Pu-Zr alloy with a low swelling austenitic or ferritic stainless steel cladding. It is known that low melting point eutectics may form in such metallic fuel-cladding systems which could contribute to cladding failure under accident conditions. This paper will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel

  11. Aluminum clad ferritic stainless steel foil for metallic catalytic converter substrate applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.S.; Pandey, A.; Jha, B.

    1996-09-01

    A roll bonding process was developed to produce Al clad ferritic stainless steel foil for the metallic catalytic converter substrate application. Clad foils with different chemistry were produced and their properties were evaluated. Heat treatment conditions for the homogenization of clad foils were identified. This article includes results from oxidation tests and mechanical tests on as-rolled and heat treated clad foil. Results from commercial ingot metallurgy foil were also included for comparison. The oxidation weight gain study indicates that the Al content in the foils is directly related to the usable life of the foil. However, rare earth addition is necessary to improve the oxidation resistance of this material for the high temperature applications by slowing down the weight gain kinetics and thus extend the usable life of foils. The heat treated clad foil also exhibit excellent tensile ductility when compared to the ingot metallurgy foil.

  12. Laser cladding: repairing and manufacturing metal parts and tools

    Science.gov (United States)

    Sexton, Leo

    2003-03-01

    Laser cladding is presently used to repair high volume aerospace, automotive, marine, rail or general engineering components where excessive wear has occurred. It can also be used if a one-off high value component is either required or has been accidentally over-machined. The ultimate application of laser cladding is to build components up from nothing, using a laser cladding system and a 3D CAD drawing of the component. It is thus emerging that laser cladding can be classified as a special case of Rapid Prototyping (RP). Up to this point in time RP was seen, and is still seen, as in intermediately step between the design stage of a component and a finished working product. This can now be extended so that laser cladding makes RP a one-stop shop and the finished component is made from tool-steel or some alloy-base material. The marriage of laser cladding with RP is an interesting one and offers an alternative to traditional tool builders, re-manufacturers and injection mould design/repair industries. The aim of this paper is to discuss the emergence of this new technology, along with the transference of the process out of the laboratory and into the industrial workplace and show it is finding its rightful place in the manufacturing/repair sector. It will be shown that it can be used as a cost cutting, strategic material saver and consequently a green technology.

  13. Review of fuel/cladding eutectic formation in metallic SFR fuel pins

    International Nuclear Information System (INIS)

    Sodium-cooled Fast Reactors (SFRs) remain a strong contender amongst the Generation IV reactor concepts. Metallic fuel has been a primary fuel option for SFR designers in the US and was used extensively in the first generation of SFRs. One of the benefits of metallic fuel is its chemical compatibility with the coolant; unfortunately this compatibility does not extend to steel cladding at elevated temperatures. It has been known that uranium, plutonium, and rare earths diffuse with cladding constituents to form a low melting point fuel/cladding eutectic which acts to thin the cladding once the interfacial temperature rises above the system liquidus temperature. Since the 1960's, many experiments have been performed and published to evaluate the rate of fuel/cladding eutectic formation and the temperature above which melting will begin as a function of fuel/cladding interfacial temperature, time at temperature, fuel constituents (uranium, fissium or uranium (plutonium) zirconium), cladding type (stainless steel 316, stainless steel 306, D9 or HT9), beginning of life linear power, plutonium enrichment and burnup. The results of these tests, however, remain scattered across conference and journal papers spanning 50 years. The tests used to collect this data also varied in experimental procedure throughout the years. This paper will consolidate the experimental data into four groups of similar test conditions and expand upon the testing performed for each group in detail. A companion paper in PSA 2011 will discuss predictive correlations formulated from this database. (authors)

  14. Micro structural evaluation of fuel clad chemical interaction for metallic fuels for fast reactor

    International Nuclear Information System (INIS)

    The neutronic performance of metal fuel based on binary U-Pu alloy or ternary U-Pu-Zr alloys are better than conventional uranium plutonium mixed oxide or high density carbide ceramic fuel. The growing energy demand in India needs faster growth of nuclear power and warrants introduction of fast reactors based on metallic fuels because of higher breeding ratio and lower doubling time. Two design concepts have been proposed: one based on sodium bonded ternary alloy fuel of U-Pu-Zr ( 2-10 wt%) in modified T91 cladding material and the other is U-Pu binary alloy mechanically bonded to modified T91 cladding material with 'Zircaloy', as a liner between the fuel alloy and the clad. The Zircaloy liner act as a barrier in reducing the fuel clad chemical interaction. It also helps in transfer of heat from the fuel to the clad. Fuel clad chemical interaction is a serious issue limiting the life of a fuel pin as a result of formation of low temperature eutectic between the fuel and components of the cladding material. The eutectic reaction temperature between T91 and Uranium were estimated by dilatometry, differential thermal analysis and high temperature microscopy. Diffusion couple experiments were also carried out between U/Zr/T91 and U/T91 by isothermal annealing of the couples between 550 deg C to 750 deg C for times up to 1500 hrs. to find out the extent of chemical interaction. These studies were supported by metallographic examination, micro hardness measurement, XRD, SEM/EDAX and EPMA. The eutectic temperature was found to be higher than the estimated fuel clad interface temperature under the reactor operating condition. The paper highlights the results of these studies and attempts to analyze them in the light of performance. The outcome of these studies has been useful to the fuel designer in optimizing the design features and predicting the in-reactor fuel behavior. (author)

  15. Metallic laser clad coatings : on the pirocessing-microstructure-property relationships

    NARCIS (Netherlands)

    Ocelik, V.; de Oliveira, U.; De Hosson, J. Th. M.; DeHosson, JTM; Brebbia, CA

    2009-01-01

    A thick metallic coating that is resistant against high loading impact, severe wear and corrosion at high temperatures can be produced through the laser clad method. This work introduces the Orientation Imagining Microscopy based on electron backscatter diffraction in a scanning electron microscope

  16. Investigation of the limit of lateral beam shifts on a symmetrical metal-cladding waveguide

    Institute of Scientific and Technical Information of China (English)

    Chen Lin; Zhu Yi-Ming; Zhang Da-Wei; Cao Zhuang-Qi; Zhuang Song-Lin

    2009-01-01

    This paper reports that Goos-Hanchen (GH) shifts occurring on a symmetrical metal-cladding waveguide are experimentally identified. It was found that there exists a critical thickness of the upper metal layer, her, above which negative shift is observed and, reversely, positive shift occurs. Both positive and negative GH shifts near the critical thickness do not vary dramatically and can achieve a maximum on the submillimeter scale, which is different from simulated results using the stationary-phase method. It also shows that this critical thickness, hcr, can be obtained at the position for zero refiectivity by setting the intrinsic damping to be the same as the radiative damping. The GH effects observed near the critical thickness are produced by extreme distortion of the reflected beam profiles, which limits the amplitude of the GH shift and, further, the sensitivity of the GH optical sensor based on the symmetrical metal-cladding waveguide.

  17. Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture

    Science.gov (United States)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1990-01-01

    A metallic outer sleeve is provided which is capable of enveloping a hollow metallic inner member having continuous reinforcing fibers attached to the distal end thereof. The inner member is then introduced into outer sleeve until inner member is completely enveloped by outer sleeve. A liquid matrix member is then injected into space between inner member and outer sleeve. A pressurized heat transfer medium is flowed through the inside of inner member, thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. The novelty of this invention resides in the development of a efficient method of producing seamless metal clad fiber reinforced organic matrix composite structures.

  18. A Temperature Sensor Based on a Symmetrical Metal-Cladding Optical Waveguide

    Institute of Scientific and Technical Information of China (English)

    ZHOU Guo-Rui; FENG Guo-Ying; ZHANG Yi; MA Zi; WANG Jian-Jun

    2012-01-01

    A compact temperature sensor based on a symmetrical metal-cladding optical waveguide using free-space coupling is proposed and demonstrated theoretically and experimentally. The symmetrical Au-cladding optical waveguide is based on a thin LiNbO3 slab sandwiched between two metal films, which serve as the coupling layer and reflecting panel, respectively. The sensitivity of this sensor of 9.08×10-2 deg/℃, 6.6 ×10-2 deg/℃ and 4.8 × 10-2 deg/℃ corresponding to 3238-order, 3237-order and 3236-order modes, respectively, are obtained. Higher resolution is predicted with a larger linear expansion coefficient material and a higher resolution θ/2θ goniometer.%A compact temperature sensor based on a symmetrical metal-cladding optical waveguide using free-space coupling is proposed and demonstrated theoretically and experimentally.The symmetrical Au-cladding optical waveguide is based on a thin LiNbO3 slab sandwiched between two metal films,which serve as the coupling layer and reflecting panel,respectively.The sensitivity of this sensor of 9.08 × 10-2 deg/℃,6.6 × 10-2 deg/℃ and 4.8 × 10-2 deg/℃ corresponding to 3238-order,3237-order and 3236-order modes,respectively,are obtained.Higher resolution is predicted with a larger linear expansion coefficient material and a higher resolution θ/2θ goniometer.

  19. 46 CFR 111.60-23 - Metal-clad (Type MC) cable.

    Science.gov (United States)

    2010-10-01

    ... installed in accordance with Article 326 of NFPA NEC 2002 (incorporated by reference; see 46 CFR 110.10-1). The ampacity values found in table 25 of IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1... 46 Shipping 4 2010-10-01 2010-10-01 false Metal-clad (Type MC) cable. 111.60-23 Section...

  20. Metal clad active fibres for power scaling and thermal management at kW power levels.

    Science.gov (United States)

    Daniel, Jae M O; Simakov, Nikita; Hemming, Alexander; Clarkson, W Andrew; Haub, John

    2016-08-01

    We present a new approach to high power fibre laser design, consisting of a polymer-free all-glass optical fibre waveguide directly overclad with a high thermal conductivity metal coating. This metal clad active fibre allows a significant reduction in thermal resistance between the active fibre and the laser heat-sink as well as a significant increase in the operating temperature range. In this paper we show the results of a detailed thermal analysis of both polymer and metal coated active fibres under thermal loads typical of kW fibre laser systems. Through several different experiments we present the first demonstration of a cladding pumped aluminium-coated fibre laser and the first demonstration of efficient operation of a cladding-pumped fibre laser at temperatures of greater than 400 °C. Finally, we highlight the versatility of this approach through operation of a passively (radiatively) cooled ytterbium fibre laser head at an output power of 405 W in a compact and ultralight package weighing less than 100 g. PMID:27505822

  1. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    International Nuclear Information System (INIS)

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV

  2. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z.; Chen, Y. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Haghshenas, M., E-mail: mhaghshe@uwaterloo.ca [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Nguyen, T. [Mechanical Systems Engineering, Conestoga College, Kitchener (Canada); Galloway, J. [Welding Engineering Technology, Conestoga College, Kitchener (Canada); Gerlich, A.P. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada)

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  3. Bonding Interface and Bending Deformation of Al/316LSS Clad Metal Prepared by Explosive Welding

    Science.gov (United States)

    Guo, Xunzhong; Fan, Minyu; Wang, Liuan; Ma, Fuye

    2016-06-01

    The morphology, elemental distribution, and phase analysis of the bonding interface were investigated by means of SEM, EDS, and XRD to evaluate the interface bonding properties of Al/316LSS clad metal prepared by explosive welding method. Furthermore, the micro-hardness and bending properties were also investigated. The results indicated that the linear and wavy bonding interfaces coexisted and intermetallic phases were present in the local interfacial zone. Moreover, the micro-hardness value at the bonding interface with intermetallic phases was higher than that at the interface without any intermetallic phases. In addition, bulk metal compounds could easily lead to the generation of micro-cracks during the bending forming process.

  4. MAX Phase Modified SiC Composites for Ceramic-Metal Hybrid Cladding Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il; Kim, Sun-Han; Park, Dong-Jun; Park, Jeong-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A metal-ceramic hybrid cladding consists of an inner zirconium tube, and an outer SiC fiber-matrix SiC ceramic composite with surface coating as shown in Fig. 1 (left-hand side). The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. In addition, the outermost layer prevents the dissolution of SiC during normal operation. On the other hand, a ceramic-metal hybrid cladding consists of an outer zirconium tube, and an inner SiC ceramic composite as shown in Fig. 1 (right-hand side). The outer zirconium protects the fuel rod from a corrosion during reactor operation, as in the present fuel claddings. The inner SiC composite, additionally, is designed to resist the severe oxidation under a postulated accident condition of a high-temperature steam environment. Reaction-bonded SiC was fabricated by modifying the matrix as the MAX phase. The formation of Ti{sub 3}SiC{sub 2} was investigated depending on the compositions of the preform and melt. In most cases, TiSi{sub 2} was the preferential phase because of its lowest melting point in the Ti-Si-C system. The evidence of Ti{sub 3}SiC{sub 2} was the connection with the pressurizing.

  5. Development of a metal-clad advanced composite shear web design concept

    Science.gov (United States)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  6. Ceramics reinforced metal base composite coatings produced by CO II laser cladding

    Science.gov (United States)

    Yang, Xichen; Wang, Yu; Yang, Nan

    2008-03-01

    Due to the excellent performance in high strength, anti-temperature and anti-wear, ceramics reinforced metal base composite material was used in some important fields of aircraft, aerospace, automobile and defense. The traditional bulk metal base composite materials are the expensive cost, which is limited in its industrial application. Development of laser coating of ceramics reinforced metal base composite is very interesting in economy. This paper is focused on three laser cladding ceramics coatings of SiC particle /Al matrix , Al IIO 3 powder/ Al matrix and WC + Co/mild steel matrix. Powder particle sizes are of 10-60μm. Chemical contents of aluminum matrix are of 3.8-4.0% Cu, 1.2-1.8% Mg, 0.3-0.99% Mn and balance Al. 5KW CO II laser, 5 axes CNC table, JKF-6 type powder feeder and co-axis feeder nozzle are used in laser cladding. Microstructure and performance of laser composite coatings have been respectively examined with OM,SEM and X-ray diffraction. Its results are as follows : Microstructures of 3C-,6H- and 5H- SiC particles + Al + Al 4SiC 4 + Si in SiC/Al composite, hexagonal α-Al IIO 3 + cubic γ-Al IIO 3 + f.c.c Al in Al IIO 3 powder/ Al composite and original WC particles + separated WC particles + eutectic WC + γ-Co solid solution + W IIC particles in WC + Co/steel coatings are respectively recognized. New microstructures of 5H-SiC in SiC/Al composite, cubic γ-Al IIO 3 in Al IIO 3 composite and W IIC in WC + Co/ steel composite by laser cladding have been respectively observed.

  7. Optical-assembly periodic structure of ferrofluids in a liquid core/metal cladding optical waveguide.

    Science.gov (United States)

    Wang, Xianping; Yin, Cheng; Sun, Jingjing; Han, Qingbang; Li, Honggen; Sang, Minghuang; Yuan, Wen; Cao, Zhuangqi

    2013-11-01

    We present a novel and simple mechanism for the fabrication of periodic microstructure based on a ferrofluids core/metal cladding optical waveguide chip. The ultrahigh-order modes excited in the millimeter scale guiding layer lead to the ordered particle aggregates in ferrofluids without applying a magnetic field. Since the absorption of photons by the extremely dilute ferrofluids is extremely small and the Soret effect is not noticeable, a tentative explanation in terms of the optical trapping effect is proposed. Furthermore, this scheme exhibits all-optically tunable reflectivity and lateral Goos-Hänchen shift, which potentially may be for practical use in novel optical devices. PMID:24216657

  8. Process for the manufacture of seamless metal-clad fiber-reinforced organic matrix composite structures

    Science.gov (United States)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1991-01-01

    A process for producing seamless metal-clad composite structures includes providing a hollow, metallic inner member and an outer sleeve to surround the inner member and define an inner space therebetween. A plurality of continuous reinforcing fibers is attached to the distal end of the outside diameter of the inner member, and the inner member is then introduced, distal end first, into one end of the outer sleeve. The inner member is then moved, distal end first, into the outer sleeve until the inner member is completely enveloped by the outer sleeve. A liquid matrix material is then injected into the space containing the reinforcing fibers between the inner member and the outer sleeve. Next a pressurized heat transfer medium is passed through the inner member to cure the liquid matrix material. Finally, the wall thickness of both the inner member and the outer sleeve are reduced to desired dimensions by chemical etching, which adjusts the thermal expansion coefficient of the metal-clad composite structure to a desired value.

  9. End Plug Welding of New FM Cladding Tube for SFR Metallic Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Woo, Yoon Myeng; Kim, Hyung Tae; Kim, Ki Hwan; Kim, Sung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Ferritic/martensitic (FM) steel such as HT9 has been selected for a SFR fuel cladding tube material because of the excellent irradiation characteristics. But the HT9 material is not enough to satisfy the discharge burnup goal due to the high coolant outlet temperature and the low creep resistance. Recently new FM steel is under development to improve HT9 material properties. At KAERI, development of new FM steels, named FC92B and FC92N, has been in progress to improve thermal creep resistance. In this study, the qualification test of the end plug welding of new FM steels, FC92B and FC92N, for SFR metallic fuel rods was carried out based on the developed HT9 welding technology. Through the qualification test, the end plug welding of new FM steels was well verified. Through the qualification test, the weld quality of end plug welding of new FM cladding tubes, FC92B and FC92N, was evaluated according to the qualification test plan and satisfied the requirements on the weld. Consequently, the qualified welding process is ready to produce SFR metallic fuel rods.

  10. Proposal for the award of an industrial support contract for minor metalwork, metal fittings, cladding and roofing at CERN

    CERN Document Server

    2006-01-01

    This document concerns the award of a contract for minor metalwork, metal fittings, cladding and roofing at CERN. The Finance Committee is invited to agree to the negotiation of a contract with the firm INIZIATIVE INDUSTRIALI SRL (IT), the lowest bidder, for the provision of minor metalwork, metal fittings, cladding and roofing at CERN for three years for a total amount not exceeding 1 467 895 euros (2 258 301 Swiss francs), not subject to revision for two years. The contract will include options for two one-year extensions beyond the initial three-year period.

  11. Resonant excitation of Rayleigh waves in a narrow fluid channel clad between two metal plates

    Science.gov (United States)

    Nagaraj, Nagaraj; Krokhin, Arkadii; Sánchez-Dehesa, José.; Garcia-Chocano, Victor M.

    2012-02-01

    We study extraordinary absorption of acoustic energy due to resonant excitation of Rayleigh waves in a narrow water channel clad between two unidentical metal plates with Brass plate on one side of the channel and Aluminium plate on the other. The extraordinary absorption is observed at discrete resonant frequencies. From the elastic properties of the metal plates we derive a dispersion equation for coupled Rayleigh waves. Two different types of resonances, corresponding to different polarizations of the coupled waves, are studied for different channel widths and are experimentally confirmed. We also present the experimental confirmation of coupling through measurements of change in transmission minima with channel aperture. Experimental, theoretical, and numerical results are in a good agreement.

  12. Laboratory studies of shear/leach processing of zircaloy clad metallic uranium reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, J.L.; Bray, L.A.; Kjarmo, H.E.; Ryan, J.L.; Matsuzaki, C.L.; Pitman, S.G.; Haberman, J.H.

    1985-12-01

    The safety aspects addressed centered on understanding and explaining the undesirable reactions, ''fires,'' observed in a few instances during earlier processing of such fuel at the Nuclear Fuels Services (NFS) plant at West Valley, New York. Consideration of the dissolver fires that occurred at NFS leads to the conclusion that they resulted from rapid reactions with uranium metal, rather than with zirconium metal or with sensitized weld beads. The fires observed at NFS during hulls handling operations may have involved sensitized weld beads as suggested by earlier investigators, but current results suggest that these fires also could have been caused by reactions involving uranium metal. Very little pyrophoric activity was observed in leeached cladding hulls, indicating a very low probability for safety problems resulting from the U-Zr intermetallic zone in N-Reactor fuel. Consideration of the potential role of hydrides in the fires observed at NFS indicates that they were also not important factors. Consideration was also given to protective atmospheres to be used during shearing to prevent excessive reaction during that operation. A water deluge during shearing will likely provide adequate safety while meshing well with other process considerations. Studies on the dissolution of metallic uranium in nitric acid show an initial slower reaction followed by a faster reaction that proceeds at a sustained rate for a prolonged period of time. At solution concentrations typical of those encountered in practical uranium dissolver conditions, this sustained rate is governed by an equation such as: Dissolution rate = K (surface area) ((HNO3)+2(U))/sup 2.6/. Little difference was found in dissolution rates of as-fabricated and of irradiated fuel. The transuranic element content of leached cladding hulls was found to be approx. 400 nCi/g. This is too high to allow disposal as low-level waste.

  13. Laboratory studies of shear/leach processing of zircaloy clad metallic uranium reactor fuel

    International Nuclear Information System (INIS)

    The safety aspects addressed centered on understanding and explaining the undesirable reactions, ''fires,'' observed in a few instances during earlier processing of such fuel at the Nuclear Fuels Services (NFS) plant at West Valley, New York. Consideration of the dissolver fires that occurred at NFS leads to the conclusion that they resulted from rapid reactions with uranium metal, rather than with zirconium metal or with sensitized weld beads. The fires observed at NFS during hulls handling operations may have involved sensitized weld beads as suggested by earlier investigators, but current results suggest that these fires also could have been caused by reactions involving uranium metal. Very little pyrophoric activity was observed in leeached cladding hulls, indicating a very low probability for safety problems resulting from the U-Zr intermetallic zone in N-Reactor fuel. Consideration of the potential role of hydrides in the fires observed at NFS indicates that they were also not important factors. Consideration was also given to protective atmospheres to be used during shearing to prevent excessive reaction during that operation. A water deluge during shearing will likely provide adequate safety while meshing well with other process considerations. Studies on the dissolution of metallic uranium in nitric acid show an initial slower reaction followed by a faster reaction that proceeds at a sustained rate for a prolonged period of time. At solution concentrations typical of those encountered in practical uranium dissolver conditions, this sustained rate is governed by an equation such as: Dissolution rate = K (surface area) ([HNO3]+2[U])/sup 2.6/. Little difference was found in dissolution rates of as-fabricated and of irradiated fuel. The transuranic element content of leached cladding hulls was found to be approx. 400 nCi/g. This is too high to allow disposal as low-level waste

  14. Performance of the Barrier between the Metallic Fuel and the Clad Material in Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Metallic fuel has been considered as one of the most probable candidates of the fuel system in the Sodium-cooled Fast Reactor (SFR) in that it has high thermal conductivity, proliferation resistance, and good compatibility between sodium. Addition of the alloying element such as chromium, molybdenum, zirconium and titanium was applied in order to increase the solidus temperature of the uranium-plutonium alloy. Among these, uranium-plutonium alloys with the addition of 10-20% zirconium have been considered in the design of the metallic fuel in SFR. However, actinide elements in metallic fuel like uranium and plutonium react with stainless steel at a temperature above 650 .deg. C to form eutectic compounds. Such eutectic reaction reduces cladding thickness so that mechanical integrity of the cladding gradually decreases as the fuel burnup proceeds. To mitigate such a circumstance, barrier layer, which prevents both fuel and clad elements from diffusing each other, has been developed. Metallic foil made of pure metal has been suggested as a barrier and its feasibility test has been carried out. The objectives in this study are to propose several kinds of the barrier material and to verify its performance under a fuel-clad interaction situation

  15. Chemical compatibility of uranium based metallic fuels with T91 cladding

    International Nuclear Information System (INIS)

    Highlights: ► Performance of Zr as FCCI barrier layer was evaluated by diffusion experiments. ► Rate constant for reaction at U/Zr interface was 2.07 × 10−8 m s−1/2 at 973 K. ► Rate constant for reaction at Zr/T91 interface was 1.95 × 10−8 m s−1/2 at 973 K. ► Activation energy for reaction at Zr/T91 interface was found to be 54.7 kJ mole−1. ► Interdiffusion between U–6Zr and T91 resulted in formation of three layers. - Abstract: Studies related to development of fast reactor fuels based on ternary U–Pu–Zr and binary U–Pu alloys has been initiated in India for building a data base on thermo-physical and thermodynamic properties, fuel-clad compatibility etc. which are very useful to the fuel-designer to optimize the design feature and to predict the in-reactor fuel behaviour. Fuel-clad chemical compatibility is considered as one of the major concerns for metallic fuels. In the present investigation, the performance of Zr as fuel-clad chemical interaction (FCCI) barrier layer between U and T91 was evaluated by diffusion couple experiments. The growth kinetics of reaction layers at U/Zr and Zr/T91 interfaces were established. The growth kinetics of the reaction zone at both the U/Zr and Zr/T91 interfaces were determined at 973 K from the plot of log (width) versus log (time). The value of reaction index n was found to be around 2 at both the U/Zr and Zr/T91 interfaces. The reaction constant (k) for the growth of reaction layer at the U/Zr interface was determined to be 2.07 × 10−8 m s−1/2 at 973 K. Similarly, the rate constant at the Zr/T91 interface was found to be 1.95 × 10−8 m s−1/2 at 973 K. The activation energy Q for the reaction at the Zr/T91 interface was determined and was found to be 54.7 kJ mole−1. The fuel-clad chemical compatibility between U–6Zr alloy and T91 steel was also investigated in the present study by diffusion couple experiments. The interdiffusion between U–6Zr and T91 at 973 K resulted in the

  16. Terahertz multi-metal-wire hybrid-cladding hollow waveguide for refractive index sensing

    Science.gov (United States)

    Ying-Ying, Yu; Xu-You, Li; Kun-Peng, He; Bo, Sun

    2016-02-01

    We propose a design of terahertz refractive index sensing based on the multi-metal-wire (MMW) hybrid-cladding hollow waveguide. The proposed terahertz hybrid-cladding hollow waveguide comprises one air core in the center surrounding MMW surrounded dielectric. The central air core is used for filling lossless measurands and transmitting terahertz light. In particular, the refractive index sensing is realized by measuring the mode field area (MFA) variation of radially polarized mode. The modal effective refractive index, mode field intensity distribution, and mode field area properties responding to the measurand refractive indexes for different operating frequencies and structure dimensions are investigated, respectively. Simulations show that the proposed terahertz refractive index sensor can realize easily the measurement of the measurand refractive index. Meanwhile, the effects of operating frequency and structure parameters on sensitivity and measurement accuracy are also studied. In view of the trade-off between sensitivity and measurement accuracy, the reasonable choice of the operating frequency and structure parameters can optimize appropriately the sensitivity and measurement accuracy, and the sensitivity can reach approximately 0.585 mm2/RIU (RIU is short for refraction index units) with the proper frequency and structure parameter. Project supported by the National Natural Science Foundation of China (Grant No. 51309059).

  17. Guided modes in asymmetric metal-cladding left-handed material waveguides

    Institute of Scientific and Technical Information of China (English)

    Ying He; Xia Zhang; Yanfang Yang; Chunfang Li

    2011-01-01

    @@ We investigate guided modes in the asymmetric waveguide structure with a left-handed material (LHM) layer surrounded by air and metal.A graphical method is proposed to determine the guided modes.New properties of the oscillating and surface guided modes, such as absence of the fundamental mode,coexistence of the oscillating and surface guided modes, fast attenuation of the surface guided modes, and mode degeneracy, are analyzed in detail.%We investigate guided modes in the asymmetric waveguide structure with a left-handed material (LHM) layer surrounded by air and metal. A graphical method is proposed to determine the guided modes. New properties of the oscillating and surface guided modes, such as absence of the fundamental mode, coexistence of the oscillating and surface guided modes, fast attenuation of the surface guided modes, and mode degeneracy, are analyzed in detail. We also investigate dispersive characteristics of the metal-LHMair optical waveguide. The propagation constant increases with decreasing slab thickness for the first-order oscillating mode, which is different from that in traditional metal-cladding waveguides.

  18. All-optical modulator based on a ferrofluid core metal cladding waveguide chip

    International Nuclear Information System (INIS)

    We propose a novel optical intensity modulator based on the combination of a symmetrical metal cladding optical waveguide (SMCW) and ferrofluid, where the ferrofluid is sealed in the waveguide to act as a guiding layer. The light matter interaction in the ferrofluid film leads to the formation of a regular nanoparticle pattern, which changes the phase match condition of the ultrahigh order modes in return. When two lasers are incident on the same spot of the waveguide chip, experiments illustrate all-optical modulation of one laser beam by adjusting the intensity of the other laser. A possible theoretical explanation may be due to the optical trapping and Soret effect since the phenomenon is considerable only when the control laser is effectively coupled into the waveguide. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Cavitation-erosion mechanism of laser cladded SiC particle reinforced metal matrix composite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-hua; ZHANG Song; YANG Hong-gang; ZHU Sheng-long; MAN Hau-chung; CAI Qing-kui

    2005-01-01

    With 2 kW continuous wave Nd-YAG laser,SiC ceramic powder was laser-cladded on the AA6061 aluminium alloy surface.Within the range of process parameters investigated,the parameters were optimized to produce the SiCp reinforced metal matrix composites(MMC) modified layer on AA6061 alloy surface.After being treated,the modified layer is crack-free,porosity free,and has good metallurgical bond with the substrate.The microstructure and chemical composition of the modified layer were analyzed by such detection devices as scanning electronic microscope(SEM-EDX) and X-ray diffractometer(XRD).The performance of electrochemical corrosion and cavitation erosion and their mechanism were estimated by the microhardness tester,potentiostat and ultrasonicinduced cavitation device.

  20. Integrated Computational Modeling of Water Side Corrosion in Zirconium Metal Clad Under Nominal LWR Operating Conditions

    Science.gov (United States)

    Aryanfar, Asghar; Thomas, John; Van der Ven, Anton; Xu, Donghua; Youssef, Mostafa; Yang, Jing; Yildiz, Bilge; Marian, Jaime

    2016-10-01

    A mesoscopic chemical reaction kinetics model to predict the formation of zirconium oxide and hydride accumulation light-water reactor (LWR) fuel clad is presented. The model is designed to include thermodynamic information from ab initio electronic structure methods as well as parametric information in terms of diffusion coefficients, thermal conductivities and reaction constants. In contrast to approaches where the experimentally observed time exponents are captured by the models by design, our approach is designed to be predictive and to provide an improved understanding of the corrosion process. We calculate the time evolution of the oxide/metal interface and evaluate the order of the chemical reactions that are conducive to a t 1/3 dependence. We also show calculations of hydrogen cluster accumulation as a function of temperature and depth using spatially dependent cluster dynamics. Strategies to further cohesively integrate the different elements of the model are provided.

  1. Evaluation of titanium carbide metal matrix composites deposited via laser cladding

    Science.gov (United States)

    Cavanaugh, Daniel Thomas

    Metal matrix composites have been widely studied in terms of abrasion resistance, but a particular material system may behave differently as particle size, morphology, composition, and distribution of the hardening phase varies. The purpose of this thesis was to understand the mechanical and microstructural effects of combining titanium carbide with 431 series stainless steel to create a unique composite via laser cladding, particularly regarding wear properties. The most predominant effect in increasing abrasion resistance, measured via ASTM G65, was confirmed to be volume fraction of titanium carbide addition. Macrohardness was directly proportional to the amount of carbide, though there was an overall reduction in individual particle microhardness after cladding. The reduction in particle hardness was obscured by the effect of volume fraction carbide and did not substantially contribute to the wear resistance changes. A model evaluating effective mean free path of the titanium carbide particles was created and correlated to the measured data. The model proved successful in linking theoretical mean free path to overall abrasion resistance. The effects of the titanium carbide particle distributions were limited, while differences in particle size were noticeable. The mean free path model did not correlate well with the particle size, but it was shown that the fine carbides were completely removed by the coarse abrasive particles in the ASTM G65 test. The particle morphology showed indications of influencing the wear mode, but no statistical reduction was observed in the volume loss figures. Future studies may more specifically focus on particle morphology or compositional effects of the carbide particles.

  2. Chemical compatibility of uranium based metallic fuels with T91 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kaity, Santu [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kutty, T.R.G., E-mail: tkutty@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Agarwal, Renu [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Laik, Arijit [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kumar, Arun [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Performance of Zr as FCCI barrier layer was evaluated by diffusion experiments. Black-Right-Pointing-Pointer Rate constant for reaction at U/Zr interface was 2.07 Multiplication-Sign 10{sup -8} m s{sup -1/2} at 973 K. Black-Right-Pointing-Pointer Rate constant for reaction at Zr/T91 interface was 1.95 Multiplication-Sign 10{sup -8} m s{sup -1/2} at 973 K. Black-Right-Pointing-Pointer Activation energy for reaction at Zr/T91 interface was found to be 54.7 kJ mole{sup -1}. Black-Right-Pointing-Pointer Interdiffusion between U-6Zr and T91 resulted in formation of three layers. - Abstract: Studies related to development of fast reactor fuels based on ternary U-Pu-Zr and binary U-Pu alloys has been initiated in India for building a data base on thermo-physical and thermodynamic properties, fuel-clad compatibility etc. which are very useful to the fuel-designer to optimize the design feature and to predict the in-reactor fuel behaviour. Fuel-clad chemical compatibility is considered as one of the major concerns for metallic fuels. In the present investigation, the performance of Zr as fuel-clad chemical interaction (FCCI) barrier layer between U and T91 was evaluated by diffusion couple experiments. The growth kinetics of reaction layers at U/Zr and Zr/T91 interfaces were established. The growth kinetics of the reaction zone at both the U/Zr and Zr/T91 interfaces were determined at 973 K from the plot of log (width) versus log (time). The value of reaction index n was found to be around 2 at both the U/Zr and Zr/T91 interfaces. The reaction constant (k) for the growth of reaction layer at the U/Zr interface was determined to be 2.07 Multiplication-Sign 10{sup -8} m s{sup -1/2} at 973 K. Similarly, the rate constant at the Zr/T91 interface was found to be 1.95 Multiplication-Sign 10{sup -8} m s{sup -1/2} at 973 K. The activation energy Q for the reaction at the Zr/T91 interface was determined and was found to be 54.7 kJ mole{sup -1

  3. Oscillating wave displacement sensor using the enhanced Goos-Hänchen effect in a symmetrical metal-cladding optical waveguide.

    Science.gov (United States)

    Yu, Tianyi; Li, Honggen; Cao, Zhuangqi; Wang, Yi; Shen, Qishun; He, Ying

    2008-05-01

    An oscillating wave displacement sensor based on the enhanced Goos-Hänchen (G-H) effect in a symmetrical metal-cladding optical waveguide is proposed. Since the detected signal is irrelevant to the power fluctuation of the incident light and the magnitude of the G-H shift is enhanced to hundreds of micrometers, a 40 pm resolution is demonstrated in our experiment without employing any complicated optical equipment and servo techniques.

  4. Metal-clad waveguide characterization for contact-based light transmission into tissue

    Science.gov (United States)

    Chininis, Jeffrey; Whiteside, Paul; Hunt, Heather K.

    2016-02-01

    As contemporary laser dermatology procedures, like tattoo removal and skin resurfacing, become more popular, the complications of their operation are also becoming more prevalent. Frequent incidences of over-exposure, ocular injury, and excessive thermal damage represent mounting concerns for those seeking such procedures; moreover, each of these problems is a direct consequence of the standard, free-space method of laser transmission predominantly used in clinical settings. Therefore, an alternative method of light transmission is needed to minimize these problems. Here, we demonstrate and characterize an alternative method that uses planar waveguides to deliver light into sample tissue via direct contact. To do this, slab substrates made from glass were clad in layers of titanium and silver, constraining the light within the waveguide along the waveguide's length. By creating active areas on the waveguide surface, the propagating light could then optically tunnel into the tissue sample, when the waveguide was brought into contact with the tissue. SEM and EDS were used to characterize the metal film thickness and deposition rates onto the glass substrates. Laser light from a Q-switched Nd:YAG source operating at 532nm was coupled into the waveguide and transmitted into samples of pig skin. The amount of light transmitted was measured using photoacoustics techniques, in conjunction with a photodiode and integrating sphere. Transmitting light into tissue in this manner effectively resolves or circumvents the complications caused by free-space propagation methods as it reduces the operating distance to 0, which prevents hazardous back-reflections and allows for the ready incorporation of contact cooling technologies.

  5. Examination of the chemical composition of irradiated zirconium based fuel claddings at the metal/oxide interface by TEM

    Science.gov (United States)

    Abolhassani, S.; Bart, G.; Jakob, A.

    2010-04-01

    Detailed post-irradiation examinations have been performed at PSI on three fuel rods with differing cladding materials revealing different corrosion behaviour. The rods had been irradiated for 3-5 cycles at Gösgen nuclear power plant (pressurised water reactor), Switzerland. As zirconium corrosion is proceeding at the metal/oxide interface, extended micro-structural analyses were performed by transmission electron microscopy (TEM), expecting to possibly reveal phenomena explaining the varying corrosion resistance. This paper reports on the distribution of oxygen at the metal/oxide interface examined by energy dispersive X-ray spectroscopy (EDS) in TEM, while other micro-structural investigations have been published earlier [1]. In order to get some statistical confidence in the analyses, three neighbouring TEM samples of each cladding variant were studied. The oxygen concentration profiles of the three alloys (i.e. low-tin Zircaloy-4, Zr2.5%Nb and extra low-tin (Sn 0.56%)) both in the oxide and metal close to the metal/oxide interface are compared. The results of the examinations show the composition of the oxide in the vicinity of the interface to be sub-stoichiometric for all three materials, indicating an oxide layer adjacent to the interface, with diffusion-controlled access of oxygen to the metal/oxide interface. The metallic parts show highest oxygen concentrations at the metal/oxide interface which are reduced towards the bulk metal, pointing towards the expected second diffusion-controlled process leading to α-Zr (O). Based on the experimental results values for the diffusion coefficients in the range of 0.8-6.0 × 10 -20 m 2 s -1 are estimated for the oxygen dissolution process, the diffusion coefficient in Zircaloy-4 being six times higher than for the other two less corroding alloys. This finding is in contradiction with the present assumptions about the corrosion mechanism, and confirms the expected but not so far reported diffusion controlled

  6. Friction surface cladding: An exploratory study of a new solid state cladding process

    NARCIS (Netherlands)

    Liu, S.J.; Bor, T.C.; Stelt, van der A.A.; Geijselaers, H.J.M.; Kwakernaak, C.; Kooijman, A.M.; Mol, J.M.C.; Akkerman, R.; Boogaard, van den A.H.

    2015-01-01

    Friction surface cladding is a newly developed solid state cladding process to manufacture thin metallic layers on a substrate. In this study the influence of process conditions on the clad layer appearance and the mechanical properties of both the clad layer and the substrate were investigated. Thi

  7. Structural cladding /clad structures

    DEFF Research Database (Denmark)

    Beim, Anne

    2012-01-01

    to analyze, compare, and discuss how these various construction solutions point out strategies for development based on fundamentally different mindsets. The research questions address the following issues: How to learn from traditional construction principles: When do we see limitations of tectonic maneuver...... their deep rooted cultural dimension. These various circumstances that rule the building industry at present are primarily driven by political agendas, which are brought into effect by various bodies of public administrations subsequently. As governing institutions serving general societal objectives they do...... building cultures/practices, where the material, the building technology and the architectural form are interdependent and follow certain well defined logics. In his text, Prinzip der Beklidung/ The Principle of Cladding he states: “Every material possesses its own language of forms, and none may lay claim...

  8. Efficient phase-matched third harmonic generation in a metal-clad plasmonic double-slot waveguide

    International Nuclear Information System (INIS)

    We propose a metal-clad plasmonic double-slot waveguide with DDMEBT integrated into the slot region as the interactive material for third harmonic generation (THG) from the mid-IR (3600 nm) to the near-IR (1200 nm) region. Typically, an efficient THG process in a waveguide platform relies on three key aspects: high third-order nonlinear susceptibility of the interactive material, fulfillment of the phase-matching condition (PMC), and large pump-harmonic modal overlap. Although it has been theoretically predicted to be possible, designing waveguides to achieve the three key aspects simultaneously is still a major challenge. In the metal-clad plasmonic double-slot waveguide, the PMC between the zeroth mode at the fundamental wave (FW) and the second mode at the third harmonic (TH) is achieved. Taking advantage of the channel plasmon polariton (CPP), the electric fields at both FW and TH are tightly confined in the slot region. The specific slot waveguide structure is exploited to significantly enhance the pump-harmonic modal overlap by greatly reducing the counteractive electric field portion of the second mode at TH. According to our simulation, THG conversion efficiency reaches 1.4732 × 10−5 with 3 W pump power at a waveguide length of 12.3 μm. This THG efficiency is greatly enhanced because of the high third-order nonlinear optical susceptibility of the DDMEBT, the specific plasmonic slot waveguide structure, and the CPP nature of the guided modes—it is more than two times that obtained by simply considering a single slot under the same slot-width condition. (paper)

  9. Slow light with symmetric gap plasmon guides with finite width metal claddings

    Indian Academy of Sciences (India)

    S Dutta Gupta

    2009-02-01

    We study the dispersion relation and the modes of a symmetric gap plasmon guide, where a dielectric planar slab is coated with finite metallic layers on both top and bottom. The finite conductivity of the metal is taken into account. The modes of the structure exhibit significant differences from those of dielectric waveguides with air or metal as the bounding media. Avoided level crossing phenomenon between the plasmon and the guided modes is shown to exist, leading to leaky modes. The structure sandwiched between two high index media is shown to lead to slow light in transmission. The group delay is shown to be larger for higher order modes.

  10. The analysis of irradiated nuclear fuel and cladding materials, determination of carbon, hydrogen and oxygen/metal ratio

    International Nuclear Information System (INIS)

    Equipment has been developed for the determination of carbon, hydrogen and oxygen/metal ratio on irradiated fuels, of carbon in stainless steel cladding materials and in graphite rich deposits, and of hydrogen in zircaloy. Carbon is determined by combustion to carbon dioxide which is collected and measured manometrically, hydrogen by vacuum extraction followed by diffusion through a palladium thimble, and oxygen/metal ratio by CO/CO2 equilibration. A single set of equipment was devised in order to minimise the time and work involved in changing to a different set of equipment in a separate box, for each type of analysis. For each kind of analysis, alterations to the apparatus are involved but these can be carried out with the basic set in position in a shielded cell, although to do so it is necessary to obtain access via the gloves on the fibre-glass inner glove box. This requires a removal of samples emitting radiation, by transfer to an adjoining cell. A single vacuum system is employed. This is connected through a plug in the lead wall of the shielded cell, and couplings in the glove box wall to the appropriate furnaces. Carbon may be determined, in stainless steel containing 400 to 800 ppm C, with a coefficient of variation of +- 2%. On deposits containing carbon, the coefficient of variation is better than +- 1% for 2 to 30 mg of carbon. Hydrogen, at levels between 30 and 200 ppm in titanium can be determined with a coefficient of variation of better than +- 5%. Titanium has been used in lieu of zircaloy since standardised zircaloy specimens are not available. The precision for oxygen/metal ratio is estimated to be +- 0.001 Atoms oxygen. Sample weights of 200 mg are adequate for most analyses. (author)

  11. Fiber-to-Waveguide and 3D Chip-to-Chip Light Coupling Based on Bent Metal-Clad Waveguides

    CERN Document Server

    Lu, Zhaolin; Shi, Kaifeng

    2016-01-01

    Efficient fiber-to-waveguide light coupling has been a key issue in integrated photonics for many years. The main challenge lies in the huge mode mismatch between an optical fiber and a single mode waveguide. Herein, we present a novel fiber-to-waveguide coupler, named "L-coupler", through which the light fed from the top of a chip can bend 90{\\deg} with low reflection and is then efficiently coupled into an on-chip Si waveguide within a short propagation distance (<20{\\mu}m). The key element is a bent metal-clad waveguide with a big matched input port. According to our finite-difference time-domain (FDTD) simulation, the coupling efficiency is over 80% within a broad range of working wavelengths in the near-infrared regime for a transverse electric input Gaussian wave. The coupler is polarization-dependent, with very low coupling efficiency (6%-9%) for transverse magnetic waves. The coupler can also be used for three-dimensional (3D) chip-to-chip optical interconnection by efficiently coupling light into ...

  12. 金属导爆索的爆炸水声特性%Underwater sound characteristics of metal-clad detonating cords

    Institute of Scientific and Technical Information of China (English)

    贾虎; 沈兆武

    2011-01-01

    为了研究金属导爆索的水声特性,进行了水下爆炸压力测试和气泡脉动实验,获得了金属导爆索水下爆炸冲击波传播和衰减特性及气泡脉动特性.研究了金属导爆索水下爆炸的声压级、声持续时间、混响效应和功率谱特性,结果表明:(1)金属导爆索水下爆炸声压级较高,具有很强的声功率;(2)金属导爆索水下爆炸后产生的气泡脉动和随后产生的大量小气泡持续时间长,能够显著提高水下爆炸的混响效应和持续时间;(3)金属导爆索水下爆炸声的频率范围非常广,在各频率范围内都有很强的能量,尤以低频段能量最高.可见,金属导爆索具有声压级高、频率范围广、混响效应强和声持续时间长的特点.%Underwater explosion pressure test and gas bubble pulsation experiment were conducted to obtain the transmission and attenuation properties as well as the gas bubble pulsation properties for the underwater explosion shockwaves of the metal-clad detonating cords. And some underwater explosion performances for the metal-clad detonating cords were explored such as the sound pressure level, sound duration, reverberation effect, and power spectrum. Results show that the metal-clad detonating cords display a high level of sound pressure and sound power; that the gas bubble pulsations following the underwater explosion of the metal-clad detonating cords and the ensuing huge amount of small bubbles will persist for a long time, which can observably increase the reverberation effect and sound duration of the underwater explosion; and that the underwater explosion sound of the metal-clad detonating cords covers a wide range of frequencies, the energy in each of which is powerful, and the energy in the low frequency range is the highest.

  13. Cladding properties changes during operation

    International Nuclear Information System (INIS)

    Austenitic cladding was originally designed as a protection of ferritic/bainitic base materials of reactor pressure vessels against corrosion. Nevertheless, its existence must be taken into account into reactor pressure vessel integrity evaluation from several reasons: cladding has different thermal properties with respect to base metal which affect temperature fields in a vessel; cladding has different mechanical and thermal-mechanical properties comparing with base metal which affect stress field in a vessel; austenitic cladding has different fracture mechanics properties that base metal, but they are also changing during operation due to radiation damage. Austenitic cladding from WWER-440 reactor pressure vessels has been studied within an extended surveillance programme and some interesting results have been obtained. Austenitic cladding made from Nb-stabilized 18/10 type is characterized by some δ-ferrite content in its initial state which results in slight transition behaviour of fracture properties. These properties are changing after irradiation - fracture toughness is decreasing as well as tensile properties are increasing. This second trend was also supported by measurements realized during in-service inspections of inner vessel wall using instrumented indentation testing method. Knowledge of austenitic properties, mainly of its fracture mechanics parameters, is also necessary for a proper evaluation of reactor pressure vessel behaviour during PTS regimes. (author)

  14. Dipole controlled metal gate with hybrid low resistivity cladding for gate-last CMOS with low Vt

    KAUST Repository

    Hinkle, Christopher L.

    2010-06-01

    In this contribution, NMOS and PMOS band edge effective work function (EWF) and correspondingly low Vt are demonstrated using standard fab materials and processes in a gate-last scheme. For NMOS, the use of an Al cladding layer results in Vt = 0.08 V consistent with NMOS EWF = 4.15 eV. Migration of the Al cladding into the TiN and a relatively low oxygen concentration near the TiN/HfO2 interface are responsible for the low EWF. For PMOS, employing a W cladding layer along with a post-TiN anneal in an oxidizing ambient results in elevated oxygen concentration near the TiN/HfO2 interface and Vt = -0.20 V consistent with a PMOS EWF = 5.05 eV. First-principles calculations indicate N atoms displaced from the TiN during the oxidizing anneal form dipoles at the TiN/HfO2 interface that play a critical role in determining the PMOS EWF. © 2010 IEEE.

  15. Active Metal Brazing and Characterization of Brazed Joints in C-C and C-SiC Composites to Copper-Clad-Molybdenum System

    Science.gov (United States)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon/carbon composites with CVI and resin-derived matrices, and C/SiC composites reinforced with T-300 carbon fibers in a CVI SiC matrix were joined to Cu-clad Mo using two Ag-Cu braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward delamination in resin-derived C/C composite. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The Knoop microhardness (HK) distribution across the C/C joints indicated sharp gradients at the interface, and a higher hardness in Ticusil than in Cusil-ABA. For the C/SiC composite to Cu-clad-Mo joints, the effect of composite surface preparation revealed that ground samples did not crack whereas unground samples cracked. Calculated strain energy in brazed joints in both systems is comparable to the strain energy in a number of other ceramic/metal systems. Theoretical predictions of the effective thermal resistance suggest that such joined systems may be promising for thermal management applications.

  16. Literature search for the non-aqueous separation of zinc from fuel rod cladding. [After dissolution in liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Sandvig, R. L.; Dyer, S. J.; Lambert, G. A.; Baldwin, C. E.

    1980-06-21

    This report reviews the literature of processes for the nonaqueous separation of zinc from dissolved fuel assembly cladding. The processes considered were distillation, pyrochemical processing, and electrorefining. The last two techniques were only qualitatively surveyed while the first, distillation, was surveyed in detail. A survey of available literature from 1908 through 1978 on the distillation of zinc was performed. The literature search indicated that a zinc recovery rate in excess of 95% is possible; however, technical problems exist because of the high temperatures required and the corrosive nature of liquid zinc. The report includes a bibliography of the surveyed literature and a computer simulation of vapor pressures in binary systems. 129 references.

  17. Clad-coolant chemical interaction

    International Nuclear Information System (INIS)

    This paper provides an overview of the kinetics for zircaloy clad oxidation behaviour in steam and air during reactor accident conditions. The generation of chemical heat from metal/water reaction is considered. Low-temperature oxidation of zircaloy due to water-side corrosion is further described. (authors)

  18. Fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    The chemistry of the nuclear fuel is very complex. Its chemical composition changes with time due to the formation of fission products and depends on the temperature level history within the fuel pellet and the clad during operation. Firstly, in thermal reactors, zircaloy oxidation from reaction with UO2 fuel under high-temperature conditions will be addressed. Then other fuel-cladding interaction phenomena occurring in fast reactors will be described. Large thermal gradients existing between the centre and the periphery of the pellet induce the radial redistribution of the fuel constituents. The fuel pellet can react with the clad by different corrosion processes which can involve actinide and/or fission product transport via gas, liquid or/and solid phases. All these phenomena are briefly described in the case of different kinds of fuels (oxide, carbide, nitride, metallic) to be used in fast reactors. The way these phenomena are taken into account in fuel performance codes is presented. (authors)

  19. Stone cladding engineering

    CERN Document Server

    Sousa Camposinhos, Rui de

    2014-01-01

    This volume presents new methodologies for the design of dimension stone based on the concepts of structural design while preserving the excellence of stonemasonry practice in façade engineering. Straightforward formulae are provided for computing action on cladding, with special emphasis on the effect of seismic forces, including an extensive general methodology applied to non-structural elements. Based on the Load and Resistance Factor Design Format (LRDF), minimum slab thickness formulae are presented that take into consideration stress concentrations analysis based on the Finite Element Method (FEM) for the most commonly used modern anchorage systems. Calculation examples allow designers to solve several anchorage engineering problems in a detailed and objective manner, underlining the key parameters. The design of the anchorage metal parts, either in stainless steel or aluminum, is also presented.

  20. Simultaneously Large and Opposite Lateral Beam Shifts for TE and TM Modes on a Double Metal-Cladding Slab

    Institute of Scientific and Technical Information of China (English)

    LIU Xuan-Bin; CAO Zhuang-Qi; ZHU Peng-Fei; SHEN Qi-Shun; LIU Xiang-Min

    2006-01-01

    @@ We report simultaneously large and opposite Goos-H(a)nchen shifts for TE and TM beams on a double metalcladding slab. Theoretical examination shows that both positive and negative lateral shifts are in two orders of the wavelength. It is also found that the magnitude of the lateral beam shift strongly depends on the thickness of the upper metal layer. The optimal thickness of the upper metal layer for zero reflection is found to be the critical thickness above which a negative beam shift occurs. Numerical calculations are in good agreement with the theoretical results.

  1. Reactor physics assessment of alternate cladding materials

    International Nuclear Information System (INIS)

    A preliminary reactor physics assessment has been performed for candidate alternate cladding materials to replace zirconium alloys in enhanced accident tolerant fuel (ATF) concepts for light water reactors. Proposed ATF concepts seek to reduce severe accident risks by increasing the coping time available to operators for accident response and reducing the extent and rate of heat and hydrogen production from steam oxidation. Candidate materials in this neutronics-focused study included austenitic stainless steel 310SS, alumina-forming ferritic alloys (FeCrAl), and silicon carbide (SiC). Historic 304SS cladding and Zircaloy were considered as reference points. Initial results indicate that the metallic options require increased uranium enrichments and/or decreased cladding thicknesses to match the operating cycle lengths achieved with Zircaloy; FeCrAl offered the smallest reactivity penalty, whereas 310SS showed large negative impacts. Ceramic SiC cladding performed well if cladding thicknesses remained similar to those for Zircaloy, but large clad thickness increases led to negative impacts. Fuel pellet relative radial power distributions were similar for all clad materials analyzed. Finally, an economic assessment found that 310SS or FeCrAl could increase fuel pellet costs by 15–36%, while SiC fuel pellet costs were very similar to Zircaloy. (author)

  2. Efecto de los metales sobre microcrustáceos de agua dulce. Avances metodológicos y potencialidad de cladóceros y copépodos como organismos test

    OpenAIRE

    María Florencia Gutierrez; Ana María Gagneten

    2012-01-01

    El incremento de los metales en los cuerpos de agua dulce a causa de las actividades antropogénicas genera importantes alteraciones sobre la biota. Esta revisión analiza los efectos adversos de varios metales de relevancia ecotoxicológica sobre los microcrustáceos zooplanctónicos (cladóceros y copépodos), los avances experimentales en esta línea y las ventajas de cada grupo como organismos test. En general, la necesidad de obtener indicadores más sensibles y representativos que los tradiciona...

  3. EXPERIMENTAL STUDY ON MACRO AND MICRO-STRUCTURE OF METALLIC PARTS BUILT BY LOW-POWER LASER CLADDING

    Institute of Scientific and Technical Information of China (English)

    Liu Jichang; Li Lijun

    2005-01-01

    A low-power CO2 laser is used to deposit Fe powder and mixture of Fe and carbon powder on substrates respectively, and the macro and micro-structure of the formed samples are investigated.It is demonstrated that most grains of these samples are equi-axed. This is derived from the high nucleation velocity in the shallow melt pool besides rapid solidification of the liquid-state alloy or metal. Bainitic structure,combination of pearlite and ferrite structure and ferrite structure are seen respectively in the samples involving various amounts of carbon owing to no martensitic transformation in these small samples.

  4. Analysis of the behaviour of under-clad and surface cracks in cladded components

    International Nuclear Information System (INIS)

    The issue of the contribution is the characterization of under-clad and surface crack behaviour in ferritic steel components with an austenitic welded cladding. The experimental investigations were performed using large-scale samples. The residual stress field was determined in detail by a numerical simulation of the welding and heat treatment processes. These results were used for the numerical simulation of crack initiation and crack arrest. In all evaluated cases the crack was initiated in the ferritic material, while the cladding stayed intact even in case of a crack jump in the base metal. In the frame of case studies the results were transferred to application relevant geometries

  5. Spatial Mode Selective Waveguide with Hyperbolic Cladding

    CERN Document Server

    Tang, Y; Xu, M; Bäumer, S; Adam, A J L; Urbach, H P

    2016-01-01

    Hyperbolic Meta-Materials~(HMMs) are anisotropic materials with permittivity tensor that has both positive and negative eigenvalues. Here we report that by using a type II HMM as cladding material, a waveguide which only supports higher order modes can be achieved, while the lower order modes become leaky and are absorbed in the HMM cladding. This counter intuitive property can lead to novel application in optical communication and photonic integrated circuit. The loss in our HMM-Insulator-HMM~(HIH) waveguide is smaller than that of similar guided mode in a Metal-Insulator-Metal~(MIM) waveguide.

  6. Development and characterisations of WC–12Co microwave clad

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, Sunny, E-mail: sunny.zafar9@gmail.com; Sharma, Apurbba Kumar, E-mail: akshafme@gmail.com

    2014-10-15

    In the present work, WC–12Co based cermet clad was developed on AISI 304 stainless steel using microwave hybrid heating technique. The experimental trials were carried out in a 1.4 kW industrial multimode microwave applicator. The paper explains the major events occurring during microwave irradiation and formation of clad. The developed clads were subsequently characterised through field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, X-ray diffraction, assessment of porosity and microhardness. The WC–12Co clads developed with an approximate thickness of 1 mm, illustrated excellent metallurgical bonding with substrate. The microstructure of the WC–12Co clad mainly consists of skeleton structured carbides embedded in tough metallic phase. The phase analysis of the developed clads indicate the presence of various stable and complex carbides like Co{sub 6}W{sub 6}C, Co{sub 3}W{sub 3}C and Fe{sub 6}W{sub 6}C. The uniform distribution of such carbides with skeleton-like morphology in the microstructure is indicative of high hardness of the clad. The developed clads were free from visible interfacial cracking and the clad porosity was found in the order of approximately 0.98%. The average microhardness of the WC–12Co microwave clads was observed to be 1135 ± 88 HV. - Highlights: • Microwave cladding of WC–12Co on AISI 304 stainless steel is carried out. • Skeleton-like structures of W–Co based carbides are embedded in metallic matrix. • Clad–substrate interface is free from un-melted and un-dissolved carbide particles. • Hardness of clad (1135 ± 88 HV) is 3.5 times that of the substrate (325 ± 49 HV)

  7. Cobalt-based superalloy layers deposited on X38CrMoV5 steel base metal by explosion cladding process

    OpenAIRE

    LANGLOIS, Laurent; Bigot, Régis; ETTAQI, Saïd

    2008-01-01

    International audience A grade 25 cobalt-based superalloy in the form of a sheet 5 mm in thickness and a steel substrate of type X38CrMoV5 are joined by explosion cladding. The macrostructure and microstructure of the interface and of the co-based superalloy layers are studied. The interface presents the form of wavelets with a period of 1000 µm and an amplitude of 250 µm. The superalloy grains are deformed during the cladding process with several slip systems appearing. Near to the interf...

  8. Cladding material, tube including such cladding material and methods of forming the same

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2016-03-01

    A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and high temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.

  9. Management of cladding hulls and fuel hardware

    International Nuclear Information System (INIS)

    The reprocessing of spent fuel from power reactors based on chop-leach technology produces a solid waste product of cladding hulls and other metallic residues. This report describes the current situation in the management of fuel cladding hulls and hardware. Information is presented on the material composition of such waste together with the heating effects due to neutron-induced activation products and fuel contamination. As no country has established a final disposal route and the corresponding repository, this report also discusses possible disposal routes and various disposal options under consideration at present

  10. CAFE experiments on the flow and freezing of metal fuel and cladding melts (1) - Test conditions and overview of the results -

    International Nuclear Information System (INIS)

    For metal fueled fast reactors, assessment of the core disruptive accident (CDA) is necessary for both design and licensing. This assessment has generally addressed an initiating accident phase (fuel pin disruption and material relocation within subassemblies), followed by a transition phase (disruption of subassemblies and gross core-material relocation), and concluding in a post-accident heat removal phase (establishment of a stable, coolable configuration of core material). In order to assess the CDA, knowledge of the flow and freezing behavior of the molten core material as it moves axially through and beyond the core is required. This information is important for predicting fuel relocation during both the initiating and transition phases. For uranium-based metal fuel in stainless steel-clad fuel pins, the flow and freezing behavior of the core melt is complicated due to metallurgical interaction that will occur between the melt and the steel structures such as intact cladding, duct wall, or below-core structures. This interaction results in composition changes of the melt including eutectic formation and associated changes in the freezing temperature of the melt and other thermo-physical properties. The objectives of the Core Alloy Flow and Erosion (CAFE) experiments are to investigate the fundamental flow, metallurgical interaction, and freezing behavior of uranium-iron-type melts within iron-based trough-shaped flow channels and provide information that can support the development of mathematical models that describe the movements of molten fuel-bearing core materials during CDAs. The CAFE experiment apparatus consists principally of the induction heating system, melt flow system (comprising the crucible, flow controller cup, trough-shaped flow channel, and catch cup), confinement and ventilation system, instrumentation and control system. Melt produced in yttria-coated crucible by induction heating was received at the flow controller cup so as to prevent

  11. Development of Cr Electroplated Cladding Tube for preventing Fuel-Cladding Chemical Interaction (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hwan; Woo, Je Woong; Kim, Sung Ho; Cheon, Jin Sik; Lee, Byung Oon; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Metal fuel has been selected as a candidate fuel in the SFR because of its superior thermal conductivity as well as enhanced proliferation resistance in connection with the pyroprocessing. However, metal fuel suffers eutectic reaction (Fuel Cladding Chemical Interaction, FCCI) with the fuel cladding made of stainless steel at reactor operating temperature so that cladding thickness gradually reduces to endanger reactor safety. In order to mitigate FCCI, barrier concept has been proposed between the fuel and the cladding in designing fuel rod. Regarding this, KAERI has initiated barrier cladding development to prevent interdiffusion process as well as enhance the SFR fuel performance. Previous study revealed that Cr electroplating has been selected as one of the most promising options because of its technical and economic viability. This paper describes the development status of the Cr electroplating technology for the usage of fuel rod in SFR. This paper summarizes the status of Cr electroplating technology to prevent FCCI in metal fuel rod. It has been selected for the ease of practical application at the tube inner surface. Technical scoping, performance evaluation and optimization have been carried out. Application to the tube inner surface and in-pile test were conducted which revealed as effective.

  12. Development of Cr Electroplated Cladding Tube for preventing Fuel-Cladding Chemical Interaction (FCCI)

    International Nuclear Information System (INIS)

    Metal fuel has been selected as a candidate fuel in the SFR because of its superior thermal conductivity as well as enhanced proliferation resistance in connection with the pyroprocessing. However, metal fuel suffers eutectic reaction (Fuel Cladding Chemical Interaction, FCCI) with the fuel cladding made of stainless steel at reactor operating temperature so that cladding thickness gradually reduces to endanger reactor safety. In order to mitigate FCCI, barrier concept has been proposed between the fuel and the cladding in designing fuel rod. Regarding this, KAERI has initiated barrier cladding development to prevent interdiffusion process as well as enhance the SFR fuel performance. Previous study revealed that Cr electroplating has been selected as one of the most promising options because of its technical and economic viability. This paper describes the development status of the Cr electroplating technology for the usage of fuel rod in SFR. This paper summarizes the status of Cr electroplating technology to prevent FCCI in metal fuel rod. It has been selected for the ease of practical application at the tube inner surface. Technical scoping, performance evaluation and optimization have been carried out. Application to the tube inner surface and in-pile test were conducted which revealed as effective

  13. Initial Cladding Condition

    International Nuclear Information System (INIS)

    The purpose of this analysis is to describe the condition of commercial Zircaloy clad fuel as it is received at the Yucca Mountain Project (YMP) site. Most commercial nuclear fuel is encased in Zircaloy cladding. This analysis is developed to describe cladding degradation from the expected failure modes. This includes reactor operation impacts including incipient failures, potential degradation after reactor operation during spent fuel storage in pool and dry storage and impacts due to transportation. Degradation modes include cladding creep, and delayed hydride cracking during dry storage and transportation. Mechanical stresses from fuel handling and transportation vibrations are also included. This Analysis and Model Report (AMR) does not address any potential damage to assemblies that might occur at the YMP surface facilities. Ranges and uncertainties have been defined. This analysis will be the initial boundary condition for the analysis of cladding degradation inside the repository. In accordance with AP-2.13Q, ''Technical Product Development Planning'', a work plan (CRWMS M andO 2000c) was developed, issued, and utilized in the preparation of this document. There are constraints, caveats and limitations to this analysis. This cladding degradation analysis is based on commercial Pressurized Water Reactor (PWR) fuel with Zircaloy cladding but is applicable to Boiling Water Reactor (BWR) fuel. Reactor operating experience for both PWRs and BWRs is used to establish fuel reliability from reactor operation. It is limited to fuel exposed to normal operation and anticipated operational occurrences (i.e. events which are anticipated to occur within a reactor lifetime), and not to fuel that has been exposed to severe accidents. Fuel burnup projections have been limited to the current commercial reactor licensing environment with restrictions on fuel enrichment, oxide coating thickness and rod plenum pressures. The information provided in this analysis will be used in

  14. Initial Cladding Condition

    Energy Technology Data Exchange (ETDEWEB)

    E. Siegmann

    2000-08-22

    The purpose of this analysis is to describe the condition of commercial Zircaloy clad fuel as it is received at the Yucca Mountain Project (YMP) site. Most commercial nuclear fuel is encased in Zircaloy cladding. This analysis is developed to describe cladding degradation from the expected failure modes. This includes reactor operation impacts including incipient failures, potential degradation after reactor operation during spent fuel storage in pool and dry storage and impacts due to transportation. Degradation modes include cladding creep, and delayed hydride cracking during dry storage and transportation. Mechanical stresses from fuel handling and transportation vibrations are also included. This Analysis and Model Report (AMR) does not address any potential damage to assemblies that might occur at the YMP surface facilities. Ranges and uncertainties have been defined. This analysis will be the initial boundary condition for the analysis of cladding degradation inside the repository. In accordance with AP-2.13Q, ''Technical Product Development Planning'', a work plan (CRWMS M&O 2000c) was developed, issued, and utilized in the preparation of this document. There are constraints, caveats and limitations to this analysis. This cladding degradation analysis is based on commercial Pressurized Water Reactor (PWR) fuel with Zircaloy cladding but is applicable to Boiling Water Reactor (BWR) fuel. Reactor operating experience for both PWRs and BWRs is used to establish fuel reliability from reactor operation. It is limited to fuel exposed to normal operation and anticipated operational occurrences (i.e. events which are anticipated to occur within a reactor lifetime), and not to fuel that has been exposed to severe accidents. Fuel burnup projections have been limited to the current commercial reactor licensing environment with restrictions on fuel enrichment, oxide coating thickness and rod plenum pressures. The information provided in this analysis

  15. Pellet cladding mechanical interactions of ceramic claddings fuels under light water reactor conditions

    Science.gov (United States)

    Li, Bo-Shiuan

    Ceramic materials such as silicon carbide (SiC) are promising candidate materials for nuclear fuel cladding and are of interest as part of a potential accident tolerant fuel design due to its high temperature strength, dimensional stability under irradiation, corrosion resistance, and lower neutron absorption cross-section. It also offers drastically lower hydrogen generation in loss of coolant accidents such as that experienced at Fukushima. With the implementation of SiC material properties to the fuel performance code, FRAPCON, performances of the SiC-clad fuel are compared with the conventional Zircaloy-clad fuel. Due to negligible creep and high stiffness, SiC-clad fuel allows gap closure at higher burnup and insignificant cladding dimensional change. However, severe degradation of SiC thermal conductivity with neutron irradiation will lead to higher fuel temperature with larger fission gas release. High stiffness of SiC has a drawback of accumulating large interfacial pressure upon pellet-cladding mechanical interactions (PCMI). This large stress will eventually reach the flexural strength of SiC, causing failure of SiC cladding instantly in a brittle manner instead of the graceful failure of ductile metallic cladding. The large interfacial pressure causes phenomena that were previously of only marginal significance and thus ignored (such as creep of the fuel) to now have an important role in PCMI. Consideration of the fuel pellet creep and elastic deformation in PCMI models in FRAPCON provide for an improved understanding of the magnitude of accumulated interfacial pressure. Outward swelling of the pellet is retarded by the inward irradiation-induced creep, which then reduces the rate of interfacial pressure buildup. Effect of PCMI can also be reduced and by increasing gap width and cladding thickness. However, increasing gap width and cladding thickness also increases the overall thermal resistance which leads to higher fuel temperature and larger fission

  16. Wear resistance and hot corrosion behaviour of laser cladding Co-based alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    2Cr13 stainless steel was surface cladded with Co-based alloy using a high power carbon dioxide laser. The microstructure, wear resistance and corrosion properties of the clad layer were investigated. It is found that the high temperature corrosion behavior and wearing resistant property of the clad layer are 3 and 2.5 times higher than those of the parent metal. Under the high temperature molten lead sulphate salt corrosion condition, the clad layer fails by spalling which is caused by intergrannular corrosion within the clad layer. The fine dendritic structure and the oxide help to retard the penetration of the sulphur ion that induces the intergrannular corrosion.

  17. High Temperature Steam Corrosion of Cladding for Nuclear Applications: Experimental

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M; Garnier, John E; Sergey Rashkeev; Michael V. Glazoff; George W. Griffith; Shannong M. Bragg-Sitton

    2013-01-01

    Stability of cladding materials under off-normal conditions is an important issue for the safe operation of light water nuclear reactors. Metals, ceramics, and metal/ceramic composites are being investigated as substitutes for traditional zirconium-based cladding. To support down-selection of these advanced materials and designs, a test apparatus was constructed to study the onset and evolution of cladding oxidation, and deformation behavior of cladding materials, under loss-of-coolant accident scenarios. Preliminary oxidation tests were conducted in dry oxygen and in saturated steam/air environments at 1000OC. Tube samples of Zr-702, Zr-702 reinforced with 1 ply of a ß-SiC CMC overbraid, and sintered a-SiC were tested. Samples were induction heated by coupling to a molybdenum susceptor inside the tubes. The deformation behavior of He-pressurized tubes of Zr-702 and SiC CMC-reinforced Zr-702, heated to rupture, was also examined.

  18. EPRI fuel cladding integrity program

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R. [Electric Power Research Institute, Palo Alto, CA (United States)

    1997-01-01

    The objectives of the EPRI fuel program is to supplement the fuel vendor research to assure that utility economic and operational interests are met. To accomplish such objectives, EPRI has conducted research and development efforts to (1) reduce fuel failure rates and mitigate the impact of fuel failures on plant operation, (2) provide technology to extend burnup and reduce fuel cycle cost. The scope of R&D includes fuel and cladding. In this paper, only R&D related to cladding integrity will be covered. Specific areas aimed at improving fuel cladding integrity include: (1) Fuel Reliability Data Base; (2) Operational Guidance for Defective Fuel; (3) Impact of Water Chemistry on Cladding Integrity; (4) Cladding Corrosion Data and Model; (5) Cladding Mechanical Properties; and (6) Transient Fuel Cladding Response.

  19. Physics model describing the melting, the motion and the relocation of the clad after an undercooling accident in a liquid-metal fast breeder reactor

    International Nuclear Information System (INIS)

    In this note, we present a physics model describing after an accidental loss of flow in a annular channel, the melting, the motion and the relocalisation of the clad, with (or without) centering grids for the pin. The heating of the fuel and centering grids is also described. The equations of the model, their difference approximations and their resolution as well as the flow chart of the code are indicated. The possibilities of the code ALFA are illustrated by some examples and in particular with some calculations concerning the experiments CABRI B1 and CEFUS TR 3.1. The calculated and experimental results are in good agreement: the phenomena chronology is well described and the post morten geometry is found

  20. Fuel cladding tubes and fuel elements

    International Nuclear Information System (INIS)

    Purpose: To enable non-destructive measurement for the thickness of zirconium barriers. Constitution: Regions capable of non-destructive inspection are provided at the boundary between a fuel cladding tube made of zirconium alloy and the zirconium barrier lined to the inner circumference surface of the tube. As the regions being capable of distinguishing by ultrasonic wave reflection, solid materials, for example, non-metal materials different from that for the tube and the barrier are placed or gaps are provided at the boundary between the zirconium alloy cladding tube and the zirconium barrier. Since ultrasonic waves are reflected at each of the boundaries by the presence of these regions, thickness of the zirconium barrier can be measured in a non-destructive manner from either the inner or the outer surface of the tube. (Yoshino, Y.)

  1. Spatial mode-selective waveguide with hyperbolic cladding

    Science.gov (United States)

    Tang, Y.; Xi, Z.; Xu, M.; Bäumer, S.; Adam, A. J. L.; Urbach, H. P.

    2016-09-01

    Hyperbolic Meta-Materials~(HMMs) are anisotropic materials with permittivity tensor that has both positive and negative eigenvalues. Here we report that by using a type II HMM as cladding material, a waveguide which only supports higher order modes can be achieved, while the lower order modes become leaky and are absorbed in the HMM cladding. This counter intuitive property can lead to novel application in optical communication and photonic integrated circuit. The loss in our HMM-Insulator-HMM~(HIH) waveguide is smaller than that of similar guided mode in a Metal-Insulator-Metal~(MIM) waveguide.

  2. Aerogel-clad optical fiber

    Science.gov (United States)

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  3. Evolution of Westinghouse fuel cladding

    International Nuclear Information System (INIS)

    As the nuclear power generating industry has matured, there is an increasing trend in core operating fuel duties. At the same time, refined requirements from regulators, e.g. in the areas of LOCA and RIA, must be fulfilled. This drives a continuing evolution of cladding materials, to provide more performance margin and support even higher fuel duty designs. Cladding performance, in particular with respect to in-reactor corrosion and hydrogen pickup, has improved dramatically since Zircaloy-2 and Zircaloy-4 were established in 1952 and 1960 respectively. For Westinghouse PWR cladding, the corrosion rate has decreased by more than one order of magnitude since; going from the original Zircaloy-4 to ZIRLO® and Optimized ZIRLO™ claddings. The next generation of Westinghouse PWR cladding, AXIOM™, shows further reduction of corrosion and hydrogen pickup, most notably at very high burnup, over 70 GWD/MTU. In Westinghouse BWR fuel, a carefully optimized variant of Zircaloy-2, LK3™ cladding, continues to demonstrate excellent performance under all operating conditions to date. In order to further reduce the hydrogen pickup, a new BWR cladding alloy, HiFi™, developed by NFI, is now being verified. Data indicate a reduction of the hydrogen absorption of around 50% with respect to Zircaloy-2. This paper describes the evolution of the different PWR and BWR cladding materials, providing details of their current experience base and post-irradiation examinations. (author)

  4. Analysis of cold crack of AP1000 steam generator tube sheet cladding

    International Nuclear Information System (INIS)

    This paper discusses the causes of AP1000 Steam Generator (SG) tube sheet underclad cracking. Base metal weldability, hydrogen influence, welding techniques and weld residue stresses are all discussed in details in contributing to the underclad cracking problems. Feasible and realistic improvement plans are proposed for the AP1000 SG tube sheet cladding, including the controlling forging procurement, welding process and cladding techniques. (authors)

  5. Multiresponse Optimization of Laser Cladding Steel + VC Using Grey Relational Analysis in the Taguchi Method

    Science.gov (United States)

    Zhang, Zhe; Kovacevic, Radovan

    2016-07-01

    Laser cladding of metal matrix composite coatings (MMCs) has become an effective and economic method to improve the wear resistance of mechanical components. The clad quality characteristics such as clad height, carbide fraction, carbide dissolution, and matrix hardness in MMCs determine the wear resistance of the coatings. These clad quality characteristics are influenced greatly by the laser cladding processing parameters. In this study, American Iron and Steel Institute (AISI) 420 + 20% vanadium carbide (VC) was deposited on mild steel with a high powder direct diode laser. The Taguchi-based Grey relational method was used to optimize the laser cladding processing parameters (laser power, scanning speed, and powder feed rate) with the consideration of multiple clad characteristics related to wear resistance (clad height, carbide volume fraction, and Fe-matrix hardness). A Taguchi L9 orthogonal array was designed to study the effects of processing parameters on each response. The contribution and significance of each processing parameter on each clad characteristic were investigated by the analysis of variance (ANOVA). The Grey relational grade acquired from Grey relational analysis was used as the performance characteristic to obtain the optimal combination of processing parameters. Based on the optimal processing parameters, the phases and microstructure of the laser-cladded coating were characterized by using x-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS).

  6. Mechanisms of fuel-cladding chemical interaction: US interpretation

    International Nuclear Information System (INIS)

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  7. Explosion Clad for Upstream Oil and Gas Equipment

    Science.gov (United States)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO2 and/or H2S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  8. Complete Non-Radioactive Operability Tests for Cladding Hull Chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Emory D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Jared A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hylton, Tom D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brunson, Ronald Ray [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunt, Rodney Dale [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DelCul, Guillermo Daniel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bradley, Eric Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Non-radioactive operability tests were made to test the metal chlorination reactor and condenser and their accessories using batch chlorinations of non-radioactive cladding samples and to identify optimum operating practices and components that need further modifications prior to installation of the equipment into the hot cell for tests on actual used nuclear fuel (UNF) cladding. The operability tests included (1) modifications to provide the desired heating and reactor temperature profile; and (2) three batch chlorination tests using, respectively, 100, 250, and 500 g of cladding. During the batch chlorinations, metal corrosion of the equipment was assessed, pressurization of the gas inlet was examined and the best method for maintaining solid salt product transfer through the condenser was determined. Also, additional accessing equipment for collection of residual ash and positioning of the unit within the hot cell were identified, designed, and are being fabricated.

  9. Weld overlay cladding with iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    The hot and cold cracking tendencies of some early iron aluminide alloy compositions have limited their use in applications where good weldability is required. Using hot crack testing techniques invented at ORNL, and experimental determinations of preheat and postweld heat treatment needed to avoid cold cracking, we have developed iron aluminide filler metal compositions which can be successfully used to weld overlay clad various substrate materials, including 9Cr-1Mo steel, 2-1/4Cr-1Mo steel, and 300-series austenitic stainless steels. Dilution must be carefully controlled to avoid crack-sensitive deposit compositions. The technique used to produce the current filler metal compositions is aspiration-casting, i.e. drawing the liquid from the melt into glass rods. Future development efforts will involve fabrication of composite wires of similar compositions to permit mechanized gas tungsten arc (GTA) and/or gas metal arc (GMA) welding.

  10. Elimination of Start/Stop defects in laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; Eekma, M.; Hemmati, I.; De Hosson, J. Th. M.

    2012-01-01

    Laser cladding represents an advanced hard facing technology for the deposition of hard, corrosion and wear resistant layers of controlled thickness onto a selected area of metallic substrate. When a circular geometry is required, the beginning and the end of the laser track coincide in the same are

  11. Microstrain Determination in Individual Grains of Laser Deposited Cladding Layers

    NARCIS (Netherlands)

    de Oliveira, Uazir O. B.; Ocelik, Vaclav; De Hosson, Jeff T. M.; Chandra, T; Tsuzaki, K; Militzer, M; Ravindran, C

    2007-01-01

    The laser cladding technique makes the deposition of thick metallic, wear and corrosion resistant coatings feasible on weaker substrates. During the process, localized high thermal gradients generate internal stresses that may cause cracking when these overcome the fracture stress. To explain the fo

  12. High power cladding light strippers

    Science.gov (United States)

    Wetter, Alexandre; Faucher, Mathieu; Sévigny, Benoit

    2008-02-01

    The ability to strip cladding light from double clad fiber (DCF) fibers is required for many different reasons, one example is to strip unwanted cladding light in fiber lasers and amplifiers. When removing residual pump light for example, this light is characterized by a large numerical aperture distribution and can reach power levels into the hundreds of watts. By locally changing the numerical aperture (N.A.) of the light to be stripped, it is possible to achieve significant attenuation even for the low N.A. rays such as escaped core modes in the same device. In order to test the power-handling capability of this device, one hundred watts of pump and signal light is launched from a tapered fusedbundle (TFB) 6+1x1 combiner into a high power-cladding stripper. In this case, the fiber used in the cladding stripper and the output fiber of the TFB was a 20/400 0.06/0.46 N.A. double clad fiber. Attenuation of over 20dB in the cladding was measured without signal loss. By spreading out the heat load generated by the unwanted light that is stripped, the package remained safely below the maximum operating temperature internally and externally. This is achieved by uniformly stripping the energy along the length of the fiber within the stripper. Different adhesive and heat sinking techniques are used to achieve this uniform removal of the light. This suggests that these cladding strippers can be used to strip hundreds of watts of light in high power fiber lasers and amplifiers.

  13. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, W., E-mail: wyman.zhuang@dsto.defence.gov.au [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Liu, Q.; Djugum, R.; Sharp, P.K. [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Paradowska, A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2232 (Australia)

    2014-11-30

    Highlights: • Deep surface rolling as a post-repair enhancement technology was applied to the laser cladded 7075-T651 aluminium alloy specimens that simulated corrosion damage blend-out repair. • The residual stresses induced by the deep surface rolling process were measured. • The deep surface rolling process can introduce deep and high magnitude compressive residual stresses beyond the laser clad and substrate interface. • Spectrum fatigue test showed the fatigue life was significantly increased by deep surface rolling. - Abstract: Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface.

  14. Technical committee meeting on fuel and cladding interaction. Summary report

    International Nuclear Information System (INIS)

    Experiments and experiences concerning fuel-cladding interaction in thermal and fast neutron flux burnup are dealt with. A number of results from in-pile and out-of pile experiments with different fuel pins with cladding made of different stainless steels showed the importance of corrosion process, dependent on the burnup, core temperature, metal-oxide ratio, and other steady state parameters in the core of fast reactors (most frequently LMFBRs). This is of importance for fuel pins design and fabrication. Mixed oxide fuel is treated in many cases

  15. Development of Co-Pilgering Process for Manufacturing Double Clad Tubes for Accident Tolerant Fuel

    International Nuclear Information System (INIS)

    Accident Tolerant Fuels (ATF) are those that, in comparison with the standard UO2 - Zr system, can tolerate loss of active cooling in the core for a considerably longer time period (depending on the accident scenario), while maintaining or improving the fuel performance during normal operations. ATF cladding development efforts focus on materials with more benign steam reaction. For this, advanced steels (e.g. FeCrAl), refractory metals (e.g. Mo), ceramic cladding (SiC), Innovative alloys with dopants, zirconium alloy with coating or sleeve are being developed. Single material like zirconium alloy as clad may not be compatible with both fuel and coolant at elevated temperatures in accident scenario. Double clad tube is one of the prime concepts which has to be explored to develop ATF cladding. Two different clad materials- one oxidant resistant (like FeCrAl) and the other, fuel compatible (like Zr-4) constitute together as outer and inner tube to form ATF cladding. Bonding two different tubes in controlled thickness ratios and with almost no gap in between is utmost difficult. Different types of processes are available for production of double clad tubes such as coating, co-extrusion, co- drawing, internal expansion/external compaction, explosive bonding, co-pilgering etc,. Nuclear Fuel Complex (NFC), India has successfully demonstrated manufacturing of double clad tube by co-pilgering process where in outer cladding is of modified 9Cr-1Mo Steel and inner liner is of zircaloy-4. Considering different deformation behaviour of above materials during pilgering, fabrication of double clad tube is very critical. Optimization of tube dimensions like outer diameter and wall thickness at pre and final stages during pilgering is very important to achieve the required overall tube dimension and bonding between the tubes. This paper gives the methodology of manufacture of Double Clad Tubes by pilgering and the bonding between the two materials achieved in this process

  16. Study on laser welding of fuel clad tubes and end plugs made of modified 9Cr-1Mo steel for metallic fuel of Fast Breeder Reactors

    Science.gov (United States)

    Harinath, Y. V.; Gopal, K. A.; Murugan, S.; Albert, S. K.

    2013-04-01

    A procedure for Pulsed Laser Beam Welding (PLBW) has been developed for fabrication of fuel pins made of modified 9Cr-1Mo steel for metallic fuel proposed to be used in future in India's Fast Breeder Reactor (FBR) programme. Initial welding trials of the samples were carried out with different average power using Nd-YAG based PLBW process. After analyzing the welds, average power for the weld was optimized for the required depth of penetration and weld quality. Subsequently, keeping the average power constant, the effect of various other welding parameters like laser peak power, pulse frequency, pulse duration and energy per pulse on weld joint integrity were studied and a procedure that would ensure welds of acceptable quality with required depth of penetration, minimum size of fusion zone and Heat Affected Zone (HAZ) were finalized. This procedure is also found to reduce the volume fraction delta-ferrite in the fusion zone.

  17. Local strain in cladding tube due to radial pellet cracking

    International Nuclear Information System (INIS)

    A study was made to develop a method for evaluation of the local strain in a cladding tube of the Advanced Thermal Reactor due to radial cracking of a UO2 fuel pellet. Effects of the number of cracks, initial crack width and the friction coefficient of a pellet-clad interface on behaviors of the local strain in a cladding tube were evaluated with a modelized experiment. A Zircaloy-2 ring specimen with inner diameter of 95 mm, height of 25 mm and wall thickness of 5 mm was expanded at room temperature with equally divided peripheral dice of a tool steel set in a specimen. The dice were divided into 8, 12 or 16 pieces. For each dividing number, two dice edge geometries were prepared, that is, not chamfered and chamfered by 2 mm. Strains of an external surface of the specimen were measured with 28 wire strain gages with gage length of 0.3 mm. The friction coefficient on the pellet-clad contact surface was not measured, but two friction conditions were prepared. One was metal-metal contact and the other was a contact surface coated with teflon film. The estimated friction coefficient was 0.1 for the former and 0.05 for the latter. An elastic-plastic analysis was carried out in order to evaluate the membrane hoop strain in the cladding tube. The analysis was made under two conditions. One was a plane stress condition of a radial and hoop stress which resembled the state of stress-strain developed in the ring specimen. The other was a plane strain condition of a radial and hoop strain which approximated the stress-strain state in a cladding tube

  18. Development of specimen preparation techniques for pitting potential measurement of irradiated fuel cladding tubes

    International Nuclear Information System (INIS)

    By the effect of the Great East Japan Earthquake, seawater was injected into spent fuel pools in unit 2, 3 and 4 at Fukushima Daiichi nuclear plant in order to cool spent fuels. It is known that chloride ion contained in seawater could cause pitting corrosion for metallic materials. It was concerned that radioactive products inside of fuel cladding tubes might be escaped through the pits. Therefore we have investigated the pit initiation condition of fuel cladding tubes by measuring pitting potential in order to evaluate stability of the enclosure function of fuel cladding tubes in spent fuel pools containing sea salt. In this report, we describe the development of specimen preparation techniques for pitting measurement of spent fuel cladding tubes having high radioactivity. By accomplishing of the development of the specimen preparation techniques, we could evaluate pit initiation condition of spent fuel cladding tubes in water containing sea salt. (author)

  19. Clad Degradation - FEPs Screening Arguments

    Energy Technology Data Exchange (ETDEWEB)

    E. Siegmann

    2004-03-17

    The purpose of this report is to document the screening of the cladding degradation features, events, and processes (FEPs) for commercial spent nuclear fuel (CSNF). This report also addresses the effect of some FEPs on both the cladding and the CSNF, DSNF, and HLW waste forms where it was considered appropriate to address the effects on both materials together. This report summarizes the work of others to screen clad degradation FEPs in a manner consistent with, and used in, the Total System Performance Assessment-License Application (TSPA-LA). This document was prepared according to ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA'' (BSC 2004a [DIRS 167796]).

  20. Clad Degradation - FEPs Screening Arguments

    International Nuclear Information System (INIS)

    The purpose of this report is to document the screening of the cladding degradation features, events, and processes (FEPs) for commercial spent nuclear fuel (CSNF). This report also addresses the effect of some FEPs on both the cladding and the CSNF, DSNF, and HLW waste forms where it was considered appropriate to address the effects on both materials together. This report summarizes the work of others to screen clad degradation FEPs in a manner consistent with, and used in, the Total System Performance Assessment-License Application (TSPA-LA). This document was prepared according to ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA'' (BSC 2004a [DIRS 167796])

  1. Pin clad strains in Phenix

    International Nuclear Information System (INIS)

    The Phenix reactor has operated for 4 years in a satisfactory manner. The first 2 sub-assembly loadings contained pins clad in solution treated 316. The principal pin strains are: diametral strain (swelling and irradiation creep), ovality and spiral bending of the pin (interaction of wire and pin cluster and wrapper). A pin cluster irradiated to a dose of 80 dpa F reached a pin diameter strain of 5%. This strain is principally due to swelling (low fission gas pressure). The principal parameters governing the swelling are instantaneous dose, time and temperature for a given type of pin cladding. Other types of steel are or will be irradiated in Phenix. In particular, cold-worked titanium stabilised 316 steel should contribute towards a reduction in the pin clad strains and increase the target burn-up in this reactor. (author)

  2. High-Precision Measurement of Small Distance Utilizing the Symmetrical Metal-Cladding Waveguide%基于对称金属包覆波导的高精度微位移测量

    Institute of Scientific and Technical Information of China (English)

    桑明煌; 李新华; 余子星; 戴海浪

    2013-01-01

    Based on the ultra-high order mode with high-sensitivity to the variance of incidence angle in the symmetry metal-cladding waveguide,a real-time and high-precision micro-displacement measurement method has been theoretically analyzed and experimentally demonstrated.It is shown that the piezoelectric material is not placed in the guiding layer but connected with one mirror,and that the combination of piezoelectric material and mirror is located at the focal plane of one convex lens.In particular,when a voltage is applied to the piezoelectric material,the resulted micro-displacement will give rise to a tiny variance of incidence angle in the light coming back from the convex lens,and then a sharp change in the reflected light intensity will be obtained.The experiment shows that the microdisplacement measurement resolution is 0.5 nm and the measurement range is 170 nm,and furthermore,this scheme is of simple structure,real-time measurement and may be of potential application in micro-electro-mechanical systems and fine control area.%利用对称金属包覆波导中超高阶导模对入射角度高度灵敏的特性,提出了一种新型的实时高精度微位移测量方法.与将压电材料置于导波层中不同,该方法是在压电材料上粘合一平面镜,并放置于一凸透镜的焦平面处.当对压电材料加载电压而产生微位移时,经凸透镜返回的2条边缘光线会产生微小的入射角度变化,从而引起反射光强的急剧改变.该方法的微位移测量精度和测量范围分别为0.5和170nm,且具有结构简单、实时测量等优点,可应用于微机电系统和精密控制领域.

  3. Weld overlay cladding with iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The author has established a range of compositions for these alloys within which hot cracking resistance is very good, and within which cold cracking can be avoided in many instances by careful control of welding conditions, particularly preheat and postweld heat treatment. For example, crack-free butt welds have been produced for the first time in 12-mm thick wrought Fe{sub 3}Al plate. Cold cracking, however, still remains an issue in many cases. The author has developed a commercial source for composite weld filler metals spanning a wide range of achievable aluminum levels, and are pursuing the application of these filler metals in a variety of industrial environments. Welding techniques have been developed for both the gas tungsten arc and gas metal arc processes, and preliminary work has been done to utilize the wire arc process for coating of boiler tubes. Clad specimens have been prepared for environmental testing in-house, and a number of components have been modified and placed in service in operating kraft recovery boilers. In collaboration with a commercial producer of spiral weld overlay tubing, the author is attempting to utilize the new filler metals for this novel application.

  4. Clad plates for construction of apparatus

    International Nuclear Information System (INIS)

    Importance of clad plates on the field of the construction of apparatus for the chemistry and petrol chemistry. Description of a cladding process to bond permanently and integrally ferritic steels and corrosion resistant and heat resistant materials by rolling. Information on available combinations of materials and gauge as well as on indispensable requirements to be met by the quality of the material. Results of tests carried out on the bond. Distribution of the elements between the clad and the base material. Bond properties, corrosion behaviour, toughness values and tensile properties of clad plates, heat treatment, cutting and welding of clad plates. Demonstration of applications. (orig.)

  5. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    International Nuclear Information System (INIS)

    The technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel are summarized. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. Dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved about 15,000 fuel rods, and about 5600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 5700C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at about 2700C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the US. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 3800C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 4000C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved

  6. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate—the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  7. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  8. Production and inspection of zircaloy fuel cladding tubes

    International Nuclear Information System (INIS)

    Zircaloy fuel cladding tubes are used for light and heavy water reactors. The tubes are basically produced in accordance with the ASTM B353 ''Standard specification for wrought zirconium and zirconium alloy seamless and welded tubes for nuclear service''. The production procedure for the zircaloy tubes is composed of consumable electrode are melting, forging, heat treatment, extruding, cold rolling, annealing, final roll reform and surface grinding. Concerning these producing procedure, the key points of each process relating to the material characteristics and the producing machines are presented. Next, the inspection of zircaloy fuel cladding tubes is outlined. The inspection standard of ASTM B 353-77 is tabulated as an example. Ultrasonic inspection and surface visual inspection as the flaw inspection methods, the dimensional inspection by ultrasonic pulse method for measuring the diameter and the wall thickness, electric and air micrometers for measuring the inner and outer diameters, and the ultrasonic resonance method for measuring the wall thickness, and the straightness inspection of tubes using a surface plate are explained. The mechanical tests for the zircaloy cladding tubes, such as the tensile test and the burst test, are described. The metal structure test, the corrosion test and the chemical analysis are outlined, and the characteristics of zircaloy cladding tubes for BWRs and PWRs are tabulated. (Nakai, Y.)

  9. Direct Laser Cladding , Current Status and Future Scope of Application

    Science.gov (United States)

    Weisheit, A.; Gasser, A.; Backes, G.; Jambor, T.; Pirch, N.; Wissenbach, K.

    During the last decades Direct Laser Cladding has become an established technique in many industrial fields for applying wear and corrosion protection layers on metallic surfaces as well as for the repair of high value-added components. The most important application fields are die and tool making, turbine components for aero engines and power generation, machine components such as axes and gears, and oil drilling components. Continuous wave (CW) lasers with a power up to 18 kW are used on automated machines with three or more axes, enabling 3D cladding . The outstanding feature of DLC is the high precision which leads to a minimum heat input into the work piece and a very low distortion. Due to the high cooling rates a fine grained microstructure is achieved during solidification. A new development in laser cladding is micro cladding in a size range below 50 \\upmum especially for electronic and medical applications. Furthermore, additive manufacturing is coming again into focus as a clean and resource-efficient method to manufacture and modify functional prototypes as well as unique and small lot parts.

  10. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  11. CLAD DEGRADATION - FEPS SCREENING ARGUMENTS

    International Nuclear Information System (INIS)

    The purpose of this report is to evaluate and document the screening of the clad degradation features, events, and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment-License Application (TSPA-LA). This report also addresses the effect of certain FEPs on both the cladding and the commercial spent nuclear fuel (CSNF), DOE-owned spent nuclear fuel (DSNF), and defense high-level waste (DHLW) waste forms, as appropriate to address the effects on multiple materials and both components (FEPs 2.1.09.09.0A, 2.1.09.11.0A, 2.1.11.05.0A, 2.1.12.02.0A, and 2.1.12.03.0A). These FEPs are expected to affect the repository performance during the postclosure regulatory period of 10,000 years after permanent closure. Table 1-1 provides the list of cladding FEPs, including their screening decisions (include or exclude). The primary purpose of this report is to identify and document the analysis, screening decision, and TSPA-LA disposition (for included FEPs) or screening argument (for excluded FEPs) for these FEPs related to clad degradation. In some cases, where a FEP covers multiple technical areas and is shared with other FEP reports, this report may provide only a partial technical basis for the screening of the FEP. The full technical basis for shared FEPs is addressed collectively by the sharing FEP reports. The screening decisions and associated TSPA-LA dispositions or screening arguments from all of the FEP reports are cataloged in a project-specific FEPs database

  12. CLAD DEGRADATION - FEPS SCREENING ARGUMENTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Schreiner

    2004-10-21

    The purpose of this report is to evaluate and document the screening of the clad degradation features, events, and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment-License Application (TSPA-LA). This report also addresses the effect of certain FEPs on both the cladding and the commercial spent nuclear fuel (CSNF), DOE-owned spent nuclear fuel (DSNF), and defense high-level waste (DHLW) waste forms, as appropriate to address the effects on multiple materials and both components (FEPs 2.1.09.09.0A, 2.1.09.11.0A, 2.1.11.05.0A, 2.1.12.02.0A, and 2.1.12.03.0A). These FEPs are expected to affect the repository performance during the postclosure regulatory period of 10,000 years after permanent closure. Table 1-1 provides the list of cladding FEPs, including their screening decisions (include or exclude). The primary purpose of this report is to identify and document the analysis, screening decision, and TSPA-LA disposition (for included FEPs) or screening argument (for excluded FEPs) for these FEPs related to clad degradation. In some cases, where a FEP covers multiple technical areas and is shared with other FEP reports, this report may provide only a partial technical basis for the screening of the FEP. The full technical basis for shared FEPs is addressed collectively by the sharing FEP reports. The screening decisions and associated TSPA-LA dispositions or screening arguments from all of the FEP reports are cataloged in a project-specific FEPs database.

  13. The state-of-the-art laser bio-cladding technology

    Science.gov (United States)

    Liu, Jichang; Fuh, J. Y. H.; Lü, L.

    2010-11-01

    The current state and future trend of laser bio-cladding technology are discussed. Laser bio-cladding is used in implants including fabrication of metal scaffolds and bio-coating on the scaffolds. Scaffolds have been fabricated from stainless steel, Co-based alloy or Ti alloy using laser cladding, and new laser-deposited Ti alloys have been developed. Calcium phosphate bioceramic coatings have been deposited on scaffolds with laser to improve the wear resistence and corrosion resistence of implants and to induce bone regeneration. The types of biomaterial devices currently available in the market include replacement heart valve prosthesis, dental implants, hip/knee implants, catheters, pacemakers, oxygenators and vascular grafts. Laser bio-cladding process is attracting more and more attentions of people.

  14. Vanadium diffusion coating on HT-9 cladding for mitigating the fuel cladding chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Wei-Yang; Yang, Yong, E-mail: yongyang@ufl.edu

    2014-08-01

    Fuel cladding chemical interaction (FCCI) has been identified as one of the crucial issues for developing Ferritic/Martensitic (F/M) stainless steel claddings for metallic fuels in a fast reactor. The anticipated elevated temperature and high neutron flux can significantly aggravate the FCCI, in terms of formation of inter-diffusion and lower melting point eutectic phases. To mitigate the FCCI, vanadium carbide coating as a diffusion barrier was deposited on the HT-9 substrate using a pack cementation diffusion coating (PCDC) method, and the processing temperature was optimized down to 730 °C. A solid metallurgical bonding between the coating layer and substrate was achieved, and the coating is free from through depth cracks. The microstructural characterizations using SEM and TEM show a nanostructured grain structure. EDS/WDS and XRD analysis confirm the phase of coating layer as V{sub 2}C. Diffusion couple tests at 660 °C for 100 h demonstrate that V{sub 2}C layer with a thickness of less than 5 μm can effectively eliminate the inter-diffusion between the lanthanide cerium and HT-9 steel.

  15. Vanadium diffusion coating on HT-9 cladding for mitigating the fuel cladding chemical interactions

    Science.gov (United States)

    Lo, Wei-Yang; Yang, Yong

    2014-08-01

    Fuel cladding chemical interaction (FCCI) has been identified as one of the crucial issues for developing Ferritic/Martensitic (F/M) stainless steel claddings for metallic fuels in a fast reactor. The anticipated elevated temperature and high neutron flux can significantly aggravate the FCCI, in terms of formation of inter-diffusion and lower melting point eutectic phases. To mitigate the FCCI, vanadium carbide coating as a diffusion barrier was deposited on the HT-9 substrate using a pack cementation diffusion coating (PCDC) method, and the processing temperature was optimized down to 730 °C. A solid metallurgical bonding between the coating layer and substrate was achieved, and the coating is free from through depth cracks. The microstructural characterizations using SEM and TEM show a nanostructured grain structure. EDS/WDS and XRD analysis confirm the phase of coating layer as V2C. Diffusion couple tests at 660 °C for 100 h demonstrate that V2C layer with a thickness of less than 5 μm can effectively eliminate the inter-diffusion between the lanthanide cerium and HT-9 steel.

  16. Advanced Fuels Campaign Cladding & Coatings Meeting Summary

    Energy Technology Data Exchange (ETDEWEB)

    Not Listed

    2013-03-01

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) organized a Cladding and Coatings operational meeting February 12-13, 2013, at Oak Ridge National Laboratory (ORNL). Representatives from the U.S. Department of Energy (DOE), national laboratories, industry, and universities attended the two-day meeting. The purpose of the meeting was to discuss advanced cladding and cladding coating research and development (R&D); review experimental testing capabilities for assessing accident tolerant fuels; and review industry/university plans and experience in light water reactor (LWR) cladding and coating R&D.

  17. Ultrasonic monitoring of material processing using clad buffer rod sensors

    Science.gov (United States)

    Ramos Franca, Demartonne

    Ultrasonic sensors and techniques are developed for in-line monitoring of polymer extrusion, cleanliness of molten metals and liquid flow speed at elevated temperature. Pulse-echo mode is used for the first two processes, while the through-transmission mode is applied in the third one. The ultrasonic probe consists of high performance clad buffer rods with different dimensions to thermally isolate the commercial ultrasonic transducer from materials at high temperature. The clad buffer rods are made of steel, polymer and ceramic. Steel clad buffer rods are introduced for in-line monitoring of polymer extrusion processes. Owing to its superior performance in pulse-echo mode, for the first time such a probe is installed and performs ultrasonic monitoring in the die of a co-extrusion machine and in the barrel section of a twin-screw extruder. It can reveal a variety of information relevant to process parameters, such as polymer layer thickness, interface location and adhesion quality, stability, or polymer composition change. For the ultrasonic monitoring of polymer processes, probes with acoustic impedance that matches that of the processed polymer may offer certain advantages such as quantitative viscoelastic evaluation; thus high temperature polymer clad buffer rods, in particular PEEK, are developed. It is demonstrated that this new probe exhibits unique advantages for in-line monitoring of the cure of epoxies and polymer extrusion process. Long steel clad buffer rods with a spherical focus lens machined at the probing end are proposed for cleanliness evaluation of molten metals. The potential of this focusing probe is demonstrated by means of high-resolution imaging and particles detection in molten zinc at temperatures higher than 600°C, using a single probe operated at pulse-echo mode. A contrapropagating ultrasonic flowmeter employing steel clad buffer rods is devised to operate at high temperature. It is demonstrated that these rods guide ultrasonic signals

  18. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guoping [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong [Univ. of Florida, Gainesville, FL (United States)

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.

  19. Inversion Solidification Cladding of H90-Steel

    Institute of Scientific and Technical Information of China (English)

    LI Bao-mian; XU Guang-ming; CUI Jian-zhong

    2008-01-01

    The variation law of cladding thickness as well as the structures and properties of H90-steel clad strip produced by inversion solidification was studied.The interface bonding mechanisms were approached.It is found that the thickness of H90 cladding goes sequentially through the solidification growth stage,holding stage,and remelting stage,with an increase in immersion time.The higher the preheating temperature of the steel coil,the thicker is the maximum cladding thickness.Observation by using optical microscopy (OM) and the electron probe microanalyzer (EPMA) shows that the microstrueture of H90 cladding is composed of equiaxed grains,and that interdiffusion between Cu and Fe at interface occurs but obvious diffusion of Zn and the intermetallic layer are not observed.The diffusion layer is thin and about 4 μm.Multipass small reduction cold rolling and repeated bending tests show that the interface is firmly bonded.Tensile test shows that the mechanical properties of the as-clad strips can meet the requirements of GB5213-2001 for the F-grade deep-drawing steel plate though there is a slight difference in the mechanical properties among the clad strips with different cladding thickness.

  20. Cladding Alloys for Fluoride Salt Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Walker, Larry R [ORNL; Santella, Michael L [ORNL; Holcomb, David Eugene [ORNL

    2011-06-01

    This report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for cladding large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high-power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for cladding inaccessible surfaces such as the interior surfaces of heat exchangers. An initial evaluation for performed on the quality of nickel claddings processed using the two selected cladding techniques.

  1. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.A.; Amado, J.M.; Tobar, M.J.; Mateo, M.P.; Yañez, A.; Nicolas, G., E-mail: gines@udc.es

    2015-05-01

    Highlights: • Chemical mapping and profiling by laser-induced breakdown spectroscopy (LIBS) of coatings produced by laser cladding. • Production of laser clads using tungsten carbide (WC) and nickel based matrix (NiCrBSi) powders. • Calibration by LIBS of hardfacing alloys with different WC concentrations. - Abstract: Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  2. FY 2014 Status Report: of Vibration Testing of Clad Fuel (M4FT-14OR0805033)

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [ORNL

    2014-03-28

    The DOE Used Fuel Disposition Campaign (UFDC) tasked Oak Ridge National Laboratory (ORNL) to investigate the behavior of light-water-reactor (LWR) fuel cladding material performance related to extended storage and transportation of UNF. ORNL has been tasked to perform a systematic study on UNF integrity under simulated normal conditions of transportation (NCT) by using the recently developed hot-cell testing equipment, Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT). To support the testing on actual high-burnup UNF, fast-neutron irradiation of pre-hydrided zirconium-alloy cladding in the High Flux Isotope Reactor (HFIR) at elevated temperatures will be used to simulate the effects of high-burnup on fuel cladding for help in understanding the cladding materials properties relevant to extended storage and subsequent transportation. The irradiated pre-hydrided metallic materials testing will generate baseline data to benchmark hot-cell testing of the actual high-burnup UNF cladding. More importantly, the HFIR-irradiated samples will be free of alpha contamination and can be provided to researchers who do not have hot cell facilities to handle highly contaminated high-burnup UNF cladding to support their research projects for the UFDC.

  3. Rapid manufacturing by laser sintering and laser cladding; Rapid Manufacturing durch Lasersintern und 3D-Laserstrahl-Auftragschweissen

    Energy Technology Data Exchange (ETDEWEB)

    Haferkamp, H. [Laser Zentrum Hannover e.V. (Germany); Alvensleben, F. von [Laser Zentrum Hannover e.V. (Germany); Gerken, J. [Laser Zentrum Hannover e.V. (Germany)

    1995-06-01

    Among the technologies which are under development for the direct production of metal components, the laser-supported techniques laser sintering and laser cladding offer positive expectations for industrial use. Founded on extensive work in the field of laser cladding of functional layers [1,2], results have been gathered at the Laser Zentrum Hannover (LZH) concerning the direct manufacturing of metal parts by laser supported techniques [3,4]. The different processes and first results concerning the build-up of metal parts mainly by laser sintering are described in this paper. During the investigation, the suitability of metals such as copper, nickel, aluminium and aluminium-bronze alloy for laser sintering without binders was tested. In addition, metal parts produced by laser cladding and a possibility of process monitoring are shown. For more details see 5 Extended Abstract. (orig.)

  4. Technical development of double-clad process for thin strip casting of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.L.; Forkel, C.E.; Knudson, D.L.

    1984-08-01

    This report documents the technical development for a patent disclosure of a double-clad process for the continuous casting of thin-strip carbon steel. The fundamental idea of the disclosure is to form a product strip by depositing molten steel between two, cooled, clad strips of the same material. The claimed benefits include: (a) the conservation of energy in steel making through the elimination of soaking pits and reheat cycles, and (b) an improved surface on both sides of the as-cast product such that it will be suitable for direct feed to a cold-reduction mill. However, the process as conceived is not necessarily limited to the casting of carbon steel, but may be also applied to other metals and alloys. The work is described under three headings as follows. Preliminary Considerations and Scoping Analysis presents the basic idea of the double-clad, thin-strip casting process; the energy conservation potential; scoping heat transfer calculations for the casting process; and independent review of this work. Thermal Analysis for Roller Configuration of Double-Clad Process, presents the development, results, and independent review of a finite-element thermal analysis for the casting process as originally conceived (using only chilled rollers in direct contact with the clad material of the product strip). Further Considerations for Belt Configuration of Double-Clad Process deals with a modified equipment design which interposes two product support belts, one on each side of the product, between the clad strip and the rollers. In addition to the process description, this section presents the preliminary mechanical calculations for the endless metal belts and the work scope and results for the computer model revision and thermal analysis for the modified concept.

  5. TEC – Thin Environmental Cladding

    Directory of Open Access Journals (Sweden)

    Alan Tomasi

    2015-05-01

    Full Text Available Permasteelisa Group developed with Fiberline Composites a new curtain wall system (Thin Environmental Cladding or TEC, making use of pultruded GFRP (Glass Fiber Reinforced Polymer material instead of traditional aluminum. Main advantages using GFRP instead of aluminum are the increased thermal performance and the limited environmental impact. Selling point of the selected GFRP resin is the light transmission, which results in pultruded profiles that allow the visible light to pass through them, creating great aesthetical effects. However, GFRP components present also weaknesses, such as high acoustic transmittance (due to the reduced weight and anisotropy of the material, low stiffness if compared with aluminum (resulting in higher facade deflection and sensible fire behavior (as combustible material. This paper will describe the design of the TEC-facade, highlighting the functional role of glass within the facade concept with regards to its acoustic, structural, aesthetics and fire behavior.

  6. Elastic-plastic deformation of a nuclear fuel cladding specimen under the internal pressure of a polymer pellet

    International Nuclear Information System (INIS)

    Full text: During the operation of light water reactors, corrosion results into the development of an oxide layer, on the external surface of zirconium alloy fuel cladding, and the introduction of hydrogen into the metal (Zr+2H2O→ZrO2+2H2). Initially, hydrogen is in solid solution and diffuses towards regions of low hydrogen concentration, high hydrostatic stress and low temperature. However, with increasing time of reactor operation, the hydrogen concentration may exceed its terminal solid solubility and brittle zirconium hydrides may precipitate. Indeed hydrides are present in high burn-up fuel cladding, which is therefore more susceptible to failure, depending on hydride volume fraction and existing defects in the oxide layer. The expansion due to compression (EDC) test has been developed for the study of irradiated and hydrided cladding failure, under high hoop strain rates, which are expected during a reactivity initiated accident (RIA). During this test, a piece of cladding tube is circumferentially loaded in tension due to the expansion of a polymer pellet, axially compressed inside the tube. A finite element simulation of the EDC-test is discussed. The objective of the study is: (i) to understand the deformation of the cladding, during the experiment, including the effect of cladding material properties, and (ii) to provide information, necessary for the development of failure criteria. The distributions of important field quantities with respect to the damage of the cladding are derived together with the evolution of their maximum values, during loading. It is shown that, before cladding yielding as well as after substantial plastic deformation, the radial displacement, on the external surface, and the total energy per unit volume, when appropriately normalized, vary along the cladding axis according to specific distributions, which do not depend on the level of loading. This characteristic of cladding deformation is useful for the interpretation of

  7. CALCULATION OF STRESS AND DEFORMATION IN FUEL ROD CLADDING DURING PELLET-CLADDING INTERACTION

    Directory of Open Access Journals (Sweden)

    Dávid Halabuk

    2015-12-01

    Full Text Available The elementary parts of every fuel assembly, and thus of the reactor core, are fuel rods. The main function of cladding is hermetic separation of nuclear fuel from coolant. The fuel rod works in very specific and difficult conditions, so there are high requirements on its reliability and safety. During irradiation of fuel rods, a state may occur when fuel pellet and cladding interact. This state is followed by changes of stress and deformations in the fuel cladding. The article is focused on stress and deformation analysis of fuel cladding, where two fuels are compared: a fresh one and a spent one, which is in contact with cladding. The calculations are done for 4 different shapes of fuel pellets. It is possible to evaluate which shape of fuel pellet is the most appropriate in consideration of stress and deformation forming in fuel cladding, axial dilatation of fuel, and radial temperature distribution in the fuel rod, based on the obtained results.

  8. Instrumentation. Nondestructive Examination for Verification of Canister and Cladding Integrity - FY2013 Status Update

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Denslow, Kayte M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crawford, Susan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    This report documents FY13 efforts for two instrumentation subtasks under storage and transportation. These instrumentation tasks relate to developing effective nondestructive evaluation (NDE) methods and techniques to (1) verify the integrity of metal canisters for the storage of used nuclear fuel (UNF) and to (2) characterize hydrogen effects in UNF cladding to facilitate safe storage and retrieval.

  9. Microstructure and abrasive wear studies of laser clad Al-Si/SiC composite coatings

    NARCIS (Netherlands)

    Anandkumar, R.; Colaco, R.; Ocelik, V.; De Hosson, J. Th. M.; Vilar, R.; Gyulai, J; Szabo, PJ

    2007-01-01

    Surface coatings of Al-Si/SiC metal-matrix composites were deposited on Al-7 wt. % Si alloy substrates by laser cladding. The microstructure of the coatings was characterized by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The microstructure of the coating mate

  10. Explosive Cladding of Titanium and Aluminium Alloys on the Example of Ti6Al4V-AA2519 Joints / Wybuchowe Platerowanie Stopów Tytanu I Aluminium Na Przykładzie Połączenia Ti6Al4V-AA2519

    Directory of Open Access Journals (Sweden)

    Gałka A.

    2015-12-01

    Full Text Available Explosive cladding is currently one of the basic technologies of joining metals and their alloys. It enables manufacturing of the widest range of joints and in many cases there is no alternative solution. An example of such materials are clads that include light metals such as titanium and aluminum. ach new material combination requires an appropriate adaptation of the technology by choosing adequate explosives and tuning other cladding parameters. Technology enabling explosive cladding of Ti6Al4V titanium alloy and aluminum AA2519 was developed. The clads were tested by means of destructive and nondestructive testing, analyzing integrity, strength and quality of the obtained joint.

  11. GSGG edge cladding development: Final technical report

    International Nuclear Information System (INIS)

    The objectives of this project have been: (1) Investigate the possibility of chemical etching of GSGG crystal slabs to obtain increased strength. (2) Design and construct a simplified mold assembly for casting cladding glass to the edges of crystal slabs of different dimensions. (3) Conduct casting experiments to evaluate the redesigned mold assembly and to determine stresses as function of thermal expansion coefficient of cladding glass. (4) Clad larger sizes of GGG slabs as they become available. These tasks have been achieved. Chemical etching of GSGG slabs does not appear possible with any other acid than H3PO4 at temperatures above 3000C. A mold assembly has been constructed which allowed casting cladding glass around the edges of the largest GGG slabs available (10 x 20 x 160 mm) without causing breakage through the annealing step

  12. Determination of fuel-clad thermal gap conductance by use of Kalman filter methods

    International Nuclear Information System (INIS)

    Kalman filter methodology has been applied to an in-pile liquid-metal fast breeder reactor simulation experiment to obtain estimates of the fuel-clad thermal gap conductance. A transient lumped parameter model of the experiment is developed. An optimal estimate of the state vector chosen to characterize the experiment is obtained through the use of the Kalman filter. From this estimate, the fuel-clad thermal gap conductance is calculated as a function of time into the test and axial position along the length of the fuel pin

  13. Gate-last TiN/HfO2 band edge effective work functions using low-temperature anneals and selective cladding to control interface composition

    KAUST Repository

    Hinkle, C. L.

    2012-04-09

    Silicon N-metal-oxide-semiconductor (NMOS) and P-metal-oxide-semiconductor (PMOS) band edge effective work functions and the correspondingly low threshold voltages (Vt) are demonstrated using standard fab materials and processes in a gate-last scheme employing low-temperature anneals and selective cladding layers. Al diffusion from the cladding to the TiN/HfO2interface during forming gas anneal together with low O concentration in the TiN enables low NMOS Vt. The use of non-migrating W cladding along with experimentally detected N-induced dipoles, produced by increased oxygen in the TiN, facilitates low PMOS Vt.

  14. Iodine-oxygen and cadmium-induced stress corrosion cracking of Zr-4 cladding tube

    International Nuclear Information System (INIS)

    On the basis of iodine-induced stress corrosion cracking (SCC) experiments the authors did before, iodine-oxygen and cadmium-induced SCC was studied on Zr-4 cladding tube. Specimens used in experiments are cladding tubes of a reactor fuel element made by Institute of Nonferrous Metal of China. The tube which has a length of 145 mm and an outside diameter of 15.3 mm and an inside diameter of 14.9 mm was annealed at 620 K for two hours, and then it had a fine, stress-relieved microstructure. Two end-caps were welded on the cladding tube. There was a hole of 0.8 mm diameter in a protruding melting-welding platform on one end-cap of the specimen. Before welding the end-caps, a glass ampoule filled with a certain amount of oxygen and a piece of Zr-4 material which can dash the glass ampoule were put into the cladding tube. After plug-hole welding in high pressure argon, the cladding tube was shaken in order to make the piece of Zr-4 material dash the ampoule and the oxygen fill up the space inside the cladding tube. A certain amount of iodine was charged into the cladding tube from the hole before the plug-hole welding. The plug-hole welding in high pressure argon was performed on a specially prepared equipment within 0.1-0.5 second. At a certain temperature, the pressure of argon determines the mechanical load (stress). The SCC experiments were controlled within +-3 degree C by a thermocouple welded on the specimen. The cracking of the specimen or the leak of gas was sensitively supervised and timed by vacuum alarm system. Under various conditions of stress, the experiments for 28 specimens of iodine-oxygen agent and 5 specimens of cadmium agent were undertaken

  15. TEC – Thin Environmental Cladding

    Directory of Open Access Journals (Sweden)

    Alan Tomasi

    2014-06-01

    Full Text Available Corresponding author: Alan Tomasi, Group R&D Project Manager, Permasteelisa S.p.A., viale E. Mattei 21/23 | 31029 Vittorio Veneto, Treviso, Italy. Tel.: +39 0438 505207; E-mail: a.tomasi@permasteelisagroup.com; www.permasteelisagroup.com Permasteelisa Group developed with Fiberline Composites a new curtain wall system (Thin Environmental Cladding or TEC, making use of pultruded GFRP (Glass Fiber Reinforced Polymer material instead of traditional aluminum. Main advantages using GFRP instead of aluminum are the increased thermal performance and the limited environmental impact. Selling point of the selected GFRP resin is the light transmission, which results in pultruded profiles that allow the visible light to pass through them, creating great aesthetical effects. However, GFRP components present also weaknesses, such as high acoustic transmittance (due to the reduced weight and anisotropy of the material, low stiffness if compared with aluminum (resulting in higher facade deflection and sensible fire behavior (as combustible material. This paper will describe the design of the TEC-facade, highlighting the functional role of glass within the facade concept with regards to its acoustic, structural, aesthetics and fire behavior.

  16. Clad Degradation- Summary and Abstraction for LA

    International Nuclear Information System (INIS)

    The purpose of this model report is to develop the summary cladding degradation abstraction that will be used in the Total System Performance Assessment for the License Application (TSPA-LA). Most civilian commercial nuclear fuel is encased in Zircaloy cladding. The model addressed in this report is intended to describe the postulated condition of commercial Zircaloy-clad fuel as a function of postclosure time after it is placed in the repository. Earlier total system performance assessments analyzed the waste form as exposed UO2, which was available for degradation at the intrinsic dissolution rate. Water in the waste package quickly became saturated with many of the radionuclides, limiting their release rate. In the total system performance assessments for the Viability Assessment and the Site Recommendation, cladding was analyzed as part of the waste form, limiting the amount of fuel available at any time for degradation. The current model is divided into two stages. The first considers predisposal rod failures (most of which occur during reactor operation and associated activities) and postdisposal mechanical failure (from static loading of rocks) as mechanisms for perforating the cladding. Other fuel failure mechanisms including those caused by handling or transportation have been screened out (excluded) or are treated elsewhere. All stainless-steel-clad fuel, which makes up a small percentage of the overall amount of fuel to be stored, is modeled as failed upon placement in the waste packages. The second stage of the degradation model is the splitting of the cladding from the reaction of water or moist air and UO2. The splitting has been observed to be rapid in comparison to the total system performance assessment time steps and is modeled to be instantaneous. After the cladding splits, the rind buildup inside the cladding widens the split, increasing the diffusion area from the fuel rind to the waste package interior. This model report summarizes the

  17. Optimal forming zone length in continuous extrusion of lead-clad glass fiber wire

    Institute of Scientific and Technical Information of China (English)

    李霞; 唐景林; 王丽薇; 高明

    2008-01-01

    Forming zone length (FZL) is a key parameter of the lead-clad glass fiber extrusion dies, and an unsuitable FZL will lead to breakage of the glass fiber and/or unacceptable geometric and metallographic qualities of the product. The optimal FZL was determined theoretically based on a mathematical model established by upper bound method, and accepted Pb-GF wire was actually obtained experimentally by symmetric side-feed extrusion at a much lower temperature than that published before. The wire has features of fine grains, uniform diameter, good coaxiality and satisfied mechanical property. The results and conclusions obtained in the research can be used to design the forming tools for lead-clad glass fiber extrusion and have significance to further research on the extrusion of other complex wires of metal-clad brittle core.

  18. Structure and erosion resistance ofNi60A/SiC coatting by laser cladding

    Institute of Scientific and Technical Information of China (English)

    LOU Bai-yang; CHEN Zhen; BAI Wan-jin; DONG Gang

    2006-01-01

    The Ni60A and Ni60A/SiC coatings were obtained by laser cladding on 0.45% C steel. The microstructure and hardness of the coatings were studied by SEM and XRD. The erosion resistances of Ni60A and Ni60A/SiC coatings were also investigated. The results show that the structure of different coatings is up to the temperature gradient and solidifying velocity in metal-melting region during laser cladding process. The coatings consist of a cladding layer, in which dendritic crystal and bulky cell-like crystal exist mainly, and a thermo-affected layer. Ni60A/SiC coating has higher microhardness than that of Ni60A coating, which is mainly caused by SiC and complicated phases formed by Ni, Cr, Fe, C and Si. It is obvious from the erosion test that the Ni60A/SiC coating has high erosion resistance.

  19. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings - phase II

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Stanko, G.J. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1996-08-01

    In Phase I a variety of developmental and commercial tubing alloys and claddings were exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase II (in situ testing) has exposed samples of 347, RA-8511, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, 800HT, NF 709, 690 clad, and 671 clad for over 10,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were installed on an air-cooled, retractable corrosion probe, installed in the reheater cavity, and controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. Samples of each alloy will be exposed for 4000, 12,000, and 16,000 hours of operation. The results will be presented for the metallurgical examination of the corrosion probe samples after 4000 hours of exposure.

  20. Fabrication and Lasing Property of Yb~(3+)-doped Double-Clad Fibers with Novel Inner Cladding

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The Yb3+-doped double-clad fibers with novel inner cladding have been made by using MCVD process, solution-doping method and optical machining together. The laser power and slope efficiency of the fiber lasers are higher than 1.8W and 50% respectively.

  1. A cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding

    OpenAIRE

    Furusawa, Kentaro; Malinowski, A.N.; Price, Jonathan H.V.; Monro, Tanya M.; Jayanta K. Sahu; Nilsson, Johan; Richardson, David J

    2001-01-01

    We have fabricated an ytterbium doped all-glass double-clad large mode area holey fiber. A highly efficient cladding pumped single transverse mode holey fiber laser has been demonstrated, allowing continuous-wave output powers in excess of 1W with efficiencies of more than 80%. Furthermore both Q-switched and mode-locked operation of the laser have been demonstrated.

  2. Stability of LMR oxide pins and blanket rods during run-beyond-cladding-break (RBCB) operation

    International Nuclear Information System (INIS)

    Since 1981, the U.S. Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan have collaborated on an operational reliability testing program in the Experimental Breeder Reactor II. The tests were designed to determine the irradiation behavior of liquid-metal reactor (LMR) oxide pins and blanket rods during steady-state, transient, and run-beyond-claddin-breach (RBCB) operation. Phase I tests completed in 1987 involved current LMR oxide designs and claddings; the phase II tests begun in 1988 concentrate on advanced LMR designs, large-diameter pins (7.5 mm), and advance cladding alloys. The cladding breaches in these tests have been readily detected by fission-gas and delayed-neutron (DN) precursor release. The condition of the fuel pin has been monitored by these releases during RBCB operation. A variety of failures have been intentionally studied in the RBCB portion of the program for operating times of up to 142 full-power days; also, several failure types have been incidentally experienced during the transient tests. Types of failure have included those induced by gas-pressure loading either naturally or by prethinning of the cladding defects, and fuel-cladding mechanical interaction (FCMI)-induced failures or secondary failures caused by the formation of low-density fuel-sodium reaction product (FSRP). This paper summarizes this experience with regard to LMR oxide fuel stability during RBCB operation

  3. Effect of annealing on two different niobium-clad stainless steel PEMFC bipolar plate materials

    Institute of Scientific and Technical Information of China (English)

    Sung-Tae HONG; Dae-Wook KIM; Yong-Joo YOU; K.Scott WEIL

    2009-01-01

    Niobium (Nb)-clad stainless steels(SS) produced via roll bonding are being considered for use in the bipolar plates of polymer electrolyte membrane fuel celI(PEMFC) stacks. Because the roll bonding process induces substantial work hardening in the constituent materials, thermal annealing is used to restore ductility to the clad sheet so that it can be subsequently blanked, stamped and dimpled in forming the final plate component. Two roll bonded materials, niobium clad 340L stainless steel (Nb/340L SS) and niobium clad 434 stainless steel (Nb/434 SS) were annealed under optimized conditions prescribed by the cladding manufacturer. Comparative mechanical testing conducted on each material before and after annealing shows significant improvement in ductility in both cases. However, corresponding microstructural analyses indicate an obvious difference between the two heat treated materials. During annealing, an interlayer with thick less than 1 μm forms between the constituent layers in the Nb/340L SS, whereas no interlayer is found in the annealed Nb/434 SS material. Prior work suggests that internal defects potentially can be generated in such an interlayer during metal forming operations. Thus, Nb/434 SS may be the preferred candidate material for this application.

  4. Fuel cladding behavior under rapid loading conditions

    Science.gov (United States)

    Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.

    2016-02-01

    A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.

  5. Development of advanced claddings for suppressing the hydrogen emission in accident conditions. Development of advanced claddings for suppressing the hydrogen emission in the accident condition

    International Nuclear Information System (INIS)

    The development of accident-tolerant fuels can be a breakthrough to help solve the challenge facing nuclear fuels. One of the goals to be reached with accident-tolerant fuels is to reduce the hydrogen emission in the accident condition by improving the high-temperature oxidation resistance of claddings. KAERI launched a new project to develop the accident-tolerant fuel claddings with the primary objective to suppress the hydrogen emission even in severe accident conditions. Two concepts are now being considered as hydrogen-suppressed cladding. In concept 1, the surface modification technique was used to improve the oxidation resistance of Zr claddings. Like in concept 2, the metal-ceramic hybrid cladding which has a ceramic composite layer between the Zr inner layer and the outer surface coating is being developed. The high-temperature steam oxidation behaviour was investigated for several candidate materials for the surface modification of Zr claddings. From the oxidation tests carried out in 1 200 deg. C steam, it was found that the high-temperature steam oxidation resistance of Cr and Si was much higher than that of zircaloy-4. Al3Ti-based alloys also showed extremely low-oxidation rate compared to zircaloy-4. One important part in the surface modification is to develop the surface coating technology where the optimum process needs to be established depending on the surface layer materials. Several candidate materials were coated on the Zr alloy specimens by a laser beam scanning (LBS), a plasma spray (PS) and a PS followed by LBS and subject to the high-temperature steam oxidation test. It was found that Cr and Si coating layers were effective in protecting Zr-alloys from the oxidation. The corrosion behaviour of the candidate materials in normal reactor operation condition such as 360 deg. C water will be investigated after the screening test in the high-temperature steam. The metal-ceramic hybrid cladding consisted of three major parts; a Zr liner, a ceramic

  6. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Changhee, E-mail: chlee@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Woo, WanChuck [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Park, Sunhong [Research Institute of Industrial Science & Technology, Hyo-ja-dong, Po-Hang, Kyoung-buk, San 32 (Korea, Republic of)

    2015-08-01

    Highlights: • Major problem, clad cracking in laser cladding process, was researched. • Residual stress measurements were performed quantitatively by neutron diffraction method along the surface of specimens. • Relationship between the residual stress and crack initiation was showed clearly. • Ceramic particle effect in the metal matrix was showed from the results of residual stress measurements. • Initiation sites of generating clad cracks were specifically studied in MMC coatings. - Abstract: Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures

  7. Stress corrosion testing of irradiated cladding tubes

    International Nuclear Information System (INIS)

    Samples from two fuel rods with different cladding have been stress corrosion tested by closed-end argon-iodine pressurization at 3200C. The fuel rods with stress relieved and recrystallized Zircaloy-2 had received burnups of 10.000 and 20.000 MWd/ton UO2, respectively. It was found that the SCC failure stress was unchanged or slightly higher for the irradiated than for the unirradiated control tubes. The tubes failed consistently in the end with the lowest irradiation dose. The diameter increase of the irradiated cladding during the test was 1.1% for the stress-relieved samples and 0.24% for the recrystallized samples. SEM examination revealed no major differences between irradiated and unirradiated cladding. A ''semi-ductile'' fracture zone in recrystallized material is described in some detail. (author)

  8. High critical currents in iron-clad superconducting MgB2 wires.

    Science.gov (United States)

    Jin, S; Mavoori, H; Bower, C; van Dover, R B

    2001-05-31

    Technically useful bulk superconductors must have high transport critical current densities, Jc, at operating temperatures. They also require a normal metal cladding to provide parallel electrical conduction, thermal stabilization, and mechanical protection of the generally brittle superconductor cores. The recent discovery of superconductivity at 39 K in magnesium diboride (MgB2) presents a new possibility for significant bulk applications, but many critical issues relevant for practical wires remain unresolved. In particular, MgB2 is mechanically hard and brittle and therefore not amenable to drawing into the desired fine-wire geometry. Even the synthesis of moderately dense, bulk MgB2 attaining 39 K superconductivity is a challenge because of the volatility and reactivity of magnesium. Here we report the successful fabrication of dense, metal-clad superconducting MgB2 wires, and demonstrate a transport Jc in excess of 85,000 A cm-2 at 4.2 K. Our iron-clad fabrication technique takes place at ambient pressure, yet produces dense MgB2 with little loss of stoichiometry. While searching for a suitable cladding material, we found that other materials dramatically reduced the critical current, showing that although MgB2 itself does not show the 'weak-link' effect characteristic of the high-Tc superconductors, contamination does result in weak-link-like behaviour.

  9. The Absorption Characteristics of Inhomogeneous Double-Clad Fibers

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The absorption characteristics of radially inhomogeneous double-clad fiber (DCF) are investigated firstly with the method of caustic radius, combined with the method of WKBJ. The results are significant for double-clad optical fiber lasers and amplifiers.

  10. Inpile (in PWR) testing of cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, B.J.; Kim, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    As an introduction, the reasons to perform inpile tests are depicted. An overview over general inpile test procedure is given, and test details which are necessary for the development of new alloys for high burnup claddings, like sample geometries and measuring techniques for inpile corrosion testing, are described in detail. Tests for the creep and length change behavior of cladding tubes are described briefly. Finally, conclusions are drawn and literature citations for further test details are given. (author). 9 refs., 2 tabs., 17 figs.

  11. Effects of temperature history during cooling process on cladding ductility reduction under lost of coolant accident conditions

    International Nuclear Information System (INIS)

    In a Loss-of-Coolant Accident (LOCA) of LWRs, heated fuel rods are quenched by water injected from the Emergency Core Cooling System. Existing analyses indicate that fuel rods are cooled slowly before the quench and the cooling rate at that stage depends on scenario of the accident. Microstructure can be different between fuel claddings quenched directly from high temperatures and those quenched after slow-cooling process. It has been suggested that ductility reduction is enhanced in the latter case. Although reduction in cladding ductility is important for reactor safety in a LOCA, the effects of cooling conditions on the cladding ductility reduction has not been sufficiently investigated and mechanism for the influence of cooling rate has not been clarified. In the present study, samples cut from non-irradiated 17x17-type Zircaloy-4 cladding tubes for PWRs were isothermally oxidized at 1373 and 1473 K, slowly cooled and then quenched, changing temperature at which quenching process is started and rate of the slow cooling. The oxidized and quenched samples were subjected to ring compression test in order to evaluate effects of the cooling conditions on the cladding ductility reduction. In addition, metallographic examination, Vickers hardness test and computer code analysis were conducted to examine the mechanisms. Due to oxidation, ZrO2 layer is formed at the cladding surface, oxygen-stabilized alpha phase layer is formed beneath the oxide layer, and oxygen concentration increases in the central metallic layer. As the metallic layer is cooled slowly from the isothermal oxidation temperatures, oxygen-rich α phase precipitates in the β phase layer. It was found out that reduction in cladding ductility strongly depends on area fraction of α phase region precipitated in the metallic layer. Both size and hardness of α-phase region are increased as the rate of the slow cooing decreases, while the area fraction is nearly constant. Accordingly, the reduction in

  12. Corrosion Resistant Cladding by YAG Laser Welding in Underwater Environment

    International Nuclear Information System (INIS)

    It is known that stress-corrosion cracking (SCC) will occur in nickel-base alloys used in Reactor Pressure Vessel (RPV) and Internals of nuclear power plants. A SCC sensitivity has been evaluated by IHI in each part of RPV and Internals. There are several water level instrumentation nozzles installed in domestic BWR RPV. In water level instrumentation nozzles, 182 type nickel-base alloys were used for the welding joint to RPV. It is estimated the SCC potential is high in this joint because of a higher residual stress than the yield strength (about 400 MPa). This report will describe a preventive maintenance method to these nozzles Heat Affected Zone (HAZ) and welds by a corrosion resistant cladding (CRC) by YAG Laser in underwater environment (without draining a reactor water). There are many kinds of countermeasures for SCC, for example, Induction Heating Stress Improvement (IHSI), Mechanical Stress Improvement Process (MSIP) and so on. A YAG laser CRC is one of them. In this technology a laser beam is used for heat source and irradiated through an optical fiber to a base metal and SCC resistant material is used for welding wires. After cladding the HAZ and welds are coated by the corrosion resistant materials so their surfaces are improved. A CRC by gas tungsten arc welding (GTAW) in an air environment had been developed and already applied to a couple of operating plants (16 Nozzles). This method was of course good but it spent much time to perform because of an installation of some water-proof working boxes to make a TIG-weldability environment. CRC by YAG laser welding in underwater environment has superior features comparing to this conventional TIG method as follows. At the viewpoint of underwater environment, (1) an outage term reduction (no drainage water). (2) a radioactive exposure dose reduction for personnel. At that of YAG laser welding, (1) A narrower HAZ. (2) A smaller distortion. (3) A few cladding layers. A YAG laser CRC test in underwater

  13. Hydrogen motion in Zircaloy-4 cladding during a LOCA transient

    Science.gov (United States)

    Elodie, T.; Jean, D.; Séverine, G.; M-Christine, B.; Michel, C.; Berger, P.; Martine, B.; Antoine, A.

    2016-04-01

    Hydrogen and oxygen are key elements influencing the embrittlement of zirconium-based nuclear fuel cladding during the quench phase following a Loss Of Coolant Accident (LOCA). The understanding of the mechanisms influencing the motion of these two chemical elements in the metal is required to fully describe the material embrittlement. High temperature steam oxidation tests were performed on pre-hydrided Zircaloy-4 samples with hydrogen contents ranging between 11 and 400 wppm prior to LOCA transient. Thanks to the use of both Electron Probe Micro-Analysis (EPMA) and Elastic Recoil Detection Analysis (μ-ERDA), the chemical elements partitioning has been systematically quantified inside the prior-β phase. Image analysis and metallographic examinations were combined to provide an average oxygen profile as well as hydrogen profile within the cladding thickness after LOCA transient. The measured hydrogen profile is far from homogeneous. Experimental distributions are compared to those predicted numerically using calculations derived from a finite difference thermo-diffusion code (DIFFOX) developed at IRSN.

  14. Novel Accident-Tolerant Fuel Meat and Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Mariani; Pavel G Medvedev; Douglas L Porter; Steven L Hayes; James I. Cole; Xian-Ming Bai

    2013-09-01

    A novel accident-tolerant fuel meat and cladding are here proposed. The fuel meat design incorporates annular fuel with inserts and discs that are fabricated from a material having high thermal conductivity, for example niobium. The inserts are rods or tubes. Discs separate the fuel pellets. Using the BISON fuel performance code it was found that the peak fuel temperature can be lowered by more than 600 degrees C for one set of conditions with niobium metal as the thermal conductor. In addition to improved safety margin, several advantages are expected from the lower temperature such as decreased fission gas release and fuel cracking. Advantages and disadvantages are discussed. An enrichment of only 7.5% fully compensates the lost reactivity of the displaced UO2. Slightly higher enrichments, such as 9%, allow uprates and increased burnups to offset the initial costs for retooling. The design has applications for fast reactors and transuranic burning, which may accelerate its development. A zirconium silicide coating is also described for accident tolerant applications. A self-limiting degradation behavior for this coating is expected to produce a glassy, self-healing layer that becomes more protective at elevated temperature, with some similarities to MoSi2 and other silicides. Both the fuel and coating may benefit from the existing technology infrastructure and the associated wide expertise for a more rapid development in comparison to other, more novel fuels and cladding.

  15. Mechanical modelling of transient- to- failure SFR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2014-07-01

    The response of Sodium Fast Reactor (SFR) fuel rods to transient accident conditions is an important safety concern. During transients the cladding strain caused by the stress due to pellet cladding mechanical interaction (PCMI) can lead to failure. Due to the fact that SFR fuel rods are commonly clad with strengthened material made of stainless steel (SS), cladding is usually treated as an elastic-perfectly-plastic material. However, viscoplastic behaviour can contribute to mechanical strain at high temperature (> 1000 K). (Author)

  16. Finite-width plasmonic waveguides with hyperbolic multilayer cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi;

    2015-01-01

    homogenization, we calculate the resonant eigenmodes of the finite-width cladding layers, and find agreement with the resonant features in the dispersion of the cladded waveguides. We show that at the resonant widths, the propagating modes of the waveguides are coupled to the cladding eigenmodes and hence...

  17. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily.

  18. yb3+-Doped Double-Clad Fibre Laser Pumped by Rectangular Inner Cladding

    Institute of Scientific and Technical Information of China (English)

    宁鼎; 李乙刚; 黄榜才; 孙建军; 吕可诚; 袁树忠; 董孝义

    2001-01-01

    A novel Yb3+-doped double-clad silica fibre with rectangular inner cladding was designed and developed by using the modified chemical vapour deposition process, solution-doping and optical machining all together. The dimensions of the inner cladding are 100 × 70 μm, and Yb3+-doped concentration in the core is about 0.24 wt. %. The operation of the fibre laser pumped by inner cladding is reported. The threshold of the laser is 34mW.When the pump power launched is 141mW, the laser output is 84mW at the wavelength 1075.6nm, and the slope efficiency is 77%.

  19. Analysis of coaxial laser cladding processing conditions

    NARCIS (Netherlands)

    de Oliveira, U; Ocelik, V; De Hosson, JTM

    2005-01-01

    The formation of thick Ni-based coating on a steel substrate by coaxial laser cladding using the Nd:YAG 2 kW continuous laser was studied both from a theoretical and experimental point of view. The theoretical analysis concentrated on the transfer of laser irradiation and powder particles using a si

  20. Advanced ceramic cladding for water reactor fuel

    International Nuclear Information System (INIS)

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of approximately 60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies ge50% would be examined

  1. Plasmonic waveguides cladded by hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Ishii, Satoshi; Shalaginov, Mikhail Y.; Babicheva, Viktoriia E.;

    2014-01-01

    Strongly anisotropic media with hyperbolic dispersion can be used for claddings of plasmonic waveguides (PWs). In order to analyze the fundamental properties of such waveguides, we analytically study 1D waveguides arranged from a hyperbolic metamaterial (HMM) in a HMM-Insulator-HMM (HIH) structure...

  2. Thick tool steel coatings with laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; de Oliveira, U.; De Hosson, J. Th. M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2007-01-01

    This paper concentrates on thick and crack-free laser clad coatings (up to 3 mm). The coating material is a chromium-molybdenum-tungsten-vanadium alloyed high-speed steel that shows high wear resistance, high compressive strength, good toughness, very good dimensional stability on heat treatment and

  3. High-temperature deformation behavior of titanium clad steel plate

    Institute of Scientific and Technical Information of China (English)

    Shang-Wu Zeng; Ai-Min Zhao; Hai-Tao Jiang; Xiao-Qian Yan; Ji-Xiong Liu; Xiao-Ge Duan

    2015-01-01

    In this paper,the single-pass hot compression experiment of titanium clad steel plate was carried out by Gleeble-3500 thermal mechanics simulation test machine,and the effect of deformation temperature (T),strain rate (4),thickness ratio (k),and friction coefficient (μ) on flow pattern of the metal and stress in the deformation zone was analyzed.The results show that the metal flow behavior and the stress during compressive deformation depend strongly on the deformation temperature.At 800 and 850 ℃,the bimetal can flow uniformly,while at 900 ℃,the TA2 flows faster than Q235B,and the phenomenon of TA2 wrapping Q235B is observed.The metal flow of the bimetal material will coordinate each other through the bonding interface.It is noted that the stress increases with the increase of the the andμ and decreases when the metal flows along the contact area.

  4. Cold Spray Coating Technique with FeCrAl Alloy Powder for Developing Accident Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun; Kim, Hyun Gil; Park, Jeong Yong; Jung, Yang Il; Park, Jung Hwan; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Various approaches to enhance safety have been suggested, replacing current Zr-based alloys for fuel cladding with advanced materials exhibiting lower oxidation rates can be a basic solution. Many advanced materials such as FeCrAl alloys; Mn+1AXn, (MAX) phases, where n = 1 to 3, M is an early transition metal, A is an A-group (mostly IIIA and IVA, or groups 13 and 14) element and X is either carbon or nitrogen; Mo; and SiC are being considered as possible candidates. Among the proposed fuel cladding substitutes, Fe-based alloys are one of the most promising candidates owing to their excellent formability, high strength, and oxidation resistance at high temperature. In this work, the ATF technology concept of Fe-based alloy coating on the existing Zr-alloy cladding was considered and results on the optimization study for fabrication of coated tube samples were described. Result obtained from high temperature oxidation test under steam environment at 1200 .deg. C indicates that FeCrAl alloy coated Zr metal matrix may maintain its integrity during LOCA. This means that accident tolerance of FeCrAl alloy coated Zr cladding sample had been greatly improved compared to that of existing Zr-based alloy fuel cladding.

  5. Automatic measuring system of zirconium thickness for zirconium liner cladding tubes

    International Nuclear Information System (INIS)

    An automatic system of pure zirconium liner thickness for zirconium-zircaloy cladding tubes has been successfully developed. The system consists of three parts. (1) An ultrasonic thickness measuring method for mother tubes before cold rolling. (2) An electromagnetic thickness measuring method for the manufactured tubes. (3) An image processing method for the cross sectional view of the manufactured cut tube samples. In Japanese nuclear industry, zirconium-zircaloy cladding tubes have been tested in order to realize load following operation in the atomic power plant. In order to provide for the practical use in the near future, Sumitomo Metal Industries, Ltd. has been studied and established the practical manufacturing process of the zirconium liner cladding tubes. The zirconium-liner cladding tube is a duplex tube comprising an inner layer of pure zirconium bonded to zircaloy metallurgically. The thickness of the pure zirconium is about 10 % of the total wall thickness. Several types of the automatic thickness measuring methods have been investigated instead of the usual microscopic viewing method in which the liner thickness is measured by the microscopic cross sectional view of the cut tube samples

  6. Correlation of waterside corrosion and cladding microstructure in high-burnup fuel and gadolinia rods

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M. (Argonne National Lab., IL (USA))

    1989-09-01

    Waterside corrosion of the Zircaloy cladding has been examined in high-burnup fuel rods from several BWRs and PWRs, as well as in 3 wt % gadolinia burnable poison rods obtained from a BWR. The corrosion behavior of the high-burnup rods was then correlated with results from a microstructural characterization of the cladding by optical, scanning-electron, and transmission-electron microscopy (OM, SEM, and TEM). OM and SEM examination of the BWR fuel cladding showed both uniform and nodular oxide layers 2 to 45 {mu}m in thickness after burnups of 11 to 30 MWd/kgU. For one of the BWRs, which was operated at 307{degree}C rather than the normal 288{degree}C, a relatively thick (50 to 70 {mu}m) uniform oxide, rather than nodular oxides, was observed after a burnup of 27 to 30 MWd/kgU. TEM characterization revealed a number of microstructural features that occurred in association with the intermetallic precipitates in the cladding metal, apparently as a result of irradiation-induced or -enhanced processes. The BWR rods that exhibited white nodular oxides contained large precipitates (300 to 700 nm in size) that were partially amorphized during service, indicating that a distribution of the large intermetallic precipitates is conductive to nodular oxidation. 23 refs., 9 figs.

  7. Characterization of Gradient Ni-Fe/SiC Composite Coating on Mild Steel by Thermal Spraying in Combination with Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    Hu Mulin; Pan Lin; Fu Yongqing; Xie Changsheng; Wang Aihua

    2005-01-01

    Metal matrix composite coating Ni-Fe/SiC was prepared on an iron-based substrate by thermal spraying combined with laser cladding, using SiC particulates as the reinforcing agent. The microstructures of the coatings formed at different thermal spraying and laser cladding conditions were characterized by means of X-ray diffraction and electron probe microanalysis. The thermal oxidation properties of the mixed powders composed of different content of SiC particulates and relevant Ni-based alloy as the balance were examined using differential scanning calorimetry. The hardness profile of the thermal sprayed and laser cladding coatings was investigated as well. It was found that SiO2 particulates were generated and dissolved and dispersed during the melting and solidification of the laser cladding process, which was ascribed to the oxidation of the dispersed SiC particulates. The micro-hardness depth profile of the target laser cladding composite coating was characterized by gradient distribution, which could be related to the gradient distribution of the hard SiC and SiO2 particulates in the dendrites and interdendrites of the cladding layer. Both SiC and SiO2 particulates contributed to greatly increasing the microhardness and mechanical properties of the titled laser cladding composite coatings.

  8. LASER CLADDING ON ALUMINIUM BASE ALLOYS

    OpenAIRE

    Pilloz, M.; Pelletier, J; Vannes, A.; Bignonnet, A.

    1991-01-01

    laser cladding is often performed on iron or titanium base alloys. In the present work, this method is employed on aluminum alloys ; nickel or silicon are added by powder injection. Addition of silicon leads to sound surface layers, but with moderated properties, while the presence of nickel induces the formation of hard intermetallic compounds and then to an attractive hardening phenomena ; however a recovery treatment has to be carried out, in order to eliminate porosity in the near surface...

  9. Cladding failure by local plastic instability

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, J.M.; Deitrich, L.W.

    1977-12-01

    Cladding failure is one of the major considerations in analysis of fuel-pin behavior during hypothetical accident transients since time, location, and nature of failure govern the early postfailure material motion and reactivity feedback. Out-of-pile thermal transient tests of both irradiated and unirradiated fast-reactor cladding show that local plastic instability, or bulging, often precedes rupture and that the extent of local instability limits the initial rip length. To investigate the details of bulge formation and growth, a perturbation analysis of the equations governing large deformation of a cylindrical shell has been developed, resulting in a set of linear differential equations for the bulge geometry. These equations have been solved along with appropriate constitutive equations and various constraints on the ends of the cladding. Sources for bulge formation that have been considered include initial geometric imperfections and thermal perturbations due to either eccentric fuel pellets or nonsymmetric cooling. Of these, only the first is relevant to out-of-pile burst tests. Here it has been found that the most likely imperfection that will grow unstably to failure leads to a bulge around half the circumference with an axial length 1.1 times the deformed diameter. This is in general agreement with burst-test results. For the case of in-reactor fuel pins, it has been found that thermal perturbations can significantly affect local instability, particularly if the deformation process is thermally activated with a high activation energy.

  10. PWR cladding optimization for enhanced performance margins

    International Nuclear Information System (INIS)

    As the nuclear power generating industry has matured there is an increasing trend in core operating fuel duties. This drives a continuing evolution of cladding materials, to provide performance margin and support even higher fuel duty designs. Westinghouse has developed an optimized version of ZIRLOTM, with a thin level reduced from the nominal standard ZIRLO level of 1% to a range of 0.6% to 0.8%. The lower tin level has been shown to reduce the clad corrosion of fuel rods during reactor core operation by 30% or more while still providing the mechanical and off-normal corrosion protection benefits associated with tin alloy additions. Peak oxide levels of only 20-30 μm are observed at burnups up to 63 MWd/kgU. Using relatively small changes in the final annealing temperature, the clad creep can be adjusted to meet target ranges. In-reactor measurements of creep and growth of Optimized ZIRLOTM verify mechanical characteristics equivalent to standard ZIRLO. (author)

  11. Laser Clad Nickel Based Superalloys: Microstructure Evolution And High Temperature Oxidation Studies

    Science.gov (United States)

    Sircar, S.; Ribaudo, C.; Mazumder, J.

    1988-10-01

    Application of alloy coatings with superior oxidation resistance at elevated temperatures (1200°C) on superalloy components is of interest at present. There is a general consensus that the addition of rare earths such as hafnium (Hf) to these alloys has a pronounced effect on their performance. An in situ laser cladding technique was used to produce Ni-Al-Cr-Hf alloys on a nickel alloy substrate. Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and Scanning Transmission Electron Microscope (STEM) attached with Energy Dispersive X-ray (EDX) analyzers were employed for microstructural evolution studies of alloys produced during the laser cladding process. The microstructure of these alloys mainly consists of dendrites of Y' of the Ni3Al type with about 11-14 wt% Hf and an interdendritic eutectic phase. Electron microscopy in the dendritic zones reveals ordered domains whose morphology depends on laser cladding process parameters. Variation in these parameters produced only subtle changes in the composition and cell spacing of the dendritic phase. The eutectic constituent consists of a Hf-rich phase and a Hf-lean phase in an alternating lamellar structure. Convergent beam diffraction and x-ray spectroscopy techniques were used to characterize the constituents. A possible phase transformation sequence has been suggested. Differential Thermal Analysis (DTA) work indicates that the Y' dissolution temperature for the claddings is at least as high as the substrate material (Rene 80). Single cycle oxidation tests of eight hours at 1200°C in slowly flowing air reveal that the claddings have a lower weight gain rate than the substrate itself. Microchemistry and microstructure of the oxidized samples are examined using SEM attached with EDX and Auger Electron Spectroscopic (AES) techniques. The improvement in the oxidation resistance is believed to be at least partially due to the mechanical pegging between alumina coated hafnia protrusions and the

  12. 基于双面金属包覆光波导的传感器温度特性研究及实验验证∗%Analysis and exp erimental investigation of the temp erature prop erty of sensors based on symmetrical metal-cladding optical waveguide

    Institute of Scientific and Technical Information of China (English)

    罗雪雪; 陈家璧; 胡金兵; 梁斌明; 蒋强

    2015-01-01

    Symmetrical metal-cladding waveguide (SMCW) is a kind of new waveguide construction, and it consists of a planar glass slab sandwiched in two metal films with different thicknesses. The metal in this structure is usually a noble metal, such as Au, Ag and Cu etc. One of the characteristics of the glass is the sub-millimeter thickness, which is useful for exciting the ultrahigh order mode. Since the SMCW structure was proposed, it has received much attention from the researchers for its excellent characteristics of free-space coupling technique and ultrahigh order mode excitation. This free-space coupling technology has a higher sensitivity compared with the end-face coupling, prism coupling and grating coupling techniques. The ultrahigh order mode is very sensitive to the incident light wavelength, the thickness of guiding layer and the refractive index, but not sensitive to polarization. Based on the thermal-optical effect and thermal expansion effect of metal film and guiding layer materials, we research the temperature property of the SMCW structure. Researching methods include simulation analysis and experimental demonstration. First, we calculate the relation of the thickness and dielectric property of metal films, and the thickness and refractive index of the guiding layer with the temperature. Results show that these four factors are nearly proportional to the temperature difference. Then, we simulate the relationship of the reflectivity of the SMCW structure with those four factors by means of single-factor investigation under spectral and angular interrogation mode of operation, and find that the temperature-dependence of thickness of the guiding layer makes the chief contribution to the waveguide function of SMCW. Meanwhile, we analyze the sensitivity of the sensors based on SMCW structure, and the result shows that the sensitivity of this kind of sensor can be up to 21.89 pm/K (spectral mode) and 1.449 × 10−3 rad/K (angular mode). Finally, we

  13. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding

    International Nuclear Information System (INIS)

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed

  14. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    Science.gov (United States)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  15. Analysis of the behaviour of under-clad and surface cracks in cladded components; Untersuchung des Verhaltens von Unterplattierungs- und Oberflaechenrissen in plattierten Komponenten

    Energy Technology Data Exchange (ETDEWEB)

    Hohe, Joerg; Luckow, Sabrina; Siegele, Dieter [Fraunhofer Institut fuer Werkstoffmechanik, Freiburg (Germany)

    2008-07-01

    The issue of the contribution is the characterization of under-clad and surface crack behaviour in ferritic steel components with an austenitic welded cladding. The experimental investigations were performed using large-scale samples. The residual stress field was determined in detail by a numerical simulation of the welding and heat treatment processes. These results were used for the numerical simulation of crack initiation and crack arrest. In all evaluated cases the crack was initiated in the ferritic material, while the cladding stayed intact even in case of a crack jump in the base metal. In the frame of case studies the results were transferred to application relevant geometries. [German] Der Gegenstand des vorliegenden Beitrags ist eine Charakterisierung des Verhaltens von Unterplattierungs- und Oberflaechenfehlern in Komponenten aus ferritischen Staehlen mit einer austenitischen Schweissplattierung. Im Rahmen einer experimentellen Untersuchung wurden hierzu zwei Versuche an Grossproben durchgefuehrt. Das Eigenspannungsfeld wurde detailliert durch eine numerische Simulation der Schweiss- und Waermebehandlungsprozesse bestimmt. Unter Verwendung dieser, an anderer Stelle praesentierten Ergebnisse erfolgte eine numerische Simulation der Bauteilversuche zur genauen Bestimmung der Verhaeltnisse bei Rissinitiierung und Rissarrest. In allen untersuchten Faellen zeigte sich, dass der Bruch im ferritischen Bereich ausgeloest wurde, waehrend die Plattierung auch bei einem Risssprung im Grundwerkstoff intakt blieb. Im Rahmen von Fallstudien wurden die Ergebnisse auf anwendungsrelevante Geometrien uebertragen. (orig.)

  16. Patent Analysis of Ferritic/Martensitic Steels for the Fuel Cladding in Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Hyuk; Kim, Sung Ho; Kim, Tae Kyu; Kim, Woo Gon; Jang, Jin Sung; Kim, Dae Whan; Han, Chang Hee; Lee, Chan Bock

    2007-09-15

    The Korean, Japanese, U.S. and European patents related to the ferritic/martensitic steels were systematically surveyed to evaluate their patent status, which would be applicable to the fuel cladding materials for the Sodium-cooled Fast Reactor (SFR). From the surveys, totally 38 patents were finally selected for the quantitative and qualitative analysis. Among them, 28 patents (74%) were processed by Japanese companies and Sumitomo Metal industries Ltd. was top-ranked in the number (9) of priority patents. On the basis of these surveys, most patents could be applicable to the fuel cladding materials for SFR and, especially, some useful patents as the cladding were registered by the Russian and the Korean.

  17. Evaluation of residual stress near the weld overlay cladding by welding and post-weld heat treatment

    International Nuclear Information System (INIS)

    Austenitic stainless steel is welded as a cladding on the inner surface of a reactor pressure vessel (RPV) made of low alloy steel. In order to assess the structural integrity of the RPV precisely, the residual stress distribution caused by weld-overlay cladding and post-weld heat treatment (PWHT) is evaluated. Since the cladding layer is very thin compared to vessel wall, it is necessary to evaluate the residual stress distribution around the weld fusion line can be very steep. In this study, cladded specimens were fabricated using different welding methods. Residual stress measurements using both sectioning and deep hole drilling (DHD) methods were then performed to evaluate the residual stress distributions through the weld fusion line. Three-dimensional thermal-elastic-plastic-creep analyses based on finite element method were also conducted to evaluate the residual stress caused by weld-overlay cladding and PWHT. It was shown that analytical results provided reasonable agreements on weld residual stress with experimental results. It was also clarified that the main cause of residual stress due to welding and PWHT was the difference of thermal expansion between weld and base metals. (author)

  18. Optimization of Ni-Based WC/Co/Cr Composite Coatings Produced by Multilayer Laser Cladding

    OpenAIRE

    Andrea Angelastro; Sabina L. Campanelli; Giuseppe Casalino; Antonio D. Ludovico

    2013-01-01

    As a surface coating technique, laser cladding (LC) has been developed for improving wear, corrosion, and fatigue properties of mechanical components. The main advantage of this process is the capability of introducing hard particles such as SiC, TiC, and WC as reinforcements in the metallic matrix such as Ni-based alloy, Co-based alloy, and Fe-based alloy to form ceramic-metal composite coatings, which have very high hardness and good wear resistance. In this paper, Ni-based alloy (Colmonoy ...

  19. Experimental results on the interactions between hydrogen and zirconium claddings

    International Nuclear Information System (INIS)

    Experiments were performed with Zr1%Nb and Zircaloy-4 alloys to study the interaction between hydrogen and Zr containing cladding materials. Four main activities are summarised in the report: equilibrium solubility of hydrogen in cladding with oxygen content, escape of hydrogen during steam oxidation, escape of hydrogen during steam oxidation of cladding alloys with H-content, delaying effect of surface oxide layer on the hydrogen absorption from gas phase by the Zr alloys. (author)

  20. Pellet-clad interaction in water reactor fuels

    International Nuclear Information System (INIS)

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  1. Pellet-clad interaction in water reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  2. Optimization of Ni-Based WC/Co/Cr Composite Coatings Produced by Multilayer Laser Cladding

    Directory of Open Access Journals (Sweden)

    Andrea Angelastro

    2013-01-01

    Full Text Available As a surface coating technique, laser cladding (LC has been developed for improving wear, corrosion, and fatigue properties of mechanical components. The main advantage of this process is the capability of introducing hard particles such as SiC, TiC, and WC as reinforcements in the metallic matrix such as Ni-based alloy, Co-based alloy, and Fe-based alloy to form ceramic-metal composite coatings, which have very high hardness and good wear resistance. In this paper, Ni-based alloy (Colmonoy 227-F and Tungsten Carbides/Cobalt/Chromium (WC/Co/Cr composite coatings were fabricated by the multilayer laser cladding technique (MLC. An optimization procedure was implemented to obtain the combination of process parameters that minimizes the porosity and produces good adhesion to a stainless steel substrate. The optimization procedure was worked out with a mathematical model that was supported by an experimental analysis, which studied the shape of the clad track generated by melting coaxially fed powders with a laser. Microstructural and microhardness analysis completed the set of test performed on the coatings.

  3. Hollow core anti-resonant fibres with split cladding

    Science.gov (United States)

    Huang, Xiaosheng; Qi, Wenliang; Ho, Daryl; Luan, Feng; Yong, Ken-Tye; Yoo, Seongwoo

    2016-03-01

    A split cladding fibers (SCF) is proposed as an additional design to the anti-resonant type fiber. The introduced split cladding helps to reduce the fabrication distortion. We use numerical simulations to compare the Kagome fibers (KFs) and the proposed split cladding fibers (SCFs) over two normalized transmission bands. It reveals that SCFs are able to maintain the desired round shape of silica cladding walls, hence improving the confinement loss (CL) compared to the KF. Fabrication of the SCF is demonstrated by the stack-and-draw technique. The near filed mode patterns are measured to prove the feasibility of this fiber design.

  4. Stainless steel clad for light water reactor fuels. Final report

    International Nuclear Information System (INIS)

    Proper reactor operation and design guidelines are necessary to assure fuel integrity. The occurrence of fuel rod failures for operation in compliance with existing guidelines suggests the need for more adequate or applicable operation/design criteria. The intent of this study is to develop such criteria for light water reactor fuel rods with stainless steel clad and to indicate the nature of uncertainties in its development. The performance areas investigated herein are: long term creepdown and fuel swelling effects on clad dimensional changes and on proximity to clad failure; and short term clad failure possibilities during up-power ramps

  5. Suppression of Cladding Mode Coupling by B/Ge Codoped Photosensitive Fiber With Photosensitive and Depressed Inner Cladding

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Excess loss on the short wavelength side of the Bragg resonant wavelength caused by cladding mode coupling limits wide use of grating in the fiber communication system, especially in densed wavelength division multiplexing (DWDM) system.A novel photosensitive fiber design that have depressed cladding and photosensitive inner cladding in the same fiber is proposed, which can suppress cladding mode coupling greatly.Using MCVD method B/Ge codoped fiber with depressed cladding was fabriceted out, which was also doped in boron and germanium and had the photosensitivity.Finally, the transmission spectrum of written grating in this fiber by phase mask method verified its larger photosensitivity and greatly suppression of cladding mode coupling.

  6. EXPERIMENTALLY-STATISTICAL MODEL OF CLADDING LAYER FORMATION PROCESS ON SLIDE-WAYS

    Directory of Open Access Journals (Sweden)

    N. N. Maksimchenko

    2010-01-01

    Full Text Available The developed experimentally-statistical model of the cladding composite layer formation process on slide-ways allows to operate technological modes of cladding by flexible instrument (CFI in order to obtain the set properties of a coating (thickness, continuity, adhesion strength.The established optimum technological modes of CFI process providing formation of continuous, strongly adhered to a basis composite coatings of the required thickness have been used for applying coatings on working surfaces of slide-ways of metal-cutting machine tool beds that has allowed to lower friction factor in coupling on the average by 1.3–1.7-fold and to improve uniformity of slow moving of machine tool units by 1.74-fold in comparison with slide-ways without a coating. 

  7. 2D modelling of clad geometry and resulting thermal cycles during laser cladding

    NARCIS (Netherlands)

    Ya, Wei; Pathiraj, B.; Liu, Shaojie

    2016-01-01

    A 2D thermal model of laser cladding process based on mass and energy balance is built incorporating the powder efficiency and solved with the finite element software COMSOL MULTIPHYSICS® v4.4. Powder efficiency was used as one of the input parameters. Powder efficiency was determined with weight me

  8. Bragg grating induced cladding mode coupling due to asymmetrical index modulation in depressed cladding fibers

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Grüne-Nielsen, Lars; Soccolich, C.F.;

    1998-01-01

    to reduce this problem. None of these designs seems to give complete solutions. In particular, the otherwise promising depressed cladding design gives a pronounced coupling to one LP01 mode, this has been referred to as a Ghost grating. To find the modes of the fiber we have established a numerical mode...

  9. Photonic lantern with cladding-removable fibers

    Science.gov (United States)

    Sun, Weimin; Yan, Qi; Bi, Yao; Yu, Haijiao; Liu, Xiaoqi; Xue, Jiuling; Tian, He; Liu, Yongjun

    2014-07-01

    Recently, spectral measurement becomes an important tool in astronomy to find exoplanets etc. The fibers are used to transfer light from the focal plate to spectrometers. To get high-resolution spectrum, the input slits of the spectrometers should be as narrow as possible. In opposite, the light spots from the fibers are circle, which diameters are clearly wider than the width of the spectrometer slits. To reduce the energy loss of the fiber-guide star light, many kinds of image slicers were designed and fabricated to transform light spot from circle to linear. Some different setup of fiber slicers are introduced by different research groups around the world. The photonic lanterns are candidates of fiber slicers. Photonic lantern includes three parts: inserted fibers, preform or tubing, taped part of the preform or tubing. Usually the optical fields concentrate in the former-core area, so the light spots are not uniform from the tapered end of the lantern. We designed, fabricated and tested a special kind of photonic lantern. The special fibers consist polymer cladding and doped high-index core. The polymer cladding could be easily removed using acetone bath, while the fiber core remains in good condition. We inserted the pure high-index cores into a pure silica tubing and tapered it. During the tapering process, the gaps between the inserted fibers disappeared. Finally we can get a uniform tapered multimode fiber end. The simulation results show that the longer the taper is, the lower the loss is. The shape of the taper should be controlled carefully. A large-zone moving-flame taper machine was fabricated to make the special photonic lantern. Three samples of photonic lanterns were fabricated and tested. The lanterns with cladding-removable fibers guide light uniform in the tapered ends that means these lanterns could collect more light from those ends.

  10. Rheological evaluation of pretreated cladding removal waste

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, D.; Chan, M.K.C.; Lokken, R.O.

    1986-01-01

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid.

  11. Rheological evaluation of pretreated cladding removal waste

    International Nuclear Information System (INIS)

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid

  12. Ferrous Alloy Powder for Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    WEN Jialing; NIU Quanfeng; XU Yanmin

    2005-01-01

    This investigation aimed at how to improve the hardness and wear resistance by B, Si and Cr, and how to improve the synthesis property by Re (rare-earth element). Based on the experiment of Fe-based alloys of Fe-Cr-Ni-B-Si-Re, through experiments and a serious of synthesis analysis, including surface quality, spectrum composite, micro-hardness, scanning electron microscopy, as well as the synthesis evaluation,etc, prescriptions were optimized. As a result, a Fe-Cr-Ni-B-Si-Re cladding material with a high property was obtained.

  13. Formation of intermetallic compound at interface between rare earth elements and ferritic-martensitic steel by fuel cladding chemical interaction

    Institute of Scientific and Technical Information of China (English)

    Jun Hwan Kim; Byoung Oon Lee; Chan Bock Lee; Seung Hyun Jee; Young Soo Yoon

    2012-01-01

    The intermetallic compounds formation at interface between rare earth elements and clad material were investigated to demonstrate the effects of rare earth elements on fuel-cladding chemical interaction (FCCI) behavior.Mischmetal (70Ce-30La) and Nd were prepared as rare earth elements.Diffusion couple testing was performed on the rare earth elements and cladding (9Cr2W steel) near the operation temperature of(sodium-cooled fast reactor) SFR fuel.The performance of a diffusion barrier consisting of Zr and V metallic foil against the rare earth elements was also evaluated.Our results showed that Ce and Nd in the rare earth elements and Fe in the clad material interdiffused and reacted to form intermetallic species according to the parabolic rate law,describing the migration of the rare earth element.The diffusion of Fe limited the reaction progress such that the entire process was governed by the cubic rate law.Rare earth materials could be used as a surrogate for high burnup metallic fuels,and the performance of the barrier material was demonstrated to be effective.

  14. Microscopic analysis of oxide formed on ZIRLO cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ho Yeon; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    The oxide transition has been proposed to be caused by accumulated stresses during oxide growth and interconnected porosity. The metal/oxide interface roughness is linked to location of cracks, formation of the cracks is also associated with the transition of the oxide and large compressive stresses caused by oxide volume expansion. The cracks found in the oxide are mainly oriented parallel to the metal/oxide interface. They are more likely to work as obstacles for diffusion of oxidizing species rather than as easy diffusion paths. Bossis et al. reported a porous outer layer in a pretransition oxide by ion mass spectrometry (SIMS) and electrical impedance spectroscopy (EIS) experiments. Cox et al. anticipated that porosity provides connected paths between external oxidizing medium and the underlying metal. Ni et al. reported interconnected nanopores along with grain boundaries in the oxide and concluded that development of interlinked porosity down to the metal/oxide interface is a key mechanism for the transition in oxidation kinetics. Microscopic examinations by SEM, TEM with FIB technique and XRD analysis were conducted to characterize the oxide formed on ZIRLO cladding tube samples oxidized in an autoclave of a recirculation loop at 360 .deg. C and 20MPa for 300 hour under simulating primary water chemistry conditions. The samples have an oxide thickness ranging from 0.9 to 1.25 μm range. Lateral cracks and columnar grains are dominant near the metal/oxide interface while round-shaped cracks (or cavities) and equiaxed grains are dominant near the water/oxide interface. A very large lateral crack is observed just above the metal/oxide interface summit that is least advanced. However, there is the possibility that the width of this crack was extended during the FIB sectioning. Local sub-oxide layer is shown as faint part on darkfield TEM image along the metal/oxide interface and it has Zr:O ratio of 1:1 (between 45 and 55 at.%) with about 20nm width.

  15. Embedded cladding surface thermocouples on Zircaloy-sheathed heater rods

    International Nuclear Information System (INIS)

    Titanium-sheathed Type K thermocouples embedded in the cladding wall of zircaloy-sheathed heater rods are described. These thermocouples constitute part of a program intended to characterize the uncertainty of measurements made by surface-mounted cladding thermocouples on nuclear fuel rods. Fabrication and installation detail, and laboratory testing of sample thermocouple installations are included

  16. LASER CLADDING WITH COBALT-BASED HARDFACING ALLOYS

    OpenAIRE

    Frenk, A.; WagniÈre, J.-D.

    1991-01-01

    Preliminary results aimed at designing Co-based hardfacing alloys specifically for the laser cladding process are reported. Three alloys, ranging from hypo- to hypereutectic were deposited using scanning velocities between 1.7 and 170 mm/s. The microstructures and the dry sliding wear resistances of the clads were investigated. First trends relating composition to dry sliding wear resistance were deduced.

  17. Instrument for measuring fuel cladding strain

    International Nuclear Information System (INIS)

    Development work to provide instrumentation for the continuous measurement of strain of material specimens such as nuclear fuel cladding has shown that a microwave sensor and associated instrumentation hold promise. The cylindrical sensor body enclosing the specimen results in a coaxial resonator absorbing microwave energy at frequencies dependent upon the diameter of the specimen. Diametral changes of a microinch can be resolved with use of the instrumentation. Very reasonable values of elastic strain were measured at 750F and 10000F for an internally pressurized 20 percent C.W. 316 stainless steel specimen simulating nuclear fuel cladding. The instrument also indicated the creep strain of the same specimen pressurized at 6500 psi and at a temperature of 10000F for a period of 700 hours. Although the indicated strain appears greater than actual, the sensor/specimen unit experienced considerable oxidation even though an inert gas purge persisted throughout the test duration. By monitoring at least two modes of resonance, the measured strain was shown to be nearly independent of sensor temperature. To prevent oxidation, a second test was performed in which the specimen/sensor units were contained in an evacuated enclosure. The strain of the two prepressurized specimens as indicated by the microwave instrumentation agreed very closely with pre- and post-test measurements obtained with use of a laser interferometer

  18. Material Selection for Accident Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Alternative cladding materials to Zr-based alloys are being investigated for accident tolerance, which can be defined as > 100X improvement (compared to Zr-based alloys) in oxidation resistance to steam or steam-H2 environments at ≥ 1200°C for short times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti2AlC form a protective alumina scale in steam. However, commercial Ti2AlC that was not single phase, formed a much thicker oxide at 1200°C in steam and significant TiO2, and therefore Ti2AlC may be challenging to form as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation-assisted α´ formation. The composition effects and critical limits to retaining protective scale formation at > 1400°C are still being evaluated.

  19. Chemical compatibility between U-6wt.%Zr alloy and T91 cladding

    International Nuclear Information System (INIS)

    Full text: Metal fuel based on binary U-Pu and ternary U-Pu-Zr alloys has been considered as a promising advanced fuel for fast reactor in India due to its favorable thermal and neutronic performance, enhanced reactor safety, ease of fabrication and suitability for pyro-reprocessing. Fuel-clad chemical interaction (FCCI) has been recognized as one of the major issues in metallic fuel since it limits life of fuel pin due to formation of low melting eutectic at significantly lower temperature than the melting point of the fuel alloy. As a part of metallic fuel development programme for future FBR's in India, capsule irradiation of metal fuel based on sodium bonded ternary U-Pu-Zr (Zr2 type layer of thickness around 5μm on the clad side, a Zr depleted layer of thickness 20 μm on the fuel side and a thin Zr rich layer of thickness 2-3μm between the above two. The Zr rich layer formed at the interface is known to be fuel-clad diffusion barrier. U at the interface reacts with Fe, Cr of T91 leaving behind Zr which forms a barrier layer at the interface. When the annealing temperature was increased to 750 deg C, a phase with eutectic microstructure was observed. The bright phase is U6Fe phase, the grey and dark phases are U(Fe,Cr)2 and Zr(Fe,Cr)2 respectively. The results indicate that measured eutectic temperature between U-6Zr and T91 is very crucial from reactor safety point of view. Diffusion couple experiments clearly show that Zr rich layer will retard the diffusion of U to the interface below eutectic temperature but above eutectic temperature U diffusion is fast enough to result in eutectic me

  20. Experimental to study the effect of multiple weld-repairs on microstructure, hardness and residual stress for a stainless steel clad plate

    International Nuclear Information System (INIS)

    Highlights: • Effect of multiple repairs on residual stress, microstructure and hardness for a clad plate has been studied. • A diffusion layer with martensite is generated around weld-base metal interface. • Along the weld–clad metal interface, short ferrite is generated in the fusion zone. • As the repair times increase, the content of short ferrite is increased. • It is proposed that the stainless steel clad plate cannot be repaired more than 2 times. - Abstract: This paper presents an experimental study of multiple repair welds in a stainless steel clad plate. Four weld samples with one, two, three and four repairs in the same area were prepared, respectively, to determine the changes in microstructure, residual stress and micro hardness. Neutron diffraction measurement was used to determine the weld residual stress. The results show that the repair weld contains nine zones with different microstructures. Around weld-base metal interface, a diffusion layer is formed because of the diffusion of C, Cr, Ni and Fe elements. The diffusion layer, which contains martensite with larger hardness than the adjacent metals, should be removed completely before re-repair. Around the weld–clad metal interface, short ferrite is generated along the fusion zone. As the repair number increases, the fusion zone becomes thicker, and the content of short ferrite also increases, which leads to some voids in the third and fourth repair welds. In the fusion zone of the sample with four repairs, massive ferrite is generated because more Cr element is diffused to the fusion zone. Residual stress increases gradually from the weld center and reaches the maximum at heat affected zone (HAZ) and then decreases far away. The residual stress in the sample with four repairs decreases because the hardness is decreased. Based on the comprehensive considerations of microstructure, residual stress and hardness, it proposes that the clad plate cannot be repaired more than 2 times

  1. Glass-clad semiconductor core optical fibers

    Science.gov (United States)

    Morris, Stephanie Lynn

    Glass-clad optical fibers comprising a crystalline semiconductor core have garnered considerable recent attention for their potential utility as novel waveguides for applications in nonlinear optics, sensing, power delivery, and biomedicine. As research into these fibers has progressed, it has become evident that excessive losses are limiting performance and so greater understanding of the underlying materials science, coupled with advances in fiber processing, is needed. More specifically, the semiconductor core fibers possess three performance-limiting characteristics that need to be addressed: (a) thermal expansion mismatches between crystalline core and glass cladding that lead to cracks, (b) the precipitation of oxide species in the core upon fiber cooling, which results from partial dissolution of the cladding glass by the core melt, and (c) polycrystallinity; all of which lead to scattering and increased transmission losses. This dissertation systematically studies each of these effects and develops both a fundamental scientific understanding of and practical engineering methods for reducing their impact. With respect to the thermal expansion mismatch and, in part, the dissolution of oxides, for the first time to our knowledge, oxide and non-oxide glass compositions are developed for a series of semiconductor cores based on two main design criteria: (1) matching the thermal expansion coefficient between semiconductor core and glass cladding to minimize cracking and (2) matching the viscosity-temperature dependences, such that the cladding glass draws into fiber at a temperature slightly above the melting point of the semiconductor in order to minimize dissolution and improve the fiber draw process. The x[Na 2O:Al2O3] + (100 - 2x)SiO2 glass compositional family was selected due to the ability to tailor the glass properties to match the aforementioned targets through slight variations in composition and adjusting the ratios of bridging and non-bridging oxygen

  2. The ballooning of fuel cladding tubes: theory and experiment

    International Nuclear Information System (INIS)

    Under some conditions, fuel clad ballooning can result in considerable strain before rupture. If ballooning were to occur during a loss-of-coolant accident (LOCA), the resulting substantial blockage of the sub-channel would restrict emergency core cooling. However, circumferential temperature gradients that would occur during a LOCA may significantly limit the average strain at failure. Understandably, the factors that control ballooning and rupture of fuel clad are required for the analysis of a LOCA. Considerable international effort has been spent on studying the deformation of Zircaloy fuel cladding under conditions that would occur during a LOCA. This effort has established a reasonable understanding of the factors that control the ballooning, failure time, and average failure strain of fuel cladding. In this paper, both the experimental and theoretical studies of the fuel clad ballooning are reviewed. (author)

  3. Toughness properties of end of life reactor pressure vessel cladding

    International Nuclear Information System (INIS)

    The inside surface of reactor pressure vessels is protected against corrosion by a clad overlay made of austenic stainless steel. This cladding, applied by automatic submerged arc welding with strip electrode, is constituted by two layers, the first one in 309L (24 CR - 12 Ni) steel and the second one in 308L (18 Cr - 10 Ni) steel. Safety analysis of reactor pressure vessel (RPV) consists to verify the resistance to fracture of the vessel, assumed containing a small crack just under the cladding. That implies the knowledge of the mechanical properties of the cladding. With the objective to evaluate the mechanical properties of the cladding at the end of life of the RPV, a coordinated French experimental programme has been carried out jointly by CEA, EDF, and Framatome. The first experimental results of this programme are given in this paper. 10 figs, 3 tabs

  4. Cladding embrittlement during postulated loss-of-coolant accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  5. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    Science.gov (United States)

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  6. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Seitz, W.W.; Girshik, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1998-06-01

    In Phase 1 of this project, laboratory experiments were performed on a variety of developmental and commercial tubing alloys and claddings by exposing them to fireside corrosion tests which simulated a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, RA253MA, Fe{sub 3}Al + 5Cr, Ta-modified 310, NF 709, 690 clad, 671 clad, and 800HT for up to approximately 16,000 hours to the actual operating conditions of a 250-MW, coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, and controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy were exposed for 4,483, 11,348, and 15,883 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after the full 15,883 hours of exposure. A previous topical report has been issued for the 4,483 hours of exposure.

  7. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Seitz, W.W. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1997-12-01

    In Phase 1 a variety of developmental and commercial tubing alloys and claddings were exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347 RA-85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 Ta modified, NF 709, 690 clad, and 671 clad for approximately 4,000, 12,000, and 16,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were assembled on an air-cooled, retractable corrosion probe, the probe was installed in the reheater activity of the boiler and controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. The results will be presented for the preliminary metallurgical examination of the corrosion probe samples after 16,000 hours of exposure. Continued metallurgical and interpretive analysis is still on going.

  8. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Krawchuk, M.T.; Van Weele, S.F. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1995-08-01

    A number of developmental and commercial tubing alloys and claddings have previously been exposed in Phase I to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. This program is exposing samples of TP 347, RA-85H, HR-3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF-709, 690 clad, and 671 clad, which showed good corrosion resistance from Phase 1, to the actual operating conditions of a 250-MW, coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, and are being controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. The exposure will continue for 4000, 12,000, and 16,000 hours of operation. After the three exposure times, the samples will be metallurgically examined to determine the wastage rates and mode of attack. The probes were commissioned November 16, 1994. The temperatures are being recorded every 15 minutes, and the weighted average temperature calculated for each sample. Each of the alloys is being exposed to a temperature in each of two temperature bands-1150 to 1260{degrees}F and 1260 to 1325{degrees}F. After 2000 hours of exposure, one of the corrosion probes was cleaned and the wall thicknesses were ultrasonically measured. The alloy performance from the field probes will be discussed.

  9. Tensile Hoop Behavior of Irradiated Zircaloy-4 Nuclear Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Roger A [ORNL; Hendrich, WILLIAM R [ORNL; Packan, Nicolas H [ORNL

    2007-03-01

    A method for evaluating the room temperature ductility behavior of irradiated Zircaloy-4 nuclear fuel cladding has been developed and applied to evaluate tensile hoop strength of material irradiated to different levels. The test utilizes a polyurethane plug fitted within a tubular cladding specimen. A cylindrical punch is used to compress the plug axially, which generates a radial displacement that acts upon the inner diameter of the specimen. Position sensors track the radial displacement of the specimen outer diameter as the compression proceeds. These measurements coupled with ram force data provide a load-displacement characterization of the cladding response to internal pressurization. The development of this simple, cost-effective, highly reproducible test for evaluating tensile hoop strain as a function of internal pressure for irradiated specimens represents a significant advance in the mechanical characterization of irradiated cladding. In this project, nuclear fuel rod assemblies using Zircaloy-4 cladding and two types of mixed uranium-plutonium oxide (MOX) fuel pellets were irradiated to varying levels of burnup. Fuel pellets were manufactured with and without thermally induced gallium removal (TIGR) processing. Fuel pellets manufactured by both methods were contained in fuel rod assemblies and irradiated to burnup levels of 9, 21, 30, 40, and 50 GWd/MT. These levels of fuel burnup correspond to fast (E > 1 MeV) fluences of 0.27, 0.68, 0.98, 1.4 and 1.7 1021 neutrons/cm2, respectively. Following irradiation, fuel rod assemblies were disassembled; fuel pellets were removed from the cladding; and the inner diameter of cladding was cleaned to remove residue materials. Tensile hoop strength of this cladding material was tested using the newly developed method. Unirradiated Zircaloy-4 cladding was also tested. With the goal of determining the effect of the two fuel types and different neutron fluences on clad ductility, tensile hoop strength tests were

  10. Applicability of miniature specimen techniques for evaluating the mechanical properties of pressure tube and cladding material

    International Nuclear Information System (INIS)

    The Miniature Specimen Test Techniques (MSTT) namely Small Punch Test (SPT) and Ball Indentation Test (BIT) are commonly employed for evaluating the tensile properties of metallic materials. While discs of 3mm diameter with 0.25mm thickness are utilized for SPT method, the samples for BIT are of any shape with parallel polished top and bottom surfaces having thickness of at least 1mm. The SPT technique is based on driving a ball through clamped miniature disc specimens for deforming till it fractures whereas BIT involves multiple indentations, load and unload cycles at a single indentation point on a polished metallic surface by a spherical indenter. The specimens were fabricated from Zr-2.5%Nb pressure tube (PT) material that is used in pressurised heavy water reactor (PHWR). A suitable die-punch assembly was designed and developed in house to clamp the specimen to carry out the small punch test with the help of a screw-driven universal testing machine. In this work we have utilized miniature tensile specimens for evaluating and comparing the mechanical properties of PT material with that obtained from SPT and BIT. The tensile specimens were prepared using wire cut Electrical Discharge Machining (EDM) as per general guideline of ASTM standard E-8. Tests were carried out at ambient and higher temperatures. The tensile properties obtained from tension test and two MSTTs show that the tensile properties vary with orientation and temperature. In order to evaluate mechanical properties of cladding tube two techniques namely SPT and Ring Tension Test (RTT) have been used. The RTT is another technique, already established for estimation of the mechanical properties of cladding tube material in the transverse direction. Experimental results were generated at ambient and higher temperatures by preparing specimens from the same cladding tube in the form of 3mm discs and rings. The basic fixture that was used for carrying out ring tension test of the cladding tube consists

  11. Bending of pipes with inconel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Nachpitz, Leonardo; Menezes, Carlos Eduardo B.; Vieira, Carlos R. Tavares [Primus Processamento de Tubos S.A. (PROTUBO), Macae, RJ (Brazil)

    2009-07-01

    The high-frequency induction bending process, using API pipes coated with Inconel 625 reconciled to a mechanical transformation for a higher degree of resistance, was developed through a careful specification and control of the manufacturing parameters and inherent heat treatments. The effects of this technology were investigated by a qualification process consisting of a sequence of tests and acceptance criteria typically required by the offshore industry, and through the obtained results was proved the effectiveness of this entire manufacturing process, without causing interference in the properties and the quality of the inconel cladding, adding a gain of resistance to the base material, guaranteed by the requirements of the API 5L Standard. (author)

  12. Pretreatment of neutralized cladding removal waste sludge

    International Nuclear Information System (INIS)

    This report describes the status of process development for pretreating Hanford neutralized cladding removal waste (NCRW) sludge, of which ∼ 3.3 x 106 L is stored in Tanks 103-AW and 105-AW at the Hanford Site. The initial baseline process chosen for pretreating NCRW sludge is to dissolve the sludge in nitric acid and extract the -transuranic (MU) elements from the dissolved sludge solution with octyl(phenyl)-N,N-diisobutylcarbamoyl methyl phosphine oxide (CNWO). This process converts the NCRW sludge into a relatively large volume of low-level waste (LLW) to be disposed of as grout, leaving only a small volume of high-level waste (HLW) requiring vitrification in the Hanford Waste Vitrification Plant (HWVP)

  13. Hollow core anti-resonant fiber with split cladding.

    Science.gov (United States)

    Huang, Xiaosheng; Qi, Wenliang; Ho, Daryl; Yong, Ken-Tye; Luan, Feng; Yoo, Seongwoo

    2016-04-01

    An improved design for hollow core anti-resonant fibers (HAFs) is presented. A split cladding structure is introduced to reduce the fabrication distortion within design tolerance. We use numerical simulations to compare the Kagome fibers (KFs) and the proposed split cladding fibers (SCFs) over two normalized transmission bands. It reveals that SCFs are able to maintain the desired round shape of silica cladding walls, hence improving the confinement loss (CL) compared to the KF and is comparable to that of the nested antiresonant nodeless fiber (NANF) with the same core size. In addition, the SCF allows stacking multiple layers of cladding rings to control the CL. The influences of the number of cladding layers and the cladding gap width on the CL of the SCFs have been studied. SCF with three cladding rings is fabricated by the stack-and-draw technique. A measured attenuation spectrum matches well with the calculation prediction. The measured near field mode patterns also prove the feasibility of our fiber design.

  14. Effect of Foam Cladding for Blast Mitigation: Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    MA Guowei; YE Ziqing; ZHANG Xingui

    2006-01-01

    Two numerical simulations were performed to investigate the protective effect of the foam cladding.One simulation is based on a previous experimental study,which is a ballistic pendulum with and without a foam cladding subjected to close-range blast loading.The other model is a steel beam with and without a foam cladding under blast loading.The overpressure due to the blast event can be calculated by the empirical function ConWep or by an arbitrary Lagrangian-Eulerian (ALE)coupling model.The first approach is relatively simple and widely used.The second approach can model the propagation of the blast wave in the air and the interaction between the air and the solid.Itis found that the pendulum with the foam cladding always swings to a larger rotation angel compared to a bare pendulum.However,the steel beam with an appropriate foam cladding has a smaller deflection compared to the bare beam without a foam cladding.It is concluded that the protective effect of the foam cladding depends on the properties of the foam and the protected structure.

  15. Microstructure, Wear, and Corrosion Characteristics of TiC-Laser Surface Cladding on Low-Carbon Steel

    Science.gov (United States)

    El-Labban, Hashem F.; Mahmoud, Essam Rabea Ibrahim; Algahtani, Ali

    2016-04-01

    Laser cladding was used to produce surface composite layer reinforced with TiC particles on low-carbon steel alloy for improving the wear and corrosion resistances. The cladding process was carried out at powers of 2800, 2000, 1500, and 1000 W, and a fixed traveling speed of 4 mm/s. The produced layers are free from any cracks. Some of the TiC particles were melted and then re-solidified in the form of fine acicular dendrites. The amount of the melted TiC was increased by increasing the laser power. The hardness of the produced layers was improved by about 19 times of the base metal. Decreasing laser power led to hardness increment at the free surface. The improvement in wear resistance was reached to about 25 times (in case of 1500 W) of the base metal. Moreover, the corrosion resistance shows remarkable improvement after the laser treatment.

  16. The Information Sources in Building Cladding Supply Chain

    Directory of Open Access Journals (Sweden)

    Qiang Du

    2012-11-01

    Full Text Available The increasing complexity of the cladding procurement and fragmentation of the supply chain bring challenges for information management. The purpose of this research was to identify the issues concerning the information sources. A questionnaire survey was the key method of this research, while industry meetings and informal interviews were employed to provide in-depth understanding of the communication related issues in the industry. It was found that the participants of the cladding supply chain were experiencing difficulties of identifying information sources and accessing information, and that an industry level third party acting as an independent information source could be accepted by the cladding industry.

  17. Increasing corrosion resistance of carbon steels by surface laser cladding

    Science.gov (United States)

    Polsky, V. I.; Yakushin, V. L.; Dzhumaev, P. S.; Petrovsky, V. N.; Safonov, D. V.

    2016-04-01

    This paper presents results of investigation of the microstructure, elemental composition and corrosion resistance of the samples of low-alloy steel widely used in the engineering, after the application of laser cladding. The level of corrosion damage and the corrosion mechanism of cladded steel samples were established. The corrosion rate and installed discharge observed at the total destruction of cladding were obtained. The regularities of structure formation in the application of different powder compositions were obtained. The optimal powder composition that prevents corrosion of samples of low-carbon low-alloy steel was established.

  18. Microstructure Evolution and Cracking Control of 316L Stainless Steel Manufactured by Multi-layer Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    SONGJian-li; DENGQi-lin; HUDe-jin; SUNKang-kai; ZHOUGuang-cai

    2004-01-01

    Multi-layer laser cladding manufacturing is a newly developed rapid manufacturing technology. It is a powerful tool for direct fabrication of three-dimensional fully dense metal components and part repairing. In this paper, the microstructure evolution and properties of 316L stainless steel deposited with this technology was investigated, compact components with properties similar to the as-cast and wrought annealed material was obtained. Cracking was eliminated by introducing of supersonic vibration and application of parameter adjustment technologies.

  19. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    Science.gov (United States)

    Karahan, Aydın; Kazimi, Mujid S.

    2013-10-01

    The study evaluates the possible use of graphite foam as the bonding material between U-Pu-Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U-15Pu-6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600-660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors.

  20. Study on Cracking Tendency and Mechanism of Gray Cast Iron Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    YE Hong; YAN Zhong-lin; HUANG Qi; YANG Hui

    2004-01-01

    In this paper, NiCrSiB and CoWC35 powder has been used in laser cladding of gray cast iron. The cracking tendency has also been discussed. The cracks have been observed with a scan electron microscopy to analyze the cracking mechanism. The results show that cracks have not appeared in NiCrSiB cladding. Nevertheless, the cracking tendency of CoWC35 cladding is extremely high and there are both cold cracks and hot cracks in the cladding. The cracking tendency of laser cladding depends on physical properties of the cladding material and plasticity and roughness of the cladding.

  1. Study on Cracking Tendency and Mechanism of Gray Cast Iron Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    YEHong; YANZhong-lin; HUANGQi; YANGHui

    2004-01-01

    In this paper, NiCrSiB and COWC35 powder has been used in laser cladding of gray cast iron. The cracking tendency has also been discussed. The cracks have been observed with a scan electron microscopy to analyze the cracking mechanism. The results show that cracks have not appeared in NiCrSiB cladding. Nevertheless, the cracking tendency of CoWC35 cladding is extremely high and there are both cold cracks and hot cracks in the cladding. The cracking tendency of laser cladding depends on physical properties of the cladding material and plasticity and roughness of the cladding.

  2. Characteristics of Ni-based coating layer formed by laser and plasma cladding processes

    Energy Technology Data Exchange (ETDEWEB)

    Xu Guojian [Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)]. E-mail: xuguojian1959@hotmail.com; Kutsuna, Muneharu [Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)]. E-mail: kutsuna@numse.nagoya-u.ac.jp; Liu Zhongjie [Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)]. E-mail: xyliuzhj8@hotmail.com; Zhang Hong [Changchun University of Science and Technology, 7 Weixing Road, Changchun, Jilin Province 130022 (China)]. E-mail: Zhanghongcust@hotmail.com

    2006-02-15

    The clad layers of Ni-based alloy were deposited on the SUS316L stainless plates by CO{sub 2} laser and plasma cladding processes. The smooth clad bead was obtained by CO{sub 2} laser cladding process. The phases of clad layer were investigated by an optical microscope, scanning electron microscopy (SEM), X-ray diffractometer (XRD), electron probe microanalysis (EPMA) and energy-dispersive spectrometer (EDS). The microstructures of clad layers belonged to a hypereutectic structure. Primary phases consist of boride CrB and carbide Cr{sub 7}C{sub 3}. The eutectic structure consists of Ni + CrB or Ni + Cr{sub 7}C{sub 3}. Compared with the plasma cladding, the fine microstructures, low dilutions, high Vickers hardness and excellent wear resistance were obtained by CO{sub 2} laser cladding. All that show the laser cladding process has a higher efficiency and good cladding quality.

  3. Development of dissimilar metal transition joint by hot bond rolling

    International Nuclear Information System (INIS)

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) to stainless steel piping are required for nuclear fuel reprocessing plants. The authors have developed dissimilar transition joints made of stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot bond rolling process of clad bars and clad pipes, using a newly developed mill called 'rotary reduction mill'. This report presents the manufacturing process of dissimilar transition joints produced from the clad pipe with three layers by the hot bond rolling. First, the method of hot bond rolling of clad pipe is proposed. Then, the mechanical and corrosion properties of the dissimilar transition joints are evaluated in detail by carrying out various tests. Finally, the rolling properties in the clad pipe method are discussed. (author)

  4. Glass-clad semiconductor core optical fibers

    Science.gov (United States)

    Morris, Stephanie Lynn

    Glass-clad optical fibers comprising a crystalline semiconductor core have garnered considerable recent attention for their potential utility as novel waveguides for applications in nonlinear optics, sensing, power delivery, and biomedicine. As research into these fibers has progressed, it has become evident that excessive losses are limiting performance and so greater understanding of the underlying materials science, coupled with advances in fiber processing, is needed. More specifically, the semiconductor core fibers possess three performance-limiting characteristics that need to be addressed: (a) thermal expansion mismatches between crystalline core and glass cladding that lead to cracks, (b) the precipitation of oxide species in the core upon fiber cooling, which results from partial dissolution of the cladding glass by the core melt, and (c) polycrystallinity; all of which lead to scattering and increased transmission losses. This dissertation systematically studies each of these effects and develops both a fundamental scientific understanding of and practical engineering methods for reducing their impact. With respect to the thermal expansion mismatch and, in part, the dissolution of oxides, for the first time to our knowledge, oxide and non-oxide glass compositions are developed for a series of semiconductor cores based on two main design criteria: (1) matching the thermal expansion coefficient between semiconductor core and glass cladding to minimize cracking and (2) matching the viscosity-temperature dependences, such that the cladding glass draws into fiber at a temperature slightly above the melting point of the semiconductor in order to minimize dissolution and improve the fiber draw process. The x[Na 2O:Al2O3] + (100 - 2x)SiO2 glass compositional family was selected due to the ability to tailor the glass properties to match the aforementioned targets through slight variations in composition and adjusting the ratios of bridging and non-bridging oxygen

  5. Microstructure & performance of laser cladding on pick surface of coal mining machine

    Institute of Scientific and Technical Information of China (English)

    SUN Hui-lai; ZHAO Fang-fang; ZHANG Shou-xin; QI Xiang-yang

    2006-01-01

    Laser cladding of 316 L steel powders on pick substrate of coal mining machine was conducted, and microstructure of laser cladding coating was analyzed. The micro-hardness of laser cladding coating was examined. The results show that microstructure of laser cladding zone is exiguous dentrite, and there are hard spots dispersible distribution in the laser cladding zone. Performances of erode-resistant, surface micro-hardness and wear-resistant are improved obviously.

  6. Chalcogenide optical microwires cladded with fluorine-based CYTOP.

    Science.gov (United States)

    Li, Lizhu; Abdukerim, Nurmemet; Rochette, Martin

    2016-08-22

    We demonstrate optical transmission results of highly nonlinear As2Se3 optical microwires cladded with fluorine-based CYTOP, and compare them with microwires cladded with typical hydrogen-based polymers. In the linear optics regime, the CYTOP-cladded microwire transmits light in the spectral range from 1.3 µm up to >2.5 µm without trace of absorption peaks such as those observed using hydrogen-based polymer claddings. The microwire is also pumped in the nonlinear optics regime, showing multiple-orders of four-wave mixing and supercontinuum generation spanning from 1.0 µm to >4.3 µm. We conclude that with such a broadband transparency and high nonlinearity, the As2Se3-CYTOP microwire is an appealing solution for nonlinear optical processing in the mid-infrared. PMID:27557174

  7. Manufacturing Technology and Application Trends of Titanium Clad Steel Plates

    Institute of Scientific and Technical Information of China (English)

    Hang SU; Xiao-bing LUO; Feng CHAI; Jun-chang SHEN; Xin-jun SUN; Feng LU

    2015-01-01

    Some of the major manufacturing processes and corresponding mechanical properties of titanium clad steel plates were analyzed, and the consequences of research, manufacturing, and application of titanium clad steel plates in both markets of China and overseas were also summarized. As an economical and environmentally friendly technology, the roll bonding process is ex-pected to become the next-generation mainstream process for the manufacturing of titanium clad steel plate. Some of the crucial and most important technical problems of this particular process, including vacuum sealing technology, surface treatment process technology, application of a transition layer, and rolling process, were discussed along with the advantageous mechanical properties and life-cycle economy of these plates processed by this technology. Finally, the market needs, application trends, and requirements of titanium clad steel plate were also considered from industries of petrochemical, shipbuilding, marine, and electric power.

  8. High Temperature Resistance Claddings for Nuclear Thermal Rockets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will develop a series of nano-/micro-composite coated nuclear reactor facing components using MesoCoat's CermaCladTM process. This proposed SBIR...

  9. Surface treatment method for cladding tube of LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Yoshitaka; Matsumoto, Kunio; Ito, Kenji.

    1994-06-07

    Upon surface finishing by polishing, shot peening or blasting is applied on the outer surface of a cladding tube to eliminate orientation of residual stresses on the surface layer in order to eliminate residual stresses formed on the outer surface in the circumferential direction. This can suppress occurrence of cracks in oxide membranes formed on the outer surface to suppress development of corrosion on the outer surface irrespective of the ingredient composition of fuel cladding tube made of zircaloy. (T.M.).

  10. Supercontinuum Generation in a Microstructured Fiber with an Irregular Cladding

    Science.gov (United States)

    Minkovich, V. P.; Sotsky, A. B.; Vaca Pereira G., M.; Dzen, I. S.; Sotskaya, L. I.

    2016-05-01

    A broad-band supercontinuum generation was obtained at excitation of a microstructured optical fiber with an irregular cladding by femtosecond laser pulses. To explain the experimental data, calculations of the mode characteristics of microstructured fibers were performed. It was shown that the creation of air channels with different radii in the fiber cladding makes it possible to involve both the fundamental and high fiber modes in the supercontinuum generation that helps to increase the width of the generation spectrum.

  11. Properties of multilayer coatings produced by coaxial laser cladding

    Science.gov (United States)

    Petrovskiy, V. N.; Bykovskiy, D. P.; Dzhumaev, P. S.; Polskiy, V. I.; Prokopova, N. M.; Chirikov, S. N.

    2016-09-01

    This article contains results of the study of multilayer coatings produced by laser cladding on the substrate steel 34HMA using iron based powder PR-10R6M5 as the filler material. The coatings were produced with consistent application of the tracks with fixed overlapping. The dependencies between the characteristics of tracks and the technological mode of deposition were revealed. Properties of coatings were determined for various overlapping of tracks and directions of the cladding layers.

  12. Theoretical analysis of radiation-balanced double clad fiber laser

    Institute of Scientific and Technical Information of China (English)

    CHEN Ji-xin; SUI Zhan; CHEN Fu-shen; LI Ming-zhong; WANG Jian-jun

    2005-01-01

    In this letter,a theoretical model of radiation-balanced double clad fiber laser is presented.The characteristic of the laser with Yb doped double clad fiber is analyzed numerically.It is concluded that high output laser power can be obtained by selecting output coupling mirror with lower reflectivity,improving Yb doped concentration and choosing fiber length. This result can help us to design radiation balanced fiber laser.

  13. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10−6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  14. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu-Tae, E-mail: ktkim@dongguk.ac.kr

    2013-10-15

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10{sup −6} on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure.

  15. A cladding oxidation model based on diffusion equations

    International Nuclear Information System (INIS)

    During severe accident in PWRs, the cladding oxidation with steam in the core is very important to the accident process. When oxidation time is long, or oxidation occurs in steam starvation conditions, the parabolic rate correlations based on experiments are restricted, which impacts the prediction of cladding failure, hydrogen production, and temperature. According to Fick's laws, a cladding oxidation model in a wide temperature range based on diffusion equations is developed. The developed oxidation model has a wider applicability than those parabolic rate correlations, and can simulate long-term experiments well. The restricted assumptions of short term oxidation time and enough steam environment in the core implemented by those parabolic rate correlations are removed in the model, therefore this model perfectly fit for long-term and steam starvation conditions which are more realistic during a severe accident. This model also can obtain detailed oxygen distribution in the cladding, which is helpful to simulate the cladding failure in detail and develop advanced cladding failure criteria. (authors)

  16. Cladding Attachment Over Thick Exterior Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States); Eng, P. [Building Science Corporation, Somerville, MA (United States); Lepage, R. [Building Science Corporation, Somerville, MA (United States)

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1.What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2.Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3.What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  17. Cladding Attachment Over Thick Exterior Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  18. Bioactivity of fluorapatite/alumina composite coatings deposited on Ti6Al4V substrates by laser cladding

    Science.gov (United States)

    Chien, C. S.; Liu, C. W.; Kuo, T. Y.; Wu, C. C.; Hong, T. F.

    2016-04-01

    Hydroxyapatite (HA) is one of the most commonly used coating materials for metal implants. However, following high-temperature deposition, HA easily decomposes into an unstable phase or forms an amorphous phase, and hence, the long-term stability of the implant is reduced. Accordingly, the present study investigates the use of fluorapatite (FA) fortified with 20 wt% alumina (α-Al2O3) as an alternative biomedical coating material. The coatings are deposited on Ti6Al4V substrates using a Nd:YAG laser cladding process performed with laser powers and travel speeds of 400 W/200 mm/min, 800 W/400 mm/min and 1200 W/600 mm/min, respectively. The results show that for all of the specimens, a strong metallurgical bond is formed at the interface between the coating layer and the transition layer due to melting and diffusion. The XRD analysis results reveal that the cladding layers in all of the specimens consist mainly of FA, β-TCP, CaF2, Ti and θ-Al2O3 phases. In addition, the cladding layers of the specimens prepared using laser powers of 400 and 800 W also contain CaTiO3 and CaAl2O4, while that of the specimen clad using a power of 1200 W contains TTCP and CaO. Following immersion in simulated body fluid for 14 days, all of the specimens precipitate dense bone-like apatite and exhibit excellent bioactivity. However, among all of the specimens, the specimen that is prepared with a laser power of 800 W shows the best biological activity due to the presence of residual FA, apatite-generating CaTiO3 and a rough cladding layer surface.

  19. Frequency characteristics of the MIM thick film capacitors fabricated by laser micro-cladding electronic pastes

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yu; Li Xiangyou [Wuhan National Laboratory for Optoelectronics, Huazhong University of Sci and Tech, 430074 Wuhan, Hubei (China); Zeng Xiaoyan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Sci and Tech, 430074 Wuhan, Hubei (China)], E-mail: xyzeng@mail.hust.edu.cn

    2008-05-25

    With rapid development of the electronic industry, how to respond the market requests quickly, shorten R and D prototyping fabrication period, and reduce the cost of the electronic devices have become a challenge work, which need flexible manufacturing methods. In this work, two direct write processing methods, direct material deposition by microPen and Nd:YAG laser micro-cladding, are integrated with CAD/CAM technology for the hybrid fabrication of passive electronic components. Especially, the metal-insulator-metal (MIM) type thick film capacitors are fabricated on ceramic substrates by this method. A basic two-step procedure of laser micro-cladding electronic pastes (LMCEPs) process for the thick film pattern preparation is presented. For a better understanding of the MIM thick film capacitor characterization, equivalent circuit models at low-frequency and high-frequency domains are introduced, respectively. The frequency characteristics tests up to 1.8 GHz of capacitance stability, equivalent series resistance (ESR), equivalent series inductance (ESL) and impendence are performed, and the results show good DC voltage stability (<2.48%), good frequency stability (<2.6%) and low dissipation factor (<0.6%) of the MIM thick film capacitors, which may get application to megahertz regions. The further developments of the LMCEP process for fabricating MIM thick film capacitors are also investigated.

  20. Investigating mechanical behavior and radiation resistant of fuel rods clad in nuclear power plant

    International Nuclear Information System (INIS)

    interstitials in metal lattice under irradiation causes increased strength and hardness but decreases ductility in metals.The increase in strength and hardness depends on obstacles that prevent the motion of dislocations. The clustering of point defects are responsible for these changes. Irradiation also induces instabilities in phases due to enhancement of diffusion, solute segregation, precipitate formation, order- disorder transformation and resolution of small precipitates. From the microscopic point of view accumulation of vacancies accompanied by formation of He and H2 gases under irradiation cause an increase in volume which results in swelling and eventually ends up with embrittlement of metals. This subject was described in chapter three Zirconium and its alloys are the best structural materials for fuel cladding of BWR and PWR reactors core. The working condition in the core of nuclear reactor are very serve, respect temperature and radiation dose. It should be realized that, if fuel cladding receive damage and get cracked, the first cooling cycle and the maine equipment will be contaminated with active materials which cause additional environmental problems. Furthermore, replacement of fuel rods are very costly. Therefore, for increasing life time of fuel cladding and minimizing damage, the effect of radiation and heat on Zirconium and its alloys must be investigated. This subject was described in chapter four.The mechanical behavior and radiation resistant of fuel cladding in PWR reactor (specifically WWER ) have been investigated which is described in chapter five. Result, discussion and final conclusion are summarized in last chapter and also several points for improvement have been offered

  1. Experimental and numerical investigation on cladding of corrosion-erosion resistant materials by a high power direct diode laser

    Science.gov (United States)

    Farahmand, Parisa

    advantages due to creating coating layers with superior properties in terms of purity, homogeneity, low dilution, hardness, bonding, and microstructure. In the development of modern materials for hardfacing applications, the functionality is often improved by combining materials with different properties into composites. Metal Matrix Composite (MMC) coating is a composite material with two constituent parts, i.e., matrix and the reinforcement. This class of composites are addressing improved mechanical properties such as stiffness, strength, toughness, and tribological and chemical resistance. Fabrication of MMCs is to achieve a combination of properties not achievable by any of the materials acting alone. MMCs have attracted significant attention for decades due to their combination of wear-resistivity, corrosion-resistivity, thermal, electrical and magnetic properties. Presently, there is a strong emphasis on the development of advanced functional coatings for corrosion, erosion, and wear protection for different industrial applications. In this research, a laser cladding system equipped with a high power direct diode laser associated with gas driven metal powder delivery system was used to develop advanced MMC coatings. The high power direct diode laser used in this study offers wider beam spot, shorter wavelength and uniform power distribution. These properties make the cladding set-up ideal for coating due to fewer cladding tracks, lower operation cost, higher laser absorption, and improved coating qualities. In order to prevent crack propagation, porosity, and uniform dispersion of carbides in MMC coating, cladding procedure was assisted by an induction heater as a second heat source. The developed defect free MMC coatings were combined with nano-size particles of WC, rare earth (RE) element (La2O3), and Mo as a refractory metal to enhance mechanical properties, chemical composition, and subsequently improve the tribological performance of the coatings. The resistance

  2. Out-of-pile fuel-clad chemical compatibility studies for fast reactors

    International Nuclear Information System (INIS)

    Fuel-clad mechanical and chemical interaction lead to clad corrosion, loss of ductility, embitterment and clad breach limiting the life of a fuel pin. The chemical nature and extent of clad attack depend upon the type of fuel, fuel-clad gap, type of bond between fuel and clad. For FBTR at Kalpakkam, fuel is (U0.3Pu0.7)Cl +x (MKI) and (U0.45Pu0.55)Cl +x (MKII) and the clad is AISI SS316 (20% CW). Extensive work on out-of-pile fuel-clad and fuel-clad-coolant chemical compatibility experiments has been carried out in Radiometallurgy Division. The paper highlights the results of the tests carried out and substantiate it on the basis of the available thermodynamic data. (author)

  3. The prediction of cladding performance in Ultra long Cycle Fast Reactors

    International Nuclear Information System (INIS)

    As a part of R and D activities for the development of advanced fast reactors, HT9 cladding performance of Ultra long Cycle Fast Reactor (UCFR) is evaluated in various cladding peak temperatures and design power levels (1000MWe and 1000MWe). The key design concept of UCFR is a non refueling during 30 to 60 years operation, and this concept may require the maximum cladding temperature of ∼650 .deg. C peak cladding temperature and cladding radiation damage of over 200dpa (displacements pet atom). Therefore, for the design of UCFR, challenges such as thermal creep, irradiation creep and swelling must be quantitatively evaluated. As a cladding material, HT9 shows distinguishably favorable properties for UCFR, In this study, therefore, key design parameters for the cladding performance will be evaluated for UCFR cladding design and resulted the prediction of life time of cladding in UCFR

  4. Mechanical Property and Oxidation Behavior of ATF cladding developed in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To realize the coating cladding, coating material (Cr-based alloy) as well as coating technology (3D laser coating and arc ion plating combined with vacuum annealing) can be developed to meet the fuel cladding criteria. The coated Zr cladding can be produced after the optimization of coating technologies. The coated cladding sample showed the good oxidation/corrosion and adhesion properties without the spalling and/or severe interaction with the Zr alloy cladding from the various tests. Thus, it is known that the mechanical property and oxidation behavior of coated cladding concept developed in KAERI is reasonable for applying the ATF cladding in LWRs. At the present time various ATF concepts have been proposed and developing in many countries. The ATF concepts with potentially improved accident performance can be summarized to the coating cladding, Mo-Zr cladding, FeCrAl cladding, and SiCf/SiC cladding. Regarding the cladding performance, ATF cladding concepts will be evaluated with respect to the accident scenarios and normal operations of LWRs as well as to the fuel cladding fabrication.

  5. Laser cladding in-situ carbide particle reinforced Fe-based composite coatings with rare earth oxide addition

    Institute of Scientific and Technical Information of China (English)

    吴朝锋; 马明星; 刘文今; 钟敏霖; 张红军; 张伟明

    2009-01-01

    Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal surface with various volume fractions of ceramic particles.Recent literatures showed that laser melting of powder mixture containing carbon and carbide-forming elements,was favorable for the formation of in-situ synthesized carbide particles.In this paper,rare earth oxide(RE2O3) was added into t...

  6. Development of advanced LWR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hwan; Park, S. Y.; Lee, M. H. [and others

    2000-04-01

    This report describes the results from evaluating the preliminary Zr-based alloys to develop the advanced Zr-based alloys for the nuclear fuel claddings, which should have good corrosion resistance and mechanical properties at high burn-up over 70,000MWD/MTU. It also includes the results from the basic studies for optimizing the processes which are involved in the development of the advanced Zr-based alloys. Ten(10) kinds of candidates for the alloys of which performance is over that of the existing Zircaloy-4 or ZIRLO alloy were selected out of the preliminary alloys of 150 kinds which were newly designed and repeatedly manufactured and evaluated to find out the promising alloys. First of all, the corrosion tests on the preliminary alloys were carried out to evaluate their performance in both pure water and LiOH solution at 360 deg C and in steam at 400 deg C. The tensile tests were performed on the alloys which proved to be good in the corrosion resistance. The creep behaviors were tested at 400 deg C for 10 days with the application of constant load on the samples which showed good performance in the corrosion resistance and tensile properties. The effect of the final heat treatment and A-parameters as well as Sn or Nb on the corrosion resistance, tensile properties, hardness, microstructures of the alloys was evaluated for some alloys interested. The other basic researches on the oxides, electrochemical properties, corrosion mechanism, and the establishment of the phase diagrams of some alloys were also carried out.

  7. Development of advanced LWR fuel cladding

    International Nuclear Information System (INIS)

    This report describes the results from evaluating the preliminary Zr-based alloys to develop the advanced Zr-based alloys for the nuclear fuel claddings, which should have good corrosion resistance and mechanical properties at high burn-up over 70,000MWD/MTU. It also includes the results from the basic studies for optimizing the processes which are involved in the development of the advanced Zr-based alloys. Ten(10) kinds of candidates for the alloys of which performance is over that of the existing Zircaloy-4 or ZIRLO alloy were selected out of the preliminary alloys of 150 kinds which were newly designed and repeatedly manufactured and evaluated to find out the promising alloys. First of all, the corrosion tests on the preliminary alloys were carried out to evaluate their performance in both pure water and LiOH solution at 360 deg C and in steam at 400 deg C. The tensile tests were performed on the alloys which proved to be good in the corrosion resistance. The creep behaviors were tested at 400 deg C for 10 days with the application of constant load on the samples which showed good performance in the corrosion resistance and tensile properties. The effect of the final heat treatment and A-parameters as well as Sn or Nb on the corrosion resistance, tensile properties, hardness, microstructures of the alloys was evaluated for some alloys interested. The other basic researches on the oxides, electrochemical properties, corrosion mechanism, and the establishment of the phase diagrams of some alloys were also carried out

  8. The Influence of the In-Situ Clad Staining on the Corrosion of Zircaloy in PWR Water Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kammenzind, B.F., Eklund, K.L. and Bajaj, R.

    2001-06-21

    Zircaloy cladding tubes strain in-situ during service life in the corrosive environment of a Pressurized Water Reactor for a variety of reasons. First, the tube undergoes stress free growth due to the preferential alignment of irradiation induced vacancy loops on basal planes. Positive strains develop in the textured tubes along prism orientations while negative strains develop along basal orientations (Reference (a)). Second, early in life, free standing tubes will often shrink by creep in the diametrical direction under the external pressure of the water environment, but potentially grow later in life in the diametrical direction once the expanding fuel pellet contacts the cladding inner wall (Reference (b)). Finally, the Zircaloy cladding absorbs hydrogen as a by product of the corrosion reaction (Reference (c)). Once above the solubility limit in Zircaloy, the hydride precipitates as zirconium hydride (References (c) through (j)). Both hydrogen in solid solution and precipitated as Zirconium hydride cause a volume expansion of the Zircaloy metal (Reference (k)). Few studies are reported on that have investigated the influence that in-situ clad straining has on corrosion of Zircaloy. If Zircaloy corrosion rates are governed by diffusion of anions through a thin passivating boundary layer at the oxide-to-metal interface (References (l) through (n)), in-situ straining of the cladding could accelerate the corrosion process by prematurely breaking that passivating oxide boundary layer. References (o) through (q) investigated the influence that an applied tensile stress has on the corrosion resistance of Zircaloy. Knights and Perkins, Reference (o), reported that the applied tensile stress increased corrosion rates above a critical stress level in 400 C and 475 C steam, but not at lower temperatures nor in dry oxygen environments. This latter observation suggested that hydrogen either in the oxide or at the oxide-to-metal interface is involved in the observed stress

  9. Nd:YAG laser cladding of marine propeller with hastelloy C-22

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.D.; Kang, K.H.; Kim, J.N. [Dept. of Mechanical Engineering, Inha University, Yonghyundong 253, Namku, 402-751, Incheon (Korea)

    2004-09-01

    Nd:YAG laser cladding with automatic wire feeding (Hastelloy C-22) has been done to increase the lifetime of marine propellers made of HBsC1. The effects of processing parameters on the quality of clad layer have been investigated and clad layers have analyzed by optical microscopy and Vickers hardness tester. The method to overcome the drop transfer problem during the wire feeding has been introduced. A cladding speed that is too fast or too slow influenced the shape of clad. The good clad layer without cracks and with low dilution has been obtained with the optimum processing parameters. (orig.)

  10. Experience with TRIGA aluminum-clad fuel elements

    International Nuclear Information System (INIS)

    During 8 years of operation the cumulative heat energy produced in the steady-state TRIGA Mark II 250 kW reactor at Ljubljana reached 4683 MWh. The initial core had Al-clad fuel elements only. The reactivity loss due to the burnup has been compensated by fresh fuel elements with SS-cladding and, lately, by FLIP fuel elements, moving the most irradiated Al-clad fuel elements from B and C rings to the F ring and, lately, to the storage rack. The inspection of the fuel elements during the summer of 1973 revealed excessive elongations of some Al-clad fuel elements, up to 36.8 mm. By the neutronography, performed by indirect methods (In, Dy), and also by direct methods (track detector CA 80-15 B) and by special radiographic procedures on the element, the activity of which decayed sufficiently, it has been demonstrated that the growth is due to the elongation of aluminum cladding only. No growth and/or swelling of the ZrH--U fuel or the graphite plugs has been observed within the accuracy of detection. (U.S.)

  11. Experimental Setup with Transient Behavior of Fuel Cladding of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Hun; Kim, Jun Hwan; Kim, June-Hyung; Ryu, Woo Seog; Park, Sang Gyu; Kim, Sung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Nowadays, in Korea, advanced cladding such as FC92 is developed and its transient behaviors are required for the safety analysis of SFR. Design and safety analyses of sodium-cooled fast reactor (SFR) require understanding fuel pin responses to a wide range of off-normal events. In a loss-of-flow (LOF) or transient over-power (TOP), the temperature of the cladding is rapidly increased above its steady-state service temperature. Transient tests have been performed in sections of fuel pin cladding and a large data base has been established for austenitic stainless steel such as 20% cold-worked 316 SS and ferritic/martensitic steels such as HT9. This paper summarizes the technical status of transient testing facilities and their results. Previous researches showed the transient behaviors of HT9 cladding. For the safety analyses in SFR in Korea, simulated transient tests with newly developed FC92 as well as HT9 cladding are being carried out.

  12. Laser cladding of Ni-based alloy on copper substrate

    Institute of Scientific and Technical Information of China (English)

    Fang Liu; Changsheng Liu; Xingqi Tao; Suiyuan Chen

    2006-01-01

    The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray diffraction (XRD). The average microhardness of the cladding coating was Hv 280, which was almost three times of that of the Cu substrate (Hv 85). OM and SEM observations showed that the obtained coating had a smooth and uniform surface, as well as a metallurgical combination with the Cu substrate without cracks and pores at the interface. With the addition of copper into the nickel-based alloy, the differences of thermal expansion coefficient and melting point between the interlayer and cladding were reduced, which resulted in low stresses during rapid cooling. Moreover, large amount of (Cu, Ni) solid solution formed a metallurgical bonding between the cladding coating and the substrate, which also relaxed the stresses, leading to the reduction of interfacial cracks and pores after laser cladding.

  13. Cladding Alloys for Fluoride Salt Compatibility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Santella, Michael L [ORNL; Holcomb, David Eugene [ORNL

    2011-05-01

    This interim report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for coating large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for coating inaccessible surfaces such as the interior surfaces of heat exchangers. The final project report will feature an experimental evaluation of the performance of the two selected cladding techniques.

  14. Quality assurance and quality control in fabrication of cladding tubes

    International Nuclear Information System (INIS)

    Zircaloy 2 and 4 are the most important Zirconium alloys for use as fuel cladding material in light and heavy water reactors. In fast breeder reactors the cladding tubes are of a modified 16/16 - Cr-Ni-type with improved mechanical, long - term creep rate and rupture - life versus temperature properties. Starting with hot-extruded tube shells the fabrication of Zircaloy cladding tubes is done by 3 - 4 cold reduction steps in tube reducers or rolling machines followed by heat treatments in vacuum. To obtain the specified properties a precise combination of final area reduction and final annealing is absolutely necessary. The fabrication route of stainless steel claddings and guide tubes is similar to the Zircaloy production, exceptionally the last cold-forming steps are made on cold-drawing henches, hecause of economic reasons. After each cold reduction the material is annealed at recrystalisation temperatures under protective atmosoheres. For obtaining the same final tube properties for a longer nroduction neriod the implementation of a quality assurance and control system naturally independent of the production is necessary. The application of this system regarding some of the important properties of fuel cladding tubes is reported. (RW)

  15. Status of Transuranic Bearing Metallic Fuel Development

    Energy Technology Data Exchange (ETDEWEB)

    Steve Hayes; Bruce Hilton; Heather MacLean; Debbie Utterbeck; Jon Carmack; Kemal Pasamehmetoglu

    2009-09-01

    This paper summarizes the status of the metallic fuel development under the Advanced Fuel Cycle Initiative (AFCI). The metallic fuel development program includes fuel fabrication, characterization, advanced cladding research, irradiation testing and post-irradiation examination (PIE). The focus of this paper is on the recent irradiation experiments conducted in the Advanced Test Reactor and some PIE results from these tests.

  16. Study of the solidification of M2 high speed steel Laser Cladding coatings

    Directory of Open Access Journals (Sweden)

    Candel, J. J.

    2013-10-01

    Full Text Available High speed steel laser cladding coatings are complex because cracks appear and the hardness is lower than expected. In this paper AISI M2 tool steel coatings on medium carbon AISI 1045 steel substrate have been manufactured and after Laser Cladding (LC processing it has been applied a tempering heat treatment to reduce the amount of retained austenite and to precipitate secondary carbides. The study of metallurgical transformations by Scanning Electron Microscopy (SEM and Electron Back Scattered Diffraction (EBSD shows that the microstructure is extremely fine and complex, with eutectic transformations and MC, M2C and M6C precipitation. Therefore, after the laser coating is necessary to use post-weld heat treatments.Los recubrimientos de acero rápido por Laser Cladding (LC son complejos porque aparecen fisuras y la dureza es menor a la esperada. En este trabajo se han fabricado recubrimientos de acero AISI M2 sobre acero al carbono AISI 1045 y tras el procesado por láser, se han revenido para reducir la cantidad de austenita retenida y precipitar carburos secundarios. El estudio de las transformaciones metalúrgicas con Microscopía Electrónica de Barrido (MEB y Difracción de Electrones Retrodispersados (EBSD muestra que la microestructura es extremadamente fina y compleja, presenta transformaciones eutécticas y precipitación de carburos MC, M2C y M6C. Por tanto, tras el recubrimiento por láser es necesario recurrir a tratamientos térmicos post-soldeo.

  17. Laser cladding of Ni-based alloy on stainless steel

    Institute of Scientific and Technical Information of China (English)

    XUE Chun-fang; TIAN Xin-li; TAN Yong-sheng; WU Zhi-yuan

    2004-01-01

    The coatings on a stainless steel substrate were conducted by laser cladding of Ni-based alloy, using a 5 kW continuous wave CO2 flow transverse laser. SEM, EDX and X-ray diffraction were used to analyze the microstructure and constituent phases of the obtained coatings by laser cladding with direct injection of the powder into the melt pool. Solidification planar, cellular and dendrite structures were observed in Ni-based alloy coating. There exists an optimum metallurgical bond between Ni-based laser cladding layer and the base material. The high hardness of the Ni-based alloy coating is attributed to the presence of M7C3-type carbides (essentially chromium-riched carbide) dispersed in the γ(Ni,Fe) phase matrix.

  18. A new cladding embrittlement criterion derived from ring compression tests

    Energy Technology Data Exchange (ETDEWEB)

    Herb, Joachim, E-mail: Joachim.Herb@grs.de; Sievers, Jürgen, E-mail: Juergen.Sievers@grs.de; Sonnenburg, Heinz-Günther, E-mail: Heinz-Guenther.Sonnenburg@grs.de

    2014-07-01

    Highlights: • Using FEM it was possible to simulate measured ring compression test data. • The FEM provides burst stresses from Zry-4, M5 and ZIRLO cladding. • The ratio of burst stresses to yield stresses was correlated. • The ratio depends linearly on the state of oxidation and hydriding. • The ratio of stresses at unity can be applied as embrittlement criterion. - Abstract: It is of regulatory interest to prevent the breaking of fuel rods in LOCA transients. In current regulations this is accomplished by limiting the oxidation during LOCA to such an extent that still some residual ductility is preserved in the fuel rod cladding. The current oxidation limit in German as well as in US regulations is set to 17% ECR (Equivalent Cladding Reacted) which aims at maintaining a residual ductility for oxidized claddings. Recent ANL tests have shown that the combination of both oxidation and additionally hydrogen up-take affects the transition to zero-ductility. Furthermore, the oxidation during LOCA transient is accompanied by a significant up-take of hydrogen (secondary hydriding) if the fuel rod bursts during this transient. This secondary hydriding affects the cladding in the vicinity of the burst opening. These findings necessitate a new criterion for preserving cladding's strength. This paper describes a method how to derive a criterion which assures the required residual mechanical strength of the cladding for LOCA transients. This method utilizes the experimental results of 102 ring compression tests (RCT) conducted at ANL and KIT. RCTs of various cladding materials, oxidation levels and hydrogen content were considered. The basic approach was to compare the RCT test data with finite element analyses using the code ADINA. Starting with the cladding oxidation model of Leistikov, both the layer structure of the cladding and the distribution of the oxygen among these layers were determined. The mechanical properties of these layers were taken from

  19. Flux Density through Guides with Microstructured Twisted Clad DB Medium

    Directory of Open Access Journals (Sweden)

    M. A. Baqir

    2014-01-01

    Full Text Available The paper deals with the study of flux density through a newly proposed twisted clad guide containing DB medium. The inner core and the outer clad sections are usual dielectrics, and the introduced twisted windings at the core-clad interface are treated under DB boundary conditions. The pitch angle of twist is supposed to greatly contribute towards the control over the dispersion characteristics of the guide. The eigenvalue equation for the guiding structure is deduced, and the analytical investigations are made to explore the propagation patterns of flux densities corresponding to the sustained low-order hybrid modes under the situation of varying pitch angles. The emphasis has been put on the effects due to the DB twisted pitch on the propagation of energy flux density through the guide.

  20. Modeling alternative clad behavior for accident tolerant systems

    International Nuclear Information System (INIS)

    The US Department of Energy Fuel Cycle Research and Development program has a key goal of helping develop accident tolerant fuels (ATF) through investigating fuel and clad forms. In the current work thermochemical modeling and experiment are being used to assess fuel and clad alternatives. Cladding alternatives that have promise to improve fuel performance under accident conditions include the FeCrAl family of alloys and SiC-based composites. These are high strength and radiation resistant alloys and ceramics that have increased resistance to oxidation as compared to zirconium alloys. Accident modeling codes have indicated substantially increased time to failure and resulting effects. In the current work the thermochemical behavior of these materials are being assessed and the work reported here. (author)

  1. Mechanical Property Evaluation of High Burnup PHWR Fuel Clads

    International Nuclear Information System (INIS)

    Assurance of clad integrity is of vital importance for the safe and reliable extension of fuel burnup. In order to study the effect of extended burnup of 15,000 MW∙d/tU on the performance of Pressurised Heavy Water Reactor (PHWR) fuel bundles of 19-element design, a couple of bundles were irradiated in Indian PHWR. The tensile property of irradiated cladding from one such bundle was evaluated using the ring tension test method. Using a similar method, claddings of mixed oxide (MOX) fuel elements irradiated in the pressurized water loop (PWL) of CIRUS to a burnup of 10,000 MW∙d/THM were tested. The tests were carried out both at ambient temperature and at 300°C. The paper will describe the test procedure, results generated and discuss the findings. (author)

  2. Experimental and numerical investigation on cladding of corrosion-erosion resistant materials by a high power direct diode laser

    Science.gov (United States)

    Farahmand, Parisa

    advantages due to creating coating layers with superior properties in terms of purity, homogeneity, low dilution, hardness, bonding, and microstructure. In the development of modern materials for hardfacing applications, the functionality is often improved by combining materials with different properties into composites. Metal Matrix Composite (MMC) coating is a composite material with two constituent parts, i.e., matrix and the reinforcement. This class of composites are addressing improved mechanical properties such as stiffness, strength, toughness, and tribological and chemical resistance. Fabrication of MMCs is to achieve a combination of properties not achievable by any of the materials acting alone. MMCs have attracted significant attention for decades due to their combination of wear-resistivity, corrosion-resistivity, thermal, electrical and magnetic properties. Presently, there is a strong emphasis on the development of advanced functional coatings for corrosion, erosion, and wear protection for different industrial applications. In this research, a laser cladding system equipped with a high power direct diode laser associated with gas driven metal powder delivery system was used to develop advanced MMC coatings. The high power direct diode laser used in this study offers wider beam spot, shorter wavelength and uniform power distribution. These properties make the cladding set-up ideal for coating due to fewer cladding tracks, lower operation cost, higher laser absorption, and improved coating qualities. In order to prevent crack propagation, porosity, and uniform dispersion of carbides in MMC coating, cladding procedure was assisted by an induction heater as a second heat source. The developed defect free MMC coatings were combined with nano-size particles of WC, rare earth (RE) element (La2O3), and Mo as a refractory metal to enhance mechanical properties, chemical composition, and subsequently improve the tribological performance of the coatings. The resistance

  3. Metallurgical and mechanical behaviours of PWR fuel cladding tube oxidised at high temperature; Comportements metallurqigue et mecanique des materiaux de gainage du combustible REP oxydes a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stern, A

    2007-12-15

    Zirconium alloys are used as cladding materials in Pressurized Water Reactors (PWR). As they are submitted to very extreme conditions, it is necessary to check their behaviour and especially to make sure they meet the safety criteria. They are therefore studied under typical in service-loadings but also under accidental loadings. In one of these accidental scenarios, called Loss of Coolant Accident (LOCA) the cladding temperature may increase above 800 C, in a steam environment, and decrease before a final quench of the cladding. During this temperature transient, the cladding is heavily oxidised, and the metallurgical changes lead to a decrease of the post quench mechanical properties. It is then necessary to correlate this drop in residual ductility to the metallurgical evolutions. This is the problem we want to address in this study: the oxidation of PWR cladding materials at high temperature in a steam environment and its consequences on post quench mechanical properties. As oxygen goes massively into the metallic part - a zirconia layer grows at the same time - during the high temperature oxidation, the claddings tubes microstructure shows three different phases that are the outer oxide layer (zirconia) and the inner metallic phases ({alpha}(O) and 'ex {beta}') - with various mechanical properties. In order to reproduce the behaviour of this multilayered material, the first part of this study consisted in creating samples with different - but homogeneous in thickness - oxygen contents, similar to those observed in the different phases of the real cladding. The study was especially focused on the {beta}-->{alpha} phase transformation upon cooling and on the resulting microstructures. A mechanism was proposed to describe this phase transformation. For instance, we conclude that for our oxygen enriched samples, the phase transformation kinetics upon cooling are ruled by the oxygen partitioning between the two allotropic phases. Then, these materials

  4. Results of NDE Technique Evaluation of Clad Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Dennis C. Kunerth

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing

  5. Low-Stress Silicon Cladding for Surface Finishing Large UVOIR Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I research, ZeCoat Corporation demonstrated a low-stress silicon cladding process for surface finishing large UVOIR mirrors. A polishable cladding is...

  6. Fiber-Optic Bend Sensor Based on Double Cladding Fiber

    OpenAIRE

    Ivanov, Oleg V.; Alexey A. Chertoriyskiy

    2015-01-01

    We develop and investigate fiber-optic bend sensor, which is formed by a section of double cladding SM630 fiber between standard SMF-28 fibers. The principle of operation of the sensor is based on coupling of the fiber core and cladding modes at the splices of fibers having different refractive index profiles. We use two sources with wavelengths 1328 and 1545 nm to interrogate the sensor. The dependences of transmission on curvature at these wavelengths are significantly different. We show th...

  7. Synthesis of clad motion experiments interpretation: codes and validation

    International Nuclear Information System (INIS)

    This communication deals with clad melting and relocation phenomena related to LMFBR safety analysis of loss of flow accidents. We present: - the physical models developed at DSN/CEN Cadarache in single channel and bundle geometry. The interpretation with these models of experiments performed by the STT (CEN Grenoble). It comes out that we have now obtained a good understanding of the involved phenomena in single channel geometry. On the other hand, further studies are necessary for a better knowledge of clad motion phenomena in bundle cases with conditions close to reactor ones

  8. A COMPREHENSIVE MODEL OF LASER CLADDING BY POWDER FEEDING

    Institute of Scientific and Technical Information of China (English)

    Y.L. Huang; G.Y. Liang; J.Y. Su

    2004-01-01

    A novel model was presented to predict the evolutionary development of cladding layer,and a method based on Lambert-Beer theorem and Mie's theory was adopted to treat the interaction between powder stream and laser beam. By using the continuum model and enthalpy-porosity method, the fluid flow and heat transfer in solid-liquid phase change system were simulated. The commercial software PHOENICS, to which several modules were appended, was used to accomplish the simulation. Numerical computation was performed for Stellite 6 cladding on steel, the obtained results are coincident with those measured in experiment basically.

  9. Gap conductance in Zircaloy-clad LWR fuel rods

    International Nuclear Information System (INIS)

    This report describes the procedures currently used to calculate fuel-cladding gap conductance in light water reactor fuel rods containing pelleted UO2 in Zircaloy cladding, under both steady-state and transient conditions. The relevant theory is discussed together with some of the approximations usually made in performance modelling codes. The state of the physical property data which are needed for heat transfer calculations is examined and some of the relevant in- and out-of-reactor experimental work on fuel rod conductance is reviewed

  10. Modelling of pellet-cladding interaction in PWR's

    International Nuclear Information System (INIS)

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyses the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. (author)

  11. Femtosecond pulse amplification in cladding-pumped fibers

    OpenAIRE

    Minelly, J. D.; Galvanauskas, A.; Fermann, M. E.; Harter, D.; Caplen, J.E.; Chen, Z.J.; Payne, D. N.

    1995-01-01

    Femtosecond pulse amplification in a cladding-pumped fiber amplifier is demonstrated for the first time to our knowledge. Using a cladding-pumped erbium-doped fiber power amplifier and a passively mode-locked fiber seed oscillator in conjunction with an all-fiber chirped-pulse amplification system, we obtain 380-fs near-bandwidth-limited pulses with an average power of 260 mW. The pulse repetition rate is varied between 5 and 50 MHz, and pulse energies as high as 20 nJ are generated.

  12. Chemical methods for the use of niobium from pressure vessel cladding as a fast neutron dosimeter

    International Nuclear Information System (INIS)

    the steel samples from the cladding of a pressure vessel of an operating nuclear power reactor were obtained by scraping. The cladding material of the pressure vessel contained about 0.5 % niobium. It was desired to use the niobium as a dosimeter for estimating fast fluences at the pressure vessel. The weak radiation from the reaction product 93mNb cannot be measured in the presence of other elements and interfering activities. A method was developed to separate niobium from other metals present; the concentration and yield of niobium were determined spectrophotometrically. The irradiated niobium was electrodeposited from aqueous solutions on copper discs. The amount of the deposited niobium was determined by a radiochemical method which makes use of its own radioactivity - measured with a liquid scintillation counter - and the known starting mass of niobium. It was possible to determine the deposited niobium masses (5 to 200 microgram) with a desired degree of accuracy. The absolute emission rate of X-rays could then be measured without any self-absorption or interference from other activities. The mass of niobium on each preparate and its X-ray emission rate, later on, were used as basic experimental data for the estimation of last neutron doses at the pressure vessel

  13. The corrosion of Zircaloy-4 fuel cladding in pressurized water reactors

    International Nuclear Information System (INIS)

    This paper reports on the effects of thermo-mechanical processing of cladding on the corrosion of Zircaloy-4 in commercial PWRs that have been investigated. Visual observations and nondestructive measurements at poolside, augmented by observations in the hot cell, indicate that the initial black oxide transforms into a grey or tan later white oxide layer at a thickness of 10 to 15 μm independent of the thermal processing history of the tubing. At an oxide layer thickness of 60 to 80 μm, the oxide may spall depending somewhat on the particular oxide morphology formed and possibly on the frequency of power and temperature changes of the fuel rods. Because spalling of oxide lowers the metal-to-oxide interface temperature of fuel rods, it reduces the corrosion rate and is beneficial from that point of view. To determine the effect of thermo-mechanical processing on in-reactor corrosion of Zircaloy-4, oxide thickness measurements at poolside and in the hot cell have been analyzed with the MATPRO corrosion model. A calibrated corrosion parameter in this model provides a measure of the corrosion susceptibility of the Zircaloy-4 cladding. It was found necessary to modify the MATPRO equations with a burnup dependent term to obtain a near constant value of the corrosion parameter over a burnup range of approximately 10 to 45 MWd/kgU. Different calculational tests were performed to confirm that the modified model accurately predicts the corrosion behavior of fuel rods

  14. DEVELOPMENT OF LASER CLADDING WEAR-RESISTANT COATING ON TITANIUM ALLOYS

    OpenAIRE

    RUILIANG BAO; HUIJUN YU; CHUANZHONG CHEN; BIAO QI; LIJIAN ZHANG

    2006-01-01

    Laser cladding is an advanced surface modification technology with broad prospect in making wear-resistant coating on titanium alloys. In this paper, the influences of laser cladding processing parameters on the quality of coating are generalized as well as the selection of cladding materials on titanium alloys. The microstructure characteristics and strengthening mechanism of coating are also analyzed. In addition, the problems and precaution measures in the laser cladding are pointed out.

  15. Report on Reactor Physics Assessment of Candidate Accident Tolerant Fuel Cladding Materials in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan [Univ. of Tennessee, Knoxville, TN (United States); Maldonado, G. Ivan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-28

    This work focuses on ATF concepts being researched at Oak Ridge National Laboratory (ORNL), expanding on previous studies of using alternate cladding materials in pressurized water reactors (PWRs). The neutronic performance of two leading alternate cladding materials were assessed in boiling water reactors (BWRs): iron-chromium-aluminum (FeCrAl) cladding, and silicon carbide (SiC)-based composite cladding. This report fulfills ORNL Milestone M3FT-15OR0202332 within the fiscal year 2015 (FY15)

  16. Gradient microstructure in laser clad TiC-reinforced Ni-alloy composite coating

    NARCIS (Netherlands)

    Pei, Y.T.; Zuo, T.C.

    1998-01-01

    A gradient TiC–(Ni alloy) composite coating was produced by one step laser cladding with pre-placed mixture powder on a 1045 steel substrate. The clad layers consisted of TiC particles, γ-Ni primary dendrites and interdendritic eutectics. From the bottom to the top of the clad layer produced at 2000

  17. Management of waste cladding hulls. Part II. An assessment of zirconium pyrophoricity and recommendations for handling waste hulls

    Energy Technology Data Exchange (ETDEWEB)

    Kullen, B J; Levitz, N M; Steindler, M J

    1977-11-01

    This report reviews experience and research related to the pyrophoricity of zirconium and zirconium alloys. The results of recent investigations of the behavior of Zircaloy and some observations of industrial handling and treatment of Zircaloy tubing and scrap are also discussed. A model for the management of waste Zircaloy cladding hulls from light water reactor fuel reprocessing is offered, based on an evaluation of the reviewed information. It is concluded that waste Zircaloy cladding hulls do not constitute a pyrophoric hazard if, following the model flow sheet, finely divided metal is oxidized during the management procedure. Steps alternative to the model are described which yield zirconium in deactivated form and also accomplish varying degrees of transuranic decontamination. Information collected into appendixes is (1) a collation of zirconium pyrophoricity data from the literature, (2) calculated radioactivity contents in Zircaloy cladding hulls from spent LWR fuels, and (3) results of a laboratory study on volatilization of zirconium from Zircaloy using HCl or Cl/sub 2/.

  18. Plastic deformation of the cladding of Fortissimo fuel elements

    International Nuclear Information System (INIS)

    A study of a large number of standard Fortissimo pins, clad in solution treated 316 steel, shows that the plastic strain depends linearly on the fission gas pressure and the dose (in dpaF). The derived modulus of irradiation creep ranges from 1 to 2 x 10-6 (MPa dpaF)-1 at 4500C and increases steadily with temperature. (author)

  19. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    De Hosson, JTM; Pei, YT; Ocelik, [No Value; Sudarshan, TS; Stiglich, JJ; Jeandin, M

    2002-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-sitit microstructural observations during straining in an FEG-ESEM (fi

  20. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    Pei, Y. T.; Ocelik, V.; De Hosson, J. T. M.

    2003-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-situ microstructural observations during straining in a field-emission

  1. 78 FR 7451 - Clad Steel Plate From Japan; Determination

    Science.gov (United States)

    2013-02-01

    ..., 2012 (77 FR 5052) and determined on May 7, 2012 that it would conduct a full review (77 FR 37439, June..., 2012 (77 FR 38825). The hearing was held in Washington, DC, on December 6, 2012, and all persons who... COMMISSION Clad Steel Plate From Japan; Determination On the basis of the record \\1\\ developed in the...

  2. Ultrahigh Temperature-Sensitive Silicon MZI with Titania Cladding

    OpenAIRE

    Lee, Jong-Moo

    2015-01-01

    We present a possibility of intensifying temperature sensitivity of a silicon Mach-Zehnder interferometer (MZI) by using a highly negative thermo-optic property of titania (TiO2). Temperature sensitivity of an asymmetric silicon MZI with a titania cladding is experimentally measured from +18 to −340 pm/°C depending on design parameters of MZI.

  3. Techniques developed to determine KIH of Zircaloy-4 cladding material

    International Nuclear Information System (INIS)

    Zircaloy-4, used as a fuel cladding material, is known to be susceptible to delayed hydride cracking (DHC). The study of the DHC mechanism and development of an approach to mitigate its occurrence, are of importance to the nuclear industry worldwide. Coordinated by the International Atomic Energy Agency (IAEA), an international research program was established in 2011 with the objective of experimentally determining the critical stress intensity factor (KIH) of DHC for various Zircaloy-4 cladding materials. Representing Canada, AECL Chalk River Laboratories (CRL) participates in this program. During 2011 to 2013, various techniques were developed at CRL with the objective of accurately determining the KIH of Pressurized Heavy Water Reactor (PHWR)-type Zircaloy-4 cladding and other zirconium-based cladding materials. These techniques include: 1) charging hydrogen into thin-wall test specimens with a gaseous approach, 2) determining hydrogen concentration in the specimens using differential scanning calorimetry, 3) fatigue pre-cracking of the specimens, and 4) establishing an empirical relationship between the stress-intensity factor (KI) and crack length of the specimens being studied. This paper describes the working principle of the techniques, and associated experimental results. (author)

  4. Foam coating on aluminum alloy with laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; van Heeswijk, V.; de Hosson, J.T.M.; Csach, K.

    2004-01-01

    dThis article concentrates on the creation of a foam layer on an Al-Si substrate with laser technology. The cladding of At-Si powder in the front of a laser track has been separated from the side injection of mixture of Al-Si/TiH2 powder (foaming agent), which allows for fine tuning of the main proc

  5. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

    2013-09-30

    The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

  6. Preliminary study of mechanical behavior for Cr coated Zr-4 Fuel Cladding

    International Nuclear Information System (INIS)

    To decrease the oxidation rate of Zr-based alloy components, many concepts of accident tolerant fuel (ATF) such as Mo-Zr cladding, SiC/SiCf cladding and iron-based alloy cladding are under development. One of the promised concept is the coated cladding which can remarkably increase the corrosion and wear resistance. Recently, KAERI is developing the Cr coated Zircaloy cladding as accident tolerance cladding. To coat the Cr powder on the Zircaloy, 3D laser coating technology has been employed because it is possible to make a coated layer on the tubular cladding surface by controlling the 3-diminational axis. Therefore, for this work, the mechanical integrity of Cr coated Zircaloy should be evaluated to predict the safety of fuel cladding during the operating or accident of nuclear reactor. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr, which were referred from the literatures and experimental reports. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr. The pellet-clad mechanical interaction (PCMI) properties of Cr coated Zr-4 cladding were investigated by thermo-mechanical finite element analysis (FEA) simulation. The mechanical properties of Zr-4 and Cr was validated by simulation of ring compression test (RCT) of fuel cladding

  7. Local strain in cladding tube due to radial pellet cracking

    International Nuclear Information System (INIS)

    A study was made to develop a method for evaluation of the local strain in a cladding tube of the Advanced Thermal Reactor due to radial cracking to a UO2 fuel pellet. Effects of the number of cracks, initial crack width and the friction coefficient of a pellet-clad interface on behaviors of the local strain in a cladding tube were evaluated with a modelized experiment. Analytical evaluation of a membrane strain was also carried out on the basis of a procedure similar to that proposed by J. H. Gittus, Nuclear Engineering and Design 18 (1972) 69-82, in order to follow the experimental results and to extend the model experiment to cladding tube. A Zircaloy-2 ring specimen with inner diameter of 95 mm, height of 25 mm and wall thickness of 5 mm was expanded at room temperature with equally divided peripheral dice of a tool steel set in a specimen. Strains on an external surface of the specimen were measured with 28 wire strain gages with gage length of 0.3 mm. An elastic-plastic analysis was carried out in order to evaluate the membrane hoop strain in the cladding tube on the basis of a simple procedure similar to that proposed by Gittus. The results of analysis showed that the maximum hoop strain occured at a location apart from the dice edge. This was caused by unloading in the crack opening portion. The strain concentration factor obtained from analysis is greater than that obtained from experiment. The difference of concentration factors between analysis and experiment is due to the bending strain. Therefore, the strain concentration factor at the inner surface is evaluated from the experimental concentration factor at the external surface and the analytical concentration factor of a membrane strain. (Auth.)

  8. Seawater immersion tests of irradiated Zircaloy-2 cladding tube

    International Nuclear Information System (INIS)

    In the Fukushima Dai-ichi Nuclear Power Plant accident, seawater was temporarily injected into the spent fuel pools since the electrically powered water cooling and feeding functions had been lost. For fuel assemblies which experienced seawater immersion, surface corrosion due to seawater constituents and the resultant degradation of mechanical properties are of concern. In particular, cladding tubes act as the most important boundary to contain radioactive fission products inside fuel rods. Therefore, in order to assess the integrity of cladding tubes, the effects of seawater immersion on corrosion behavior and mechanical properties for as-received and irradiated Zircaloy-2 cladding tubes were investigated in the present study. As the test materials, as-received and irradiated Zircaloy-2 tube specimens were used. Zircaloy-2 cladding tubes had been irradiated to about 44 GWd/t in the advanced thermal reactor FUGEN, which is similar to the type of BWRs used at the Fukushima plant. Assumptions were made about the environment which the spent fuel pools experienced in the accident, and the immersion test temperature was accordingly set at 70-90 °C. Two kinds of seawater were used for the immersion tests. One was artificial seawater and the other was natural seawater. These were not diluted and the immersion time was up to about 1000 hours. After the immersion tests, metallurgical investigations and ring tensile tests were carried out. As a result, no obvious surface corrosion and no significant degradation in the tensile strength property were observed after both artificial and natural seawater immersion tests for both as-received and irradiated tubes. This suggests that the effects of seawater immersions on corrosion behavior and mechanical properties (especially tensile properties) for as-received and irradiated Zircaloy-2 cladding tubes are probably negligible. (author)

  9. Hydrogen measurement in cladding material by neutron transmission analysis

    International Nuclear Information System (INIS)

    Hydrogen absorption in light water reactor fuel cladding is one phenomenon that limits the operating life under normal conditions. In failed fuel, the potential for secondary degradation by hydriding and the subsequent radionuclide release in the primary system is a current concern. The characterization of hydrogen or hydrides in fuel cladding supports efforts to safely extend operation of fuel elements at high burnup or after pinhole leaks develop. Destructive techniques for measuring hydrogen concentration of zirconium fuel elements are well developed. A number of nondestructive techniques such as neutron radiography, neutron scattering, and ultrasound have been reported. Neutron transmission analysis is feasible to use as a nondestructive technique for determining hydrogen content in zirconium fuel rod claddings. Two sample geometries with equivalent hydrogen linear density that ranged between 0 and 12 mg/cm2 were studied. Sample A was a mockup of the maximum transmission path length of a typical boiling water reactor (BWR) fuel rod cladding (12.3-mm diameter, 0.76-mm thickness) that can be tested without interference of the fuel pellet. Sample B was a mockup of the transmission path length through the diameter of a BWR fuel rod (i.e., twice the cladding wall thickness and the fuel pellet diameter). The dependence of the mass signals for samples A and B on equivalent hydrogen linear density is shown. The mass signals from samples A and B show the same dependence (i.e., slope) on equivalent hydrogen, which indicates that the thin slab assumptions are valid for this application. The y-intercepts of the mass signals are offset by a constant that corresponds to the differences in attenuation of the fuel and zirconium sections. The standard deviation of the mass signal measurements was ±0.003. This translates to an uncertainty of ±0.122 mg/cm2 in the hydrogen linear density, which is equivalent to ±230 ppm hydrogen for BWR fuel rod dimensions

  10. Orientation-Dependent Displacement Sensor Using an Inner Cladding Fiber Bragg Grating.

    Science.gov (United States)

    Yang, Tingting; Qiao, Xueguang; Rong, Qiangzhou; Bao, Weijia

    2016-01-01

    An orientation-dependent displacement sensor based on grating inscription over a fiber core and inner cladding has been demonstrated. The device comprises a short piece of multi-cladding fiber sandwiched between two standard single-mode fibers (SMFs). The grating structure is fabricated by a femtosecond laser side-illumination technique. Two well-defined resonances are achieved by the downstream both core and cladding fiber Bragg gratings (FBGs). The cladding resonance presents fiber bending dependence, together with a strong orientation dependence because of asymmetrical distribution of the "cladding" FBG along the fiber cross-section. PMID:27626427

  11. A state of the Art report on Manufacturing technology of high burn-up fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Ho; Nam, Cheol; Baek, Jong Hyuk; Choi, Byung Kwon; Park, Sang Yoon; Lee, Myung Ho; Jeong, Yong Hwan

    1999-09-01

    In order to manufacturing the prototype fuel cladding, overall manufacturing processes and technologies should be thoroughly understood on the manufacturing processes and technologies of foreign cladding tubes. Generally, the important technology related to fuel cladding tube manufacturing processes for PWRs/PHWRs is divided into three stages. The first stage is to produce the zirconium sponge from zirconium sand, the second stage is to produce the zircaloy shell or TREX from zirconium sponge ingot and finally, cladding is produced from TREX or zircaloy shell. Therefore, the manufacturing processes including the first and second stages are described in brief in this technology report in order to understand the whole fuel cladding manufacturing processes. (author)

  12. Observation of cladding modes spatio-spectral distribution in large mode area photonic crystal fiber

    International Nuclear Information System (INIS)

    We report the observation of spatio-spectral distribution in cladding modes of a single-mode large mode area photonic crystal fiber. The cladding modes excitation was achieved without any external fiber exposure. The optical field patterns of the cladding modes within different pump wavelength are investigated. To the best of knowledge the spatio- spectral distribution in cladding modes of large mode photonic crystal fiber is demonstrated for the first time. The results are of immediate interest in applications demanding devices based on core and cladding mode coupling in photonic crystal fibers

  13. An Analytical Modified Model of Clad Sheet Bonding by Cold Rolling Using Upper Bond Theorem

    Science.gov (United States)

    Pishbin, H.; Parsa, M. H.; Dastvareh, A.

    2010-10-01

    In this paper, clad sheet bonding by cold rolling was investigated using the upper bond theorem. Plastic deformation behavior of the strip at the roll gap was investigated, unlike previous methods; distinctive angular velocities are used for different zones in roll gap in present model and absolute minimum of rolling power function is achieved. Rolling power, rolling force, and thickness ratio of the rolled product affected by various rolling condition such as flow stress of sheets, initial thickness ratio, roller radius, total thickness reduction, coefficient of friction between rollers and metals and between components layer, roll speed, etc., are discussed. It was found that the theoretical prediction of the thickness ratio of the rolled product, rolling force, and rolling power are in good agreement with the experimental measurement.

  14. Cladding hull decontamination and densification process. Part 1. The prototype cladding hull decontamination system

    International Nuclear Information System (INIS)

    A prototype system for decontaminating Zircaloy-4 cladding hulls has been assembled and tested at Pacific Northwest Laboratory. The decontamination process consists of treatment with a gaseous mixture of hydrogen fluoride (HF) and argon (Ar) followed by a dilute aqueous etch of ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. The continuous cleaning process described in this report successfully descaled small portions of most charges, but was unable to handle the original design capacity of 4 kg/hr because of problems in the following areas: control of HF reactor temperatures, regulation of HF and argon mixtures and flows, isolation of the HF reactor atmosphere from the aqueous washer/rinser atmosphere, regulation of undesirable side reactions, and control over hull transport through the system. Due to the limited time available to solve these problems, the system did not attain fully operational status. The work was performed with unirradiated hulls that simulated irradiated hulls. The system was not built to be remotely operable. The process chemistry and system equipment are described in this report with particular emphasis on critical operating areas. Recommendations for improved system operation are included

  15. Study on modes of energy action in laser-induction hybrid cladding

    International Nuclear Information System (INIS)

    The shape and microstructure in laser-induction hybrid cladding were investigated, in which the cladding material was provided by means of three different methods including the powder feeding, cold pre-placed coating (CPPC) and thermal pre-placed coating (TPPC). Moreover, the modes of energy action in laser-induction hybrid cladding were also studied. The results indicate that the cladding material supplying method has an important influence on the shape and microstructure of coating. The influence is decided by the mode of energy action in laser-induction hybrid cladding. During the TPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating. During the CPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating and substrate surface, respectively. In powder feeding hybrid cladding, a part of laser is absorbed by the powder particles directly, while the other part of laser penetrating powder cloud radiates on the molten pool. Meanwhile, the induction heating is entirely performed on the substrate. In addition, the wetting property on the interface is improved and the metallurgical bond between the coating and substrate is much easier to form. Therefore, the powder feeding laser-induction hybrid cladding has the highest cladding efficiency and the best bond property among three hybrid cladding methods.

  16. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    CERN Document Server

    Mortensen, Niels Asger

    2007-01-01

    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical air-clad geometries. While air-clad structures supporting sup-wavelength convex air-glass interfaces (viewed from the high-index side) will promote chaotic dynamics we find guidance of regular whispering-gallery modes in air-clad structures resembling an overall cylindrical symmetry. Highly symmetric air-clad structures may thus suppress the pump-absorption efficiency eta below the ergodic scaling law eta proportional to Ac/Acl, where Ac and Acl are the areas of the rare-earth doped core and the cladding, respectively.

  17. Three-dimensional interpretation of cleavage fracture tests of cladded specimens with local approach to cleavage fracture

    International Nuclear Information System (INIS)

    Electricite de France has conducted during these last years an experimental and numerical research programme in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels integrity assessment, regarding the risk of brittle fracture. Two cladded specimens made of ferritic steel A508 Cl3 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature to obtain cleavage failure. The crack instability was obtained in base metal by cleavage fracture, without crack arrest. The tests have been interpreted by local approach to cleavage fracture (Beremin model) using three-dimensional finite element computations. After the elastic-plastic computation of stress intensity factor KJ along the crack front, the probability of cleavage failure of each specimen is evaluated using m, σu Beremin model parameters identified on the same material. The failure of two specimens is conservatively predicted by both analyses. The elastic-plastic stress intensity factor KJ in base metal is always greater than base metal fracture toughness K1c. The calculated probabilities of cleavage failure are in agreement with experimental results. The sensitivity of Beremin model to numerical aspects is finally exposed. (orig.)

  18. CO2 laser beam test of an actively cooled first-wall element with a graphite-clad SiC armor tile

    International Nuclear Information System (INIS)

    A graphite-clad SiC tile of 29mm dia and 15mm thickness is bonded to a base metal (Cu or 316 SS) with insertion of Cu-35 vol%C composite sheet. The elements are tested under active cooling condition by using 3.5kW CO2 laser beam at heat flux condition of 0.3 ∼ 1.7kW/cm2 and a pulse length of 40s

  19. The effect of oxidation on the emissivity of the fuel cladding of an advanced gas-cooled reactor during a temperature transient

    International Nuclear Information System (INIS)

    Changes in the hemispherical emissivity of stainless steel fuel cans were monitored during oxidation in CO2 as the metal temperature rose from 7000C to temperatures approaching the melting point of the cladding (approx. 13000C). Examination by scanning electron microscope revealed several types of oxide. In some cases, magnetite crystals were formed on top of the oxide layer with a corresponding reduction in the emissivity of about 5%. (author)

  20. Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

    2009-03-02

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form

  1. Evaluation of Tritium Content and Release from Pressurized Water Reactor Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Sharon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chattin, Marc Rhea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giaquinto, Joseph [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    It is expected that tritium pretreatment will be required in future reprocessing plants to prevent the release of tritium to the environment (except for long-cooled fuels). To design and operate future reprocessing plants in a safe and environmentally compliant manner, the amount and form of tritium in the used nuclear fuel (UNF) must be understood and quantified. Tritium in light water reactor (LWR) fuel is dispersed between the fuel matrix and the fuel cladding, and some tritium may be in the plenum, probably as tritium labelled water (THO) or T2O. In a standard processing flowsheet, tritium management would be accomplished by treatment of liquid streams within the plant. Pretreating the fuel prior to dissolution to release the tritium into a single off-gas stream could simplify tritium management, so the removal of tritium in the liquid streams throughout the plant may not be required. The fraction of tritium remaining in the cladding may be reduced as a result of tritium pretreatment. Since Zircaloy® cladding makes up roughly 25% by mass of UNF in the United States, processes are being considered to reduce the volume of reprocessing waste for Zircaloy® clad fuel by recovering the zirconium from the cladding for reuse. These recycle processes could release the tritium in the cladding. For Zircaloy-clad fuels from light water reactors, the tritium produced from ternary fission and other sources is expected to be divided between the fuel, where it is generated, and the cladding. It has been previously documented that a fraction of the tritium produced in uranium oxide fuel from LWRs can migrate and become trapped in the cladding. Estimates of the percentage of tritium in the cladding typically range from 0–96%. There is relatively limited data on how the tritium content of the cladding varies with burnup and fuel history (temperature, power, etc.) and how pretreatment impacts its release. To gain a better understanding of how tritium in cladding

  2. Enhanced optical nonlinearities in air-cladding silicon pedestal waveguides

    CERN Document Server

    Zhang, Yaojing; Yao, Yifei; Tsang, Hon Ki

    2016-01-01

    The third-order optical nonlinearity in optical waveguides has found applications in optical switching, optical wavelength conversion, optical frequency comb generation, and ultrafast optical signal processing. The development of an integrated waveguide platform with a high nonlinearity is therefore important for nonlinear integrated photonics. Here, we report the observation of an enhancement in the nonlinearity of an air-cladding silicon pedestal waveguide. We observe enhanced nonlinear spectral broadening compared to a conventional silicon-on-insulator waveguide. At the center wavelength of 1555 nm, the nonlinear-index coefficient of air-cladding silicon pedestal waveguide is measured to be about 5% larger than that of a conventional silicon-on-insulator waveguide. We observe enhanced spectral broadening from self-phase modulation of an optical pulse in the pedestal waveguide. The interaction of light with the confined acoustic phonons in the pedestal structure gives rise to a larger nonlinear-index coeffi...

  3. The characterization of activities associated with irradiated fuel element claddings

    International Nuclear Information System (INIS)

    The object of the present work was to characterise the natures and amounts of the various α and βγ activities associated with cladding hulls. The claddings studied were stainless steel from a Fast Reactor and from an Advanced Gas Reactor and Zircaloy from a Boiling Water Reactor, from a Pressurized Water Reactor and from a Steam Generating Heavy Water Reactor. The hulls were examined by the following methods: alpha spectrometry to identify and quantify the α emitters and to estimate their depths of penetration, partial and complete dissolution of hulls followed by gross α counting, α spectrometry and γ spectrometry, fission track autoradiography to determine the distribution of fissile material associated with hulls, neutron activation to determine the total fissile content of the hulls, chemical separations followed by β counting and chemical treatment with various reagents to examine the ease of decontamination

  4. Measurement of cladding strain during simulated transient tests

    International Nuclear Information System (INIS)

    A diametral extensometer was developed and employed during temperature ramp tests with the Fuel Cladding Transient Tester (FCTT). Plastic strain measurements were performed using unirradiated 20% cold-worked AISI 316 stainless steel tubing ramped at 5.6 and 1110C/s with internal pressures from 3.4 to 93.1 MPa. Results demonstrated that plastic deformation can occur at stresses well below the conventional 0.2% yield strength and that most deformation in such tests occurs in the final 500C before failure. Postirradiation tests were performed on fuel pin cladding irradiated to 5.8 x 1022 n/cm (E > 0.1 MeV) with irradiation temperatures to 5400C. The tests showed that, for test pressures of 17.2 MPa or less, the stress-strain behavior was unchanged from unirradiated material behavior although the strains at failure were greatly decreased

  5. Full vectorial analysis of multilayer leaky cladding optical fibre

    CERN Document Server

    Labonté, Laurent; Kumar, A; Dussardier, Bernard; Monnom, Gérard

    2010-01-01

    We analyze a multilayer leaky cladding (MLC) fibre using the finite element method and study the effect of the MLC on the bending loss and birefringence of two types of structures: i) a circular-core large-mode area structure and ii) an elliptical-small-core structure. In a large-mode-area structure, we verify that the multi-layer leaky cladding strongly discriminates against higher order modes to achieve single-mode operation, the fibre shows negligible birefringence, and the bending loss of the fibre is low for bending radii larger than 10 cm. In the elliptical-small-core structure we show that the MLC reduces the birefringence of the fibre. This prevents the structure from becoming birefringent in case of any departures from circular geometry. The study should be useful in the designs of MLC fibres for various applications including high-power amplifiers, gain flattening of fibre amplifiers and dispersion compensation.

  6. Modeling of realistic cladding structures for photonic bandgap fibers

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Nielsen, Martin Dybendal

    2004-01-01

    Cladding structures of photonic bandgap fibers often have airholes of noncircular shape, and, typically, close-to-hexagonal airholes with curved corners are observed. We study photonic bandgaps in such structures by aid of a two-parameter representation of the size and curvature. For the fundamen......Cladding structures of photonic bandgap fibers often have airholes of noncircular shape, and, typically, close-to-hexagonal airholes with curved corners are observed. We study photonic bandgaps in such structures by aid of a two-parameter representation of the size and curvature. For the...... fundamental bandgap we find that the bandgap edges (the intersections with the air line) shift toward shorter wavelengths when the air-filling fraction f is increased. The bandgap also broadens, and the relative bandwidth increases exponentially with f2. Compared with recent experiments [Nature 424, 657 (2003...

  7. Core temperature in super-Gaussian pumped air-clad photonic crystal fiber lasers compared with double-clad fiber lasers

    Indian Academy of Sciences (India)

    P Elahi; H Nadgaran; F Kalantarifard

    2007-03-01

    In this paper we investigate the core temperature of air-clad photonic crystal fiber (PCF) lasers pumped by a super-Gaussian (SG) source of order four. The results are compared with conventional double-clad fiber (DCF) lasers pumped by the same super-Gaussian and by top-hat pump profiles.

  8. The clad collapse modelling of Indian PHWR fuel element, an FEM approach

    International Nuclear Information System (INIS)

    The fuel elements for PHWR use a thin, collapsible zircaloy clad design. This design is consistent with essential neutron economy in PHWRs, and also results in better heat transfer between fuel and clad. However, thin clad may give rise to problem of permanent clad collapse under coolant pressure in axial gap and radial gap available during the initial stay of fuel inside the reactor. Present work explores the problem of longitudinal ridges, formed due to permanent circumferential collapse of clad on fuel. The tip of these ridges has the potential to become the site for crack initiation under subsequent cyclic thermal/pressure loading. The collapse behavior of fuel element is studied using FEM modeling of pellet, clad and their contact. This study considers the effects of clad thickness, clad yield strength, clad initial ovality, anisotropy in clad yield strength, and radial gap of fuel element on the collapse behavior. The verification of present model is done for the results of critical buckling pressure required for the longitudinal ridge formation by the available CANDU experimental data, which matched satisfactorily for the yield strength ratio (circumferential YS to longitudinal YS) of 1.5. In addition the longitudinal ridge height and increase in ovality were calculated for the collapse experiments done on the 220 MWe PHWR fuel elements

  9. DISSOLUTION OF ZIRCALOY 2 CLAD UO2 COMMERCIAL REACTOR FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, G.; Thompson, M.

    2009-08-07

    The primary goal of this investigation was to evaluate the effectiveness of the chop-leach process, with nitric acid solvent, to produce a nominally 300 g/L [U] and 1 M [H{sup +}] product solution. The results of this study show that this processing technique is appropriate for applications in which a low free acid and moderately high U content are desired. The 7.75 L of product solution, which was over 450 g/L in U, was successfully diluted to produce about 13 L of solvent extraction feed that was 302 g/L in U with a [H{sup +}] in the range 0.8-1.2 M. A secondary goal was to test the effectiveness of this treatment for the removal of actinides from Zircaloy cladding to produce a low-level radioactive waste (LLW) cladding product. Analysis of the cladding shows that actinides are present in the cladding at a concentration of about 5000 {eta}Ci/g, which is about 50 times greater than the acceptable transuranium element limit in low level radioactive waste. It appears that the concentration of nitric acid used for this dissolution study (initial concentration 4 M, with 10 M added as the dissolution proceeded) was inadequate to completely digest the UO{sub 2} present in the spent fuel. The mass of insoluble material collected from the initial treatments with nitric acid, 340 g, was much higher than expected, and analysis of this insoluble residue showed that it contained at least 200 g U.

  10. Failure Characteristic of Laser Cladding Samples on Repeated Impact

    Institute of Scientific and Technical Information of China (English)

    SHI Shi-hong; ZHENG Qi-guang; FU Ge-yan; ZHANG Jin-ping

    2004-01-01

    Using self-made impact fatigue test instruments and related analytic devices,the mechanical components with laser cladding layer have been attempted.It is found that,on repeated impact force,several failure modes of the components include the surface cracks,surface plastic deformation,corrosive pitting and coat collapse,etc.The paper reported the test method and initial analysis conclusions about the unique failure characteristics of the mechanical components on repeated impact load.

  11. Study of zircaloy-4 cladding air degradation at high temperature

    OpenAIRE

    Lasserre, Marina; COINDREAU, Olivia; Pijolat, Michèle; Peres, Véronique; Mermoux, Michel; Mardon, Jean Paul

    2013-01-01

    Zircaloy cladding, providing the first containment of UO2 fuel in Pressurised Water Reactors, can be exposed to air during accidental situations. This might occur during reactor operation (in case of a core meltdown accident with subsequent reactor pressure vessel breaching), under shutdown conditions with the upper head of the vessel removed, in spent fuel storage pools after accidental loss of cooling or during degraded transport situations. The fuel assemblies inadequately cooled, heat up ...

  12. Modelling nuclear fuel behaviour and cladding viscoelastic response

    OpenAIRE

    Tulkki, Ville

    2015-01-01

    In light water reactors the nuclear fuel is in the form of uranium dioxide pellets stacked inside a thin-walled tube made from Zirconium alloy. The fuel rods provide the first barriers to the release of radioactivity as the isotopes are contained within the fuel matrix and the cladding tubes. Fuel behaviour analysis investigates the state of the fuel at given boundary conditions and irradiation history. The scope of this thesis consists of two main themes. The first is the uncertainty and ...

  13. Influence of curvature on the losses of doubly clad fibers.

    Science.gov (United States)

    Marcuse, D

    1982-12-01

    The loss increase of the HE(11) mode of a doubly clad (depressed-index) fiber due to constant curvature is considered. The calculations presented in this paper are based on a simplified theory. We find that for typical fibers the leakage loss of the HE(11) mode begins to increase significantly when the radius of curvature of the fiber axis reaches the 1-10-cm range.

  14. Eddy-Current Testing of Finned Fuel Cladding

    International Nuclear Information System (INIS)

    Eddy-current methods of testing reactor-fuel components are well established. The literature, however, mainly describes tests which are applied to simple geometries such as cylindrical rods or tubes. Recent AECL fuel designs have called for cladding with heat transfer or locating fins along the length of the fuel. This paper describes the application of eddy-current techniques to three such designs. The function and geometry of the fins must be considered in the selection of the optimum test parameters and the most suitable test coil geometry. Thus, the presence of fins may limit or restrict the test but they will not prevent a successful test. Where the fin geometry is complex eddy currents may well be the most suitable of the non-destructive methods which can be used for flaw detection. The thickness of aluminium cladding over a uranium core is measured with a small probe coil placed between the fins and shielded from them. Two flaw detection tests are described, one on sintered aluminium product (SAP) tubing using an internal bobbin coil and the other on an aluminium-clad uranium-aluminium alloy rod with an external encircling coil. The instrumentation described is relatively simple. A small portable instrument was designed for the cladding thickness measurement. For flaw detection a standard oscilloscope with a plug-in carrier-amplifier module provides a means of sensing and displaying the test coil impedance variations. This equipment ,although it does not permit sophisticated methods of eliminating unwanted noise is adequate for a variety of testing applications and has been specified for routine fuel testing on a production basis. (author)

  15. Test plan for spent fuel cladding containment credit tests

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory has chosen Westinghouse Hanford Company as a subcontractor to assist them in determining the requirements for successful disposal of spent fuel rods in the proposed Nevada Test Site repository. An initial scoping test, with the objective of determining whether or not the cladding of a breached fuel rod can be given any credit as an effective barrier to radionuclide release, is described in this test plan. 8 references, 2 figures, 4 tables

  16. Microbial biofilm growth on irradiated, spent nuclear fuel cladding

    International Nuclear Information System (INIS)

    A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 x 103 Gy. This study provides evidence for the formation of biofilms on spent-fuel materials, and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments

  17. Development of advanced cladding material for burnup extension

    International Nuclear Information System (INIS)

    The development of new cladding materials is one of the critical issues on burnup extension. The practical life of Zircaloy would be limited by the growth of oxide films and by the ductility loss due to hydride precipitation, oxygen absorption and radiation damage. In the case of high burnup using MOX fuels, the low neutron adsorption cross section of Zircaloy is not a dominant factor for selecting the cladding material, because MOX fuels can be enriched up to 20%Pu. Austenitic stainless steel, titanium alloy, niobium alloy, ferritic steel and nickel base superalloy are considered as candidate materials. The corrosion resistance, mechanical properties and the irradiation resistance of these materials were examined for evaluating the practical possibility as a cladding material. The austenitic stainless steel with high g phase stability was selected as the primary candidate material. However, it is required to improve the resistance to irradiation associated stress corrosion cracking through the experience in LWR plants. In the JAERI, the austenitic stainless steel with intergranular corrosion resistance has been developed by the adjustment of the chemical composition, the modification of the metallographic structure by thermo-mechanical treatment and the purification by electron beam melting. (author)

  18. Final report on accident tolerant fuel performance analysis of APMT-Steel Clad/UO₂ fuel and APMT-Steel Clad/UN-U₃Si₅ fuel concepts

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Galloway, Jack D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-12

    In FY2014 our group completed and documented analysis of new Accident Tolerant Fuel (ATF) concepts using BISON. We have modeled the viability of moving from Zircaloy to stainless steel cladding in traditional light water reactors (LWRs). We have explored the reactivity penalty of this change using the MCNP-based burnup code Monteburns, while attempting to minimize this penalty by increasing the fuel pellet radius and decreasing the cladding thickness. Fuel performance simulations using BISON have also been performed to quantify changes to structural integrity resulting from thinner stainless steel claddings. We account for thermal and irradiation creep, fission gas swelling, thermal swelling and fuel relocation in the models for both Zircaloy and stainless steel claddings. Additional models that account for the lower oxidation stainless steel APMT are also invoked where available. Irradiation data for HT9 is used as a fallback in the absence of appropriate models. In this study the isotopic vectors within each natural element are varied to assess potential reactivity gains if advanced enrichment capabilities were levied towards cladding technologies. Recommendations on cladding thicknesses for a robust cladding as well as the constitutive components of a less penalizing composition are provided. In the first section (section 1-3), we present results accepted for publication in the 2014 TOPFUEL conference regarding the APMT/UO₂ ATF concept (J. Galloway & C. Unal, Accident Tolerant and Neutronically Favorable LWR Cladding, Proceedings of WRFPM 2014, Sendai, Japan, Paper No.1000050). Next we discuss our preliminary findings from the thermo-mechanical analysis of UN-U₃Si₅ fuel with APMT clad. In this analysis we used models developed from limited data that need to be updated when the irradiation data from ATF-1 test is available. Initial results indicate a swelling rate less than 1.5% is needed to prevent excessive clad stress.

  19. Solid-State Welding of Ferritic-Martensitic Cladding Tubes and End-Plug by Magnetic Pulse Welding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Ju; Song, Joon-Woo; Hong, Sung-Mo; Lee, Min-Ku [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Jung Gu [University of Ulsan, Ulsan (Korea, Republic of)

    2015-10-15

    The conventional fusion welding techniques significantly degrade its mechanical properties at the weld region, by introducing unwanted microstructural heterogeneity and residual stress, which causes brittle fracture. In addition, more practically, post-welding heat treatment of a fuel pin cladding is basically impossible without detrimental effects on the fuel, and fuel pins with defective joints should be reopened and the contents inside recuperated. Thus, any welding technology applied to fuel pin fabrication requires high reliability and simplicity of operation. MPW is a solid-state impact welding technique, which uses the power of a high-energy magnetic field to accelerate a metal piece onto another stationary one and to create a metallic bonding there between. The welding occurs on impact within microsecond level at a material velocity of 200-500ms-1. Even in such a short time period, the extent of heating is minimal in the resultant joint. Trials have been made to weld HT9 FM steel tube with end-plug by using MPW method in order to ensure its applicability for end closure welding of fuel pin cladding tubes. Close attention was given to the current intensity and end-plug geometry for successful welding, and the results showed that the tapered conical end-plug with proper taper angle and optimum peak current valued contributed to the desired collision and impact velocity during MPW, thereby improving the weldability.

  20. Enhanced ductility in round tensile bars produced by cladding a ductile ring

    Science.gov (United States)

    Chen, X. X.; Wu, P. D.; Embury, J. D.; Huang, Y.

    2010-03-01

    The effect of cladding a ductile ring on necking and fracture in round bars under tension is studied numerically using the finite element method based on the Gurson damage model. It is demonstrated that the cladding increases both the necking strain and the fracture strain. The effects of topological arrangement of cladding ring on necking and fracture are numerically investigated. It is indicated that while a topological arrangement of cladding has no noticeable effect on necking, it significantly influences the fracture strain. For a given volume fraction of cladding, the fracture strain could increase about 11% if the ductile ring is moved from the outmost to the innermost. It is also found that the subtle appearance of fracture surface due to cladding displays strong mesh sensitivity and may even be an artefact of the mesh.

  1. Analysis and optimization of process parameters in Al-SiCp laser cladding

    Science.gov (United States)

    Riquelme, Ainhoa; Rodrigo, Pilar; Escalera-Rodríguez, María Dolores; Rams, Joaquín

    2016-03-01

    The laser cladding process parameters have great effect on the clad geometry and on dilution in the single and multi-pass aluminum matrix composite reinforced with SiC particles (Al/SiCp) coatings on ZE41 magnesium alloys deposited using a high-power diode laser (HPLD). The influence of the laser power (500-700 W), scan speed (3-17 mm/s) and laser beam focal position (focus, positive and negative defocus) on the shape factor, cladding-bead geometry, cladding-bead microstructure (including the presence of pores and cracks), and hardness has been evaluated. The correlation of these process parameters and their influence on the properties and ultimately, on the feasibility of the cladding process, is demonstrated. The importance of focal position is demonstrated. The different energy distribution of the laser beam cross section in focus plane or in positive and negative defocus plane affect on the cladding-bead properties.

  2. Assessment of thin-walled cladding tube mechanical properties by segmented expanding Mandrel test

    OpenAIRE

    NILSSON Karl-Fredrik

    2013-01-01

    This paper presents the principles of the segmented expanding mandrel test for thin-walled cladding tubes, which can be used as a basic material characterisation test to determine stressstrain curves and ductility or as a test to simulate mechanical pellet-cladding interaction. The paper discusses the strengths and weaknesses of the test method and it illustrates how the test can be used to simulate hydride reorientations in zirconium claddings and quantify how hydride reorientation affect...

  3. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    OpenAIRE

    Mortensen, Niels Asger

    2007-01-01

    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical air-clad geometries. While air-clad structures supporting sup-wavelength convex air-glass interfaces (viewed from the high-index side) will promote chaotic dynamics we find guidance of regular whis...

  4. Simulation of a pellet-clad mechanical interaction with ABAQUS and its verification

    International Nuclear Information System (INIS)

    Pellet-clad mechanical interaction (PCMI) during power transients for MOX fuel is modelled by a FE method. The PCMI model predicts well clad elongation during power ramp and relaxation during power hold except the fuel behaviour during a power decrease. Higher fiction factor results in the earlier occurrence of PCMI and more enhanced clad elongation. The relaxation is dependent on the irradiation creep rate of the pellet and axial compressive force. Verification of the PCMI model was done using recent MOX experimental data. Temperature and clad elongation for the fuel rod can be evaluated in a reasonable way

  5. Orientation-Dependent Displacement Sensor Using an Inner Cladding Fiber Bragg Grating

    Science.gov (United States)

    Yang, Tingting; Qiao, Xueguang; Rong, Qiangzhou; Bao, Weijia

    2016-01-01

    An orientation-dependent displacement sensor based on grating inscription over a fiber core and inner cladding has been demonstrated. The device comprises a short piece of multi-cladding fiber sandwiched between two standard single-mode fibers (SMFs). The grating structure is fabricated by a femtosecond laser side-illumination technique. Two well-defined resonances are achieved by the downstream both core and cladding fiber Bragg gratings (FBGs). The cladding resonance presents fiber bending dependence, together with a strong orientation dependence because of asymmetrical distribution of the “cladding” FBG along the fiber cross-section. PMID:27626427

  6. Impact of thicker cladding on the nuclear parameters of the NPP Krsko fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kromar, Marjan, E-mail: marjan.kromar@ijs.s [Jozef Stefan Institute, Reactor Physics Department, Jamova 39, 1001 Ljubljana (Slovenia); Kurincic, Bojan [Nuclear Power Plant Krsko, Engineering Division, Nuclear Fuel and Reactor Core, Vrbina 12, 8270 Krsko (Slovenia)

    2011-04-15

    To make fuel rods more resistant to grid-to-rod fretting or other cladding penetration failures, the cladding thickness could be increased or strengthened. Implementation of thicker fuel rod cladding was evaluated for the NPP Krsko that uses 16 x 16 fuel design. Cladding thickness of the Westinghouse standard fuel design (STD) and optimized fuel design (OFA) is increased. The reactivity effect during the fuel burnup is determined. To obtain a complete realistic view of the fuel behaviour a typical, near equilibrium, 18-month fuel cycle is investigated. The most important nuclear core parameters such as critical boron concentrations, isothermal temperature coefficient and rod worth are determined and compared.

  7. Development of data base with mechanical properties of un- and pre-irradiated VVER cladding

    Energy Technology Data Exchange (ETDEWEB)

    Asmolov, V.; Yegorova, L.; Kaplar, E.; Lioutov, K. [Nuclear Safety Inst. of Russian Research Centre, Moscow (Russian Federation). Kurchatov Inst.; Smirnov, V.; Prokhorov, V.; Goryachev, A. [State Research Centre, Dimitrovgrad (Russian Federation). Research Inst. of Atomic Reactors

    1998-03-01

    Analysis of recent RIA test with PWR and VVER high burnup fuel, performed at CABRI, NSRR, IGR reactors has shown that the data base with mechanical properties of the preirradiated cladding is necessary to interpret the obtained results. During 1997 the corresponding cycle of investigations for VVER clad material was performed by specialists of NSI RRC KI and RIAR in cooperation with NRC (USA), IPSN (France) in two directions: measurements of mechanical properties of Zr-1%Nb preirradiated cladding versus temperature and strain rate; measurements of failure parameters for gas pressurized cladding tubes. Preliminary results of these investigations are presented in this paper.

  8. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger

    2007-01-01

    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical...... air-clad structures may thus suppress the pump-absorption efficiency η below the ergodic scaling law η∞ Ac/Acl, where Ac and Acl are the areas of the rare-earth doped core and the cladding, respectively....

  9. Impact of thicker cladding on the nuclear parameters of the NPP Krsko fuel

    International Nuclear Information System (INIS)

    To make fuel rods more resistant to grid-to-rod fretting or other cladding penetration failures, the cladding thickness could be increased or strengthened. Implementation of thicker fuel rod cladding was evaluated for the NPP Krsko that uses 16 x 16 fuel design. Cladding thickness of the Westinghouse standard fuel design (STD) and optimized fuel design (OFA) is increased. The reactivity effect during the fuel burnup is determined. To obtain a complete realistic view of the fuel behaviour a typical, near equilibrium, 18-month fuel cycle is investigated. The most important nuclear core parameters such as critical boron concentrations, isothermal temperature coefficient and rod worth are determined and compared.

  10. Design of intrinsically single-mode double clad crystalline fiber waveguides for high power lasers

    Science.gov (United States)

    Li, Da; Hong, Pengda; Meissner, Stephanie K.; Meissner, Helmuth E.

    2016-03-01

    Recently, double-clad crystalline fiber waveguides (CFWs), consisting of single crystalline or ceramic RE3+:YAG cores of square cross section and inner claddings of either undoped or laser-inactive-ion-doped YAG and outer claddings of sapphire, have been successfully demonstrated. These waveguides, manufactured by an Adhesive-Free Bonding (AFB®) technique, can be precisely engineered and fabricated with predictable beam propagation behavior. In this work, with high power laser designs in mind, minimum thicknesses for inner cladding are derived for different core cross sections and refractive index differences between the core and inner cladding and sapphire as outer cladding material for common laser core dopants such as Nd3+, Yb3+, Er3+, Tm3+ and Ho3+. All designs are intended to use high NA high power laser diode pumping to obtain high power intrinsically single transverse mode laser output. The obtained data are applicable to any crystalline fiber waveguide design, regardless of fabrication technique. As an example, a CFW with 40 μm × 40 μm 4% Tm:YAG core, 5% Yb:YAG inner cladding, and sapphire outer cladding was calculated to be intrinsically single transverse mode, with the minimum inner cladding width of 21.7 μm determined by the effective index technique [1].

  11. Raman probes based on optically-poled double-clad fiber and coupler

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Margulis, Walter; Rottwitt, Karsten

    2012-01-01

    Two fiber Raman probes are presented, one based on an optically-poled double-clad fiber and the second based on an optically-poled double-clad fiber coupler respectively. Optical poling of the core of the fiber allows for the generation of enough 532nm light to perform Raman spectroscopy...... of a sample of dimethyl sulfoxide (DMSO), when illuminating the waveguide with 1064nm laser light. The Raman signal is collected in the inner cladding, from which it is retrieved with either a bulk dichroic mirror or a double-clad fiber coupler. The coupler allows for a substantial reduction of the fiber...

  12. Structure-property correlations in nanostructured WC-12Co microwave clad

    Science.gov (United States)

    Zafar, Sunny; Sharma, Apurbba Kumar

    2016-05-01

    Nanostructured materials are known for enhanced properties as compared to their conventional counterparts. In the present work, microwave cladding technique was explored for depositing nanostructured WC-12Co clads on stainless steel substrates. Phase analysis of the WC-12Co microwave clads revealed the presence of Co6W6C, Co7W6, Co3W9C4, W2C and WC phases. The microstructure of the WC-12Co clads confirmed uniform distribution of nano-carbides in the form of clusters enclosed in the carbide network. Mechanical characterisation of the nanostructured clads was carried in terms of microhardness assessment and flexural strength measurement. The microwave induced clads exhibited excellent metallurgical bonding with the substrate and were free from interfacial cracks. The average microhardness of the developed clads was found in the order of 1760 ± 128HV. The flexural strength of the developed clads was observed to be 671 ± 28 MPa. The nanostructured clads exhibited good adhesion with the substrate without getting peeled-off under a load of 3.75 kN and a displacement of 3.72 mm.

  13. AgI-coated silver-clad stainless steel hollow waveguides for infrared lightwave transmission and their applications.

    Science.gov (United States)

    Hongo, Akihito; Sato, Shinobu; Hattori, Akio; Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu

    2012-01-01

    We fabricated silver iodide (AgI)-coated silver hollow waveguides to transmit a wide range of infrared (IR) light. Silver-clad stainless steel pipes were used as a supporting pipe. Since this type of metallic hollow waveguide has high mechanical strength and heat resistance, it is suitable as a rigid lightwave probe for various applications such as dental or medical laser treatment, IR spectroscopy, thermal radiometry, and laser processing. Considering these applications, we estimated the hollow waveguides with different thicknesses of the AgI layer. By optimizing the AgI layer thickness according to the wavelength of propagating light, we succeeded in efficiently transmitting Er-YAG and CO(2) laser light. We also studied the optical characteristics of a wide range of incoherent light for IR spectroscopy and radiometry applications using these metallic hollow waveguides as lightwave probes. PMID:22270406

  14. Path planning and kinematics simulation of surfacing cladding for hot forging die

    Directory of Open Access Journals (Sweden)

    Wang Huajun

    2015-01-01

    Full Text Available During the course of their work, a variety of damage and failure of hot forging die occurs and seriously affect the service life. Multi-layer metal hot forging die with functionally graded material structure can effectively extend the service life. In this paper, According to the needs of strengthening forging cavity, the CAD model of surfacing forming center was designed. Based on technological requirements of surface cladding for die cavity, the coupled movement equation of weld torch was established, and the trajectory of welding positioner and Cartesian robot kinematics was solved. The weld torch path was planned, according to the typical methods used in plane welding, and the surfacing path data was extracted by the secondary development of UG/OPEN. Then the kinematics solver program, which can output the control function of motion simulation, was written in MATLAB to solve the kinematics equation. Finally, in UG NX7.5, the kinematics simulation model was built to verify the correctness of mathematical model and the rationality of welding path planning. The above studies can provide a technical support for the die repair and manufacturing of a multilayer metal forging die.

  15. Numerical and experimental analysis of the residual stress field in cladded components; Numerische und experimentelle Bestimmung des Eigenspannungszustands in plattierten Komponenten

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, Dieter; Brand, Marcus; Hohe, Joerg [Fraunhofer Inst. fuer Werkstoffmechanik, Freiburg (Germany)

    2008-07-01

    The inner surface of a ferritic reactor pressure vessel is protected against corrosion by an austenitic cladding that is usually performed by a double-pass welding in order to avoid under-clad defects und to improve the microstructural properties of the cladding material. On the other hand the different thermal expansion coefficients of the cladding and the base metal induce a complex residual stress field. This has a non-negligible influence on the fracture mechanical assessment of postulated flaws within or under the cladding. The determination of the residual stress field was achieved by numerical simulation of the cladding process. The calibration of the used equivalent heat sources for the modelling of the heat input within the simulation was performed using measured data of the temperature field in a KTA compliant cladding process of test plates made of plant-representative materials. The simulation of the welding process used the temperature dependent material characteristics taking into account the transformation behaviour of the ferritic base metal. The resulting residual stress field shows significant tensile stresses within the cladding with a subsequent compressive stress field under the cladding. The calculated residual stress field is in good agreement with the experimental data. A comparison of the calculated residual stress field using the process simulation with the results of a simplified modelling assuming an increased stress-free temperature in the range of the operation temperature shows also a good agreement, esp. using the materials characteristics of KTA. [German] Die Innenoberflaeche von Reaktordruckbehaeltern aus ferritischen Werkstoffen wird zum Schutz gegen Korrosion mit einer austenitischen Plattierung versehen. Diese wird ueblicherweise als zweilagige Schweissplattierung ausgefuehrt, um die Bildung von Unterplattierungsfehlern zu vermeiden und die mikrostrukturellen Eigenschaften des Plattierungswerkstoffs zu verbessern. Auf der

  16. Improved LWR Cladding Performance by EPD Surface Modification Technique

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Sridharan, Kumar

    2012-11-26

    This project will utilize the electro-phoretic deposition technique (EPD) in conjunction with nanofluids to deposit oxide coatings on prototypic zirconium alloy cladding surfaces. After demonstrating that this surface modification is reproducible and robust, the team will subject the modified surface to boiling and corrosion tests to characterize the improved nucleate boiling behavior and superior corrosion performance. The scope of work consists of the following three tasks: The first task will employ the EPD surface modification technique to coat the surface of a prototypic set of zirconium alloy cladding tube materials (e.g. Zircaloy and advanced alloys such as M5) with a micron-thick layer of zirconium oxide nanoparticles. The team will characterize the modified surface for uniformity using optical microscopy and scanning-electron microscopy, and for robustness using standard hardness measurements. After zirconium alloy cladding samples have been prepared and characterized using the EPD technique, the team will begin a set of boiling experiments to measure the heat transfer coefficient and critical heat flux (CHF) limit for each prepared sample and its control sample. This work will provide a relative comparison of the heat transfer performance for each alloy and the surface modification technique employed. As the boiling heat transfer experiments begin, the team will also begin corrosion tests for these zirconium alloy samples using a water corrosion test loop that can mimic light water reactor (LWR) operational environments. They will perform extended corrosion tests on the surface-modified zirconium alloy samples and control samples to examine the robustness of the modified surface, as well as the effect on surface oxidation

  17. Fabrication of a tantalum-clad tungsten target for LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.T., E-mail: atnelson@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); O' Toole, J.A.; Valicenti, R.A. [Accelerator Operations and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maloy, S.A. [Civilian Nuclear Program Office, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-12-15

    Development of a solid state bonding technique suitable to clad tungsten targets with tantalum was completed to improve operation of the Los Alamos Neutron Science Centers spallation target. Significant deterioration of conventional bare tungsten targets has historically resulted in transfer of tungsten into the cooling system through corrosion resulting in increased radioactivity outside the target and reduction of delivered neutron flux. The fabrication method chosen to join the tantalum cladding to the tungsten was hot isostatic pressing (HIP) given the geometry constraints of a cylindrical assembly and previous success demonstrated at KENS. Nominal HIP parameters of 1500 Degree-Sign C, 200 MPa, and 3 h were selected based upon previous work. Development of the process included significant surface engineering controls and characterization given tantalums propensity for oxide and carbide formation at high temperatures. In addition to rigorous acid cleaning implemented at each step of the fabrication process, a three layer tantalum foil gettering system was devised such that any free oxygen and carbon impurities contained in the argon gas within the HIP vessel was mitigated to the extent possible before coming into contact with the tantalum cladding. The result of the numerous controls and refined techniques was negligible coarsening of the native Ta{sub 2}O{sub 5} surface oxide, no measureable oxygen diffusion into the tantalum bulk, and no detectable carburization despite use of argon containing up to 5 ppm oxygen and up to 40 ppm total CO, CO{sub 2}, or organic contaminants. Post bond characterization of the interface revealed continuous bonding with a few microns of species interdiffusion.

  18. Fabrication of a tantalum-clad tungsten target for LANSCE

    Science.gov (United States)

    Nelson, A. T.; O'Toole, J. A.; Valicenti, R. A.; Maloy, S. A.

    2012-12-01

    Development of a solid state bonding technique suitable to clad tungsten targets with tantalum was completed to improve operation of the Los Alamos Neutron Science Centers spallation target. Significant deterioration of conventional bare tungsten targets has historically resulted in transfer of tungsten into the cooling system through corrosion resulting in increased radioactivity outside the target and reduction of delivered neutron flux. The fabrication method chosen to join the tantalum cladding to the tungsten was hot isostatic pressing (HIP) given the geometry constraints of a cylindrical assembly and previous success demonstrated at KENS. Nominal HIP parameters of 1500 °C, 200 MPa, and 3 h were selected based upon previous work. Development of the process included significant surface engineering controls and characterization given tantalums propensity for oxide and carbide formation at high temperatures. In addition to rigorous acid cleaning implemented at each step of the fabrication process, a three layer tantalum foil gettering system was devised such that any free oxygen and carbon impurities contained in the argon gas within the HIP vessel was mitigated to the extent possible before coming into contact with the tantalum cladding. The result of the numerous controls and refined techniques was negligible coarsening of the native Ta2O5 surface oxide, no measureable oxygen diffusion into the tantalum bulk, and no detectable carburization despite use of argon containing up to 5 ppm oxygen and up to 40 ppm total CO, CO2, or organic contaminants. Post bond characterization of the interface revealed continuous bonding with a few microns of species interdiffusion.

  19. Screening of advanced cladding materials and UN–U3Si5 fuel

    International Nuclear Information System (INIS)

    Highlights: • Screening methodology for advanced fuel and cladding. • Cladding candidates, except for silicon carbide, exhibit reactivity penalty versus zirconium alloy. • UN–U3Si5 fuels have the potential to exhibit reactor physics and fuel management performance similar to UO2. • Harder spectrum in the UN ceramic composite fuel increases transuranic build-up. • Fuel and cladding properties assumed in these assessments are preliminary. - Abstract: In the aftermath of Fukushima, a focus of the DOE-NE Advanced Fuels Campaign has been the development of advanced nuclear fuel and cladding options with the potential for improved performance in an accident. Uranium dioxide (UO2) fuels with various advanced cladding materials were analyzed to provide a reference for cladding performance impacts. For advanced cladding options with UO2 fuel, most of the cladding materials have some reactivity and discharge burn-up penalty (in GWd/t). Silicon carbide is one exception in that the reactor physics performance is predicted to be very similar to zirconium alloy cladding. Most candidate claddings performed similar to UO2–Zr fuel–cladding in terms of safety coefficients. The clear exception is that Mo-based materials were identified as potentially challenging from a reactor physics perspective due to high resonance absorption. This paper also includes evaluation of UN–U3Si5 fuels with Kanthal AF or APMT cladding. The objective of the U3Si5 phase in the UN–U3Si5 fuel concept is to shield the nitride phase from water. It was shown that UN–U3Si5 fuels with Kanthal AF or APMT cladding have similar reactor physics and fuel management performance over a wide parameter space of phase fractions when compared to UO2–Zr fuel–cladding. There will be a marginal penalty in discharge burn-up (in GWd/t) and the sensitivity to 14N content in UN ceramic composites is high. Analysis of the rim effect due to self-shielding in the fuel shows that the UN-based ceramic fuels

  20. Results of fuel, cladding and reactor pressure vessel computation

    International Nuclear Information System (INIS)

    The cause of the pellet-clad interaction failures are the combined effects of differential thermal expansion driven localized stress, and aggressive fission products, primarily iodine (pitting corrosion). Reactor pressure vessel is also being exposed to high mechanical loads and to an intensive neutron flux irradiation. This leads to a gradual decrease in resistance to brittle fracture. The finite element method has been selected for the solution of the above problems, and results are presented in form of isobars and isotherms respectively in the meridional cross section. (author)

  1. Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding

    DEFF Research Database (Denmark)

    Peng, J. H.; Sokolov, A. V.; Benabid, F.;

    2010-01-01

    We report on a means to generate tunable ultrashort optical pulses. We demonstrate that dispersive waves generated by solitons within the small-core features of a photonic crystal fiber cladding can be used to obtain femtosecond pulses tunable over an octave-wide spectral range. The generation...... process is highly efficient and occurs at the relatively low laser powers available from a simple Ti:sapphire laser oscillator. The described phenomenon is general and will play an important role in other systems where solitons are known to exist....

  2. Standard specification for architectural flat glass clad polycarbonate

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification covers the quality requirements for cut sizes of glass clad polycarbonate (GCP) for use in buildings as security, detention, hurricane/cyclic wind-resistant, and blast and ballistic-resistant glazing applications. 1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. Alloy waste forms for metal fission products and actinides isolated by spent nuclear fuel treatment

    International Nuclear Information System (INIS)

    Waste form alloys are being developed at Argonne National Laboratory for the disposal of remnant metallic wastes from an electrometallurgical process developed to treat spent nuclear fuel. This metal waste form consists of the fuel cladding (stainless steel or Zircaloy), noble metal fission products (e.g., Ru, Pd, Mo and Tc), and other metallic wastes. The main constituents of the metal waste stream are the cladding hulls (85 to 90 wt%); using the hulls as the dominant alloying component minimizes the overall waste volume as compared to vitrification or metal encapsulation. Two nominal compositions for the waste form are being developed: (1) stainless steel-15 wt% zirconium for stainless steel-clad fuels and (2) zirconium-8 wt% stainless steel for Zircaloy-clad fuels. The noble metal fission products are the primary source of radiation in the metal waste form. However, inclusion of actinides in the metal waste form is being investigated as an option for interim or ultimate storage. Simulated waste form alloys were prepared and analyzed to determine the baseline alloy microstructures and the microstructural distribution of noble metals and actinides. Corrosion tests of the metal waste form alloys indicate that they are highly resistant to corrosion

  4. Sertification of fuel cladding and grids materials in out of pile conditions

    International Nuclear Information System (INIS)

    The basic standard specifications for fuel rod cladding and bundle materials, are selected. In this paper the standard specifications of material for Zircaloy and plugs and stainless steel springs of fuel rod cladding are presented. The material specification for a Zircaloy fuel bundle assembly Cgrids) is also given. (author)

  5. Study on transient temperature measurement at fuel clad surface in NSRR experiments

    International Nuclear Information System (INIS)

    In NSRR experiments, evolution of fuel clad temperature is measured by thermocouples welded on the clad surface. This report describes the studies performed with the CASTEM code in order to evaluate the measurement error, that is, temperature difference between the thermocouple welding spot and the clad surface far from the spot. The studies show that the welded thermocouple slightly underestimates the clad surface temperature when the clad zirconia thickness is below 30 μm, and slightly overestimates it for thicker zirconia layer. Furthermore, two distinct phases have been identified in all cases. A transient capacitive phase occurs up to 0.1-0.3s while clad temperature remains below 400degC. The temperature error reaches the maximum in this phase; -100degC (underestimation) without zirconia layer and +150degC (overestimation) with 100 μm zirconia layer. A 'fin effect' phase starts when the clad temperature exceeds 400degC and the film boiling regime is clearly established, during which the error stabilizes between -20degC without zirconia layer and +50degC with 100 μm zirconia layer. The influence of the thermocouple is limited to its very vicinity (radius of about 0.5 mm). A transfer function was determined from the calculation results in order to estimate the accurate clad outer temperature from the thermocouple recording. (author)

  6. An Examination of Collaborative Learning Assessment through Dialogue (CLAD) in Traditional and Hybrid Human Development Courses

    Science.gov (United States)

    McCarthy, Wanda C.; Green, Peter J.; Fitch, Trey

    2010-01-01

    This investigation assessed the effectiveness of using Collaborative Learning Assessment through Dialogue (CLAD) (Fitch & Hulgin, 2007) with students in undergraduate human development courses. The key parts of CLAD are student collaboration, active learning, and altering the role of the instructor to a guide who enhances learning opportunities.…

  7. Cladding modes in photonic crystal fiber: characteristics and sensitivity to surrounding refractive index

    Science.gov (United States)

    Jiang, Xiuli; Gu, Zhengtian; Zheng, Li

    2016-01-01

    Characteristics of cladding modes in a photonic crystal fiber (PCF) with triangular air-hole lattice in the cladding are numerically analyzed using a finite element method. The transition for LP11 cladding mode to core mode with variation of the normalized wavelength has been shown. The transition of the LP01 cladding mode to the outer silica mode and reorganization of the LP0m cladding modes caused by varying the fiber radius has been investigated. By choosing the optimized fiber radius, which is located in the cladding modes' reorganization region, the sensitivity of the coupled wavelength between the core mode LP01 and cladding mode LP03 to surrounding refractive index is increased by a factor of five and reaches to 2660 nm/refractive index unit over the range of 1.40 to 1.42. The sensitivity is competitive with that of long-period grating in PCF in response to changes in refractive indices of the medium contained in the cladding air channels.

  8. High performance fuel technology development : Development of high performance cladding materials

    International Nuclear Information System (INIS)

    The superior in-pile performance of the HANA claddings have been verified by the successful irradiation test and in the Halden research reactor up to the high burn-up of 67GWD/MTU. The in-pile corrosion and creep resistances of HANA claddings were improved by 40% and 50%, respectively, over Zircaloy-4. HANA claddings have been also irradiated in the commercial reactor up to 2 reactor cycles, showing the corrosion resistance 40% better than that of ZIRLO in the same fuel assembly. Long-term out-of-pile performance tests for the candidates of the next generation cladding materials have produced the highly reliable test results. The final candidate alloys were selected and they showed the corrosion resistance 50% better than the foreign advanced claddings, which is beyond the original target. The LOCA-related properties were also improved by 20% over the foreign advanced claddings. In order to establish the optimal manufacturing process for the inner and outer claddings of the dual-cooled fuel, 18 different kinds of specimens were fabricated with various cold working and annealing conditions. Based on the performance tests and various out-of-pile test results obtained from the specimens, the optimal manufacturing process was established for the inner and outer cladding tubes of the dual-cooled fuel

  9. Characteristics of WDM Couplers Based on 80 μμ m Cladding Fiber

    Institute of Scientific and Technical Information of China (English)

    Hyunsook Shin; Woojin Shin; Manjung Han; Kyoungrok Kim; Seungryong Han; Yunsong Jeong; K. Oh

    2003-01-01

    We have fabricated 1310/1550 and 1480/1550nm WDM couplers using a fiber of 80 μm cladding diameter,whose tapering length is shortened by 4~8mm for the identical coupling strength compared to those of 125μm cladding fibers. We also report their splicing loss to conventional single mode fibers.

  10. Characteristics of WDM Couplers Based on 80 μm Cladding Fiber

    Institute of Scientific and Technical Information of China (English)

    Hyunsook; Shin; Woojin; Shin; Manjung; Han; Kyoungrok; Kim; Seungryong; Han; Yunsong; Jeong; K.; Oh

    2003-01-01

    We have fabricated 1310/1550 and 1480/1550nm WDM couplers using a fiber of 80μm cladding diameter, whose tapering length is shortened by 4~8mm for the identical coupling strength compared to those of 125μm cladding fibers. We also report their splicing loss to conventional single mode fibers.

  11. Cladding flaw detection and sizing by horizontally polarized shear wave ultrasonic EMAT transducers

    International Nuclear Information System (INIS)

    Further experimental work was done within the framework of the current research contract on the employment of the EMAT technique in the ultrasonic inspection of reactor vessel cladding. This year's activity focused on the study of the space distribution of the ultrasonic beam generated by the flexible transducers developed during the course of the previous year, and on the inspection of the cladding of the JRC-ISPRA PWR vessel 1:5 scale model. Two transducer pairs were used to make laboratory measurements on the clad and unclad test block sides for the purpose of studying ultrasonic beam distribution. It emerged that the cladding tended to confine the beam. If however the wavelength was equal to or greater than the cladding thickness the confinement was not complete and became less and less evident with increasing wavelength. It was consequently possible to pick up echoes produced by flaws located both within the cladding and in the underlaying layers. The PWR vessel model cladding was then inspected in the neighbourhood of the welds and a large number of flaws was found. The EMAT technique has proved to be suitable for the detection and rough location of flaws but less so for their sizing, although in some cases it was possible to assess the distance between the flaw and the cladding top

  12. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding

    Science.gov (United States)

    Terrani, K. A.; Zinkle, S. J.; Snead, L. L.

    2014-05-01

    Application of advanced oxidation-resistant iron alloys as light water reactor fuel cladding is proposed. The motivations are based on specific limitations associated with zirconium alloys, currently used as fuel cladding, under design-basis and beyond-design-basis accident scenarios. Using a simplified methodology, gains in safety margins under severe accidents upon transition to advanced oxidation-resistant iron alloys as fuel cladding are showcased. Oxidation behavior, mechanical properties, and irradiation effects of advanced iron alloys are briefly reviewed and compared to zirconium alloys as well as historic austenitic stainless steel cladding materials. Neutronic characteristics of iron-alloy-clad fuel bundles are determined and fed into a simple economic model to estimate the impact on nuclear electricity production cost. Prior experience with steel cladding is combined with the current understanding of the mechanical properties and irradiation behavior of advanced iron alloys to identify a combination of cladding thickness reduction and fuel enrichment increase (∼0.5%) as an efficient route to offset any penalties in cycle length, due to higher neutron absorption in the iron alloy cladding, with modest impact on the economics.

  13. Analysis of the stress raising action of flaws in laser clad deposits

    International Nuclear Information System (INIS)

    Highlights: ► Laser clad defects are 0D-pores/inclusions, 1D-clad waviness or 2D-planar defects. ► Surface pore of laser clad bar initiates fatigue cracks. ► Side edge surface pores are more critical than in-clad surface pores. ► Smaller notch radius and angle of as-laser clad surface raises stress significantly. ► Planar inner defects grow faster towards surface. - Abstract: Fatigue cracking of laser clad cylindrical and square section bars depends upon a variety of factors. This paper presents Finite Element Analysis (FEA) of the different macro stress fields generated as well as stress raisers created by laser cladding defects for four different fatigue load conditions. As important as the defect types are their locations and orientations, categorized into zero-, one- and two-dimensional defects. Pores and inclusions become critical close to surfaces. The performance of as-clad surfaces can be governed by the sharpness of surface notches and planar defects like hot cracks or lack-of-fusion (LOF) are most critical if oriented vertically, transverse to the bar axis. The combination of the macro stress field with the defect type and its position and orientation determines whether it is the most critical stress raiser. Based on calculated cases, quantitative and qualitative charts were developed as guidelines to visualize the trends of different combinations

  14. Nuclear fuel cladding tube and method of manufacturing the same

    International Nuclear Information System (INIS)

    A cladding tube main body made of a zirconium alloy and an end plug are joined by welding. Tensile stresses at the weld heat-affected portion between the cladding tube main body and the end plug are removed, so that compression stresses of 0 MPa or more but less than the endurance strength of the zirconium alloy is applied on the weld heat affected portion. As the zirconium alloy, a zircaloy-2 or zircaloy-4 is preferable since it is excellent in the corrosion resistance and strength. The zirconium alloy may preferably be used also to the material of the end plug. The treatment for the removal of the tensile stresses includes a method of applying annealing to the weld heat-affected portion or a method of applying compression stresses thereto by applying external force such as a shot peening treatment. This can suppress occurrence of nodular corrosion and white homogeneous corrosion caused in the vicinity of the welded portion. (I.N.)

  15. Laser cladding device for nuclear power plant pipeline

    International Nuclear Information System (INIS)

    The device of the present invention concerns a device for applying a laser cladding treatment to a pipe which is welded passing through a bottom of a reactor pressure vessel for preventing stress corrosion crackings. Even if the distance from the axial center of a condensing lens to a coated surface by distortion of the pipe, temperature on the coated surface is made constant and uniform during cladding. That is, equipments shown below are contained in a rotational cylinder vertically movable in the pipe. (1) a condensing lens, (2) an optical fiber cable for entering laser beams to the condensing lens, (3) a reflection mirror for irradiating laser beams collected by the condensing lens to the coated membrane on the inner surface of the pipe. Then, the position at the end of the optical fiber cable is made movable in an axial direction in the rotational cylinder. With such a constitution, the focus position relative to the coated surface is changed by controlling the movement of the end of the optical fiber so as to make the condensing lens closer or apart. Accordingly, intensity of the energy per unit area of the coated surface can be made controlled constant. (I.S.)

  16. Cladding and Structural Materials for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Was, G S; Allen, T R; Ila, D; C,; Levi,; Morgan, D; Motta, A; Wang, L; Wirth, B

    2011-06-30

    The goal of this consortium is to address key materials issues in the most promising advanced reactor concepts that have yet to be resolved or that are beyond the existing experience base of dose or burnup. The research program consists of three major thrusts: 1) high-dose radiation stability of advanced fast reactor fuel cladding alloys, 2) irradiation creep at high temperature, and 3) innovative cladding concepts embodying functionally-graded barrier materials. This NERI-Consortium final report represents the collective efforts of a large number of individuals over a period of three and a half years and included 9 PIs, 4 scientists, 3 post-docs and 12 students from the seven participating institutions and 8 partners from 5 national laboratories and 3 industrial institutions (see table). University participants met semi-annually and participants and partners met annually for meetings lasting 2-3 days and designed to disseminate and discuss results, update partners, address outstanding issues and maintain focus and direction toward achieving the objectives of the program. The participants felt that this was a highly successful program to address broader issues that can only be done by the assembly of a range of talent and capabilities at a more substantial funding level than the traditional NERI or NEUP grant. As evidence of the success, this group, collectively, has published 20 articles in archival journals and made 57 presentations at international conferences on the results of this consortium.

  17. Microbial sampling of aluminum-clad spent nuclear fuel

    International Nuclear Information System (INIS)

    A microbial sampling program was initiated at the Idaho National Engineering and Environmental Laboratory (INEEL) to ascertain the effect of microbial activity on the corrosion of aluminum clad spent nuclear fuel (SNF) stored in wet and dry conditions. In the newest fuel storage pool at the INEEL (CPP-666) pitting corrosion has been observed on aluminum corrosion coupons that can not be explained by the excellent water chemistry. Pitting corrosion of the aluminum-clad SNF and corrosion coupons has been observed in the older fuel storage pool (CPP-603). Therefore a microbial assessment of the bulk water, and basin surfaces of both fuel pools was conducted. The results of this microbial enumeration show that a viable and active microbial population does exist in planktonic form. Sampling of aluminum corrosion coupons placed next to stored fuel elements show that microbial attachment has occurred and a biofilm has formed. The sampling program was then extended to the surfaces of wet and dry stored fuel elements. Viable cells or spores were found on the surfaces of the ATR fuel elements that were stored under wet and dry conditions. This paper discusses the methodology of sampling the surfaces of SNF stored under wet conditions for the presence of microorganisms and the types of organisms found

  18. Reactor water chemistry relevant to coolant-cladding interaction

    International Nuclear Information System (INIS)

    The report is a summary of the work performed in a frame of a Coordinated Research Program organized by the IAEA and carried out from 1981 till 1986. It consists of a survey on our knowledge on coolant-cladding interaction: the basic phenomena, the relevant parameters, their control and the modelling techniques implemented for their assessment. Based upon the results of this Coordinated Research Program, the following topics are reviewed on the report: role of water chemistry in reliable operation of nuclear power plants; water chemistry specifications and their control; behaviour of fuel cladding materials; corrosion product behaviour and crud build-up in reactor circuits; modelling of corrosion product behaviour. This report should be of interest to water chemistry supervisors at the power plants, to experts in utility engineering departments, to fuel designers, to R and D institutes active in the field and to the consultants of these organizations. A separate abstract was prepared for each of the 3 papers included in the Annex of this document. Refs, figs, tabs

  19. Microstructure evolution and mechanical properties of multiple-layer laser cladding coating of 308L stainless steel

    International Nuclear Information System (INIS)

    Highlights: • Grain morphology transformations of 308L stainless steel multiple-layer are studied. • The cladding metals solidify in AF mode and consist of austenite and about 10.48% δ ferrite. • The ferrite content distributes into an increasing trend as the number of layers increase. • The distribution of hardness from the substrate to the coating is relatively uniform. • The cladding tensile sample shows good tensile properties, and the fracture mode is the ductile fracture. - Abstract: Multiple-layer laser cladding of 308L stainless steel was obtained by a fiber laser using a way of wire feeding to repair the surface scrapped or erosive parts of 316L stainless steel. The microstructure of the coating was measured by a metallographic microscope, and phase composition was determined by X-ray diffraction. The results show that good metallurgical bonding can be obtained between the 308L stainless steel coating and 316L stainless steel substrate. The coating is mainly composed of columnar dendrites, and there are also a few planar crystals and cellular dendrites distributed in the bonding zone. Meanwhile, some equiaxed grains and steering dendrites are distributed in the apex of the coating. Grains incorporate in epitaxial columnar dendrite's growth between different layers and tracks. It has been proved using XRD that the coating basically consists of austenite and a small amount of δ ferrite. The coating solidifies in FA mode according to the Creq/Nieq ratio and metallurgical analysis results. The average content of δ ferrite is about 10.48% and morphologies of the ferrite are mostly vermicular, skeletal and lathy. Due to heat treatment and different cooling rate, the δ ferrite content generally increases as the number of laser cladding layers increases. The coating and the substrate have equivalent microhardness, and softening zone does not appear in the heat affected zone. The tensile strength and elongation of the coating are 548 MPa and 40

  20. Microstructure evolution and mechanical properties of multiple-layer laser cladding coating of 308L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kaibin; Li, Dong, E-mail: lid@sues.edu.cn; Liu, Dongyu; Pei, Guangyu; Sun, Lei

    2015-06-15

    Highlights: • Grain morphology transformations of 308L stainless steel multiple-layer are studied. • The cladding metals solidify in AF mode and consist of austenite and about 10.48% δ ferrite. • The ferrite content distributes into an increasing trend as the number of layers increase. • The distribution of hardness from the substrate to the coating is relatively uniform. • The cladding tensile sample shows good tensile properties, and the fracture mode is the ductile fracture. - Abstract: Multiple-layer laser cladding of 308L stainless steel was obtained by a fiber laser using a way of wire feeding to repair the surface scrapped or erosive parts of 316L stainless steel. The microstructure of the coating was measured by a metallographic microscope, and phase composition was determined by X-ray diffraction. The results show that good metallurgical bonding can be obtained between the 308L stainless steel coating and 316L stainless steel substrate. The coating is mainly composed of columnar dendrites, and there are also a few planar crystals and cellular dendrites distributed in the bonding zone. Meanwhile, some equiaxed grains and steering dendrites are distributed in the apex of the coating. Grains incorporate in epitaxial columnar dendrite's growth between different layers and tracks. It has been proved using XRD that the coating basically consists of austenite and a small amount of δ ferrite. The coating solidifies in FA mode according to the Creq/Nieq ratio and metallurgical analysis results. The average content of δ ferrite is about 10.48% and morphologies of the ferrite are mostly vermicular, skeletal and lathy. Due to heat treatment and different cooling rate, the δ ferrite content generally increases as the number of laser cladding layers increases. The coating and the substrate have equivalent microhardness, and softening zone does not appear in the heat affected zone. The tensile strength and elongation of the coating are 548 MPa and 40

  1. Study of oxide and α-Zr(O) growth kinetics from high temperature steam oxidation of Zircaloy-4 cladding

    Science.gov (United States)

    Sawarn, Tapan K.; Banerjee, Suparna; Samanta, Akanksha; Rath, B. N.; Kumar, Sunil

    2015-12-01

    Oxidation kinetics of Zircaloy-4 cladding of fuel pins of Indian pressurized heavy water reactors (IPHWRs) under a simulated loss of coolant accident (LOCA) condition was investigated. The kinetic rate constants for the oxide and oxygen stabilized α-Zr phase growth were established from the isothermal metal-steam reaction at high temperatures (900-1200 °C) with soaking periods in the range of 60-900 s. Oxide and α-Zr(O) layer thickness were measured to derive the respective growth rates. The observed rates obeyed a parabolic law and Arrhenius expressions of rate constants were established. Percentage equivalent clad reacted (%ECR) was calculated using Baker-Just equation. Hydrogen estimation was carried out on the oxidized samples using inert gas fusion technique. The hydrogen pick up was found to be in the range 10-30 ppm. The measured values of oxide and α-Zr(O) layer thickness were compared with the results obtained using OXYCON, an indigenously developed model. The model predicts the oxide growth reasonably well but under predicts the α-Zr(O) growth significantly at thickness values higher than 80 μm.

  2. Fuel chemistry and pellet-clad interaction related to high burnup fuel. Proceedings of the technical committee

    International Nuclear Information System (INIS)

    The purpose of the meeting was to review new developments in clad failures. Major findings regarding the causes of clad failures are presented in this publication, with the main topics being fuel chemistry and fission product behaviour, swelling and pellet-cladding mechanical interaction, cladding failure mechanism at high burnup, thermal properties and fuel behaviour in off-normal conditions. This publication contains 17 individual presentations delivered at the meeting; each of them was indexed separately

  3. Influence of cladding on the linear elastic RPV analysis during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    The results of the fictitious linear elastic analysis of an inside cooling with the computer program OCA-1 taking the cladding in the reactor pressure vessel into account differ from the calculations containing no cladding effects as follows: The temperature drop in the vessel wall is retarded, with a higher temperature gradient developing in the cladding layer. In addition to the thermal stresses caused by the temperature gradient more stresses develop as a result of the different coefficients of thermal expansion of austenitic cladding and ferritic basic material. The K1-values for crack depths up to a depths of wall of about twice the width of the cladding layer rise considerably during the whole transient time. (orig.)

  4. Sensitivity analysis of a PWR fuel element using zircaloy and silicon carbide claddings

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Rochkhudson B. de; Cardoso, Fabiano; Salome, Jean A.D.; Pereira, Claubia; Fortini, Angela, E-mail: rochkhudson@ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear

    2015-07-01

    The alloy composed of zirconium has been used effectively for over 50 years in claddings of nuclear fuel, especially for PWR type reactors. However, to increase fuel enrichment with the aim of raising the burning and maintaining the safety of nuclear plants is of great relevance the study of new materials that can replace safely and efficiently zircaloy cladding. Among several proposed material, silicon carbide (SiC) has a potential to replace zircaloy as fuel cladding material due to its high-temperature tolerance, chemical stability and low neutron affinity. In this paper, the goal is to expand the study with silicon carbide cladding, checking its behavior when submitted to an environment with boron, burnable poison rods, and temperature variations. Sensitivity calculation and the impact in multiplication factor to both claddings, zircaloy and silicon carbide, were performed during the burnup. The neutronic analysis was made using the SCALE 6.0 (Standardized Computer Analysis for Licensing Evaluation) code. (author)

  5. Simulation of accident and normal fuel rod work with Zr-cladding

    International Nuclear Information System (INIS)

    The technique of simulation of heat-physics, strength and safety characteristics of reactor RBMK and WWER rods under steady-state, transient and accident conditions is presented. That technique is used in mechanic and heat physics codes PULSAR-2 and STALACTITE. Simulation in both full scale and the most stress-loading part of cladding statement under accident conditions are considered. In this zone local swelling and cladding failure are possible. The accident simulation is based on the mechanical creep-plasticity problem solution in three-dimensional approach. The local cladding swelling is initiated with determining of little hot spot on the clad with several degrees temperature departure from average value. Mechanical problem is solved by finite elements method. Interaction of Zr with steam is taken in to account. Fuel and cladding melting, shortness and dispersion formation processes are simulated under subsequent rods warming up. (author). 2 refs., 6 figs

  6. Development of nondestructive techniques for fuel cladding evaluation in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Jaeppinen, T.; Sandlin, S. (VTT Technical Research Centre of Finland, Espoo (Finland))

    2010-05-15

    In nuclear light water reactors (LWR), an effective heat transfer from the fuel through the fuel cladding to the water in the reactor is essential. Furthermore, the cladding should prevent the radionuclides in the fuel from contaminating the reactor circuit. During service the cladding suffers from damage by corrosion, microstructural changes, hydrogen pick-up, creep etc. Regular nondestructive evaluation in a hot cell is a relatively new complement to laborious destructive evaluation of in-service degradation of irradiated material. In this work the possibilities of laser ultrasonics and eddy current techniques in hot cells are presented. The main emphasis is on oxide thickness measurements and on detection of cracks and delaminations for oxide layers of tubular or planar fuel cladding materials. The detectability of hydrogen concentration in the cladding wall is also discussed. (orig.)

  7. A coating to protect spent aluminium-clad research reactor fuel assemblies during extended wet storage

    International Nuclear Information System (INIS)

    Pitting corrosion of aluminium (Al) alloy clad research reactor (RR) fuel in wet storage facilities can be reduced to a large extent by maintaining water parameters within specified limits. However, factors like bimetallic contact, settled solids and synergistic effects of many storage basin water parameters provoke cladding corrosion. Increase in corrosion resistance of spent Al-clad RR fuels can be achieved through the use of conversion coatings. This paper presents: (a) details about the formation of cerium dioxide as a conversion coating on Al alloys used as RR fuel cladding; (b) the corrosion resistance of cerium dioxide coated Al alloy specimens exposed to NaCl solutions. Marked improvements in corrosion resistance of cerium dioxide coated Al specimens were observed. This paper also presents details of a Latin American Project to develop conversion coatings for long term safe wet storage of spent Al-clad RR spent fuel assemblies. (author)

  8. Ultrasonic testing of nuclear fuel rod welds and clad (LWBR Development Program)

    International Nuclear Information System (INIS)

    Ultrasonic techniques were developed utilizing commercially available equipment as a part of the work required in the LWBR Core Manufacturing program for assurance of fuel rod weld integrity and for measurement of fuel rod clad thickness and clad thickness eccentricity. The need for the highest possible resolution and the undesirability of transducer to rod contact dictated the use of a water immersion technique with pulse-echo instrumentation for both weld and clad thickness ultrasonic tests. For the weld test, both longitudinal wave and shear wave inspections were employed with the transducers shuttled together back and forth longitudinally across the weld zone as the fuel rod was rotated. For the clad thickness test, only the longitudinal wave inspection was used with a helical scan pattern along the full length of the clad

  9. Laser Cladding of Magnesium Alloy AZ91D with Silicon Carbide

    Science.gov (United States)

    Cai, L. F.; Mark, C. K.; Zhou, Wei

    Mg alloys are ultralight but their structural applications are often limited by their poor wear and corrosion resistance. The research aimed to address the problem by laser-cladding. Cladding with SiC powder onto surface of AZ91D was carried out using Nd:YAG laser. The laser-clad surface was analyzed using the optical microscope, SEM equipped with EDS, and XRD and found to contain SiC and other Si compounds such as Mg2Si and Al3.21Si0.47 as well as much refined α-Mg grains and β-Mg17Al12 intermetallics. The laser-clad surface possesses considerably higher hardness but its corrosion resistance is not improved, indicating that the laser-cladding technique can only be adopted for applications in noncorrosive environments where wear is the predominant problem.

  10. Laser cladding of Al + Ir powders on ZM5 magnesium base alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Laser cladding of preplaced Al + Ir powders on a ZM5 magnesium alloy was performed to enhance the corrosion resistance of the ZM5 magnesium alloy. A metallurgical bond was obtained at the coating/substrate interface. The corrosion potential (Ecorr) of the laser cladded sample was 169 mV positive to that of the untreated ZM5 substrate, while the corrosion current (Icorr) was some one order of magnitude lower. The laser cladded sample, unlike the untreated ZM5 substrate,showed a passive region in the polarization plot. Immersion tests confirmed that the corrosion resistance of the laser cladded ZM5 sample was significantly enhanced in 3.5 wt.% NaCl solution. The Al-rich phases of AlIr, Mg17Al12, and Al formed in the cladding layer and the rapid solid characteristics were contributed to the improved corrosion behavior of the coating.

  11. Introduction of an Innovative Cladding Panel System for Multi-Story Buildings

    Directory of Open Access Journals (Sweden)

    Hathairat Maneetes

    2014-08-01

    Full Text Available An Energy Dissipating Cladding System has been developed for use in buildings designed based on the concept of damage-controlled structure in seismic design. This innovative cladding panel system is capable of functioning both as a structural brace, as well as a source of energy dissipation, without demanding inelastic action and ductility from the basic lateral force resisting system. The structural systems of many modern buildings typically have large openings to accommodate glazing systems, and a popular type of construction uses spandrel precast cladding panels at each floor level that supports strip window systems. The present study focuses on developing spandrel type precast concrete cladding panels as supplementary energy dissipating devices that are added to the basic structural system. Through a series of analytical studies, the result of evaluating the ability of the proposed Energy Dissipating Cladding system to improve the earthquake resistance of the buildings is presented here.

  12. Space-efficient fiber ribbon composed of reduced-cladding single-mode fibers

    Science.gov (United States)

    Chang, J. H.; Bae, S. H.; Kim, Hoon; Ouh, C. H.; Jung, C. H.; Cho, H. S.; Chung, Y. C.

    2016-09-01

    We develop a space-efficient single-mode fiber (SMF) having a cladding diameter of only 82 μm. This SMF has the depressed-cladding index profile and its mode-field diameter, cutoff wavelength, and macro bending loss are designed to be similar to those of the conventional step-index SMF. We fabricate this reduced-cladding SMF and measure its optical and mechanical characteristics. The results show that this fiber satisfies major specifications of the ITU-T G.654 recommendations. We also fabricate a fiber ribbon by using twelve of these reduced-cladding SMFs. Compared to a commercial fiber ribbon made of twelve standard SMFs having 125-μm cladding diameter, this fiber ribbon can improve the spatial efficiency by ∼75%.

  13. Microstructure and Tribological Properties of In Situ Synthesized TiN Reinforced Ni/Ti Alloy Clad Layer Prepared by Plasma Cladding Technique

    Science.gov (United States)

    Jin, Guo; Li, Yang; Cui, Huawei; Cui, Xiufang; Cai, Zhaobing

    2016-06-01

    A Ni/Ti composite coating enhanced by an in situ synthesized TiN phase was fabricated on FV520B steel by plasma cladding technology. The in situ formation of the TiN phase was confirmed by XRD, SEM, and TEM. The cladding layer consisted of three regions on going from the top to the bottom, namely, columnar grain regions, columnar dendritic regions, and fine grain regions. The cladding layer was composed of Ni3Ti, TiN, (Fe, Ni), and Ti phases. The dendritic and columnar regions were mainly composed of the Ni3Ti and (Fe, Ni) phases. The Ti phase was observed at the branches of dendrite crystals and columnar grains. The volume fraction of the TiN phase in the cladding layer was about 3.2%. The maximum micro-hardness value of the in situ formed coating (760 HV0.2) was higher than that of the pure coating (537 HV0.2). The cladding layer had a small amount of scratch and wear debris when a load of 20 N was used. As the test load increased, the wear debris in the cladding layer also increased and the massive furrows were not observed.

  14. Characterization of hydrogen, nitrogen, oxygen, carbon and sulfur in nuclear fuel (UO2) and cladding nuclear rod materials

    International Nuclear Information System (INIS)

    The importance of Hydrogen, Nitrogen, Oxygen, Carbon and Sulfur gases analysis in nuclear fuels such as UO2, U3O8, U3Si2 and in the fuel cladding such as Zircaloy, is a well known as a quality control in nuclear industry. In UO2 pellets, the Hydrogen molecule fragilizes the metal lattice causing the material cracking. In Zircaloy material the H2 molecules cause the boiling of the cladding. Other gases like Nitrogen, Oxygen, Carbon and Sulfur affect in the lattice structure change. In this way these chemical compounds have to be measure within specify parameters, these measurement are part of the quality control of the nuclear industry. The analytical procedure has to be well established by a convention of the quality assurance. Therefore, the Oxygen, Carbon, Sulfur and Hydrogen are measured by infrared absorption (IR) and the nitrogen will be measured by thermal conductivity (TC). The gas/metal analyzer made by LECO Co. model TCHEN-600 is Hydrogen, Oxygen and Nitrogen analyzer in a variety of metals, refractory and other inorganic materials, using the principle of fusion by inert gas, infrared and thermo-coupled detector. The Carbon and Sulfur compounds are measure by LECO Co. model CS-400. A sample is first weighed and placed in a high purity graphite crucible and is casted on a stream of helium gas, enough to release the oxygen, nitrogen and hydrogen. During the fusion, the oxygen present in the sample combines with the carbon crucible to form carbon monoxide. Then, the nitrogen present in the sample is analyzed and released as molecular nitrogen and the hydrogen is released as gas. The hydrogen gas is measured by infrared absorption, and the sample gases pass through a trap of copper oxide which converts CO to CO2 and hydrogen into water. The gases enter the cell where infrared water content is then converted making the measurement of total hydrogen present in the sample. The Hydrogen detection limits for the nuclear fuel is 1 μg/g for the Nitrogen and Oxygen

  15. The design of cobalt-free, nickel-based alloy powder (Ni-3) used for sealing surfaces of nuclear power valves and its structure of laser cladding coating

    International Nuclear Information System (INIS)

    Research highlights: → The Ni-3 Co-free alloy coating prepared by laser welding. → Ni-3 alloy has excellent combination with stainless steel base. → Ni-3 alloy containing those strengthening phases could have excellent wear resistance and anti-oxidation ability at high temperature. - Abstract: To meet the demand of cobalt-free for the cladding coating materials used on sealing surface of nuclear power valves, a new Co-free, Ni-Cr based alloy powder (Ni-3) has been developed. It has been successfully coated on the surface of stainless steel as the strengthening layer. The XRD result reveals that the primary phase of cladding coating is Ni-based solid solution, and the carbides M7C3 and M23C6 as well as several A3B types of γ' strengthening phases. It indicates that the alloy possesses the high wear resistance, good corrosion resistance and high temperature tolerance. The test results suggest that the micro-hardness of Ni-3 corresponds to that of alloy Stellite 6 which containing cobalt and currently used as material for nuclear power valves. Hence, the developed Ni-3 alloy powder can be the hopeful candidate material for Co-free cladding material used on the surface of nuclear power valves; it can reduce the nuclear pollution and save the expensive metals.

  16. The design of cobalt-free, nickel-based alloy powder (Ni-3) used for sealing surfaces of nuclear power valves and its structure of laser cladding coating

    Energy Technology Data Exchange (ETDEWEB)

    Fu Geyan, E-mail: fugeyan@suda.edu.c [School of Mechanical and Electric Engineering, Soochow University, Suzhou 215021 (China); Liu Shuang [School of Mechanical and Electric Engineering, Soochow University, Suzhou 215021 (China); Fan Jiwei [School of Materials Science and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007 (China)

    2011-05-15

    Research highlights: The Ni-3 Co-free alloy coating prepared by laser welding. Ni-3 alloy has excellent combination with stainless steel base. Ni-3 alloy containing those strengthening phases could have excellent wear resistance and anti-oxidation ability at high temperature. - Abstract: To meet the demand of cobalt-free for the cladding coating materials used on sealing surface of nuclear power valves, a new Co-free, Ni-Cr based alloy powder (Ni-3) has been developed. It has been successfully coated on the surface of stainless steel as the strengthening layer. The XRD result reveals that the primary phase of cladding coating is Ni-based solid solution, and the carbides M{sub 7}C{sub 3} and M{sub 23}C{sub 6} as well as several A{sub 3}B types of {gamma}' strengthening phases. It indicates that the alloy possesses the high wear resistance, good corrosion resistance and high temperature tolerance. The test results suggest that the micro-hardness of Ni-3 corresponds to that of alloy Stellite 6 which containing cobalt and currently used as material for nuclear power valves. Hence, the developed Ni-3 alloy powder can be the hopeful candidate material for Co-free cladding material used on the surface of nuclear power valves; it can reduce the nuclear pollution and save the expensive metals.

  17. Development of advanced expansion due to compression (A-EDC) test method for safety evaluation of degraded nuclear fuel cladding materials

    International Nuclear Information System (INIS)

    Expansion due to compression (EDC) test has been applied to evaluate the performance of nuclear fuel claddings where pellet-cladding mechanical interaction (PCMI) is introduced by swelling of fuel pellets and is triggered by the larger hoop deformation of the pellets, especially during accidental transients. The purpose of this study is to modify the EDC test to describe PCMI, specimen volume reduction and others. Ring-shaped specimens were cut from Zry-4 cladding tubes. Cylindrical metal pellets with 8 mm in diameter and 15 mm in maximum height were used as inner pellets. Expansion of the specimens due to the inner pellet compression was performed at room temperature. The experimental data were further analyzed by finite element method. Through the survey in the variation of the specimen and core, specimen size and inner pellet geometry were optimized. Excellent reproducibility with less error was confirmed. The uniaxial tension condition in the hoop direction up to the specimen failure was confirmed. Hoop stress–hoop strain curves were successfully derived. (author)

  18. Frictional Behavior of Fe-based Cladding Candidates for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ho; Kim, Hyung-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Byun, Thak Sang [Oak Ridge National Lab., Oak Ridge (United States)

    2014-10-15

    After the recent nuclear disaster at Fukushima Daiichi reactors, there is a growing consensus on the development of new fuel systems (i.e., accident-tolerant fuel, ATF) that have high safety margins under design-basis accident (DBA) and beyond design-basis accident (BDBA). A common objective of various developing candidates is to archive the outstanding corrosion-resistance under severe accidents such as DBA and DBDA conditions for decreasing hydrogen production and increasing coping time to respond to severe accidents. ATF could be defined as new fuel/cladding system with enhanced accident tolerant to loss of active cooling in the core for a considerably longer time period under severe accidents while maintaining or improving the fuel performance during normal operations. This means that, in normal operating conditions, new fuel systems should be applicable to current operating PWRs for suppressing various degradation mechanisms of current fuel assembly without excessive design changes. When considering that one of the major degradation mechanisms of PWR fuel assemblies is a grid-to-rod fretting (GTRF), it is necessary to examine the tribological behavior of various ATF candidates at initial development stage. In this study, friction and reciprocating wear behavior of two kinds of Fe-based ATF candidates were examined with a reciprocating wear tests at room temperature (RT) air and water. The objective is to examine the compatibilities of these Fe-based alloys against current Zr-based alloy properties, which is used as major structural materials of PWR fuel assemblies. The reciprocating wear behaviors of Fe-based accident-tolerant fuel cladding candidates against current Zr-based alloy has been studied using a reciprocating sliding wear tester in room temperature air and water. Frictional behavior and wear depth were used for evaluating the applicability and compatibilities of Fe-based candidates without significant design changes of PWR fuel assemblies

  19. Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating

    International Nuclear Information System (INIS)

    Highlights: • Reinforced (Ti, Nb)Cp can be synthesized in the molten pool during laser cladding. • Formation mechanism of (Ti, Nb)Cp are impacted by Ti/Nb atomic ratio. • Appropriate Ti element can improve the precipitation of carbide particle. • Excess Ti weakens this effect above-mentioned. • The wear resistance of the coating was improved when Ti/Nb = 1. - Abstract: Over the past decade, researchers have demonstrated much interest in laser cladded metal matrix composite coatings for its good wear resistance, corrosion resistance, and high temperature properties. In this paper, in-situ (Ti, Nb)C particle reinforced Fe-based composite coatings were produced by laser cladding. The effects of Ti/Nb(atomic ratio) in the cladding powder on the formation mechanism and distribution characteristics of multiple particle were investigated. The results showed that when Ti/Nb > 1, Ti had a stronger ability to bond with C compared with Nb. (Ti, Nb)C multiple particles with TiC core formed in the molten pool. With the decrease of Ti/Nb, core-shell structure disappeared, the structure of particle got close to that of NbC gradually. It is found that the amount, area ratio and distribution of the reinforced particle in the coating containing Ti and Nb elements were improved, compared with these in the coating containing equal Nb element. When Ti/Nb = 1, the effects above-mentioned is most prominent, and the wear resistance of the coating is promoted obviously

  20. Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingtang, E-mail: liqingtang123@126.com; Lei, Yongping, E-mail: yplei@bjut.edu.cn; Fu, Hanguang

    2014-10-15

    Highlights: • Reinforced (Ti, Nb)Cp can be synthesized in the molten pool during laser cladding. • Formation mechanism of (Ti, Nb)Cp are impacted by Ti/Nb atomic ratio. • Appropriate Ti element can improve the precipitation of carbide particle. • Excess Ti weakens this effect above-mentioned. • The wear resistance of the coating was improved when Ti/Nb = 1. - Abstract: Over the past decade, researchers have demonstrated much interest in laser cladded metal matrix composite coatings for its good wear resistance, corrosion resistance, and high temperature properties. In this paper, in-situ (Ti, Nb)C particle reinforced Fe-based composite coatings were produced by laser cladding. The effects of Ti/Nb(atomic ratio) in the cladding powder on the formation mechanism and distribution characteristics of multiple particle were investigated. The results showed that when Ti/Nb > 1, Ti had a stronger ability to bond with C compared with Nb. (Ti, Nb)C multiple particles with TiC core formed in the molten pool. With the decrease of Ti/Nb, core-shell structure disappeared, the structure of particle got close to that of NbC gradually. It is found that the amount, area ratio and distribution of the reinforced particle in the coating containing Ti and Nb elements were improved, compared with these in the coating containing equal Nb element. When Ti/Nb = 1, the effects above-mentioned is most prominent, and the wear resistance of the coating is promoted obviously.

  1. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    Science.gov (United States)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  2. The welding technology development of oxide dispersion strengthened cladding tube

    International Nuclear Information System (INIS)

    The oxide dispersion strengthened type(ODS) ferrite steel has been developed for cladding tube materials of fast reactor fuel. ODS ferrite steel has excellent characteristic such as small swelling and high temperature creep strength. But, when it is welded by TIG welding method, the uniformly dispersed Y2O3 concentrate in matrix. And, in welded zone, many blowhole appear and tensile strength decrease remarkably. Therefore, alternative welding technology has been necessary instead of TIG welding, so we have developed the pulsed magnetic welding method and resistance welding method. The result can be summarized that both methods pulsed magnetic welding and resistance welding have potentials to apply to weld of ODS ferrite steel. (author)

  3. Statistics applied to the testing of cladding tubes

    International Nuclear Information System (INIS)

    Cladding tubes, either steel or zircaloy, are generally given a 100 % inspection through ultrasonic non-destructive testing. This inspection may be completed beneficially with an eddy current test, as this is not sensitive to the same defects as those typically traced by ultrasonic testing. Unfortunately, the two methods (as with other non-destructive tests) exhibit poor precision; this means that a flaw, whose size is close to that denoted as rejection limit, may be accepted or rejected. Currently, rejection, i.e. the measurement above which a tube is rejected, is generally determined through measuring a calibration tube at regular time intervals, and the signal of a given tube is compared to that of the most recently completed calibration. This measurement is thus subject to variations which can be attributed to an actual shift of adjustments as well as to poor precision. For this reason, monitoring instrument adjustments using the so-called control chart method are proposed

  4. Fuel cladding interaction with water coolant in power reactors

    International Nuclear Information System (INIS)

    Water coolant chemistry and corrosion processes are important factors in reliable operation of NPP's, as at elevated temperatures water is aggressive towards structural materials. Water regimes for commercial Pressurized Water Reactors and Boiling Water Reactors were developed and proved to be satisfactory. Nevertheless, studies of operation experience continue and an amount of new Research and Development work is being conducted for further improvements of technology and better understanding of the physicochemical nature of those processes. In this report information is presented on the IAEA programme on fuel element cladding interaction with water coolant. Some results of this survey and recommendations made by the group of consultants who participated in this work are given as well as recommendations for continuation of this study. Separate abstracts were prepared for 6 papers of this report

  5. Evaluation of Missing Pellet Surface Geometry on Cladding Stress Distribution and Magnitude

    Energy Technology Data Exchange (ETDEWEB)

    Capps, Nathan A.; Montgomery, Robert O.; Sunderland, Dion J.; Spencer, Ben; Pytel, Martin; Wirth, Brian D.

    2014-10-01

    Missing pellet surface (MPS) defects are local geometric defects that periodically occur in nuclear fuel pellets, usually as a result of the mishandling during the manufacturing process. The presences of these defects can lead to clad stress concentrations that are substantial enough to cause a through wall failure for certain conditions of power level, burnup, and power increase. Consequently, the impact of potential MPS defects has limited the rate of power increase or ramp rates in both PWR and BWR systems. Improved 3D MPS models that consider the effect of the MPS geometry can provide better understanding of the margins against PCMI clad failure. The Peregrine fuel performance code has been developed as a part the Consortium of Advanced Simulations of Light Water Reactors (CASL) to consider the inherently multi-physics and multi-dimensional mechanisms that control fuel behavior, including cladding failure by the presence of MPS defects. This paper presents an evaluation of the cladding stress concentrations as a function of MPS defect geometry. The results are the first step in a probabilistic approach to assess cladding failure during power maneuvers. This analysis provides insight into how varying pellet defect geometries affect the distribution of the cladding stress and fuel and cladding temperature and will be used to develop stress concentration factors for 2D and 3D models.

  6. Early implementation of SiC cladding fuel performance models in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    SiC-based ceramic matrix composites (CMCs) [5–8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation due to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.

  7. Investigations on the mechanical interaction between fuel and cladding (FCMI) in fast breeder reactor fuel pins

    International Nuclear Information System (INIS)

    The relation between FCMI and plastic cladding distensions of Fast-Breeder pins with oxide as well as carbide fuel was analyzed theoretically and experimentally. This resulted in the possibility of plastic cladding straining caused by differential swelling of fuel and cladding material under stationary power conditions or differential thermal expansion at power changes. At stationary operating conditions the FCMI in oxide pins is limited by an irradiation-induced creep deformation into inner void volume and thus the fuel swelling pressure will never cause clad distensions worth mentioning. However, the cladding of carbide pins can be strained under stationary conditions because of the comparatively low fuel plastification under irradiation. Plastic straining of oxide pins may follow from differential thermal expansion at power changes. The amount of strain is primarily dependent upon magnitude and rate of the power increase, the starting conditions, and the clad material strength. The parameter dependence of the strains and the limiting conditions for their avoidance are reported. The model calculations are carried out by means of a special computer code which was developed following closely the results of irradiation experiments. It was proved experimentally that a considerably high geometrical swelling occurs after a power reduction until the fuel has come into contact with the cladding again. (orig.)

  8. Corrosion behavior of laser-clad Mo2NiB2 cermet coating on low carbon steel substrate

    International Nuclear Information System (INIS)

    A Mo2NiB2 cermet coating on low carbon steel substrate was fabricated by laser cladding technique. The coating consisted of γ-(Fe, Ni) as a metallic matrix binder and Mo2NiB2 particles as a reinforced phase distributed uniformly in the microstructure. Corrosion behavior of the coating was investigated and the commercial 1Cr, 304SS, and G3 were used for comparison. G3 exhibited the highest corrosion resistance and 1Cr the lowest corrosion resistance, whereas 304SS and the coating exhibited the intermediate and similar corrosion resistance. However, the severe pitting corrosion which was observed in 304SS did not exist for the coating. (author)

  9. Oxidation Behavior of FeCrAl -coated Zirconium Cladding prepared by Laser Coating

    International Nuclear Information System (INIS)

    From the recent research trends, the ATF cladding concepts for enhanced accident tolerance are divided as follows: Mo-Zr cladding to increase the high temperature strength, cladding coating to increase the high temperature oxidation resistance, FeCrAl alloy and SiC/SiCf material to increase the oxidation resistance and strength at high temperature. To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. A laser coating method supplied with FeCrAl powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a FeCrAl-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured

  10. Composite polymer/glass edge claddings for new Nova laser disks

    International Nuclear Information System (INIS)

    Large Nd:glass laser disks like those used in Nova require an edge cladding which absorbs at 1 μm. This cladding prevents Fresnel reflections from the edges from causing parasitic oscillations which would otherwise reduce the gain. The original Nova disks had a Cu/sup 2+/-doped phosphate glass cladding which was cast at high temperature around the circumference of the disk. Although the performance of this cladding is excellent, it was expensive to produce. Consequently, in parallel with their efforts to develop Pt inclusion-free laser glass, the authors developed a composite polymer/glass edge cladding that can be applied at greatly reduced cost. Laser disks constructed with the new cladding design show identical performance to the previous Nova disks and have been tested for hundreds of shots without degradation. The new cladding consists of absorbing glass strips which are bonded to the edges of polygonal-rather that elliptical-shaped disks. The bond is made by an --25-μm thick clear epoxy adhesive whose index of refraction matches both the laser and absorbing glass. By blending aromatic and aliphatic epoxy constituents, they achieved an index-of-refraction match within approximately +-0.003 between the epoxy and glass. The epoxy was also chosen based on its damage resistance to flashlamp light and its adhesive strength to glass. The present cladding is a major improvement over a previous experimental cladding utilizing silicone rubber as a coupling agent. Early prototypes constructed without using the presented techniques exhibited failures from both mechanisms. Delamination failures occurred which clearly showed both surface and bulk-mode parasitic oscillation. Requirements on the polymer, disk size, and Nd doping to prevent these problems are presented

  11. Fabrication and testing of U-7Mo monolithic plate fuel with Zircaloy cladding

    Science.gov (United States)

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; Wachs, D. M.; Finlay, M. R.

    2016-10-01

    Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U-(7-10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry-4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry-4 clad U-7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry-4 and U-(7-10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction-either from fabrication or in-reactor testing-and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm3, 3.8E+21 (peak).

  12. Effect of Specific Energy Input on Microstructure and Mechanical Properties of Nickel-Base Intermetallic Alloy Deposited by Laser Cladding

    Science.gov (United States)

    Awasthi, Reena; Kumar, Santosh; Chandra, Kamlesh; Vishwanadh, B.; Kishore, R.; Viswanadham, C. S.; Srivastava, D.; Dey, G. K.

    2012-12-01

    This article describes the microstructural features and mechanical properties of nickel-base intermetallic alloy laser-clad layers on stainless steel-316 L substrate, with specific attention on the effect of laser-specific energy input (defined as the energy required per unit of the clad mass, kJ/g) on the microstructure and properties of the clad layer, keeping the other laser-cladding parameters same. Defect-free clad layers were observed, in which various solidified zones could be distinguished: planar crystallization near the substrate/clad interface, followed by cellular and dendritic morphology towards the surface of the clad layer. The clad layers were characterized by the presence of a hard molybdenum-rich hexagonal close-packed (hcp) intermetallic Laves phase dispersed in a relatively softer face-centered cubic (fcc) gamma solid solution or a fine lamellar eutectic phase mixture of an intermetallic Laves phase and gamma solid solution. The microstructure and properties of the clad layers showed a strong correlation with the laser-specific energy input. As the specific energy input increased, the dilution of the clad layer increased and the microstructure changed from a hypereutectic structure (with a compact dispersion of characteristic primary hard intermetallic Laves phase in eutectic phase mixture) to near eutectic or hypoeutectic structure (with reduced fraction of primary hard intermetallic Laves phase) with a corresponding decrease in the clad layer hardness.

  13. The influence of heat treatment by annealing on clad plates residual stresses

    Directory of Open Access Journals (Sweden)

    B. Mateša

    2011-10-01

    Full Text Available The influence of applied clad procedure as well as heat treatment by annealing (650 °C/2h on level and nature of residual stresses was researched. Three clad procedures are used i.e. hot rolling, submerged arc welding (SAW with strip electrode and explosion welding. The relaxed deformation measurement on clad plate surfaces was performed by applying centre-hole drilling method using special measuring electrical resistance strain gauges (rosettes. After performed measuring, size and nature of residual stresses were determined using analytical method. Depending of residual stresses on depth of drilled blind-hole is studied.

  14. Impact of core cladding boundary shape on the waveguide properties of hollow core microstructured fibers

    CERN Document Server

    Pryamikov, A D; Biriukov, A S

    2016-01-01

    In this paper we consider an interaction between the air core modes of hollow core waveguide microstructures and core cladding boundary walls in various shapes. The analysis is based on well established models such as the anti-resonant reflecting optical waveguide model and on the models proposed for the first time. In particular, we consider the dynamics of light localization in the polygonalcore cladding boundary wall as dependant on the type of its discrete rotational symmetry. Based on our findings we analyze the mechanisms of light localization in the core cladding boundary walls of negative curvature hollow core microstructured fibers.

  15. Treatment of stainless steel cladding in pressurized thermal shock evaluation: deterministic analyses

    International Nuclear Information System (INIS)

    Fracture mechanics is one of the major areas of the pressurized thermal shock (PTS) evaluation. To evaluate the reactor pressure vessel integrity associated with PTS, PFM methodology demands precise calculation of temperature, stress, and stress intensity factor for the variety of PTS transients. However, the existence of stainless steel cladding, with different thermal, physical, and mechanical property, at the inner surface of reactor pressure vessel complicates the fracture mechanics analysis. In this paper, treatment schemes to evaluate stress and resulting stress intensity factor for RPV with stainless steel clad are introduced. For a reference transient, the effects of clad thermal conductivity and thermal expansion coefficients on deterministic fracture mechanics analysis are examined

  16. Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup

    International Nuclear Information System (INIS)

    Using the VVER-1000 fuel element (FE) cladding failure estimation method based on creep energy theory (CET-method), it is shown that practically FE cladding rupture life at normal operation conditions can be controlled by an optimal assignment of fuel assembly (FA) rearrangement algorithm. The probabilistic FA rearrangement efficiency criterion based on Monte Carlo Sampling takes into account robust operation conditions and gives results corresponding to the deterministic ones in principle, though the robust efficiency estimation is more conservative. It is proved that CET-method allows us to create an automated complex controlling FE cladding durability in VVER-1000.

  17. Effect of MAE on the properties of phosphate edge-cladding glasses

    Institute of Scientific and Technical Information of China (English)

    Fenggang Zhao; Guonian Wang; Lili Hu

    2007-01-01

    Edge-cladding is a key factor in improving saturated small signal gain coefficient βs of large laser disc glass. In this paper, the glasses were melted with traditional method. The influences of mixed alkali effect (MAE) on refractive index, thermal expansion coefficient α, glass transition temperature Tg, dilatometer softening temperature Td, and relative chemical durability of phosphate edge-cladding glasses were studied.The results reveal that when Li/(Na + Li) = 0.5, Tg, Td, and dissolution rate (DR) reach a minimal value.These results are preferred in phosphate edge-cladding glasses.

  18. Light localization in hollow core fibers with a complicated shape of the core cladding boundary

    CERN Document Server

    Pryamikov, A D; Alagashev, G K

    2016-01-01

    In this paper we present a theoretical and numerical analysis of light localization in hollow core microstructured fibers (HCMFs) with a complicated shape of the core cladding boundary. The analysis is based on well established models (for example, the ARROW model) and also on the models proposed for the first time. In particular, we consider local and nonlocal mechanisms of light localization in the waveguide structures with a determined type of discrete rotational symmetry of the core cladding boundary. We interpret and analyze mechanisms of light localization in negative curvature hollow core microstructured fibers (NC HCMFs) and simplified HC PCFs with a polygonal shape of the core cladding boundary.

  19. State-of-the-technology review of fuel-cladding interaction

    International Nuclear Information System (INIS)

    A literature survey and a summarization of postulated fuel-cladding-interaction mechanisms and associated supportive data are reported. The results of that activity are described in the report and include comments on experience with power-ramped fuel, fuel-cladding mechanical interaction, stress-corrosion cracking and fission-product embrittlement, potential remedial actions, fuel-cladding-interaction mechanistic considerations, other ongoing programs, and related patents of interest. An assessment of the candidate fuel concepts to be evaluated as part of this program is provided

  20. Influence of alloy ingredients on mechanical properties of ternary boride hard alloy clad materials

    Institute of Scientific and Technical Information of China (English)

    LIU Fu-tian; SONG Shi-xue; YANG Jun-ru; HUANG Wei-ling; HUANG Chuan-zhen; CHENG Xin; LI Zhao-qian

    2004-01-01

    Using Mo, B-Fe alloy and Fe powders as raw materials, and adding C, Cr and Ni ingredients, respectively, or C, Cr and Ni mixed powders, ternary boride hard alloy clad materials was prepared on Q235 steel substrate by means of in-situ reaction and vacuum liquid phase sintering technology. The influence of alloy ingredients on the mechanical properties of ternary boride hard alloy clad materials was investigated. The results indicate that a mixture of 0.8% C, 5% Cr and 2% Ni ingredients gives a ternary boride hard alloy clad material with optimal mechanical properties, such as high transverse rupture strength, high hardness and good wear resistance.

  1. Adaptive fuzzy system for fuel rod cladding failure in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Antonio C.F. [Instituto de Engenharia Nuclear - Divisao de Reatores/CNEN, Ilha do Fundao s/n, 21945-970, P.O. Box 68550, Rio de Janeiro (Brazil)]. E-mail: tony@ien.gov.br; Lapa, Celso M.F. [Instituto de Engenharia Nuclear - Divisao de Reatores/CNEN, Ilha do Fundao s/n, 21945-970, P.O. Box 68550, Rio de Janeiro (Brazil)]. E-mail: lapa@ien.gov.br

    2007-03-15

    A new approach to the study of ballooning that causes cladding failure in fuel rods using an adaptive neural fuzzy inference system (ANFIS) is presented in this paper. By mapping input/output patterns describing cladding failure phenomena through average inner cladding temperature and fuel rod gas pressure, ANFIS shows a great potential to modeling this problem in alternative to the traditional approach. A typical pressurized water reactor fuel rod data was used to this application. The results confirm the potential of ANFIS comparatively to experimental calculations.

  2. High Temperature and Pressure Steam-H2 Interaction with Candidate Advanced LWR Fuel Claddings

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A [ORNL

    2012-08-01

    This report summarizes the work completed to evaluate cladding materials that could serve as improvements to Zircaloy in terms of accident tolerance. This testing involved oxidation resistance to steam or H{sub 2}-50% steam environments at 800-1350 C at 1-20 bar for short times. A selection of conventional alloys, SiC-based ceramics and model alloys were used to explore a wide range of materials options and provide guidance for future materials development work. Typically, the SiC-based ceramic materials, alumina-forming alloys and Fe-Cr alloys with {ge}25% Cr showed the best potential for oxidation resistance at {ge}1200 C. At 1350 C, FeCrAl alloys and SiC remained oxidation resistant in steam. Conventional austenitic steels do not have sufficient oxidation resistance with only {approx}18Cr-10Ni. Higher alloyed type 310 stainless steel is protective but Ni is not a desirable alloy addition for this application and high Cr contents raise concern about {alpha}{prime} formation. Higher pressures (up to 20.7 bar) and H{sub 2} additions appeared to have a limited effect on the oxidation behavior of the most oxidation resistant alloys but higher pressures accelerated the maximum metal loss for less oxidation resistant steels and less metal loss was observed in a H{sub 2}-50%H{sub 2}O environment at 10.3 bar. As some of the results regarding low-alloyed FeCrAl and Fe-Cr alloys were unexpected, further work is needed to fundamentally understand the minimum Cr and Al alloy contents needed for protective behavior in these environments in order to assist in alloy selection and guide alloy development.

  3. Crack resistance curve determination of zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, J.; Alam, A.; Zubler, R

    2009-03-15

    Fracture mechanics properties of fuel claddings are of relevance with respect to fuel rod integrity. The integrity of a fuel rod, in turn, is important for the fuel performance, for the safe handling of fuel rods, for the prevention of leakages and subsequent dissemination of fuel, for the avoidance of unnecessary dose rates, and for safe operation. Different factors can strongly deteriorate the mechanical fuel rod properties: irradiation damage, thermo-mechanical impact, corrosion or hydrogen uptake. To investigate the mechanical properties of fuel rod claddings which are used in Swiss nuclear power plants, PSI has initiated a program for mechanical testing. A major issue was the interaction between specific loading devices and the tested cladding tube, e.g. in the form of bending or friction. Particular for Zircaloy is the hexagonal closed packed structure of the zirconium crystallographic lattice. This structure implies plastic deformation mechanisms with specific, preferred orientations. Further, the manufacturing procedure of Zircaloy claddings induces a specific texture which plays a salient role with respect to the embrittlement by irradiation or integration of hydrogen in the form of hydrides. Both, the induced microstructure as well as the plastic deformation behaviour play a role for the mechanical properties. At PSI, in a first step inactive thin walled Zircaloy tubes and, for comparison reasons, plates were tested. The validity of the mechanical testing of the non standard tube and plate geometries had to be verified. The used Zircaloy-4 cladding tube sections and small plates of the same wall thickness have been notched, fatigue pre-cracked and tensile tested to evaluate the fracture toughness properties at room temperature, 300 {sup o}C and 350 {sup o}C. The crack propagation has been determined optically. The test results of the plates have been further used to validate FEM calculations. For each sample a complete crack resistance (J-R) curve could

  4. CMT法30CrMnSi钢板表面熔敷CuSi3接头组织结构特征%Microstructure characteristics of CuSi3 cladding on 30CrMnSi steel with cold metal transfer technology

    Institute of Scientific and Technical Information of China (English)

    姜晓飞; 何鹏; 冯吉才; 石常亮

    2007-01-01

    利用CMT(cold metal transfer)技术在30CrMnSi钢板表面熔敷CuSi3;采用背散射、能谱分析及X射线衍射等方法对接头区显微组织及成分进行了研究.结果表明,CMT技术实现了熔敷层与基体的冶金结合,送丝速度为5.0 m/min,焊接速度为17.0 mm/s时,稀释率极低;界面区由Fe3Si化合物、α-Fe及ε-Cu组成.送丝速度较低时,界面结构为Fe3Si/α-Fe+ε-Cu/α-Fe,熔敷区出现Fe2Si化合物;提高送丝速度,界面结构为Fe3Si+α-Fe+ε-Cu/α-Fe+ε-Cu,Fe2Si化合物被Fe3Si化合物取代;进一步提高送丝速度,界面结构为α-Fe+ε-Cu,弥散分布的球状富铁相聚合成长为星状及大块团状的α-Fe固溶体.送丝速度的变化对熔敷区组织具有显著影响.

  5. Hollow-core infrared fiber incorporating metal-wire metamaterial

    DEFF Research Database (Denmark)

    Yan, Min; Mortensen, Asger

    2009-01-01

    serve as an efficient TM reflector, reducing propagation loss of the TM mode by two orders of magnitude. By further imposing a conventional metal cladding layer, which reflects specifically transverse-electric (TE) light, we can potentially obtain a low-loss hollow-core fiber. Simulations confirm that...

  6. Laser cladding of titanium alloy coating on titanium aluminide alloy substrate

    Institute of Scientific and Technical Information of China (English)

    徐子文; 黄正; 阮中健

    2003-01-01

    A new diffusion bonding technique combined with laser cladding process was developed to join TiAl alloy to itself and Ti-alloys. In order to enhance the weldability of TiAl alloys, Ti-alloy coatings were fabricated by laser cladding on the TiAl alloy. Ti powder and shaped Ti-alloy were respectively used as laser cladding materials. The materials characterization was carried out by OM, SEM, EDS and XRD analysis. The results show that the laser cladding process with shaped Ti-alloy remedy the problems present in the conventional process with powder, such as impurities, cracks and pores. The diffusion bonding of TiAl alloy with Ti-alloy coating to itself and Ti-alloy was carried out with a Gleeble 1500 thermal simulator. The sound bonds of TiAl/TiAl, TiAl/Ti were obtained at a lower temperature and with shorter time.

  7. A strain-induced birefringent double-clad fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    Lijun Li; Lei Sun; Wande Fan; Zhi Wang; Jianhua Luo; Shenggui Fu; Shuzhong Yuan; Xiaoyi Dong

    2005-01-01

    @@ A strain-induced birefringence double-clad (DC) fiber Bragg grating (FBG) is proposed and demonstrated.The grating is fabricated in the core of rectangular inner cladding double clad fiber by using phase mask method. By applying lateral strain on the grating, the birefringence is induced. In order to detect the birefringent effect of the grating, we use it as the output mirror of a laser. When lateral strain is applied,the grating becomes birefringent. Therefore, one reflection peak of double-clad fiber Bragg grating becomes two peaks and the laser also lases in two wavelengths. The wavelength spacing of the laser can be tuned from 0 to 0.8 nm. The absolute wavelengths for the two polarizations can be tuned 1.2 and 2.0 nm,respectively.

  8. Silicon carbide TRIPLEX materials for CANDU fuel cladding and pressure tubes

    International Nuclear Information System (INIS)

    Ceramic Tubular Products has developed a superior silicon carbide (SiC) material TRIPLEX, which can be used for both fuel cladding and other zirconium alloy materials in light water reactor (LWR) and heavy water reactor (CANDU) systems. The fuel cladding can replace Zircaloy cladding and other zirconium based alloy materials in the reactor systems. It has the potential to provide higher fuel performance levels in currently operating natural UO2 (NEU) fuel design and in advanced fuel designs (UO2(SEU), MOX thoria) at higher burnups and power levels. In all the cases for fuel designs TRIPLEX has increased resistance to severe accident conditions. The interaction of SiC with steam and water does not produce an exothermic reaction to produce hydrogen as occurs with zirconium based alloys. In addition the absence of creep down eliminates clad ballooning during high temperature accidents which occurs with Zircaloy blocking water channels required to cool the fuel. (author)

  9. Failure analysis of fusion clad alloy system AA3003/AA6xxx sheet under bending

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Y., E-mail: shiyh@mcmaster.ca [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Jin, H. [Novelis Global Technology Center, P.O. Box 8400, Kingston, Ontario, Canada K7L 5L9 (Canada); Wu, P.D. [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Lloyd, D.J. [Aluminum Materials Consultants, 106 Nicholsons Point Road, Bath, Ontario, Canada K0H 1G0 (Canada); Embury, D. [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2014-07-29

    An ingot of AA6xxx Al–Si–Mg–Cu alloy clad with AA3003 Al–Mn alloy was co-cast by Fusion technology. Bending tests and numerical modeling were performed to investigate the potential for sub-surface cracking for this laminate system. To simulate particle-induced crack initiation and growth, both random and stringer particles have been selected to mimic the particle distribution in the tested samples. The morphology of cracking in the model was similar to that observed in clad sheet tested in the Cantilever bend test. The crack initiated in the core close to the clad-core interface where the strain in the core is highest, between particles or near particles and propagates along local shear bands in the core, while the clad layer experiences extreme thinning before failure.

  10. Chemical diffusion and compatibility of D9 clad with oxide fuel

    International Nuclear Information System (INIS)

    MOX is the fuel chosen for PFBR. In oxide fuel system, clad and fuel come in contact after about 40,000 MWd/t burn-up. Fairly extensive fuel-clad chemical interactions between oxide fuel and clad (particularly D9) have been reported which has given rise to pre-mature breach of clad (Japan experience and EBR-II). Present experiments of chemical diffusion and compatibility of UO2 and D9 also support this. The results are discussed in detail in this paper. Chemical compatibility of the selected MOX fuel and D9 is one of the important higher burn-up issues, to be studied and analysed in depth. (author)

  11. Cladding corrosion and hydriding in irradiated defected zircaloy fuel rods (LWBR Development Program)

    International Nuclear Information System (INIS)

    Twenty-one LWBR irradiation test rods containing ThO2-UO2 fuel and Zircaloy cladding with holes or cracks operated successfully. Zircaloy cladding corrosion on the inside and outside diameter surfaces and hydrogen pickup in the cladding were measured. The observed outer surface Zircaloy cladding corrosion oxide thicknesses of the test rods were similar to thicknesses measured for nondefected irradiation test rods. An analysis model, which was developed to calculate outer surface oxide thickness of non-defected rods, gave results which were in reasonable agreement with the outer surface oxide thicknesses of defected rods. When the analysis procedure was modified to account for additional corrosion proportional to fission rate and to time, the calculated values agreed well with measured inner oxide corrosion film values. Hydrogen pickup in the defected rods was not directly proportional to local corrosion oxide weight gain as was the case for non-defected rods. 16 refs., 6 figs., 8 tabs

  12. Low-Stress Silicon Cladding for Surface Finishing Large UVOIR Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I research, ZeCoat Corporation will develop an affordable, low-stress silicon cladding process which is super-polishable for large UVOIR mirrors. The...

  13. Formation of Hard Surfacing Layers of WC-Co with Electron Beam Cladding Method

    Science.gov (United States)

    Abe, Nobuyuki; Morimoto, Junji

    Hard surfacing layers of WC-Co/Ni-base self-fluxing alloy were successfully formed on a steel substrate using an electron beam cladding method. The WC particles were densely and homogenously dispersed within the Ni-base self-fluxing alloy without porosity. The effect of the electron beam conditions on layer formation was investigated, and the cladding layer properties were examined by hardness tests, abrasive wear tests and immersion corrosion tests. It was found that the cladding layers showed higher hardness and abrasion resistance with increasing WC-Co mixing ratio, however, corrosion resistance decreased with WC-Co mixing ratio. A coating layer having high abrasive and corrosion resistance simultaneously was achieved by multiple cladding of high WC-Co mixing ratio layers after low WC-Co mixing ratio layers.

  14. Evaluation of Corrosion of Aluminum Based Reactor Fuel Cladding Materials During Dry Storage

    Energy Technology Data Exchange (ETDEWEB)

    Peacock, H.B. Jr.

    1999-10-21

    This report provides an evaluation of the corrosion behavior of aluminum cladding alloys and aluminum-uranium alloys at conditions relevant to dry storage. The details of the corrosion program are described and the results to date are discussed.

  15. Report of the advanced neutron source (ANS) aluminum cladding corrosion workshop

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) Corrosion Workshop on aluminum cladding corrosion in reactor environments is summarized. The Workshop was held to examine the aluminum cladding oxidation studies being conducted in support of the ANS design. This report was written principally to provide a record of the ideas and judgments expressed by the workshop attendees. The ANS operating heat flux is significantly higher than that in existing reactors, and early experiments indicate that there may be an aluminum cladding oxidation problem unique to higher heat fluxes or associated cladding temperatures that, if not solved, may limit the operation of the ANS to unacceptably low power levels. A brief description of the information presented by each speaker is included along with a compilation of the most significant ideas and recommended research areas. The appendixes contain a copy of the workshop agenda and a list of attendees

  16. High accurate thickness gauge system of zirconium and Zircaloy-2 layers for zirconium liner cladding tubes

    International Nuclear Information System (INIS)

    In boiling water reactors, zirconium(Zr)-Zircaloy cladding tubes have been put into practice for lengthening a life cycle of the cladding tube. The cladding tube is a duplex tube with an inner layer of pure Zr bonded to Zircaloy-2 layer metallurgically. The assurance of the inner and outer layer thickness is essential for a reliability of the cladding tube. A new thickness gauge system in the manufacturing process has been developed to measure the thickness of each layer over an entire tube length instead of the conventional microscopic viewing method. This system uses an eddy current method and an ultrasonic method. In this paper, the quantitative analysis of undesirable factors in eddy current method and the signal processing method for accurate measurement are described. The outline of fully automated thickness gauge system is also reported

  17. Cladding corrosion and hydriding in irradiated defected zircaloy fuel rods (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, J.C.

    1985-08-01

    Twenty-one LWBR irradiation test rods containing ThO/sub 2/-UO/sub 2/ fuel and Zircaloy cladding with holes or cracks operated successfully. Zircaloy cladding corrosion on the inside and outside diameter surfaces and hydrogen pickup in the cladding were measured. The observed outer surface Zircaloy cladding corrosion oxide thicknesses of the test rods were similar to thicknesses measured for nondefected irradiation test rods. An analysis model, which was developed to calculate outer surface oxide thickness of non-defected rods, gave results which were in reasonable agreement with the outer surface oxide thicknesses of defected rods. When the analysis procedure was modified to account for additional corrosion proportional to fission rate and to time, the calculated values agreed well with measured inner oxide corrosion film values. Hydrogen pickup in the defected rods was not directly proportional to local corrosion oxide weight gain as was the case for non-defected rods. 16 refs., 6 figs., 8 tabs.

  18. Development and study the performance of PBA cladding modified fiber optic intrinsic biosensor for urea detection

    Science.gov (United States)

    Botewad, S. N.; Pahurkar, V. G.; Muley, G. G.

    2016-05-01

    The fabrication and study of a cladding modified fiber optic intrinsic urea biosensor based on evanescent wave absorbance has been presented. The sensor was prepared using cladding modification technique by removing a small portion of cladding of an optical fiber and modifying with an active cladding of porous polyaniline-boric acid (PBA) matrix to immobilize enzyme-urease through cross-linking via glutaraldehyde. The nature of as-synthesized and deposited PBA film on fiber optic sensing element was studied by ultraviolet-visible (UV-vis) spectroscopy and X-ray diffraction (XRD) analysis. The performance of the developed sensor was studied for different urea concentrations in solutions prepared in phosphate buffer.

  19. Extent of oxide layer at the inner surface of burst cladding

    International Nuclear Information System (INIS)

    The extent of oxide layer at the inner surface of burst cladding is one of very important items in the heat-up calculation during a postulated LOCA transient in LWRs. The extent of oxide layers were measured on burst claddings being conducted over a range of oxidation temperature from 900 to 11500C, oxidation time varying from 35 to 240s, steam flow rate varying from 2 to 1530 g/m2s and rupture varying in length from about 5 to 26 mm. The extent of oxide layer at the inner surface of burst cladding is influenced by oxidation temperature, oxidation time and supplied amount of steam entering a rupture of burst cladding. The extent of oxide layer, in paticular, becomes large as the length of a rupture is longer. The thickness of oxide near the burst, which is thicker than that away from the burst, exceeds the value calculated by the reaction rate. (author)

  20. Evaluation of Corrosion of Aluminum Based Reactor Fuel Cladding Materials During Dry Storage

    International Nuclear Information System (INIS)

    This report provides an evaluation of the corrosion behavior of aluminum cladding alloys and aluminum-uranium alloys at conditions relevant to dry storage. The details of the corrosion program are described and the results to date are discussed

  1. The Development of Expansion Plug Wedge Test for Clad Tubing Structure Mechanical Property Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Jiang, Hao [ORNL

    2016-01-12

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at the Oak Ridge National Laboratory (ORNL) and is described fully in US Patent Application 20060070455, “Expanded plug method for developing circumferential mechanical properties of tubular materials.” This method is designed for testing fuel rod cladding ductility in a hot cell using an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the test component assembly in the hot cell and the direct measurement of the specimen’s strain. It was also found that cladding strength could be determined from the test results.

  2. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  3. Temperature limits for LMFBR fuel cladding under upset and emergency operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Govindarajan, S.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam Tamilnadu (India). Nuclear Systems Division

    1996-07-01

    LMFBR fuel pin cladding tube is subjected to high transient temperatures during incidents such as pump trip, pump to grid plate pipe rupture etc. It is required to know temperature limits under such transient operating conditions for components involved while analyzing such incidents. A methodology for deriving such limits for fuel clad tube is worked out in this paper by making use of the transient damage correlation proposed by W.F. Brizes et. al.

  4. Microstructure and wear-resistance of laser clad TiC particle-reinforced coating

    NARCIS (Netherlands)

    Lei, T.C.; Ouyang, J.H.; Pei, Y.T.; Zhou, Y.

    1995-01-01

    A TiC-Ni alloy composite coating was clad to 1045 steel substrate using a 2kW CO2 laser. The microstructural constituents of the clad layer are found to be gamma-Ni and TiCp in the dendrites, and a fine eutectic of gamma-Ni plus (Fe, Cr)(23)C-6 in the interdendritic areas. Partial dissolution and ag

  5. Coatings and claddings for the reduction of plasma contamination and surface erosion in fusion reactors

    International Nuclear Information System (INIS)

    For the successful operation of plasma devices and future fusion reactors it is necessary to control plasma impurity release and surface erosion. Effective methods to obtain such controls include the application of protective coatings to, and the use of clad materials for, certain first wall components. Major features of the development programs for coatings and claddings for fusion applications will be described together with an outline of the testing program. A discussion of some pertinent test results will be included

  6. Creep Simulations of Nuclear Fuel Cladding under long term Storage Conditions with TRANSURANUS

    OpenAIRE

    Martin, Oliver; Nilsson, Karl-Fredrik; GYORI Csaba; Van Uffelen, Paul; SCHUBERT Arndt

    2009-01-01

    Within a joint research project between the Institute for Energy (IE) and the Institute for Transuranium Elements (ITU) on the integrity of spent nuclear fuel cladding the ITU code TRANSURANUS was used to simulate creep of Zircaloy cladding tubes under long term storage conditions. Since TRANSURANUS is designed to model the mechanical, thermal and physical behaviour of fuel rods during reactor operation it was the objective of this study firstly to explore the limitations of the present creep...

  7. Design of absorber assemblies with intentional pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    A number of improvements in absorber assembly performance characteristics can be achieved through implementation of absorber cladding mechanical interaction (ACMI). Benefits include lower operating temperatures, less potential for material relocation, longer lifetime, and increased reactivity worth. Analyses indicate that substantial cladding strains may be attainable without significant risk of breach. However, actual in-reactor testing of ACMI in absorber elements will be required before design criteria can be revised to accept ACMI

  8. An example of coupling behaviour-damage-environment in polycrystals. Application to Pellet-Cladding Interaction

    International Nuclear Information System (INIS)

    Zircaloy-4 cladding is the first containment barrier for fission products, and its integrity must therefore be ensured in nominal and accidental situations. However, stress corrosion induced cracks may appear due to a strong pellet-cladding interaction. It is therefore important to model this interaction and crack growth and propagation to establish non-damage criteria. Thus, this research thesis aims at developing a modelling covering both issues (pellet-cladding interaction, and stress corrosion cracking) and allowing macroscopic and microscopic scales to be coupled. After a bibliographical synthesis on iodine-induced stress corrosion cracking and similar phenomena, the author presents the model proposed for the pellet-cladding interaction: phenomena to be taken into account, phenomenological and macroscopic behaviour laws used respectively for pellet and cladding. An extended version of an existing cladding viscoplastic model is proposed. Stress and strain fields in the cladding are obtained, notably in the contact zone. In the next part, the author presents various numerical tools developed or used to model multi-crystalline aggregates, and the model of crystalline plasticity used to simulate cladding behaviour at the microstructure scale. Effects of mesh density, element types and anisotropic elasticity are also discussed. The next chapter addresses the mechanical-chemical coupling. Some coupling formulas are presented for simple cases in order to define the effective diffusion coefficient. The last part reports the modelling of intergranular damage: definition of a damage criterion at the granular scale, assessment of stresses at grain boundaries, and effect of crystallographic neighbouring. A model of grain boundary damage is also proposed. This model is assessed on Failure Mechanics test samples and on simple microstructures. The application of the whole numerical model is reported

  9. Study on oxidation behavior of cladding for accident conditions in spent fuel pool

    International Nuclear Information System (INIS)

    In order to clarify the air oxidation behavior of the cladding at high temperatures for study on improvement of safety for accident conditions in spent fuel pool, the oxidation tests for both small specimens under constant temperature conditions and long specimens under loss of coolant simulated temperature conditions were carried out, and the knowledge for influence of both temperature gradient and preoxide film on oxidation behavior of the cladding were obtained in this study. (author)

  10. Analysis of mechanical tensile properties of irradiated and annealed RPV weld overlay cladding

    International Nuclear Information System (INIS)

    Mechanical tensile properties of irradiated and annealed outer layer of reactor pressure vessel weld overlay cladding, composed of Cr19Ni10Nb alloy, have been experimentally determined by conventional tensile testing and indentation testing. The constitutive properties of weld overlay cladding are then modelled with two homogenization models of the constitutive properties of elastic-plastic matrix-inclusion composites; numerical and experimental results are then compared. 10 refs., 4 figs., 4 tabs

  11. Pellet-clad interaction observations in boiling water reactor fuel elements

    International Nuclear Information System (INIS)

    Under a programme to assess the performance of fuel elements of Tarapur Atomic Power Station, post-irradiation examination has been carried out on 18 fuel elements in the first phase. Pellet-clad mechanical interaction behaviour in 14 elements with varying burnup and irradiation history has been studied using eddy current testing technique. The data has been analysed to evaluate the role of pellet-clad mechanical interaction in PCI/SCC failure in power reactor operating conditions. (author)

  12. Steam oxidation of Zr 1% Nb clads of VVER fuels in high temperature

    International Nuclear Information System (INIS)

    In a wide range of accident conditions processes of clad corrosion effected by steam are rather intensive and in many respects influence the safety of NPP and the after-accident dismantling of a reactor core. This paper discusses the results of comprehensive studies into corrosion behaviour of Zr 1%Nb clads of VVER-type fuels at high temperatures. These studies are a continuation of previous work and the base for the design modelling of corrosion processes

  13. Mechanical Properties of Fuel Cladding Candidate Alloys for Canadian SCWR Concept

    Science.gov (United States)

    Xu, Su; Amirkhiz, Babak Shalchi

    2016-02-01

    An assessment of tensile and creep of five representative candidate fuel cladding alloys for a Canadian Gen IV super-critical water reactor concept was performed based on database development work and complementary experiments including a transmission electron microscopy study of creep in stainless steels. The limiting property would be creep strength of candidate alloys for the "free-standing" fuel cladding design with a hot-spot peak temperature range of 1073-1123 K (800-850°C).

  14. Zirconium fuel cladding corrosion prediction in fuel assembly operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kritsky, V.G.; Berezina, I.G., E-mail: kritsky@givnipiet.spb.ru, E-mail: alemaskina@givnipiet.ru [Leading Inst. ' VNIPIET' , Saint Petersburg (Russian Federation)

    2010-07-01

    At present, the work to extend fuel cycles is carried out at NPP with VVER reactors. With the increase of fuel assembly burn-up to 70-100 MWd/kg U and linear power, the local coolant «nucleate boiling» is inevitable which in combination with coolant «acidification» alongside with the existing water chemistry norms will increase zirconium alloy corrosion. The rate of Zr alloy corrosion under reactor irradiation depends on temperature and heat flux through fuel cladding, coolant chemistry (concentrations of H{sub 2}O{sub 2}, OH{sup -}, O{sub 2}, hydrogen, ammonia, strong alkalis - LiOH, KOH, pH, ets.), steam content, alloy composition and some other parameters. A generalized model for calculating Zr alloys corrosion, which take into account the above-mentioned factors, was developed: K = k{sub 1}e {sup -}ΣvQ{sub 1}/R(T+ΔT) + k{sub 2} 1/1 - α + β Φ{sup n} where K{sub 1}, K{sub 2} are the coefficients depending on the water chemistry conditions and composition of Zr alloys; α is the value of steam content; Φ is a neutron flux; n is the coefficient depending on the fuel assembly type; β is the coefficient considering the impact of impurities suppressing the radiolysis, Q{sub 1} is energy contributions of alloying components and water impurities to oxide formation, v{sub i} - stehiometry coefficient. This model allows to predict a fuel cladding corrosion taking into account the alloys composition, water chemistry and fuel burn-up. The model was verified with the help of autoclave and reactor tests for commercial and modified Zr alloys. The activation energy of oxidation process is calculating on the base of ideal mixed oxide formation model. The success of such approach makes possible to propose a generalized model for calculating the corrosion of different Zr alloys in all types of water chemistry environments of old and new LWRs. (author)

  15. Feasibility Study on the Sodium Compatibility Test for Fuel Cladding of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hwan; Shin, Sang Hun; Park, Sang Gyu; Ryu, Woo Seog; Kim, Sung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A Sodium-cooled Fast Reactor (SFR), a reactor that uses fast neutrons as a fission process, is considered one of the most probable candidates in next-generation reactors because it can maximize the uranium utilization when compared to conventional water reactor. Liquid sodium is used as a coolant in a SFR, because it has superior efficiency of fast neutron economy and high thermal conductivity, which enables a high power core design. However, previous research reported that fuel cladding materials like austenitic and ferritic-martensitic steel (FMS) react sodium coolant so that it results in the loss of the thickness, intergranular attack, and carburization or decarburization process to induce the change of the mechanical property. Fuel cladding, a seamless tube which has approximately 0.5mm in thickness and 3m in length is the component which covers fuel to protect radioactive species from being released. Because of its smaller thickness, the mechanical properties of the cladding are easily affected by the small changes of material property. This paper summarizes the status of sodium-material compatibility facility and proposes the optimal option in the case of the SFR fuel cladding. Previous researches revealed that assessing in-situ mechanical property is important in the case of cladding material owing to its dimensional characteristic. Optimal test method for assessing sodium compatibility of the cladding tube can be proposed that pressurized creep test under the controlled liquid sodium environment.

  16. Feasibility study of fuel cladding performance for application in ultra-long cycle fast reactor

    Science.gov (United States)

    Jung, Ju Ang; Kim, Seung Hyun; Shin, Sang Hun; Bang, In Cheol; Kim, Ji Hyun

    2013-09-01

    As a part of the research and development activities for long-life core sodium-cooled fast reactors, the cladding performance of the ultra-long cycle fast reactor (UCFR) is evaluated with two design power levels (1000 MWe and 100 MWe) and cladding peak temperatures (873 K and 923 K). The key design concept of the UCFR is that it is non-refueling during its 30-60 years of operation. This concept may require a maximum peak cladding temperature of 923 K and a cladding radiation damage of over 200 dpa (displacements per atom). Therefore, for the design of the UCFR, deformation due to thermal creep, irradiation creep, and swelling must be taken into consideration through quantitative evaluations. As candidate cladding materials for use in UCFRs, ferritic-martensitic (FM) steels, oxide dispersion strengthened (ODS) steels, and SiC-based composite materials are studied using deformation behavior modeling for a feasibility evaluation. The results of this study indicate that SiC is a potential UCFR cladding material, with the exception of irradiation creep due to high neutron fluence stemming from its long operating time of about 30-60 years.

  17. Laser surface cladding of ZM5 Mg-base alloy with Al+Y powder

    Institute of Scientific and Technical Information of China (English)

    陈长军; 王东生; 王茂才

    2004-01-01

    The surface properties of ZM5 Mg-base alloy were modified by laser cladding with Al+ Y powder. Laser cladding was carried out with a 5 kW continuous wave CO2 laser by melting the preplaced powder mixture of Al and Y. Following laser cladding, the cladding zone was characterized by a detailed microstructural observation and phase analysis. Moreover, the microhardness and element distribution were evaluated in detail. The surface modified layer consists of Mg17 Al12 and Al4 MgY phases, while a-Mg and Mg17 Al12 in the substrate. The microhardness of the cladding zone was significantly enhanced as high as HV122 - 180 as compared to HV60 - 80 of the substrate region. The maximal hardness about HV224 is in the interface due to the formation of intermetallic Mg17 Al12 phase. The microstructure is refined and Mg diffuses into the cladding material which leads to the formation of Mg17 Al12.

  18. Stress analysis of asymmetrical cold rolling of clad sheet using the slab method

    Science.gov (United States)

    Hwang, Y. M.; Tzou, G. Y.

    1996-10-01

    An analytical model for general asymmetrical cold rolling of clad sheet bonded before rolling was proposed to explore the plastic deformation behavior of the clad sheet using the slab method. The model allowed easy calculation of the neutral points between the upper and lower rolls and the clad sheet; rolling pressure distribution along the contact interface of the roll, horizontal stresses in the component layers of the clad sheet, shear stresses at the interface of the clad sheet, and rolling force. These characteristics as affected by various rolling conditions (e.g., thickness ratio and shear yield stress ratio of the raw clad sheet, roll speed ratio, reduction, frictional coefficient, roll radius ratio, etc.) were analyzed systematically. This approach yielded complete forms for the rolling pressure distribution, rolling force, and rolling torque. Moreover, the computational time required by this analytical model is about 1/20 to 1/25 of that required by the RUNGE KUTTA numerical method under the same rolling conditions.

  19. Study on the standard establishment for the integrity assessment of nuclear fuel cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. S.; Kim, S. H.; Jung, Y. K.; Yang, C. Y.; Kim, I. G.; Choi, Y. H.; Kim, H. J.; Kim, M. W.; Rho, B. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is 2nd term report.

  20. Study on the Standard Establishment for the Integrity Assessment of Nuclear Fuel Cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S-S; Kim, S-H; Jung, Y-K; Yang, C-Y; Kim, I-G; Choi, Y-H; Kim, H-J; Kim, M-W; Rho, B-H [KINS, Daejeon (Korea, Republic of)

    2008-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is the final report.

  1. Study on the standard establishment for the integrity assessment of nuclear fuel cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. S.; Kim, S. H.; Jung, Y. K.; Yang, C. Y.; Kim, I. G.; Choi, Y. H.; Kim, H. J.; Kim, M. W.; Rho, B. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2006-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material.

  2. Thermal stress in the edge cladding of Nova glass laser disks

    International Nuclear Information System (INIS)

    We calculated thermal stresses in Nova glass laser disks having light-absorbing edge cladding glass attached to the periphery with an epoxy adhesive. Our closed-form solutions indicated that, because the epoxy adhesive is only 25 μm across, it does not significantly affect the thermal stress in the disk or cladding glass. Our numerical results showed a peak tensile stress in the cladding glass of 24 MPa when the cladding glass had a uniform absorption coefficient of 7.5 cm-1. This peak value is reduced to 19 MPa if surface parasitic oscillation heating is eliminated by tilting the disk edges. The peak tensile stresses exceed the typical 7 to 14-MPa working stress for glass; however, we have not observed any disk or cladding glass failures at peak Nova fluences of 20 J/cm2. We have observed delamination of the epoxy adhesive bond at fluences several times that which would occur on Nova. Replacement laser disks will incorporate cladding with a reduced absorption coefficient of 4.5 cm-1. Recent experiments show that this reduced absorption coefficient is satisfactory

  3. Erosion and Corrosion Behavior of Laser Cladded Stainless Steels with Tungsten Carbide

    Science.gov (United States)

    Singh, Raghuvir; Kumar, Mukesh; Kumar, Deepak; Mishra, Suman K.

    2012-11-01

    Laser cladding of tungsten carbide (WC) on stainless steels 13Cr-4Ni and AISI 304 substrates has been performed using high power diode laser. The cladded stainless steels were characterized for microstructural changes, hardness, solid particle erosion resistance and corrosion behavior. Resistance of the clad to solid particle erosion was evaluated using alumina particles according to ASTM G76 and corrosion behavior was studied by employing the anodic polarization and open circuit potential measurement in 3.5% NaCl solution and tap water. The hardness of laser cladded AISI 304 and 13Cr-4Ni stainless steel was increased up to 815 and 725Hv100 g, respectively. The erosion resistance of the modified surface was improved significantly such that the erosion rate of cladded AISI 304 (at 114 W/mm2) was observed ~0.74 mg/cm2/h as compared to ~1.16 and 0.97 mg/cm2/h for untreated AISI 304 and 13Cr-4Ni, respectively. Laser cladding of both the stainless steels, however, reduced the corrosion resistance in both NaCl and tap water.

  4. Screening of advanced cladding materials and UN–U{sub 3}Si{sub 5} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R., E-mail: nbrown@bnl.gov; Todosow, Michael; Cuadra, Arantxa

    2015-07-15

    Highlights: • Screening methodology for advanced fuel and cladding. • Cladding candidates, except for silicon carbide, exhibit reactivity penalty versus zirconium alloy. • UN–U{sub 3}Si{sub 5} fuels have the potential to exhibit reactor physics and fuel management performance similar to UO{sub 2}. • Harder spectrum in the UN ceramic composite fuel increases transuranic build-up. • Fuel and cladding properties assumed in these assessments are preliminary. - Abstract: In the aftermath of Fukushima, a focus of the DOE-NE Advanced Fuels Campaign has been the development of advanced nuclear fuel and cladding options with the potential for improved performance in an accident. Uranium dioxide (UO{sub 2}) fuels with various advanced cladding materials were analyzed to provide a reference for cladding performance impacts. For advanced cladding options with UO{sub 2} fuel, most of the cladding materials have some reactivity and discharge burn-up penalty (in GWd/t). Silicon carbide is one exception in that the reactor physics performance is predicted to be very similar to zirconium alloy cladding. Most candidate claddings performed similar to UO{sub 2}–Zr fuel–cladding in terms of safety coefficients. The clear exception is that Mo-based materials were identified as potentially challenging from a reactor physics perspective due to high resonance absorption. This paper also includes evaluation of UN–U{sub 3}Si{sub 5} fuels with Kanthal AF or APMT cladding. The objective of the U{sub 3}Si{sub 5} phase in the UN–U{sub 3}Si{sub 5} fuel concept is to shield the nitride phase from water. It was shown that UN–U{sub 3}Si{sub 5} fuels with Kanthal AF or APMT cladding have similar reactor physics and fuel management performance over a wide parameter space of phase fractions when compared to UO{sub 2}–Zr fuel–cladding. There will be a marginal penalty in discharge burn-up (in GWd/t) and the sensitivity to {sup 14}N content in UN ceramic composites is high

  5. Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding

    International Nuclear Information System (INIS)

    Highlights: • Perfect composite coatings were fabricated using wide-band laser cladding. • Special cored-eutectic structure was synthesized in Ni60/WC composite coatings. • Cored-eutectic consists of hard carbide compounds and fine lamellar eutectic of M23C6 carbides and γ-Ni(Fe). • Wear resistance of coating layer was significantly improved due to precipitation of M23C6 carbides. - Abstract: Ni60 composite coatings reinforced with WC particles were fabricated on the surface of Q550 steel using LDF4000-100 fiber laser device. The wide-band laser and circular beam laser used in laser cladding were obtained by optical lens. Microstructure, elemental distribution, phase constitution and wear properties of different composite coatings were investigated. The results showed that WC particles were partly dissolved under the effect of wide-band fiber laser irradiation. A special cored-eutectic structure was synthesized due to dissolution of WC particles. According to EDS and XRD results, the inside cores were confirmed as carbides of M23C6 enriched in Cr, W and Fe. These complex carbides were primarily separated out in the molten metal when solidification started. Eutectic structure composed of M23C6 carbides and γ-Ni(Fe) grew around carbides when cooling. Element content of Cr and W is lower at the bottom of cladding layer. In consequence, the eutectic structure formed in this region did not have inside carbides. The coatings made by circular laser beam were composed of dendritic matrix and interdendritic eutectic carbides, lacking of block carbides. Compared to coatings made by circular laser spot, the cored-eutectic structure formed in wide-band coatings had advantages of well-distribution and tight binding with matrix. The uniform power density and energy distribution and the weak liquid convection in molten pool lead to the unique microstructure evolution in composite coatings made by wide-band laser. Experiment results indicated the wear resistance and

  6. Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qunshuang, E-mail: maqunshuang@126.com; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan, E-mail: jwang@sdu.edu.cn; Liu, Kun, E-mail: liu_kun@163.com

    2015-10-05

    Highlights: • Perfect composite coatings were fabricated using wide-band laser cladding. • Special cored-eutectic structure was synthesized in Ni60/WC composite coatings. • Cored-eutectic consists of hard carbide compounds and fine lamellar eutectic of M{sub 23}C{sub 6} carbides and γ-Ni(Fe). • Wear resistance of coating layer was significantly improved due to precipitation of M{sub 23}C{sub 6} carbides. - Abstract: Ni60 composite coatings reinforced with WC particles were fabricated on the surface of Q550 steel using LDF4000-100 fiber laser device. The wide-band laser and circular beam laser used in laser cladding were obtained by optical lens. Microstructure, elemental distribution, phase constitution and wear properties of different composite coatings were investigated. The results showed that WC particles were partly dissolved under the effect of wide-band fiber laser irradiation. A special cored-eutectic structure was synthesized due to dissolution of WC particles. According to EDS and XRD results, the inside cores were confirmed as carbides of M{sub 23}C{sub 6} enriched in Cr, W and Fe. These complex carbides were primarily separated out in the molten metal when solidification started. Eutectic structure composed of M{sub 23}C{sub 6} carbides and γ-Ni(Fe) grew around carbides when cooling. Element content of Cr and W is lower at the bottom of cladding layer. In consequence, the eutectic structure formed in this region did not have inside carbides. The coatings made by circular laser beam were composed of dendritic matrix and interdendritic eutectic carbides, lacking of block carbides. Compared to coatings made by circular laser spot, the cored-eutectic structure formed in wide-band coatings had advantages of well-distribution and tight binding with matrix. The uniform power density and energy distribution and the weak liquid convection in molten pool lead to the unique microstructure evolution in composite coatings made by wide-band laser

  7. Expert Meeting Report: Cladding Attachment Over Exterior Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on thestructure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explorethese topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help informdesign standards and criteria.

  8. Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explore these topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help inform design standards and criteria.

  9. Development of vanadium fuel cladding for Sodium Fast Reactors

    International Nuclear Information System (INIS)

    Vanadium alloys are promising material for some core components of the Sodium Fast Reactors, especially for fuel cladding applications. With good mechanical properties up to 800°C at least, good behavior under irradiation above 400°C and limited swelling, they also have the benefit from fusion program. In 2010, CEA launched the manufacturing of a V-4Cr-4Ti alloy, well documented in literature, to validate the uneasy fabrication process linked to interstitial element sensitivity and potential pollution in master alloys. 30kg of CEA-J57 alloy (7 mm-plates) were fabricated for the CEA by GfE Metalle und Materialien GmbH, Nuremberg, Germany. The program includes the investigation of recrystallization, resulting microstructure and DBTT values, high temperature mechanical properties such as tensile strength and creep resistance, chemical compatibility with both the oxide fuel and the coolant and assessment of tube fabrication, actually a triplex tube with inner and outer liners to protect vanadium from oxidation during the hot processing. (author)

  10. Thermal performance of a vegetated cladding system on facade walls

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Y.; Chu, L.M. [Department of Biology, The Chinese University of Hong Kong, Science Center, Shatin, NT, Hong Kong (China); Cheung, Ken K.S. [Housing Department, Hong Kong SAR Government, Kowloon, Hong Kong (China)

    2010-08-15

    An experimental approach is used to assess the effect of vegetation on the thermal performance of a vertical greening system, which comprised of turf-based vertical planting modules, on an elevated facade wall of a public housing apartment. Despite temperature fluctuations in the various compartments external and internal to a concrete wall, the vegetated cladding reduced interior temperatures and delayed the transfer of solar heat, which consequently reduced power consumption in air-conditioning compared with a building envelope with bare concrete. Vegetation cover led to a different pattern of temperature fluctuations on wall surfaces, which may affect the comfort of occupants even after sunset. The cooling effect which was closely associated with the area covered by living plants and moisture in the growth medium, demonstrated the value of maintaining a healthy vegetation cover beyond visual amenity. Marked variation in moisture distribution along the vertical profile of the growth medium highlighted a concern rarely addressed in planting on ground. Substrate moisture measured at randomly selected locations would underestimate the water stress in some plants and impair their survival. (author)

  11. Corrosion of aluminum cladding under optimized water conditions

    International Nuclear Information System (INIS)

    Experience at SRS, ORNL, BNL, and Georgia Institute of Technology involving irradiated aluminum clad fuel and target elements, as well as studies of non-irradiated aluminum indicate that some types of aluminum assemblies can be kept in a continually well-deionized water atmosphere for up to 25 years without problems. SRS experience ranges from 2.75 years for the L-1.1 charge kept in deionized D2O1 to greater than 10 years for assemblies stored in the Receiving Basin for Off-site Fuel (RBOF)2. Experience at Georgia Institute of Technology reactor in Atlanta yielded the longest value of 25 years without problems. The common denominators in all of the reports is that the water is continually deionized to approximately 2 MΩ (2 x 106ohms) resistivity and the containers for the water are stainless steel or other non-porous material. This resistivity value is equivalent to a value of 0.5 micromhos or microSiemens conductivity and is reagent grade II quality water.3 4 tabs, 26 refs

  12. Effect of different metal-backed waveguides on amplified spontaneous emission

    Institute of Scientific and Technical Information of China (English)

    Zhang Bo; Hou Yan-Bing; Lou Zhi-Dong; Teng Feng; Liu Xiao-Jun; Hu Bing; Meng Ling-Chuan; Wu Wen-Bin

    2012-01-01

    We investigate the effect of a metallic electrode on the ability for poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene](MEH-PPV) film to undergo amplified spontaneous emission (ASE).The threshold of the device with Ag cladding is about 10 times greater than that of a metal-free device,but metal such as A1 completely shuts off ASE.The ASE recurs when a thin spacer layer,such as a few nanometers of SiO2,is introduced between the MEH-PPV film and the Al cladding.Compared with the Cu or Al electrode,the Ag cladding is most suited to serve as an electrode with its low optical loss due to its high work-function and reflectivity.

  13. Oxidation and exhaust gas corrosion resistance of the cobalt base clad layers

    Directory of Open Access Journals (Sweden)

    H. Smolenska

    2008-12-01

    Full Text Available Purpose: Purpose of this work is describing the behaviour of the cobalt base cladding layers after treatment in hot air (750°C, 200 hours and exhaust gases (700°C, two month.Design/methodology/approach: The layers were produced by two cladding, laser and PTA, cladding technique. Cladding was conducted with a high power diode laser HDPL ROFIN SINAR DL 020 and Plasma Transformed Arc method. The layers consisted of three multitracking sublayers. The cobalt base layers were evaluated by microstructure investigations (optical and scanning electron microscope SEM, chemical analysis and micro hardness measurements.Findings: The microstructure of the investigated layers did not change much, neither on the top part nor in the clad/steel interface after treatment in both environments. On the outer surfaces the oxide layers were observed which consisted generally of chromium and iron oxides. The compositions of this scales were reviled by the EDS analyze. The changes in chemical compositions before and after oxidation and after corrosion in exhaust gases in the dendritic regions and micro regions were confirmed by the semi-quantitative chemical analysis (EDS. Neither the oxidation nor exposition for two month in exhaust gases did not influence on the morphology of the clad layers in any region however changes in chemical composition were observed. For both sort of clads the oxide layers were observed on the surface. The proposed layers are resistant for the hot exhausted gases.Research limitations/implications: The future researches should be done on microstructural and kinetic analyze of high temperature corrosion for higher temperature and times of the process.Practical implications: The clad layers, of this composition, were designed as a method to prolong service time for the ship engine exhausted valve and after this investigation the first valve heads with laser clad layer were installed in working ship engine.Originality/value: The chemical

  14. Contribution to the replacement of cobalt-free hardfacing coating by laser cladding in fast neutron reactors

    International Nuclear Information System (INIS)

    This thesis contributes to the replacement of the coating of Stellite 6 which is used in friction areas for the primary circuit of the fast neutron reactor. It contains three parts: 1) A literature review for selecting the materials and the deposition process 2) A parametric study to get healthy deposits (good adhesion with the substrate, little porosity, no cracks, low dilution) 3) A study wear behavior of deposits obtained, at high temperature (200 C) under an atmosphere inert gas, to determine the wear resistance of materials selected without the influence of an eventual oxidation layer. From the literature review, it appears the following choices implemented in our study: * the method laser cladding with advantages such as: - Good adhesion (metallurgical) - High cooling speed - Low dilution rate - Wide parametric range * two nickel-based alloys: Colmonoy-52 and Tribaloy-700. These alloys have good dry wear behavior and could be deposited by the laser. In the manufacturing part of the healthy deposit, firstly, we characterized the metal powder. Then, a parametric study was performed to look for a good parametric range that makes us getting a healthy deposit of Stellite 6 (reference) of Colmonoy-52 and Tribaloy-700. In this case, relationships among three main process parameters laser cladding (laser beam power, surface scanning speed, rate of powder) with the microstructure and chemical composition of the deposit are studied. In study the wear behavior, a pin-on-disc type of tribological was used and tests were carried out in argon at room temperature and 200 C. We investigated the wear mechanism of the best deposition of Stellite 6, Colmonoy-52 and Tribaloy-700. The wear resistance of these materials were thoroughly compared. (author)

  15. Microstructure and Wear Behavior of CoCrFeMnNbNi High-Entropy Alloy Coating by TIG Cladding

    OpenAIRE

    2015-01-01

    Alloy cladding coatings are widely prepared on the surface of tools and machines. High-entropy alloys are potential replacements of nickel-, iron-, and cobalt-base alloys in machining due to their excellent strength and toughness. In this work, CoCrFeMnNbNi HEA coating was produced on AISI 304 steel by tungsten inert gas cladding. The microstructure and wear behavior of the cladding coating were studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, microh...

  16. Structural cladding /clad structures:

    DEFF Research Database (Denmark)

    Beim, Anne

    2013-01-01

    With point of departure in the present challenges found in the construction industry, which concern a reduced use of energy in buildings and consumption of material resources – this paper forms a tectonic inquiry into contemporary building practice. The aim is to look at specific performative...... tendencies, which can be traced in the use of materials, the structural features and the construction details of building systems in selected architectural works. With a particular focus at heavy constructions made of solid wood and masonry, and light weight constructions made of wooden frame structures...... and steel profiles, it is the intention to analyze, compare, and discuss how these various construction solutions point out strategies for development based on fundamentally different mindsets. The research questions address the following issues: How to learn from traditional construction principles: When...

  17. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emmanuel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Forsmann, Bryan [Boise State Univ., ID (United States); Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Henley, Jody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  18. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongbing [Univ. of Texas, Austin, TX (United States); Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  19. The gas corrosion of the cobalt base clad layer at elevated temperature

    Directory of Open Access Journals (Sweden)

    H. Smolenska

    2006-08-01

    Full Text Available Purpose: Purpose of this paper is to evaluate the microstructural and mechanical properties evolution of thelaser and PTA clad layers made of the powder containing cobalt after oxidation in air (750°C, 200 hours andcorrosion in exhaust gases (700°C, two month.Design/methodology/approach: The layers were made by cladding technique. Cladding was conducted witha high power diode laser HDPL ROFIN SINAR DL 020 and Plasma Transformed Arc method. The subsequenttracks were overlapped by 30÷40%. The performance of the hardfaced materials were evaluated by microstructure(optical and scanning electron microscope SEM, chemical analysis and micro hardness measurements.Findings: After heat treatment the microstructure of the clad layers did not change much, neither on the top partnor in the clad/steel interface. However the oxide layer on the surface is observed. The EDS analyze revile thecomposition of this scale which consisted generally of chromium and iron oxides. The semi-quantitative chemicalanalysis (EDS of the dendritic regions and micro regions confirms changes in chemical contents before and afteroxidation and after corrosion in exhaust gases. The oxidation at temperature 750°C for 200 hours in air and fortwo month in exhaust gases did not influence on the morphology of the clad layers neither on the top part nor inthe clad/steel interface. However changes in chemical composition were observed. On the surface of both sort ofclads the oxide layers were observed. These sorts of layers are resistant for the hot exhausted gases.Research limitations/implications: During the future research kinetic analyze of high temperature corrosionshould be done also for different temperature and times of the process.Practical implications: The layers were designed as a method to prolong service time for the ship engineexhausted valve.Originality/value: The chemical composition of the powder was new one. Also using the laser claddingtechnique for ship engine parts

  20. Analysis of the structural integrity of the fuel rod cladding based on ring compression tests

    International Nuclear Information System (INIS)

    Due to the reduced amount of material involved and the relatively simple test set-up, Ring Compression Tests (RCT) on fuel rod cladding specimens has become a well-accepted test to determine the conditions resulting in a brittle response on the cladding. Indeed, from its application under LOCA conditions, also it is used under the Spent Fuel Storage and Transportation conditions. Although the RCT may run the involved material through three stages: elastic, elasto-plastic and damage propagation and relevant information on material properties may be obtained, the non-homogenous stress and strain conditions makes the analysis of the test results, difficult. Even though, some efforts have successfully provided key cladding performance parameters such as the fracture toughness. Others approaches use the RCT as a screening test to determine conditions resulting in a Ductile-to-Brittle transition based on a selected criterion. This paper proposes a criterion from the RCT results based on first principles to address cladding ductility under the pinch loads that occurs during the transportation accident of the cask horizontal drop. The insights gained from a mechanical analysis of the RCT are applied on a number of RCT performed on unirradiated pre-hydrided specimens. Besides, RCT results performed on BWR irradiated cladding with several degrees of radial reorientation of the hydrides, imposed by a previous creep test, are also analyzed following the same approach. Based on this analysis and the expected diametric displacement, allowed by the end of irradiation pellet to clad gap and the outward cladding creep during drying and storage in a dry cask, a criterion is determined. (author)

  1. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emmanuel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Forsmann, Bryan [Boise State Univ., ID (United States); Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Henley, Jody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    High temperature fuel cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place may as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  2. Surface Modification of Mild Steel Using Tungsten Inert Gas Torch Surface Cladding

    Directory of Open Access Journals (Sweden)

    S. Dyuti

    2010-01-01

    Full Text Available Problem statement: There is an increasing demand for claddings which possess an optimized combination of different functional properties such as high hardness, high resistance to wear and oxidation. In this respect, hard TiAlN cladding has gained much attention. These claddings can be suitable replacements for the conventional ceramic coatings applied in many components of chemical plants and automotive industries to protect against high temperature oxidation and wear. Approach: In this study the possibility of the formation of intermetallic and nitride claddings on plain carbon steel surfaces by in situ melting of preplaced titanium and aluminum powder mixture under Tungsten Inert Gas (TIG torch had been investigated. Results: Addition of 1.3 and 1.8 mg mm-2 Ti and Al powder and melting at energy inputs between 540-675 J mm-1 in nitrogen environment successfully created more than 1 mm thick clad layer consisting of a mixture of titanium-aluminum nitrides and aluminides. All resolidified melt layers produced dendrite microstructures; the dendrite concentration is more near the surface area compared to the deeper melt depth. A maximum surface hardness of around 900 Hv was developed in most of the tracks and this hardness corresponds to high concentration of dendrites within the modified layer. Oxidation at 600°C for 72 h, of the clad steel gave weight gains of 0.13 mg mm-2, compared to 0.37 mg mm-2 for the substrate. Conclusion: The results showed that clad steel gave better mechanical and oxidation properties compared to plain carbon steel substrate.

  3. Study on characteristics of spent PWR cladding hull for categorizing into Non-TRU waste

    International Nuclear Information System (INIS)

    AFCI and GEN-IV programs aim for decreasing the high level radioactive wastes to be disposed. They also try to get valuable materials to recycle as resources such as uranium and plutonium. On the other hand, cladding hull expected to be one-thirds in volume of spent fuel assembly has not studied so much in the point view of recycling to reuse. Since traditional process of reprocessing was wet process, cladding hull generating through the reprocessing process was unavoidably contaminated with TRU by acid solvent during the process. Therefore, cladding hull has been classified into TRU wastes or high level wastes. According to the strategy for TRU high level radioactive wastes of USA as well as Korea, it regulates in two respects. One is activity and the other is heat generation. In respect of activity, TRU waste contains more than 100 nCi/kg of alpha emits with longer half life than 20 years and higher than 92 in atomic number. Also, wastes are categorized into TRU waste when it generates higher than 2kW/m3, in the respect of heat generation. Our results as well as literatures, almost all of TRU nuclides in the cladding hull are responsible for remained uranium and plutonium owing to pellet-cladding interaction. In addition, recoiled fission products on the surface of the cladding hull serve as heat generator. Up to now, decontamination of the cladding hull generating from the reprocessing of wet process is regarded as valueless and un-economic works owing to the amount of second waste produced

  4. Milestone report - M4FT-14OR0302102b - Evaluation of Tritium Content and Release from Surry-2 Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Sharon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chattin, Marc Rhea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giaquinto, Joseph M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    To design and operate future reprocessing plants in a safe and environmentally compliant manner, the amount and form of tritium in the used nuclear fuel (UNF) must be understood and quantified.To gain a better understanding of how tritium in cladding will behave during processing, scoping tests are being performed to determine the tritium content in the cladding pre- and post-tritium pretreatment. A sample of Surry-2 pressurized water reactor (PWR) cladding was heated to 1100–1200°C to oxidize the zirconium and release all of the tritium in the cladding sample. The tritium content was measured to be ~240 µCi/g. Cladding samples were heated to 500ºC, which is within the temperature range (480 - 600ºC) expected for standard air tritium pretreatment systems, and to a slightly higher temperature (700ºC) to determine the impact of tritium pretreatment on tritium release from the cladding. Heating at 500°C for 24 hr removes ~0.2% of the tritium from the cladding, and heating at 700°C for 24 hr removes ~9%. Thus, a significant fraction of the tritium remains bound in the cladding and must be considered in operations involving cladding recycle.

  5. Leach test of cladding removal waste grout using Hanford groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Martin, W.J.; Legore, V.L.

    1995-09-01

    This report describes laboratory experiments performed during 1986-1990 designed to produce empirical leach rate data for cladding removal waste (CRW) grout. At the completion of the laboratory work, funding was not available for report completion, and only now during final grout closeout activities is the report published. The leach rates serve as inputs to computer codes used in assessing the potential risk from the migration of waste species from disposed grout. This report discusses chemical analyses conducted on samples of CRW grout, and the results of geochemical computer code calculations that help identify mechanisms involved in the leaching process. The semi-infinite solid diffusion model was selected as the most representative model for describing leaching of grouts. The use of this model with empirically derived leach constants yields conservative predictions of waste release rates, provided no significant changes occur in the grout leach processes over long time periods. The test methods included three types of leach tests--the American Nuclear Society (ANS) 16.1 intermittent solution exchange test, a static leach test, and a once-through flow column test. The synthetic CRW used in the tests was prepared in five batches using simulated liquid waste spiked with several radionuclides: iodine ({sup 125}I), carbon ({sup 14}C), technetium ({sup 99}Tc), cesium ({sup 137}Cs), strontium ({sup 85}Sr), americium ({sup 241}Am), and plutonium ({sup 238}Pu). The grout was formed by mixing the simulated liquid waste with dry blend containing Type I and Type II Portland cement, class F fly ash, Indian Red Pottery clay, and calcium hydroxide. The mixture was allowed to set and cure at room temperature in closed containers for at least 46 days before it was tested.

  6. Modified ring stretch tensile testing of Zr-1Nb cladding

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A.B.; Majumdar, S.; Ruther, W.E.; Billone, M.C.; Chung, H.M.; Neimark, L.A. [Argonne National Lab., IL (United States)

    1998-03-01

    In a round robin effort between the US Nuclear Regulatory Commission, Institut de Protection et de Surete Nucleaire in France, and the Russian Research Centre-Kurchatov Institute, Argonne National Laboratory conducted 16 modified ring stretch tensile tests on unirradiated samples of zr-1Nb cladding, which is used in Russian VVER reactors. Test were conducted at two temperatures (25 and 400 C) and two strain rates (0.001 and 1 s{sup {minus}1}). At 25 C and 0.001 s{sup {minus}1}, the yield strength (YS), ultimate tensile strength (UTS), uniform elongation (UE), and total elongation (TE) were 201 MPa, 331 MPa, 18.2%, and 57.6%, respectively. At 400 C and 0.001 s{sup {minus}1}, the YS, UTS, UE, and TE were 109 MPa, 185 MPa, 15.4%, and 67.7%, respectively. Finally, at 400 C and 1 s{sup {minus}1}, the YS, UTS, UE, and TE were 134 MPa, 189 MPa, 18.9%, and 53.4%, respectively. The high strain rate tests at room temperature were not successful. Test results proved to be very sensitive to the amount of lubrication used on the inserts; because of the large contact area between the inserts and specimen, too little lubrication leads to significantly higher strengths and lower elongations being reported. It is also important to note that only 70 to 80% of the elongation takes place in the gauge section, depending on specimen geometry. The appropriate percentage can be estimated from a simple model or can be calculated from finite-element analysis.

  7. The application and comparison of 97Zr and 92Sr in the absolute determination of the contribution of power density and cladding activation in a VVER-1000 Mock-Up on the LR-0 Research Reactor

    Science.gov (United States)

    Košťál, Michal; Švadlenková, Marie; Milčák, Ján

    2014-02-01

    97Zr is a relatively high-yield fission product that can be used for zero reactor power determination. The technique is not widely used because in the case of reactors that use zirconium metal in the fuel cladding, it is not only a fission product but is also produced by activation. In an appropriately chosen time interval, results obtained using 97Zr can be compared to those of power determination performed using 92Sr. The knowledge of the ratio between fission-induced 97Zr and the portion of 97Zr activated in the cladding can be used not only for power-density determination but also as an important indication of fuel failures.

  8. Analytic model for the complex effective index dispersion of metamaterial-cladding large-area hollow core fibers.

    Science.gov (United States)

    Zeisberger, Matthias; Tuniz, Alessandro; Schmidt, Markus A

    2016-09-01

    We present a mathematical model that allows interpreting the dispersion and attenuation of modes in hollow-core fibers (HCFs) on the basis of single interface reflection, giving rise to analytic and semi-analytic expressions for the complex effective indices in the case where the core diameter is large and the guiding is based on the reflection by a thin layer. Our model includes two core-size independent reflection parameters and shows the universal inverse-cubed core diameter dependence of the modal attenuation of HCFs. It substantially reduces simulation complexity and enables large scale parameter sweeps, which we demonstrate on the example of a HCF with a highly anisotropic metallic nanowire cladding, resembling an indefinite metamaterial at high metal filling fractions. We reveal design rules that allow engineering modal discrimination and show that metamaterial HCFs can principally have low losses at mid-IR wavelengths (< 1 dB/m at 10.6 µm). Our model can be applied to a great variety of HCFs with large core diameters and can be used for advanced HCF design and performance optimization, in particular with regard to dispersion engineering and modal discrimination. PMID:27607656

  9. Process and system for detecting and pre-locating a clad failure in a fast neutron nuclear reactor

    International Nuclear Information System (INIS)

    The invention relates to a process and system for detecting and pre-locating a clad failure in the fuel assembly of a fast nuclear reactor cooled by a liquid metal (generally sodium) by counting the delayed neutrons emitted by the fission products escaping from the failed assembly and taken up by the liquid metal. The invention makes it possible considerably to increase sensitivity in the detection of the neutron coming from the fission products. To this effect the process consists in performing a direct measurement of the delayed neutrons in the reactor coolant flow, inside the vessel itself containing this coolant. The measurement device has at least one detector for the neutrons emitted by the fission products carried in the coolant flow as a result of the failed fuel element. This detector is inserted inside the vessel in the coolant flow in an area protected from the neutrons emerging from the core by the coolant volume itself and by structures immersed in the annular space between the core and vessel. Preferably, the neutron detector is formed of a U-235 fission chamber, fitted inside a thimble immersed in the coolant

  10. Technical and Economic Viability of Ceramic Multi-Layer Composite SiC Cladding for LWRS

    International Nuclear Information System (INIS)

    The Ceramic Multi-layer Composite (CMC) cladding has been under investigation at MIT for many years. Recently, increasing focus has been given to the modelling and performance of the cladding under PWR conditions for traditional and advanced fuel designs. These designs include use of annular pellets to reduce the centreline fuel temperature while including additional free volume to accommodate fission gases. Another option considered is adding a small amount of BeO to improve the thermal conductivity of the fuel. The reactor physics of both of these options were analyzed and found to have similar behaviour to a core with zircaloy cladding. These options often come at the cost of higher enrichment requirements. A third option was the replacement of the helium with liquid lead-bismuth in the fuel-cladding gap to improve its thermal conductivity. If the average fuel temperature and plenum pressure are considered as figures of merit, the BeO fuel was seen as the best option among the three designs. The economic implication of investing in CMC cladding for the current US operating reactors to improve the accident tolerance of nuclear fuel is analyzed. The CMC cladding is the only option among the proposed accident tolerant fuel concepts in the US that could result in a fuel enrichment savings, thus compatible with current enrichment infrastructure. The CMC cladding could also result in additional economic benefit by avoiding the costs that might be incurred following a severe accident. However, due to its long development period and likely higher cost of manufacturing compared to zircaloy, its economics merits are uncertain. The significant role that thermal conductivity degradation and swelling induced irradiation plays in performance of CMC cladding has already been documented. However, the impact of material properties on the performance of the neighbouring layers has been underrated and found recently to be critical for the viability of the concept. The current

  11. Experimental specifications for eutectic reaction between metallic fuel and HT-9

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Nam, Cheol; Lee, Byoung Oon; Ryu, Woo Seog

    1998-10-01

    The chemical interaction between metallic fuel and cladding is important in designing the fuel pin of the KALIMER. When metal fuel and cladding are contacted, the elements in fuel and cladding are inter-diffuse each other, forming the reaction layers at interface. The reaction layers may cause two important factors in aspects of fuel pin integrity. Firstly, it degrades cladding strength by reducing effective cladding thickness. Secondly, these layers accelerate eutectic reaction at transient conditions. To evaluate these phenomena, the diffusion couple experiment is planned by using metal fuels with various zirconium contents and HT-9 steel. The U-Zr fuel alloys will be used for the experiment with the different zirconium contents, these are 8, 10 and 12 weight %. This experiment aims to evaluate the effects of zirconium content on the chemical reaction. Furthermore, the reaction rate and threshold temperature of the eutectic melting will be determined as a function of the zirconium content. This document describes the detail experimental specifications for the eutectic reaction such as test setup, test requirements and test procedure. (author). 10 refs.

  12. Experimental specifications for eutectic reaction between metallic fuel and HT-9

    International Nuclear Information System (INIS)

    The chemical interaction between metallic fuel and cladding is important in designing the fuel pin of the KALIMER. When metal fuel and cladding are contacted, the elements in fuel and cladding are inter-diffuse each other, forming the reaction layers at interface. The reaction layers may cause two important factors in aspects of fuel pin integrity. Firstly, it degrades cladding strength by reducing effective cladding thickness. Secondly, these layers accelerate eutectic reaction at transient conditions. To evaluate these phenomena, the diffusion couple experiment is planned by using metal fuels with various zirconium contents and HT-9 steel. The U-Zr fuel alloys will be used for the experiment with the different zirconium contents, these are 8, 10 and 12 weight %. This experiment aims to evaluate the effects of zirconium content on the chemical reaction. Furthermore, the reaction rate and threshold temperature of the eutectic melting will be determined as a function of the zirconium content. This document describes the detail experimental specifications for the eutectic reaction such as test setup, test requirements and test procedure. (author). 10 refs

  13. Brief assessment of some technical and radiological hazard factors affecting clad waste management

    Energy Technology Data Exchange (ETDEWEB)

    Zima, G.E.

    1976-07-30

    In the management of the adverse byproducts of nuclear energy, the general problem is centered in the post-reactor discharge phases. Various waste streams are generated in the reprocessing and fuel manufacturing plants which add both volume and physicochemical diversity to the nuclear fuel waste management problem. Of these streams, the high level waste (HLW) and the clad waste streams carry the principal radiological hazard and thermal power burdens when considering post reactor-discharge times in excess of roughly a year and reasonable contamination factors. In order to measure the relative importance of the high level and clad waste streams within the context of a reasonable nuclear power scenario, various technical and hazard indices are compared for the light water, enriched uranium fueled, reactor (LWR(U)). For the clad waste, two fuel models are used for the volume comparison: the Reference Fuel Assembly (RFA) and the Diablo Canyon reference fuel model (DC). The more extensive data available for the Diablo Canyon model on radioactivity and thermal power are used in the comparison of these indices. Most of this review pertains to a burnup of 33GWD/MT. A brief analysis is given of the effect of burnup and fuel model on certain clad waste characteristics. This report is submitted as a preliminary to technico-economic considerations of clad waste. (DLC)

  14. Abrasive Performance of Chromium Carbide Reinforced Ni3Al Matrix Composite Cladding

    Institute of Scientific and Technical Information of China (English)

    LI Shang-ping; LUO He-li; FENG Di; CAO Xu; ZHANG Xi-e

    2009-01-01

    The Microstructure and room temperature abrasive wear resistance of chromium carbide reinforced NiM3Al matrix composite cladding at different depth on nickel base alloy were investigated. The results showed that there is a great difference in microstructure and wear resistance of the Ni3 Al matrix composite at different depth. Three kinds of tests, designed for different load and abrasive size, were used to understand the wear behaviour of this material. Under all three wear conditions, the abrasion resistance of the composite cladding at the depth of 6 mm, namely NC-M2, was much higher than that of the composite cladding at the depth of 2 mm, namely NC-M1. In addition, the wear-resistant advantage of NC-M2 was more obvious when the size of the abrasive was small. The relative wear resistance of NC-M2 increased from 1.63 times to 2.05 times when the size of the abrasive decreased from 180 μm to 50μm. The mierostructure of the composite cladding showed that the size of chromium carbide particles, which was mainly influenced by cooling rate of melting pool, was a function of distance from the interface between the coating and substrate varied gradually. The chromium carbide particles near the interface were finer than that far from inter-face, which was the main reason for the different wear resistance of the composite cladding at different depth.

  15. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Walker, T. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, S. H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DelCul, Guillermo Daniel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  16. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Walker, T. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DelCul, Guillermo Daniel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  17. ORNL Analysis of Operational and Safety Performance for Candidate Accident Tolerant Fuel and Cladding Concepts

    International Nuclear Information System (INIS)

    Enhanced accident-tolerant fuels (ATFs) are being developed by the US Department of Energy Office of Nuclear Energy Fuel Cycle Research and Development Program to replace standard Zircaloy cladding and/or UO2 fuel in light water reactors. Proposed ATF concepts seek to reduce severe accident (SA) risks by increasing the coping time available to operators for accident response, reducing the extent and rate of heat and hydrogen production from steam oxidation, or enhancing fission product retention. Candidate ATF concepts require analyses to demonstrate adequate performance during normal operation and worthwhile improvements in SA scenarios. Two key ATF areas are being developed at Oak Ridge National Laboratory: (1) alternate cladding materials, including advanced iron-chromium-aluminium (FeCrAl) alloys and silicon carbide (SiC) composites, and (2) fully ceramic microencapsulated (FCM) fuel, which uses coated fuel particles embedded in an SiC matrix. Reactor physics analyses examining candidate ATF clad materials in a pressurized water reactor (PWR), with preliminary assessments of combinations of fuel enrichment and cladding thickness required to match existing cycle lengths and economic factors such as fuel costs, are presented. SA analyses including updated analyses of how FeCrAl cladding and channel box impact SA scenarios in a boiling water reactor (BWR) are also discussed. (author)

  18. Corrosion inhibition of steam generator tubesheet by Alloy 690 cladding in secondary side environments

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Do Haeng, E-mail: dhhur@kaeri.re.kr; Choi, Myung Sik; Lee, Deok Hyun; Han, Jung Ho; Shim, Hee Sang

    2013-11-15

    Denting is a phenomenon that a steam generator tube is distorted by a volume expansion of corrosion products of the tube support and tubesheet materials adjacent to the tube. Although denting has been mitigated by a modification of the design and material of the tube support structures, it has been an inevitable concern in the crevice region of the top of tubesheet. This paper provides a new technology to prevent denting by cladding the secondary surface of the tubesheet with a corrosion resistant material. In this study, Alloy 690 material was cladded onto the surface of an SA508 tubesheet to a thickness of about 9 mm. The corrosion rates of the original SA508 tubesheet and the Alloy 690 clad material were measured in acidic and alkaline simulated environments. Using Alloy 690 cladding, the corrosion rate of the tubesheet within a magnetite sludge pile decreased by a factor of 680 in 0.1 M NiCl{sub 2} solution at 300 °C, and by a factor of 58 in 2 M NaOH solution at 315 °C. This means that denting can drastically be prevented by cladding the secondary tubesheet surface with corrosion resistant materials.

  19. Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding

    Science.gov (United States)

    Courty, Olivier; Motta, Arthur T.; Hales, Jason D.

    2014-09-01

    As a result of corrosion during normal operation in nuclear reactors, hydrogen can enter the zirconium-alloy fuel cladding and precipitate as brittle hydride platelets, which can severely degrade the cladding ductility. Under a heterogeneous temperature distribution, hydrides tend to accumulate in the colder areas, creating local spots of degraded cladding that can favor crack initiation. Therefore, an estimation of the local hydride distribution is necessary to help predict the risk of cladding failure. The hydride distribution is governed by three competing phenomena. Hydrogen in solid solution diffuses under a concentration gradient due to Fick's law and under a temperature gradient due to the Soret effect. Precipitation of the hydride platelets occurs once the hydrogen solubility limit is reached. A model of these phenomena was implemented in the 3D fuel performance code BISON in order to calculate the hydrogen distribution for arbitrary geometries, such as a nuclear fuel rod, and is now available for BISON users. Simulations have been performed on simple geometries to validate the model and its implementation. The simulations predict that before precipitation occurs, hydrogen tends to accumulate in the colder spots due to the Soret effect. Once the solubility limit is reached, hydrogen precipitates and forms a rim close to the outer edge of the cladding. The simulations also predict that the reactor shut down has little effect on already precipitated hydrides but causes the remaining hydrogen to precipitate homogeneously into hydrides.

  20. Feasibility studies for speckle interferometry used to measure deformation in nuclear fuel cladding

    International Nuclear Information System (INIS)

    Speckle interferometry is an optical technique able to measure and to image displacement of surface. An original setup is used to investigate the measurement of a deformed cylinder as a feasibility study. This shape allows us to determine the capability of this technique to measure nuclear fuel rod cladding. Indeed, in a nuclear reactor, the fuel rod undergoes different physical phenomena that induce dimensional changes in the cladding. The aim of this study is to quantify the amplitude of local ridges appearing on the outer cladding surface due to the 'hourglass shape' assumed by the pellets under irradiation. Because of the environmental constraints imposed by testing, an optical measuring device will be used to experimentally characterize mechanical strain induced by the interaction between the cladding and the fuel pellets. The aim of this paper is to examine the experimental feasibility of speckle interferometry using model samples. An experimental setup based on the speckle interferometry technique was therefore implemented to measure local deformation in nuclear fuel cladding. Different experiments on model samples have shown that this technique is well adapted to the measuring range, shape, and condition of the surface as well as the working distance. (authors)

  1. Dry wear behaviors of wear resistant composite coatings produced by laser cladding

    Institute of Scientific and Technical Information of China (English)

    Jiang Xu; Wenjin Liu; Minlin Zhong

    2004-01-01

    Using different proportional mixtures of Ni-coated MoS2, TiC and pure Ni powders, new typical wear resistant and selflubricant coatings were formed on low carbon steel by laser cladding process. The microstructures and phase composition of the composite coatings were studied by SEM and XRD. The typical microstructure of the composite coating is composed of multisulfide phases including binary element sulfide and ternary element sulfide, γ-Ni, TiC and Mo2C. Wear tests were carried out using an FALEX-6 type pin-on-disc machine. The friction coefficient and mass loss of three kinds of MoS2/TiC/Ni laser clad coatings are lower than those of quenched 45 steel, and the worn surfaces of the laser cladding coatings are very smooth. Because of high hardness combined with low friction, the laser cladding composite coating with a mixture of 70% Ni-coated MoS2, 20%TiC and 10%pure Ni powder presents better wear behaviors than the composite coating with other powder blends. The composition analysis of the worn surface of GCr15 bearing steel shows that the transferred film from the laser cladding coating to the opposite surface of GCr15beating steel contains an amount of sulfide, which can change the micro-friction mechanism and lead to a reduced friction coefficient.

  2. Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Jason D. Hales; Various

    2014-09-01

    As a result of corrosion during normal operation in nuclear reactors, hydrogen can enter the zirconium-alloy fuel cladding and precipitate as brittle hydride platelets, which can severely degrade the cladding ductility. Under a heterogeneous temperature distribution, hydrides tend to accumulate in the colder areas, creating local spots of degraded cladding that can favor crack initiation. Therefore, an estimation of the local hydride distribution is necessary to help predict the risk of cladding failure. The hydride distribution is governed by three competing phenomena. Hydrogen in solid solution diffuses under a concentration gradient due to Fick’s law and under a temperature gradient due to the Soret effect. Precipitation of the hydride platelets occurs once the hydrogen solubility limit is reached. A model of these phenomena was implemented in the 3D fuel performance code BISON in order to calculate the hydrogen distribution for arbitrary geometries, such as a nuclear fuel rod, and is now available for BISON users. Simulations have been performed on simple geometries to validate the model and its implementation. The simulations predict that before precipitation occurs, hydrogen tends to accumulate in the colder spots due to the Soret effect. Once the solubility limit is reached, hydrogen precipitates and forms a rim close to the outer edge of the cladding. The simulations also predict that the reactor shut down has little effect on already precipitated hydrides but causes the remaining hydrogen to precipitate homogeneously into hydrides.

  3. Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Courty, Olivier, E-mail: o.courty@gmail.com [Pennsylvania State University, 45 Bd Gouvion Saint Cyr, 75017 Paris (France); Motta, Arthur T., E-mail: atm2@psu.edu [Department of Mechanical and Nuclear Engineering, 227 Reber Building, Penn State University, University Park, PA 16802 (United States); Hales, Jason D., E-mail: jason.hales@inl.gov [Fuels Modeling and Simulation Department, Idaho National Laboratory (United States)

    2014-09-15

    As a result of corrosion during normal operation in nuclear reactors, hydrogen can enter the zirconium-alloy fuel cladding and precipitate as brittle hydride platelets, which can severely degrade the cladding ductility. Under a heterogeneous temperature distribution, hydrides tend to accumulate in the colder areas, creating local spots of degraded cladding that can favor crack initiation. Therefore, an estimation of the local hydride distribution is necessary to help predict the risk of cladding failure. The hydride distribution is governed by three competing phenomena. Hydrogen in solid solution diffuses under a concentration gradient due to Fick’s law and under a temperature gradient due to the Soret effect. Precipitation of the hydride platelets occurs once the hydrogen solubility limit is reached. A model of these phenomena was implemented in the 3D fuel performance code BISON in order to calculate the hydrogen distribution for arbitrary geometries, such as a nuclear fuel rod, and is now available for BISON users. Simulations have been performed on simple geometries to validate the model and its implementation. The simulations predict that before precipitation occurs, hydrogen tends to accumulate in the colder spots due to the Soret effect. Once the solubility limit is reached, hydrogen precipitates and forms a rim close to the outer edge of the cladding. The simulations also predict that the reactor shut down has little effect on already precipitated hydrides but causes the remaining hydrogen to precipitate homogeneously into hydrides.

  4. Study of the aqueous corrosion mechanisms and kinetics of the AlFeNi aluminium based alloy used for the fuel cladding in the Jules Horowitz research reactor

    International Nuclear Information System (INIS)

    For the Jules Horowitz new material-testing reactor (JHR), an aluminium base alloy, called AlFeNi, will be used for the cladding of the fuel plates. This alloy (Al - 1% Fe - 1% Ni - 1 % Mg), which is already used as fuel cladding, was developed for its good corrosion resistance in water at high temperatures. However, few studies dealing with the alteration process in water and the relationships with irradiation effects have been performed on this alloy. The conception of the JHR fuel requires a better knowledge of the corrosion mechanisms. Corrosion tests were performed in autoclaves at 70 C, 165 C and 250 C on AlFeNi plates representative of the fuel cladding. Several techniques were used to characterize the corrosion scale: SEM, TEM, EPMA, XRD, Raman spectroscopy. Our observations show that the corrosion scale is made of two main layers: a dense amorphous scale close to the metal and a porous crystalline scale in contact with the water. More than the morphology, the chemical compositions of both layers are different. This duplex structure results from a mixed growth mechanism: an anionic growth to develop the inner oxide and a cationic diffusion followed by a dissolution-precipitation process to form the outer one. Dynamic experiments at 70 C and corrosion kinetics measurements have demonstrated that the oxide growth process is controlled by a diffusion step associated to a dissolution/precipitation process. A corrosion mechanism of the AlFeNi alloy in aqueous media has been proposed. Then post-irradiation exams performed on irradiated fuel plates were used to investigate the effects of the irradiation on the corrosion behaviour in the reactor core. (author)

  5. Optimization of shearer sliding boots by plasma cladding with Cr4MnTi

    Institute of Scientific and Technical Information of China (English)

    Liu Hongtao; Wang Luping; Ge Shirong; Cao Shoufan; JinJing; Gao Jiping

    2011-01-01

    Severe production conditions in coal mines cause damage and failure problems with the oriented sliding boots of the mechanical shearer.Wear has been an especially vexing problem.Plasma cladding methods were used to study optimized sliding boot design.By cladding the substrate steel the surface may be made of a material more resistant to wear.The iron based alloy Cr4MnTi was coated onto a modified 45 steel matrix material in these tests.The results show that the alloy cladding layer is high strength,has high hardness,and is highly resistant to wear.After hardening and tempering,45 steel substrate has great tenacity so the combined structure meets the performance requirements for the construction of shearer sliding boots.

  6. Effects of the manufacturing parameter and chemical composition on properties of HANA-4 cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Yong; Kim, Yoon Ho; Jang, Hun; Choi, Min Young; Mok, Yong Kyoon [KEPCO Nuclear Fuel, Daejeon (Korea, Republic of)

    2015-05-15

    KEPCO NF conducted some researches to improve workability of HANA-4 cladding tube. It was changed to TREX outer diameter for increase Q-factor in first pilgering process related to the workability of cladding tube. In general, a increasing Q-factor leads to improvement yield of tubing manufacture in zirconium alloys. And decreasing of amount of alloying element changed cladding properties. The secondary phase particle analysis, the corrosion behavior and the texture were examined for HANA-4 alloys with adjustments of chemical compositions and TREX outer diameter for the purpose of enhancement formability. The precipitate type, size, and distribution of HANA-4 alloy were not changed as the chemical composition and the manufacturing parameters. The corrosion weight gain was decreased with reducing alloying elements, which considered the beneficial effect of reduced tin.

  7. Modelling of laser cladding of magnesium alloys with pre-placed powders

    Science.gov (United States)

    Guo, Li-Feng

    As a surface engineering technique, high-power laser cladding, has shown great potential for improving the corrosion resistance of magnesium alloys. Its main advantage over other processes, is its ability to form relatively thick protective coatings on selected areas where improved properties are desired. It is also a 'clean' process. However, previous research studies have found that in laser cladding of magnesium alloys, the problem of a high degree of dilution cannot be easily overcome. Moreover, in-depth studies using analytical or numerical modelling can rarely be found in the literature for addressing laser cladding with pre-placed powders with the aim of predicting the level of dilution. In the first phase of this study, a simplified thermal model based on the finite element method (FEM) was developed to study the phenomenon of dilution in laser cladding of a magnesium alloy. In the model, the powder bed was treated as a continuum, and a high power continuous wave (CW) laser was employed. The results of the simulations of the FEM model together with those of the statistical analyses showed that although, under normal cladding conditions, a process window can be established for achieving good interfacial bonding between the substrate and the clad coating, a low dilution level was extremely difficult to achieve. This was primarily attributed to the low melting point and the high thermal diffusivity of magnesium as well as the relatively long laser-material interaction time. To overcome the dilution problem, the double-layer cladding technique was explored, and was found to be able to produce low dilution clads with improved corrosion resistance. In considering the improvement of corrosion resistance that can be caused by laser surface modification to magnesium alloys, a comparison was made between the techniques of laser surface melting and laser cladding. The results of the potentiodynamic polarisation tests showed that the improvement obtained from laser

  8. Effects of the manufacturing parameter and chemical composition on properties of HANA-4 cladding tube

    International Nuclear Information System (INIS)

    KEPCO NF conducted some researches to improve workability of HANA-4 cladding tube. It was changed to TREX outer diameter for increase Q-factor in first pilgering process related to the workability of cladding tube. In general, a increasing Q-factor leads to improvement yield of tubing manufacture in zirconium alloys. And decreasing of amount of alloying element changed cladding properties. The secondary phase particle analysis, the corrosion behavior and the texture were examined for HANA-4 alloys with adjustments of chemical compositions and TREX outer diameter for the purpose of enhancement formability. The precipitate type, size, and distribution of HANA-4 alloy were not changed as the chemical composition and the manufacturing parameters. The corrosion weight gain was decreased with reducing alloying elements, which considered the beneficial effect of reduced tin

  9. Microstructure and Fractural Morphology of Cobalt-based Alloy Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao; PAN Chun-xu

    2003-01-01

    The solidification features,micro-segregation,and fracture characteristics of cobalt-based alloy on the substrate of 20CrMo steel by laser cladding were studied by using electron microscopy.Experimental results show that the fine columnar grains and cellular dendrite grains are obtained which are perpendicular to the coating/substrate interface;the primary arms are straight while the side branches are degenerated;the microstructure consists of primary face-centered cubic (fcc) Co dendrites and a network of Cr-enriched eutectic M23C6 (M=Cr,W,Fe) carbides;the micro-segregation is severe for the rapid heating and cooling of laser cladding;the typical brittle intergranular fracture occurs in cobalt-based laser cladding layer.

  10. Influence of specimen design on the deformation and failure of zircaloy cladding

    International Nuclear Information System (INIS)

    Experimental as well as computational analyses have been used to examine the deformation and failure behavior of ring-stretch specimens of Zircaloy-4 cladding tubes. The results show that, at least for plastically anisotropic unirradiated cladding, specimens with a small gauge length l to width w ratio (l/w ∼ 1) exhibit pronounced non-uniform deformation along their length. As a result, specimen necking occurs upon yielding when the specimen is fully plastic. Finite element analysis indicates a minimum l/w of 4 before a significant fraction of the gauge length deforms homogeneously. A brief examination of the contrasting deformation and failure behavior between uniaxial and plane-strain ring tension tests further supports the use of the latter geometry for determining cladding failure ductility data that are relevant to certain reactivity-initiated accident conditions

  11. Boundary coupled dual-equation numerical simulation on mass transfer in the Process of laser cladding

    Institute of Scientific and Technical Information of China (English)

    Yanlu Huang; Yongqiang Yang; Guoqiang Wei; Wenqing Shi; Yibin Li

    2008-01-01

    The coupled numerical simulation on fluid flow, heat transfer, and mass transfer in the process of laser cladding is undertaken on the basis of the continuum model.In the simulation of mass transfer in the laser molten pool, the concentration distribution in the regions on different sides of the interface between cladding layer and substrate is calculated separately and coupled at the co-boundary.The non-equilibrium solute partition coefficient is obtained from equilibrium solute partition coefficient according to the Sobolev model.By using the developed software which is based on the commercial software PHOENICS 1.4, the distribution of Fe in laser molten pool in an experiment of cladding Stellite 6 on 12CrMoV is calculated.The obtained results well coincide with the experimental ones.

  12. High-strength clad current collector for silicon-based negative electrode in lithium ion battery

    Science.gov (United States)

    Kataoka, Riki; Oda, Yoshimitsu; Inoue, Ryouji; Kitta, Mitsunori; Kiyobayashi, Tetsu

    2016-01-01

    We develop a clad foil current collector with a high tensile strength that endures a large volume change in the active material during the charge and discharge, such as the Si-based materials. The nano-Si negative electrode with the clad current collector retains 76% of the initial capacity after 40 cycles, while the capacity of the nano-Si electrode with a conventional Cu foil drops to less than 70% only after 10 cycles. A full cell with the SiO negative electrode and the LiFePO4 positive electrode retains more than 90% of its capacity at the 10th cycle after 800 cycles. The conventional rolled Cu foil wrinkles during the cycling test. The high-strength clad current foil hardly deforms during the test regardless of the electrode size.

  13. Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study

    Energy Technology Data Exchange (ETDEWEB)

    Kristine Barrett; Shannon Bragg-Sitton

    2012-09-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

  14. Evaluation of fuel-cladding properties at high temperatures: Final Report, April 1988

    International Nuclear Information System (INIS)

    Current performance capabilities of fuel cladding could possibly be extended under severe accident conditions by using materials other than the Zircaloys or with clad coatings. Such materials would enhance LWR safety as they would extend the time to failure, and reduce the amount of hydrogen production and the extent of fuel clad ballooning. This study serves as a preliminaty screening tool to determine which materials would provide the desired improvements in stream oxidation resistance and elevated temperature strength in the case of severe accident conditions. The screening results showed that molybdenum and some of its alloys, and some niobium alloys, all commercially produced, could be possible candidates. The oxidation resistance of these materials as well as the Zircaloys could be enhanced when used with commercially available surface coatings. These fall into the general categories of silicides and aluminides. For the Zircaloys in particular, research would be required to develop successful coating and bonding techniques

  15. Localized in situ cladding annealing for post-fabrication trimming of silicon photonic integrated circuits.

    Science.gov (United States)

    Spector, Steven; Knecht, Jeffrey M; Juodawlkis, Paul W

    2016-03-21

    We report the use of localized annealing via in situ heaters to induce a semi-permanent change in the refractive index of the cladding in ring resonator filters. When compared to other methods for post-fabrication trimming, this method has the advantage that no additional equipment, other than a supply of electrical power, is necessary to cause the index change. Two cladding materials were used: hydrogen silsesquioxane (HSQ) for samples that were externally annealed, and PECVD oxide for samples that were annealed with in situ heaters. The resonant wavelengths could be adjusted by as much as 3.0 nm and 1.7 nm for the HSQ and PECVD cladded filters, respectively. The trimming of a 5 channel, single ring filter bank, and a single, double ring filter is demonstrated. PMID:27136793

  16. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Sweet, Ryan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Maldonado, G. Ivan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  17. MABEL-1. A code to analyse cladding deformation in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    The MABEL-1 code has been written to investigate the deformation, of fuel pin cladding and its effects on fuel pin temperature transients during a loss-of-coolant accident. The code considers a single fuel pin with heated fuel concentric within the cladding. The fuel pin temperature distribution is evaluated using a one-dimensional conduction model with heat transfer to the coolant represented by an input set of heat transfer coefficients. The cladding deformation is calculated using the code CANSWEL, which assumes all strain to be elastic or creep and models the creep under a multi-axial stress system by a spring/dashpot combination undergoing alternate relaxation and elastic strain. (author)

  18. Electrochemical profiling of multi-clad aluminium sheets used in automotive heat exchangers

    DEFF Research Database (Denmark)

    Bordo, Kirill; Ambat, Rajan; Peguet, Lionel;

    2014-01-01

    a localized electrochemical cell and GDOES sputtering. Galvanic corrosion behaviour of individual cladding lay-ers was studied by ZRA in a conventional electrochemical cell. The changes in the microstructure of the material caused by the brazing process were investigated by scanning electron microscopy (SEM...... was profiled using a combination of glow dis-charge optical emission spectroscopy (GDOES) sputtering, localized potentiodynam-ic polarization and zero resistance ammetry (ZRA) measurements. Multi-clad struc-ture used was a four layer sandwich consisting of a copper-containing AA3xxx long-life core alloy, AA......4343 brazing clad on both sides and a copper-free AA3xxx interlay-er on the air-side of the sandwich sheet. The polarization behaviour of both as-rolled and brazed materials (i.e. corrosion potential, pitting potential, cathodic and anodic reactivities) was determined as a function of depth using...

  19. Structural transformations in hull material clad by nitrogen stainless steel using various methods

    Science.gov (United States)

    Sagaradze, V. V.; Kataeva, N. V.; Mushnikova, S. Yu.; Khar'kov, O. A.; Kalinin, G. Yu.; Yampol'skii, V. D.

    2014-02-01

    Specimens of a 10N3KhDMBF shipbuilding hull steel were clad by a 04Kh20N6G11M2AFB nitrogen austenitic steel using various treatment conditions, which included hot rolling, austenitic facing, and explosive welding followed by hot rolling and heat treatment. Between the base and cladding materials, an intermediate layer with variable concentrations of chromium, manganese, and nickel was found, in which a martensitic structure was formed. In all the cases, the strength of bonding of the cladding layer to the hull steel (determined in tests for shear to fracture) was fairly high (σsh = 437-520 MPa). The only exception was the specimen produced by unidirectional facing without subsequent hot rolling (σsh = 308 MPa), in which nonfusions between the faced beads of stainless steel were detected.

  20. Corrosion by the Alkali Metals

    International Nuclear Information System (INIS)

    This is a review of the state of the art of corrosion testing of materials by the alkali metals, the models proposed to explain the observed corrosion results, and the status of materials selection for application in alkali metal-cooled systems. Corrosion of structural and fuel cladding materials by liquid Na and NaK has been studied intensively, but intermittently for the last 18 years. These studies and the liquid-metal-cooled reactors in operation demonstrate that stainless steels can be considered for structural and cladding applications below 650°C. Above this temperature increased corrosion and radiation-induced embrittlement make them unsatisfactory. Corrosion models are reviewed and their inability to explain all the experimental observations discussed. An alternate model is proposed which qualitatively is in agreement with experimental observations. In this model, the rate-controlling step is either the surface reaction of Fe with ''available oxygen'' (dissolved Na2O) to form an Fe-O-Na complex or the rate at which ''available oxygen'' can reach the surface to form the complex; which process is rate controlling depends on the temperature, Na velocity and oxygen concentration in the Na. The solution chemistry of oxygen, carbon and alkali metal-oxygen-transition metal complexes dissolved in the alkali metals is reviewed. ''Molecular'' complexes appear unlikely to exist in solution in the alkali metals, although the thermodynamic tendencies for them to form suggest that stable bonds exist in solution between oxygen, the transition and the alkali metals. The insolubility of carbon in ''oxygen-free'' sodium indicates that carbon transfer may be associated with oxygen in sodium down to very low oxygen levels, although experimental data do not generally confirm this postulate. Corrosion of refractory metals by boiling alkali metals at temperatures above 1000°C is markedly affected by impurities in either the liquid or refractory metal; the addition of Ti, Zr or