WorldWideScience

Sample records for clad fuel rods

  1. Inspection system for Zircaloy clad fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.; Porter, E.H.; Hansen, H.R.

    1975-10-01

    A description is presented of the design, development, and performance of a remote scanning system for nondestructive examination of fuel rods. Characteristics that are examined include microcracking of fuel rod cladding, fuel-cladding interaction, cladding thickness, fuel rod diameter variation, and fuel rod bowing. Microcracking of both the inner and outer fuel rod surfaces and variations in wall thickness are detected by using a pulsed eddy current technique developed by Argonne National Laboratory (ANL). Fuel rod diameter variation and fuel rod bowing are detected by using two linear variable differential transformers (LVDTs) and a signal conditioning system. The system's mechanical features include variable scanning speeds, a precision indexing system, and a servomechanism to maintain proper probe alignment. Initial results indicate that the system is a very useful mechanism for characterizing irradiated fuel rods

  2. Modelling of pellet-cladding interaction for PWRs reactors fuel rods

    International Nuclear Information System (INIS)

    Esteves, A.M.

    1991-01-01

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyzes the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. Linear and non-linear material behaviors are allowed. Elastic, plastic and creep behaviors are considered for the cladding materials. The modelling is applied to Angra-II fuel rod design. The results are analyzed and compared. (author)

  3. Gap conductance in Zircaloy-clad LWR fuel rods

    International Nuclear Information System (INIS)

    Ainscough, J.B.

    1982-04-01

    This report describes the procedures currently used to calculate fuel-cladding gap conductance in light water reactor fuel rods containing pelleted UO 2 in Zircaloy cladding, under both steady-state and transient conditions. The relevant theory is discussed together with some of the approximations usually made in performance modelling codes. The state of the physical property data which are needed for heat transfer calculations is examined and some of the relevant in- and out-of-reactor experimental work on fuel rod conductance is reviewed

  4. Elastic plastic analysis of fuel element assemblies - hexagonal claddings and fuel rods

    International Nuclear Information System (INIS)

    Mamoun, M.M.; Wu, T.S.; Chopra, P.S.; Rardin, D.C.

    1979-01-01

    Analytical studies have been conducted to investigate the structural, thermal, and mechanical behavior of fuel rods, claddings and fuel element assemblies of several designs for a conceptual Safety Test Facility (STF). One of the design objectives was to seek a geometrical configuration for a clad by maximizing the volume fraction of fuel and minimizing the resultant stresses set-up in the clad. The results of studies conducted on various geometrical configurations showed that the latter design objective can be achieved by selecting a clad of an hexagonal geometry. The analytical studies necessitated developing solutions for determining the stresses, strains, and displacements experienced by fuel rods and an hexagonal cladding subjected to thermal fuel-bowing loads acting on its internal surface, the external pressure of the coolant, and elevated temperatures. This paper presents some of the initially formulated analytical methods and results. It should be emphasized that the geometrical configuration considered in this paper may not necessarily be similar to that of the final design. Several variables have been taken into consideration including cladding thickness, the dimensions of the fuel rod, the temperature of the fuel and cladding, the external pressure of the cooling fluid, and the mechanical strength properties of fuel and cladding. A finite-element computer program, STRAW Code, has also been employed to generate several numerical results which have been compared with those predicted by employing the initially formulated solutions. The theoretically predicted results are in good agreement with those of the STRAW Code. (orig.)

  5. Secondary hydriding of defected zircaloy-clad fuel rods

    International Nuclear Information System (INIS)

    Olander, D.R.; Vaknin, S.

    1993-01-01

    The phenomenon of secondary hydriding in LWR fuel rods is critically reviewed. The current understanding of the process is summarized with emphasis on the sources of hydrogen in the rod provided by chemical reaction of water (steam) introduced via a primary defect in the cladding. As often noted in the literature, the role of hydrogen peroxide produced by steam radiolysis is to provide sources of hydrogen by cladding and fuel oxidation that are absent without fission-fragment irradiation of the gas. Quantitative description of the evolution of the chemical state inside the fuel rod is achieved by combining the chemical kinetics of the reactions between the gas and the fuel and cladding with the transport by diffusion of components of the gas in the gap. The chemistry-gas transport model provides the framework into which therate constants of the reactions between the gases in the gap and the fuel and cladding are incorporated. The output of the model calculation is the H 2 0/H 2 ratio in the gas and the degree of claddingand fuel oxidation as functions of distance from the primary defect. This output, when combined with a criterion for the onset of massive hydriding of the cladding, can provide a prediction of the time and location of a potential secondary hydriding failure. The chemistry-gas transport model is the starting point for mechanical and H-in-Zr migration analyses intended to determine the nature of the cladding failure caused by the development of the massive hydride on the inner wall

  6. Study of pellet clad interaction defects in Dresden-3 fuel rods

    International Nuclear Information System (INIS)

    Pasupathi, V.; Perrin, J.S.

    1979-01-01

    During Cycle-3 operation of Dresden-3, fuel rod failures occurred following a transient power increase. Ten fuel rods from five of the leaking fuel assemblies were examined at Battelle's Columbus Laboratory and General Electric-Vallecitos Nuclear Center. Examinations consisted of nondestructive and destructive methods including metallography and scanning electron microscopy (SEM). Results showed the cause of fuel rod failure to be pellet clad interaction involving stress corrosion cracking. Results of SEM studies of the cladding crack surfaces and deposits on clad inner surfaces were in agreement with those reported by other investigators

  7. Influence of pellet-clad-gap-size on LWR fuel rod performance

    International Nuclear Information System (INIS)

    Brzoska, B.; Fuchs, H.P.; Garzarolli, F.; Manzel, R.

    1979-01-01

    The as-fabricated pellet-clad-gap size varies due to fabricational tolerances of the cladding inner diameter and the pellet outer diameter. The consequences of these variations on the fuel rod behaviour are analyzed using the KWU fuel rod code CARO. The code predictions are compared with experimental results of special pathfinder test fuel rods irradiated in the OBRIGHEIM nuclear power plant. These test fuel rods include gap sizer in the range of 140 μm to 270 μm, prepressurization between 13 bar to 36 bar and Helium and Argon fill gases irradiated up to a local burnup of 35 MWd/kg(U). Post irradiation examination were performed at different burnups. CARC calculations have been performed with special emphasis in cladding creep down, fission gas release and pellet clad gap closure. (orig.)

  8. Fuel-clad heat transfer coefficient of a defected fuel rod

    International Nuclear Information System (INIS)

    Bruet, M.; Stora, J.P.

    1976-01-01

    A special rod has been built with a stack of UO 2 pellets inside a thick zircaloy clad. The atmosphere inside the fuel rod can be changed and particularly the introduction of water is possible. The capsule was inserted in the Siloe pool reactor in a special device equipped with a neutron flux monitor. The fuel centerline temperature and the temperature at a certain radius of the clad were recorded by two thermocouples. The temperature profiles in the fuel and in the cladding have been calculated and then the heat transfer coefficient. In order to check the proper functioning of the device, two runs were successively achieved with a helium atmosphere. Then the helium atmosphere inside the fuel rod was removed and replaced by water. The heat transfer coefficients derived from the measurements at low power level are in agreement with the values given by the model based on thermal conductivity. However, for higher power levels, the heat transfer coefficients become higher than those based on the calculated gap

  9. Corrosion behaviour of zircaloy 4 fuel rod cladding in EDF power plants

    Energy Technology Data Exchange (ETDEWEB)

    Romary, H; Deydier, D [EDF, Direction de l` Equipment SEPTEN, Villeurbanne (France)

    1997-02-01

    Since the beginning of the French nuclear program, a surveillance of fuel has been carried out in order to evaluate the fuel behaviour under irradiation. Until now, nuclear fuels provided by suppliers have met EDF requirements concerning fuel behaviour and reliability. But, the need to minimize the costs and to increase the flexibility of the power plants led EDF to the definition of new targets: optimization of the core management and fuel cycle economy. The fuel behaviour experience shows that some of these new requirements cannot be fully fulfilled by the present standard fuel due to some technological limits. Particularly, burnup enhancement is limited by the oxidation and the hydriding of the Zircaloy 4 fuel rod cladding. Also, fuel suppliers and EDF need to have a better knowledge of the Zy-4 cladding behaviour in order to define the existing margins and the limiting factors. For this reason, in-reactor fuel characterization programs have been set up by fuel suppliers and EDF for a few years. This paper presents the main results and conclusions of EDF experience on Zy-4 in-reactor corrosion behaviour. Data obtained from oxide layer or zirconia thickness measurements show that corrosion performance of Zy-4 fuel rod cladding, as irradiated until now in EDF reactors, is satisfactory but not sufficient to meet the future needs. The fuel suppliers propose in order to improve the corrosion resistance of fuel rod cladding, low tin Zy-4 cladding and then optimized Zy-4 cladding. Irradiation of these claddings are ongoing. The available corrosion data show the better in-reactor corrosion resistance of optimized Zy-4 fuel rod cladding compared to the standard Zy-4 cladding. The scheduled fuel surveillance program will confirm if the optimized Zy-4 fuel rod cladding will meet the requirements for the future high burnup and high flexibility fuel. (author). 10 refs, 19 figs, 4 tabs.

  10. Computer analysis of elongation of the WWER fuel rod claddings

    International Nuclear Information System (INIS)

    Scheglov, A.; Proselkov, V.

    2008-01-01

    In this paper description of mechanisms influencing changes of the WWER fuel cladding length and axial forces influencing fuel and cladding are presented. It is shown that shortening of the fuel claddings in case of high burnup can be explained by the change of the fuel and cladding reference state caused by reduction of the fuel rod power level - during reactor outages. It is noted that the presented calculated data are to be reviewed and interpreted as the preliminary results; further work is needed for their confirmation. (authors)

  11. Out-pile Test of Double Cladding Fuel Rod Mockups for a Nuclear Fuel Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jaemin; Park, Sungjae; Kang, Younghwan; Kim, Harkrho; Kim, Bonggoo; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    An instrumented capsule for a nuclear fuel irradiation test has been developed to measure fuel characteristics, such as a fuel temperature, internal pressure of a fuel rod, a fuel pellet elongation and a neutron flux during an irradiation test at HANARO. In the future, nuclear fuel irradiation tests under a high temperature condition are expected from users. To prepare for this request, we have continued developing the technology for a high temperature nuclear fuel irradiation test at HANARO. The purpose of this paper is to verify the possibility that the temperature of a nuclear fuel can be controlled at a high temperature during an irradiation test. Therefore we designed and fabricated double cladding fuel rod mockups. And we performed out-pile tests using these mockups. The purposes of a out-pile test is to analyze an effect of a gap size, which is between an outer cladding and an inner cladding, on the temperature and the effect of a mixture ratio of helium gas and neon gas on the temperature. This paper presents the design and fabrication of double cladding fuel rod mockups and the results of the out-pile test.

  12. Parametric Evaluation of SiC/SiC Composite Cladding with UO2 Fuel for LWR Applications: Fuel Rod Interactions and Impact of Nonuniform Power Profile in Fuel Rod

    Science.gov (United States)

    Singh, G.; Sweet, R.; Brown, N. R.; Wirth, B. D.; Katoh, Y.; Terrani, K.

    2018-02-01

    SiC/SiC composites are candidates for accident tolerant fuel cladding in light water reactors. In the extreme nuclear reactor environment, SiC-based fuel cladding will be exposed to neutron damage, significant heat flux, and a corrosive environment. To ensure reliable and safe operation of accident tolerant fuel cladding concepts such as SiC-based materials, it is important to assess thermo-mechanical performance under in-reactor conditions including irradiation and realistic temperature distributions. The effect of non-uniform dimensional changes caused by neutron irradiation with spatially varying temperatures, along with the closing of the fuel-cladding gap, on the stress development in the cladding over the course of irradiation were evaluated. The effect of non-uniform circumferential power profile in the fuel rod on the mechanical performance of the cladding is also evaluated. These analyses have been performed using the BISON fuel performance modeling code and the commercial finite element analysis code Abaqus. A constitutive model is constructed and solved numerically to predict the stress distribution in the cladding under normal operating conditions. The dependence of dimensions and thermophysical properties on irradiation dose and temperature has been incorporated into the models. Initial scoping results from parametric analyses provide time varying stress distributions in the cladding as well as the interaction of fuel rod with the cladding under different conditions of initial fuel rod-cladding gap and linear heat rate. It is found that a non-uniform circumferential power profile in the fuel rod may cause significant lateral bowing in the cladding, and motivates further analysis and evaluation.

  13. Deformation and collapse of zircaloy fuel rod cladding into plenum axial gaps

    International Nuclear Information System (INIS)

    Pfennigwerth, P.L.; Gorscak, D.A.; Selsley, I.A.

    1983-01-01

    To minimize support structure, blanket and reflector fuel rods of the thoria urania-fueled Light Water Breeder Reactor (LWBR) were designed with non-freestanding Zircaloy-4 cladding. An analytical model was developed to predict deformation of unirradiated cladding into axial gaps of fuel rod plenum regions where it is unsupported. This model uses the ACCEPT finite element computer program to calculate elastic-plastic deformation of cladding due to external pressure. The finite element is 20-node, triquadratic, isoparametric, and 3-dimensional. Its curved surface permits accurate modeling of the tube geometry, including geometric nonuniformities such as circumferential wall thickness variation and initial tube out-of-roundness. Progressive increases in axial gap length due to cladding elongation and fuel stack shrinkage are modeled, as are deformations of fuel pellets and stainless steel support sleeves which bound plenum axial gaps in LWBR type blanket fuel rods. Zircaloy-4 primary and secondary thermal creep representations were developed from uniaxial creep testing of fuel rod tubing. Creep response to multi-axial loading is modeled with a variation of Hill's formulation for anisotropic materials. Coefficients accounting for anisotropic thermal creep in Zircaloy-4 tubes were developed from creep testing of externally pressurized tubes having fixed axial gaps in the range 2.5 cm to 5.7 cm and radial clearances over simulated fuel pellets ranging from zero to 0.089 mm. (orig./RW)

  14. Cladding tube of fuel rod for a BWR type reactor

    International Nuclear Information System (INIS)

    Nakayama, Hitoshi; Fujie, Kunio; Kuwahara, Heikichi; Hirai, Tadamasa; Kakizaki, Kimio.

    1976-01-01

    Object: To form a cladding tube wall with tunnels in communication with the exterior through a number of small-diameter openings to rapidly disperse a large quantity of heat thereby providing high density of the fuel rod. Structure: Tunnels adjacent to each other are provided under the skin in contact with cooling liquid of a cladding tube, and a number of openings through which said tunnels and the periphery of the cladding tube are placed in communication are formed, said openings each having its section smaller than that of said tunnel. With this arrangement, the cooling water entered the tunnel through some of small diameter openings absorbs heat of the fuel rod to be vaporized, which is flown out into the cooling water through the other small diameter openings and formed into vapor bubbles which move up for release of heat. (Taniai, N.)

  15. Modelling of pellet cladding interaction during power ramps in PWR rods by means of Transuranus fuel rod analysis code

    International Nuclear Information System (INIS)

    Di Marcello, V.; Luzzi, L.

    2008-01-01

    Pellet-cladding interaction (PCI) in PWR type rods subjected to power ramps was analysed by means of TRANSURANUS (TU) fuel rod performance code. PCI phenomena depend on the fuel power history - i.e. by several irradiation and thermal induced phenomena occurring in the fuel rod and mutually interacting during its life in reactor - and may become critical for cladding integrity under accidental conditions. Ten test fuel rods, whose power histories and post irradiation experiment (PIE) data were available from the OECD/NEA-IAEA International Fuel Performance Experiment (UTE) database through the Studsvik SUPER-RAMP Project, were simulated by TRANSURANUS. During a power ramp pellet gaseous swelling can be inhibited by cladding pressure and can be over-predicted by a normal operation swelling model. This phenomenon was simulated by a new formulation of a fuel swelling model already available in the code, in order to consider hot pressing of inter-granular -fuel porosity due to the high hydrostatic stress resulting from PCI: it was found that TRANSURANUS, as a result of the proposed swelling formulation as well as of the accurate modelling of the other phenomena occurring during irradiation, gives correct predictions on PCI induced fuel rod failures. In addition, PCI failure threshold identified by TRANSURANUS was compared with the technological limits known in literature: the possibility of relaxing these limits for low burn-up values and the preponderance of the European fuel rod design in front of PCI emerged from TU analyses. Finally, a good agreement was found between TU evaluations and PIE data, with regard to fission gas release, fuel grain growth, and creep, corrosion and elongation of the cladding. (authors)

  16. Corrosion performance of optimised and advanced fuel rod cladding in PWRs at high burnups

    International Nuclear Information System (INIS)

    Jourdain, P.; Hallstadius, L.; Pati, S.R.; Smith, G.P.; Garde, A.M.

    1997-01-01

    The corrosion behaviour both in-pile and out-of-pile for a number of cladding alloys developed by ABB to meet the current and future needs for fuel rod cladding with improved corrosion resistance is presented. The cladding materials include: 1) Zircaloy-4 (OPTIN) with optimised composition and processing and Zircaloy-2 optimised for Pressurised Water Reactors (PWR), (Zircaloy-2P), and 2) several alternative zirconium-based alloys with compositions outside the composition range for Zircaloys. The data presented originate from fuel rods irradiated in six PWRs to burnups up to about 66 MWd/kgU and from tests conducted in 360 o water autoclave. Also included are in-pile fuel rod growth measurements on some of the alloys. (UK)

  17. The use of eddy current testing for nuclear fuel rods cladding evaluation

    International Nuclear Information System (INIS)

    Silva Junior, Silverio F. da; Alencar, Donizete A.; Brito, Mucio Jose D. de

    2007-01-01

    Nuclear fuel rods cladding must be tested after their manufacture and during their operational life. This paper describes a study about the use of eddy current test method as a nondestructive tool for nuclear fuel rods cladding evaluation. The experiments were carried out using two different probes: an external probe and an internal probe. The main goal was to verify the sensitivity of the eddy current test system, to develop calibration and reference standards and to establish the main capabilities and limitations presented by this test method for this application. (author)

  18. Cladding temperature measurement by thermocouples at preirradiated LWR fuel rod samples

    International Nuclear Information System (INIS)

    Leiling, W.

    1981-12-01

    This report describes the technique to measure cladding temperatures of test fuel rod samples, applied during the in-pile tests on fuel rod failure in the steam loop of the FR2 reactor. NiCr/Ni thermocouples with stainless steel and Inconel sheaths, respectively,of 1 mm diameter were resistance spot weld to the outside of the fuel rod cladding. For the pre-irradiated test specimens, welding had to be done under hot-cell conditions, i.e. under remote handling. In order to prevent the formation of eutectics between zirconium and the chemical elements of the thermocouple sheath at elevated temperatures, the thermocouples were covered with a platinum jacket of 1.4 mm outside diameter swaged onto the sheath in the area of the measuring junction. This thermocouple design has worked satisfactorily in the in-pile experiments performed in a steam atmosphere. Even in the heatup phase, in which cladding temperatures up to 1050 0 C were reached, only very few failures occured. This good performance is to a great part due to a careful control and a thorough inspection of the thermocouples. (orig.) [de

  19. The fuel-cladding interfacial friction coefficient in water-cooled reactor fuel rods

    International Nuclear Information System (INIS)

    Smith, E.

    1979-01-01

    A central problem in the development of cladding failure criteria and of effective operational, design or material remedies is to know whether the cladding stress is enhanced significantly near cladding ridges, pellet chips or fuel pellet cracks; the latter may also be coincident with cladding ridges at pellet-pellet interfaces. As regards the fuel pellet crack source of cladding stress concentration, the magnitude of the uranium dioxide-Zircaloy interfacial friction coefficient μ governs the magnitude and distribution of the enhanced cladding stress. Considerable discussion, particularly at a Post-Conference Seminar associated with the SMIRT 4 Conference, has focussed on the value of μ, the author taking the view that it is unlikely to be large (< 0.5). The reasoning behind this view is as follows. A fuel pellet should fracture during a power ramp when the tensile hoop stress within the pellet exceeds the fuel's fracture stress. Since the preferred position for a fuel pellet crack to form is at the fuel-cladding interface midway between existing fuel cracks, where the interfacial shear stress changes sign, the pellet segment size after a power ramp provides a limit to the magnitude of the interfacial shear stresses and consequently to the value of μ. With this argument as a basis, the author's early work used the Gittus fuel rod model, in which there is a symmetric distribution of fuel pellet cracks and symmetric interfacial slippage, to show that μ < 0.5 if it is assumed that the average hoop stress within the cladding attains yield levels. It was therefore suggested that a high interfacial friction coefficient is unlikely to be operative during a power ramp; this result was used to support the view that interfacial friction effects do not play a dominant role in stress corrosion crack formation within the cladding. (orig.)

  20. Nuclear fuel rod with burnable plate and pellet-clad interaction fix

    International Nuclear Information System (INIS)

    Boyle, R.F.

    1987-01-01

    This patent describes a nuclear fuel rod comprising a metallic tubular cladding containing nuclear fuel pellets, the pellets containing enriched uranium-235. The improvement described here comprises: ceramic wafers, each wafter comprising a sintered mixture of gadolinium oxide and uranium dioxide, the uranium oxide having no more uranium-235 than is present in natural uranium dioxide. Each of the wafers is axially disposed between a major portion of adjacent the nuclear fuel pellets, whereby the wafers freeze out volatile fission products produced by the nuclear fuel and prevent interaction of the fission products with the metallic tubing cladding

  1. Models for the Configuration and Integrity of Partially Oxidized Fuel Rod Cladding at High Temperatures

    International Nuclear Information System (INIS)

    Siefken, L.J.

    1999-01-01

    Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from above on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown

  2. Flow-Induced Vibration Measurement of an Inner Cladding Tube in a Simulated Dual-Cooled Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kim, Hyung Kyu; Yoon, Kyung Ho; Lee, Young Ho; Kim, Jae Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    To create an internal coolant flow passage in a dual cooled fuel rod, an inner cladding tube cannot have intermediate supports enough to relieve its vibration. Thus it can be suffered from a flow-induced vibration (FIV) more severely than an outer cladding tube which will be supported by series of spacer grids. It may cause a fatigue failure at welding joints on the cladding's end plug or fluid elastic instability of long, slender inner cladding due to decrease of a critical flow velocity. This is one of the challenging technical issues when a dual cooled fuel assembly is to be realized into a conventional reactor core To study an actual vibration phenomenon of a dual cooled fuel rod, FIV tests using a small-scale test bundle are being carried out. Measurement results of inner cladding tube of two typically simulated rods are presented. Causes of the differences in the vibration amplitude and response spectrum of the inner cladding tube in terms of intermediate support condition and pellet stacking are discussed.

  3. Method for the protection of the cladding tubes of fuel rods

    International Nuclear Information System (INIS)

    Steinberg, E.

    1978-01-01

    To present stress crack corrosion and to protect the cladding tubes of the fuel rods made of a circonium alloy from attack by iodine, the inward surfaces are provided with protective coatings. Therefore the casting tubes already filled with fuel element pellets are put under over-pressure at a temperature range between 300 and 500 0 C, until almost yield-point is reached. A small amount of H 2 O or H 2 O 2 , filled in, reacts with the cladding tube material to form the Zr-O 2 protective coating. Afterwards comes a pressure relief, and the cladding tube reaches its original dimensions. (DG) [de

  4. Behavior of high burnup fuel rod cladding during long-term dry storage in CASTOR casks

    International Nuclear Information System (INIS)

    Schaberg, A.; Spilker, H.; Goll, W.

    2000-01-01

    Short-time creep and rupture tests were performed to assess the strain potential of cladding of high burnt rods under conditions of dry storage. The tests comprised optimized Zr y-4 cladding samples from fuel rods irradiated to burnups of up to 64 MWd/kg U and were carried out at temperatures of 573 and 643 K at cladding stresses of about 400 and 600 MPa. The stresses, much higher than those occurring in a fuel rod, were chosen to reach circumferential elongations of about 2% within an envisaged testing time of 3-4 days. The creep tests were followed by a low temperature test at 423 K and 100 MPa to assess the long-term behavior of the cladding ductility especially with regard to the effect of a higher hydrogen content in the cladding due to the high burnup. The creep tests showed considerable uniform plastic elongations at these high burnups. It was demonstrated that around 600 K a uniform plastic strain of a least 2% is reached without cladding failure. The low temperature tests at 423 K for up to 5 days revealed no cladding failure under these conditions of reduced cladding ductility. It can be concluded that the increased hydrogen content has no adverse effect on cladding performance. (Authors)

  5. Characteristics and properties of cladding tubes for VVER-1000 higher Uranium content fuel rods

    International Nuclear Information System (INIS)

    Peregud, M.; Markelov, A.; Novikov, V.; Gusev, A.; Konkov, V.; Pimenov, Y.; Agapitov, V.; Shtutsa, M.

    2009-01-01

    To improve the fuel cycle economics and to further increase the VVER fuel usability the work programme is under way to design novel improved fuel, fuel rods and fuel assemblies. Longer FA operation time that is needed to increase the fuel burnup and the related design developments of novel fuel assemblies resulted not only in changing types and sizes of Zirconium items and fuel assembly components but also altered the requirements placed on their technical characteristics. To use fuel rods having a larger charge of fuel, to improve their behaviour in LOCA, to reduce fuel rod damage ability during assembling the work was carried out to perfect the characteristics of both the cladding (reduced wall thickness and more rigid tolerances for geometry) and its material. To meet the more rigid requirements for the geometry dimensions of cladding tubes an improved process flow sheet has been designed and employed for their fabrication and also the finishing treatment of tube surfaces has been improved. The higher and stable properties of the cladding materials were managed through using the special purity in terms of Hafnium Zirconium (not higher than 100 ppm Hf) as a base of the E110 alloy and maintaining within the valid specifications for the alloy the optimized contents of Oxygen and Iron at the levels of (600 - 990) ppm and (250 - 700) ppm, respectively. The work was under way in 2004 - 2008 years; during this period the technology and materials science solutions were mastered that were phased-in introduced into the production of the cladding tubes for the fuels loaded into the of the Kalinin NPP Unit 1

  6. Specific features of the determination of the pellet-cladding gap of the fuel rods by non-destructive method

    International Nuclear Information System (INIS)

    Amosov, S.V.; Pavlov, S.V.

    2002-01-01

    This report describes the specific features of determining the pellet-cladding gap of the irradiated WWER-1000 fuel rods by nondestructive method. The method is based on the elastic radial deformation of the cladding up to its contact with the fuel. The value of deformation of cladding till its contacting fuel when radial force changes from F max to 0 is proposed as a measuring parameter for determination of the diametrical gap. Because of the features of compression method, the obtained gap value is not analog of the gap measured on micrograph of the fuel rod cross-section. Results of metallography can provide only qualitative evaluation of its method efficiency. Comparison of the values determined by non-destructive method and metallography for WWER-1000 fuel rods with burnup from 25 to 55 MWd/kg U testified that the results of compression method can be used as a low estimate of the pellet-cladding gap value. (author)

  7. Correlation of waterside corrosion and cladding microstructure in high-burnup fuel and gadolinia rods

    International Nuclear Information System (INIS)

    Chung, H.M.

    1989-09-01

    Waterside corrosion of the Zircaloy cladding has been examined in high-burnup fuel rods from several BWRs and PWRs, as well as in 3 wt % gadolinia burnable poison rods obtained from a BWR. The corrosion behavior of the high-burnup rods was then correlated with results from a microstructural characterization of the cladding by optical, scanning-electron, and transmission-electron microscopy (OM, SEM, and TEM). OM and SEM examination of the BWR fuel cladding showed both uniform and nodular oxide layers 2 to 45 μm in thickness after burnups of 11 to 30 MWd/kgU. For one of the BWRs, which was operated at 307 degree C rather than the normal 288 degree C, a relatively thick (50 to 70 μm) uniform oxide, rather than nodular oxides, was observed after a burnup of 27 to 30 MWd/kgU. TEM characterization revealed a number of microstructural features that occurred in association with the intermetallic precipitates in the cladding metal, apparently as a result of irradiation-induced or -enhanced processes. The BWR rods that exhibited white nodular oxides contained large precipitates (300 to 700 nm in size) that were partially amorphized during service, indicating that a distribution of the large intermetallic precipitates is conductive to nodular oxidation. 23 refs., 9 figs

  8. Fracture of Zircaloy cladding by interactions with uranium dioxide pellets in LWR fuel rods. Technical report 10

    International Nuclear Information System (INIS)

    Smith, E.; Ranjan, G.V.; Cipolla, R.C.

    1976-11-01

    Power reactor fuel rod failures can be caused by uranium dioxide fuel pellet-Zircaloy cladding interactions. The report summarizes the current position attained in a detailed theoretical study of Zircaloy cladding fracture caused by the growth of stress corrosion cracks which form near fuel pellet cracks as a consequence of a power increase after a sufficiently high burn-up. It is shown that stress corrosion crack growth in irradiated Zircaloy must be able to proceed at very low stress intensifications if uniform friction effects are operative at the fuel-cladding interface, when the interfacial friction coefficient is less than unity, when a symmetric distribution of fuel cracks exists, and when symmetric interfacial slippage occurs (i.e., ''uniform'' conditions). Otherwise, the observed fuel rod failures must be due to departures from ''uniform'' conditions, and a very high interfacial friction coefficient and particularly fuel-cladding bonding, are means of providing sufficient stess intensification at a cladding crack tip to explain the occurrence of cladding fractures. The results of the investigation focus attention on the necessity for reliable experimental data on the stress corrosion crack growth behavior of irradiated Zircaloy, and for further investigations on the correlation between local fuel-cladding bonding and stress corrosion cracking

  9. Modeling of the PWR fuel mechanical behaviour and particularly study of the pellet-cladding interaction in a fuel rod

    International Nuclear Information System (INIS)

    Hourdequin, N.

    1995-05-01

    In Pressurized Water Reactor (PWR) power plants, fuel cladding constitutes the first containment barrier against radioactive contamination. Computer codes, developed with the help of a large experimental knowledge, try to predict cladding failures which must be limited in order to maintain a maximal safety level. Until now, fuel rod design calculus with unidimensional codes were adequate to prevent cladding failures in standard PWR's operating conditions. But now, the need of nuclear power plant availability increases. That leads to more constraining operating condition in which cladding failures are strongly influenced by the fuel rod mechanical behaviour, mainly at high power level. Then, the pellet-cladding interaction (PCI) becomes important, and is characterized by local effects which description expects a multidimensional modelization. This is the aim of the TOUTATIS 2D-3D code, that this thesis contributes to develop. This code allows to predict non-axisymmetric behaviour too, as rod buckling which has been observed in some irradiation experiments and identified with the help of TOUTATIS. By another way, PCI is influenced by under irradiation experiments and identified with the help of TOUTATIS which includes a densification model and a swelling model. The latter can only be used in standard operating conditions. However, the processing structure of this modulus provides the possibility to include any type of model corresponding with other operating conditions. In last, we show the result of these fuel volume variations on the cladding mechanical conditions. (author). 25 refs., 89 figs., 2 tabs., 12 photos., 5 appends

  10. Pellet clad interaction analysis of AFA 3G fuel rod

    International Nuclear Information System (INIS)

    Liu Tong; Shen Caifen; Jiao Yongjun; Lu Huaquan; Zhou Zhou

    2002-01-01

    The author described Pellet Clad Interaction (PCI) analysis of AFA 3G fuel rod during condition II transients for GNPS 18-months alternating equilibrium cycles. It provided PCI technical limit, analytical methods and computer code used in the analyses of condition II transients and thermal-mechanical. Finally, given main calculation results and the conclusion for GNPS 18-months cycles

  11. Some aspects of the utilization of zicaloy and austenitic steel as cladding material for PWR reactor fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Perrotta, J.A.

    1985-01-01

    The behaviour under irradiation of fuel rods for light water reactors was simulated by using fuel performance codes. Two types of cladding were analyzed: zircaloy and austenitic stainless steel. The fuel performance codes, originally made for zircaloy cladding, were adapted for austenitic stainless steel. The simulation results for the two types of cladding are presented, compared and discussed. (F.E.) [pt

  12. Expandable device for a nuclear fuel rod

    International Nuclear Information System (INIS)

    Gesinski, L.T.

    1978-01-01

    A nuclear fuel rod and a device for use within the rod cladding to maintain the axial position of the fuel pellets stacked one atop another within the cladding are described. The device is initially of a smaller external cross-section than the fuel rod cladding internal cross-section so as to accommodate loading into the rod at preselected locations. During power operation the device responds to a rise in temperature, so as to permanently maintain its position and restrain any axial motion of the fuel pellets

  13. Procedure and apparatus for measuring the radial gap between fuel and surrounding cladding in a fuel rod for a nuclear reactor

    International Nuclear Information System (INIS)

    Olshausen, K.D.

    1976-01-01

    A device is described for measuring non-destructively the annular fuel-cladding gap in an irradiated or fresh fuel rod. The principle applied is that a force is applied to an arm which presses the cladding diametrically, thus deforming it until it touches the fuel pellet. By presenting the values of the force applied and the deformation produced on an XY recorder, the width of the gap is obtained. Alternatively the gap width may be obtained digitally. Since the gap is so small that the deformation is within the elastic range, the fuel rod may be reloaded in the reactor for further irradiation. (JIW)

  14. A model for predicting pellet-cladding interaction induced fuel rod failure, based on nonlinear fracture mechanics

    International Nuclear Information System (INIS)

    Jernkvist, L.O.

    1993-01-01

    A model for predicting pellet-cladding mechanical interaction induced fuel rod failure, suitable for implementation in finite element fuel-performance codes, is presented. Cladding failure is predicted by explicitly modelling the propagation of radial cracks under varying load conditions. Propagation is assumed to be due to either iodine induced stress corrosion cracking or ductile fracture. Nonlinear fracture mechanics concepts are utilized in modelling these two mechanisms of crack growth. The novelty of this approach is that the development of cracks, which may ultimately lead to fuel rod failure, can be treated as a dynamic and time-dependent process. The influence of cyclic loading, ramp rates and material creep on the failure mechanism can thereby be investigated. Results of numerical calculations, in which the failure model has been used to study the dependence of cladding creep rate on crack propagation velocity, are presented. (author)

  15. Fuel rod simulator effects in flooding experiments single rod tests

    International Nuclear Information System (INIS)

    Nishida, M.

    1984-09-01

    The influence of a gas filled gap between cladding and pellet on the quenching behavior of a PWR fuel rod during the reflood phase of a LOCA has been investigated. Flooding experiments were conducted with a short length electrically heated single fuel rod simulator surrounded by glass housing. The gap of 0.05 mm width between the Zircaloy cladding and the internal Al 2 O 3 pellets of the rod was filled either wit helium or with argon to vary the radial heat resistance across the gap. This report presents some typical data and an evaluation of the reflood behavior of the fuel rod simulator used. The results show that the quench front propagates faster for increasing heat resistance in the gap between cladding and heat source of the rod. (orig.) [de

  16. An evaluation of the influence of fuel design parameters and burnup on pellet/cladding interaction for boiling water reactor fuel rod through in-core diameter measurement

    International Nuclear Information System (INIS)

    Yanagisawa, K.

    1986-01-01

    The influence of design parameters and burning on pellet/cladding interaction (PCI) of current boiling water reactor fuel rods was studied through in-core diameter measurement. Thinner cladding and a smaller diametral gap enhanced the PCI during startup. At constant power, fuel with SiO 2 added greatly reduced PCI due to relaxation. The fuel with a small grain size greatly reduced PCI due to densification. Preirradiation of rods up to 23 MWd/kgU caused a large PCI not only in a small gap but also in a large gap rod. Relaxation and permanent deformation was small. In the power increase experiment, one rod experienced PCI failure. The spurt times of coolant radioactivity coincided well with the sudden drop of cladding axial strain and marked crack opening at the rod surface. The estimated hoop stress predicted by FEMAXI-III was 350 MPa at the failure

  17. Out-of-pile experiments on the high-temperature behavior of Zircaloy-4 clad fuel rods

    International Nuclear Information System (INIS)

    Hagen, S.

    1984-01-01

    Out-of-pile experiments have been performed to investigate the escalation in temperature of Zircaloy-clad fuel rods during heatup in steam due to the exothermal Zircaloy steam reaction. In these tests single Zircaloy/uranium dioxide (UO 2 ) fuel rod simulators surrounded with a Zircaloy shroud--simulating the Zircaloy of neighboring rods--were heated inside a fiber ceramic insulation. The initial heating rates were varied from 0.3 to 2.5 K/s. In every test an escalation of the temperature rise rate was observed. The maximum measured surface temperature was about 2200 0 C. The temperature decreased after the maximum had been reached without decreasing the input electric power. The temperature decreases were due to inherent processes including the runoff of molten Zircaloy. The escalation process was influenced by the temperature behavior of the shroud, which was itself affected by the insulation and steam cooling. Damage to the fuel rods increased with increasing heatup rate. Fro slow heatup rates nearly no interaction between the oxidized cladding and UO 2 was observed, while for fast heatup rates the entire annular pellet was dissolved by molten Zircaloy

  18. Development and fabrication of seamless Aluminium finned clad tubes for metallic uranium fuel rods for research reactor

    International Nuclear Information System (INIS)

    Singh, A.K.; Hussain, M.M.; Jayachandran, N.K.; Abdulla, K.K.

    2012-01-01

    Natural uranium metal or its alloy is used as fuel in nuclear reactors. Usually fuel is clad with compatible material to prevent its direct contact with coolant which prevents spread of activity. One of the methods of producing fuel for nuclear reactor is by co-drawing finished uranium rods with aluminum clad tube to develop intimate contact for effective heat removal during reactor operation. Presently seam welded Aluminium tubes are used as clad for Research Reactor fuel. The paper will highlight entire fabrication process followed for the fabrication of seamless Aluminium finned tubes along with relevant characterisation results

  19. Embedded cladding surface thermocouples on Zircaloy-sheathed heater rods

    International Nuclear Information System (INIS)

    Wilkins, S.C.

    1977-06-01

    Titanium-sheathed Type K thermocouples embedded in the cladding wall of zircaloy-sheathed heater rods are described. These thermocouples constitute part of a program intended to characterize the uncertainty of measurements made by surface-mounted cladding thermocouples on nuclear fuel rods. Fabrication and installation detail, and laboratory testing of sample thermocouple installations are included

  20. Analysis of Double-encapsulated Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Hales, Jason Dean [Idaho National Laboratory; Medvedev, Pavel G [Idaho National Laboratory; Novascone, Stephen Rhead [Idaho National Laboratory; Perez, Danielle Marie [Idaho National Laboratory; Williamson, Richard L [Idaho National Laboratory

    2014-09-01

    In an LWR fuel rod, the cladding encapsulates the fuel, contains fission products, and transfers heat directly to the water coolant. In some situations, it may be advantageous to separate the cladding from the coolant through use of a secondary cladding or capsule. This may be done to increase confidence that the fuel or fission products will not mix with the coolant, to provide a mechanism for controlling the rod temperature, or to place multiple experimental rodlets within a single housing. With an axisymmetric assumption, it is possible to derive closed-form expressions for the temperature profile in a fuel rod using radially-constant thermal conductivity in the fuel. This is true for both a traditional fuel-cladding rod and a double-encapsulated fuel (fuel, cladding, capsule) configuration. Likewise, it is possible to employ a fuel performance code to analyse both a traditional and a double-encapsulated fuel. In the case of the latter, two sets of gap heat transfer conditions must be imposed. In this work, we review the equations associated with radial heat transfer in a cylindrical system, present analytic and computational results for a postulated power and gas mixture history for IFA-744, and describe the analysis of the AFC-2A, 2B metallic fuel alloy experiments at the Advanced Test Reactor, including the effect of a release of fission products into the cladding-capsule gap. The computational results for these two cases were obtained using BISON, a fuel performance code under development at Idaho National Laboratory.

  1. International symposium on fuel rod simulators: development and application

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W. (comp.)

    1981-05-01

    Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

  2. Method and apparatus for sizing nuclear fuel rod cladding tubes

    International Nuclear Information System (INIS)

    Koehler, L.

    1976-01-01

    Nuclear fuel rod cladding tubes are sized internally to diameters precisely fitting nuclear fuel pellets with which the tubes are charged by externally applying hydraulic pressure to short lengths of each tube. The pressure is applied while the tube is stationary. The tube is then moved to bring a new length within the hydraulic pressure zone. The volume of the hydraulic liquid used and the pressure applied to this liquid is such that the liquid is compressed slightly so that the length being sized yields, the expansion of the liquid then completing the sizing. The lengths being sized step-by-step are internally supported by either the fuel pellets or a mandrel having the same diameter as the pellets

  3. Pellet-clad interaction in water reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  4. Pellet-clad interaction in water reactor fuels

    International Nuclear Information System (INIS)

    2004-01-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  5. Development of Cr Electroplated Cladding Tube for preventing Fuel-Cladding Chemical Interaction (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hwan; Woo, Je Woong; Kim, Sung Ho; Cheon, Jin Sik; Lee, Byung Oon; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Metal fuel has been selected as a candidate fuel in the SFR because of its superior thermal conductivity as well as enhanced proliferation resistance in connection with the pyroprocessing. However, metal fuel suffers eutectic reaction (Fuel Cladding Chemical Interaction, FCCI) with the fuel cladding made of stainless steel at reactor operating temperature so that cladding thickness gradually reduces to endanger reactor safety. In order to mitigate FCCI, barrier concept has been proposed between the fuel and the cladding in designing fuel rod. Regarding this, KAERI has initiated barrier cladding development to prevent interdiffusion process as well as enhance the SFR fuel performance. Previous study revealed that Cr electroplating has been selected as one of the most promising options because of its technical and economic viability. This paper describes the development status of the Cr electroplating technology for the usage of fuel rod in SFR. This paper summarizes the status of Cr electroplating technology to prevent FCCI in metal fuel rod. It has been selected for the ease of practical application at the tube inner surface. Technical scoping, performance evaluation and optimization have been carried out. Application to the tube inner surface and in-pile test were conducted which revealed as effective.

  6. The irradiation performance of austenitic stainless steel clade PWR fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Esteves, A.M.

    1988-01-01

    The steady state irradiation performance of austenitic stainless steel clad pressurized water reactor fuel rods is modeled with fuel performance codes of the FRAP series. These codes, originally developed to model the thermal-mechanical behavior of zircaloy clad fuel rods, are modified to model stainless steel clad fuel rods. The irradiation thermal-mechanical behavior of type 348 stainless steel and zircaloy fuel rods is compared. (author) [pt

  7. Investigation of typicality of non-nuclear rod and fuel-clad gap effect during reflood phase, and development of a FEM thermal transient analysis code HETFEM

    International Nuclear Information System (INIS)

    Sudoh, Takashi

    1981-06-01

    The objective of this study are: 1) Evaluate the capability of the electrical heater for simulating the fuel rod during the reflood phase, and 2) To investigate the effect of the clad-fuel gap in the fuel rod on the clad thermal response during the reflood phase. A computer code HETFEM which is the two dimensional transient thermal conductivity analysis code utilized a finite element method is developed for analysing thermal responses of heater and fuel rod. The two kinds of electrical heaters and a fuel rod are calculated with simple boundary conditions. 1) direct heater (former JAERI reflood test heater), 2) indirect heater (FLECHT test heater), 3) fuel rod (15 x 15 type in Westinghouse PWR). The comparison of the clad temperature responses shows the quench time is influenced by the thermal diffusivity and gap conductance. In the conclusion, the ELECHT heater shows atypicality in the clad temperature response and heat releasing rate. But the direct heater responses are similar to those of the fuel rod. For the gap effect on the fuel rod behavior, the lower gap conductance causes sooner quench and less heat releasing rate. This calculation is not considered the precursory cooling which is affected by heat releasing rate at near and below the quench front. Therefore two dimensional calculation with heat transfer related to the local fluid conditions will be needed. (author)

  8. Fuel cladding tube and fuel rod for BWR type reactor

    International Nuclear Information System (INIS)

    Urata, Megumu; Mitani, Shinji.

    1995-01-01

    A fuel cladding tube has grooves fabricated, on the surface thereof, with a predetermined difference between crest and bottom (depth of the groove) in the circumferential direction. The cross sectional shape thereof is sinusoidal. The distribution of the grain size of iron crud particles in coolants is within a range about from 2μm to 12μm. If the surface roughness of the fuel cladding tube (depth of the groove) is determined greater than 1.6μm and less than 12.5, iron cruds in coolants can be positively deposited on the surface of the fuel cladding tube. In addition, once deposited iron cruds can be prevented from peeling from the surface of the fuel cladding tube. With such procedures, iron cruds deposited and radioactivated on the fuel cladding tube can be prevented from peeling, to prevent and reduce the increase of radiation dose on the surface of the pipelines without providing any additional device. (I.N.)

  9. Fuel rod pressure in nuclear power reactors: Statistical evaluation of the fuel rod internal pressure in LWRs with application to lift-off probability

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, Tomas

    2001-02-01

    In this thesis, a methodology for quantifying the risk of exceeding the Lift-off limit in nuclear light water power reactors is outlined. Due to fission gas release, the pressure in the gap between the fuel pellets and the cladding increases with burnup of the fuel. An increase in the fuel-clad gap due to clad creep would be expected to result in positive feedback, in the form of higher fuel temperatures, leading to more fission gas release, higher rod pressure, etc, until the cladding breaks. An increase in the fuel-clad gap that leads to this positive feedback is a phenomenon called Lift-off and is a limitation that must be considered in the fuel core management. Lift-off is a consequence of very high internal fuel rod pressure. The internal fuel rod pressure is therefore used as a Lift-off indicator. The internal fuel rod pressure is closely connected to the fission gas release into the fuel rod plenum and is thus used to increase the database. It is concluded that the dominating error source in the prediction of the pressure in Boiling Water Reactors (BWR), is the power history. There is a bias in the fuel pressure prediction that is dependent on the fuel rod position in the fuel assembly for BWRs. A methodology to quantify the risk of the fuel rod internal pressure exceeding a certain limit is developed; the risk is dependent of the pressure prediction and the fuel rod position. The methodology is based on statistical treatment of the discrepancies between predicted and measured fuel rod internal pressures. Finally, a methodology to estimate the Lift-off probability of the whole core is outlined.

  10. Calculation of hydrogen and oxygen uptake in fuel rod cladding during severe accidents using the integral diffusion method -- Preliminary design report

    International Nuclear Information System (INIS)

    Siefken, L.J.

    1999-01-01

    Preliminary designs are described for models of hydrogen and oxygen uptake in fuel rod cladding during severe accidents. Calculation of the uptake involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the cladding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental results are presented that show a rapid uptake of hydrogen in the event of dissolution of the oxide layer and a rapid release of hydrogen in the event of cracking of the oxide layer. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. The uptake of hydrogen is limited to the equilibrium solubility calculated by applying Sievert's law. The uptake of hydrogen is an exothermic reaction that accelerates the heatup of a fuel rod. An embrittlement criteria is described that accounts for hydrogen and oxygen concentration and the extent of oxidation. A design is described for implementing the models for hydrogen and oxygen uptake and cladding embrittlement into the programming framework of the SCDAP/RELAP5 code. A test matrix is described for assessing the impact of the proposed models on the calculated behavior of fuel rods in severe accident conditions. This report is a revision and reissue of the report entitled; ''Preliminary Design Report for Modeling of Hydrogen Uptake in Fuel Rod Cladding During Severe Accidents.''

  11. Inspecting method for fuel rods

    International Nuclear Information System (INIS)

    Watanabe, Masaaki; Kogure, Sumio.

    1976-01-01

    Purpose: To precisely detect the response of flaw in clad tube and submerged fuel pellets from a relationship between the surface of fuel rod and internal signal. Constitution: Ultrasonic reflected waves from the surface of fuel rods and the interior are detected and either one of fuel rod or ultrasonic flaw detecting contact is rotated to thereby precisely detect the response of the flaw of clad tube and submerged fuel pellets from a relationship between said surface and the interior. It will be noted that the ultrasonic flaw detecting contact used is of the line-focus type, the incident angle of ultrasonic wave from the ultrasonic flaw detecting contact relative to the fuel rod is the angle of skew, that is, the ultrasonic flaw detecting contact is not perpendicular to a center axis of the fuel rod but is slightly displace. That is, the use of the aforesaid contact may facilitate discrimination between the surface flaw of the fuel rod and the response of submergence, and in addition, the employment of the aforesaid incident angle makes it hard to receive reflected waves from the surface of the fuel rod which is great in terms of energy to facilitate discrimination of waves responsive to submergence. (Kawakami, Y.)

  12. The buckling of fuel rods in transportation casks under hypothetical accident conditions

    International Nuclear Information System (INIS)

    Bjorkman, G.S.

    2004-01-01

    The buckling analysis of fuel rods during an end drop impact of a spent fuel transportation cask has traditionally been performed to demonstrate the structural integrity of the fuel rod cladding or the integrity of the fuel geometry in criticality evaluations following a cask drop event. The actual calculation of the fuel rod buckling load, however, has been the subject of some controversy, with estimates of the critical buckling load differing by as much as a factor of 5. Typically, in the buckling analysis of a fuel rod, assumptions are made regarding the percentage of fuel mass that is bonded to or participates with the cladding during the buckling process, with estimates ranging from 0 to 100%. The greater the percentage of fuel mass that is assumed to be bonded to the cladding the higher the inertia loads on the cladding, and, therefore, the lower the ''g'' value at which buckling occurs. Current published solutions do not consider displacement compatibility between the fuel and the cladding. By invoking displacement compatibility between the fuel column and the cladding column, this paper presents an exact solution for the buckling of fuel rods under inertia loading. The results show that the critical inertia load magnitude for the buckling of a fuel rod depends on the weight of the cladding and the total weight of the fuel, regardless of the percentage of fuel mass that is assumed to be attached to or participate with the cladding in the buckling process. Therefore, 100% of the fuel always participates in the buckling of a fuel rod under inertia loading

  13. 3D finite element analysis of a nuclear fuel rod with gap elements between the pellet and the cladding

    International Nuclear Information System (INIS)

    Kang, Chang-Hak; Lee, Sung-Uk; Yang, Dong-Yol; Kim, Hyo-Chan; Yang, Yong-Sik

    2016-01-01

    Nuclear fuel rods which comprises an important component of a nuclear power plant are composed of nuclear fuel and cladding. Simulating the nuclear fuel rod using a computer program is the universal method to verify its safety. The computer program used for this is called the fuel performance code. The main objective of this study is to simulate the nuclear fuel rod behavior considering the gap conductance using three-dimensional gap elements. Gap elements are used because, unlike other methods, this approach does not require special methods or other variables such as the Lagrange multiplier. In this work, a nuclear fuel rod has been simulated and the results are compared with the experimental results. (author)

  14. Effects of pellet-to-cladding gap design parameters on the reliability of high burnup PWR fuel rods under steady state and transient conditions

    International Nuclear Information System (INIS)

    Tas, Fatma Burcu; Ergun, Sule

    2013-01-01

    Highlights: • Fuel performance of a typical Pressurized Water Reactor rod is analyzed. • Steady state fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • Transient fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • The optimum pellet to cladding gap thickness and gap gas pressure values of the simulated fuel are determined. • The effects of pellet to cladding gap design parameters on nuclear fuel reliability are examined. - Abstract: As an important improvement in the light water nuclear reactor operations, the nuclear fuel burnup rate is increased in recent decades and this increase causes heavier duty for the nuclear fuel. Since the high burnup fuel is exposed to very high thermal and mechanical stresses and since it operates in an environment with high radiation for about 18 month cycles, it carries the risk of losing its integrity. In this study; it is aimed to determine the effects of pellet–cladding gap thickness and gap pressure on reliability of high burnup nuclear fuel in Pressurized Water Reactors (PWRs) under steady state operation conditions and suggest optimum values for the examined parameters only and validate these suggestions for a transient condition. In the presented study, fuel performance was analyzed by examining the effects of pellet–cladding gap thickness and gap pressure on the integrity of high burnup fuels. This work is carried out for a typical Westinghouse type PWR fuel. The steady state conditions were modeled and simulated with FRAPCON-3.4a steady state fuel performance code and the FRAPTRAN-1.4 fuel transient code was used to calculate transient fuel behavior. The analysis included the changes in the important nuclear fuel design limitations such as the centerline temperature, cladding stress, strain and oxidation with the change in pellet–cladding gap thickness and initial pellet–cladding gap gas

  15. Temperature distribution determination of JPSR power reactor fuel element and cladding

    International Nuclear Information System (INIS)

    Sudarmono

    1996-01-01

    In order to utilize of fuel rod efficiency, a concept of JAERI passive Safety Reactor (JPSR) has been developed in Japan Atomic Energy Research Institute. In the JPSR design, UO 2 . are adopted as a fuel rod. The temperature distribution in the fuel rod and cladding in the hottest channel is a potential limiting design constraint of the JPSR. In the present determination, temperature distribution of the fuel rod and cladding for JPSR were PET:formed using COBRA-IV-I to evaluate the safety margin of the present JPSR design. In this method, the whole core was represented by the 1/4 sector and divided into 50 subchannels and 40 axial nodes. The temperature become maximum at the elevation of 1.922 and 2.196 m in the typical cell under operating condition. The maximum temperature in the center of the fuel rod surface of the fuel rod and cladding were 1620,4 o C, 722,8 o C, and 348,6 o C. The maximum results of temperature in the center of the fuel rod and cladding; were 2015,28 o C and 550 o C which were observed at 3.1 second in the typical cell

  16. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    The technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel are summarized. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. Dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved about 15,000 fuel rods, and about 5600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570 0 C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at about 270 0 C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the US. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380 0 C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400 0 C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved

  17. Contribution to numerical and mechanical modelling of pellet-cladding interaction in nuclear reactor fuel rod

    International Nuclear Information System (INIS)

    Retel, V.

    2002-12-01

    Pressurised water reactor fuel rods (PWR) are the place of nuclear fission, resulting in unstable and radioactive elements. Today, the mechanical loading on the cladding is harder and harder and is partly due to the fuel pellet movement. Then, the mechanical behaviour of the cladding needs to be simulated with models allowing to assess realistic stress and strain fields for all the running conditions. Besides, the mechanical treatment of the fuel pellet needs to be improved. The study is part of a global way of improving the treatment of pellet-cladding interaction (PCI) in the 1D finite elements EDF code named CYRANO3. Non-axisymmetrical multidirectional effects have to be accounted for in a context of unidirectional axisymmetrical finite elements. The aim of this work is double. Firstly a model simulating the effect of stress concentration on the cladding, due to the opening of the radial cracks of fuel, had been added in the code. Then, the fragmented state of fuel material has been taken into account in the thermomechanical calculation, through a model which led the strain and stress relaxation in the pellet due to the fragmentation, be simulated. This model has been implemented in the code for two types of fuel behaviour: elastic and viscoplastic. (author)

  18. Potential impacts of crud deposits on fuel rod behaviour on high powered PWR fuel rods

    International Nuclear Information System (INIS)

    Wilson, W.; Comstock, R.J.

    1999-01-01

    Fuel assemblies operating with significant sub-cooled boiling are subject to deposition of surface deposits commonly referred to as crud. This crud can potentially cause concentration of chemical species within the deposits which can be detrimental to cladding performance in PWRs. In addition, these deposits on the surface of the cladding can result in power anomalies and erroneous reporting of fuel rod oxide thickness which can substantially hamper corrosion and core performance modeling efforts. Data is presented which illustrates the importance of accounting for the presence of crud on fuel cladding surfaces. Several methods used to correct for this phenomenon when collecting and analyzing zirconium alloy field oxide thickness measurements are described. Various observations related to crud characteristics and its impact on fuel rod performance are also addressed. (author)

  19. The M5 Fuel Rod Cladding

    International Nuclear Information System (INIS)

    Mardon, J.P.; Charquet, D.; Senevat, J.

    1998-01-01

    The large-scale program for the development and irradiation of new Zr alloys started by FRAMATOME and its industrial partners CEZUS and ZIRCOTUBE more than 10 years ago is now enabling FRAGEMA to offer the ternary M5 (ZrNbO) as the cladding material for PWR advanced fuel rods. Compared with the former product (low-tin-Zircaloy-4), this alloy exhibits impressive gains under irradiation at extended burnup (55 GWd/t) relatively to corrosion (factor 3 to 4), hydriding (factor 5 to 6), growth and creep (factor 2 to 3). In this paper, we shall successively address: - the industrial development and manufacturing experience - the corrosion, hydriding, creep and growth performances obtained over a wide range of PWR normal irradiation conditions (France and other countries) up to burnups of 55 GWd/t - The interpretation of these results by means of analytical experiments conducted in test reactors (free growth, creep) and microstructural observations on the irradiated material - and the behaviour under accident (LOCA) and severe environment and irradiation (Li, boiling) conditions. (Author)

  20. Mechanical modelling of transient- to- failure SFR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2014-07-01

    The response of Sodium Fast Reactor (SFR) fuel rods to transient accident conditions is an important safety concern. During transients the cladding strain caused by the stress due to pellet cladding mechanical interaction (PCMI) can lead to failure. Due to the fact that SFR fuel rods are commonly clad with strengthened material made of stainless steel (SS), cladding is usually treated as an elastic-perfectly-plastic material. However, viscoplastic behaviour can contribute to mechanical strain at high temperature (> 1000 K). (Author)

  1. Internal hydriding in irradiated defected Zircaloy fuel rods: A review (LWBR Development Program)

    International Nuclear Information System (INIS)

    Clayton, J.C.

    1987-10-01

    Although not a problem in recent commercial power reactors, including the Shippingport Light Water Breeder Reactor, internal hydriding of Zircaloy cladding was a persistent cause of gross cladding failures during the 1960s. It occurred in the fuel rods of water-cooled nuclear power reactors that had a small cladding defect. This report summarizes the experimental findings, causes, mechanisms, and methods of minimizing internal hydriding in defected Zircaloy-clad fuel rods. Irradiation test data on the different types of defected fuel rods, intentionally fabricated defected and in-pile operationally defected rods, are compared. Significant factors affecting internal hydriding in defected Zircaloy-clad fuel rods (defect hole size, internal and external sources of hydrogen, Zircaloy cladding surface properties, nickel alloy contamination of Zircaloy, the effect of heat flux and fluence) are discussed. Pertinent in-pile and out-of-pile test results from Bettis and other laboratories are used as a data base in constructing a qualitative model which explains hydrogen generation and distribution in Zircaloy cladding of defected water-cooled reactor fuel rods. Techniques for minimizing internal hydride failures in Zircaloy-clad fuel rods are evaluated

  2. Numerical solution of the elastic non-axial contact between pellet and cladding of fuel rod in PWR

    International Nuclear Information System (INIS)

    Zymak, J.

    1987-08-01

    Elastic non-axial contacts between the pellet and the cladding of a fuel rod in a pressurized water reactor were calculated. The existence and the uniqueness of the solution were proved. The problem was approximated by the finite element method and quadratic programming was used for the solution. The results will be used in the solution of the probabilistic model of a fuel rod with non-axial pellets in a PWR. (author). 10 figs., 4 tabs., 10 refs

  3. IFPE/IFA-432, Fission Gas Release, Mechanical Interaction BWR Fuel Rods, Halden

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    1996-01-01

    Description: It contains data from experiments that have been performed at the IFE/OECD Halden Reactor Project, available for use in fuel performance studies. It covers experiments on thermal performance, fission product release, clad properties and pellet clad mechanical interaction. It includes also experimental data relevant to high burn-up behaviour. IFA-432: Measurements of fuel temperature response, fission gas release and mechanical interaction on BWR-type fuel rods up to high burn-ups. The assembly featured several variations in rod design parameters, including fuel type, fuel/cladding gap size, fill gas composition (He and Xe) and fuel stability. It contained 6 BWR-type fuel rods with fuel centre thermocouples at two horizontal planes, rods were also equipped with pressure transducers and cladding extensometers. Only data from 6 rods are compiled here

  4. Mechanical behaviour of PWR fuel rods during intermediate storage

    International Nuclear Information System (INIS)

    Bouffioux, P.; Dalmas, R.; Bernaudat, C.

    2000-01-01

    EDF, which owns the irradiated fuel coming from its NPPs, has initiated studies regarding the mechanical behaviour of a fuel rod and the integrity of its cladding, in the case where the spent fuel is stored for a significant duration. During the phases following in-reactor irradiation (ageing in a water-pool, transport and intermediate storage), many phenomena, which are strongly coupled, may influence the cladding integrity: - residual power and temperature decay; - helium production and release in the free volume of the rod (especially for MOX fuel); - fuel column swelling; - cladding creep-out under the inner gas pressure of the fuel rod; - metallurgical changes due to high temperatures during transportation. In parallel, the quantification of the radiological risk is based on the definition of a cladding integrity criterion. Up to now, this criterion requires that the clad hoop strain due to creep-out does not exceed 1%. A more accurate criterion is being investigated. The study and modelling of all the phenomena mentioned above are included in a R and D programme. This programme also aims at redefining the cladding integrity criterion, which is assumed to be too conservative. The R and D programme will be presented. In order to predict the overall behaviour of the rod during the intermediate storage phases, the AVACYC code has been developed. It includes the models developed in the R and D programme. The input data of the AVACYC code are provided by the results of in-reactor rod behaviour simulations, using the thermal-mechanical CYRANO3 code. Its main results are the evolution vs. time of hoop stresses in the cladding, rod internal pressure and cladding hoop strains. Chained CYRANO-AVACYC calculations have been used to simulate the behaviour of MOX fuel rods irradiated up to 40 GWd/t and stored under air during 100 years, or under water during 50 years. For such fuels, where the residual power remains high, we show that a large part of the cladding strain

  5. Stainless steel clad for light water reactor fuels. Final report

    International Nuclear Information System (INIS)

    Rivera, J.E.; Meyer, J.E.

    1980-07-01

    Proper reactor operation and design guidelines are necessary to assure fuel integrity. The occurrence of fuel rod failures for operation in compliance with existing guidelines suggests the need for more adequate or applicable operation/design criteria. The intent of this study is to develop such criteria for light water reactor fuel rods with stainless steel clad and to indicate the nature of uncertainties in its development. The performance areas investigated herein are: long term creepdown and fuel swelling effects on clad dimensional changes and on proximity to clad failure; and short term clad failure possibilities during up-power ramps

  6. FRACAS: a subcode for the analysis of fuel pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    Bohn, M.P.

    1977-04-01

    This report describes FRACAS (Fuel Rod and Cladding Analysis Subcode), a computer code which performs the mechanical analysis in the FRAP fuel rod codes. At each loadstep, FRACAS obtains a complete elastic-plastic-creep solution for the stresses, strains, and displacements in the fuel rod cladding. The cladding is modeled as a thin cylindrical shell with prescribed temperature, pressures, and radial displacement of the inside surface. The displacement of the fuel pellets is assumed to be due to thermal gradients only. Three different regimes of pellet-cladding mechanical interaction are considered: (a) open gap, (b) closed gap, and (c) trapped stack. Both transient and steady state creep calculations are performed. The capabilities of the code are illustrated by an example problem, and comparisons are made with data obtained from two experimental fuel rods

  7. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  8. Fuel rod failure detection method and system

    International Nuclear Information System (INIS)

    Assmann, H.; Janson, W.; Stehle, H.; Wahode, P.

    1975-01-01

    The inventor claims a method for the detection of a defective fuel rod cladding tube or of inleaked water in the cladding tube of a fuel rod in the fuel assembly of a pressurized-water reactor. The fuel assembly is not disassembled but examined as a whole. In the examination, the cladding tube is heated near one of its two end plugs, e.g. with an attached high-frequency inductor. The water contained in the cladding tube evaporates, and steam bubbles or a condensate are detected by the ultrasonic impulse-echo method. It is also possible to measure the delay of the temperature rise at the end plug or to determine the cooling energy required to keep the end plug temperature stable and thus to detect water ingression. (DG/AK) [de

  9. Evaluation of LWR fuel rod behavior under operational transient conditions

    International Nuclear Information System (INIS)

    Nakamura, M.; Hiramoto, K.; Maru, A.

    1984-01-01

    To evaluate the effects of fission gas flow and diffusion in the fuel-cladding gap on fuel rod thermal and mechanical behaviors in light water reactor (LWR) fuel rods under operational transient conditions, computer sub-programs which can calculate the gas flow and diffusion have been developed and integrated into the LWR fuel rod performance code BEAF. This integrated code also calculates transient temperature distribution in the fuel-pellet and cladding. The integrated code was applied to an analysis of Inter Ramp Project data, which showed that by taking into account the gas flow and diffusion effects, the calculated cladding damage indices predicted for the failed rods in the ramp test were consistent with iodine-SCC (Stress Corrosion Cracking) failure conditions which were obtained from out-of-reactor pressurized tube experiments with irradiated Zircaloy claddings. This consistency was not seen if the gas flow and diffusion effects were neglected. Evaluation were also made for the BWR 8x8 RJ fuel rod temperatures under power ramp conditions. (orig.)

  10. Experimental studies of resistance fretting-wear of fuel rods for VVER-1000 and TVS-KVADRAT fuel assemblies

    International Nuclear Information System (INIS)

    Makarov, V.; Afanasiev, A.; Egorov, Yu.; Matvienko, I.

    2015-01-01

    The paper covers the results of the studies performed to justify the wear resistance of fuel rods in contact with the spacer grids of TVS VVER-1000 fuel assembly and TVS-KVADRAT square fuel assembly of Russian design for PWR-900 reactor. The presented results of three testing stages comprise: Testing of mockup fuel rods of VVER TVS fuel assembly for fretting wear under the conditions of the water chemistry of VVER reactor; Testing models of different design embodiments of the fuel rods for VVER TVS fuel assembly for fretting wear in still cold water; Testing mockup fuel rods of TVS-KVADRAT square fuel assembly for PWR reactor for frettingwear under the conditions of PWR water chemistry. The effect of structural and operational factors was determined (amplitudes, fuel rod vibration frequencies, values of cladding-to-spacer grid cell gap for the depth of fuel rod cladding wear etc.), an assessment was made of the threshold values of fuel rod vibration parameters, which, if not exceeded, provide the absence of the fuel rod cladding fretting wear in the fuel rod-to spacer grid contact area. Key words: fretting wear, fuel rod, spacer grid, VVER, PWR (author)

  11. The pellet-cladding contact in a fuel rod and its simulation by finite elements

    International Nuclear Information System (INIS)

    Tanajura, C.A.S.

    1988-01-01

    A model to analyse the mechanical behavior of a fuel rod of a PWR is presented. We drew our attention to the phenomenon of pellet-pellet and pellet-cladding contact by taking advantage of a model which assumes the hypotheses of axisymmetry, elastic behavior with infinitesimal deformations and changes of the material properties with temperature. It also includes the effects of swelling and initial relocation. The problem of contact gives rise to a variational formulation which employs Lagrangian multipliers. With this approach an iterative scheme is constructed to obtain the solution. The finite element method is applied to space discretization. The model sensibility to some parameters and its performance concerning fuel rod behavior is discussed by means of numerical simulations. (author) [pt

  12. Change in geometrical parameters of WWER high burnup fuel rods under operational conditions and transient testing

    International Nuclear Information System (INIS)

    Kanashov, B.; Amosov, S.; Lyadov, G.; Markov, D.; Ovchinnikov, V; Polenok, V.; Smirnov, A.; Sukhikh, A.; Bek, E.; Yenin, A.; Novikov, V.

    2001-01-01

    The paper discusses changes in fuel rods geometric parameters as result of operation conditions and burnups. The degree of geometry variability of fuel rods, cladding and column is one of the most important characteristics affecting fuel serviceability. On the other hand, changes in fuel rod geometric parameters influence fuel temperature, fission gas release, fuel-to-cladding stress strained state as well as the degree of interaction with FA skeleton elements and skeleton rigidity. Change in fuel-to-cladding gap is measured using compression technique. The axial distribution of fuel-to-cladding gap demonstrates the largest decrease of the gap in the region 500 to 2000 mm from the bottom of the fuel rod (WWER-440) and in the region of 500 to 3000 mm for WWER-1000. The cladding material creep in WWER fuel rods together with the radiation growth results in fuel rod cladding elongation. A set of transient tests for spent WWER-440 and WWER-1000 fuel rods carried out in SSC RIAR during a period 1995-1999, with the aim to estimate the changes in geometric parameters of FRs. The estimation of changes in outer diameter of cladding and fuel column and fuel-to-cladding gap are performed in transient conditions (changes in linear power range of 180 to 400 W/cm) for both WWER-440 and WWER-1000. WWER-440 fuel rods having the same burnup and close fuel-cladding contact before testing are subjected to considerable hoop cladding strain in testing up to 300 W/cm. But the hoop strain does not grow due to the structural changes in fuel column and decrease in central hole diameter occurred when the power is higher

  13. A comparison of thermal algorithms of fuel rod performance code systems

    International Nuclear Information System (INIS)

    Park, C. J.; Park, J. H.; Kang, K. H.; Ryu, H. J.; Moon, J. S.; Jeong, I. H.; Lee, C. Y.; Song, K. C.

    2003-11-01

    The goal of the fuel rod performance is to identify the robustness of a fuel rod with cladding material. Computer simulation of the fuel rod performance becomes one of important parts to designed and evaluate new nuclear fuels and claddings. To construct a computing code system for the fuel rod performance, several algorithms of the existing fuel rod performance code systems are compared and are summarized as a preliminary work. Among several code systems, FRAPCON, and FEMAXI for LWR, ELESTRES for CANDU reactor, and LIFE for fast reactor are reviewed. Thermal algorithms of the above codes are investigated including methodologies and subroutines. This work will be utilized to construct a computing code system for dry process fuel rod performance

  14. A comparison of thermal algorithms of fuel rod performance code systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, C. J.; Park, J. H.; Kang, K. H.; Ryu, H. J.; Moon, J. S.; Jeong, I. H.; Lee, C. Y.; Song, K. C

    2003-11-01

    The goal of the fuel rod performance is to identify the robustness of a fuel rod with cladding material. Computer simulation of the fuel rod performance becomes one of important parts to designed and evaluate new nuclear fuels and claddings. To construct a computing code system for the fuel rod performance, several algorithms of the existing fuel rod performance code systems are compared and are summarized as a preliminary work. Among several code systems, FRAPCON, and FEMAXI for LWR, ELESTRES for CANDU reactor, and LIFE for fast reactor are reviewed. Thermal algorithms of the above codes are investigated including methodologies and subroutines. This work will be utilized to construct a computing code system for dry process fuel rod performance.

  15. Nuclear fuel rods

    International Nuclear Information System (INIS)

    Wada, Toyoji.

    1979-01-01

    Purpose: To remove failures caused from combination of fuel-cladding interactions, hydrogen absorptions, stress corrosions or the likes by setting the quantity ratio of uranium or uranium and plutonium relative to oxygen to a specific range in fuel pellets and forming a specific size of a through hole at the center of the pellets. Constitution: In a fuel rods of a structure wherein fuel pellets prepared by compacting and sintering uranium dioxide, or oxide mixture consisting of oxides of plutonium and uranium are sealed with a zirconium metal can, the ratio of uranium or uranium and plutonium to oxygen is specified as 1 : 2.01 - 1 : 2.05 in the can and a passing hole of a size in the range of 15 - 30% of the outer diameter of the fuel pellet is formed at the center of the pellet. This increases the oxygen partial pressure in the fuel rod, oxidizes and forms a protection layer on the inner surface of the can to control the hydrogen absorption and stress corrosion. Locallized stress due to fuel cladding interaction (PCMI) can also be moderated. (Horiuchi, T.)

  16. Examination of Zircaloy-clad spent fuel after extended pool storage

    International Nuclear Information System (INIS)

    Bradley, E.R.; Bailey, W.J.; Johnson, A.B. Jr.; Lowry, L.M.

    1981-09-01

    This report presents the results from metallurgical examinations of Zircaloy-clad fuel rods from two bundles (0551 and 0074) of Shippingport PWR Core 1 blanket fuel after extended water storage. Both bundles were exposed to water in the reactor from late 1957 until discharge. The estimated average burnups were 346 GJ/kgU (4000 MWd/MTU) for bundle 0551 and 1550 GJ/kgU (18,000 MWd/MTU) for bundle 0074. Fuel rods from bundle 0551 were stored in deionized water for nearly 21 yr prior to examination in 1980, representing the world's oldest pool-stored Zircaloy-clad fuel. Bundle 0074 has been stored in deionized water since reactor discharge in 1964. Data from the current metallurgical examinations enable a direct assessment of extended pool storage effects because the metallurgical condition of similar fuel rods was investigated and documented soon after reactor discharge. Data from current and past examinations were compared, and no significant degradation of the Zircaloy cladding was indicated after almost 21 yr in water storage. The cladding dimensions and mechanical properties, fission gas release, hydrogen contents of the cladding, and external oxide film thicknesses that were measured during the current examinations were all within the range of measurements made on fuel bundles soon after reactor discharge. The appearance of the external surfaces and the microstructures of the fuel and cladding were also similar to those reported previously. In addition, no evidence of accelerated corrosion or hydride redistribution in the cladding was observed

  17. Apparatus for inspecting a irradiated nuclear fuel rod

    International Nuclear Information System (INIS)

    Saura, Hideaki; Yonemura, Eizo.

    1975-01-01

    Object: To increase safety and inspection efficiency by operating irradiated fuel rods, which are accommodated in a water-filled pool after being taken out from the reactor. Structure: When making inspection of irradiated fuel rods, particularly the cladding tube thereof, a fuel box which stores irradiated fuel rods in a water pool is secured to a securement mechanism with slime removal apparatus and inspection apparatus on either side capable of being vertically moved, and it is then stopped at a water depth of about 2 meters. When the lid of the box is opened, irradiated fuel rods are taken out with gripping means and then secured together with the gripping means to an operation base provided on the outside of the pool. Thereafter, the box is lowered by operating pedals on the operation base to completely pull out the irradiated fuel rods from the box, and the irradiated fuel rods are then horizontally moved and then held in a suspended state. Next a slime removal apparatus in raised by operating pedals and an inspection element assembly are progressively raised for inspection of the state of the cladding tube of each fuel rod after removal of slime therefrom. (Nakamura, S.)

  18. SEFLEX - fuel rod simulator effects in flooding experiments. Pt. 2

    International Nuclear Information System (INIS)

    Ihle, P.; Rust, K.

    1986-03-01

    This report presents typical data and a limited heat transfer analysis from unblocked bundle reflood tests of an experimental thermal-hydraulic program. Full-length bundles of 5 x 5 fuel rod simulators having a gas-filled gap between the Zy cladding and the alumina pellets were tested in the test rig designed for the earlier Flooding Experiments with Blocked Arrays (FEBA-program). The 5 x 5 FEBA rod bundle tests were performed with gapless heater rods. These rods have a close thermal contact between the stainless steel cladding and the electric insulation material. A comparison of the SEFLEX data with the reference data of FEBA obtained under identical initial and reflood conditions shows the influence of different fuel rod simulators on the thermal-hydraulic behavior during forced feed bottom reflooding of unblocked and blocked arrays. Compared to bundles of gapless rods, bundles of rods with Zy claddings and a gas filled gap between claddings and pellets, which more closely represent the features that exist in an actual fuel rod geometry, produced higher quench front velocities, enhanced removal of stored heat in the rods, reduced peak cladding temperatures, increased grid spacer effects and absolutely unproblematic coolability of 90 percent blockages with bypass. The data offer the opportunity for further validation of computer codes to make realistic predictions of safety margins during a LOCA in a PWR. (orig./HP) [de

  19. SEFLEX fuel rod simulator effects in flooding experiments. Pt. 3

    International Nuclear Information System (INIS)

    Ihle, P.; Rust, K.

    1986-03-01

    This report presents typical data and a limited heat transfer analysis from blocked bundle reflood tests of an experimental thermal-hydraulic program. Full-length bundles of 5x5 fuel rod simulators having a gas-filled gap between the Zy cladding and the alumina pellets were tested in the test rig designed for the earlier Flooding Experiments with Blocked Arrays (FEBA-program). The 5x5 FEBA rod bundle tests were performed with gapless heater rods. These rods have a close thermal contact between the stainless steel cladding and the electric insulation material. A comparison of the SEFLEX data with the reference data of FEBA obtained under identical initial and reflood conditions shows the influence of different fuel rod simulators on the thermal-hydraulic behavior during forced feed bottom reflooding of unblocked and blocked arrays. Compared to bundles of gapless rods, bundles of rods with Zy claddings and a gas filled gap between claddings and pellets, which more closely represent the features that exist in an actual fuel rod geometry, produced higher quench front velocities, enhanced removal of stored heat in the rods, reduced peak cladding temperatures, increased grid spacer effects and absolutely unproblematic coolability of 90 percent blockages with bypass. The data offer the opportunity for further validation of computer codes to make realistic predictions of safety margins during a LOCA in a PWR. (orig./HP) [de

  20. Status and development of RBMK fuel rods and reactor materials

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Reshetnikov, F.G.; Ioltukhovsky, A.G.

    1998-01-01

    The paper presents current status and development of RBMK fuel rods and reactor materials. With regard to fuel rod cladding the following issues have been discussed: corrosion, tensile properties, welding technology and testing of an alternative cladding alloy with a composition of Zr-Nb-Sn-Fe. Erbium doped fuel has been suggested for safety improvement. Also analysis of fuel reliability is presented in the paper. (author)

  1. Multidimensional simulations of hydrides during fuel rod lifecycle

    International Nuclear Information System (INIS)

    Stafford, D.S.

    2015-01-01

    In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim. - Highlights: • We extend BISON fuel performance code to simulate lifecycle of fuel rods. • We model hydrogen evolution in cladding from reactor through dry storage. • We validate 1D simulations of hydrogen evolution against experiments. • We show results of 2D axisymmetric simulations predicting hydride formation. • We show how our model predicts formation of a hydride rim in the cladding.

  2. Calculation of thermoelastic stresses in the rewetting region of the fuel rod cladding during a loss of coolant accident (loca)

    International Nuclear Information System (INIS)

    Roberty, N.C.; Carmo, E.G.D. do; Tanajura, C.A.S.

    1982-01-01

    A one-dimensional model for axial distribution calculation of temperature and thermal stresses in the fuel rod cladding for a Pressurized Water Reactors (PWR) is developed. The effect of the coolant inlet temperaure, the Leidenfrost and the nucleate boiling in the stress distribution are evaluated. A perturbation in the cladding stress state is obtained. (E.G.) [pt

  3. End-of-life destructive examination of light water breeder reactor fuel rods (LWBR Development Program)

    International Nuclear Information System (INIS)

    Richardson, K.D.

    1987-10-01

    Destructive examination of 12 representative Light Water Breeder Reactor fuel rods was performed following successful operation in the Shippingport Atomic Power Station for 29,047 effective full power hours, about five years. Light Water Breeder Reactor fuel rods were unique in that the thorium oxide and uranium-233 oxide fuel was contained within Zircaloy-4 cladding. Destructive examinations included analysis of released fission gas; chemical analysis of the fuel to determine depletion, iodine, and cesium levels; chemical analysis of the cladding to determine hydrogen, iodine, and cesium levels; metallographic examination of the cladding, fuel, and other rod components to determine microstructural features and cladding corrosion features; and tensile testing of the irradiated cladding to determine mechanical strength. The examinations confirmed that Light Water Breeder Reactor fuel rod performance was excellent. No evidence of fuel rod failure was observed, and the fuel operating temperature was low (below 2580 0 F at which an increased percentage of fission gas is released). 21 refs., 80 figs., 20 tabs

  4. Adaptation of fuel code for light water reactor with austenitic steel rod cladding

    International Nuclear Information System (INIS)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira; Giovedi, Claudia

    2015-01-01

    Light water reactors were used with steel as nuclear fuel cladding from 1960 to 1980. The high performance proved that the use of low-carbon alloys could substitute the current zirconium alloys. Stainless steel is an alternative that can be used as cladding. The zirconium alloys replaced the steel. However, significant experiences in-pile occurred, in commercial units such as Haddam Neck, Indian Point, and Yankee experiences. Stainless Steel Types 347 and 348 can be used as cladding. An advantage of using Stainless Steel was evident in Fukushima when a large number of hydrogens was produced at high temperatures. The steel cladding does not eliminate the problem of accumulating free hydrogen, which can lead to a risk of explosion. In a boiling water reactor, environments easily exist for the attack of intergranular corrosion. The Stainless Steel alloys, Types 321, 347, and 348, are stabilized against attack by the addition of titanium, niobium, or tantalum. The steel Type 348 is composed of niobium, tantalum, and cobalt. Titanium preserves type 321, and niobium additions stabilize type 347. In recent years, research has increased on studying the effects of irradiation by fast neutrons. The impact of radiation includes changes in flow rate limits, deformation, and ductility. The irradiation can convert crystalline lattices into an amorphous structure. New proposals are emerging that suggest using a silicon carbide-based fuel rod cladding or iron-chromium-aluminum alloys. These materials can substitute the classic zirconium alloys. Once the steel Type 348 was chosen, the thermal and mechanical properties were coded in a library of functions. The fuel performance codes contain all features. A comparative analysis of the steel and zirconium alloys was made. The results demonstrate that the austenitic steel alloys are the viable candidates for substituting the zirconium alloys. (author)

  5. Adaptation of fuel code for light water reactor with austenitic steel rod cladding

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    Light water reactors were used with steel as nuclear fuel cladding from 1960 to 1980. The high performance proved that the use of low-carbon alloys could substitute the current zirconium alloys. Stainless steel is an alternative that can be used as cladding. The zirconium alloys replaced the steel. However, significant experiences in-pile occurred, in commercial units such as Haddam Neck, Indian Point, and Yankee experiences. Stainless Steel Types 347 and 348 can be used as cladding. An advantage of using Stainless Steel was evident in Fukushima when a large number of hydrogens was produced at high temperatures. The steel cladding does not eliminate the problem of accumulating free hydrogen, which can lead to a risk of explosion. In a boiling water reactor, environments easily exist for the attack of intergranular corrosion. The Stainless Steel alloys, Types 321, 347, and 348, are stabilized against attack by the addition of titanium, niobium, or tantalum. The steel Type 348 is composed of niobium, tantalum, and cobalt. Titanium preserves type 321, and niobium additions stabilize type 347. In recent years, research has increased on studying the effects of irradiation by fast neutrons. The impact of radiation includes changes in flow rate limits, deformation, and ductility. The irradiation can convert crystalline lattices into an amorphous structure. New proposals are emerging that suggest using a silicon carbide-based fuel rod cladding or iron-chromium-aluminum alloys. These materials can substitute the classic zirconium alloys. Once the steel Type 348 was chosen, the thermal and mechanical properties were coded in a library of functions. The fuel performance codes contain all features. A comparative analysis of the steel and zirconium alloys was made. The results demonstrate that the austenitic steel alloys are the viable candidates for substituting the zirconium alloys. (author)

  6. Mechanical and temperature contact in fuel rod cladding

    International Nuclear Information System (INIS)

    Fredriksson, B.E.; Rydholm, S.G.

    1977-01-01

    The paper presents results for the effect of different types of slip rules on the contact stress distribution. It is shown that the contact shear stress is smaller for the hardening model than for the ideal model. It is also shown that a crack in the fuel increases the contact stresses and that at temperature decrease high tensile stresses arise after eventual welding. It is also shown how particles between fuel and cladding influence the stresses. Also here the effect of eventual welding is studied. The present method is well suited to study cracks and crack propagation. The surfaces of the existing cracks are defined as contact surfaces and the crack extension work is calculated by releasing the nodes at the crack tip. As the crack surfaces are defined as contact surfaces eventual crack closure is automatically taken into account. Crack extension work is calculated for existing cracks in the cladding. It is shown that cracks in the fuel and particles between fuel and cladding will increase the crack extension work

  7. Investigation of in-pile formed corrosion films on zircaloy fuel-rod claddings by impedance spectroscopy and galvanostatic anodization

    International Nuclear Information System (INIS)

    Gebhardt, O.

    1993-01-01

    Hot-cell investigations have been executed to study the corrosion behaviour of irradiated Zircaloy fuel-rod claddings by impedance spectroscopy and galvanostatic anodization. The thickness of the compact oxide at the metal/oxide interface and the thickness of the minimum barrier oxide have been determined at different positions along the claddings. As shown by analysis, both quantities first increase and then decrease with increasing thickness of the total oxide. (author) 6 figs., 33 refs

  8. Analysis of the Behavior of CAREM-25 Fuel Rods Using Computer Code BACO

    International Nuclear Information System (INIS)

    Estevez, Esteban; Markiewicz, Mario; Marino, Armando

    2000-01-01

    The thermo-mechanical behavior of a fuel rod subjected to irradiation is a complex process, on which a great quantity of interrelated physical-chemical phenomena are coupled.The code BACO simulates the thermo-mechanical behavior and the evolution of fission gases of a cylindrical rod in operation.The power history of fuel rods, arising from neutronic calculations, is the program input.The code calculates, among others, the temperature distribution and the principal stresses in the pellet and cladding, changes in the porosity and restructuring of pellet, the fission gases release, evolution of the internal gas pressure.In this work some of design limits of CAREM-25's fuel rods are analyzed by means of the computer code BACO.The main variables directly related with the integrity of the fuel rod are: Maximum temperature of pellet; Cladding hoop stresses; Gases pressure in the fuel rod; Cladding axial and radial strains, etc.The analysis of results indicates that, under normal operation conditions, the maximum fuel pellet temperature, cladding stresses, pressure of gases at end of life, etc, are below the design limits considered for the fuel rod of CAREM-25 reactor

  9. Model investigation of fuel rod behaviour

    International Nuclear Information System (INIS)

    Girgis, M.M.; Wiesenack, W.; Stegemann, D.

    1985-06-01

    Thermal and mechanical behaviour of fuel rods can be explained but unsatisfactorily by models based of an axial symmetry concept. Recently developed models include, with respect to their thermal components, a simple method for the computation of the temperature distribution within the fuel, and they also take into account the influence of excentrically placed pellets for the computation of heat transfer in the cold gap. Additionally, a finite-element model is used to evaluate the effects of cracking and fragmentation on the thermal behaviour of pellets. The reaction of fuel and fuel cladding to external and internal loadings and the axial interaction between fuel and cladding are described in the mechanical portion of the model. A special case of axial coupling is the so-called random stacking interaction caused by fuel pellets placed excentrically at the cladding and sliding radially and axially. In the comparison of measurement results, both thermal and mechanical behaviour of different rods from the OECD Halden Reactor Project are subject to investigations. (RF) [de

  10. Mechanical stress analysis for a fuel rod under normal operating conditions

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Giovedi, Claudia; Serra, Andre da Silva; Abe, Alfredo Y.

    2013-01-01

    Nuclear reactor fuel elements consist mainly in a system of a nuclear fuel encapsulated by a cladding material subject to high fluxes of energetic neutrons, high operating temperatures, pressure systems, thermal gradients, heat fluxes and with chemical compatibility with the reactor coolant. The design of a nuclear reactor requires, among a set of activities, the evaluation of the structural integrity of the fuel rod submitted to different loads acting on the fuel rod and the specific properties (dimensions and mechanical and thermal properties) of the cladding material and coolant, including thermal and pressure gradients produced inside the rod due to the fuel burnup. In this work were evaluated the structural mechanical stresses of a fuel rod using stainless steel as cladding material and UO 2 with a low degree of enrichment as fuel pellet on a PWR (pressurized water reactor) under normal operating conditions. In this sense, tangential, radial and axial stress on internal and external cladding surfaces considering the orientations of 0 deg, 90 deg and 180 deg were considered. The obtained values were compared with the limit values for stress to the studied material. From the obtained results, it was possible to conclude that, under the expected normal reactor operation conditions, the integrity of the fuel rod can be maintained. (author)

  11. Damage and failure of unirradiated and irradiated fuel rods tested under film boiling conditions

    International Nuclear Information System (INIS)

    Mehner, A.S.; Hobbins, R.R.; Seiffert, S.L.; MacDonald, P.E.; McCardell, R.K.

    1979-01-01

    Power-cooling-mismatch experiments are being conducted as part of the Thermal Fuels Behavior Program in the Power Burst Facility at the Idaho National Engineering Laboratory to evaluate the behavior of unirradiated and previously irradiated light water reactor fuel rods tested under stable film boiling conditions. The observed damage that occurs to the fuel rod cladding and the fuel as a result of film boiling operation is reported. Analyses performed as a part of the study on the effects of operating failed fuel rods in film boiling, and rod failure mechanisms due to cladding embrittlement and cladding melting upon being contacted by molten fuel are summarized

  12. Integration of post-irradiation examination results of failed WWER fuel rods

    International Nuclear Information System (INIS)

    Smirnov, A.; Markov, D.; Smirnov, V.; Polenok, V.; Perepelkin, S.

    2003-01-01

    The aim of the work is to investigate the causes of WWER fuel rod failures and to reveal the dependence of the failed fuel rod behaviour and state on the damage characteristics and duration of their operation in the core. The post-irradiation examination of 12 leaky fuel assemblies (5 for WWER-440 and 7 for WWER-1000) has been done at SSC RF RIAR. The results show that the main mechanism responsible for the majority of cases of the WWER fuel rod perforation is debris-damage of the claddings. Debris fretting of the claddings spread randomly over the fuel assembly cross-section and they are registered in the area of the bundle supporting grid or under the lower spacer grids along the fuel assembly height. In the WWER fuel rods, the areas of secondary hydrogenating of cladding are spaced from the primary defects by ∼2500-3000 mm, as a rule, and are often adjacent closely to the upper welded joints. There is no pronounced dependence of the distance between the primary and secondary cladding defects neither on the linear power, at which the fuel rods were operated, nor on the period of their operation in the leaky state. The time period of the significant secondary damage formation is about 250 ± 50 calendar days for the WWER fuel rods with slight through primary defects (∼0.1 - 0.5 mm 2 ) operated in the linear power range 170-215 W/cm. Cladding degradation, taking place due to the secondary hydrogenating, does not occur in case of large through debris-defects during operation up to 600 calendar days

  13. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  14. Fuel assemblies for PWR type reactors: fuel rods, fuel plates. CEA work presentation

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1976-01-01

    French work on PWR type reactors is reported: basic knowledge on Zr and its alloys and on uranium oxide; experience gained on other programs (fast neutron and heavy water reactors); zircaloy-2 or zircaloy-4 clad UO 2 fuel rods; fuel plates consisting of zircaloy-2 clad UO 2 squares of thickness varying between 2 and 4mm [fr

  15. Development of nuclear fuel rod inspection technique using ultrasonic resonance phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myung Sun; Lee, Jong Po; Ju, Young Sang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-11-01

    Acoustic resonance scattering from a nuclear fuel rod in water is analyzed. A new model for the background which is attributed to the interference of reflected wave and diffracted wave is found and here named {sup t}he inherent background{sup .} The resonance spectrum of a fuel rod is obtained by subtracting the inherent background from the scattered pressure. And also analyzed are the effect of material damping of cladding tube and pellet on the resonance spectrum of a fuel rod. The propagation characteristics of circumferential waves which cause the resonances of cladding tube is produced and the appropriate resonance modes for the application to the inspection of assembled fuel rods are selected. The resonance modes are experimentally measured for pre- and post-irradiated fuel rods and the validation of the fuel rod inspection using ultrasonic resonance phenomenon is examined. And thin ultrasonic sensors accessible into the narrow interval (about 2-3mm) between assembled fuel rods are designed and manufactured. 14 refs. (Author).

  16. The development of the fuel rod transient performance analysis code FTPAC

    International Nuclear Information System (INIS)

    Han Zhijie; Ji Songtao

    2014-01-01

    Fuel rod behavior, especially the integrity of cladding, played an important role in fuel safety research during reactor transient and hypothetical accidents conditions. In order to study fuel rod performance under transient accidents, FTPAC (Fuel Transient Performance Analysis Code) has been developed for simulating light water reactor fuel rod transient behavior when power or coolant boundary conditions are rapidly changing. It is composed of temperature, mechanical deformation, cladding oxidation and gas pressure model. The assessment was performed by comparing FTPAC code analysis result to experiments data and FRAPTRAN code calculations. Comparison shows that, the FTPAC gives reasonable agreement in temperature, deformation and gas pressure prediction. And the application of slip coefficient is more suitable for simulating the sliding between pellet and cladding when the gap is closed. (authors)

  17. Detection of defective fuel rods in water reactors - a review

    International Nuclear Information System (INIS)

    Hartog, J.M.

    1980-01-01

    Consideration of the fundamental processes of fission product release within fuel pellets and at the pellet surface, and its transport in the fuel/cladding interspace and from fuel rod to coolant, indicates what radio-nuclides will be detectable in the coolant from small and large cladding failures. A better understanding of the aggregate fission product transport is required to allow reactor operators to interpret signals from detection systems in terms of quantitative cladding deterioration. This needs experimental investigation in a specially instrumented loop, as well as development of a technique to cause a rod to defect deliberately during steady power operation. (author)

  18. FRAPCON-2: A Computer Code for the Calculation of Steady State Thermal-Mechanical Behavior of Oxide Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Berna, G. A; Bohn, M. P.; Rausch, W. N.; Williford, R. E.; Lanning, D. D.

    1981-01-01

    FRAPCON-2 is a FORTRAN IV computer code that calculates the steady state response of light Mater reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, deformation, and tai lure histories of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (a) heat conduction through the fuel and cladding, (b) cladding elastic and plastic deformation, (c) fuel-cladding mechanical interaction, (d) fission gas release, (e} fuel rod internal gas pressure, (f) heat transfer between fuel and cladding, (g) cladding oxidation, and (h) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat transfer correlations. FRAPCON-2 is programmed for use on the CDC Cyber 175 and 176 computers. The FRAPCON-2 code Is designed to generate initial conditions for transient fuel rod analysis by either the FRAP-T6 computer code or the thermal-hydraulic code, RELAP4/MOD7 Version 2.

  19. Irradiation of pressurized water reactor fuel rods in the Forschungsreaktor Juelich 2

    International Nuclear Information System (INIS)

    Gaertner, M.

    1978-10-01

    Test fuel rods have been irradiated in FRJ-2 to study the interaction between fuel and cladding as well as hydride orientation stability in the prehydrided cladding. The fuel rods achieved burn-ups of 3.500 to 10.000 MWd/tU at surface temperatures of 333 0 C and power levels up to 620 W/cm. (orig.) [de

  20. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2013-01-01

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10 −6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  1. BISON Fuel Performance Analysis of IFA-796 Rod 3 & 4 and Investigation of the Impact of Fuel Creep

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sweet, Ryan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace the currently used zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromiumaluminum (FeCrAl) alloys because they exhibit slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and slow cladding consumption in the presence of high temperature steam. These alloys should also exhibit increased “coping time” in the event of an accident scenario by improving the mechanical performance at high temperatures, allowing greater flexibility to achieve core cooling. As a continuation of the development of these alloys, in-reactor irradiation testing of FeCrAl cladded fuel rods has started. In order to provide insight on the possible behavior of these fuel rods as they undergo irradiation in the Halden Boiling Water Reactor, engineering analysis has been performed using FeCrAl material models implemented into the BISON fuel performance code. This milestone report provides an update on the ongoing development of modeling capability to predict FeCrAl cladding fuel performance and to provide an early look at the possible behavior of planned in-reactor FeCrAl cladding experiments. In particular, this report consists of two separate analyses. The first analysis consists of fuel performance simulations of IFA-796 rod 4 and two segments of rod 3. These simulations utilize previously implemented material models for the C35M FeCrAl alloy and UO2 to provide a bounding behavior analysis corresponding to variation of the initial fuel cladding gap thickness within the fuel rod. The second analysis is an assessment of the fuel and cladding stress states after modification of the fuel creep model that is currently implemented in the BISON fuel performance code. Effects from modifying the fuel creep model were identified for the BISON simulations

  2. Fuel rod behavior of a PWR during load following

    International Nuclear Information System (INIS)

    Perrotta, J.A.; Andrade, G.G. de

    1982-01-01

    The behavior of a PWR fuel rod when operating in normal power cycles, excluding in case of accidents, is analysed. A computer code, that makes the mechanical analysis of the cladding using the finite element method was developed. The ramps and power cycles were simulated suposing the existence of cracks in pellets when the cladding-pellet interaction are done. As a result, an operation procedure of the fuel rod in power cycle is recommended. (E.G.) [pt

  3. State of fuel rods spent in the VVER-1000 reactor up to a fuel burnup of 75 MW·Day/KgU

    International Nuclear Information System (INIS)

    Markov, D.; Zvir, E.; Polenok, V.; Zhitelev, V.; Strozhuk, A.; Volkova, I.

    2011-01-01

    The presented material contains the data on change in form, corrosion state and mechanical properties of fuel rod claddings, change in fuel structure and release of gaseous fission products (GFP) under the cladding. The results of PIEs of the VVER-1000 fuel rods with the high burnup of fuel (average value is 72.3 MW·day/kgU and maximum is 75 MW·day/kgU) carried out in JSC 'SSC RIAR' show that by the basic operational characteristics the lifetime of fuel rods with such burnup of fuel is not exhausted. The state of fuel rods is characterized by following key parameters. The fuel-to-cladding gap on the most part of the fuel meat is absent. With the burnup growth, diameter of the fuel rod increases due to fuel meat swelling. In so doing, the reverse strain achieves the values of 0.40-0.47 %. Ridges on the cladding are formed practically along the entire length of the fuel meat, average height of ridges makes up 25 μm, maximum - 40 μm. At burnups exceeding 55 MW·day/kgU, the rate of the fuel rod elongation is less than at low and average burnups. So if within a burnup range of 20-55 MW·day/kgU, the rate of the fuel rod elongation makes up about 0.330mm per 1 MW·day/kgU, at burnups exceeding 55 MW·day/kgU it is only 0.085mm per 1 MW·day/kgU. Corrosion state of the claddings of fuel rods with high burnup of fuel is satisfactory. The oxide film, as a rule, is uniform, dense, without cracks and exfoliation, its thickness on the external surface does not exceed 13 μm, while on the internal surface - 15 μm. Hydrogenation is insignificant, mass fraction of hydrogen does not exceed 0.01 %. Interaction of fuel rods with spacer grids does not result in significant fretting-corrosion. Based of the results of tests, short-term mechanical properties of the claddings of fuel rods with high burnup of fuel remain at high level. The state of fuel is characterized by absence of the fuel-to-cladding gap on the most part of the fuel meat, fuel is tightly fixed to the cladding

  4. Characteristics of WWER-1000 fuel rod claddings and FA components from E635 alloy at burnups up to 72 MWd/kgU

    International Nuclear Information System (INIS)

    Nikulin, A.; Novikov, A.; Peregud, M.; Shishov, V.; Shevyakov, A.; Volkova, I.; Novoselov, A.; Kobylyansky, G.

    2011-01-01

    In this paper operation experience, results of investigated E365 alloy components of Balakovo NPP Unit 1 and Kalinin NPP unit 1 fuel assemblies are presented. Appearance, shape changes and geometric size, corrosion state of guide thimbles, angles and fuel rods, corrosion of fuel claddings are studied. At the end authors concluded that: I) E635 alloy corroborated its high operation reliability as fuel claddings and WWER-1000 FA components during 6 year service to the fuel burnup of 72MWd/kgU; II) Based on the results from the post-irradiation investigations of the fuel rods and other structural elements of WWER-1000 FAA, fabricated from E635 alloy, in terms of the basic operational characteristics, their resources after the 6 year operation cycle have not been exhausted; III) The geometrical parameters, corrosion states, tensile properties of items fabricated from fuel alloy did not attain the values that would prevent their further operation: 1) the elongations of the fuel rods at the mean burnups up to 66.2 MWd/kgU do not exceed 15 mm or 4.9%; 8) the amount of the oxide coat at surface of GT and CT does not exceed 45 μm, the hydrogen content is <0.03% mass; 9) the oxide coat at the surfaces of the frame angles does not exceed 50 μm, the hydrogen content is <0.04% mass

  5. Clad buffer rod sensors for liquid metals

    International Nuclear Information System (INIS)

    Jen, C.-K.; Ihara, I.

    1999-01-01

    Clad buffer rods, consisting of a core and a cladding, have been developed for ultrasonic monitoring of liquid metal processing. The cores of these rods are made of low ultrasonic-loss materials and the claddings are fabricated by thermal spray techniques. The clad geometry ensures proper ultrasonic guidance. The lengths of these rods ranges from tens of centimeters to 1m. On-line ultrasonic level measurements in liquid metals such as magnesium at 700 deg C and aluminum at 960 deg C are presented to demonstrate their operation at high temperature and their high ultrasonic performance. A spherical concave lens is machined at the rod end for improving the spatial resolution. High quality ultrasonic images have been obtained in the liquid zinc at 600 deg C. High spatial resolution is needed for the detection of inclusions in liquid metals during processing. We also show that the elastic properties such as density, longitudinal and shear wave velocities of liquid metals can be measured using a transducer which generates and receives both longitudinal and shear waves and is mounted at the end of a clad buffer rod. (author)

  6. Experimental study of the deformation of Zircaloy PWR fuel rod cladding under mainly convective cooling

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.

    1982-01-01

    Zircaloy-4 cladding specimens 450 mm long were filled with alumina pellets and tested at temperatures between 630 and 915 degree C in flowing steam at atmospheric pressure. Internal test pressures were in the range 0.69 to 11.0 MPa. The length of cladding strained 33 percent or more was greatest (about 20 times the original diameter) when the initial pressure was 1.38/plus or minus/0.17MPa. This results from oxidation strengthening of the surface layers acting as an additional mechanism for stabilizing the deformation or partial superplastic deformation, or both. For adjacent rods in a fuel assembly not to touch at any temperature, the pressure would have to be less than about 1 MPa. These results are compared with those form multirod tests elsewhere, and it is suggested that heat transfer has a dominant effect in determining deformation. The implications for the behavior of fuel elements in a loss-of-coolant accident are outlined. 37 refs

  7. Experimental study of the deformation of Zircaloy PWR fuel rod cladding under mainly convective cooling

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, E.D.; Mann, C.A.

    1982-01-01

    Zircaloy-4 cladding specimens 450 mm long were filled with alumina pellets and tested at temperatures between 630 and 915 degree C in flowing steam at atmospheric pressure. Internal test pressures were in the range 0.69 to 11.0 MPa. The length of cladding strained 33 percent or more was greatest (about 20 times the original diameter) when the initial pressure was 1.38/plus or minus/0.17MPa. This results from oxidation strengthening of the surface layers acting as an additional mechanism for stabilizing the deformation or partial superplastic deformation, or both. For adjacent rods in a fuel assembly not to touch at any temperature, the pressure would have to be less than about 1 MPa. These results are compared with those form multirod tests elsewhere, and it is suggested that heat transfer has a dominant effect in determining deformation. The implications for the behavior of fuel elements in a loss-of-coolant accident are outlined. 37 refs.

  8. Quivers For Special Fuel Rods-Disposal Of Special Fuel Rods In CASTOR V Casks

    International Nuclear Information System (INIS)

    Bannani, Amin; Cebula, Wojciech; Buchmuller, Olga; Huggenberg, Roland; Helmut Kuhl

    2015-01-01

    While GNS casks of the CASTOR family are a suitable means to transfer fuel assemblies (FA) from the NPP to an interim dry storage site, Germanys phase-out of nuclear energy has triggered the demand for an additional solution to dispose of special fuel rods (SFR), normally remaining in the fuel pond until the final shutdown of the NPP. SFR are fuel rods that had to be removed from fuel assemblies mainly due to their special condition, e. g. damages in the cladding of the fuel rods which may have occurred during reactor operations. SFR are usually stored in the spent fuel pond after they are removed from the FA. The quiver for special fuel rods features a robust yet simple design, with a high mechanical stability, a reliable leak-tightness and large safety margins for future requirements on safety analysis. The quiver for special fuel rods can be easily adapted to a large variety of different damaged fuel rods and tailored to the specific need of the customer. The quiver for special fuel rods is adaptable e.g. in length and diameter for use in other types of transport and storage casks and is applicable in other countries as well. The overall concept presented here is a first of its kind solution for the disposal of SFRs via Castor V-casks. This provides an important precondition in achieving the status 'free from nuclear fuel' of the shut down German NPPs

  9. Quivers For Special Fuel Rods-Disposal Of Special Fuel Rods In CASTOR V Casks

    Energy Technology Data Exchange (ETDEWEB)

    Bannani, Amin; Cebula, Wojciech; Buchmuller, Olga; Huggenberg, Roland [GNS, Essen (Germany); Helmut Kuhl [WTI, Julich (Germany)

    2015-05-15

    While GNS casks of the CASTOR family are a suitable means to transfer fuel assemblies (FA) from the NPP to an interim dry storage site, Germanys phase-out of nuclear energy has triggered the demand for an additional solution to dispose of special fuel rods (SFR), normally remaining in the fuel pond until the final shutdown of the NPP. SFR are fuel rods that had to be removed from fuel assemblies mainly due to their special condition, e. g. damages in the cladding of the fuel rods which may have occurred during reactor operations. SFR are usually stored in the spent fuel pond after they are removed from the FA. The quiver for special fuel rods features a robust yet simple design, with a high mechanical stability, a reliable leak-tightness and large safety margins for future requirements on safety analysis. The quiver for special fuel rods can be easily adapted to a large variety of different damaged fuel rods and tailored to the specific need of the customer. The quiver for special fuel rods is adaptable e.g. in length and diameter for use in other types of transport and storage casks and is applicable in other countries as well. The overall concept presented here is a first of its kind solution for the disposal of SFRs via Castor V-casks. This provides an important precondition in achieving the status 'free from nuclear fuel' of the shut down German NPPs.

  10. Determination and microscopic study of incipient defects in irradiated power reactor fuel rods. Final report

    International Nuclear Information System (INIS)

    Pasupathi, V.; Perrin, J.S.; Roberts, E.

    1978-05-01

    This report presents the results of nondestructive and destructive examinations carried out on the Point Beach-1 (PWR) and Dresden-3 (BWR) candidate fuel rods selected for the study of pellet-clad interaction (PCI) induced incipient defects. In addition, the report includes results of examination of sections from Oskarshamn-1 (BWR) fuel rods. Eddy current examination of Point Beach-1 rods showed indications of possible incipient defects in the fuel rods. The profilometry and the gamma scan data also indicated that the source of the eddy current indications may be incipient defects. No failed rods or rods with incipient failure were found in the sample from Point Beach-1. Despite the lack of success in finding incipient defects and filed rods, the mechanism for fuel rod failures in Point Beach-1 is postulated to be PCI-related, with high startup rates and fuel handling being the key elements. Nine out of the 10 candidate fuel rods from Dresden-3 (BWR) were failed, and all the failed rods had leaked water so that the initial mechanism was observed. Examination of clad inner surfaces of the specimens from failed and unfailed rods showed fuel deposits of widely varying appearance. The deposits were found to contain uranium, cesium, and tellurium. Transmission electron microscopy of clad specimens showed evidence of microscopic strain. Metallographic examination of fuel pellets from the peak transient power location showed extensive grain boundary separation and axial movement of the fuel indicative of rapid release of fission products. Examination of Oskarshamn clad specimens did not show any stress corrosion crack (SCC) type defects. The defects found in the examinations appear to be related to secondary hydriding. The clad inner surface of the Oskarshamn specimens also showed uranium-rich deposits of varying features

  11. Zircaloy sheathed thermocouples for PWR fuel rod temperature measurements

    International Nuclear Information System (INIS)

    Anderson, J.V.; Wesley, R.D.; Wilkins, S.C.

    1979-01-01

    Small diameter zircaloy sheathed thermocouples have been developed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory. Surface mounted thermocouples were developed to measure the temperature of zircaloy clad fuel rods used in the Thermal Fuels Behavior Program (TFBP), and embedded thermocouples were developed for use by the Loss-of-Fluid Test (LOFT) Program for support tests using zircaloy clad electrically heated nuclear fuel rod simulators. The first objective of this developmental effort was to produce zircaloy sheathed thermocouples to replace titanium sheathed thermocouples and thereby eliminate the long-term corrosion of the titanium-to-zircaloy attachment weld. The second objective was to reduce the sheath diameter to obtain faster thermal response and minimize cladding temperature disturbance due to thermocouple attachment

  12. Failure probabilities of SiC clad fuel during a LOCA in public acceptable simple SMR (PASS)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@kaist.ac.kr; Kim, Ho Sik, E-mail: hskim25@kaist.ac.kr; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr

    2015-10-15

    Highlights: • Graceful operating conditions of SMRs markedly lower SiC cladding stress. • Steady-state fracture probabilities of SiC cladding is below 10{sup −7} in SMRs. • PASS demonstrates fuel coolability (T < 1300 °C) with sole radiation in LOCA. • SiC cladding failure probabilities of PASS are ∼10{sup −2} in LOCA. • Cold gas gap pressure controls SiC cladding tensile stress level in LOCA. - Abstract: Structural integrity of SiC clad fuels in reference Small Modular Reactors (SMRs) (NuScale, SMART, IRIS) and a commercial pressurized water reactor (PWR) are assessed with a multi-layered SiC cladding structural analysis code. Featured with low fuel pin power and temperature, SMRs demonstrate markedly reduced incore-residence fracture probabilities below ∼10{sup −7}, compared to those of commercial PWRs ∼10{sup −6}–10{sup −1}. This demonstrates that SMRs can serve as a near-term deployment fit to SiC cladding with a sound management of its statistical brittle fracture. We proposed a novel SMR named Public Acceptable Simple SMR (PASS), which is featured with 14 × 14 assemblies of SiC clad fuels arranged in a square ring layout. PASS aims to rely on radiative cooling of fuel rods during a loss of coolant accident (LOCA) by fully leveraging high temperature tolerance of SiC cladding. An overarching assessment of SiC clad fuel performance in PASS was conducted with a combined methodology—(1) FRAPCON-SiC for steady-state performance analysis of PASS fuel rods, (2) computational fluid dynamics code FLUENT for radiative cooling rate of fuel rods during a LOCA, and (3) multi-layered SiC cladding structural analysis code with previously developed SiC recession correlations under steam environments for both steady-state and LOCA. The results show that PASS simultaneously maintains desirable fuel cooling rate with the sole radiation and sound structural integrity of fuel rods for over 36 days of a LOCA without water supply. The stress level of

  13. Effects of cold worked and fully annealed claddings on fuel failure behaviour

    International Nuclear Information System (INIS)

    Saito, Shinzo; Hoshino, Hiroaki; Shiozawa, Shusaku; Yanagihara, Satoshi

    1979-12-01

    Described are the results of six differently heat-treated Zircaloy clad fuel rod tests in NSRR experiments. The purpose of the test is to examine the extent of simulating irradiated claddings in mechanical properties by as-cold worked ones and also the effect of fully annealing on the fuel failure bahaviour in a reactivity initiated accident (RIA) condition. As-cold worked cladding does not properly simulated the embrittlement of the irradiated one in a RIA condition, because the cladding is fully annealed before the fuel failure even in the short transient. Therefore, the fuel behaviour such as fuel failure threshold energy, failure mechanism, cladding deformation and cladding oxidation of the fully annealed cladding fuel, as well as that of the as-cold worked cladding fuel, are not much different from that of the standard stress-relieved cladding fuel. (author)

  14. Influence of fuel-cladding system deviations from the model of continuous cylinders on the parameters of WWER fuel element working ability

    International Nuclear Information System (INIS)

    Scheglov, A.

    1994-01-01

    In the programs of fuel rod computation, fuel and cladding are usually presented in the form of coaxial cylinders, which can change their sizes, mechanical and thermal-physical properties. The real fuel element has some typical deviations from this continuous coaxial cylinders (CCC) model as: axial asymmetry of fuel-cladding system (due to the oval form of the cladding, cracking and other type of fuel pallet damage, axial asymmetry of the volumetric heat release), gaps between the pallets (and heat release peaking in fuel near the gap), chambers in the pallets. As a result of these deviations actual fuel rod parameters of working ability - temperature, stresses, thermal fluxes relieved from the cladding, geometry changes - in some locations can greatly vary from the ones calculated according to CCC model. The influence of these deviations is extremely important while calculating the fuel rod, because they are a part of the mechanical excess coefficient. The author reviews the influence of these factors using specific examples. He applies his own two-dimensional codes based on the Finite Elements Method for calculations of temperature fields, stresses and deformation in the fuel rod elements. It is shown that consideration of these deviations, as a rule, leads to the increase of the maximum fuel temperature in the WWER pellets (characterized by a large central hole), temperature of the cladding, thermal flux, relieved by the coolant from the cladding, and stresses in the cladding. It is necessary to consider these factors for both validation of the fuel element working ability and interpretation of the experimental results. 4 tabs., 3 figs., 5 refs

  15. Influence of fuel-cladding system deviations from the model of continuous cylinders on the parameters of WWER fuel element working ability

    Energy Technology Data Exchange (ETDEWEB)

    Scheglov, A [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    1994-12-31

    In the programs of fuel rod computation, fuel and cladding are usually presented in the form of coaxial cylinders, which can change their sizes, mechanical and thermal-physical properties. The real fuel element has some typical deviations from this continuous coaxial cylinders (CCC) model as: axial asymmetry of fuel-cladding system (due to the oval form of the cladding, cracking and other type of fuel pallet damage, axial asymmetry of the volumetric heat release), gaps between the pallets (and heat release peaking in fuel near the gap), chambers in the pallets. As a result of these deviations actual fuel rod parameters of working ability - temperature, stresses, thermal fluxes relieved from the cladding, geometry changes - in some locations can greatly vary from the ones calculated according to CCC model. The influence of these deviations is extremely important while calculating the fuel rod, because they are a part of the mechanical excess coefficient. The author reviews the influence of these factors using specific examples. He applies his own two-dimensional codes based on the Finite Elements Method for calculations of temperature fields, stresses and deformation in the fuel rod elements. It is shown that consideration of these deviations, as a rule, leads to the increase of the maximum fuel temperature in the WWER pellets (characterized by a large central hole), temperature of the cladding, thermal flux, relieved by the coolant from the cladding, and stresses in the cladding. It is necessary to consider these factors for both validation of the fuel element working ability and interpretation of the experimental results. 4 tabs., 3 figs., 5 refs.

  16. Axial distribution of deformation in the cladding of pressurized water reactor fuel rods in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Rose, K.M.; Mann, C.A.; Hindle, E.D.

    1979-01-01

    In the event of a loss-of-coolant accident in a pressurized water reactor, the cladding of the fuel rods would undergo a temperature excursion while being subject to tensile hoop stress. The deformation behavior of 470-mm lengths of Zircaloy-4 fuel cladding has been studied experimentally; under a range of stress levels in the high-alpha range of zirconium (600 to 850 0 C), diametral strains of up to 70% were observed over the greater part of their length. A negative-feedback mechanism is suggested, based on the reduction of secondary creep rate following cooling by enhanced heat loss at swelling areas. An approximate analysis based on this mechanism was found to be in reasonable agreement with the experimental results. A computer modeling code is being developed to predict cladding deformation under realistic conditions

  17. Axial distribution of deformation in the cladding of pressurized water reactor fuel rods in a loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K.M.; Mann, C.A.; Hindle, E.D.

    1979-12-01

    In the event of a loss-of-coolant accident in a pressurized water reactor, the cladding of the fuel rods would undergo a temperature excursion while being subject to tensile hoop stress. The deformation behavior of 470-mm lengths of Zircaloy-4 fuel cladding has been studied experimentally; under a range of stress levels in the high-alpha range of zirconium (600 to 850/sup 0/C), diametral strains of up to 70% were observed over the greater part of their length. A negative-feedback mechanism is suggested, based on the reduction of secondary creep rate following cooling by enhanced heat loss at swelling areas. An approximate analysis based on this mechanism was found to be in reasonable agreement with the experimental results. A computer modeling code is being developed to predict cladding deformation under realistic conditions.

  18. Fuel rods

    International Nuclear Information System (INIS)

    Adachi, Hajime; Ueda, Makoto

    1985-01-01

    Purpose: To provide a structure capable of measuring, in a non-destructive manner, the releasing amount of nuclear gaseous fission products from spent fuels easily and at a high accuracy. Constitution: In order to confirm the integrity and the design feasibility of a nuclear fuel rod, it is important to accurately determine the amount of gaseous nuclear fission products released from nuclear pellets. In a structure where a plurality of fuel pellets are charged in a fuel cladding tube and retained by an inconel spring, a hollow and no-sealed type spacer tube made of zirconium or the alloy thereof, for example, not containing iron, cobalt, nickel or manganese is formed between the spring and the upper end plug. In the fuel rod of such a structure, by disposing a gamma ray collimator and a gamma ray detector on the extension of the spacer pipe, the gamma rays from the gaseous nuclear fission products accumulated in the spacer pipe can be detected while avoiding the interference with the induction radioactivity from inconel. (Kamimura, M.)

  19. Fuel cladding behavior under rapid loading conditions

    Science.gov (United States)

    Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.

    2016-02-01

    A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.

  20. A Study on the Structural Integrity Issues of a Dual-Cooled Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Kyu; Lee, Kang-Hee; Lee, Young-Ho; Yoon, Kyung-Ho; Kim, Jae-Yong; Song, Kun-Woo [Korea Atomic Energy Research Institute, 1045 Daedeokdaero Yuseong Daejeon 305-353 (Korea, Republic of)

    2009-06-15

    A dual-cooled fuel rod has an internal coolant flow passage in addition to the external one. A remarkable power up-rate can be achieved due to the increased surface area, which may draw great interests from the fuel researchers, designers and vendors. However, it requires effective resolution to the difficult technical issues when a fuel assembly is to be realized. It becomes much more difficult if a tough boundary condition needs to be satisfied such as a compatibility with the existing reactor internal structures. This kind of challenge is tackled through a national R and D project in Korea: to develop the structural components of a dual-cooled fuel that should be compatible with the current OPR 1000 (Korea Standard Nuclear Power Plant) internal structures. Fuel rod supporting structures, top and bottom end pieces and guide tubes are the components. Besides, the fuel rod components have to be developed as well since the fuel rod's geometry becomes much different from the conventional rod's one. The dimension change may well affect the above mentioned structural components. As a part of the work, structural integrity of the components of a dual-cooled fuel rod is studied in this paper. The investigated topics are: i) the thickness determination of a cladding tube (especially outer tube of a large diameter), ii) vibration issue of an inner cladding tube, iii) design concern of plenum spring and spacer. The cladding thickness issue arises due to the increased outside diameter of a fuel rod, which is caused by an internal flow passage formation. Among the criteria for the thickness determination, an elastic buckling criteria was focused on. Theoretical background for the well-known formula (such as a stability problem) was revisited. Verification tests were carried out independently with using a cladding tube of PHWR fuel rod. Results showed that the formula was not conservative to apply for the cladding thickness determination. Minimum thickness for the

  1. Structural analysis and modeling of water reactor fuel rod behavior

    International Nuclear Information System (INIS)

    Roshan Zamir, M.

    2000-01-01

    An important aspect of the design and analysis of nuclear reactor is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system under normal and emergency operating conditions. To achieve these objectives and in order to provide a suitable computer code based on fundamental material properties for design and study of the thermal-mechanical behavior of water reactor fuel rods during their irradiation life and also to demonstrate the fuel rod design and modeling for students, The KIANA-1 computer program has been developed by the writer at Amir-Kabir university of technology with support of Atomic Energy Organization of Iran. KIANA-1 is an integral one-dimensional computer program for the thermal and mechanical analysis in order to predict fuel rods performance and also parameter study of Zircaloy-clad UO 2 fuel rod during steady state conditions. The code has been designed for the following main objectives: To give a solution for the steady state heat conduction equation for fuel as a heat source and clad by using finite difference, control volume and semi-analytical methods in order to predict the temperature profile in the fuel and cladding. To predict the inner gas pressures due to the filling gases and released gaseous fission products. To predict the fission gas production and release by using a simple diffusion model based on the Booth models and an empirical model. To calculate the fuel-clad gap conductance for cracked fuel with partial contact zones to a closed gap with strong contact. To predict the distribution of stress in three principal directions in the fuel and sheet by assuming one-dimensional plane strain and asymmetric idealization. To calculate the strain distribution in three principal directions and the corresponding deformation in the fuel and cladding. For this purpose the permanent strain such as creep or plasticity as well as the thermoelastic deformation and also the swelling, densification, cracking

  2. Rod consolidation of RG and E's [Rochester Gas and Electric Corporation] spent PWR [pressurized water reactor] fuel

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1987-05-01

    The rod consolidation demonstration involved pulling the fuel rods from five fuel assemblies from Unit 1 of RG and E's R.E. Ginna Nuclear Power Plant. Slow and careful rod pulling efforts were used for the first and second fuel assemblies. Rod pulling then proceeded smoothly and rapidly after some minor modifications were made to the UST and D consolidation equipment. The compaction ratios attained ranged from 1.85 to 2.00 (rods with collapsed cladding were replaced by dummy rods in one fuel assembly to demonstrate the 2:1 compaction ratio capability). This demonstration involved 895 PWR fuel rods, among which there were some known defective rods (over 50 had collapsed cladding); no rods were broken or dropped during the demonstration. However, one of the rods with collapsed cladding unexplainably broke during handling operations (i.e., reconfiguration in the failed fuel canister), subsequent to the rod consolidation demonstration. The broken rod created no facility problems; the pieces were encapsulated for subsequent storage. Another broken rod was found during postdemonstration cutting operations on the nonfuel-bearing structural components from the five assemblies; evidence indicates it was broken prior to any rod consolidation operations. During the demonstration, burnish-type lines or scratches were visible on the rods that were pulled; however, experience indicates that such lines are generally produced when rods are pulled (or pushed) through the spacer grids. Rods with collapsed cladding would not enter the funnel (the transition device between the fuel assembly and the canister that aids in obtaining high compaction ratios). Reforming of the flattened areas of the cladding on those rods was attempted to make the rod cross sections more nearly circular; some of the reformed rods passed through the funnel and into the canister

  3. Lumped-parameter fuel rod model for rapid thermal transients

    International Nuclear Information System (INIS)

    Perkins, K.R.; Ramshaw, J.D.

    1975-07-01

    The thermal behavior of fuel rods during simulated accident conditions is extremely sensitive to the heat transfer coefficient which is, in turn, very sensitive to the cladding surface temperature and the fluid conditions. The development of a semianalytical, lumped-parameter fuel rod model which is intended to provide accurate calculations, in a minimum amount of computer time, of the thermal response of fuel rods during a simulated loss-of-coolant accident is described. The results show good agreement with calculations from a comprehensive fuel-rod code (FRAP-T) currently in use at Aerojet Nuclear Company

  4. FREC-4A: a computer program to predict fuel rod performance under normal reactor operation

    International Nuclear Information System (INIS)

    Harayama, Yasuo; Izumi, Fumio

    1981-10-01

    The program FREC-4A (Fuel Reliability Evaluation Code-version 4A) is used for predicting fuel rod performance in normal reactor operation. The performance is calculated in accordance with the irradiation history of fuel rods. Emphasis is placed on the prediction of the axial elongation of claddings induced by pellet-cladding mechanical interaction, including the influence of initially preloaded springs inserted in fuel rod lower plenums. In the FREC-4A, an fuel rod is divided into axial segments. In each segment, it is assumed that the temperature, stress and strain are axi-symmetrical, and the axial strain in constant in fuel pellets and in a cladding, though the values in the pellets and in the cladding are different. The calculation of the contact load and the clearance along the length of a fuel rod and the stress and strain in each segment is explained. The method adopted in the FREC-4A is simple, and suitable to predict the deformation of fuel rods over their full length. This report is described on the outline of the program, the method of solving the stiffness equations, the calculation models, the input data such as irradiation history, output distribution, material properties and pores, the printing-out of input data and calculated results. (Kako, I.)

  5. Fuel rod failure due to marked diametral expansion and fuel rod collapse occurred in the HBWR power ramp experiment

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1985-12-01

    In the power ramp experiment with the BWR type light water loop at the HBWR, the two pre-irradiated fuel rods caused an unexpected pellet-cladding interaction (PCI). One occurred in the fuel rod with small gap of 0.10 mm, which was pre-irradiated up to the burn-up of 14 MWd/kgU. At high power, the diameter of the rod was increased markedly without accompanying significant axial elongation. The other occurred in the rod with a large gap of 0.23 mm, which was pre-irradiated up to the burn-up of 8 MWd/kgU. The diameter of the rod collapsed during a diameter measurement at the maximum power level. The causes of those were investigated in the present study by evaluating in-core data obtained from equipped instruments in the experiment. It was revealed from the investigation that these behaviours were attributed to the local reduction of the coolant flow occurred in the region of a transformer in the ramp rig. The fuel cladding material is seemed to become softened due to temperature increase caused by the local reduction of the coolant flow, and collapsed by the coolant pressure, either locally or wholly depending on the rod diametral gap existed. (author)

  6. Fuel rod-grid interaction wear: in-reactor tests (LWBR development program)

    International Nuclear Information System (INIS)

    Stackhouse, R.M.

    1979-11-01

    Wear of the Zircaloy cladding of LWBR irradiation test fuel rods, resulting from relative motion between rod and rod support contacts, is reported. Measured wear depths were small, 0.0 to 2.7 mils, but are important in fuel element behavior assessment because of the local loss of cladding thickness, as well as the effect on grid spring forces that laterally restrain the rods. An empirical wear analysis model, based on out-of-pile tests, is presented. The model was used to calculate the wear on the irradiation test fuel rods attributed to a combination of up-and-down motions resulting from power and pressure/temperature cycling of the test reactor, flow-induced vibrations, and assembly handling scratches. The calculated depths are generally deeper than the measured depths

  7. Models for fuel rod behaviour at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Jernkvist, Lars O.; Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park, Uppsala (Sweden)

    2004-12-01

    This report deals with release of fission product gases and irradiation-induced restructuring in uranium dioxide nuclear fuel. Waterside corrosion of zirconium alloy clad tubes to light water reactor fuel rods is also discussed. Computational models, suitable for implementation in the FRAPCON-3.2 computer code, are proposed for these potentially life-limiting phenomena. Hence, an integrated model for the calculation or thermal fission gas release by intragranular diffusion, gas trapping in grain boundaries, irradiation-induced re-solution, grain boundary saturation, and grain boundary sweeping in UO{sub 2} fuel, under time varying temperature loads, is formulated. After a brief review of the status of thermal fission gas release modelling, we delineate the governing equations for the aforementioned processes. Grain growth kinetic modelling is briefly reviewed and pertinent data on grain growth of high burnup fuel obtained during power ramps in the Third Risoe Fission Gas Release Project are evaluated. Sample computations are performed, which clearly show the connection between fission gas release and gram growth as a function of time at different isotherms. Models are also proposed for the restructuring of uranium dioxide fuel at high burnup, the so-called rim formation, and its effect on fuel porosity build-up, fuel thermal conductivity and fission gas release. These models are assessed by use of recent experimental data from the High Burnup Rim Project, as well as from post irradiation examinations of high-burnup fuel, irradiated in power reactors. Moreover, models for clad oxide growth and hydrogen pickup in PWRs, applicable to Zircaloy-4, ZIRLO or M5 cladding, are formulated, based on recent in-reactor corrosion data for high-burnup fuel rods. Our evaluation of these data indicates that the oxidation rate of ZIRLO-type materials is about 20% lower than for standard Zircaloy-4 cladding under typical PWR conditions. Likewise, the oxidation rate of M5 seems to be

  8. RODSWELL: a computer code for the thermomechanical analysis of fuel rods under LOCA conditions

    International Nuclear Information System (INIS)

    Casadei, F.; Laval, H.; Donea, J.; Jones, P.M.; Colombo, A.

    1984-01-01

    The present report is the user's manual for the computer code RODSWELL developed at the JRC-Ispra for the thermomechanical analysis of LWR fuel rods under simulated loss-of-coolant accident (LOCA) conditions. The code calculates the variation in space and time of all significant fuel rod variables, including fuel, gap and cladding temperature, fuel and cladding deformation, cladding oxidation and rod internal pressure. The essential characteristics of the code are briefly outlined here. The model is particularly designed to perform a full thermal and mechanical analysis in both the azimuthal and radial directions. Thus, azimuthal temperature gradients arising from pellet eccentricity, flux tilt, arbitrary distribution of heat sources in the fuel and the cladding and azimuthal variation of coolant conditions can be treated. The code combines a transient 2-dimensional heat conduction code and a 1-dimentional mechanical model for the cladding deformation. The fuel rod is divided into a number of axial sections and a detailed thermomechanical analysis is performed within each section in radial and azimuthal directions. In the following sections, instructions are given for the definition of the data files and the semi-variable dimensions. Then follows a complete description of the input data. Finally, the restart option is described

  9. Vibrational characteristics and wear of fuel rods

    International Nuclear Information System (INIS)

    Schmugar, K.L.

    1977-01-01

    Fuel rod wear, due to vibration, is a continuing concern in the design of liquid-cooled reactors. In my report, the methodology and models that are used to predict fuel rod vibrational response and vibratory wear, in a light water reactor environment, are discussed. This methodology is being followed at present in the design of Westinghouse Nuclear Fuel. Fuel rod vibrations are expressed as the normal bending modes, and sources of rod vibration are examined with special emphasis on flow-induced mechanisms in the stable flow region. In a typical Westinghouse PWR fuel assembly design, each fuel rod is supported at multiple locations along the rod axis by a square-shaped 'grid cell'. For a fuel rod /grid support system, the development of small oscillatory motions, due to fluid flow at the rod/grid interface, results in material wear. A theoretical wear mode is developed using the Archard Theory of Adhesive Wear as the basis. Without question certainty, fretting wear becomes a serious problem if it progresses to the stage where the fuel cladding is penetrated and fuel is exposed to the coolant. Westinghouse fuel is designed to minimize fretting wear by limiting the relative motion between the fuel rod and its supports. The wear producing motion between the fuel rod and its supports occurs when the vibration amplitude exceeds the slippage threshold amplitude

  10. Simulation of fuel rod behaviour during various break LOCAs in PWRs

    International Nuclear Information System (INIS)

    Gadalla, A.A.; El-Fawal, M.M.

    1996-01-01

    During loss of coolant accident (LOCAs) course of events, attention focuses on fuel rod cladding temperature behaviour. In this study, the DRUFAN analytical model and LOBI-MOD2 experimental modeling scheme for fuel rod temperature behaviour during C L-Break LOCA in PWRs, are described and discussed. These models are applied for the investigation of fuel rod cladding temperature behaviour during LOCA blowdown phase. A spectrum of selected values representing small, intermediate and large CL- Break sizes are considered in the predictions. The results of the predictions demonstrated that calculated heater rod temperature at steady state as well as the transient period up to 1000 sec are going in good agreement with the measured values. However above 1000 sec the calculated temperatures are higher than the measured values. This indicates that code predictions in this period are conservative. The results indicated also that, in case of small CL-break LOCA (0.01 A and 0.01 and 0.03 A), the heater rod cladding temperature don't rise above saturation temperature. However, on the top of the heater rod, DNB is occurred in case of 0.03 A CL break, while for 0.01 A break, DNB didn't occur. In case of intermediate and large CL-break; (0.05 A, 0.10 A and 1 A), the results showed that, the heater rod cladding temperature exceeded the saturation temperature and DNB prevailed in upper and intermediate sections of the core. 15 figs., 2 tabs

  11. Method for automatic filling of nuclear fuel rod cladding tubes

    International Nuclear Information System (INIS)

    Bezold, H.

    1979-01-01

    Prior to welding the zirconium alloy cladding tubes with end caps, they are automatically filled with nuclear fuel tablets and ceramic insulating tablets. The tablets are introduced into magazine drums and led through a drying oven to a discharging station. The empty cladding tubes are removed from this discharging station and filled with tablets. A filling stamp pushes out the columns of tablets in the magazine tubes of the magazine drum into the cladding tube. Weight and measurement of length determine the filled state of the cladding tube. The cladding tubes are then led to the welding station via a conveyor belt. (DG) [de

  12. Fuel-rod response during the large-break LOCA Test LOC-6

    International Nuclear Information System (INIS)

    Vinjamuri, K.; Cook, B.A.; Hobbins, R.R.

    1981-01-01

    The large break Loss of Coolant Accident (LOCA) Test LOC-6 was conducted in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory by EG and G Idaho, Inc. The objectives of the PBF LOCA tests are to obtain in-pile cladding ballooning data under blowdown and reflood conditions and assess how well out-of-pile ballooning data represent in-pile fuel rod behavior. The primary objective of the LOC-6 test was to determine the effects of internal rod pressures and prior irradiation on the deformation behavior of fuel rods that reached cladding temperatures high in the alpha phase of zircaloy. Test LOC-6 was conducted with four rods of PWR 15 x 15 design with the exception of fuel stack length (89 cm) and enrichment (12.5 W% 235 U). Each rod was surrounded by an individual flow shroud

  13. Review of Current Criteria of Spent Fuel Rod Integrity during Dry Storage

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, Sun Ki; Bang, Je Geon; Song, Kun Woo

    2006-01-01

    A PWR spent fuel has been stored in a wet storage pool in Korea. However, the amount of spent fuel is expected to exceed the capacity of a wet storage pool within 10∼15 years. From the early 1970's, a research on the PWR spent fuel dry storage started because the dry storage system has been economical compared with the wet storage system. The dry storage technology for Zircaloy-clad fuel was assessed and licensed in many countries such as USA, Canada, FRG and Switzerland. In the dry storage system, a clad temperature may be higher than in the wet storage system and can reach up to 400 .deg.. A higher clad temperature can cause cladding failures during the period of dry storage, and thus a dry storage related research has essentially dealt with the prevention of clad degradation. It is temperature and rod internal pressure that cause cladding failures through the mechanisms such as clad creep rupture, hydride re-orientation, and stress-corrosion cracking etc.. In this paper, the current licensing criteria are summarized for the PWR spent fuel dry storage system, especially on spent fuel rod integrity. And it is investigated that an application propriety of existing criteria to Korea spent fuel dry storage system

  14. Sturdy on Orbital TIG Welding Properties for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    Joung, Changyoung; Hong, Jintae; Kim, Kahye; Huh, Sungho

    2014-01-01

    We developed a precision TIG welding system that is able to weld the seam between end-caps and a fuel cladding tube for the nuclear fuel test rod and rig. This system can be mainly classified into an orbital TIG welder (AMI, M-207A) and a pressure chamber. The orbital TIG welder can be independently used, and it consists of a power supply unit, a microprocessor, water cooling unit, a gas supply unit and an orbital weld head. In this welder, the power supply unit mainly supplies GTAW power for a welding specimen and controls an arc starting of high frequency, supping of purge gas, arc rotation through the orbital TIG welding head, and automatic timing functions. In addition, the pressure chamber is used to make the welded surface of the cladding specimen clean with the inert gas filled inside the chamber. To precisely weld the cladding tube, a welding process needs to establish a schedule program for an orbital TIG welding. Therefore, the weld tests were performed on a cladding tube and dummy rods under various conditions. This paper describes not only test results on parameters of the purge gas flow rates and the chamber gas pressures for the orbital TIG welding, but also test results on the program establishment of an orbital TIG welding system to weld the fuel test rods. Various welding tests were performed to develop the orbital TIG welding techniques for the nuclear fuel test rod. The width of HAZ of a cladding specimen welded with the identical power during an orbital TIG welding cycle was continuously increased from a welded start-point to a weld end-point because of heat accumulation. The welding effect of the PGFR and CGP shows a relatively large difference for FSS and LSS. Each hole on the cladding specimens was formed in the 1bar CGP with the 20L/min PGFR but not made in the case of the PGFR of 10L/min in the CGP of 2bar. The optimum schedule program of the orbital TIG welding system to weld the nuclear fuel test rod was established through the program

  15. Sturdy on Orbital TIG Welding Properties for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Changyoung; Hong, Jintae; Kim, Kahye; Huh, Sungho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    We developed a precision TIG welding system that is able to weld the seam between end-caps and a fuel cladding tube for the nuclear fuel test rod and rig. This system can be mainly classified into an orbital TIG welder (AMI, M-207A) and a pressure chamber. The orbital TIG welder can be independently used, and it consists of a power supply unit, a microprocessor, water cooling unit, a gas supply unit and an orbital weld head. In this welder, the power supply unit mainly supplies GTAW power for a welding specimen and controls an arc starting of high frequency, supping of purge gas, arc rotation through the orbital TIG welding head, and automatic timing functions. In addition, the pressure chamber is used to make the welded surface of the cladding specimen clean with the inert gas filled inside the chamber. To precisely weld the cladding tube, a welding process needs to establish a schedule program for an orbital TIG welding. Therefore, the weld tests were performed on a cladding tube and dummy rods under various conditions. This paper describes not only test results on parameters of the purge gas flow rates and the chamber gas pressures for the orbital TIG welding, but also test results on the program establishment of an orbital TIG welding system to weld the fuel test rods. Various welding tests were performed to develop the orbital TIG welding techniques for the nuclear fuel test rod. The width of HAZ of a cladding specimen welded with the identical power during an orbital TIG welding cycle was continuously increased from a welded start-point to a weld end-point because of heat accumulation. The welding effect of the PGFR and CGP shows a relatively large difference for FSS and LSS. Each hole on the cladding specimens was formed in the 1bar CGP with the 20L/min PGFR but not made in the case of the PGFR of 10L/min in the CGP of 2bar. The optimum schedule program of the orbital TIG welding system to weld the nuclear fuel test rod was established through the program

  16. Assessment of stainless steel 348 fuel rod performance against literature available data using TRANSURANUS code

    Directory of Open Access Journals (Sweden)

    Giovedi Claudia

    2016-01-01

    Full Text Available Early pressurized water reactors were originally designed to operate using stainless steel as cladding material, but during their lifetime this material was replaced by zirconium-based alloys. However, after the Fukushima Daiichi accident, the problems related to the zirconium-based alloys due to the hydrogen production and explosion under severe accident brought the importance to assess different materials. In this sense, initiatives as ATF (Accident Tolerant Fuel program are considering different material as fuel cladding and, one candidate is iron-based alloy. In order to assess the fuel performance of fuel rods manufactured using iron-based alloy as cladding material, it was necessary to select a specific stainless steel (type 348 and modify properly conventional fuel performance codes developed in the last decades. Then, 348 stainless steel mechanical and physics properties were introduced in the TRANSURANUS code. The aim of this paper is to present the obtained results concerning the verification of the modified TRANSURANUS code version against data collected from the open literature, related to reactors which operated using stainless steel as cladding. Considering that some data were not available, some assumptions had to be made. Important differences related to the conventional fuel rods were taken into account. Obtained results regarding the cladding behavior are in agreement with available information. This constitutes an evidence of the modified TRANSURANUS code capabilities to perform fuel rod investigation of fuel rods manufactured using 348 stainless steel as cladding material.

  17. LOFT fuel rod surface temperature measurement testing

    International Nuclear Information System (INIS)

    Eaton, A.M.; Tolman, E.L.; Solbrig, C.W.

    1978-01-01

    Testing of the LOFT fuel rod cladding surface thermocouples has been performed to evaluate how accurately the LOFT thermocouples measure the cladding surface temperature during a loss-of-coolant accident (LOCA) sequence and what effect, if any, the thermocouple would have on core performance. Extensive testing has been done to characterize the thermocouple design. Thermal cycling and corrosion testing of the thermocouple weld design have provided an expected lifetime of 6000 hours when exposed to reactor coolant conditions of 620 K and 15.9 MPa and to sixteen thermal cycles with an initial temperature of 480 K and peak temperatures ranging from 870 to 1200K. Departure from nucleate boiling (DNB) tests have indicated a DNB penalty (5 to 28% lower) during steady state operation and negligible effects during LOCA blowdown caused by the LOFT fuel rod surface thermocouple arrangement. Experience with the thermocouple design in Power Burst Facility (PBF) and LOFT nonnuclear blowdown testing has been quite satisfactory. Tests discussed here were conducted using both stainless steel and zircaloy-clad electrically heated rod in the LOFT Test Support Facility (LTSF) blowdown simulation loop

  18. Thermal performance of the nuclear fuel rods submitted to angular variation of the heat exchanger coefficients

    International Nuclear Information System (INIS)

    Carvalho, A.M.M. de.

    1984-01-01

    Generally, LMFBR fuel rods consist of fuel pellets encapsulated in cladding tubes. These tubes are wrapped by a helical wire, working as a spacer. Distortions in the rod temperature distribution and in the external heat flux can be generated by angular variations in the local heat transfer coefficients due to the wire, by excentricity between pellet and clad or by ovalization of the cladding tube. Also, the temperature distributions can be affected by fuel densification, reestructuring and swelling. The present work consists of the development of a computer code in order to analyse the fuel rod performance as function of geometrical and operational effects, in steady state regime. (Author) [pt

  19. Fuel rod design by statistical methods for MOX fuel

    International Nuclear Information System (INIS)

    Heins, L.; Landskron, H.

    2000-01-01

    Statistical methods in fuel rod design have received more and more attention during the last years. One of different possible ways to use statistical methods in fuel rod design can be described as follows: Monte Carlo calculations are performed using the fuel rod code CARO. For each run with CARO, the set of input data is modified: parameters describing the design of the fuel rod (geometrical data, density etc.) and modeling parameters are randomly selected according to their individual distributions. Power histories are varied systematically in a way that each power history of the relevant core management calculation is represented in the Monte Carlo calculations with equal frequency. The frequency distributions of the results as rod internal pressure and cladding strain which are generated by the Monte Carlo calculation are evaluated and compared with the design criteria. Up to now, this methodology has been applied to licensing calculations for PWRs and BWRs, UO 2 and MOX fuel, in 3 countries. Especially for the insertion of MOX fuel resulting in power histories with relatively high linear heat generation rates at higher burnup, the statistical methodology is an appropriate approach to demonstrate the compliance of licensing requirements. (author)

  20. Fuel-cladding interaction. Framatome CEA experiment on pencils preirradiated in nuclear power plants

    International Nuclear Information System (INIS)

    Atabek, Rosemarie; Vignesoult, Nicole

    1979-01-01

    The study of the fuel-cladding interaction is the subject of an important joint research programme between Framatome and the CEA. Tests are performed either on whole fuel rods, not exceeding two metres in length, from BR3 or the CAP (PRISCA experiment) or on fuel rods refabricated in hot cells from fuel rods of power reactors (FABRICE experiment). The first results reveal the two mechanical and chemical aspects of the interaction phenomenon: the permissible power surge of the fuel elements passes through a minimum for an integrated fast dose (E>1MeV) of around 1.5x10 21 n/cm 2 ; a study made with the electronic microprobe and the scanning microscope shows that the Te, I and Cs fission products are the corrosive agents of the cladding [fr

  1. Probabilistic assessment of spent-fuel cladding breach

    International Nuclear Information System (INIS)

    Foadian, H.; Rashid, Y.R.; Seager, K.D.

    1991-01-01

    A methodology for determining the probability spent-fuel cladding breach due to normal and accident class B cask transport conditions is introduced. This technique uses deterministic stress analysis results as well as probabilistic cladding material properties, initial flaws, and breach criteria. Best estimates are presented for the probability distributions of irradiated Zircaloy properties such as ductility and fracture toughness, and for fuel rod initial conditions such as manufacturing flaws and PCI part-wall cracks. Example analyses are used to illustrate the implementation of this methodology for a BWR (GE 7 x 7) and a PWR (B ampersand W 15 x 15) assembly. The cladding breach probabilities for each assembly are tabulated for regulatory normal and accident transport conditions including fire

  2. Probabilistic assessment of spent-fuel cladding breach

    International Nuclear Information System (INIS)

    Foadian, H.; Rashid, Y.R.; Seager, K.D.

    1992-01-01

    In this paper a methodology for determining the probability of spent-fuel cladding breach due to normal and accident class B cask transport conditions is introduced. This technique uses deterministic stress analysis results as well as probabilistic cladding material properties, initial flaws, and breach criteria. Best estimates are presented for the probability distributions of irradiated Zircaloy properties such as ductility and fracture toughness, and for fuel rod initial conditions such as manufacturing flaws and PCI part-wall cracks. Example analyses are used to illustrate the implementation of this methodology for a BWR (GE 7 x 7) and a PWR (B and W 15 x 15) assembly. The cladding breach probabilities for each assembly are tabulated for regulatory normal and accident transport conditions including fire

  3. Analysis of fuel rod behaviour within a rod bundle of a pressurized water reactor under the conditions of a loss of coolant accident (LOCA) using probabilistic methodology

    International Nuclear Information System (INIS)

    Sengpiel, W.

    1980-12-01

    The assessment of fuel rod behaviour under PWR LOCA conditions aims at the evaluation of the peak cladding temperatures and the (final) maximum circumferential cladding strains. Moreover, the estimation of the amount of possible coolant channel blockages within a rod bundle is of special interest, as large coplanar clad strains of adjacent rods may result in strong local reductions of coolant channel areas. Coolant channel blockages of large radial extent may impair the long-term coolability of the corresponding rods. A model has been developed to describe these accident consequences using probabilistic methodology. This model is applied to study the behaviour of fuel rods under accident conditions following the double-ended pipe rupture between collant pump and pressure vessel in the primary system of a 1300 MW(el)-PWR. Specifically a rod bundle is considered consisting of 236 fuel rods, that is subjected to severe thermal and mechanical loading. The results obtained indicate that plastic clad deformations with circumferential clad strains of more than 30% cannot be excluded for hot rods of the reference bundle. However, coplanar coolant channel blockages of significant extent seem to be probable within that bundle only under certain boundary conditions which are assumed to be pessimistic. (orig./RW) [de

  4. Stress analysis and collapse time prediction of nuclear fuel cladding tube with wear scar

    International Nuclear Information System (INIS)

    Lee, J. S.; Kim, O. H.; Kim, H. K.; Hu, Y. H.; Kim, J. I.; Kim, K. T.

    2004-01-01

    In this analysis, the stress and collapse time analysis models for nuclear fuel rod with the fretting wear scar were developed in order to evaluate the effects of the wear depth on the integrity of nuclear fuel rod. The stress analysis result shows that the nuclear fuel rod with approximately 60% deep wear scar of the clad wall thickness, meets the allowable stress criteria and the collapse time analysis indicates that the fuel rod with less than roughly 56% deep wear scar of the clad wall thickness has longer collapse time than the expected fuel life-time. The both stress and collapse time results are evaluated to be very reasonable on considering the comparison with the outputs of existing design code for the simple model. However, the developed analysis models and the results will be confirmed by the tests

  5. The modeling of fuel rod behaviour under RIA conditions in the code DYN3D

    International Nuclear Information System (INIS)

    Rohde, U.

    2001-01-01

    A description of the fuel rod behaviour and heat transfer model used in the code DYN3D for nuclear reactor core dynamic simulations is given. Besides the solution of heat conduction equations in fuel and cladding, the model comprises a detailed description of heat transfer in the gas gap by conduction, radiation and fuel-cladding contact. The gas gap behaviour is modeled in a mechanistic way taking into account transient changes of the gas gap parameters based on given conditions for the initial state. Thermal, elastic and plastic deformations of fuel and cladding are taken into account within 1D approximation. A creeping law for time-dependent estimation of plastic deformations is implemented. Metal-water reaction of the cladding material in the high temperature region is considered. The cladding-coolant heat transfer regime map covers the region from one-phase liquid convection to dispersed flow with superheated steam. Special emphasis is put on taking into account the impact of thermodynamic non-equilibrium conditions on heat transfer. For the validation of the model, experiments on fuel rod behaviour during RIAs carried out in Russian and Japanese pulsed research reactors with shortened probes of fresh fuel rods are calculated. Comparisons between calculated and measured results are shown and discussed. It is shown, that the fuel rod behaviour is significantly influenced by plastic deformation of the cladding, post crisis heat transfer with sub-cooled liquid conditions and heat release from the metal-water reaction. Numerical studies concerning the fuel rod behaviour under RIA conditions in power reactors are reported on. It is demonstrated, that the fuel rod behaviour at high pressures and flow rates in power reactors is different from the behaviour under atmospheric pressure and stagnant flow conditions in the experiments. The mechanisms of fuel rod failure for fresh and burned fuel reported from the literature can be qualitatively reproduced by the DYN3D

  6. Investigation of water-logged spent fuel rods under dry storage conditions

    International Nuclear Information System (INIS)

    Kohli, R.; Pasupathi, V.

    1986-09-01

    Tests were conducted to determine the amount of moisture contained in breached, water-logged spent fuel rods and the rate of release. Two well-characterized BWR fuel rods with reactor-induced breaches were tested in a hot cell. These rods contained approximately 6 to 10 g of moisture, most of which was released during heating tests simulating normal cask drying operations. Additional testing with two intentionally defected fuel rods (BWR and PWR) was performed to evaluate the effect of the cladding breach on migration of moisture along the length of the fuel rod. The results showed that the moisture released from reactor-breached spent fuel rods was insufficient to cause degradation of fuel or dry storage system components

  7. FEMAXI-III, a computer code for fuel rod performance analysis

    International Nuclear Information System (INIS)

    Ito, K.; Iwano, Y.; Ichikawa, M.; Okubo, T.

    1983-01-01

    This paper presents a method of fuel rod thermal-mechanical performance analysis used in the FEMAXI-III code. The code incorporates the models describing thermal-mechanical processes such as pellet-cladding thermal expansion, pellet irradiation swelling, densification, relocation and fission gas release as they affect pellet-cladding gap thermal conductance. The code performs the thermal behavior analysis of a full-length fuel rod within the framework of one-dimensional multi-zone modeling. The mechanical effects including ridge deformation is rigorously analyzed by applying the axisymmetric finite element method. The finite element geometrical model is confined to a half-pellet-height region with the assumption that pellet-pellet interaction is symmetrical. The 8-node quadratic isoparametric ring elements are adopted for obtaining accurate finite element solutions. The Newton-Raphson iteration with an implicit algorithm is applied to perform the analysis of non-linear material behaviors accurately and stably. The pellet-cladding interaction mechanism is exactly treated using the nodal continuity conditions. The code is applicable to the thermal-mechanical analysis of water reactor fuel rods experiencing variable power histories. (orig.)

  8. The modeling of fuel rod behaviour under RIA conditions in the code DYN3D

    International Nuclear Information System (INIS)

    Rohde, U.

    1998-01-01

    A description of the fuel rod behaviour and heat transfer model used in the code DYN3D for nuclear reactor core dynamic simulations is given. Besides the solution of heat conduction equations in fuel and cladding, the model comprises detailed description of heat transfer in the gas gap by conduction, radiation and fuel-cladding contact. The gas gap behaviour is modeled in a mechanistic way taking into account transient changes of the gas gap parameters based on given conditions for the initial state. Thermal, elastic and plastic deformations of fuel and cladding are taken into account within 1D approximation. Numerical studies concerning the fuel rod behaviour under RIA conditions in power reactors are reported. Fuel rod behaviour at high pressures and flow rates in power reactors is different from the behaviour under atmospheric pressure and stagnant flow conditions in the experiments. The mechanisms of fuel rod failure for fresh and burned fuel reported from the literature can be qualitatively reproduced by the DYN3D model. (author)

  9. Heat split imbalance study for annular fuel rod

    International Nuclear Information System (INIS)

    He Xiaojun; Ji Songtao; Zhang Yingchao

    2014-01-01

    Annular fuel rod has two gaps at inner and outer side. Under irradiation condition, the dimensional change of pellets is always larger than claddings' due to thermal expansion, swelling and densification, and this tends to enlarge the inner gap and reduce the outer gap. The gap size asymmetry must induce heat split imbalance problem that the heat flux will be larger at outer side of the rod. In this work, computer code AFPAC l.0 is used to simulate this heat split imbalance phenomena. The effect of initial gap size, rod inner pressure, roughness of pellets and cladding is studied, the results reveal that: l) Adjusting initial size of both gaps, reducing inner gap and enlarging outer gap could effectively alleviate heat split imbalance problem; 2) Adjusting the initial roughness of pellets and cladding is another effective approach to reducing heat split imbalance; 3) It seems that changing the rod inner pressure has a little effect on solving the heat flux asymmetry problem. (authors)

  10. FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup

    International Nuclear Information System (INIS)

    Berna, G.A.; Beyer, G.A.; Davis, K.L.; Lanning, D.D.

    1997-12-01

    FRAPCON-3 is a FORTRAN IV computer code that calculates the steady-state response of light water reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, and deformation of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (1) heat conduction through the fuel and cladding, (2) cladding elastic and plastic deformation, (3) fuel-cladding mechanical interaction, (4) fission gas release, (5) fuel rod internal gas pressure, (6) heat transfer between fuel and cladding, (7) cladding oxidation, and (8) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat-transfer correlations. The codes' integral predictions of mechanical behavior have not been assessed against a data base, e.g., cladding strain or failure data. Therefore, it is recommended that the code not be used for analyses of cladding stress or strain. FRAPCON-3 is programmed for use on both mainframe computers and UNIX-based workstations such as DEC 5000 or SUN Sparcstation 10. It is also programmed for personal computers with FORTRAN compiler software and at least 8 to 10 megabytes of random access memory (RAM). The FRAPCON-3 code is designed to generate initial conditions for transient fuel rod analysis by the FRAPTRAN computer code (formerly named FRAP-T6)

  11. Simulation of leaking fuel rods

    International Nuclear Information System (INIS)

    Hozer, Z.

    2006-01-01

    The behaviour of failed fuel rods includes several complex phenomena. The cladding failure initiates the release of fission product from the fuel and in case of large defect even urania grains can be released into the coolant. In steady state conditions an equilibrium - diffusion type - release is expected. During transients the release is driven by a convective type leaching mechanism. There are very few experimental data on leaking WWER fuel rods. For this reason the activity measurements at the nuclear power plants provide very important information. The evaluation of measured data can help in the estimation of failed fuel rod characteristics and the prediction of transient release dynamics in power plant transients. The paper deals with the simulation of leaking fuel rods under steady state and transient conditions and describes the following new results: 1) A new algorithm has been developed for the simulation of leaking fuel rods under steady state conditions and the specific parameters of the model for the Paks NPP has been determined; 2) The steady state model has been applied to calculation of leaking fuel characteristics using iodine and noble gas activity measurement data; 3) A new computational method has been developed for the simulation of leaking fuel rods under transient conditions and the specific parameters for the Paks NPP has been determined; 4) The transient model has been applied to the simulation of shutdown process at the Paks NPP and for the prediction of the time and magnitude of 123 I activity peak; 5) Using Paks NPP data a conservative value has been determined for the upper limit of the 123 I release from failed fuel rods during transients

  12. PWR fuel rod corrosion in Japan

    International Nuclear Information System (INIS)

    Inoue, S.; Mori, K.; Murata, K.; Kobasyashi, S.

    1997-01-01

    Many particular appearance were observed on the fuel rod surfaces during fuel inspection at reactor outage in 1991. The appearances looked like small black circular nodules. The size was approximately 1 mm. This kind of appearances were found on fuel rods of which burnup exceeded approximately 30 GWd/t and at the second or third spans of the fuel assembly from the top. In order to clarify the cause, PIE was performed. The black nodules were confirmed to be oxide film spalling by visual inspection. Maximum oxide film thickness was 70 μm and spalling was observed where oxide thickness exceeded 40 t0 50 μm. Oxide film thickness was greater than expected. Many small pores were found in the oxide film when the oxide film had become thicker. Many circumferential cracks were also found in the film. It was speculated that these cracks caused the spalling of the oxide film. Hydride precipitates were mainly oriented circumferentially. Dense hydrides were observed near the outer rim of the cladding. No concentrated hydrides were observed near the spalling area. Maximum hydrogen content was 315 ppm. It was confirmed that the results of tensile test showed no significant effects by corrosion. The mechanism of accelerated corrosion was studied in detail. Water chemistry during irradiation was examined. Lithium content was maintained below 2.2 ppm. pH value was kept between 6.9 and 7.2. There was no anomalies in water chemistry during reactor operation. Cladding fabrication record clarified that heat treatment parameter was smaller than the optimum value. In Japan, heat treatment of the cladding was already optimized by improved fabrication process. Also chemical composition optimization of the cladding, such as low Tin and high Silicon content, was adopted for high burnup fuel. These remedies has already reduced fuel cladding corrosion and we believe we have solved this problem. (author). 6 figs, 1 tab

  13. PWR fuel rod corrosion in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, S [Kansai Electric Power Co., Inc., Osaka (Japan); Mori, K; Murata, K; Kobasyashi, S [Nuclear Fuel Industries, Ltd, Osaka (Japan)

    1997-02-01

    Many particular appearance were observed on the fuel rod surfaces during fuel inspection at reactor outage in 1991. The appearances looked like small black circular nodules. The size was approximately 1 mm. This kind of appearances were found on fuel rods of which burnup exceeded approximately 30 GWd/t and at the second or third spans of the fuel assembly from the top. In order to clarify the cause, PIE was performed. The black nodules were confirmed to be oxide film spalling by visual inspection. Maximum oxide film thickness was 70 {mu}m and spalling was observed where oxide thickness exceeded 40 t0 50 {mu}m. Oxide film thickness was greater than expected. Many small pores were found in the oxide film when the oxide film had become thicker. Many circumferential cracks were also found in the film. It was speculated that these cracks caused the spalling of the oxide film. Hydride precipitates were mainly oriented circumferentially. Dense hydrides were observed near the outer rim of the cladding. No concentrated hydrides were observed near the spalling area. Maximum hydrogen content was 315 ppm. It was confirmed that the results of tensile test showed no significant effects by corrosion. The mechanism of accelerated corrosion was studied in detail. Water chemistry during irradiation was examined. Lithium content was maintained below 2.2 ppm. pH value was kept between 6.9 and 7.2. There was no anomalies in water chemistry during reactor operation. Cladding fabrication record clarified that heat treatment parameter was smaller than the optimum value. In Japan, heat treatment of the cladding was already optimized by improved fabrication process. Also chemical composition optimization of the cladding, such as low Tin and high Silicon content, was adopted for high burnup fuel. These remedies has already reduced fuel cladding corrosion and we believe we have solved this problem. (author). 6 figs, 1 tab.

  14. Examination of stainless steel-clad Connecticut Yankee fuel assembly S004 after storage in borated water

    International Nuclear Information System (INIS)

    Langstaff, D.C.; Bailey, W.J.; Johnson, A.B. Jr.; Landow, M.P.; Pasupathi, V.; Klingensmith, R.W.

    1982-09-01

    A Connecticut Yankee fuel assembly (S004) was tested nondestructively and destructively. It was concluded that no obvious degradation of the 304L stainless steel-clad spent fuel from assembly S004 occurred during 5 y of storage in borated water. Furthermore, no obvious degradation due to the pool environment occurred on 304 stainless steel-clad rods in assemblies H07 and G11, which were stored for shorter periods but contained operationally induced cladding defects. The seam welds in the cladding on fuel rods from assembly S004, H07, and G11 were similar in that they showed a wrought microstructure with grains noticeably smaller than those in the cladding base metal. The end cap welds showed a dendritically cored structure, typical of rapidly quenched austenitic weld metal. Some intergranular melting may have occurred in the heat-affected zone (HAZ) in the cladding adjacent to the end cap welds in rods from assemblies S004 and H07. However, the weld areas did not show evidence of corrosion-induced degradation

  15. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Sweet, Ryan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Maldonado, G. Ivan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  16. Degradation resistant fuel cladding materials and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Marlowe, M.O. [GE Nuclear Energy, Wilmington, NC (United States); Montes, J. [ENUSA, Madrid (Spain)

    1995-12-31

    GE has been producing the degradation resistant cladding (zirconium liner and zircaloy-2 surface larger) described here with the cooperation of its primary zirconium vendors since the beginning of 1994. Approximately 24 fuel reloads, or in excess of 250,000 fuel rods, have been produced using this material by GE. GE has also produced tubing for one reload of fuel that is currently being produced by its technology affiliate ENUSA. (orig./HP)

  17. The thermo-mechanics of the PWR fuel rod

    International Nuclear Information System (INIS)

    Barral, J.C.; Gautier, B.; Chaigne, G.

    1999-01-01

    The fuel rod mechanics is of a great importance in the safety and performance of the reactors. In this domain a meeting has been organized by the SFEN the 18 march 1998 at Paris. With the participation of scientists from CEA, EDF and Framatome, the physics of the fuel rods was presented based on four main aspects. Two first papers dealt with the solicitations of the fuel rod in normal and accidental conditions. The physical phenomena under irradiation were then detailed in the four following talks. Three papers presented the simulation and the codes of the fuel-cladding interactions with the diabolo effect. The last paper was devoted to the experiment feedback and the research programs. (A.L.B.)

  18. Conceptual design report of the SMART fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Lee, Chan Bock; Bang, Je Gun; Jung, Yeon Ho [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The SMART fuel rod is based on 17 x 17 KOFA(Korea Fuel Assembly) fuel rod of the 950MWe pressurize water reactor. The fuel stack length of the KOFA is 3658mm, otherwise SMART fuel rod stack length is 2000mm. The fuel rod contains UO{sub 2} pellets with the enrichment of 4.95%. All the fuel in core will be replaced every 35 months. The average LHGR of the fuel rod is 120 W/cm, commercial PWR is 178 W/cm, SMART LHGR is lower about 31% than commercial PWR. The core inlet and outlet temperature of coolant are respectively 270 deg C and 310 deg C, commercial PWR are respectively 291.6 deg C and 326.8 deg C, SMART inlet and outlet temperature is lower averaged 19.2 deg C than commercial PWR. The coolant use mixed soluble ammonia in high purity water and boron is not in. The general performance of the fuel rod UO{sub 2} pellet has been already verified through the sufficient burnup (60,000 MWd/MTU-rod avg.) experience as the rods of same design in commercial PWR's. But cladding corrosion is required the further verification. (author). 13 refs., 3 figs., 8 tabs.

  19. Test plan for spent fuel cladding containment credit tests

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1983-11-01

    Lawrence Livermore National Laboratory has chosen Westinghouse Hanford Company as a subcontractor to assist them in determining the requirements for successful disposal of spent fuel rods in the proposed Nevada Test Site repository. An initial scoping test, with the objective of determining whether or not the cladding of a breached fuel rod can be given any credit as an effective barrier to radionuclide release, is described in this test plan. 8 references, 2 figures, 4 tables

  20. Performance of cladding on MOX fuel with low 240Pu/239Pu ratio

    International Nuclear Information System (INIS)

    McCoy, K.; Blanpain, P.; Morris, R.

    2015-01-01

    The U.S. Department of Energy has decided to dispose of a portion of its surplus plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. As part of fuel qualification, four lead assemblies were manufactured and irradiated to a maximum fuel rod average burnup of 47.3 MWd/kg heavy metal. This was the world's first commercial irradiation of MOX fuel with a 240 Pu/ 239 Pu ratio less than 0.10. Five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. This paper discusses the results of those examinations with emphasis on cladding performance. Exams relevant to the cladding included visual and eddy current exams, profilometry, microscopy, hydrogen analysis, gallium analysis, and mechanical testing. There was no discernible effect of the type of MOX fuel on the performance of the cladding. (authors)

  1. Assessment of the prediction capability of the TRANSURANUS fuel performance code on the basis of power ramp tested LWR fuel rods

    International Nuclear Information System (INIS)

    Pastore, G.; Botazzoli, P.; Di Marcello, V.; Luzzi, L.

    2009-01-01

    The present work is aimed at assessing the prediction capability of the TRANSURANUS code for the performance analysis of LWR fuel rods under power ramp conditions. The analysis refers to all the power ramp tested fuel rods belonging to the Studsvik PWR Super-Ramp and BWR Inter-Ramp Irradiation Projects, and is focused on some integral quantities (i.e., burn-up, fission gas release, cladding creep-down and failure due to pellet cladding interaction) through a systematic comparison between the code predictions and the experimental data. To this end, a suitable setup of the code is established on the basis of previous works. Besides, with reference to literature indications, a sensitivity study is carried out, which considers the 'ITU model' for fission gas burst release and modifications in the treatment of the fuel solid swelling and the cladding stress corrosion cracking. The performed analyses allow to individuate some issues, which could be useful for the future development of the code. Keywords: Light Water Reactors, Fuel Rod Performance, Power Ramps, Fission Gas Burst Release, Fuel Swelling, Pellet Cladding Interaction, Stress Corrosion Cracking

  2. FARST: A computer code for the evaluation of FBR fuel rod behavior under steady-state/transient conditions

    International Nuclear Information System (INIS)

    Nakamura, M.; Sakagami, M.

    1984-01-01

    FARST, a computer code for the evaluation of fuel rod thermal and mechanical behavior under steady-state/transient conditions has been developed. The code characteristics are summarized as follows: (I) FARST evaluates the fuel rod behavior under the transient conditions. The code analyzes thermal and mechanical phenomena within a fuel rod, taking into account the temperature change in coolant surrounding the fuel rod. (II) Permanent strains such as plastic, creep and swelling strains as well as thermoelastic deformations can be analyzed by using the strain increment method. (III) Axial force and contact pressure which act on the fuel stack and cladding are analyzed based on the stick/slip conditions. (IV) FARST used a pellet swelling model which depends on the contact pressure between pellet and cladding, and an empirical pellet relocation model, designated as 'jump relocation model'. The code was successfully applied to analyses of the fuel rod irradiation data from pulse reactor for nuclear safety research in Cadarache (CABRI) and pulse reactor for nuclear safety research in Japan Atomic Energy Research Institute (NSRR). The code was further applied to stress analysis of a 1000 MW class large FBR plant fuel rod during transient conditions. The steady-state model which was used so far gave the conservative results for cladding stress during overpower transient, but underestimated the results for cladding stress during a rapid temperature decrease of coolant. (orig.)

  3. A two-dimensional finite element method for analysis of solid body contact problems in fuel rod mechanics

    International Nuclear Information System (INIS)

    Nissen, K.L.

    1988-06-01

    Two computer codes for the analysis of fuel rod behavior have been developed. Fuel rod mechanics is treated by a two-dimensional, axisymmetric finite element method. The program KONTAKT is used for detailed examinations on fuel rod sections, whereas the second program METHOD2D allows instationary calculations of whole fuel rods. The mechanical contact of fuel and cladding during heating of the fuel rod is very important for it's integrity. Both computer codes use a Newton-Raphson iteration for the solution of the nonlinear solid body contact problem. A constitutive equation is applied for the dependency of contact pressure on normal approach of the surfaces which are assumed to be rough. If friction is present on the contacting surfaces, Coulomb's friction law is used. Code validation is done by comparison with known analytical solutions for special problems. Results of the contact algorithm for an elastic ball pressing against a rigid surface are confronted with Hertzian theory. Influences of fuel-pellet geometry as well as influences of discretisation of displacements and stresses of a single fuel pellet are studied. Contact of fuel and cladding is calculated for a fuel rod section with two fuel pellets. The influence of friction forces between fuel and cladding on their axial expansion is demonstrated. By calculation of deformations and temperatures during an instationary fuel rod experiment of the CABRI-series the feasibility of two-dimensional finite element analysis of whole fuel rods is shown. (orig.) [de

  4. Design criteria for confidence in the manufacture of BWR fuel rods

    International Nuclear Information System (INIS)

    Anantharaman, K.; Basu, S.; Anand, A.K.; Mehta, S.K.

    Based on the experience of fuel manufacture for BWR type reactors in India, the parameters which need stringent quality control, are discussed. The design specifications of the fuel rods as well as the cladding material and tubes are reported. The defect mechanisms to be taken into account and the fuel failure in reference to the variation of mechanical properties of the cladding are also described. (K.B.)

  5. Core design and fuel rod analyses of a super fast reactor with high power density

    International Nuclear Information System (INIS)

    Ju, Haitao; Cao, Liangzhi; Lu, Haoliang; Oka, Yoshiaki; Ikejiri, Satoshi; Ishiwatari, Yuki

    2009-01-01

    A Super Fast Reactor is a pressure-vessel type, fast spectrum SuperCritical Water Reactor (SCWR) that is presently researched in a Japanese project. One of the most important advantages of the Super Fast Reactor is the higher power density compared to the thermal spectrum SCWR, which reduces the capital cost. A preliminary core has an average power density of 158.8W/cc. In this paper, the principle of improving the average power density is studied and the core design is improved. After the sensitivity analyses on the fuel rod configurations, the fuel assembly configurations and the core configurations, an improved core with an average power density of 294.8W/cc is designed by 3-D neutronic/thermal-hydraulic coupled calculations. This power density is competitive with that of typical Liquid Metal Fast Breeder Reactors (LMFBR). In order to ensure the fuel rod integrity of this core design, the fuel rod behaviors on the normal operating condition are analyzed using FEMAXI-6 code. The power histories of each fuel rod are taken from the neutronics calculation results in the core design. The cladding surface temperature histories are taken from the thermal-hydraulic calculation results in the core design. Four types of the limiting fuel rods, with the Maximum Cladding Surface Temperature (MCST), Maximum Power Peak(MPP), Maximum Discharge Burnup(MDB) and Different Coolant Flow Pattern (DCFP), are chosen to cover all the fuel rods in the core. The available design range of the fuel rod design parameters, such as initial gas plenum pressure, gas plenum position, gas plenum length, grain size and gap size, are found out in order to satisfy the following design criteria: (1) Maximum fuel centerline temperature should be less than 1900degC. (2) Maximum cladding stress in circumstance direction should be less than 100MPa. (3) Pressure difference on the cladding should be less than 1/3 of buckling collapse pressure. (4) Cumulative damage faction (CDF) of the cladding should be

  6. A statistical analysis of pellet-clad interaction failures in water reactor fuel

    International Nuclear Information System (INIS)

    McDonald, S.G.; Fardo, R.D.; Sipush, P.J.; Kaiser, R.S.

    1981-01-01

    The primary objective of the statistical analysis was to develop a mathematical function that would predict PCI fuel rod failures as a function of the imposed operating conditions. Linear discriminant analysis of data from both test and commercial reactors was performed. The initial data base used encompassed 713 data points (117 failures and 596 non-failures) representing a wide variety of water cooled reactor fuel (PWR, BWR, CANDU, and SGHWR). When applied on a best-estimate basis, the resulting function simultaneously predicts approximately 80 percent of both the failure and non-failure data correctly. One of the most significant predictions of the analysis is that relatively large changes in power can be tolerated when the pre-ramp irradiation power is low, but that only small changes in power can be tolerated when the pre-ramp irradiation power is high. However, it is also predicted that fuel rods irradiated at low power will fail at lower final powers than those irradiated at high powers. Other results of the analysis are that fuel rods with high clad operating temperatures can withstand larger power increases that fuel rods with low clad operating temperatures, and that burnup has only a minimal effect on PCI performance after levels of approximately 10000 MWD/MTU have been exceeded. These trends in PCI performance and the operating parameters selected are believed to be consistent with mechanistic considerations. Published PCI data indicate that BWR fuel usually operates at higher local powers and changes in power, lower clad temperatures, and higher local ramp rates than PWR fuel

  7. Theoretical investigations of the gas flow in ballooning LWR-fuel rods

    International Nuclear Information System (INIS)

    Gaballah, I.

    1978-09-01

    A theory is developed for the calculation of gas flow in a fuel rod simulator or in a fuel rod with round- or cracked pellets. The fundamental equations are formulated, simplified, reformed, and then numerically solved. The numerical investigations show, that a quasi steady incompressible flow model can be used without great error. The effect of the deformation form is studied. A uniform deformation along the whole length causes small pressure difference. A power profile and rod spacers cause non-uniform clad deformation of the fuel rod simulator or the fuel rod. This deformation leads to greater pressure differences. Finally the effect of the cracked pellets is studied. The cracked pellets cause great pressure differences along the fuel rod. (orig.) 891 HP [de

  8. PIN99W, Modelling of VVER and PWR Fuel Rod Thermomechanical Behaviour

    International Nuclear Information System (INIS)

    Valach, M.; Strizhov, P.; Svoboda, R.

    2000-01-01

    1 - Description of program or function: The Code is developed to describe fuel rod thermomechanical behaviour in operational conditions. The main goal of this code is to calculate fuel temperature, gap conductivity, fission gas release and inner gas pressure. 2 - Methods: - fuel rod temperature response is solved by using one-dimensional finite element method combined with weighted residuals method; - the code involves models describing physical phenomena typical for the fuel irradiated in Light Water Power Reactors (densification, restructuring, fission gas release, swelling and relocation) ; - this code is updated and improves PIN-micro code. 3 - Restrictions on the complexity of the problem: - simplified mechanistic solution; - only steady-state solution; - no cladding failure criterion; - no model for axial fuel-cladding interaction

  9. RODSWELL: a computer code for the thermomechanical analysis of fuel rods under LOCA conditions

    International Nuclear Information System (INIS)

    Casadei, F.; Laval, H.; Donea, J.; Jones, P.M.; Colombo, A.

    1984-01-01

    The code calculates the variation in space and time of all significant fuel rod variables, including fuel, gap and cladding temperature, fuel and cladding deformation, cladding oxidation and rod internal pressure. The code combines a transient 2-dimensional heat conduction code and a 1-dimensional mechanical model for the cladding deformation. The first sections of this report deal with the heat conduction model and the finite element discretization used for the thermal analysis. The mechanical deformation model is presented next: modelling of creep, phase change and oxidation of the zircaloy cladding is discussed in detail. A model describing the effect of oxidation and oxide cracking on the mechanical strength of the cladding is presented too. Next a mechanical restraint model, which allows the simulation of the presence of the neighbouring rods and is particularly important in assessing the amount of channel blockage during a transient, is presented. A description of the models used for the coolant conditions and for the power generation follows. The heat source can be placed either in the fuel or in the cladding, and direct or indirect clad heating by electrical power can be simulated. Then a section follows, dealing with the steady-state and transient types of calculation and with the automatic variable time step selection during the transient. The last sections deal with presentation of results, graphical output, test problems and an example of general application of the code

  10. Stress Analysis of Fuel Rod under Axial Coolant Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung [Chungnam National University, Daejeon (Korea, Republic of); Park, Num Kyu; Jeon, Kyung Rok [Kerea Nuclear Fuel., Daejeon (Korea, Republic of)

    2010-05-15

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  11. Stress Analysis of Fuel Rod under Axial Coolant Flow

    International Nuclear Information System (INIS)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung; Park, Num Kyu; Jeon, Kyung Rok

    2010-01-01

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  12. Sensitivity Analysis of Gap Conductance for Heat Split in an Annular Fuel Rod

    International Nuclear Information System (INIS)

    Chun, Kun Ho; Chun, Tae Hyun; In, Wang Kee; Song, Keun Woo

    2006-01-01

    To increase of the core power density in the current PWR cores, an annular fuel rod was proposed by MIT. This annular fuel rod has two coolant channels and two cladding-pellet gaps unlike the current solid fuel rod. It's important to predict the heat split reasonably because it affects coolant enthalpy rise in each channel and Departure from Nuclear Boiling Ratio (DNBR) in each channel. Conversely, coolant conditions affect fuel temperature and heat split. In particular if the heat rate leans to either inner or outer channel, it is out of a thermal equilibrium. To control a thermal imbalance, placing another gap in the pellet is introduced. The heat flow distribution between internal and external channels as well as fuel and cladding temperature profiles is calculated with and without the fuel gap between the inner and outer pellets

  13. Modelling of pellet-cladding interaction in PWR's

    International Nuclear Information System (INIS)

    Esteves, A.M.; Silva, A.T. e.

    1992-01-01

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyses the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. (author)

  14. Power ramp tests of MOX fuel rods. HBWR irradiation with the instrument rig, IFA-591

    International Nuclear Information System (INIS)

    Ozawa, Takayuki; Abe, Tomoyuki

    2006-03-01

    Plutonium-uranium mixed oxide (MOX) fuel rods of instrumental rig IFA-591 were ramped in HBWR to study the Advanced Thermal Reactor (ATR) MOX fuel behavior during transient operation and to determine a failure threshold of the MOX fuel rods. Eleven segments were base-irradiated in ATR 'FUGEN' up to 18.4 GWd/t. Zirconium liner claddings were adopted for four segments of them. As the results of non-destructive post irradiation examinations (PIEs) after the base-irradiation and before the ramp tests, no remarkable behavior affecting the integrity of fuel assembly and fuel rod was confirmed. All segments to be used for the ramp tests, which consisted of the multi-step ramp tests and the single-step ramp tests, had instrumentations for in-pile measurements of cladding elongation or plenum pressure, and heated up to the maximum linear power of 58.3-68.4 kW/m without failure. The major results of ramp tests are as follows: There is no difference in PCMI behaviors between two type rods of Zry-2 and Zirconium liner claddings from the in-pile measurements of cladding elongation and plenum pressure. The computations of cladding elongation and inner pressure gave slightly lower elongation and pressure than the in-pile measurements during the ramp-test. However, the cladding relaxation during the power hold was in good agreement, and the fission gas release behavior during cooling down could be evaluated by taking into account the relaxation of contact pressure between pellet and cladding. Although the final power during IFA-591 ramp tests reached the higher linear power than the failure threshold power of UO 2 fuel rods, no indication of fuel failure was observed during the ramp tests. The cladding relaxation due to the creep deformation of the MOX pellets at high temperature could be confirmed at the power steps during the multi-ramp test. The fission gas release due to the emancipation from PCMI stress was observed during the power decreasing. The burn-up dependence could be

  15. Post-irradiation examination of Al-61 wt% U3Si fuel rods from the NRU reactor

    International Nuclear Information System (INIS)

    Sears, D.F.; Wang, N.

    1997-01-01

    This paper describes the post-irradiation examination of 4 intact low enrichment uranium (LEU) fuel rods from the national research universal (NRU) reactor at the Chalk River Laboratories of AECL. The rods were irradiated during the period 1993 through 1995, under typical driver fuel operating conditions in NRU, i.e., nominal D 2 O coolant inlet temperature 37E C, inlet pressure 654 kPa and mass flow 12.4 L/s. Irradiation exposures ranged from 147 to 251 full-power days, corresponding to 40 to 84 atom % 235 U burnup. The maximum rod power was ∼2 MW, with element linear power ratings up to 68 kW/m. Post-irradiation examinations, conducted in 1997, focused on optical metallography to measure cladding oxide thickness and fuel core and cladding microstructural examinations. The cladding oxide was approximately 24 : m thick at the mid-plane of fuel rods irradiated to 251 full-power days, with small areas up to 34 : m thick on the fins. The cladding retained significant ductility after irradiation, and its microstructure appeared unchanged. Fuel core diametral increases were small (up to 4%) and within the range previously observed on Al-61 wt% U 3 Si fuel irradiated in the NRU reactor. (author)

  16. Fuel Rod Performance Evaluation of CE 16 x 16 LTA Operated at Steady State Using Transuranus and Pad Codes

    Energy Technology Data Exchange (ETDEWEB)

    Krasnorutskyy, V.; Slyeptsov, O. [Nuclear Fuel Cycle Science and Technology Establishment (NFCSTE), National Science Center, Kharkhov Institute of Physics and Technology (NSC KIPT), Kharkhov (Ukraine)

    2013-03-15

    The report performed under IAEA research contract No. 15370 describes the results of fuel performance evaluation of PWR fuel rods operated at steady state up to discharge burnup of {approx}60 GWD/MTU using the codes of TRANSURANUS designed by ITU and PAD designed by Westinghouse. The experimental results from US-PWR 16x16 LTA Extended Burnup Demonstration Program presented in the IFPE database of the OECD/NEA have been utilized for assessing the codes themselves during simulation of such properties as rod burnup, cladding corrosion, fuel densification and swelling, cladding irradiation growth and strain, FGR and RIP. The results obtained by PAD showed that the code properly simulates rod burnup, cladding irradiation growth and cladding oxidation with Standard Zr-4 material. The calculated burnup values along the fuel stack vary within {+-} 5% of the rod average burnup. The predicted values of the rod axial growth are (0.88-0.94) % and within the measured ones obtained in the burnup range of (50 - 60) GWD/MTU. With allowance made for probability of crud deposition and hot channel hydraulic diameter variation, the axial distribution of oxide layer is predicted well. For the nominal rod dimensions and operation conditions, the calculated peak oxide thickness is slightly overestimated based on the BE corrosion model parameters. The WEC fuel swelling and densification model together with the US NRC one, which is incorporated in the code, were used to assess the change in fuel pellet density ({Delta}{rho}) and fuel volume ({Delta}V{sub F}/V) vs. burnup as well as the rod void volume change, {Delta}V{sub V}/V, and the cladding outer diameter (OD) variation along the fuel stack. (author)

  17. Model for incorporating fuel swelling and clad shrinkage effects in diffusion theory calculations (LWBR Development Program)

    International Nuclear Information System (INIS)

    Schick, W.C. Jr.; Milani, S.; Duncombe, E.

    1980-03-01

    A model has been devised for incorporating into the thermal feedback procedure of the PDQ few-group diffusion theory computer program the explicit calculation of depletion and temperature dependent fuel-rod shrinkage and swelling at each mesh point. The model determines the effect on reactivity of the change in hydrogen concentration caused by the variation in coolant channel area as the rods contract and expand. The calculation of fuel temperature, and hence of Doppler-broadened cross sections, is improved by correcting the heat transfer coefficient of the fuel-clad gap for the effects of clad creep, fuel densification and swelling, and release of fission-product gases into the gap. An approximate calculation of clad stress is also included in the model

  18. The results of postirradiation examinations of VVER-1000 and VVER-440 fuel rods

    Science.gov (United States)

    Dubrovin, K. P.; Ivanov, E. G.; Strijov, P. N.; Yakovlev, V. V.

    1991-02-01

    The paper presents the results of postirradiation examination of the fuel rods having different fuel-cladding gaps, pellet densities, pellet inner diameters and so on. The fuel rods were irradiated in the material science reactor (MR) of the Kurchatov Institute of Atomic Energy and at 4 unit of the Novo-Voronezh nuclear powerplant. Some data on fission gas release and rod geometry and compared with computer code predictions.

  19. Models of multi-rod code FRETA-B for transient fuel behavior analysis

    International Nuclear Information System (INIS)

    Uchida, Masaaki; Otsubo, Naoaki.

    1984-11-01

    This paper is a final report of the development of FRETA-B code, which analyzes the LWR fuel behavior during accidents, particularly the Loss-of-Coolant Accident (LOCA). The very high temperature induced by a LOCA causes oxidation of the cladding by steam and, as a combined effect with low external pressure, extensive swelling of the cladding. The latter may reach a level that the rods block the coolant channel. To analyze these phenomena, single-rod model is insufficient; FRETA-B has a capability to handle multiple fuel rods in a bundle simultaneously, including the interaction between them. In the development work, therefore, efforts were made for avoiding the excessive increase of calculation time and core memory requirement. Because of the strong dependency of the in-LOCA fuel behavior on the coolant state, FRETA-B has emphasis on heat transfer to the coolant as well as the cladding deformation. In the final version, a capability was added to analyze the fuel behavior under reflooding using empirical models. The present report describes the basic models of FRETA-B, and also gives its input manual in the appendix. (author)

  20. Post-irradiation examination of A1-61 wt % U3Si fuel rods from the NRU reactor

    International Nuclear Information System (INIS)

    Sears, D.F.; Wang, N.

    1997-09-01

    This paper describes the post-irradiation examination of 4 intact low-enrichment uranium (LEU) fuel rods from the national research universal (NRU) reactor at the Chalk River Laboratories of AECL. The rods were irradiated during the period 1993 through 1995, under typical driver fuel operating conditions in NRU, i.e., nominal D 2 0 coolant inlet temperature 37 degrees C, inlet pressure 654 kPa and mass flow 12.4 L/s. Irradiation exposures ranged from 147 to 251 full-power days, corresponding to 40 to 84 atom % 235 U burnup. The maximum rod power was ∼2 MW, with element linear power ratings up to 68 kW/m. Post-irradiation examinations, conducted in 1997, focused on optical metallography to measure cladding oxide thickness and fuel core and cladding microstructural examinations. The cladding oxide was approximately 24 μm thick at the mid-plane of fuel rods irradiated to 251 full-power days, with small areas up to 34 μm thick on the fins. The cladding retained significant ductility after irradiation, and its microstructure appeared unchanged. Fuel core diametral increases were small (up to 4%) and within the range previously observed on A1-61 wt % U 3 Si fuel irradiated in the NRU reactor. (author)

  1. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented

  2. Liquid-metal fast breeder reactor fuel rod performance and modeling at high burnup

    International Nuclear Information System (INIS)

    Verbeek, P.; Toebbe, H.; Hoppe, N.; Steinmetz, B.

    1978-01-01

    The fuel rod modeling codes IAMBUS and COMETHE were used in the analysis and interpretation of postirradiation examination results of mixed-oxide fuel pins. These codes were developed in the framework of the SNR-300 research and development (R and D) program at Interatom and Belgonucleaire, respectively. SNR-300 is a liquid-metal fast breeder reactor demonstration plant designed and presently constructed in consortial cooperation by Germany, Belgium, and the Netherlands. RAPSODIE I, the two-bundle irradiation experiment, was irradiated in the French test FBR RAPSODIE FORTISSIMO and is one of the key irradiation experiments within the SNR-300 R and D program. The comparison of code predictions with postirradiation examination results concentrates on clad diameter expansions, clad total axial elongations, fuel differential and total axial elongations, fuel restructuring, and fission gas release. Fuel rod modeling was considered in the light of benchmarking of the codes, and there was consideration of fuel rod design for operation at low and high burnup

  3. Method and system for the production of fuel rods for nuclear reactors

    International Nuclear Information System (INIS)

    Meinhardt, V.; Schultz, R.; Gall, A.

    1975-01-01

    The invention deals with a method to produce nuclear reactor fuel rods which contain the fuel in a cladding tube and in which an alkali metal is put in the space between the fuel and cladding for better heat transfer from the fuel to the cladding. The bubble-free filling-in of the alkali metal causes difficulties; the invention suggests to carry out the filling-in of fuel and alkali metal in a horizontal position of the cladding to rinse through the free space firstly with alkali metal, then to fill with fuel and then with the alkali metal taking account of necessary space for the fission gas volume. Equipment to carry out this process in which all operations are carried out in a vacuum box is described. (UWI) [de

  4. Fuel and control rod failure behavior during degraded core accidents

    International Nuclear Information System (INIS)

    Chung, K.S.

    1984-01-01

    As a part of the pretest and posttest analyses of Light Water Reactor Source Term Experiments (STEP) which are conducted in the Transient Reactor Test (TREAT) facility, this paper investigates the thermodynamic and material behaviors of nuclear fuel pins and control rods during severe core degradation accidents. A series of four STEP tests are being performed to simulate the characteristics of the power reactor accidents and investigate the behavior of fission product release during these accidents. To determine the release rate of the fission products from the fuel pins and the control rod materials, information concerning the timing of the clad failure and the thermodynamic conditions of the fuel pins and control rods are needed to be evaluated. Because the phase change involves a large latent heat and volume expansion, and the phase change is a direct cause of the clad failure, the understanding of the phase change phenomena, particularly information regarding how much of the fuel pin and control rod materials are melted are very important. A simple energy balance model is developed to calculate the temperature profile and melt front in various heat transfer media considering the effects of natural convection phenomena on the melting and freezing front behavior

  5. Researches of WWER fuel rods behaviour under RIA accident conditions

    International Nuclear Information System (INIS)

    Nechaeva, O.; Medvedev, A.; Novikov, V.; Salatov, A.

    2003-01-01

    Unirradiated fuel rod and refabricated fuel rod tests in the BIGR as well as acceptance criteria proving absence of fragmentation and the settlement modeling of refabricated fuel rods thermomechanical behavior in the BIGR-tests using RAPTA-5 code are discussed in this paper. The behaviour of WWER type simulators with E110 and E635 cladding was researched at the BIGR reactor under power pulse conditions simulating reactivity initiated accident. The results of the tests in four variants of experimental conditions are submitted. The behaviour of 12 WWER type refabricated fuel rods was researched in the BIGR reactor under power pulse conditions simulating reactivity initiated accident: burnup 48 and 60 MWd/kgU, pulse width 3 ms, peak fuel enthalpy 115-190 cal/g. The program of future tests in the research reactor MIR with high burnup fuel rod (up to 70 MWd/kgU) under conditions simulating design RIA in WWER-1000 is presented

  6. Development of thermocouple re-instrumentation technique for irradiated fuel rod. Techniques for making center hole into UO2 pellets and thermocouple re-instrumentation to fuel rod

    International Nuclear Information System (INIS)

    Shimizu, Michio; Saito, Junichi; Oshima, Kunio

    1995-07-01

    The information on FP gas pressure and centerline temperature of fuel pellets during power transient is important to study the pellet clad interaction (PCI) mechanism of high burnup LWR fuel rods. At the Department of JMTR, a re-instrumentation technique of FP gas pressure gage for an irradiated fuel rod was developed in 1990. Furthermore, a thermocouple re-instrumentation technique was successfully developed in 1994. Two steps were taken to carry out the development program of the thermocouple re-instrumentation technique. In the first step, a drilling technique was developed for making a center hole of the irradiated fuel pellets. Various drilling tests were carried out using dummy of fuel rods consisted of Ba 2 FeO 3 pellets and Zry-2 cladding. On this work it is important to keep the pellets just the state cracked at a power reactor. In these tests, the technique to fix the pellets by frozen CO 2 was used during the drilling work. Also, diamond drills were used to make the center hole. These tests were completed successfully. A center hole, 54mm depth and 2.5mm diameter, was realized by these methods. The second step of this program is the in-pile demonstration test on an irradiated fuel rod instrumented dually a thermocouple and FP gas pressure gage. The demonstration test was carried out at the JMTR in 1995. (author)

  7. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented. 6 references, 4 figures

  8. Modeling of the PWR fuel mechanical behaviour and particularly study of the pellet-cladding interaction in a fuel rod; Contribution a la modelisation du comportement mecanique des combustibles REP sous irradiation, avec en particulier le traitement de l`interaction pastille-gaine dans un crayon combustible

    Energy Technology Data Exchange (ETDEWEB)

    Hourdequin, N.

    1995-05-01

    In Pressurized Water Reactor (PWR) power plants, fuel cladding constitutes the first containment barrier against radioactive contamination. Computer codes, developed with the help of a large experimental knowledge, try to predict cladding failures which must be limited in order to maintain a maximal safety level. Until now, fuel rod design calculus with unidimensional codes were adequate to prevent cladding failures in standard PWR`s operating conditions. But now, the need of nuclear power plant availability increases. That leads to more constraining operating condition in which cladding failures are strongly influenced by the fuel rod mechanical behaviour, mainly at high power level. Then, the pellet-cladding interaction (PCI) becomes important, and is characterized by local effects which description expects a multidimensional modelization. This is the aim of the TOUTATIS 2D-3D code, that this thesis contributes to develop. This code allows to predict non-axisymmetric behaviour too, as rod buckling which has been observed in some irradiation experiments and identified with the help of TOUTATIS. By another way, PCI is influenced by under irradiation experiments and identified with the help of TOUTATIS which includes a densification model and a swelling model. The latter can only be used in standard operating conditions. However, the processing structure of this modulus provides the possibility to include any type of model corresponding with other operating conditions. In last, we show the result of these fuel volume variations on the cladding mechanical conditions. (author). 25 refs., 89 figs., 2 tabs., 12 photos., 5 appends.

  9. FEMAXI-III: a computer code for the analysis of thermal and mechanical behavior of fuel rods

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo; Ichikawa, Michio; Iwano, Yoshihiko; Ito, Kenichi; Saito, Hiroaki; Kashima, Koichi; Kinoshita, Motoyasu; Okubo, Tadatsune.

    1985-12-01

    FEMAXI-III is a computer code to predict the thermal and mechanical behavior of a light water fuel rod during its irradiation life. It can analyze the integral behavior of a whole fuel rod throughout its life, as well as the localized behavior of a small part of fuel rod. The localized mechanical behavior such as the cladding ridge deformation is analyzed by the two-dimensional axisymmetric finite element method. FEMAXI-III calculates, in particular, the temperature distribution, the radial deformation, the fission gas release, and the inner gas pressure as a function of irradiation time and axial position, and the stresses and strains in the fuel and cladding at a small part of fuel rod as a function of irradiation time. For this purpose, Elasto-plasticity, creep, thermal expansion, fuel cracking and crack healing, relocation, densification, swelling, hot pressing, heat generation distribution, fission gas release, and fuel-cladding mechanical interaction are modelled and their interconnected effects are considered in the code. Efforts have been made to improve the accuracy and stability of finite element solution and to minimize the computer memory and running time. This report describes the outline of the code and the basic models involved, and also includes the application of the code and its input manual. (author)

  10. Fuel rod-to-support contact pressure and stress measurement for CHASNUPP-1(PWR) fuel

    International Nuclear Information System (INIS)

    Waseem; Elahi, N.; Siddiqui, A.; Murtaza, G.

    2011-01-01

    Research highlights: → A detailed finite element model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. → The spring hold-down force is calculated using the contact pressure obtained from the FE model. → Experiment has also been conducted in the same environment for the measurement of this force. → The spring hold-down force values obtained from both studies confirm the validation of this analysis. → The stress obtained through this analysis is less than the yield strength of spacer grid material, thus fulfils the structural integrity criteria of grid. - Abstract: This analysis has been made in an attempt to measure the contact pressure of the PWR fuel assembly spacer grid spring and to verify its structural integrity at room temperature in air. A detailed finite element (FE) model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. The FE model of a fuel rod-to-support system is produced with shell and contact elements. The spring hold-down force is calculated using the contact pressure obtained from the FE model. Experiment has also been conducted in the same environment for the measurement of this force. The spring hold-down force values obtained from both studies are compared, which show good agreement, and in turn confirm the validation of this analysis. The Stress obtained through this analysis is less than the yield strength of spacer grid material (Inconel-718), thus fulfils the structural integrity criteria of grid.

  11. Fuel rod-to-support contact pressure and stress measurement for CHASNUPP-1(PWR) fuel

    Energy Technology Data Exchange (ETDEWEB)

    Waseem, E-mail: wazim_me@hotmail.co [Directorate General Nuclear Power Fuel, Pakistan Atomic Energy Commission, P.O. Box No. 1847, Islamabad 44000 (Pakistan); Elahi, N.; Siddiqui, A.; Murtaza, G. [Directorate General Nuclear Power Fuel, Pakistan Atomic Energy Commission, P.O. Box No. 1847, Islamabad 44000 (Pakistan)

    2011-01-15

    Research highlights: A detailed finite element model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. The spring hold-down force is calculated using the contact pressure obtained from the FE model. Experiment has also been conducted in the same environment for the measurement of this force. The spring hold-down force values obtained from both studies confirm the validation of this analysis. The stress obtained through this analysis is less than the yield strength of spacer grid material, thus fulfils the structural integrity criteria of grid. - Abstract: This analysis has been made in an attempt to measure the contact pressure of the PWR fuel assembly spacer grid spring and to verify its structural integrity at room temperature in air. A detailed finite element (FE) model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. The FE model of a fuel rod-to-support system is produced with shell and contact elements. The spring hold-down force is calculated using the contact pressure obtained from the FE model. Experiment has also been conducted in the same environment for the measurement of this force. The spring hold-down force values obtained from both studies are compared, which show good agreement, and in turn confirm the validation of this analysis. The Stress obtained through this analysis is less than the yield strength of spacer grid material (Inconel-718), thus fulfils the structural integrity criteria of grid.

  12. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction ESSI-4 ESSI-11

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauscheck, H.; Wallenfels, K.P.; Buescher, B.J.

    1985-03-01

    The tests had the initial heatup rate as main parameter. The experimental arrangement consisted of a fuel rod simulator (central tungsten heater, UO 2 ring pellets and zircaloy cladding), a zircaloy shroud and the fiber ceramic insulation. A steam flow of ca. 20 g/min was introduced at the lower end of the bundle. A temperature escalation was observed in every test. The maximum cladding surface temperature in the single rod tests never exceeded 2200 0 C. The escalation began in the upper region of the rods and moved down the rods, opposite to the direction of steam flow. For fast initial heatup rates, the runoff of molten zircaloy was a limiting process for the escalation. For slow heatup rates, the formation of a protective oxide layer reduced the reaction rate. The test with less insulation thickness showed a reduction of the escalation. A stronger influence was found for the gap between shroud and insulation. This is caused by convection heat losses to the steam circulating in this gap by natural convection. Removal of the gap between shroud and insulation in essentially the same experimental arrangement produced a faster escalation. The posttest appearance of the fuel rod simulators showed that, at slow heatup rates oxidation of the cladding was complete, and the fuel rod was relatively intact. Conversely, at fast heatup rates, relatively little cladding oxidation with extensive dissolution of the UO 2 pellets and runoff of molten cladding was observed. (orig./HP) [de

  13. IFPE/IFA-508 and 515, PCMI Behaviour of Thin Cladding Rods, JAERI and HRP

    International Nuclear Information System (INIS)

    2007-01-01

    Description: To measure the integrated response of UO 2 and its cladding to conditions associated with PCI, the Japan Atomic Energy Research Institute carried out a series of experiments in the Halden BWR. The experiment involved two major objectives. The first was to study the influence of rod design parameters on PCI. Diametral gap, wall cladding thickness, SiO 2 additive, and pellet grain size were used as design parameters. The second objective was to study the influence of pre-irradiation (i.e. burnup) on PCI. The maximum burnup attained in the experiment was 23 MWd/kgU. These research results can be applied to current BWR-type fuel rods. The tests were performed between April 1977 and March 1981

  14. Results of calculation of WWER-440 fuel rods (Kol`skaya-3 NPP) at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Scheglov, A; Proselkov, V [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation); Panin, M; Pitkin, Yu [Kol` skaya NPP, (Russian Federation); Tzibulya, V [AO Mashinostroitelnij Zavod Electrostal (Russian Federation)

    1994-12-31

    Thermal-physical characteristics of fuel rods of two fuel assemblies which were operated within 5 - 8 and 5 - 9 core fuel loadings of the Unit 3 of the Kol`skaya NPP are calculated. They have achieved deep burnup during 4-year (> 46 Mwd/kg U) and 5-year (> 48 Mwd/kg U) fuel cycle. Fuel assemblies have been unloaded off the reactor and subjected to a post-irradiation testing. PIN-mod2 code originally designed for modelling of WWER fuel rod behaviour in a quasi-steady-state operation is used. The average fuel rod in the fuel assembly and the fuel rod with maximum burnup are selected. The preliminary comparison of the calculation results with those of the post-irradiation examination shows a satisfactory agreement. On the basis of the results obtained in the post-irradiation experiments an improvement of the model for calculation of fission gas release and creep of the cladding is planned. The results of the analysis performed indicate that the fuel rod completely preserves its working ability; fuel temperature does not exceed 1300{sup o} C; fission gas release does not exceed 4%; maximum gas pressure inside the cladding at the end of campaign does not exceed 2 MPa. 2 tabs., 11 figs., 5 refs.

  15. IAMBUS, a computer code for the design and performance prediction of fast breeder fuel rods

    International Nuclear Information System (INIS)

    Toebbe, H.

    1990-05-01

    IAMBUS is a computer code for the thermal and mechanical design, in-pile performance prediction and post-irradiation analysis of fast breeder fuel rods. The code deals with steady, non-steady and transient operating conditions and enables to predict in-pile behavior of fuel rods in power reactors as well as in experimental rigs. Great effort went into the development of a realistic account of non-steady fuel rod operating conditions. The main emphasis is placed on characterizing the mechanical interaction taking place between the cladding tube and the fuel as a result of contact pressure and friction forces, with due consideration of axial and radial crack configuration within the fuel as well as the gradual transition at the elastic/plastic interface in respect to fuel behavior. IAMBUS can be readily adapted to various fuel and cladding materials. The specific models and material correlations of the reference version deal with the actual in-pile behavior and physical properties of the KNK II and SNR 300 related fuel rod design, confirmed by comparison of the fuel performance model with post-irradiation data. The comparison comprises steady, non-steady and transient irradiation experiments within the German/Belgian fuel rod irradiation program. The code is further validated by comparison of model predictions with post-irradiation data of standard fuel and breeder rods of Phenix and PFR as well as selected LWR fuel rods in non-steady operating conditions

  16. Axial transport of fission gas in LWR fuel rods

    International Nuclear Information System (INIS)

    Kinoshita, M.

    1983-01-01

    With regard to fission gas transportation inside the fuel rod, the following three mechanisms are important: (1) a localized and time dependent fission gas release from UO 2 fuel to pellet/clad gap, (2) the consequent gas pressure difference between the gap and the plenum, and (3) the inter-diffusion of initially filled Helium and released fission gas such as Xenon. Among these three mechanisms, the 2nd mechanism would result in the one dimensional flow through P/C gap in the axial direction, while the 3rd would average the local fission gas concentration difference. In this paper, an attempt was made to develop a computerized model, LINUS (LINear flow and diffusion under Un-Steady condition) describing the above two mechanisms, items (2) and (3). The item (1) is treated as an input. The code was applied to analyse short length experimental fuel rods and long length commercial fuel rods. The calculated time evolution of Xe concentration along the fuel column shows that the dilution rate of Xe in commercial fuel rods is much slower than that in short experimental fuel rods. Some other sensitivity studies, such as the effect of pre-pressurization, are also presented. (author)

  17. Destructive examination of 3-cycle LWR fuel rods from Turkey Point Unit 3 for the Climax-Spent Fuel Test

    International Nuclear Information System (INIS)

    Atkin, S.D.

    1981-06-01

    The destructive examination results of five light water reactor rods from the Turkey Point Unit 3 reactor are presented. The examinations included fission gas collection and analyses, burnup and hydrogen analyses, and a metallographic evaluation of the fuel, cladding, oxide, and hydrides. The rods exhibited a low fission gas release with all other results appearing representative for pressurized water reactor fuel rods with similar burnups (28 GWd/MTU) and operating histories

  18. Code Package to Analyze Parameters of the WWER Fuel Rod. TOPRA-2 Code - Verification Data

    International Nuclear Information System (INIS)

    Scheglov, A.; Proselkov, V.; Passage, G.; Stefanova, S.

    2009-01-01

    Presented are the data for computer codes to analyze WWER fuel rods, used in the WWER department of RRC 'Kurchatov Institute'. Presented is the description of TOPRA-2 code intended for the engineering analysis of thermophysical and strength parameters of the WWER fuel rod - temperature distributions along the fuel radius, gas pressures under the cladding, stresses in the cladding, etc. for the reactor operation in normal conditions. Presented are some results of the code verification against test problems and the data obtained in the experimental programs. Presented are comparison results of the calculations with TOPRA-2 and TRANSURANUS (V1M1J06) codes. Results obtained in the course of verification demonstrate possibility of application of the methodology and TOPRA-2 code for the engineering analysis of the WWER fuel rods

  19. Results of VVER fuel rods tests in the MIR.M1 reactor under power cycling conditions

    International Nuclear Information System (INIS)

    Burukin, A.; Izhutov, A.; Ovchinnikov, V.; Kalygin, V.; Markov, D.; Pimenov, Y.; Novikov, V.; Medvedev, A.; Nesterov, B.

    2011-01-01

    The paper presents the main results of the 50 ... 60 MWd/kgU burnup VVER fuel rods tests performed in the MIR.M1 reactor loop facilities under power cycling. The non-destructive PIE results are presented as well. A series of experiments was performed, including overall measurement of fuel rod parameters test, in one of which 300 cycles were done. Irradiation under power cycling conditions and PIE of high-burnup VVER fuel rods showed the following: 1) all fuel rods claddings preserved their integrity under irradiation at linear heat rate (LHR) higher than the NPP operating one; 2) experimental data were obtained on the axial and radial cladding strain and fission gas release (FGR) from 50 ... 60 MWd/kgU burnup VVER-440 and VVER-1000 fuel rods as well as on the kinetics of the change in these parameters and fuel temperature under the power cycling; 3) non-destructive PIE results are in a satisfactory correlation with the data obtained by means of in-pile measurement gages during irradiation. (authors)

  20. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily.

  1. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily

  2. Investigation of likely causes of white patch formation on irradiated WWER fuel rod claddings

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Velioukhanov, V.P.; Ioltoukhovski, A.Y.; Pogodin, V.P.

    1999-01-01

    The information concerning white patches observed on fuel cladding surfaces has been analytically treated. The analysis shows at least three kinds of the white patch appearance: bright white spots which appear to be loose corrosion product deposits disclosing corrosion pits upon spalling; indistinct streaks with separate pronounced spots 1-2 in dia. The spots seem to be thin superficial deposits; light-coloured dense uniform crud distributed over the surface of fuel claddings and fuel assembly jackets. (author)

  3. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H. M.; Strain, R. V.; Billone, M. C.

    2000-01-01

    The morphology, number density, orientation, distribution, and crystallographic aspects of Zr hydrides in Zircaloy fuel cladding play important roles in fuel performance during all phases before and after discharge from the reactor, i.e., during normal operation, transient and accident situations in the reactor, temporary storage in a dry cask, and permanent storage in a waste repository. In the past, partly because of experimental difficulties, hydriding behavior in irradiated fuel cladding has been investigated mostly by optical microscopy (OM). In the present study, fundamental metallurgical and crystallographic characteristics of hydride precipitation and reorientation were investigated on the microscopic level by combined techniques of OM and transmission electron and scanning electron microscopy (TEM and SEM) of spent-fuel claddings discharged from several boiling and pressurized water reactors (BWRs and PWRs). Defueled sections of standard and Zr-lined Zircaloy-2 fuel claddings, irradiated to fluences of ∼3.3 x 10 21 n cm -2 and ∼9.2 x 10 21 n cm -2 (E > 1 MeV), respectively, were obtained from spent fuel rods discharged from two BWRs. Sections of standard and low-tin Zircaloy-4 claddings, irradiated to fluences of ∼4.4 x 10 21 n cm -2 , ∼5.9 x 10 21 n cm -2 , and ∼9.6 x 10 21 n cm -2 (E > 1 MeV) in three PWRs, were also obtained. Microstructural characteristics of hydrides were analyzed in as-irradiated condition and after gas-pressurization-burst or expanding-mandrel tests at 292-325 C in Ar for some of the spent-fuel claddings. Analyses were also conducted of hydride habit plane, morphology, and reorientation characteristics on unirradiated Zircaloy-4 cladding that contained dense radial hydrides. Reoriented hydrides in the slowly cooled unirradiated cladding were produced by expanding-mandrel loading

  4. Thermoelastic analysis for the fuel claddings of the nuclear power reactor at Atucha in the skid's region

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, Gustavo; Basombrio, F.G.

    1979-01-01

    For the fuel elements of the Nuclear Power Reactor at Atucha, a two-dimensional thermoelastic analysis has been made in the region of the skids of the fuel cladding, when the gap between them and the fuel rod separator's support becomes zero. In such a case the latter forces exert on the skids an elastic reaction opposite to the cladding's expansion. The internal pressure reaching the yield stress for the cladding material has been calculated, as a function of the initial gap; for several possible fuel rod locations within the separator; for the actual dimensions and also for reduced thickness of the cladding; with a given external pressure and, with a known temperature spatial distribution. The latter has been calculated by solving the heat conduction equation along the fuel element for a certain power level in the reactor. The calculations are made with two FORTRAN IV computer codes developed at C.A.B., using the finite-element method: the NOLICUARM, to solve the nonlinear quasi-harmonic equation, and the ELASTEF 3, for the solution of thermoelastic problems with plane symmetry. (author) [es

  5. Transient fuel rod behavior prediction with RODEX-3/SIERRA

    Energy Technology Data Exchange (ETDEWEB)

    Billaux, M R; Shann, S H; Swam, L.F. Van [Siemens Power Corp., Richland, WA (United States)

    1997-08-01

    This paper discusses some aspects of the fuel performance code SIERRA (SIEmens Rod Response Analysis). SIERRA, the latest version of the code RODEX-3, has been developed to improve the fuel performance prediction capabilities of the code, both at high burnup and during transient reactor conditions. The paper emphasizes the importance of the mechanical models of the cracked pellet and of the cladding, in the prediction of the transient response of the fuel rod to power changes. These models are discussed in detail. Other aspects of the modelling of high burnup effects are also presented, in particular the modelling of the rim effect and the way it affects the fuel temperature. (author). 12 refs, 5 figs.

  6. Transient fuel rod behavior prediction with RODEX-3/SIERRA

    International Nuclear Information System (INIS)

    Billaux, M.R.; Shann, S.H.; Swam, L.F. Van

    1997-01-01

    This paper discusses some aspects of the fuel performance code SIERRA (SIEmens Rod Response Analysis). SIERRA, the latest version of the code RODEX-3, has been developed to improve the fuel performance prediction capabilities of the code, both at high burnup and during transient reactor conditions. The paper emphasizes the importance of the mechanical models of the cracked pellet and of the cladding, in the prediction of the transient response of the fuel rod to power changes. These models are discussed in detail. Other aspects of the modelling of high burnup effects are also presented, in particular the modelling of the rim effect and the way it affects the fuel temperature. (author). 12 refs, 5 figs

  7. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    International Nuclear Information System (INIS)

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs

  8. The physical and chemical degradation of PWR fuel rods in severe accident conditions

    International Nuclear Information System (INIS)

    Parsons, P.D.; Mowat, J.A.S.; Dewhurst, D.W.F.; Hughes, T.E.

    1983-01-01

    An experimental study of the interaction between Zircaloy-4 cladding and UO 2 in PWR fuel rods heated to high temperatures with a negligible differential pressure across the cladding wall is described. The fuel rods were of dimensions appropriate to the 17x17 PWR fuel sub-assembly and were heated in a non-oxidising environment (vacuum) up to approx. 1850 deg. C either isothermally or through heating ramps. Observations were made concerning the extent and nature of the reaction zone between Zircaloy-4 and UO 2 over the temperature range 1500-1850 deg. C for times ranging from 1 min to 125 min. The location, morphology and the chemical composition of the phases formed are described along with the kinetics of their formation. (author)

  9. A thermodynamic model for the attack behaviour in stainless steel clad oxide fuel pins

    International Nuclear Information System (INIS)

    Goetzmann, O.

    1979-01-01

    So far, post irradiation examination of burnt fuel pins has not revealed a clear cut picture of the cladding attack situation. For seemingly same conditions sometimes attack occurs, sometimes not. This model tries to depict the reaction possibilities along the inner cladding wall on the basis of thermodynamic facts in the fuel pin. It shows how the thermodynamic driving force for attack changes along the fuel column, and with different initial and operational conditions. Two criteria for attack are postulated: attack as a result of the direct reaction of reactive elements with cladding components; and attack as a result of the action of a special agent (CsOH). In defining a reaction potenial the oxygen potential, the temperature conditions (cladding temperature and fuel surface temperature), and the fission products are involved. For the determination of the oxygen potential at the cladding, three models for the redistribution of oxygen across the fuel/clad gap are offered. The effect of various parameters, like rod power, gap conductance, oxygen potential, inner wall temperature, on the thermodynamic potential for attack is analysed. (Auth.)

  10. Fabrication and use of zircaloy/tantalum-sheathed cladding thermocouples and molybdenum/rhenium-sheathed fuel centerline thermocouples

    International Nuclear Information System (INIS)

    Wilkins, S.C.; Sepold, L.K.

    1985-01-01

    The thermocouples described in this report are zircaloy/tantalum-sheathed and molybdenum/rhenium alloy-sheathed instruments intended for fuel rod cladding and fuel centerline temperature measurements, respectively. Both types incorporate beryllium oxide insulation and tungsten/rhenium alloy thermoelements. These thermocouples, operated at temperatures of 2000 0 C and above, were developed for use in the internationally sponsored Severe Fuel Damage test series in the Power Burst Facility. The fabrication steps for both thermocouple types are described in detail. A laser-welding attachment technique for the cladding-type thermocouple is presented, and experience with alternate materials for cladding and fuel therocouples is discussed

  11. Oxidation during reflood of reactor core with melting cladding

    Energy Technology Data Exchange (ETDEWEB)

    Siefken, L.J.; Allison, C.M.; Davis, K.L. [and others

    1995-09-01

    Models were recently developed and incorporated into the SCDAP/RELAP5 code for calculating the oxidation of fuel rods during cladding meltdown and reflood. Experiments have shown that a period of intense oxidation may occur when a hot partially oxidized reactor core is reflooded. This paper offers an explanation of the cladding meltdown and oxidation processes that cause this intense period of oxidation. Models for the cladding meltdown and oxidation processes are developed. The models are assessed by simulating a severe fuel damage experiment that involved reflood. The models for cladding meltdown and oxidation were found to improve calculation of the temperature and oxidation of fuel rods during the period in which hot fuel rods are reflooded.

  12. Express diagnostics of WWER fuel rods at nuclear power plants

    International Nuclear Information System (INIS)

    Pavlov, S.; Amosov, S.; Sagalov, S.; Kostyuchenko, A.

    2009-01-01

    Higher safety and economical efficiency of nuclear power plants (NPP) call for a continuous design modification and technological development of fuel assemblies and fuel rods as well as optimization of their operating conditions. In doing so the efficiency of new fuel introduction depends on the completeness of irradiated fuel data in many respects as well as on the rapidity and cost of such data obtaining. Standard examination techniques of fuel assemblies (FA) and fuel rods (FR) intended for their use in hot cell conditions do not satisfy these requirements in full extent because fuel assemblies require preliminary cooling at NPP to provide their shipment to the research center. Expenditures for FA transportation, capacity of hot cells and expenditures for the examined fuel handling do not make it possible to obtain important information about the condition of fuel assemblies and fuel rods after their operation. In order to increase the comprehensiveness of primary data on fuel assemblies and fuel rods immediately after their removal from the reactor, inspection test facilities are widely used for these purposes. The inspection test facilities make it possible to perform nondestructive inspection of fuel in the NPP cooling pools. Moreover these test facilities can be used to repair failed fuel assemblies. The ultrasonic testing of failed fuel rods inside the fuel assembly was developed for stands of inspection and repair of TVSA WWER-1000 for the Kalinin NPP and Temelin NPP. This method was tested for eight leaking fuel assemblies WWER-440 and WWER-1000 with a burnup of ∼14 up to 38 MW·day/kgU. The ultrasonic testing proved its high degree of reliability and efficiency. The defectoscopy by means of the pulsed eddy-current method was adapted for the stand of inspection and repair of TVSA WWER-1000 for the Kalinin NPP. This method has been used at RIAR as an express testing method of FR claddings during the post-irradiation examinations of fuel assemblies WWER

  13. Some insights into the role of axial gas flow in fuel rod behaviour during the LOCA based on Halden tests and calculations with the FALCON-PSI code

    International Nuclear Information System (INIS)

    Khvostov, G.; Wiesenack, W.; Zimmermann, M.A.; Ledergerber, G.

    2011-01-01

    Highlights: → A model for the dynamics of axial gas redistribution in fuel rods during the LOCA is developed and coupled to the FALCON fuel behaviour code. → The first verification of the model is carried out using the data of the selected Halden LOCA tests. → According to calculation, the short rods used in the Halden tests show a small effect of the delayed gas redistribution during the clad ballooning. → The predicted effect is significant in the full length rods, eventually resulting in a considerable delay of the predicted moment of cladding rupture. → The predicted delay of cladding burst may be large enough to eventually affect the efficiency of the emergency core cooling system. - Abstract: A model for axial gas flow in a fuel rod during the LOCA is integrated into the FRELAX model that deals with the thermal behaviour and fuel relocation in the fuel rods of the Halden LOCA test series. The first verification was carried out using the experimental data for the inner pressure during the gas outflow after cladding rupture in tests 3, 4 and 5. Furthermore, the modified FRELAX model is implicitly coupled to the FALCON fuel behaviour code. The analysis with the new methodology shows that the dynamics of axial gas-flow along the rod and through the cladding rupture can have a strong influence on the fuel rod behaviour. Specifically, a delayed axial gas redistribution during the heat-up phase of the LOCA can result in a drop of local pressure in the ballooned area, which is eventually able to affect the cladding burst. The results of the new model seem to be useful when analysing some of the Halden LOCA tests (showing considerable fuel relocation) and selected cases of LOCA in full-length fuel rods. While the short rods used in the Halden tests only show a very small effect of the delayed gas redistribution during the clad ballooning, such an effect is predicted to be significant in the full-scale rods - with a power peak located sufficiently away from

  14. Microstructural examination of fuel rods subjected to a simulated large-break loss of coolant accident in reactor

    International Nuclear Information System (INIS)

    Garlick, A.

    1985-01-01

    A series of tests has been conducted in the National Research Universal (NRU) reactor, Chalk River, Canada, to investigate the behaviour of full-length 32-rod PWR fuel bundles during a simulated large-break loss of coolant accident (LOCA). In one of these tests (MT-3), 12 central rods were pre-pressurized in order to evaluate the ballooning and rupture of cladding in the Zircaloy high-α/α+β temperature region. All 12 rods ruptured after experiencing < 90% diametral strain but there was no suggestion of coplanar blockage. Post-irradiation examination was carried out on cross-sections of cladding from selected rods to determine the aximuthal distribution of wall thinning along the ballooned regions. These data are assessed to check whether they are consistent with a mechanism in which fuel stack eccentricity generates temperature gradients around the ballooning cladding and leads to premature rupture during a LOCA. After anodizing, the cladding microstructures were examined for the presence of prior-beta phase that would indicate the α/α+β transformation temperature (1078K) had been exceeded. These results were compared with isothermal annealing test data on unirradiated cladding from the same manufacturing batch

  15. Temperature measurement on Zircaloy-clad fuel pins during high temperature excursions

    International Nuclear Information System (INIS)

    Meservey, R.H.

    1976-04-01

    The development of a sheathed thermocouple suitable for attachment to zircaloy-clad fuel rods and for use during high temperature (2,800 0 F) excursions under loss-of-coolant accident conditions is described. Development, fabrication, and testing of the thermocouples is covered in detail. In addition, the development of a process for laser welding the thermocouples to fuel rods is discussed. The thermocouples and attachment welds have been tested for resistance to corrosion and nuclear radiation and have been subjected to fast thermal cycle, risetime, and blowdown accident tests

  16. A Deformation Model of TRU Metal Dispersion Fuel Rod for HYPER

    International Nuclear Information System (INIS)

    Lee, Byoung Oon; Hwang, Woan; Park, Won S.

    2002-01-01

    Deformation analysis in fuel rod design is essential to assure adequate fuel performance and integrity under irradiation conditions. An in-reactor performance computer code for a dispersion fuel rod is being developed in the conceptual design stage of blanket fuel for HYPER. In this paper, a mechanistic deformation model was developed and the model was installed into the DIMAC program. The model was based on the elasto-plasticity theory and power-law creep theory. The preliminary deformation calculation results for (TRU-Zr)-Zr dispersion fuel predicted by DIMAC were compared with those of silicide dispersion fuel predicted by DIFAIR. It appeared that the deformation levels for (TRU-Zr)-Zr dispersion fuel were relatively higher than those of silicide fuel. Some experimental tests including in-pile and out-pile experiments are needed for verifying the predictive capability of the DIMAC code. An in-reactor performance analysis computer code for blanket fuel is being developed at the conceptual design stage of blanket fuel for HYPER. In this paper, a mechanistic deformation model was developed and the model was installed into the DIMAC program. The model was based on the elasto-plasticity theory and power-law creep theory. The preliminary deformation calculation results for (TRUZr)- Zr dispersion fuel predicted by DIMAC were compared with those of silicide dispersion fuel predicted by DIFAIR. It appears that the deformation by swelling within fuel meat is very large for both fuels, and the major deformation mechanism at cladding is creep. The swelling strain is almost constant within the fuel meat, and is assumed to be zero in the cladding made of HT9. It is estimated that the deformation levels for (TRU-Zr)-Zr dispersion fuel were relatively higher than those of silicide fuel, and the dispersion fuel performance may be limited by swelling. But the predicted volume change of the (TRU-Zr)-Zr dispersion fuel models is about 6.1% at 30 at.% burnup. The value of cladding

  17. Analysis of pellet cladding mechanical interaction using computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, José R.; Suman, Ricardo B.; Faria, Danilo P.; Rodi, Paulo A., E-mail: jose.berretta@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), São Paulo, SP (Brazil). Laboratório de Análise, Avaliação e Gerenciamento de Riscos

    2017-07-01

    During the operation of Pressurized Water Reactors (PWR), specifically under power transients, the fuel pellet experiences many phenomena, such as swelling and thermal expansion. These dimensional changes in the fuel pellet can enable occurrence of contact it and the cladding along the fuel rod. Thus, pellet cladding mechanical interaction (PCMI), due this contact, induces stress increase at the contact points during a period, until the accommodation of the cladding to the stress increases. This accommodation occurs by means of the cladding strain, which can produce failure, if the fuel rod deformation is permanent or the burst limit of the cladding is reached. Therefore, the mechanical behavior of the cladding during the occurrence of PCMI under power transients shall be investigated during the fuel rod design. Considering the Accident Tolerant Fuel program which aims to develop new materials to be used as cladding in PWR, one important design condition to be evaluated is the cladding behavior under PCMI. The purpose of this paper is to analyze the effects of the PCMI on a typical PWR fuel rod geometry with stainless steel cladding under normal power transients using computational simulation (ANSYS code). The PCMI was analyzed considering four geometric situations at the region of interaction between pellet and cladding. The first case, called “perfect fuel model” was used as reference for comparison. In the second case, it was considered the occurrence of a pellet crack with the loss of a chip. The goal for the next two cases was that a pellet chip was positioned into the gap of pellet-cladding, in the situations described in the first two cases. (author)

  18. Study on the behavior of waterside corroded PWR fuel rods under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Sasajima, Hideo

    1989-06-01

    One of the highlighted problems from the fuel reliability point of view is a waterside corrosion of fuel cladding which becomes more significant at extended burnup stages. To date, at highly burned fuel, waterside corrosion was recognized as important because cladding oxidation increased with increasing burn-up. In experiments, as the basic research for the study of high burn-up fuel, the test fuel rods were prepressurized to ranges from 3.47 to 3.55 MPa, oxidized artificially to both 10 and 20 μm in thickness. Regarding fabricated oxide thickness of 10 μm, it is corresponded to be transition point from cubic law to linear law as a function of burn-up. Pulse irradiation experiments by NSRR were carried out to study the behavior of waterside corroded PWR type fuels under RIA conditions. Obtained results are: (1) The failure threshold of tested fuels was 110 cal/g·fuel (0.46 KJ/g·fuel) in enthalpy. This showed that the failure threshold of tested fuels was same as that of the past NSRR experimental data. (2) The failure mechanisms of the tested fuel rods was cladding rupture induced by ballooning. No differences in failure mechanisms existed between the past NSRR prepressurized standard fuel and the tested fuels. (3) Cracks were existed without propagating into cladding matrix, so that it was judged that these were not initiation of failure. (4) Whithin this experimental condition, reduction of cladding thickness being attributed to the increase of oxidation did not failure threshold. (author)

  19. An Evaluation on the Fluid Elastic Instability of the Fuel Rod for OPR1000 Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Koo; Jeon, Sang Yoon; Lee, Kyu Seok; Kim, Jeong Ha; Lee, Sang Jong [Reactor Core Technology Department, Korea Nuclear Fuel, 493, Deogjin, Yuseong, Daejeon, 305-353 (Korea, Republic of)

    2009-06-15

    The fuel assembly for a typical PWR (Pressurized Water Reactor) plant suffers severe operating conditions during its lifetime such as high temperature, high pressure and massive coolant passing through the fuel assembly with high speed. Moreover, recently nuclear fuel is requested not only to operate under more severe operation conditions for example high burnup, longer cycle and power up-rate, but also to maintain its integrity in spite of the operation severity. Lots of vendors, therefore, have poured their endeavor to develop an advanced fuel in order to meet these requirements. However, the fuel failures are still reported from time to time. In general, fuel failure mechanisms known as significant causes of PWR fuel failure are grid to rod fretting, corrosion of the cladding, pellet cladding interaction and debris induced fretting. Especially, since the fuel assembly is very tall and flexible structure and the flow velocity of reactor coolant is pretty high, flow induced vibration (FIV) of fuel rod is an inevitable phenomenon in PWR fuel and the energy vibrating fuel rod continually provided by coolant flow can become a root cause of the fuel failure like grid to rod fretting. Moreover, the cross flow of the coolant is highly susceptible to cause the fluid elastic instability (FEI) which produces extraordinarily big amplitudes of the fuel rod suddenly and is eventually ended up fuel failure within very short-term. The FIV problem, therefore, has to be evaluated carefully to avoid unexpected fuel failure. At present, the susceptibility to vibration damage of the fuel rod for OPR1000 plants has been estimated by the comparison of natural frequencies of every fuel rod span with recognized external excitation frequencies like coolant pump blade passing frequencies, vortex shedding frequencies and lower support structure vibration frequencies. That is, in order to prevent fuel failure due to the external excitation, the natural frequencies of unsupported lengths of

  20. The KALIMER-600 Reactor Core Design Concept with Varying Fuel Cladding Thickness

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Jang, Jin Wook; Kim, Yeong Il

    2006-01-01

    Recently, Korea Atomic Energy Research Institute (KAERI) has developed a 600MWe sodium cooled fast reactor, the KALIMER-600 reactor core concept using single enrichment fuel. This reactor core concept is characterized by the following design targets : 1) Breakeven breeding (or fissile-self-sufficient) without any blanket, 2) Small burnup reactivity swing ( 23 n/cm 2 ). In the previous design, the single enrichment fuel concept was achieved by using the special fuel assembly designs where non-fuel rods (i.e., ZrH 1.8 , B 4 C, and dummy rods) were used. In particular, the moderator rods (ZrH 1.8 ) were used to reduce the sodium void worth and the fuel Doppler coefficient. But it has been known that this hydride moderator possesses relatively poor irradiation behavior at high temperature. In this paper, a new core design concept for use of single enrichment fuel is described. In this concept, the power flattening is achieved by using the core region wise cladding thicknesses but all non-fuel rods are removed to simplify the fuel assembly design

  1. FUMAC-a new model for light water reactor fuel relocation and pellet-cladding interaction

    International Nuclear Information System (INIS)

    Walton, L.A.; Matheson, J.E.

    1984-01-01

    An improved approach to the mechanical modeling of fuel rod performance is presented. Previous computer modeling has centered around a unified finite element approach with both fuel pellets and cladding being represented by ring elements. The fuel mechanical analysis code (FUMAC) departs from these approaches in two areas. The pellet model is an empirically based deterministic algorithm, while the cladding model uses both plane stress and plane strain finite elements. The work describes a semiempirical fuel cracking and fragment relocation model, which is burnup and power-level dependent. The interaction of the pellet with the cladding is treated classically. The resulting thick cylinder stresses are used in conjunction with an orthotropic creep model to predict cladding ridging. The resulting ridging compares well with experimental data for both steady-state and transient operating conditions. Future work planned includes the integration of the finite element cladding model with the pellet model and refinement of the pellet relocation and thermal models. Transient performance predictions will be emphasized

  2. Development of mechanical analysis module for simulation of SFR fuel rod behavior using finite element method

    International Nuclear Information System (INIS)

    Shin, Andong; Jeong, Hyedong; Suh, Namduk; Kim, Hyochan; Yang, Yongsik

    2014-01-01

    Korean SFR developer decided to adapt metal fuel, current study focused on the metal fuel instead of oxide fuel. The SFR metal fuel has been developed by Korea Atomic Energy Research Institute (KAERI) and many efforts focused on designing and manufacturing the metal fuel. Since a nuclear fuel is the first barrier to protect radioactive isotope release, the fuel's integrity must be secured during steady-state operation and accident condition within an acceptable range. Whereas the design and evaluation methodologies, code systems and test procedures of a light water reactor fuel are sufficiently established, those of the SFR fuel needs more technical advances. In the view of regulatory point, there are still many challenging issues which are required to secure the safety of fuel and reactors. For this reason, the Korea Institute of Nuclear Safety (KINS) has launched the new project to develop the regulatory technology for SFR system including a fuel area. The ALFUS code was developed by CRIEPI and employs mechanistic model for fission gas release and swelling of fuel slug. In the code system, a finite element method was introduced to analyze the fuel and cladding's mechanical behaviors. The FEAST code is more advanced code system for SFR which adopted mechanistic FGR and swelling model but still use analytical model to simulate fuel and cladding mechanical behavior. Based on the survey of the previous studies, fuel and cladding mechanical model should be improved. Analysis of mechanical behavior for fuel rod is crucial to evaluate overall rod's integrity. In addition, it is because contact between fuel slug and cladding or an over-pressure of rod internal pressure can cause rod failure during steady-state and other operation condition. The most of reference codes have simplified mechanical analysis model, so called 'analytical mode', because the detailed mechanical analysis requires large amount of calculation time and computing power. Even

  3. Development of mechanical analysis module for simulation of SFR fuel rod behavior using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Andong; Jeong, Hyedong; Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Hyochan; Yang, Yongsik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Korean SFR developer decided to adapt metal fuel, current study focused on the metal fuel instead of oxide fuel. The SFR metal fuel has been developed by Korea Atomic Energy Research Institute (KAERI) and many efforts focused on designing and manufacturing the metal fuel. Since a nuclear fuel is the first barrier to protect radioactive isotope release, the fuel's integrity must be secured during steady-state operation and accident condition within an acceptable range. Whereas the design and evaluation methodologies, code systems and test procedures of a light water reactor fuel are sufficiently established, those of the SFR fuel needs more technical advances. In the view of regulatory point, there are still many challenging issues which are required to secure the safety of fuel and reactors. For this reason, the Korea Institute of Nuclear Safety (KINS) has launched the new project to develop the regulatory technology for SFR system including a fuel area. The ALFUS code was developed by CRIEPI and employs mechanistic model for fission gas release and swelling of fuel slug. In the code system, a finite element method was introduced to analyze the fuel and cladding's mechanical behaviors. The FEAST code is more advanced code system for SFR which adopted mechanistic FGR and swelling model but still use analytical model to simulate fuel and cladding mechanical behavior. Based on the survey of the previous studies, fuel and cladding mechanical model should be improved. Analysis of mechanical behavior for fuel rod is crucial to evaluate overall rod's integrity. In addition, it is because contact between fuel slug and cladding or an over-pressure of rod internal pressure can cause rod failure during steady-state and other operation condition. The most of reference codes have simplified mechanical analysis model, so called 'analytical mode', because the detailed mechanical analysis requires large amount of calculation time and computing power. Even

  4. Nondestructive examination of irradiated fuel rods by pulsed eddy current techniques

    International Nuclear Information System (INIS)

    Francis, W.C.; Quapp, W.J.; Martin, M.R.; Gibson, G.W.

    1976-02-01

    A number of fuel rods and unfueled zircaloy cladding tubes which had been irradiated in the Saxton reactor have undergone extensive nondestructive and corroborative destructive examinations by Aerojet Nuclear Company as part of the Water Reactor Safety Research Program, Irradiation Effects Test Series. This report discusses the pulsed eddy current (PEC) nondestructive examinations on the fuel rods and tubing and the metallography results on two fuel rods and one irradiated zircaloy tube. The PEC equipment, designed jointly by Argonne National Laboratory and Aerojet, performed very satisfactorily the functions of diameter, profile, and wall thickness measurements and OD and ID surface defect detection. The destructive examination provided reasonably good confirmation of ''defects'' detected in the nondestructive examination

  5. Review of experimental data for modelling LWR fuel cladding behaviour under loss of coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2007-02-15

    Extensive range of experiments has been conducted in the past to quantitatively identify and understand the behaviour of fuel rod under loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs). The obtained experimental data provide the basis for the current emergency core cooling system acceptance criteria under LOCA conditions for LWRs. The results of recent experiments indicate that the cladding alloy composition and high burnup effects influence LOCA acceptance criteria margins. In this report, we review some past important and recent experimental results. We first discuss the background to acceptance criteria for LOCA, namely, clad embrittlement phenomenology, clad embrittlement criteria (limitations on maximum clad oxidation and peak clad temperature) and the experimental bases for the criteria. Two broad kinds of test have been carried out under LOCA conditions: (i) Separate effect tests to study clad oxidation, clad deformation and rupture, and zirconium alloy allotropic phase transition during LOCA. (ii) Integral LOCA tests, in which the entire LOCA sequence is simulated on a single rod or a multi-rod array in a fuel bundle, in laboratory or in a tests and results are discussed and empirical correlations deduced from these tests and quantitative models are conferred. In particular, the impact of niobium in zirconium base clad and hydrogen content of the clad on allotropic phase transformation during LOCA and also the burst stress are discussed. We review some recent LOCA integral test results with emphasis on thermal shock tests. Finally, suggestions for modelling and further evaluation of certain experimental results are made.

  6. Development of advanced zirconium fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Young Hwan; Park, S. Y.; Lee, M. H.

    2007-04-01

    This report includes the manufacturing technology developed for HANA TM claddings, a series of their characterization results as well as the results of their in-pile and out-of pile performances tests which were carried out to develop some fuel claddings for a high burn-up (70,000MWd/mtU) which are competitive in the world market. Some of the HANA TM claddings, which had been manufactured based on the results from the 1st and 2nd phases of the project, have been tested in a research reactor in Halden of Norway for an in-pile performance qualification. The results of the in-pile test showed that the performance of the HANA TM claddings for corrosion and creep was better than 50% compared to that of Zircaloy-4 or A cladding. It was also found that the out-of pile performance of the HANA TM claddings for such as LOCA and RIA in some accident conditions corrosion creep, tensile, burst and fatigue was superior or equivalent to that of the Zircaloy-4 or A cladding. The project also produced the other many data which were required to get a license for an in-pile test of HANA TM claddings in a commercial reactor. The data for the qualification or characterization were provided for KNFC to assist their activities to get the license for the in-pile test of HANA TM Lead Test Rods(LTR) in a commercial reactor

  7. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    International Nuclear Information System (INIS)

    Johnson, G.L.

    1988-09-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store lightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97/degree/C and whether the cladding of the stored spent fuel ever exceeds 350/degree/C. Limiting the borehole to temperatures of 97/degree/C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350/degree/C cladding limit minimizes the possibility of creep-related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97/degree/C for the full 1000-yr analysis period

  8. Characteristics of axial splits in failed BWR fuel rods

    International Nuclear Information System (INIS)

    Lysell, G.; Grigoriev, V.

    2000-01-01

    Secondary cladding defects in BWR fuel sometimes have the shape of long axial cracks or ''splits''. Due to the large open UO 2 surfaces exposed to the water, fission product and UO 2 release to the coolant can reach excessive levels leading to forced shut downs to remove the failed fuel rods. A number of such fuel rods have been examined in Studsvik over the last 10 years. The paper describes observations from the PIE of long cracks and discusses the driving force of the cracks. Details such as starting cracks, macroscopic and microscopic fracture surface appearance, cross sections of cracks, hydride precipitates, location and degree of plastic deformation are given. (author)

  9. Design characteristics of metallic fuel rod on its in-LMR performance

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang Hee Young; Nam, Cheol; Kim, Jong Oh

    1997-01-01

    Fuel design is a key feature to assure LMR safety goals. To date, a large effort had been devoted to develop metallic fuels at ANL's experimental breeder reactor (EBR-II). The major design and performance parameters investigated include; thermal conductivity and temperature profile; smear density; axial plenum; FCMI and cladding deformation including creep, and fission gas release. In order to evaluate the sensitivity of each parameter, in-LMR performances of metallic fuels are not only reviewed by the experiment results in literatures, but also key design characteristics according to the variation of metallic fuel rod design parameters are analyzed by using the MACSIS code which simulates in-reactor behaviors of metal fuel rod. In this study, key design characteristics and the criteria which must be considered to design fuel rod in LMR, are proposed and discussed. (author). 14 refs., 4 figs

  10. Pulsed eddy current inspection system for nondestructive examination of irradiated fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.

    1979-01-01

    An inspection system has been developed for nondestructive examination of irradiated fuel rods utilizing pulsed eddy current techniques. The system employs an encircling type pulsed eddy current transducer capable of sensing small defects located on both the inner and outer diameter fuel rod surfaces during a single scan. Pulsed eddy current point probes are used to provide fuel rod wall thikness data and an indication of radial defect location. Two linear variable differential transformers are used to provide information on fuel rod diameter variation. A microprocessor based control system is used to automatically scan fuel rods up to 4.06 meters in length at predetermined radial locations. Defects as small as 0.005 cm deep by 0.254 cm long by 0.005 cm wide have been detected on outside diameter surfaces of a 1.43 cm outside diameter fuel rod cladding with a 0.094 cm wall thickness and 0.010 cm deep by 0.254 cm long by 0.005 cm wide on the inside diameter surface

  11. Evaluation of the thermal-mechanical performance of fuel rods of a BWR during a power ramp using the FUELSIM code

    International Nuclear Information System (INIS)

    Pantoja C, R.

    2010-01-01

    To avoid the risk to environment due to release of radioactive material, because of occurrence of an accident, it is the priority of the design and performance of the diverse systems of safety of a commercial nuclear power plant. The safety of nuclear power plants requires, therefore, monitoring those parameters having some direct or indirect effect on safety. The thermal limits are values set for those parameters considered having most impact on the safe operation of a nuclear power reactor. Some thermal limits monitoring requires the thermal-mechanical analysis of the rods containing the nuclear fuel. The fuel rod thermal-mechanical behavior under irradiation is a complex process in which there exists a great deal of interrelated physical and chemical phenomena, so that the fuel rod performance analysis in the core of a nuclear power reactor is generally accomplished by using computer codes, which integrate several of the phenomena that are expected to occur during the lifetime of the fuel rod in the core. The main application of the thermal-mechanical analysis codes is the prediction of occurrence of conditions and/or phenomena that could lead to the deterioration or even mechanical failure of the fuel rod cladding, as, for example, the pellet-cladding interaction. In the operation of a nuclear power reactor, fuel preconditioning operations refer to the operational procedures employed to reduce the fuel rod failure probability due to fuel-cladding interaction, specially during reactor startup. Preconditioning simulations are therefore necessary to determine in advance limit values for the power that can be generated in a fuel rod, and thus avoiding any rod damage. In this work, a first analysis of the thermal-mechanical performance of typical fuel rods used in nuclear reactors of the type BWR 5/6, as those two nuclear reactors in Laguna Verde, Veracruz, is performed. This study includes two types of fuel rods: one from a fuel assembly design with an array 8 x 8

  12. End plug for fuel rod and welding method therefor

    International Nuclear Information System (INIS)

    Yoneda, Hiroshi; Murakami, Kazuo; Oyama, Jun-ichi.

    1996-01-01

    An end plug of a fuel rod comprises a pressure-insertion portion having a diameter somewhat greater than the inner diameter of a fuel cladding tube and a welding portion having a diameter substantially the same as the outer diameter of the cladding tube. A V-shaped recess having an outer diameter smaller than the greatest outer diameter of the pressure-insertion portion is formed over the entire circumferential surface of the outer circumference of the connection portion of the pressure-insertion portion and the welding portion. The pressure-insertion portion of the end plug is inserted to the end of the cladding tube till the end of the cladding tube abuts against the inclined surface of the V-shaped recess. The abutting surfaces of the end plug and the cladding tube are subjected to resistance welding in this state. The inner portion bulged from the inclined surface of the V-shaped recess is filled in the recess in a molten state. Lowering of temperature of the cladding tube in the vicinity of the welded portion is decreased by γ heat during reactor operation. Accordingly, lowering of ductility of the cladding tube and degradation of material of the welded region due to segregation of hydrogen in the cladding tube can be suppressed. (I.N.)

  13. Fabrication of the instrumented fuel rods for the 3-Pin Fuel Test Loop at HANARO

    International Nuclear Information System (INIS)

    Sohn, Jae Min; Park, Sung Jae; Shin, Yoon Tag; Lee, Jong Min; Ahn, Sung Ho; Kim, Soo Sung; Kim, Bong Goo; Kim, Young Ki; Lee, Ki Hong; Kim, Kwan Hyun

    2008-09-01

    The 3-Pin Fuel Test Loop(hereinafter referred to as the '3-Pin FTL') facility has been installed at HANARO(High-flux Advanced Neutron Application Reactor) and the 3-Pin FTL is under a test operation. The purpose of this report is to fabricate the instrumented fuel rods for the 3-Pin FTL. The fabrication of these fuel rods was based on experiences and technologies of the instrumented fuel rods for an irradiation fuel capsule. The three instrumented fuel rods of the 3-Pin FTL have been designed. The one fuel rod(180 .deg. ) was designed to measure the centerline temperature of the nuclear fuels and the internal pressure of the fuel rod, and others(60 .deg. and 300 .deg. ) were designed to measure the centerline temperature of the fuel pellets. The claddings were made of the reference material 1 and 2 and new material 1 and 2. And nuclear fuel was used UO 2 (2.0w/o) pellet type with large grain and standard grain. The major procedures of fabrication are followings: (1) the assembling and weld of fuel rods with the pellet mockups and the sensor mockups for the qualification tests, (2) the qualification tests(dimension measurements, tensile tests, metallography examinations and helium leak tests) of weld, (3) the assembling and weld of instrumented fuel rods with the nuclear pellets and the sensors for the irradiation test, and (4) the qualification tests(the helium leak test, the dimensional measurement, electric resistance measurements of sensors) of test fuel rods. Satisfactory results were obtained for all the qualification tests of the instrumented fuel rods for the 3-Pin FTL. Therefore the three instrumented fuel rods for the 3-Pin FTL have been fabricated successfully. These will be installed in the In-Pile Section of 3-Pin FTL. And the irradiation test of these fuel rods is planned from the early next year for about 3 years at HANARO

  14. Cladding axial elongation models for FRAP-T6

    International Nuclear Information System (INIS)

    Shah, V.N.; Carlson, E.R.; Berna, G.A.

    1983-01-01

    This paper presents a description of the cladding axial elongation models developed at the Idaho National Engineering Laboratory (INEL) for use by the FRAP-T6 computer code in analyzing the response of fuel rods during reactor transients in light water reactors (LWR). The FRAP-T6 code contains models (FRACAS-II subcode) that analyze the structural response of a fuel rod including pellet-cladding-mechanical-interaction (PCMI). Recently, four models were incorporated into FRACAS-II to calculate cladding axial deformation: (a) axial PCMI, (b) trapped fuel stack, (c) fuel relocation, and (d) effective fuel thermal expansion. Comparisons of cladding axial elongation measurements from two experiments with the corresponding FRAP-T6 calculations are presented

  15. Axial gas transport and loss of pressure after ballooning rupture of high burn-up fuel rods subjected to LOCA conditions

    International Nuclear Information System (INIS)

    Wiesenack, Wolfgang; Oberlaender, Barbara; Kekkonen, Laura

    2008-01-01

    The OECD Halden Reactor Project has implemented integral in-pile tests on issues related to fuel behaviour under LOCA conditions. In this test series, the interaction of bonded fuel and cladding, the behaviour of fragmented fuel around the ballooning area, and the axial gas communication in high burn-up rods as affected by gap closure and fuel-clad bonding are of major interest for the investigations. In the Halden reactor tests, the decay heat is simulated by a low level of nuclear heating, in contrast to the heating conditions implemented in hot laboratory set-ups, and the thermal expansion of fuel and cladding relative to each other is more similar to the real event. The paper deals with observations regarding the loss of rod pressure following the rupture of the cladding. In the majority of the tests conducted so far, the rod pressure dropped practically instantaneously as a consequence of ballooning rupture, while one test showed a remarkably slow pressure loss. The slow loss of pressure in this test was analysed, showing that the 'hydraulic diameter' of the rod over an un-distended upper part was about 30 - 35 μm which is typical of high burn-up fuel at hot-standby conditions. The 'plug' of fuel restricts the gas flow from the plenum through the fuel column and thus limits the availability of high pressure gas for driving the ballooning. This observation is relevant for the analysis of the behaviour of a full length fuel rod under LOCA conditions since restricted gas flow may influence bundle blockage and the number of failures. (authors)

  16. Benefits of barrier fuel on fuel cycle economics

    International Nuclear Information System (INIS)

    Crowther, R.L.; Kunz, C.L.

    1988-01-01

    Barrier fuel rod cladding was developed to eliminate fuel rod failures from pellet/cladding stress/corrosion interaction and to eliminate the associated need to restrict the rate at which fuel rod power can be increased. The performance of barrier cladding has been demonstrated through extensive testing and through production application to many boiling water reactors (BWRs). Power reactor data have shown that barrier fuel rod cladding has a significant beneficial effect on plant capacity factor and plant operating costs and significantly increases fuel reliability. Independent of the fuel reliability benefit, it is less obvious that barrier fuel has a beneficial effect of fuel cycle costs, since barrier cladding is more costly to fabricate. Evaluations, measurements, and development activities, however, have shown that the fuel cycle cost benefits of barrier fuel are large. This paper is a summary of development activities that have shown that application of barrier fuel significantly reduces BWR fuel cycle costs

  17. A deformation and thermodynamic model for hydride precipitation kinetics in spent fuel cladding

    International Nuclear Information System (INIS)

    Stout, R.B.

    1989-10-01

    Hydrogen is contained in the Zircaloy cladding of spent fuel rods from nuclear reactors. All the spent fuel rods placed in a nuclear waste repository will have a temperature history that decreases toward ambient; and as a result, most all of the hydrogen in the Zircaloy will eventually precipitate as zirconium hydride platelets. A model for the density of hydride platelets is a necessary sub-part for predicting Zircaloy cladding failure rate in a nuclear waste repository. A model is developed to describe statistically the hydride platelet density, and the density function includes the orientation as a physical attribute. The model applies concepts from statistical mechanics to derive probable deformation and thermodynamic functionals for cladding material response that depend explicitly on the hydride platelet density function. From this model, hydride precipitation kinetics depend on a thermodynamic potential for hydride density change and on the inner product of a stress tensor and a tensor measure for the incremental volume change due to hydride platelets. The development of a failure response model for Zircaloy cladding exposed to the expected conditions in a nuclear waste repository is supported by the US DOE Yucca Mountain Project. 19 refs., 3 figs

  18. Investigating mechanical behavior and radiation resistant of fuel rods clad in nuclear power plant

    International Nuclear Information System (INIS)

    Sedgh Kerdar, A.

    1999-01-01

    interstitials in metal lattice under irradiation causes increased strength and hardness but decreases ductility in metals.The increase in strength and hardness depends on obstacles that prevent the motion of dislocations. The clustering of point defects are responsible for these changes. Irradiation also induces instabilities in phases due to enhancement of diffusion, solute segregation, precipitate formation, order- disorder transformation and resolution of small precipitates. From the microscopic point of view accumulation of vacancies accompanied by formation of He and H 2 gases under irradiation cause an increase in volume which results in swelling and eventually ends up with embrittlement of metals. This subject was described in chapter three Zirconium and its alloys are the best structural materials for fuel cladding of BWR and PWR reactors core. The working condition in the core of nuclear reactor are very serve, respect temperature and radiation dose. It should be realized that, if fuel cladding receive damage and get cracked, the first cooling cycle and the maine equipment will be contaminated with active materials which cause additional environmental problems. Furthermore, replacement of fuel rods are very costly. Therefore, for increasing life time of fuel cladding and minimizing damage, the effect of radiation and heat on Zirconium and its alloys must be investigated. This subject was described in chapter four.The mechanical behavior and radiation resistant of fuel cladding in PWR reactor (specifically WWER ) have been investigated which is described in chapter five. Result, discussion and final conclusion are summarized in last chapter and also several points for improvement have been offered

  19. Fuel rod with axial regions of annular and standard fuel pellets

    International Nuclear Information System (INIS)

    Freeman, T.R.

    1991-01-01

    This patent describes a fuel rod for use in a nuclear reactor fuel assembly. It comprises: an elongated hollow cladding tube; a pair of end plugs connected to and sealing the cladding tube at opposite ends of thereof; and an axial stack of fuel pellets contained in and extending between the end plugs at the opposite ends of the tube, all of the fuel pellets contained in the tube being composed of fissile material being enriched above the level of natural enrichment; the fuel pellets in the stack thereof being provided in an arrangement of axial regions. The arrangement of axial regions including a pair of first axial regions defined respectively at the opposite ends of the pellet stack adjacent to the respective end plugs. The pellets in the first axial regions being identical in number and having annular configurations with an annulus of a first void size. The arrangement of axial regions also including another axial region defined between the first axial regions, some of the pellets in the another axial region having solid configurations

  20. Development of examination technique for oxide layer thickness measurement of irradiated fuel rods

    International Nuclear Information System (INIS)

    Koo, D. S.; Park, S. W.; Kim, J. H.; Seo, H. S.; Min, D. K.; Kim, E. K.; Chun, Y. B.; Bang, K. S.

    1999-06-01

    Technique for oxide layer thickness measurement of irradiated fuel rods was developed to measure oxide layer thickness and study characteristic of fuel rods. Oxide layer thickness of irradiated fuels were measured, analyzed. Outer oxide layer thickness of 3 cycle-irradiated fuel rods were 20 - 30 μm, inner oxide layer thickness 0 - 10 μm and inner oxide layer thickness on cracked cladding about 30 μm. Oxide layer thickness of 4 cycle-irradiated fuel rods were about 2 times as thick as those of 1 cycle-irradiated fuel rods. Oxide layer on lower region of irradiated fuel rods was thin and oxide layer from lower region to upper region indicated gradual increase in thickness. Oxide layer thickness from 2500 to 3000 mm showed maximum and oxide layer thickness from 3000 to top region of irradiated fuel rods showed decreasing trend. Inner oxide layer thicknesses of 4 cycle-irradiated fuel rod were about 8 μm at 750 - 3500 mm from the bottom end of fuel rod. Outer oxide layer thickness were about 8 μm at 750 - 1000 mm from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel. Oxide layer thickness technique will apply safety evaluation and study of reactor fuels. (author). 6 refs., 14 figs

  1. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    International Nuclear Information System (INIS)

    Johnson, G.L.

    1991-11-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. On such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97 degrees C and whether the cladding of the stored spent fuel ever exceeds 350 degrees C. Limiting the borehole to temperatures of 97 degrees C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350 degrees C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97 degrees C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350 degrees C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft x 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40 degrees C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation

  2. SHOSPA-MOD, Hot Spot Factors for Fuel and Clad, Hot Channel Factors

    International Nuclear Information System (INIS)

    Amendola, A.

    1982-01-01

    1 - Nature of the physical problem solved: SHOSPA evaluates the hot spot factors for fuel and cladding as well as the hot channel factor as a function of the confidence level. Moreover, it evaluates the probability on n hot subassemblies. The code has been developed with emphasis on sodium cooled fast reactors, but it is applicable to any type of reactors constituted of bundled fuel rods with single phase coolant. An option for plotting is available in this version. 2 - Restrictions on the complexity of the problem: This code is applicable to any type of reactors constituted of fuel rods with single phase coolant

  3. Behavior of defective LWR-type fuel rods irradiated under postulated accident conditions

    International Nuclear Information System (INIS)

    Hobbins, R.R.; Croucher, D.W.; Seiffert, S.L.; Cook, B.A.; Kerwin, D.K.; Mehner, A.S.; Ploger, S.A.

    1979-05-01

    The irradiation experiments reported here have been conducted by the Thermal Fuels Behavior Program of EG and G Idaho, Inc., for the United States Nuclear Regulatory Commission in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory. Five of the rods were irradiated in PCM tests and one in a LOC test. During these tests, the six rods lost cladding integrity prior to or during the transient phase of the test due to either manufacturing defects or intentional rod design and operation. Of the five defective rods tested under PCM conditions, one (Rod IE-008, Test IE-1) had a hydride rupture below the region of the rod, which was in film boiling during the transient; two (Rod A-0021, Test PCM-3 and Rod IE-019, Test IE-5) contained defects (a pin hole and a small axial crack, respectively) within the film boiling zone; and two (Rod 201-1, Test PCM-1 and Rod 205-8, Test PCM-5) failed by cladding embrittlement within the film boiling zone. Rod 312-3 was waterlogged before being subjected to LOC conditions in Test LLR-3

  4. Thermal gradient effects on the oxidation of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Klein, A.C.; Reyes, J.N. Jr.; Maguire, M.A.

    1990-01-01

    A Thermal Gradient Test Facility (TGTF) has been designed and constructed to measure the thermal gradient effect on pressurized water reactor (PWR) fuel rod cladding. The TGTF includes a heat flux simulator assembly capable of producing a wide range of PWR operating conditions including water flow velocities and temperatures, water chemistry conditions, cladding temperatures, and heat fluxes ranging to 160 W/cm 2 . It is fully instrumented including a large number of thermocouples both inside the water flow channel and inside the cladding. Two test programs are in progress. First, cladding specimens are pre-oxidized in air at 500 deg. C and in 400 deg. C steam for various lengths of time to develop a range of uniform oxide thicknesses from 1 to 60 micrometers. The pre-oxidized specimens are placed in the TGTF to characterize the oxide thermal conductivity under a variety of water flow and heat flux conditions. Second, to overcome the long exposure times required under typical PWR conditions a series of tests with the addition of high concentrations of lithium hydroxide to the water are being considered. Static autoclave tests have been conducted with lithium hydroxide concentrations ranging from 0 to 2 moles per liter at 300, 330, and 360 deg. C for up to 36 hours. Results for zircaloy-4 show a considerable increase in the weight gain for the exposed samples with oxidation rate enhancement factors as high as 70 times that of pure water. Operation of the TGTF with elevated lithium hydroxide levels will yield real-time information concerning the effects of a heat flux on the oxidation kinetics of zircaloy fuel rod cladding. (author). 5 refs, 5 figs, 2 tabs

  5. Characterization of irradiated fuel rods using pulsed eddy current techniques

    International Nuclear Information System (INIS)

    Martin, M.R.; Francis, W.C.

    1975-11-01

    A number of irradiated fuel rods and unfueled zircaloy cladding tubes (''water tubes'') were obtained from the Saxton reactor through arrangements with the Westinghouse Electric Corporation for use in subsequent irradiation effects and fuel behavior programs. A comprehensive nondestructive and corroborative destructive characterization program was undertaken on these fuel rods and tubes by ANC to provide baseline data on their characteristics prior to further testing and for comparison against post-post data. This report deals primarily with one portion of the NDT program performed remotely in the hot cells. The portion of interest in this paper is the pulsed eddy current inspection used in the nondestructive phase of the work. 6 references

  6. Investigation of 3H and 14C inventory and distribution in spent BWR fuel rods

    International Nuclear Information System (INIS)

    Bleier, A.; Beuerle, M.; Neeb, K.H.

    1984-10-01

    In order to obtain reliable data for fuel reprocessing and waste disposal, the T and C-14 inventory, distribution and behaviour was investigated on a typical LWR fuel rod discharged from a BWR plant. The results showed that 50 ± 5% of the T generated in the fuel is present in the cladding after reactor operation. The remainder of the T stays with the fuel. Related to the reactor power the total T inventory corresponds to a T production rate of 19 000 Ci/GW e . a. The C-14 built up in the fuel represents approximately 60% of the C-14 inventory of the BWR fuel rod. The remaining part of C-14 (about 40%) experimentally determined by this analysis for the first time is generated in the cladding. From the total C-14 inventory a C-14 production rate of 17,5 Ci/GW e . a can be calculated. The fill gas contains only negligible fractions of both nuclides. The results obtained in this program are generally in good agreement with the data of theoretical estimates and with results of earlier investigations on PWR fuel rods. (orig.) [de

  7. Development of the down-ender and the spent fuel rod cutting device

    International Nuclear Information System (INIS)

    Kim, S. H.; Yoon, Ji Sup; Kim, Young Hwan; Hoo, Jung Jae; Hong, Dong Hee; Kim, Do Woo

    2000-07-01

    It is necessary to disassemble the spent fuel assembly for the recycling of the PWR spent fuels. The spent fuel disassembling process includes transportation and handling of the spent fuel assembly, extraction and cutting of the spent fuel rods, and extraction of the spent fuel pellets(decladding). In this study, the downender of the spent fuel assembly and the spent fuel rod cutting device have been developed. The downender is used to change the posture of the spent fuel assembly from the vertical to the horizontal directions, prior to extracting the fuel rods. The concepts of the remote operation and maintenance has been introduced in the design of the downender. Also, the several design consideration has been given such as the reliable adaptation of the vertically accessing the assembly to the device, the minimization of the shock force when settling down the assembly, and the interface with the rod extraction device without intermittent operation. The spent fuel rod cutting device using a tube cutter is developed for cutting the fuel rods to the suitable size. In designing this device, the mechanical property of the spent fuel rod is examined such as the strength of the clad material and the optimal size of the rod for the extracting process. Also, several cutting methods, which are commercially available, are investigated and tested in terms of the durability, the deformation on the cutting surface of the rods, and the amount of the generated debris, and the fire risk. As like the downender, the design of this device accommodates the concepts of the remote operation and maintenance

  8. Numerical Ballooning and Burst Prediction of Fuel Cladding During LOCA Transients in LWR

    International Nuclear Information System (INIS)

    Landau, E.; Weiss, Y.; Szanto, M.

    2014-01-01

    Modeling of nuclear fuel cladding behavior during a Loss of Coolant accident (LOCA) is a principal requirement in reactor safety analysis, most former safety criteria were obtained from experiments during the 1970's, conducted mainly with fresh fuels. Changes in modern fuel design, introduction of new cladding materials and motivation towards higher burn-ups have generated a need to re-examine safety criteria and their continued validity. This led to the growing development of both experiments and simulations meant to address this need. The Halden IFA-650 series of experiments for example, beginning in the early 2000's have clearly shown that existing criteria and experimental data are insufficient for the growing demand for higher burn-ups. Several codes for reactor core and fuel rod analysis exist nowadays, such as FRAPTRAN1.4 or RELAP5-3D . These are tailor-made codes, designed to predict general core behavior and fuel performance, and while they are also used in predicting core components behavior during accident conditions, including those of cladding ballooning and failure with good accuracy, they contain several limitations on modeling the full transient cladding thermo mechanical phenomena. Limitations such as mechanical models being one dimensional or in axisymmetric geometries only, relying mostly on analytical models therefore having further restricting assumptions in return for accuracy, etc. These limitations disable the simulation of several important aspects, such as modeling 3D azimuthal behavior for example. The objective of the current work is to develop a comprehensive numerical model for predicting zircalloy cladding thermo mechanical behavior during a LOCA. The model will eventually predicts full cladding ballooning and burst behavior followed by fuel relocation, for fuel rods that can be subjected to 3D distributed flux. The model is fully three dimensional and is created using the commercial FEM numerical simulation software ABAQUS© applying

  9. Investigation and recovery of unrecovered fuel pellets and cladding tube pieces

    International Nuclear Information System (INIS)

    Kobayashi, Keiji

    1980-01-01

    The total weight of the fuel pellets lost due to break was about 1206 g, and cladding tube pieces were about 217 g. Among these, the pellets of about 527 g and the cladding tube pieces of about 152 g were recovered when broken fuel rods were discovered. It is not desirable to leave these broken pieces as unrecovered in view of safety and the management of nuclear fuel materials. Kansai Electric Power Co., Inc., investigated the position and the amount of these pellets and cladding tube pieces for about a year, and recovered a part of them. The results were written in two reports. The objects of the investigation and recovery, and the method of recovery are explained. The UO 2 and zirconium recovered were 58.52 g and 369.58 g, respectively. The solid pellets were recovered from the reactor, fuel assemblies, a spent fuel pit and canals, and the content in sludge was recovered from other installations. The amounts of unrecovered pellets and cladding tube pieces in primary cooling water, coolant filters, sealing water filters, primary cooling pipes, waste resins and fuel assemblies were estimated. The problems concerning the recovery and estimation are pointed out. The results of estimating the amount of uranium in coolant filters and sealing water filters are useful to know the time of the occurrence of accident. (Kako, I.)

  10. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding

    International Nuclear Information System (INIS)

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed

  11. Three-dimensional FE analysis of the thermal-mechanical behaviors in the nuclear fuel rods

    International Nuclear Information System (INIS)

    Jiang Yijie; Cui Yi; Huo Yongzhong; Ding Shurong

    2011-01-01

    Highlights: → We establish three-dimensional finite element models for nuclear fuel rods. → The thermal-mechanical behaviors at the initial stage of burnup are obtained. → Several parameters on the in-pile performances are investigated. → The parameters have remarkable effects on the in-pile behaviors. → This study lays a foundation for optimal design and irradiation safety. - Abstract: In order to implement numerical simulation of the thermal-mechanical behaviors in the nuclear fuel rods, a three-dimensional finite element model is established. The thermal-mechanical behaviors at the initial stage of burnup in both the pellet and the cladding are obtained. Comparison of the obtained numerical results with those from experiments validates the developed finite element model. The effects of the constraint conditions, several operation and structural parameters on the thermal-mechanical performances of the fuel rod are investigated. The research results indicate that: (1) with increasing the heat generation rates from 0.15 to 0.6 W/mm 3 , the maximum temperature within the pellet increases by 99.3% and the maximum radial displacement at the outer surface of the pellet increases by 94.3%. And the maximum Mises stresses in the cladding all increase; while the maximum values of the first principal stresses within the pellet decrease as a whole; (2) with increasing the heat transfer coefficients between the cladding and the coolant, the internal temperatures reduce and the temperature gradient remains similar; when the heat transfer coefficient is lower than a critical value, the temperature change is sensitive to the heat transfer coefficient. The maximum temperature increases only 7.13% when h changes from 0.5 W/mm 2 K to 0.01 W/mm 2 K, while increases up to 54.7% when h decreases from 0.01 W/mm 2 K to 0.005 W/mm 2 K; (3) the initial gap sizes between the pellet and the cladding significantly affect the thermal-mechanical behaviors in the fuel rod; when the

  12. Zircaloy PWR fuel cladding deformation tests under mainly convective cooling conditions

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.

    1980-01-01

    In a loss-of-coolant accident the temperature of the cladding of the fuel rods may rise to levels (650-810 0 C) where the ductility of Zircaloy is high (approximately 80%). The net outward pressure which will obtain if the coolant pressure falls to a small fraction of its normal working value produces stresses in the cladding which can result in large strain through secondary creep. An earlier study of the deformation of specimens of PWR Zircaloy cladding tubing 450 mm long under internal pressure had shown that strains of over 50% could be produced over considerable lengths (greater than twenty tube diameters). Extended deformation of this sort might be unacceptable if it occurred in a fuel element. The previous tests had been carried out under conditions of uniform radiative heat loss, and the work reported here extends the study to conditions of mainly convective heat loss believed to be more representative of a fuel element following a loss of coolant. Zircaloy-4 cladding specimens 450 mm long were filled with alumina pellets and tested at temperatures between 630 and 845 0 C in flowing steam at atmospheric pressure. Internal test pressures were in the range 2.9-11.0 MPa (400-1600 1b/in 2 ). Maximum strains were observed of the same magnitude as those seen in the previous tests, but the shape of the deformation differed; in these tests the deformation progressively increased in the direction of the steam flow. These results are compared with those from multi-rod tests elsewhere, and it is suggested that heat transfer has a dominant effect in determining deformation. The implications for the behaviour of fuel elements in a loss-of-coolant accident are outlined. (author)

  13. IFPE/NFIR-1, Clad creep-down, power history effect on fission product distribution (6 PWR rods 40-64 MWd/kg in BR-3)

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    2006-01-01

    Description: The NFIR-1 programme was designed to investigate factors likely to affect the fission gas release behaviour of fuel rods operating under normal commercial conditions. The factors which were investigated were: - the effect of fuel/rod design parameters, e.g., wet versus dry route pellet manufacture, fuel-clad gap size and rod pressurization; - the effect of power history i.e., In/Out fuel management strategy; - the effect of burn-up extension. This was accomplished by an extensive PIE campaign on 6 fuel rods irradiated to 40-64 MWd/kg under different prescribed conditions in the BR3 PWR. The examination involved non destructive mensuration and destructive examination using optical, SEM, TEM and EPMA techniques. The dataset is unique in demonstrating the effect of these variables on fuel performance

  14. PHEBUS/test-218, Behaviour of a Fuel Rod Bundle during a Large Break LOCA Transient with a two Peaks Temperature History

    International Nuclear Information System (INIS)

    1987-01-01

    1 - Description of test facility: PHEBUS test facility operated at CEA Research Center Cadarache consists of a pressurized circuit involving pumps, heat exchangers and a blowdown tank - 25 nuclear fuel rod bundle, coupled to a separate driver core; - active length 0.8 m, cosine axial power profile; - pressurized and un-pressurized fuel rods; - controlled cooling conditions at the bundle inlet (blowdown, refill and reflood period); - de-pressurized test rig volume 0.22 m 3 . The following 'as measured' boundary conditions (B.C.) were offered to participants as options with decreasing challenge to their analytical approach: Boundary conditions B.C.0: - full thermal-hydraulic analysis of PHEBUS test rig (was not recommended). Boundary conditions B.C.1: - thermal power level of fuel bundle; - fluid inlet conditions to bundle section. Boundary conditions B.C.2: - local cladding temperatures of rods; - heat transfer coefficients. Boundary conditions B.C.3: - cladding temperatures of rods; - internal pressure of rods. 2 - Description of test: Post-test investigation into the response of a nuclear fuel bundle to a large break loss of coolant accident with respect to - local fuel temperatures, - cladding strain at the time of burst, - time to burst and under given thermal-hydraulic boundary conditions of PHEBUS-test 218

  15. WWER-440 fuel rod performance analysis with PIN-Micro and TRANSURANUS codes

    International Nuclear Information System (INIS)

    Vitkova, M.; Manolova, M.; Stefanova, S.; Simeonova, V.; Passage, G.; Lassmann, K.

    1994-01-01

    PIN-micro and TRANSURANUS codes were used to analyse the WWER-440 fuel rod behaviour at normal operation conditions. Two highest loaded fuel rods of the fuel assemblies irradiated in WWER-440 with different power histories were selected. A set of the most probable average values of all geometrical and technological parameters were used. A comparison between PIN-micro and TRANSURANUS codes was performed using identical input data. The results for inner gas pressure, gap size, local linear heat rate, fuel central temperature and fission gas release as a function of time calculated for the selected fuel rods are presented. The following conclusions were drawn: 1) The PIN-micro code predicts adequately the thermal and mechanical behaviour of the two fuel rods; 2) The comparison of the results obtained by PIN-micro and TRANSURANUS shows a reasonable agreement and the discrepancies could be explained by the lack of thoroughly WWER oriented verification of TRANSURANUS; 3) The advanced TRANSURANUS code could be successfully applied for WWER fuel rod thermal and mechanical analysis after incorporation of all necessary WWER specific material properties and models for the Zr+1%Nb cladding, for the fuel rod as a whole and after validation against WWER experimental and operational data. 1 tab., 10 figs., 10 refs

  16. WWER-440 fuel rod performance analysis with PIN-Micro and TRANSURANUS codes

    Energy Technology Data Exchange (ETDEWEB)

    Vitkova, M; Manolova, M; Stefanova, S; Simeonova, V; Passage, G [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika; Kharalampieva, Ts [Kombinat Atomna Energetika, Kozloduj (Bulgaria); Lassmann, K [European Atomic Energy Community, Karlsruhe (Germany). European Inst. for Transuranium Elements

    1994-12-31

    PIN-micro and TRANSURANUS codes were used to analyse the WWER-440 fuel rod behaviour at normal operation conditions. Two highest loaded fuel rods of the fuel assemblies irradiated in WWER-440 with different power histories were selected. A set of the most probable average values of all geometrical and technological parameters were used. A comparison between PIN-micro and TRANSURANUS codes was performed using identical input data. The results for inner gas pressure, gap size, local linear heat rate, fuel central temperature and fission gas release as a function of time calculated for the selected fuel rods are presented. The following conclusions were drawn: (1) The PIN-micro code predicts adequately the thermal and mechanical behaviour of the two fuel rods; (2) The comparison of the results obtained by PIN-micro and TRANSURANUS shows a reasonable agreement and the discrepancies could be explained by the lack of thoroughly WWER oriented verification of TRANSURANUS; (3) The advanced TRANSURANUS code could be successfully applied for WWER fuel rod thermal and mechanical analysis after incorporation of all necessary WWER specific material properties and models for the Zr+1%Nb cladding, for the fuel rod as a whole and after validation against WWER experimental and operational data. 1 tab., 10 figs., 10 refs.

  17. Use of a commercial heat transfer code to predict horizontally oriented spent fuel rod temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1992-01-01

    Radioactive spent fuel assemblies are a source of hazardous waste that will have to be dealt with in the near future. It is anticipated that the spent fuel assemblies will be transported to disposal sites in spent fuel transportation casks. In order to design a reliable and safe transportation cask, the maximum cladding temperature of the spent fuel rod arrays must be calculated. The maximum rod temperature is a limiting factor in the amount of spent fuel that can be loaded in a transportation cask. The scope of this work is to demonstrate that reasonable and conservative spent fuel rod temperature predictions can be made using commercially available thermal analysis codes. The demonstration is accomplished by a comparison between numerical temperature predictions, with a commercially available thermal analysis code, and experimental temperature data for electrical rod heaters simulating a horizontally oriented spent fuel rod bundle

  18. Fuel assembly and fuel cladding tube

    International Nuclear Information System (INIS)

    Tsutsumi, Shinro; Ito, Ken-ichi; Inagaki, Masatoshi; Nakajima, Junjiro.

    1996-01-01

    A fuel cladding tube is a zirconium liner tube formed by lining a pure zirconium layer on the inner side of a zirconium alloy tube. The fuel cladding tube is formed by extrusion molding of a composite billet formed by inserting a pure zirconium billet into a zirconium alloy billet. Accordingly, the pure zirconium layer and the zirconium alloy tube are strongly joined by metal bond. The fuel cladding tube has an external oxide film on the outer surface of the zirconium alloy tube and an internal oxide film on the inner side of the pure zirconium layer. The external oxide film has a thickness preferably of about 1μm. The internal oxide film has a thickness of not more than 10μm, preferably, from 1 to 5μm. With such a constitution, flaws to be formed on both inner and outer surfaces of the cladding tube upon assembling a fuel assembly can be reduced thereby enabling to reduce the amount of hydrogen absorbed to the cladding tube. (I.N.)

  19. Conservative performance analysis of a PWR nuclear fuel rod using the FRAPCON code

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fabio Branco Vaz de; Sabundjian, Gaiane, E-mail: fabio@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In this paper, some of the preliminary results of the sensitivity and conservative analysis of a hypothetical pressurized water reactor fuel rod are presented, using the FRAPCON code as a basic and preparation tool for the future transient analysis, which will be carried out by the FRAPTRAN code. Emphasis is given to the evaluation of the cladding behavior, since it is one of the critical containment barriers of the fission products, generated during fuel irradiation. Sensitivity analyses were performed by the variation of the values of some parameters, which were mainly related with thermal cycle conditions, and taking into account an intermediate value between the realistic and conservative conditions for the linear heat generation rate parameter, given in literature. Time lengths were taken from typical nuclear power plant operational cycle, adjusted to the obtention of a chosen burnup. Curves of fuel and cladding temperatures, and also for their mechanical and oxidation behavior, as a function of the reactor operation's time, are presented for each one of the nodes considered, over the nuclear fuel rod. Analyzing the curves, it was possible to observe the influence of the thermal cycle on the fuel rod performance, in this preliminary step for the accident/transient analysis. (author)

  20. Band Width of Acoustic Resonance Frequency Relatively Natural Frequency of Fuel Rod Vibration

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, Konstantin Nicolaevich; Moukhine, V.S.; Novikov, K.S.; Galivets, E.Yu. [MPEI - TU, 14, Krasnokazarmennaya str., Moscow, 111250 (Russian Federation)

    2009-06-15

    In flow induced vibrations the fluid flow is the energy source that causes vibration. Acoustic resonance in piping may lead to severe problems due to over-stressing of components or significant losses of efficiency. Steady oscillatory flow in NPP primary loop can be induced by the pulsating flow introduced by reactor circulating pump or may be set up by self-excitation. Dynamic forces generated by the turbulent flow of coolant in reactor cores cause fuel rods (FR) and fuel assembly (FA) to vibrate. Flow-induced FR and FA vibrations can generally be broken into three groups: large amplitude 'resonance type' vibrations, which can cause immediate rod failure or severe damage to the rod and its support structure, middle amplitude 'within bandwidth of resonance frequency type' vibrations responsible for more gradual wear and fatigue at the contact surface between the fuel cladding and rod support and small amplitude vibrations, 'out of bandwidth of resonance frequency type' responsible for permissible wear and fatigue at the contact surface between the fuel cladding and rod support. Ultimately, these vibration types can result in a cladding breach, and therefore must be accounted for in the thermal hydraulic design of FR and FA and reactor internals. In paper the technique of definition of quality factor (Q) of acoustic contour of the coolant is presented. The value of Q defines a range of frequencies of acoustic fluctuations of the coolant within which the resonance of oscillations of the structure and the coolant is realized. Method of evaluation of so called band width (BW) of acoustic resonance frequency is worked out and presented in the paper. BW characterises the range of the frequency of coolant pressure oscillations within which the frequency of coolant pressure oscillations matches the fuel assembly's natural frequency of vibration (its resonance frequency). Paper show the way of detuning acoustic resonance from natural

  1. Cladding creepdown model for FRAPCON-2

    International Nuclear Information System (INIS)

    Shah, V.N.; Tolli, J.E.

    1985-02-01

    This report presents a cladding deformation model developed to analyze cladding creepdown during steady state operation in both a pressurized water reactor (PWR) and a boiling water reactor (BWR). This model accounts for variations in zircaloy cladding heat treatment; cold worked and stress relieved material, typically used in a PWR, and fully recrystallized material, typically used in a BWR. The model calculates cladding creepdown as a function of hoop stress, fast neutron flux, exposure time, and temperature. This report also presents a comparison between cladding creep calculations by this model and corresponding measurements from the KWU/CE program, ORNL HOBBIE experiments, and EPRI/Westinghouse Engineering cooperative project. The comparisons show that the model calculates cladding creep strains well. The analyses of non-fueled rods by FRAPCON-2 show that the cladding creepdown model was correctly incorporated. Also, analysis of a PWR rod test case shows that the FRAPCON-2 code can analyze pellet-cladding mechanical interaction caused by cladding creepdown and fuel swelling

  2. Hydraulic burst tests at elevated temperatures on Zircaloy cladding from fuel rods irradiated in the Winfrith SGHWR

    International Nuclear Information System (INIS)

    Garlick, A.; Hindmarch, P.

    1980-09-01

    Closed-end hydraulic burst tests have been carried out at 613K on lengths of cladding cut from fuel rods that had been irradiated in the SGHWR to 25 n/m 2 . The effects of reactor exposure on the mechanical properties of the Zircaloy cladding, initially in the stress-relieved and fully recrystallised conditions, have been evaluated from measurements of the 0.2% proof stress, the ultimate burst stress, the total circumferential elongation and the reduction in wall thickness at fracture. It is shown that after irradiation, the measured strength properties of stress-relieved cladding remained higher than for that in the fully recrystallised condition, although the large differences observed before irradiation were considerably reduced. The irradiation-induced increase in proof stress measured during these tests was compared with US results from uniaxial tensile tests and, after correcting for the effect of stress-ratio, it is concluded that close agreement exists between the two sets of data for Zircaloy in the fully recrystallised condition. In contrast, the agreement for stress-relieved Zircaloy is less good, although the maximum increase in proof stress after high neutron doses for this material is similar for data from the two sources. After irradiation, the ductility of fully recrystallised Zircaloy remained higher than that of stress-relieved material and there was no evidence to suggest that a serious loss of ductility had occurred for Zircaloy in either condition of heat-treatment as a result of reactor exposure. (author)

  3. Stressed and strained state for cermetic-rod-type fuel element

    International Nuclear Information System (INIS)

    Kulikov, I.S.

    1987-01-01

    Calculation technique for designing the stress-strained state of a cermetic rod-type fuel element has been proposed. The technique is based on the time-dependent step-by-step method and the solution of the deformation equilibrium equation for continuous and thick-wall long cylinders at every temporal step by the finite difference method. Additional strains, caused by thermal expansion and radiation swelling, have been taken into account. The transion from the non-contact model to the stiff-contact model has been provided in the case of cladding-fuel gap dissappearing in one or a number of cross-sections along the fuel element height. The method is supplemented by the formula for fuel cans stability estimation in the case of high coolant external pressure. The example of estimation of the cermetic-rod-type fuel elements are considered as an example

  4. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye

    2013-01-01

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses

  5. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses.

  6. Effects of fuel relocation on reflood in a partially-blocked rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Jae [School of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Kim, Jongrok; Kim, Kihwan; Bae, Sung Won [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Division, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Moon, Sang-Ki, E-mail: skmoon@kaeri.re.kr [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Division, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-02-15

    Ballooning of the fuel rods has been an important issue, since it can influence the coolability of the rod bundle in a large-break loss-of-coolant accident (LBLOCA). Numerous past studies have investigated the effect of blockage geometry on the heat transfer in a partially blocked rod bundle. However, they did not consider the occurrence of fuel relocation and the corresponding effect on two-phase heat transfer. Some fragmented fuel particles located above the ballooned region may drop into the enlarged volume of the balloon. Accordingly, the fuel relocation brings in a local power increase in the ballooned region. The present study’s objective is to investigate the effect of the fuel relocation on the reflood under a LBLOCA condition. Toward this end, experiments were performed in a 5 × 5 partially-blocked rod bundle. Two power profiles were tested: one is a typical cosine shape and the other is the modified shape considering the effect of the fuel relocation. For a typical power shape, the peak temperature in the ballooned rods was lower than that in the intact rods. On the other hand, for the modified power shape, the peak temperature in the ballooned rods was higher than that in the intact rods. Numerical simulations were also performed using the MARS code. The tendencies of the peak clad temperatures were well predicted.

  7. Metrological certification of systems to monitor the seal integrity of fuel-element cladding based on exposed fuel in sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Eliseev, A.V.; Filonov, V.S.; Ushakov, V.M.; Belov, S.P.; Pedyash, B.V.; Zemtsev, B.V.; Skorikov, N.V.

    1992-01-01

    In sodium-cooled fast reactors, the clad monitoring system for seal integrity of the fuel element cladding is practically the only source of operator information on the serviceability of fuel elements in the core. The monitoring system can be used as the basis for critical decisions whether the reactor must be shut down of whether operation can continue, but only if the meterologically provided measurements are reliable. This article describes a method developed for certifying working rods on the basis of the domestic standard. The method includes a combined irradiation of the sample and the rod to be certified in an arbitrary field of a plutonium-beryllium neutron source with an output rate greater than 10 8 sec -1 , which is mounted in a paraffin moderator. The positive results of the metrological certification of the system to monitor cladding seal integrity leads the authors to recommend this method for other current and planned sodium-cooled fast reactors. 6 refs., 2 tabs

  8. URANUS - a computer programme for the thermal and mechanical analysis of the fuel rods in a nuclear reactor

    International Nuclear Information System (INIS)

    Lassmann, K.

    1978-01-01

    The URANUS code, a digital computer programme for the thermal and mechanical analysis of integral fuel rods, is described. With this code the fuel rods found in the majority of power reactors can be analyzed. URANUS is built around a quasi two-dimensional analysis of fuel and cladding. The mechanical analysis can accommodate seven components of strain: elastic, time-independent plastic, creep and thermal strains, as well as strains due to swelling, cracking and densification. The heat generation and temperature distribution, cladding/fuel gap closure, pellet cracking and crack healing, fission-gas release, corrosion, O/M-distribution and plutonium redistribution are modelled. Geometric non-linearities (large displacements) are included; steady state or transient loading (pressure, temperature) is possible. In this paper special attention is paid to a theory for determining crack structures. The present status of the URANUS computer programme and a critical comparison with other fuel rod codes as well as sample analyses are given. (Auth.)

  9. Structural analysis of fuel rod applied to pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Danilo P.; Pinheiro, Andre Ricardo M.; Lotto, André A., E-mail: danilo.pinheiro@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil)

    2017-07-01

    The design of fuel assemblies applied to Pressurized Water Reactors (PWR) has several requirements and acceptance criteria that must be attended for licensing. In the case of PWR fuel rods, an important mechanical structural requirement is to keep the radial stability when submitted to the coolant external pressure. In the framework of the Accident Tolerant Fuel (ATF) program new materials have been studied to replace zirconium based alloys as cladding, including iron-based alloys. In this sense, efforts have been made to evaluate the behavior of these materials under PWR conditions. The present work aims to evaluate the collapse cold pressure of a stainless steel thin-walled tube similar to that used as cladding material of fuel rods by means of the comparison of numeric data, and experimental results. As a result of the simulations, it was observed that the collapse pressure has a value intermediate value between those found by regulatory requirements and analytical calculations. The experiment was carried out for the validation of the computational model using test specimens of thin-walled tubes considering empty tube. The test specimens were sealed at both ends by means of welding. They were subjected to a high pressure device until the collapse of the tubes. Preliminary results obtained from experiments with the empty test specimens indicate that the computational model can be validated for stainless steel cladding, considering the difference between collapse pressure indicated in the regulatory document and the actual limit pressure concerning to radial instability of tubes with the studied characteristics. (author)

  10. Analysis of corrosion behavior of KOFA cladding

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Kim, Ki Hang; Seo, Keum Seok; Chung, Jin Gon

    1994-01-01

    The corrosion behavior of KOFA cladding was analyzed using the oxide measurement data of KOFA fuel irradiated up to the fuel rod burnup of 35,000 MWD/MTU for two cycles in Kori-2. Even though KOFA cladding is a standard Zircaloy-4 manufactured by Westinghouse according to the Siemens/KWU's HCW (Highly Cold Worked) standard Zircaloy-4 specification, it was expected that in-pile corrosion behavior of KOFA cladding would not be equivalent to that of Siemens/KWU's cladding due to the differences in such manufacturing processes as cold work and heat treatment. The analysis of measured KOFA cladding oxidation showed that oxidation of KOFA cladding is at least 19 % lower than the design analysis based upon Siemens/KWU's HCW standard Zircaloy-4 cladding. Lower corrosion of KOFA cladding seems to result from the differences in the manufacturing processes and chemical composition although the burnup and oxide layer thickness of the measured fuel rods is relatively low and the amount of the oxidation data base is small

  11. The corrosion of Zircaloy-4 fuel cladding in pressurized water reactors

    International Nuclear Information System (INIS)

    Van Swam, L.F.P.; Shann, S.H.

    1991-01-01

    This paper reports on the effects of thermo-mechanical processing of cladding on the corrosion of Zircaloy-4 in commercial PWRs that have been investigated. Visual observations and nondestructive measurements at poolside, augmented by observations in the hot cell, indicate that the initial black oxide transforms into a grey or tan later white oxide layer at a thickness of 10 to 15 μm independent of the thermal processing history of the tubing. At an oxide layer thickness of 60 to 80 μm, the oxide may spall depending somewhat on the particular oxide morphology formed and possibly on the frequency of power and temperature changes of the fuel rods. Because spalling of oxide lowers the metal-to-oxide interface temperature of fuel rods, it reduces the corrosion rate and is beneficial from that point of view. To determine the effect of thermo-mechanical processing on in-reactor corrosion of Zircaloy-4, oxide thickness measurements at poolside and in the hot cell have been analyzed with the MATPRO corrosion model. A calibrated corrosion parameter in this model provides a measure of the corrosion susceptibility of the Zircaloy-4 cladding. It was found necessary to modify the MATPRO equations with a burnup dependent term to obtain a near constant value of the corrosion parameter over a burnup range of approximately 10 to 45 MWd/kgU. Different calculational tests were performed to confirm that the modified model accurately predicts the corrosion behavior of fuel rods

  12. Thermal performance of annular-coated and sphere-pac LWR fuel rod designs

    International Nuclear Information System (INIS)

    Guenther, R.J.; Hsieh, K.A.; Barner, J.O.; Freshley, M.D.

    1980-01-01

    Two FCI-resistant UO 2 fuel rod designs are being compared to a reference design in irradiation tests in the Halden Boiling Water Reactor (HBWR) as part of the DOE-sponsored Fuel Performance Improvement Program (FPIP). The primary fuel design (annular-coated-pressurized) incorporates annular pellets, a graphite coating on the inner surface of the Zircaloy cladding, and pressurized helium fill gas. Also being investigated is an 87% smear density sphere-pac design with pressurized helium fill gas. The solid pellet (reference) and annular-coated designs described had helium fill gas at approx. 100 kPa and the sphere-pac rods were pressurized at approx. 455 kPa

  13. In-reactor fuel cladding external corrosion measurement process and results

    International Nuclear Information System (INIS)

    Thomazet, J.; Musante, Y.; Pigelet, J.

    1999-01-01

    Analysis of the zirconium alloy cladding behaviour calls for an on-site corrosion measurement device. In the 80's, a FISCHER probe was used and allowed oxide layer measurements to be taken along the outer generating lines of the peripheral fuel rods. In order to allow measurements on inner rods, a thin Eddy current probe called SABRE was developed by FRAMATOME. The SABRE is a blade equipped with two E.C coils is moved through the assembly rows. A spring allows the measurement coil to be clamped on each of the generating lines of the scanned rods. By inserting this blade on all four assembly faces, measurements can also be performed along several generating lines of the same rod. Standard rings are fitted on the device and allow on-line calibration for each measured row. Signal acquisition and processing are performed by LAGOS, a dedicated software program developed by FRAMATOME. The measurements are generally taken at the cycle outage, in the spent fuel pool. On average, data acquisition calls for one shift per assembly (eight hours): this corresponds to more than 2500 measurement points. These measurements are processed statistically by the utility program SAN REMO. All the results are collected in a database for subsequent behaviour analysis: examples of investigated parameters are the thermal/hydraulic conditions of the reactors, the irradiation history, the cladding material, the water chemistry This analysis can be made easier by comparing the behaviour measurement and prediction by means of the COROS-2 corrosion code. (author)

  14. A comparison of Zircaloy oxide thicknesses on Millstone-3 and North Anna-1 PWR fuel cladding

    International Nuclear Information System (INIS)

    Polley, M.V.; Evans, H.E.

    1993-08-01

    High concentrations of lithium in the coolant may enhance the corrosion rate of Zircaloy fuel cladding. In the present work, oxide thicknesses on fuel cladding from the Millstone 3 PWR were compared with those from the North Anna 1 PWR. The intention was to identify whether the higher lithium levels (up to 3.5 ppM) in the Millstone 3 primary coolant during cycles 2 and 3 led to significantly greater oxidation rates than in North Anna 1 which operated generally with lithium levels lower than 2.2 ppM. The comparisons were made by comparing the measurements with code predictions of Zircaloy oxidation in order to factor out the effect of operational variables on the oxide thicknesses achieved. Overall, Millstone 3 oxide thicknesses were found to be approximately 14% greater than North Anna 1 values. However, approximately 29% lower oxide thicknesses were found on reload Millstone 3 rods exposed to one cycle of elevated lithium chemistry than on Millstone 3 initial fuel exposed to one cycle of normal lithium chemistry during cycle 1. Furthermore, oxide thicknesses on Millstone 3 rods exposed to two cycles of elevated lithium chemistry were approximately 36% lower than on Millstone 3 rods exposed to one cycle of normal lithium chemistry plus one cycle of elevated lithium chemistry. Therefore, it cannot be concluded that elevated lithium operation in Millstone 3 led to enhanced Zircaloy fuel clad corrosion

  15. Experimental determination of local temperature field variations due to spacer grids in the cladding tubes of a rod cluster flowed through by sodium

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1978-01-01

    If spacer grids are used to keep the fuel rods in their places - as in the fuel elements of the SNR series, exact tests are necessary to find out whether and to what extent temperature peaks near the supporting points affect cladding tube design. To clarify this special problem, experimental investigations have been carried out for the first time in a rod cluster model of the SNR-300 fuel element cross-flowed with sodium. The investigations and findings so far are reported on. (orig./RW) [de

  16. Influence of fuel pin bowing on the temperature distribution in fuel pin cladding tubes in case of sodium cooling; experimental results

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.; Kolodziej, M.

    1978-09-01

    The influence of rod bowing on the local temperature distribution was measured with turbulent sodium flow in the cladding tubes of a 19-rod bundle mock-up of the SNR 300 Mark Ia fuel element. Such measurements have been carried out for the first time. The results presented in this report are part 1 of the experimental evaluation not yet completed. The major results are: 1. When a rod on the first ring gets deformed towards a neighbour on the second ring with a gap reduction from the nominal value of 100 % down to 20 %, the maximum azimuthal temperature difference of the outer rod increases by about 60 %. 2. The maximum azimuthal temperature difference of a rod on the first ring increases by a factor of 2, if it is approached by a neighbour on the same ring. 3. The reduction in cross section of a subchannel by rod bowing results only locally in distinct temperature rises, i.e. in the adjacent cladding tubes. Rods of the next but one row are no more subject to noticeable changes in temperature [de

  17. Enhancing the ABAQUS Thermomechanics Code to Simulate Multidimensional Steady and Transient Fuel Rod Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R.L.; Knoll, D.A. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-3855 (United States)

    2009-06-15

    Important aspects of fuel rod behavior, for example pellet-clad interaction (PCI), fuel fracture, and non-axisymmetric cooling and oxide formation, are inherently 3-D. Current fuel rod simulation codes typically approximate such behavior using a quasi 2D (or 1.5D) approach and, often, separate codes must be used for steady and transient (or accident) conditions. Notable exceptions are the EPRI propriety code FALCON which is 2D and can be applied to steady or transient operation, and TOUTATIS which is 3D. Recent studies have indicated the need for multidimensional fuel rod simulation capability, particularly for accurate predictions of PCI. The Idaho National Laboratory (INL) is currently developing next-generation capability to model nuclear fuel performance. The goal is to develop a 2D/3D computer code (BISON) which solves the fully coupled thermomechanics equations, includes multi-physics constitutive behavior for both fuel and cladding materials, and is designed for efficient use on highly parallel computers. To provide guidance and a proto-typing environment for this effort, plus provide the INL with near-term fuel modeling capability, the commercially available ABAQUS thermomechanics software has been enhanced to include the fuel behavior phenomena necessary to afford a practical fuel performance simulation capability. This paper details the enhancements which have been implemented in ABAQUS to date, and provides results of a multi-pellet fuel problem which demonstrates the new capability. ABAQUS employs modern finite element methods to solve the nonlinear thermomechanics equations in 1, 2, or 3-D, using linear or quadratic elements. The temperature and displacement fields are solved in a fully-coupled fashion, using sophisticated iteration and time integration error control. The code includes robust contact algorithms, essential for computing multidimensional pellet-pellet or pellet-clad interaction. Extensive constitutive models are available, including

  18. Linear variable differential transformer and its uses for in-core fuel rod behavior measurements

    International Nuclear Information System (INIS)

    Wolf, J.R.

    1979-01-01

    The linear variable differential transformer (LVDT) is an electromechanical transducer which produces an ac voltage proportional to the displacement of a movable ferromagnetic core. When the core is connected to the cladding of a nuclear fuel rod, it is capable of producing extremely accurate measurements of fuel rod elongation caused by thermal expansion. The LVDT is used in the Thermal Fuels Behavior Program at the U.S. Idaho National Engineering Laboratory (INEL) for measurements of nuclear fuel rod elongation and as an indication of critical heat flux and the occurrence of departure from nucleate boiling. These types of measurements provide important information about the behavior of nuclear fuel rods under normal and abnormal operating conditions. The objective of the paper is to provide a complete account of recent advances made in LVDT design and experimental data from in-core nuclear reactor tests which use the LVDT

  19. Post-test examination of the VVER-1000 fuel rod bundle CORA-W2

    International Nuclear Information System (INIS)

    Hofmann, P.; Noack, V.; Burbach, J.; Metzger, H.; Schanz, G.; Hagen, S.; Sepold, L.

    1995-01-01

    The upper half of the bundle is completely oxidized, the lower half has kept the fuel rods relatively intact. The post-test examination results show the strong impact of the B 4 C absorber rod and the stainless steel grid spacers on the 'low-temperature' bundle damage initiation and progression. The B 4 C absorber rod completely disappeared in the upper half of the bundle. The multicomponent melts relocated and formed coolant channel blockages on solidification with a maximum extent of about 30% in the lower part of the bundle. At temperatures above the melting point of the ZrNb1 cladding extensive fuel dissolution occured. (orig./HP)

  20. Post-test examination of the VVER-1000 fuel rod bundle CORA-W2

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, P.; Noack, V.; Burbach, J.; Metzger, H.; Schanz, G.; Hagen, S.; Sepold, L.

    1995-08-01

    The upper half of the bundle is completely oxidized, the lower half has kept the fuel rods relatively intact. The post-test examination results show the strong impact of the B{sub 4}C absorber rod and the stainless steel grid spacers on the `low-temperature` bundle damage initiation and progression. The B{sub 4}C absorber rod completely disappeared in the upper half of the bundle. The multicomponent melts relocated and formed coolant channel blockages on solidification with a maximum extent of about 30% in the lower part of the bundle. At temperatures above the melting point of the ZrNb1 cladding extensive fuel dissolution occured. (orig./HP)

  1. Matpro--version 10: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1978-02-01

    The materials properties correlations and computer subcodes (MATPRO--Version 10) developed for use with various LWR fuel rod behavior analytical programs at the Idaho National Engineering Laboratory are described. Formulations of fuel rod material properties, which are generally semiempirical in nature, are presented for uranium dioxide and mixed uranium--plutonium dioxide fuel, zircaloy cladding, and fill gas mixtures

  2. MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior

    International Nuclear Information System (INIS)

    Hagrman, D.L.; Reymann, G.A.

    1979-02-01

    This handbook describes the materials properties correlations and computer subcodes (MATPRO-Version 11) developed for use with various LWR fuel rod behavior analytical programs at the Idaho National Engineering Laboratory. Formulations of fuel rod material properties, which are generally semiempirical in nature, are presented for uranium dioxide and mixed uranium--plutonium dioxide fuel, zircaloy cladding, and fill gas mixtures

  3. MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, D.L.; Reymann, G.A. (comps.)

    1979-02-01

    This handbook describes the materials properties correlations and computer subcodes (MATPRO-Version 11) developed for use with various LWR fuel rod behavior analytical programs at the Idaho National Engineering Laboratory. Formulations of fuel rod material properties, which are generally semiempirical in nature, are presented for uranium dioxide and mixed uranium--plutonium dioxide fuel, zircaloy cladding, and fill gas mixtures.

  4. The thermo-mechanics of the PWR fuel rod; La thermomecanique du crayon de combustible REP

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J.C. [Electricite de France, EDF, 75 - Paris (France); Gautier, B.; Chaigne, G. [Electricite de France, Service Etudes et Projets Thermiques et Nucleaires, 75 - Paris (France)] [and others

    1999-03-29

    The fuel rod mechanics is of a great importance in the safety and performance of the reactors. In this domain a meeting has been organized by the SFEN the 18 march 1998 at Paris. With the participation of scientists from CEA, EDF and Framatome, the physics of the fuel rods was presented based on four main aspects. Two first papers dealt with the solicitations of the fuel rod in normal and accidental conditions. The physical phenomena under irradiation were then detailed in the four following talks. Three papers presented the simulation and the codes of the fuel-cladding interactions with the diabolo effect. The last paper was devoted to the experiment feedback and the research programs. (A.L.B.)

  5. Effects of thermocouple installation and location on fuel rod temperature measurements

    International Nuclear Information System (INIS)

    McCormick, R.D.

    1983-01-01

    This paper describes the results of analyses of nuclear fuel rod cladding temperature data obtained during in-reactor experiments under steady state and transient (simulated loss-of-coolant accident) operating conditions. The objective of the analyses was to determine the effect of thermocouple attachment method and location on measured thermal response. The use of external thermocouples increased the time to critical heat flux (CHF), reduced the blowdown peak temperature, and enhanced rod quench. A comparison of laser welded and resistance welded external thermocouple responses showed that the laser welding technique reduced the indicated cladding steady state temperatures and provided shorter time-to-CHF. A comparison of internal welded and embedded thermocouples indicated that the welded technique gave generally unsatisfactory cladding temperature measurements. The embedded thermocouple gave good, consistent results, but was possibly more fragile than the welded thermocouples. Detailed descriptions of the thermocouple designs, attachment methods and locations, and test conditions are provided

  6. Fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Gueneau, C.; Piron, J.P.; Dumas, J.C.; Bouineau, V.; Iglesias, F.C.; Lewis, B.J.

    2015-01-01

    The chemistry of the nuclear fuel is very complex. Its chemical composition changes with time due to the formation of fission products and depends on the temperature level history within the fuel pellet and the clad during operation. Firstly, in thermal reactors, zircaloy oxidation from reaction with UO 2 fuel under high-temperature conditions will be addressed. Then other fuel-cladding interaction phenomena occurring in fast reactors will be described. Large thermal gradients existing between the centre and the periphery of the pellet induce the radial redistribution of the fuel constituents. The fuel pellet can react with the clad by different corrosion processes which can involve actinide and/or fission product transport via gas, liquid or/and solid phases. All these phenomena are briefly described in the case of different kinds of fuels (oxide, carbide, nitride, metallic) to be used in fast reactors. The way these phenomena are taken into account in fuel performance codes is presented. (authors)

  7. In-pile experiments on fuel rod behavior during a LOCA

    International Nuclear Information System (INIS)

    Karb, E.; Pruessmann, M.; Sepold, L.

    1980-05-01

    This report describes the results of the Test Series F, Tests F 1 through F 5, in the in-pile experimental program with single rods in the DK loop of the FR2 reactor at the Kernforschungszentrum Karlsruhe (KfK). The research is part of the Nuclear Safety Project's (PNS) fuel behavior program. The main objective of the FR2-LOCA tests is to provide information about the effects of a nuclear environment on the mechanisms of fuel rod failure in the second heatup phase of a LOCA. The test rods have a heated length of 50 cm, and their radial dimensions are identical with those of a commercial German PWR. The main parameter of the FR2-LOCA test program is the burnup. The F tests were perfomed from Oct. 25, 1977 to Nov. 22, 1977. They were the first tests in this program to use pre-irradiated fuel rods. The nominal burnup of the test rods was 20 000 MWd/t. During the transient test, the test rods were subjected to rod powers between 36 and 41 W/cm and were pressurized with He to hot internal pressures between 46 and 83 bar. The test rods during the heatup phase at pressures of 56, 53, 42, 72 and 60 bar, respectively. The burst temperatures were determined to be 890, 893, 932, 835 and 880 0 C for test F 1 through F 5. The maximum total circumferential elongations amount to 59, 38, 27, 34 and 41%, respectively. The F tests revealed a fragmentation of the fuel after the irradiation (prior to the tests) and a disintegration of the fuel pellet column after the transient tests due to cladding ballooning. The post-test results indicated a significant reduction of the pellet stack length for all five test rods. The burst data of the F tests did not reveal any difference between tests with unirradiated fuel rods and the irradiated fuel rods of this test series. (orig./HP) [de

  8. The post irradiation examination of three fuel rods from the IFA 429 experiment irradiated in the Halden Reactor

    International Nuclear Information System (INIS)

    Williams, J.

    1979-11-01

    A series of fuel rod irradiation experiments were performed in the Halden Heavy Boiling Water Reactor in Norway. These were designed to provide a range of fuel property data as a function of burn-up. One of these experiments was the IFA-429. This was designed to study the absorption of helium filling gas by the UO 2 fuel pellets, steady state and transient fission gas release and fuel thermal behaviour to high burn-up. This data was to be obtained as a function of fuel density, fuel grain size, initial fuel/cladding gap, average linear heat rating, burn-up and overpower transients. All the fuel is in the form of pressed and sintered UO 2 pellets enriched to 13 weight percent 235 U. All the rods were clad in Zircaloy 4 tube. The details of the experiment are given. The post irradiation examination included: visual examination, neutron radiography, dimensional measurements, gamma scanning, measurement of gases in fuel rods and internal free volume, burn-up analysis, metallographic examination, measurement of retained gas in UO 2 pellets, measurement of bulk density of UO 2 . The results are given and discussed. (U.K.)

  9. Measurement station for interim inspections of Lightbridge metallic fuel rods at the Halden Boiling Water Reactor

    Science.gov (United States)

    Hartmann, C.; Totemeier, A.; Holcombe, S.; Liverud, J.; Limi, M.; Hansen, J. E.; Navestad, E. AB(; )

    2018-01-01

    Lightbridge Corporation has developed a new Uranium-Zirconium based metallic fuel. The fuel rods aremanufactured via a co-extrusion process, and are characterized by their multi-lobed (cruciform-shaped) cross section. The fuel rods are also helically-twisted in the axial direction. Two experimental fuel assemblies, each containing four Lightbridge fuel rods, are scheduled to be irradiated in the Halden Boiling Water Reactor (HBWR) starting in 2018. In addition to on-line monitoring of fuel rod elongation and critical assembly conditions (e.g. power, flow rates, coolant temperatures, etc.) during the irradiation, several key parameters of the fuel will be measured out-of-core during interim inspections. An inspection measurement station for use in the irradiated fuel handling compartment at the HBWR has therefore been developed for this purpose. The multi-lobed cladding cross section combined with the spiral shape of the Lightbridge metallic fuel rods requires a high-precision guiding system to ensure good position repeatability combined with low-friction guiding. The measurement station is equipped with a combination of instruments and equipment supplied from third-party vendors and instruments and equipment developed at Institute for Energy Technology (IFE). Two sets of floating linear voltage differential transformer (LVDT) pairs are used to measure swelling and diameter changes between the lobes and the valleys over the length of the fuel rods. Eddy current probes are used to measure the thickness of oxide layers in the valleys and on the lobe tips and also to detect possible surface cracks/pores. The measurement station also accommodates gamma scans. Additionally, an eddy-current probe has been developed at IFE specifically to detect potential gaps or discontinuities in the bonding layer between the metallic fuel and the Zirconium alloy cladding. Potential gaps in the bonding layer will be hidden behind a 0.5-1.0 mm thick cladding wall. It has therefore been

  10. BWR fuel clad behaviour following LOCA

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Vyas, K.N.; Dinesh Babu, R.

    1996-01-01

    Flow and pressure through the fuel coolant channel reduce rapidly following a loss of coolant accident. Due to stored energy and decay heat, fuel and cladding temperatures rise rapidly. Increase in clad temperature causes deterioration of mechanical properties of clad material. This coupled with increase of pressure inside the cladding due to accumulation of fission gases and de-pressurization of coolant causes the cladding to balloon. This phenomenon is important as it can reduce or completely block the flow passages in a fuel assembly causing reduction of emergency coolant flow. Behaviour of a BWR clad is analyzed in a design basis LOCA. Fuel and clad temperatures following a LOCA are calculated. Fission gas release and pressure is estimated using well established models. An elasto-plastic analysis of clad tube is carried out to determine plastic strains and corresponding deformations using finite-element technique. Analysis of neighbouring pins gives an estimate of flow areas available for emergency coolant flow. (author). 7 refs, 6 figs, 3 tabs

  11. Method of manufacturing nuclear fuel rods

    International Nuclear Information System (INIS)

    Sato, Masao; Oyama, Masatoshi; Yamamoto, Takanobu.

    1976-01-01

    Object: To discriminate the properties of light white deposits on a clad tube during the process of manufacturing nuclear fuel rods and then remove this to reproduce a good clad tube, thereby enhancing a yield of the clad tube. Structure: When a light white deposits is found to be appeared on outer or inner surface of coating during the process of appearance inspection, this is then permitted to subject to treatment of hot water immersion and discrimination. Requirements for removal of adhered matter in the process of treatment of hot water immersion are that deioned water of specific resistance 5 x 10 5 ohms or more is used with water temperature maintained at 60 to 100 0 C for immersion treatment for 10 to 30 minutes. In this case, however, if the water temperature is more than 80 0 C, the immersion time can be set less than 10 minutes. With the addition of such process described above, about 2.5% of total receiving number can be reproduced. (Yoshihara, H.)

  12. Detection of leak-defective fuel rods using the circumferential Lamb waves excited by the resonance backscattering of ultrasonic pulses

    International Nuclear Information System (INIS)

    Choi, M.S.; Yang, M.S.; Kim, H.C.

    1992-01-01

    A new ultrasonic technique for detecting the infiltrated water in leaked fuel rods is developed. Propagation characteristics of the circumferential Lamb waves in the cladding tubes are estimated by the resonance scattering theory. The Lamb waves are excited by the resonance backscattering of ultrasonic pulses. In sound fuel rods, the existence of the Lamb waves is revealed by a series of periodic echoes. In leaked fuel rods, however, the Lamb waves are perturbed strongly by the scattered waves from the surface of fuel pellets, thus the periodic echoes are not observed. (author)

  13. Chemical compatibility between cladding alloys and advanced fuels

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1975-05-01

    The National Advanced Fuels Program requires chemical, mechanical, and thermophysical properties data for cladding alloys. The compatibility behavior of cladding alloys with advanced fuels is critically reviewed. in carbide fuel pins, the principal compatibility problem is cladding carburization, diffusion of carbon into the cladding matrix accompanied by carbide precipitation. Carburization changes the mechanical properties of the cladding alloy. The extent of carburization increases in sodium (versus gas) bonded fuels. The depth of carburization increases with increasing sesquicarbide (M 2 C 3 ) content of the fuel. In nitride fuel pins, the principal compatibility problem is cladding nitriding, diffusion of nitrogen into the cladding matrix accompanied by nitride precipitation. Nitriding changes the mechanical properties of the cladding alloy. In both carbide and nitride fuel pins, fission products do not migrate appreciably to the cladding and do not appear to contribute to cladding attack. 77 references. (U.S.)

  14. Method of inserting fuel rod

    International Nuclear Information System (INIS)

    Kamimoto, Shuji; Imoo, Makoto; Tsuchida, Kenji.

    1991-01-01

    The present invention concerns a method of inserting a fuel rod upon automatic assembling, automatic dismantling and reassembling of a fuel assembly in a light water moderated reactor, as well as a device and components used therefor. That is, a fuel rod is inserted reliably to an aimed point of insertion by surrounding the periphery of the fuel rod to be inserted with guide rods, and thereby suppressing the movement of the fuel rod during insertion. Alternatively, a fuel rod is inserted reliably to a point of insertion by inserting guide rods at the periphery of the point of insertion for the fuel rod to be inserted thereby surrounding the point of insertion with the guide rods or fuel rods. By utilizing fuel rods already present in the fuel assembly as the guide rods described above, the fuel rod can be inserted reliably to the point of insertion with no additional devices. Dummy fuel rods are previously inserted in a fuel assembly which are then utilized as the above-mentioned guide rods to accurately insert the fuel rod to the point of insertion. (I.S.)

  15. Post test investigation of the single rod tests ESSI 1-11 on temperature escalation in PWR fuel rod simulators due to the Zircaloy/steam reaction

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Katanishi, S.

    1987-03-01

    This KfK-report describes the posttest investigation of the single rod tests ESSI-1 to ESSI-11. The objective of these tests was to investigate the temperature escalation behaviour of Zircaloy clad PWR-fuel rods in steam. The investigation of the temperature escalation is part of the program of out-of-pile experiments (CORA) performed within the frame work of the PNS Severe Fuel Damage Program. The experimental arrangement consisted of fuel rod simulator (central tungsten heater, UO 2 ring pellets and Zircaloy cladding), Zircaloy shroud and fiber ceramic insulation. The introductory test ESSI-1 to ESSI-3 were scoping tests designed to obtain information on the temperature escalation of zircaloy in steam. ESSI-4 to ESSI-8 were run with increasing heating rates to investigate the influence of the oxide layer thickness at the start of the escalation. ESSI-9 to ESSI-11 were performed to investigate the influence of the insulation thickness on the escalation behaviour. In these tests we also learned that the gap between removed shroud and insulation has a remarkable influence due to heat removal by convection in the gap. After the test the fuel rod simulator was embedded into epoxy and cut by a diamond saw. The cross sections were photographed and investigated by metalograph microscope, SEM and EMP examinations. (orig./GL) [de

  16. Study and modeling of fluctuating fluid forces exerted on fuel rods in pressurized water reactors

    International Nuclear Information System (INIS)

    Bhattacharjee, Saptarshi

    2016-01-01

    Flow-induced vibrations in a pressurized water reactor (PWR) core can cause fretting wear in the fuel rods. Due to friction, wear occurs at the contact locations between the spacer grid and the fuel rod. This could compromise the first safety barrier of the nuclear reactor by damaging the fuel rod cladding. In order to ensure the integrity of the cladding, it is necessary to know the random fluctuating forces acting on the rods. However, the spectra for these fluid forces are not well known. The goal of this PhD thesis was to use simple geometrical elements to check the reproducibility of realistic pressurized water reactor spacer grids. As a first step, large eddy simulations were performed on a concentric annular pipe for different mesh refinements using the CFD code Trio CFD (previously Trio U) developed by CEA. A mesh sensitivity study was performed to obtain an acceptable mesh for reproducing standard literature results. This information on mesh resolution was used when carrying out simulations using various geometric obstacles inside the pipe, namely, mixing vanes, circular spacer grid and a combination of square spacer grid with mixing vanes. The last of the three configurations is the closest to a realistic PWR fuel assembly. Structured mesh was generated for the annular pipe case and circular grid case. An innovative hybrid mesh was used for the two remaining cases of the mixing vanes and the square grid: keeping unstructured mesh around the obstacles and structured mesh in the rest of the domain. The inner wall of the domain was representative of the fuel rod cladding. Both hydraulic and wall pressure characteristics were analyzed for each case. The results for the square grid case were found to be an approximate combination of the mixing vane case and circular grid case. Simulation results were compared with experiments performed at CEA Cadarache. Some preliminary comparisons were also made with classical semi-empirical models. (author) [fr

  17. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Betten, P.R.

    1976-01-01

    Under the invention the fuel assembly is particularly suitable for liquid metal cooled fast neutron breeder reactors. Hence, according to the invention a fuel assembly cladding includes inward corrugations with respect to the remainder of the cladding according to a recurring pattern determined by the pitch of the metal wire helically wound round the fuel rods of the assembly. The parts of the cladding pressed inwards correspond to the areas in which the wire encircling the peripheral fuel rods is generally located apart from the cladding, thereby reducing the play between the cladding and the peripheral fuel rods situated in these areas. The reduction in the play in turn improves the coolant flow in the internal secondary channels of the fuel assembly to the detriment of the flow in the peripheral secondary channels and thereby establishes a better coolant fluid temperature profile [fr

  18. Control rod drives

    International Nuclear Information System (INIS)

    Hayakawa, Hiroyasu; Kawamura, Atsuo.

    1979-01-01

    Purpose: To reduce pellet-clad mechanical interactions, as well as improve the fuel safety. Constitution: In the rod drive of a bwr type reactor, an electric motor operated upon intermittent input such as of pulse signals is connected to a control rod. A resolver for converting the rotational angle of the motor to electric signals is connected to the rotational shaft of the motor and the phase difference between the output signal from the resolver and a reference signal is adapted to detect by a comparator. Based on the detection result, the controller is actuated to control a motor for control rod drive so that fine control for the movement of the control rod is made possible. This can reduce the moving distance of the control rod, decrease the thermal stress applied to the control rod and decrease the pellet clad mechanical interaction failures due to thermal expansion between the cladding tube and the pellets caused by abrupt changes in the generated power. (Furukawa, Y.)

  19. Chemical aspects of pellet-cladding interaction in light water reactor fuel elements

    International Nuclear Information System (INIS)

    Olander, D.R.

    1982-01-01

    In contrast to the extensive literature on the mechanical aspects of pellet-cladding interaction (PCI) in light water reactor fuel elements, the chemical features of this phenomenon are so poorly understood that there is still disagreement concerning the chemical agent responsible. Since the earliest work by Rosenbaum, Davies and Pon, laboratory and in-reactor experiments designed to elucidate the mechanism of PCI fuel rod failures have concentrated almost exclusively on iodine. The assumption that this is the reponsible chemical agent is contained in models of PCI which have been constructed for incorporation into fuel performance codes. The evidence implicating iodine is circumstantial, being based primarily upon the volatility and significant fission yield of this element and on the microstructural similarity of the failed Zircaloy specimens exposed to iodine in laboratory stress corrosion cracking (SCC) tests to cladding failures by PCI

  20. SSYST-1. A computer code system to analyse the fuel rod behaviour during a loss of coolant accident

    International Nuclear Information System (INIS)

    Gulden, W.

    1977-08-01

    The modules of the SSYST program system allow the detailed analysis of an LWR fuel rod in the course of a postulated loss-of-coolant accident. They provide a tool for considering the interaction between the heat conduction in the fuel rod, heat transfer in the gap, fuel and cladding tube deformation, pressure in the coolant, as well as thermal and fluid dynamics in the cooling channel and for calculating the time and location of ballooning and rod failure, respectively. They can be used both to precalculate the behaviour of fuel rods during LWR accidents and in support of the design of experiments. Depending on the problem to be solved, the individual modules can be easily combined. (orig.) [de

  1. Welding of stainless steel clad fuel rods for nuclear reactors

    International Nuclear Information System (INIS)

    Neves, Mauricio David Martins das

    1986-01-01

    This work describes the obtainment of austenitic stainless steel clad fuel rods for nuclear reactors. Two aspects have been emphasized: (a) obtainment and qualification of AISI 304 and 304 L stainless steel tubes; b) the circumferential welding of pipe ends to end plugs of the same alloy followed by qualification of the welds. Tubes with special and characteristic dimensions were obtained by set mandrel drawing. Both, seamed and seamless tubes of 304 and 304 L were obtained.The dimensional accuracy, surface roughness, mechanical properties and microstructural characteristics of the tubes were found to be adequate. The differences in the properties of the tubes with and without seams were found to be insignificant. The TIG process of welding was used. The influence of various welding parameters were studied: shielding gas (argon and helium), welding current, tube rotation speed, arc length, electrode position and gas flow. An inert gas welding chamber was developed and constructed with the aim of reducing surface oxidation and the heat affected zone. The welds were evaluated with the aid of destructive tests (burst-test, microhardness profile determination and metallographic analysis) and non destructive tests (visual inspection, dimensional examination, radiography and helium leak detection). As a function of the results obtained, two different welding cycles have been suggested; one for argon and another for helium. The changes in the microstructure caused by welding have been studied in greater detail. The utilization of work hardened tubes, permitted the identification by optical microscopy and microhardness measurements, of the different zones: weld zone; heat affected zone (region of grain growth, region of total and partial recrystallization) and finally, the zone not affected by heat. Some correlations between the welding parameters and metallurgical phenomena such as: solidification, recovery, recrystallization, grain growth and precipitation that occurred

  2. A user input manual for single fuel rod behaviour analysis code FEMAXI-III

    International Nuclear Information System (INIS)

    Saito, Hiroaki; Yanagisawa, Kazuaki; Fujita, Misao.

    1983-03-01

    Principal objectives of Safety related research in connection with lighr water reactor fuel rods under normal operating condition are mainly addressed 1) to assess fuel integrity under steady state condition and 2) to generate initial condition under hypothetical accident. These assessments have to be relied principally upon steady state fuel behaviour computing code that is able to calculate fuel conditions to tbe occurred in a various manner. To achieve these objectives, efforts have been made to develope analytical computer code that calculates in-reactor fuel rod behaviour in best estimate manner. The computer code developed for the prediction of the long-term burnup response of single fuel rod under light water reactor condition is the third in a series of code versions:FEMAMI-III. The code calculates temperature, rod internal gas pressure, fission gas release and pellet-cladding interaction related rod deformation as a function of time-dependent fuel rod power and coolant boundary conditions. This document serves as a user input manual for the code FEMAMI-III which has opened to the public in year of 1982. A general description of the code input and output are included together with typical examples of input data. A detailed description of structures, analytical submodels and solution schemes in the code shall be given in the separate document to be published. (author)

  3. Modelling the gas transport and chemical processes related to clad oxidation and hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, R O; Rashid, Y R [ANATECH Research Corp., San Diego, CA (United States)

    1997-08-01

    Models are developed for the gas transport and chemical processes associated with the ingress of steam into a LWR fuel rod through a small defect. These models are used to determine the cladding regions in a defective fuel rod which are susceptible to massive hydriding and the creation of sunburst hydrides. The brittle nature of zirconium hydrides (ZrH{sub 2}) in these susceptible regions produces weak spots in the cladding which can act as initiation sites for cladding cracks under certain cladding stress conditions caused by fuel cladding mechanical interaction. The modeling of the axial gas transport is based on gaseous bimolar diffusion coupled with convective mass transport using the mass continuity equation. Hydrogen production is considered from steam reaction with cladding inner surface, fission products and internal components. Eventually, the production of hydrogen and its diffusion along the length results in high hydrogen concentration in locations remote from the primary defect. Under these conditions, the hydrogen can attack the cladding inner surface and breakdown the protective ZrO{sub 2} layer locally, initiating massive localized hydriding leading to sunburst hydride. The developed hydrogen evolution model is combined with a general purpose fuel behavior program to integrate the effects of power and burnup into the hydriding kinetics. Only in this manner can the behavior of a defected fuel rod be modeled to determine the conditions the result in fuel rod degradation. (author). 14 refs, 6 figs.

  4. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Test ESBU-1

    International Nuclear Information System (INIS)

    Hagen, S.; Malauschek, H.; Peck, S.O.; Wallenfels, K.P.

    1983-12-01

    This report describes the test conduct and results of the bundle test ESBU-1. The test objective was the investigation of temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of a program of out-of-pile experiments, performed within the framework of the PNS Several Fuel Damage Program. The bundle was composed of a 3x3 array of fuel rod simulators surrounded by a zircaloy shroud which was insulated with a ZrO 2 fiber ceramic wrap. The fuel rod simulators comprised a tungsten heater, UO 2 annular pellets, and zircaloy cladding over a 0.4 m heated length. A steam flow of 1 g/s was inlet to the bundle. The most pronounced temperature escalation was found on the central rod. The initial heatup rate of 2 0 C/s at 1100 0 C increased to approximately 6 0 C/s. The maximum temperature reached was 2250 0 C. The following fast temperature decrease was caused by runoff of molten zircaloy. Molten zircaloy swept down the thin cladding oxide layer formed during heatup. The melt dissolved the surface of the UO 2 pellets and refroze as a coherent lump in the lower part of the bundle. The remaining pellets fragmented during cooldown and formed a powdery layer on the refrozen lump. The lump was sectioned posttest at several elevations: Dissolution of UO 2 by the molten zircaloy, interaction between the melt and previously oxidized zircaloy, and oxidation of the melt had occurred. (orig.) [de

  5. Comparative calculations and operation-to-PIE data juxtaposition of the Zaporozhye NPP, WWER-1000 FA-E0325 fuel rods after 4 years of operation up to ∼49 MWd/kgU burnup

    International Nuclear Information System (INIS)

    Passage, G.; Stefanova, S.; Scheglov, A.; Proselkov, V.

    2006-01-01

    Operational and PIE data for the Zaporozhe NPP, FA-E0325, WWER-1000 fuel rods were provided in the OECD NEA IFPE Database and were used to perform comparative calculations among several fuel performance codes. The fuel rods had been irradiated for 4 years of operation up to ∼49 MWd/kg U burnup. The fuel rod operation histories are developed for the PINw99, TRANSURANUS (V1M1J03) and TOPRA-2 codes. The initial state fuel rod parameters are analysed and calculations are carried out. The PIE data enable the comparison of experimental measurement with code-calculated values for cladding elongation (49 rods), FGR and gas pressure (35 rods). Cladding diameter creep-down and gap closure results are juxtaposed as well. The capability of the applied codes correctly to predict the WWER fuel rod performance is shown. The WWER-1000 fuel rod data include initial geometrical and design parameters of the fuel rods, as well as description of the operation regime, NPP unit loading history and PIE results at normal conditions. The data are sufficient for modelling all 312 fuel rod and for comparison of calculations with experimental results for a limited number of fuel rods. The comparison between the calculated and measured results discussed in this paper shows that the codes PINw99, TRANSURANUS and TOPRA-2, are capable of adequate predicting the thermophysical and the mechanical performance of the WWER-1000 fuel rods. The PINw99 code predicts conservative BOL FGR values and conservative gas pressure values in the region of burnups higher than 30 MWd/kg U, which can be explained by the underprediction of the cladding gas inner volume and cladding elongation. The improved version PIN2K (not applied in the present study) predicts much better FGR and gas pressure, though, it is still under development in the high burnup FGR modelling part. In the TRANSURANUS code, there are also areas, where refinements are clearly indicated. They are subjects of the ongoing research projects and

  6. Solution to a fuel-and-cladding rewetting model

    International Nuclear Information System (INIS)

    Olek, S.

    1989-06-01

    A solution by the Wiener-Hopf technique is derived for a model for the rewetting of a nuclear fuel rod. The gap between the fuel and the cladding is modelled by an imperfect contact between the two. A constant heat transfer coefficient is assumed on the wet side, whereas the dry side is assumed to be adiabatic. The solution for the rewetting temperature is in the form of an integral whose integrand contains the model parameters, including the rewetting velocity. Numerical results are presented for a large number of these parameters. It is shown that there are such large values of the rewetting temperature and the gap resistance, or such low values of the initial wall temperature, for which the rewetting velocity is unaffected by the fuel properties. (author) l fig., 7 tabs., 17 refs

  7. A fuel response model for the design of spent fuel shipping casks

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Duffey, T.A.; Einziger, R.E.; Hobbins, R.R.; Jordon, H.; Rashid, Y.R.; Barrett, P.R.; Sanders, T.L.

    1989-01-01

    The radiological source terms pertinent to spent fuel shipping cask safety assessments are of three distinct origins. One of these concerns residual contamination within the cask due to handling operations and previous shipments. A second is associated with debris (''crud'') that had been deposited on the fuel rods in the course of reactor operation, and a third involves the radioactive material contained within the rods. Although the lattermost source of radiotoxic material overwhelms the others in terms of inventory, its release into the shipping cask, and thence into the biosphere, requires the breach of an additional release barrier, viz., the fuel rod cladding. Hence, except for the special case involving the transport of fuel rods containing previously breached claddings, considerations of the source terms due to material contained in the fuel rods are complicated by the need to address the likelihood of fuel cladding failure during transport. The purpose of this report is to describe a methodology for estimating the shipping cask source terms contribution due to radioactive material contained within the spent fuel rods. Thus, the probability of fuel cladding failure as well as radioactivity release is addressed. 8 refs., 2 tabs

  8. Fuel rods

    International Nuclear Information System (INIS)

    Hattori, Shinji; Kajiwara, Koichi.

    1980-01-01

    Purpose: To ensure the safety for the fuel rod failures by adapting plenum springs to function when small forces such as during transportation of fuel rods is exerted and not to function the resilient force when a relatively great force is exerted. Constitution: Between an upper end plug and a plenum spring in a fuel rod, is disposed an insertion member to the lower portion of which is mounted a pin. This pin is kept upright and causes the plenum spring to function resiliently to the pellets against the loads due to accelerations and mechanical vibrations exerted during transportation of the fuel rods. While on the other hand, if a compression force of a relatively high level is exerted to the plenum spring during reactor operation, the pin of the insertion member is buckled and the insertion member is inserted to the inside of the plenum spring, whereby the pellets are allowed to expand freely and the failures in the fuel elements can be prevented. (Moriyama, K.)

  9. Analysis of effects of pellet-cladding bonding on trapping of the released fission gases in high burnup KKL BWR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Brankov, Vladimir [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne (Switzerland); Khvostov, Grigori; Mikityuk, Konstantin [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Pautz, Andreas [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne (Switzerland); Restani, Renato; Abolhassani, Sousan [Laboratory for Nuclear Materials at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Ledergerber, Guido [Kernkraftwerk Leibstadt, 5325 Leibstadt (Switzerland); Wiesenack, Wolfgang [Institutt for Energiteknikk - OECD Halden Reactor Project, Os Allé 5, 1777 Halden (Norway)

    2016-08-15

    Highlights: • Explanation for the scatter in measured fission gas release in high-BU BWR fuel rods. • Partial fuel-clad bond layer formation in high-BU BWR fuel. • Hypothesis for fission gas trapping facilitated by the pellet-cladding bond layer. • Correlation between burnup asymmetry and the quantity of trapped fission gas. • Implications of the trapped FG in LOCA transient. - Abstract: The first part of the paper presents results of a numerical analysis of the fuel behavior during base irradiation in the Kernkraftwerk Leibstadt Boiling Water Reactor (KKL BWR) using EPRI’s FALCON code coupled to GRSW-A – an advanced model for fuel swelling and fission gas release. Post-irradiation examinations conducted at the Paul Scherrer Institute’s (PSI) hot laboratory gave evidence of a distinct circumferential non-uniformity of local burnup at pellet surfaces. For several fuel samples, intact pellet-cladding bonding areas on the high burnup sides of the pellets at high burnup above ∼70 MWd/kgU were observed. It is hypothesized that a part of the fission gases, which are expected to be released by those areas, can be trapped and do not reach the rod plenum. In this paper, a simple approach to modeling of fission gas trapping is employed which reveals a potential correlation between the position of the rod within the fuel assembly (and therefore the degree of circumferential burnup non-uniformity) and the degree of fission gas trapping. A model is suggested to correlate the amount of locally trapped gas with the integral of the local contact pressure and the degree of circumferential burnup non-uniformity. The model is calibrated with available measurements of FGR from rod puncturing at the level of the plenums. In future work, the hypothesis about the axial distribution of trapped fission gas will be extrapolated to the Loss-Of-Coolant Accident (LOCA) analysis as an attempt to explain the fission gas release observed in some samples fabricated from

  10. Analyses of expected rod performance during the dry storage of spent fuel

    International Nuclear Information System (INIS)

    Einziger, R.E.

    1982-08-01

    Within the next ten years, a number of utilities will be forced to increase their interim spent-fuel-storage capability or face the loss of full-core reserve. Dry storage is being considered to fill this need. This paper analyzes the fuel-rod-performance data supporting dry storage and discusses areas where there are still outstanding questions. Three storage temperature ranges (T 0 C, 250 0 C 0 C and T > 400 0 C), two atmospheres (inert, unlimited air) and two initial fuel-rod conditions (intact, breached) are considered. It is concluded that a fuel-performance data base exists that indicates that storage below 250 0 C can be accomplished with long-term fuel pellet and cladding stability. At higher temperatures, analytic studies and laboratory experiments are needed especially to extrapolate and interpret the result of demonstration tests. 2 figures, 2 tables

  11. In-cell facility for performing mechanical-property tests on irradiated cladding

    International Nuclear Information System (INIS)

    Yaggee, F.L.; Haglund, R.C.; Mattas, R.F.

    1978-11-01

    A new facility was developed for testing cladding sections of LWR fuel rods. This facility and the accompanying test procedures have improved the level of in-cell mechanical-testing capabilities, making them comparable to existing capabilities for unirradiated cladding. The new facility is currently being used to study the susceptibility of irradiated Zircaloy cladding from LWR fuel rods to iodine stress-corrosion cracking. Preliminary testing results indicate a systematic effect of temperature, stress and irradiation on the susceptibility of annealed and stress-relieved Zircaloy-2. Experimental data obtained to date are being used to develop a stress-corrosion cracking model for LWR fuel rod failure. SEM examination of the undisturbed fracture surface of specimens that failed by pinhole leakage provides useful information on crack propagation and morphology

  12. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Boltax, A [Westinghouse Electric Corporation, Advanced Reactor Division, Madison, PA (United States); Biancheria, A

    1977-04-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  13. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    International Nuclear Information System (INIS)

    Boltax, A.; Biancheria, A.

    1977-01-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  14. Impacts of reactor. Induced cladding defects on spent fuel storage

    International Nuclear Information System (INIS)

    Johnson, A.B.

    1978-01-01

    Defects arise in the fuel cladding on a small fraction of fuel rods during irradiation in water-cooled power reactors. Defects from mechanical damage in fuel handling and shipping have been almost negligible. No commercial water reactor fuel has yet been observed to develop defects while stored in spent fuel pools. In some pools, defective fuel is placed in closed canisters as it is removed from the reactor. However, hundreds of defective fuel bundles are stored in numerous pools on the same basis as intact fuel. Radioactive species carried into the pool from the reactor coolant must be dealt with by the pool purification system. However, additional radiation releases from the defective fuel during storage appear tu be minimal, with the possible exception of fuel discharged while the reactor is operating (CANDU fuel). Over approximately two decades, defective commercial fuel has been handled, stored, shipped and reprocessed. (author)

  15. 3D Finite Element Simulation of Pellet-Cladding Mechanical Interaction

    International Nuclear Information System (INIS)

    Seo, Sang Kyu; Lee, Sung Uk; Lee, Eun Ho; Yang, Dong Yol; Kim, Hyo Chan; Yang, Dong Yol

    2016-01-01

    In a nuclear power plant, the fuel assembly, which is composed of fuel rods, burns, and the high temperature can generate power. The fuel rod consists of pellets and a cladding that covers the pellets. It is important to understand the pellet-cladding mechanical interaction with regard to nuclear safety. This paper proposes simulation of the PCMI. The gap between the pellets and the cladding, and the contact pressure are very important for conducting thermal analysis. Since the gap conductance is not known, it has to be determined by a suitable method. This paper suggests a solution. In this study, finite element (FE) contact analysis is conducted considering thermal expansion of the pellets. As the contact causes plastic deformation, this aspect is considered in the analysis. A 3D FE module is developed to analyze the PCMI using FORTRAN 90. The plastic deformation due to the contact between the pellets and the cladding is the major physical phenomenon. The simple analytical solution of a cylinder is proposed and compared with the fuel rod performance code results

  16. Drying of encapsulated parts (nuclear fuel rods) in applying vacuum, by introducing dehydratings, vacuum, and filling with an inert gas

    International Nuclear Information System (INIS)

    Johnson, C.R.

    1976-01-01

    This invention concerns a decontamination technique, in particular a process and equipment for extracting the water contained in fuel rods and other similar components of a nuclear reactor. The extraction of the contaminants contained in the fuel rods is carried out by a standard method by drilling a small hole in the surface of the cladding and applying a vacuum to bleed the rod of its impurities (moisture and gas). The invention consists for example in applying a vacuum at the hole drilled in the cladding to extract the contaminants and introducing spirit into the rod through the same orifice. The spirit absorbs the remaining liquid and other impurities. The spirit charged with the impurities is then pumped out by the same aperture by means of a regulated atmosphere inside a closed receptacle. This receptacle is then filled with an inert gas cooled to ambient temperature. The rods are then pressurised and the small orifice is sealed [fr

  17. Oxide particle size distribution from shearing irradiated and unirradiated LWR fuels in Zircaloy and stainless steel cladding: significance for risk assessment

    International Nuclear Information System (INIS)

    Davis, W. Jr.; West, G.A.; Stacy, R.G.

    1979-01-01

    Sieve fractionation was performed with oxide particles dislodged during shearing of unirradiated or irradiated fuel bundles or single rods of UO 2 or 96 to 97% ThO 2 --3 to 4% UO 2 . Analyses of these data by nonlinear least-squares techniques demonstrated that the particle size distribution is lognormal. Variables involved in the numerical analyses include lognormal median size, lognormal standard deviation, and shear cut length. Sieve-fractionation data are presented for unirradiated bundles of stainless-steel-clad or Zircaloy-2-clad UO 2 or ThO 2 --UO 2 sheared into lengths from 0.5 to 2.0 in. Data are also presented for irradiated single rods (sheared into lengths of 0.25 to 2.0 in.) of Zircaloy-2-clad UO 2 from BWRs and of Zircaloy-4-clad UO 2 from PWRs. Median particle sizes of UO 2 from shearing irradiated stainless-steel-clad fuel ranged from 103 to 182 μm; particle sizes of ThO 2 --UO 2 , under these same conditions, ranged from 137 to 202 μm. Similarly, median particle sizes of UO 2 from shearing unirradiated Zircaloy-2-clad fuel ranged from 230 to 957 μm. Irradiation levels of fuels from reactors ranged from 9,000 to 28,000 MWd/MTU. In general, particle sizes from shearing these irradiated fuels are larger than those from the unirradiated fuels. In addition, variations in particle size parameters pertaining to samples of a single vendor varied as much as those between different vendors. The fraction of fuel dislodged from the cladding is nearly proportional to the reciprocal of the shear cut length, until the cut length attains some minimum value below which all fuel is dislodged. Particles of fuel are generally elongated with a long-to-short axis ratio usually less than 3. Using parameters of the lognormal distribution deduced from experimental data, realistic estimates can be made of fractions of dislodged fuel having dimensions less than specified values

  18. Failed fuel rod detector

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Katsuya; Matsuda, Yasuhiko

    1984-05-02

    The purpose of the project is to enable failed fuel rod detection simply with no requirement for dismantling the fuel assembly. A gamma-ray detection section is arranged so as to attend on the optional fuel rods in the fuel assembly. The fuel assembly is adapted such that a gamma-ray shielding plate is detachably inserted into optional gaps of the fuel rods or, alternatively, the fuel assembly can detachably be inserted to the gamma-ray shielding plate. In this way, amount of gaseous fission products accumulated in all of the plenum portions in the fuel rods as the object of the measurement can be determined without dismantling the fuel assembly. Accordingly, by comparing the amounts of the gaseous fission products, the failed fuel rod can be detected.

  19. Development of joining techniques for fabrication of fuel rod simulators

    International Nuclear Information System (INIS)

    Moorhead, A.J.; McCulloch, R.W.; Reed, R.W.; Woodhouse, J.J.

    1980-10-01

    Much of the safety-related thermal-hydraulic tests on nuclear reactors are conducted not in the reactor itself, but in mockup segments of a core that uses resistance-heated fuel rod simulators (FRS) in place of the radioactive fuel rods. Laser welding and furnace brazing techniques are described for joining subassemblies for FRS that have survived up to 1000 h steady-state operation at 700 to 1100 0 C cladding temperatures and over 5000 thermal transients, ranging from 10 to 100 0 C/s. A pulsed-laser welding procedure that includes use of small-diameter filler wire is used to join one end of a resistance heating element of Pt-8 W, Fe-22 Cr-5.5 Al-0.5 Co, or 80 Ni-20 Cr (wt %) to a tubular conductor of an appropriate intermediate material. The other end of the heating element is laser welded to an end plug, which in turn is welded to a central conductor rod

  20. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

    Directory of Open Access Journals (Sweden)

    Bo Cheng

    2016-02-01

    Full Text Available In severe loss of coolant accidents (LOCA, similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconium alloy fuel cladding materials are rapidly heated due to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in 1,200–1,500°C steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstrated corrosion resistance. As these composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Mo alloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are

  1. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.; Macivergan, R.; Mckenzie, G.W.

    1980-01-01

    An apparatus incorporating a microprocessor control is provided for automatically loading nuclear fuel pellets into fuel rods commonly used in nuclear reactor cores. The apparatus comprises a split ''v'' trough for assembling segments of fuel pellets in rows and a shuttle to receive the fuel pellets from the split ''v'' trough when the two sides of the split ''v'' trough are opened. The pellets are weighed while in the shuttle, and the shuttle then moves the pellets into alignment with a fuel rod. A guide bushing is provided to assist the transfer of the pellets into the fuel rod. A rod carousel which holds a plurality of fuel rods presents the proper rod to the guide bushing at the appropriate stage in the loading sequence. The bushing advances to engage the fuel rod, and the shuttle advances to engage the guide bushing. The pellets are then loaded into the fuel rod by a motor operated push rod. The guide bushing includes a photocell utilized in conjunction with the push rod to measure the length of the row of fuel pellets inserted in the fuel rod

  2. Steady State and Transient Fuel Rod Performance Analyses by Pad and Transuranus Codes

    International Nuclear Information System (INIS)

    Slyeptsov, O.; Slyeptsov, S.; Kulish, G.; Ostapov, A.; Chernov, I.

    2013-01-01

    The report performed under IAEA research contract No.15370/L2 describes the analysis results of WWER and PWR fuel rod performance at steady state operation and transients by means of PAD and TRANSURANUS codes. The code TRANSURANUS v1m1j09 developed by Institute for of Transuranium Elements (ITU) was used based on the Licensing Agreement N31302. The code PAD 4.0 developed by Westinghouse Electric Company was utilized in the frame of the Ukraine Nuclear Fuel Qualification Project for safety substantiation for the use of Westinghouse fuel assemblies in the mixed core of WWER-1000 reactor. The experimental data for the Russian fuel rod behavior obtained during the steady-state operation in the WWER-440 core of reactor Kola-3 and during the power transients in the core of MIR research reactor were taken from the IFPE database of the OECD/NEA and utilized for assessing the codes themselves during simulation of such properties as fuel burnup, fuel centerline temperature (FCT), fuel swelling, cladding strain, fission gas release (FGR) and rod internal pressure (RIP) in the rod burnup range of (41 - 60) GWD/MTU. The experimental data of fuel behavior at steady-state operation during seven reactor cycles presented by AREVA for the standard PWR fuel rod design were used to examine the code FGR model in the fuel burnup range of (37 - 81) GWD/MTU. (author)

  3. Prediction of failure enthalpy and reliability of irradiated fuel rod under reactivity-initiated accidents by means of statistical approach

    International Nuclear Information System (INIS)

    Nam, Cheol; Choi, Byeong Kwon; Jeong, Yong Hwan; Jung, Youn Ho

    2001-01-01

    During the last decade, the failure behavior of high-burnup fuel rods under RIA has been an extensive concern since observations of fuel rod failures at low enthalpy. Of great importance is placed on failure prediction of fuel rod in the point of licensing criteria and safety in extending burnup achievement. To address the issue, a statistics-based methodology is introduced to predict failure probability of irradiated fuel rods. Based on RIA simulation results in literature, a failure enthalpy correlation for irradiated fuel rod is constructed as a function of oxide thickness, fuel burnup, and pulse width. From the failure enthalpy correlation, a single damage parameter, equivalent enthalpy, is defined to reflect the effects of the three primary factors as well as peak fuel enthalpy. Moreover, the failure distribution function with equivalent enthalpy is derived, applying a two-parameter Weibull statistical model. Using these equations, the sensitivity analysis is carried out to estimate the effects of burnup, corrosion, peak fuel enthalpy, pulse width and cladding materials used

  4. Performance of artificially defected LWR fuel rods in an unlimited air dry storage atmosphere

    International Nuclear Information System (INIS)

    Einziger, R.E.; Knecht, R.L.; Cantley, D.A.; Cook, J.A.

    1983-09-01

    Thus far the tests are inconclusive as to whether breached LWR fuel can be stored at 230 0 C for long periods of time in air without fuel oxidation and dispersion. There is every indication, as expected, that there is no oxidation problem in an inert atmosphere. Only one of four defects exposed to unlimited air gave any indication of fuel oxidation. It has been suggested that this might be an incubation effect and continued operation would result in oxidation occurring at all four defects. As yet the destructive examination of the BWR rod has not been completed, so it is not possible to determine if cladding splitting was due to an anomoly in this test rod or something that can be expected in LWR rods in general. Thus far there is no indication of respirable particle dispersal even if fuel oxidation does occur

  5. Fuel enrichment and temperature distribution in nuclear fuel rod in (D-T) driven hybrid reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Ypek [Suleyman Demirel Universitesi Muhendislik-Mimarlyk Fakultesi, Isparta (Turkey)

    2001-07-01

    In this study, melting point of the fuel rod and temperature distribution in nuclear fuel rod are investigated for different coolants under various first wall loads (P{sub w}, =5, 6, 7, 8, 9, and 10 MWm{sup -2}) in Fusion-Fission reactor fueled with 50%LWR +50%CANDU. The fusion source of neutrons of 14.1 MeV is simulated by a movable target along the main axis of cylindrical geometry as a line source. In addition, the fusion chamber was thought as a cylindrical cavity with a diameter of 300 cm that is comparatively small value. The fissile fuel zone is considered to be cooled with four different coolants, gas, flibe (Li{sub 2}BeF{sub 4}), natural lithium (Li), and eutectic lithium (Li{sub 17}Pb{sub 83}). Investigations are observed during 4 years for discrete time intervals of{delta}t= 0.5 month and by a plant factor (PF) of 75%. Volumetric ratio of coolant-to fuel is 1:1, 45.515% coolant, 45.515% fuel, 8.971% clad, in fuel zone. (author)

  6. Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior

    International Nuclear Information System (INIS)

    Williamson, R.L.; Knoll, D.A.

    2009-01-01

    A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importance of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.

  7. Nuclear-powered pacemaker fuel cladding study

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1976-07-01

    The fabrication of fuel capsules with refractory metal and alloy clads used in nuclear-powered cardiac pacemakers precludes the expedient dissolution of the clad in inorganic acid solutions. An experiment to measure penetration rates of acids on commonly used fuel pellet clads indicated that it is not impossible, but that it would be very difficult to dissolve the multiple cladding. This work was performed because of a suggestion that a 238 PuO 2 -powered pacemaker could be transformed into a terrorism weapon

  8. The risk of PCI damage to 8x8 fuel rods during limit cycle instability

    Energy Technology Data Exchange (ETDEWEB)

    Schrire, D.; Oguma, R.; Malen, K.

    1994-12-31

    A BWR reactor core may experience thermal-hydraulic instability under certain operating conditions. Generally, the instability results in neutron flux (i e generated neutronic power) and coolant flow and pressure oscillations, which reach a maximum `limit cycle` amplitude. The cladding response to power transients has been studied using noise analysis. These results have been compared to results from code calculations using the fuel code TOODEE 2. From these results the risk for fuel rod failure due to pellet-clad mechanical interaction and possible failure due to stress corrosion cracking (PCI) has been estimated. It turns out that for the oscillation frequencies of interest (0,3-0,5 Hz) the fuel response amplitude reduction makes PCI-failure improbable. 17 refs.

  9. Fuel rod leak detector

    International Nuclear Information System (INIS)

    Womack, R.E.

    1978-01-01

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 ( 133 Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (γ-rays) that characterize 133 Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133 Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  10. Simulation of reactivity-initiated accident transients on UO2-M5® fuel rods with ALCYONE V1.4 fuel performance code

    Directory of Open Access Journals (Sweden)

    Isabelle Guénot-Delahaie

    2018-03-01

    Full Text Available The ALCYONE multidimensional fuel performance code codeveloped by the CEA, EDF, and AREVA NP within the PLEIADES software environment models the behavior of fuel rods during irradiation in commercial pressurized water reactors (PWRs, power ramps in experimental reactors, or accidental conditions such as loss of coolant accidents or reactivity-initiated accidents (RIAs. As regards the latter case of transient in particular, ALCYONE is intended to predictively simulate the response of a fuel rod by taking account of mechanisms in a way that models the physics as closely as possible, encompassing all possible stages of the transient as well as various fuel/cladding material types and irradiation conditions of interest. On the way to complying with these objectives, ALCYONE development and validation shall include tests on PWR-UO2 fuel rods with advanced claddings such as M5® under “low pressure–low temperature” or “high pressure–high temperature” water coolant conditions.This article first presents ALCYONE V1.4 RIA-related features and modeling. It especially focuses on recent developments dedicated on the one hand to nonsteady water heat and mass transport and on the other hand to the modeling of grain boundary cracking-induced fission gas release and swelling. This article then compares some simulations of RIA transients performed on UO2-M5® fuel rods in flowing sodium or stagnant water coolant conditions to the relevant experimental results gained from tests performed in either the French CABRI or the Japanese NSRR nuclear transient reactor facilities. It shows in particular to what extent ALCYONE—starting from base irradiation conditions it itself computes—is currently able to handle both the first stage of the transient, namely the pellet-cladding mechanical interaction phase, and the second stage of the transient, should a boiling crisis occur.Areas of improvement are finally discussed with a view to simulating and

  11. Nuclear fuel cladding material

    International Nuclear Information System (INIS)

    Nakahigashi, Shigeo.

    1982-01-01

    Purpose: To largely improve the durability and the safety of fuel cladding material. Constitution: Diffusion preventive layers, e.g., aluminum or the like are covered on both sides of a zirconium alloy base layer of thin material, and corrosion resistant layers, e.g., copper or the like are covered thereon. This thin plate material is intimately wound in a circularly tubular shape in a plurality of layers to form a fuel cladding tube. With such construction, corrosion of the tube due to fuel and impurity can be prevented by the corrosion resistant layers, and the diffusion of the corrosion resistant material to the zirconium alloy can be prevented by the diffusion preventive layers. Since a plurality of layers are cladded, even if the corrosion resistant layers are damaged or cracked due to stress corrosion, only one layer is damaged or cracked, but the other layers are not affected. (Sekiya, K.)

  12. POST-IRRADIATION ANALYSES OF U-MO DISPERSION FUEL RODS OF KOMO TESTS AT HANARO

    Directory of Open Access Journals (Sweden)

    H.J. RYU

    2013-12-01

    Full Text Available Since 2001, a series of five irradiation test campaigns for atomized U-Mo dispersion fuel rods, KOMO-1, -2, -3, -4, and -5, has been conducted at HANARO (Korea in order to develop high performance low enriched uranium dispersion fuel for research reactors. The KOMO irradiation tests provided valuable information on the irradiation behavior of U-Mo fuel that results from the distinct fuel design and irradiation conditions of the rod fuel for HANARO. Full size U-Mo dispersion fuel rods of 4–5 g-U/cm3 were irradiated at a maximum linear power of approximately 105 kW/m up to 85% of the initial U-235 depletion burnup without breakaway swelling or fuel cladding failure. Electron probe microanalyses of the irradiated samples showed localized distribution of the silicon that was added in the matrix during fuel fabrication and confirmed its beneficial effect on interaction layer growth during irradiation. The modifications of U-Mo fuel particles by the addition of a ternary alloying element (Ti or Zr, additional protective coatings (silicide or nitride, and the use of larger fuel particles resulted in significantly reduced interaction layers between fuel particles and Al.

  13. Mechanisms of fuel-cladding chemical interaction: US interpretation

    International Nuclear Information System (INIS)

    Adamson, M.G.

    1977-01-01

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  14. Mechanisms of fuel-cladding chemical interaction: US interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M G [General Electric Company, Vallecitos Nuclear Center, Pleasanton, CA (United States)

    1977-04-01

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  15. Fuel performance computer code simulation of steady-state and transient regimes of the stainless steel fuel rods

    International Nuclear Information System (INIS)

    Gomes, Daniel de Souza

    2014-01-01

    The immediate cause of the accident at the Fukushima Daiichi nuclear plant in March 2011 was the meltdown of the reactor core. During this process, the zirconium cladding of the fuel reacts with water, producing a large amount of hydrogen. This hydrogen, combined with volatile radioactive materials leaked from the containment vessel and entered the building of the reactor, resulting in explosions. In the past, stainless steel was used as the coating in many pressurized water reactors (PWR) under irradiation and their performance was excellent, however, the stainless steel was replaced by a zirconium-based alloy as a coating material mainly due to its lower section shock-absorbing neutrons. Today, the stainless steel finish appears again as a possible solution for security issues related to the explosion and hydrogen production. The objective of this thesis is to discuss the performance under irradiation of fuel rods using stainless steel as a coating material. The results showed that stainless steel rods exhibit lower temperatures and higher fuel pellet width of the gap - coating the coated rods Zircaloy and this gap does not close during the irradiation. The thermal performance of the two fuel rods is very similar, and the penalty of increased absorption of neutrons due to the use of stainless steel can be offset by the combination of a small increase in the enrichment of U- 235 and changes in the size of the spacing between the fuel rods. (author)

  16. Power ramp performance of some 15 x 15 PWR test fuel rods tested in the STUDSVIK SUPER-RAMP and SUPER-RAMP extension projects

    International Nuclear Information System (INIS)

    Djurle, S.

    2000-01-01

    This paper presents results obtained from the STUDSVIK SUPER-RAMP (SR) and SUPER-RAMP EXTENSION (SRX) projects. As parts of these projects test fuel rods of the same PWR type were base irradiated in the Obrigheim power reactor and power ramp tested in the STUDSVIK R2 reactor. Some of the rods were ramped using an inlet coolant water temperature 50 deg. C below the normal one. Fabricated data on the test fuel rods are presented as well as data on the base irradiation, interim examination, conditioning irradiation, power ramp irradiation and results of the post irradiation examination. The data on the change of diameter at ridges due to power ramping have shown that a lower clad temperature during ramping leads to smaller deformations. Most likely this may be explained as due to a smaller creep rate in the cladding at the lower temperature, resulting in a more severe stress situation. The combination of low cladding temperature, high ramp terminal level and the presence of a stress corrosion agent may have caused the failure of one of the test rods. (author)

  17. Analysis of fuel cladding chemical interaction in mixed oxide fuel pins

    International Nuclear Information System (INIS)

    Weber, J.W.; Dutt, D.S.

    1976-01-01

    An analysis is presented of the observed interaction between mixed oxide 75 wt percent UO 2 --25 wt percent PuO 2 fuel and 316--20 percent CW stainless steel cladding in LMFBR type fuel pins irradiated in EBR-II. A description is given of the test pins and their operating conditions together with, metallographic observations and measurements of the fuel/cladding reaction, and a correlation equation is developed relating depth of cladding attack to temperature and burnup. Some recent data on cladding reaction in fuel pins with low initial O/M in the fuel are given and compared with the correlation equation curves

  18. Oxide particle size distribution from shearing irradiated and unirradiated LWR fuels in Zircaloy and stainless steel cladding: significance for risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W. Jr.; West, G.A.; Stacy, R.G.

    1979-03-22

    Sieve fractionation was performed with oxide particles dislodged during shearing of unirradiated or irradiated fuel bundles or single rods of UO/sub 2/ or 96 to 97% ThO/sub 2/--3 to 4% UO/sub 2/. Analyses of these data by nonlinear least-squares techniques demonstrated that the particle size distribution is lognormal. Variables involved in the numerical analyses include lognormal median size, lognormal standard deviation, and shear cut length. Sieve-fractionation data are presented for unirradiated bundles of stainless-steel-clad or Zircaloy-2-clad UO/sub 2/ or ThO/sub 2/--UO/sub 2/ sheared into lengths from 0.5 to 2.0 in. Data are also presented for irradiated single rods (sheared into lengths of 0.25 to 2.0 in.) of Zircaloy-2-clad UO/sub 2/ from BWRs and of Zircaloy-4-clad UO/sub 2/ from PWRs. Median particle sizes of UO/sub 2/ from shearing irradiated stainless-steel-clad fuel ranged from 103 to 182 ..mu..m; particle sizes of ThO/sub 2/--UO/sub 2/, under these same conditions, ranged from 137 to 202 ..mu..m. Similarly, median particle sizes of UO/sub 2/ from shearing unirradiated Zircaloy-2-clad fuel ranged from 230 to 957 ..mu..m. Irradiation levels of fuels from reactors ranged from 9,000 to 28,000 MWd/MTU. In general, particle sizes from shearing these irradiated fuels are larger than those from the unirradiated fuels; however, unirradiated fuel from vendors was not available for performing comparative shearing experiments. In addition, variations in particle size parameters pertaining to samples of a single vendor varied as much as those between different vendors. The fraction of fuel dislodged from the cladding is nearly proportional to the reciprocal of the shear cut length, until the cut length attains some minimum value below which all fuel is dislodged. Particles of fuel are generally elongated with a long-to-short axis ratio usually less than 3. Using parameters of the lognormal distribution estimates can be made of fractions of dislodged fuel having

  19. Fuel rod failure during film boiling (PCM-1 test in the PBF)

    International Nuclear Information System (INIS)

    Domenico, W.F.; Stanley, C.J.; Mehner, A.S.

    1978-01-01

    The Power-Cooling-Mismatch (PCM) Test, PCM-1 was conducted in the Power Burst Facility (PFB) in March of 1978. The PCM Test Series is being conducted at the Idaho National Engineering Laboratory by EG and G Idaho, Inc., under contract to the USNRC and is designed to characterize the behavior of nuclear fuel rods operating under conditions of high power or low coolant flow or both leading to departure from nucleate boiling. The PCM-1 test was performed to provide in-pile data for a ''worst case'' PCM incident. The objective of this experiment was to study the behavior of a single pressurized water reactor (PWR) fuel rod subjected to a high-power and low flow environment which would result in cladding failure at full power. The ''worst case'' conditions established for the experiment consisted of a rod peak power of 78.7 kW/m and a coolant mass flux of 1356 kg/s.m 2 . Fuel temperatures at the stipulated operating conditions were such that a significant volume of molten fuel was present when failure occurred which produced a high probability of molten fuel-coolant interaction (MFCI) with the possibility of a vapor explosion

  20. Rupture behaviour of nuclear fuel cladding during loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Siddharth [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Khan, Mohd Kaleem, E-mail: mkkhan@iitp.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Pathak, Manabendra [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Singh, R.N.; Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-10-15

    Highlights: • Modelling of nuclear fuel cladding during loss-of-coolant accident transient. • Phase transformation, corrosion, and creep combined to evaluate burst criterion. • Effect of oxygen concentration on burst stress and burst strain. • Effect of heating rate, internal pressure fluctuation, shear modulus incorporated. - Abstract: A burst criterion model accounting the simultaneous phenomena of corrosion, solute-strengthening effect of oxygen, oxygen concentration based non-isothermal phase transformation, and thermal creep has been developed to predict the rupture behaviour of zircaloy-4 nuclear fuel cladding during the loss-of-coolant accident transients. The present burst criterion model has been validated using experimental data obtained from single-rod transient burst tests performed in steam environment. The predictions are in good agreement with the experimental results. A detailed computational analysis has been performed to assess the role of different parameters in the rupture of zircaloy cladding during loss-of-coolant accidents. This model reveals that at low temperatures, lower heating rates produce higher burst strains as oxidation effect is nominal. For high temperatures, the lower heating rates produce less burst strains, whereas higher heating rates yield greater burst strains.

  1. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Post test investigations of bundle test ESBU-2A

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Wallenfels, K.P.; Buescher, B.

    1986-11-01

    This KfK report describes the post test investigation of bundle experiment ESBU-2a. ESBU-2a was the second of two bundle tests on the temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of the program of out-of-pile experiments performed within the frame work of the PNS-Severe Fuel Damage program. The bundle was composed of a 3x3 fuel rod array of our fuel rod simulators (central tungsten heater, UO 2 -ring pellet and zircaloy cladding). The length was 0.4 meter. The bundle was heated to a maximum temperature of 2175 0 C. Molten cladding which dissolved part of the UO 2 pellets and slumped away from the already oxidized cladding formed a lump in the lower part of the bundle. After the test the bundle was embedded in epoxy and sectioned with a diamand saw, in the region of the refrozen melt. The cross sections were investigated by metallographic examination. The refrozen (U,Zr,O) melt consists variously of three phases with increasing oxygen content (metallic α-Zry, metallic (U,Zr) alloy and a (U,Zr)O 2 mixed oxide), two phases (α-Zry, (U,Zr)O 2 mixed oxide), or one phase ((U,Zr)O 2 mixed oxide). The cross sections show the increasing oxidation of the cladding with increasing elevation (temperature). A strong azimuthal dependency of the oxidation is found. In regions where the initial oxidized cladding is contacted by the melt one can recognize the interaction between the metallic melt and ZrO 2 of the cladding. Oxygen is taken away from the ZrO 2 . If the melt is in direct contact with steam a relatively well defined oxide layer is formed. (orig.) [de

  2. LOCA scenario tests of irradiated fuel rod specimens

    International Nuclear Information System (INIS)

    Scott, Harold

    2004-01-01

    Full text: The NRC's cladding performance program at Argonne National Laboratory (ANL) is testing fueled high-burnup segments subjected to LOCA integral phenomena. The data are provided to NRC and the nuclear industry for their independent assessment of the adequacy of licensing criteria for LOCA events. The tests are being conducted with high-burnup 30 cm segments from Limerick (9x9 Zry-2) and H.B. Robinson (15x15 Zry-4) reactors. Prior to testing, sibling samples are characterized with respect to fuel morphology, fuel-cladding bond, cladding oxide layer thickness, hydrogen content and high-temperature steam oxidation kinetics. Specimens that survive quench are subjected to four-point bend tests, followed by local diametral compression tests. The retention of post-quench ductility is a more limiting requirement than surviving thermal stresses during quench. Companion tests are conducted with unirradiated cladding to generate baseline data for comparison with the high-burnup fuel results. LOCA integral tests have the following sequential steps: stabilization of temperature, internal pressure and steam flow at 300 C, ramping of temperature (∼5C/s) through ballooning and burst to 1204 C, hold at 1204 C for 1-5 minutes, slow-cooling (∼3C/s) to 800 C, and water quenching at ∼800C. Two high-burnup tests were completed in 2002 with Limerick BWR rod segments: ramp to burst in argon followed by slow cooling; and the LOCA test with 5-minute hold time at 1204 C, followed by slow cooling. With the exception of burst-opening shape, results for burst temperature, burst pressure, burst length, and ballooning strain profile are more similar to, than different from, results for unirradiated Zry-2 cladding exposed to the same time-temperature history. The 3rd Limerick test with quench was performed in December 2003, and a 4th Limerick test was performed in March 2004. Tests on high-burnup Robinson PWR fuel segments are scheduled to begin in June 2004. The presentation points

  3. Apparatus for loading fuel pellets in fuel rods

    International Nuclear Information System (INIS)

    Tedesco, R.J.

    1976-01-01

    An apparatus is disclosed for loading fuel pellets into fuel rods for a nuclear reactor including a base supporting a table having grooves therein for holding a multiplicity of pellets. Multiple fuel rods are placed in alignment with grooves in the pellet table and a guide member channels pellets from the table into the corresponding fuel rods. To effect movement of pellets inside the fuel rods without jamming, a number of electromechanical devices mounted on the base have arms connected to the lower surface of the fuel rod table which cyclically imparts a reciprocating arc motion to the table for moving the fuel pellets longitudinally of and inside the fuel rods. These electromechanical devices include a solenoid having a plunger therein connected to a leaf type spring, the arrangement being such that upon energization of the solenoid coil, the leaf spring moves the fuel rod table rearwardly and downwardly, and upon deenergization of the coil, the spring imparts an upward-forward movement to the table which results in physical displacement of fuel pellets in the fuel rods clamped to the table surface. 8 claims, 6 drawing figures

  4. Improvement of fuel-element reliability by insertion of UO2 microspheres in the gap between pellet and clad

    International Nuclear Information System (INIS)

    Mehedinteanu, S.; Glodeanu, F.; Dobos, I.

    1979-01-01

    With the accumulation of power reactor fuel operating experience, the study of the PCI phenomenon and the development of remedies have become important items in fuel research and development everywhere. The 'power-ramp' failure has drawn attention to the problem of obtaining high reliability from high burn-up fuel rods. Considerable attention has been paid to minimizing the cladding stresses imparted by fuel pellets during the power ramp. The paper describes a new concept of pellet-clad bonding by insertion of UO 2 microspheres in the gap. It is pointed out that the main advantages of this concept are: the low friction coefficient between pellet and clad; the accomodation of cracked pellet expansion by local microyielding of irradiation-embrittled clad; the reduced ridge height by use of undished pellets or other pellet shape; that the fine-sized UO 2 microspheres infiltrate around the pellets thus permitting the use of cracked or chipped pellets and also sintered pellets without the previously required grinding step needed for accurate sizing, etc. (author)

  5. Zirconium-barrier cladding attributes

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.; Rand, R.A.; Tucker, R.P.; Cheng, B.; Adamson, R.B.; Davies, J.H.; Armijo, J.S.; Wisner, S.B.

    1987-01-01

    This metallurgical study of Zr-barrier fuel cladding evaluates the importance of three salient attributes: (1) metallurgical bond between the zirconium liner and the Zircaloy substrate, (2) liner thickness (roughly 10% of the total cladding wall), and (3) softness (purity). The effect that each of these attributes has on the pellet-cladding interaction (PCI) resistance of the Zr-barrier fuel was studied by a combination of analytical model calculations and laboratory experiments using an expanding mandrel technique. Each of the attributes is shown to contribute to PCI resistance. The effect of the zirconium liner on fuel behavior during off-normal events in which steam comes in contact with the zirconium surface was studied experimentally. Simulations of loss-of-coolant accident (LOCA) showed that the behavior of Zr-barrier cladding is virtually indistinguishable from that of conventional Zircaloy cladding. If steam contacts the zirconium liner surface through a cladding perforation and the fuel rod is operated under normal power conditions, the zirconium liner is oxidized more rapidly than is Zircaloy, but the oxidation rate returns to the rate of Zircaloy oxidation when the oxide phase reaches the zirconium-Zircaloy metallurgical bond

  6. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior

    International Nuclear Information System (INIS)

    Williamson, R.L.

    2011-01-01

    Highlights: → The ABAQUS thermomechanics code is enhanced to enable simulation of nuclear fuel behavior. → Comparisons are made between discrete and smeared fuel pellet analysis. → Multidimensional and multipellet analysis is important for accurate prediction of PCMI. → Fully coupled thermomechanics results in very smooth prediction of fuel-clad gap closure. → A smeared-pellet approximation results in significant underprediction of clad radial displacements and plastic strain. - Abstract: A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO 2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete and smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.

  7. Effect of cladding defect size on the oxidation of irradiated spent LWR [light-water reactor] fuel below 3690C

    International Nuclear Information System (INIS)

    Einziger, R.E.; Strain, R.V.

    1984-01-01

    Tests on spent fuel fragments and rod segments were conducted between 250 and 360 0 C to relate temperature, defect size, and fuel oxidation rate with time-to-cladding-splitting. Defect sizes from 760 μm diameter down to 8 μm, the size of an SCC type breach, were used. Above 283 0 C, the time-to-cladding-splitting was longer for the smaller defects. The enhancement of the incubation time by smaller defects steadily decreased with temperature and was not detected at 250 0 C. 18 refs., 10 figs., 4 tabs

  8. Method of processing spent fuel cladding tubes

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Ouchi, Atsuhiro; Imahashi, Hiromichi.

    1986-01-01

    Purpose: To decrease the residual activity of spent fuel cladding tubes in a short period of time and enable safety storage with simple storage equipments. Constitution: Spent fuel cladding tubes made of zirconium alloys discharged from a nuclear fuel reprocessing step are exposed to a grain boundary embrittling atmosphere to cause grain boundary destruction. This causes grain boundary fractures to the zirconium crystal grains as the matrix of nuclear fuels and then precipitation products precipitated to the grain boundary fractures are removed. The zirconium constituting the nuclear fuel cladding tube and other ingredient elements contained in the precipitation products are separated in this removing step and they are separately stored respectively. As a result, zirconium constituting most part of the composition of the spent nuclear fuel cladding tubes can be stored safely at a low activity level. (Takahashi, M.)

  9. Core conversion from rod to plate type fuel elements in research reactors

    International Nuclear Information System (INIS)

    Khattab, M.S.; Mina, A.R.

    1997-01-01

    Core thermalhydraulic analysis have been performed for rod and plate types fuel elements without altering the core bundles square grid spacer (68 mm, side) and coolant mass flow rate. The U O 2 -Mg, 10% enrichment rod type fuel elements are replaced by the MTR plate type, U-Al alloy of 20% enrichment. Coolant mass flux increased from 2000 kg/m 2 S to 5000 kg/m 2 S. Reactor power could be upgraded from 2 to 10 MW without significantly altering the steady state, thermal-hydraulic safety margins. Fuel, clad and coolant transient temperatures are determined inside the core hot channel during flow coast down using paret code. Residual heat removal system of 20% coolant capacity is necessary for upgrading reactor power to encounter the case of pumps off at 10 MW nominal operation. 6 figs., 2 tabs

  10. Stress corrosion testing of irradiated cladding tubes

    International Nuclear Information System (INIS)

    Lunde, L.; Olshausen, K.D.

    1980-01-01

    Samples from two fuel rods with different cladding have been stress corrosion tested by closed-end argon-iodine pressurization at 320 0 C. The fuel rods with stress relieved and recrystallized Zircaloy-2 had received burnups of 10.000 and 20.000 MWd/ton UO 2 , respectively. It was found that the SCC failure stress was unchanged or slightly higher for the irradiated than for the unirradiated control tubes. The tubes failed consistently in the end with the lowest irradiation dose. The diameter increase of the irradiated cladding during the test was 1.1% for the stress-relieved samples and 0.24% for the recrystallized samples. SEM examination revealed no major differences between irradiated and unirradiated cladding. A ''semi-ductile'' fracture zone in recrystallized material is described in some detail. (author)

  11. A methodology for the evaluation of fuel rod failures under transportation accidents

    International Nuclear Information System (INIS)

    Rashid, J.Y.R.; Machiels, A.J.

    2004-01-01

    Recent studies on long-term behavior of high-burnup spent fuel have shown that under normal conditions of stor-age, challenges to cladding integrity from various postulated damage mechanisms, such as delayed hydride crack-ing, stress-corrosion cracking and long-term creep, would not lead to any significant safety concerns during dry storage, and regulatory rules have subsequently been established to ensure that a compatible level of safety is maintained. However, similar safety assurances for spent fuel transportation have not yet been developed, and further studies are currently being conducted to evaluate the conditions under which transportation-related safety issues can be resolved. One of the issues presently under evaluation is the ability and the extent of the fuel as-semblies to maintain non-reconfigured geometry during transportation accidents. This evaluation may determine whether, or not, the shielding, confinement, and criticality safety evaluations can be performed assuming initial fuel assembly geometries. The degree to which spent fuel re-configuration could occur during a transportation accident would depend to a large degree on the number of fuel rod failures and the type and geometry of the failure modes. Such information can only be developed analytically, as there is no direct experimental data that can provide guidance on the level of damage that can be expected. To this end, the paper focuses on the development of a modeling and analysis methodology that deals with this general problem on a generic basis. First consideration is given to defining acci-dent loading that is equivalent to the bounding, although analytically intractable, hypothetical transportation acci-dent of a 9-meter drop onto essentially unyielding surface, which is effectively a condition for impact-limiters de-sign. Second, an analytically robust material constitutive model, an essential element in a successful structural analysis, is required. A material behavior model

  12. Pressurized water reactor fuel performance problems connected with fuel cladding corrosion processes

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.

    2008-01-01

    Generally, Pressurized Water Reactor (WWER, PWR) Fuel Element Performance is connected with fuel cladding corrosion and crud deposition processes. By transient to extended fuel cycles in nuclear power reactors, aiming to achieve higher burnup and better fuel utilization, the role of these processes increases significantly. This evolution modifies the chemical and electrochemical conditions in the reactor primary system, including change of fuel claddings' environment. The higher duty cores are always attended with increased boiling (sub-cooled nucleate boiling) mainly on the feed fuel assemblies. This boiling process on fuel cladding surfaces can cause different consequences on fuel element cladding's environment characteristics. In the case of boiling at the cladding surfaces without or with some cover of corrosion product deposition, the behavior of gases dissolved in water phase is strongly influenced by the vapor generation. The increase of vapor partial pressure will reduce the partial pressures of dissolved gases and will cause their stripping out. By these circumstances the concentrations of dissolved gases in cladding wall water layer can dramatically decrease, including also the case by which all dissolved gases to be stripped out. On the other hand it is known that the hydrogen is added to primary coolant in order to avoid the production of oxidants by radiolysis of water. It is clear that if boiling strips out dissolved hydrogen, the creation of oxidizing conditions at the cladding surfaces will be favored. In this case the local production of oxidants will be a result from local processes of water radiolysis, by which not only both oxygen (O 2 ) and hydrogen (H 2 ) but also hydrogen peroxide (H 2 O 2 ) will be produced. While these hydrogen and oxygen will be stripped out preferentially by boiling, the bigger part of hydrogen peroxide will remain in wall water phase and will act as the most important factor for creation of oxidizing conditions in fuel

  13. Evaluation of corrosion on the fuel performance of stainless steel cladding

    Directory of Open Access Journals (Sweden)

    de Souza Gomes Daniel

    2016-01-01

    Full Text Available In nuclear reactors, the use of stainless steel (SS as the cladding material offers some advantages such as good mechanical and corrosion resistance. However, its main advantage is the reduction in the amount of the hydrogen released during loss-of-coolant accident, as observed in the Fukushima Daiichi accident. Hence, research aimed at developing accident tolerant fuels should consider SS as an important alternative to existing materials. However, the available computational tools used to analyze fuel rod performance under irradiation are not capable of assessing the effectiveness of SS as the cladding material. This paper addresses the SS corrosion behavior in a modified fuel performance code in order to evaluate its effect on the global fuel performance. Then, data from the literature concerning to SS corrosion are implemented in the specific code subroutines, and the results obtained are compared to those for Zircaloy-4 (Zy-4 under the same power history. The results show that the effects of corrosion on SS are considerably different from those on Zy-4. The thickness of the oxide layer formed on the SS surface is considerably lower than that formed on Zy-4. As a consequence of this, the global fuel performance of SS under irradiation should be less affected by the corrosion.

  14. Fuel rod technology

    International Nuclear Information System (INIS)

    Bezold, H.; Romeiser, H.J.

    1979-07-01

    By extensive mechanization and automation of the fuel rod production, also at increasing production numbers, an efficient production shall be secured, simultaneously corresponding to the high quality standard of the fuel rods. The works done up to now concentrated on the lay out of a rough concept for a mechanized production course. Detail-studies were made for the problems of fuel rod humidity, filling and resistance welding. Further promotion of this project and thus further report will be stopped, since the main point of these works is the production technique. (orig.) [de

  15. Results of the Gallium-Clad Phase 3 and Phase 4 tasks (canceled prior to completion)

    International Nuclear Information System (INIS)

    Morris, R.N.

    1998-08-01

    This report summarizes the results of the Gallium-Clad interactions Phase 3 and 4 tasks. Both tasks were to involve examining the out-of-pile stability of residual gallium in short fuel rods with an imposed thermal gradient. The thermal environment was to be created by an electrical heater in the center of the fuel rod and coolant flow on the rod outer cladding. Both tasks were canceled due to difficulties with fuel pellet fabrication, delays in the preparation of the test apparatus, and changes in the Fissile Materials Disposition program budget

  16. Gas sealing welding method and device for nuclear fuel rod

    International Nuclear Information System (INIS)

    Seki, Masayuki; Nishiyama, Motokuni; Kamimura, Katsuichiro; Yagi, Eiji; Nakase, Tsuyoshi; Kobogata, Sadao; Taniguchi, Jun-ichi; Uesugi, Yoshisaku.

    1995-01-01

    An end plug and a cladding tube are held by clamping, respectively, by opposing movable electrode and static electrode. The movable electrode is forwarded toward the static electrode. The end plug and the cladding tube are abutted and held at a slight gap between their end faces. A region to be welded is surrounded by a pressurizing chamber and the side of the chamber is evacuated and He gas is filled in the cladding tube. Then, one of the electrodes is forwarded, to seal the abutted end faces of the end plug and the cladding tube. Then, pressure and welding current required for welding are applied to the abutted ends, and He gas is sealed in the vessel. The displacement of pressurization caused by slipping when the required pressure is applied to the abutted ends is detected by a sensor, and the operation of the welding control device for starting current supply is terminated by the detection signals. Abutment accuracy between the abutment of the cladding tube and the end plug as a nuclear fuel rod can be ensured, to further improve and stabilize the welding quality. (N.H.)

  17. Development of Fuel ROd Behavior Analysis code (FROBA) and its application to AP1000

    International Nuclear Information System (INIS)

    Yu, Hongxing; Tian, Wenxi; Yang, Zhen; SU, G.H.; Qiu, Suizheng

    2012-01-01

    Highlights: ► A Fuel ROd Behavior Analysis code (FROBA) has been developed. ► The effects irradiation and burnup has been considered in FROBA. ► The comparison with INL’s results shows a good agreement. ► The FROBA code was applied to AP1000. ► Peak fuel temperature, gap width, hoop strain, etc. were obtained. -- Abstract: The reliable prediction of nuclear fuel rod behavior is of great importance for safety evaluation of nuclear reactors. In the present study, a thermo-mechanical coupling code FROBA (Fuel ROd Behavior Analysis) has been independently developed with consideration of irradiation and burnup effects. The thermodynamic, geometrical and mechanical behaviors have been predicted and were compared with the results obtained by Idaho National Laboratory to validate the reliability and accuracy of the FROBA code. The validated code was applied to analyze the fuel behavior of AP1000 at different burnup levels. The thermal results show that the predicted peak fuel temperature experiences three stages in the fuel lifetime. The mechanical results indicate that hoop strain at high power is greater than that at low power, which means that gap closure phenomenon will occur earlier at high power rates. The maximum cladding stress meets the requirement of yield strength limitation in the entire fuel lifetime. All results show that there are enough safety margins for fuel rod behavior of AP1000 at rated operation conditions. The FROBA code is expected to be applied to deal with more complicated fuel rod scenarios after some modifications.

  18. Boiling water reactor fuel bundle

    International Nuclear Information System (INIS)

    Weitzberg, A.

    1986-01-01

    A method is described of compensating, without the use of control rods or burnable poisons for power shaping, for reduced moderation of neutrons in an uppermost section of the active core of a boiling water nuclear reactor containing a plurality of elongated fuel rods vertically oriented therein, the fuel rods having nuclear fuel therein, the fuel rods being cooled by water pressurized such that boiling thereof occurs. The method consists of: replacing all of the nuclear fuel in a portion of only the upper half of first predetermined ones of the fuel rods with a solid moderator material of zirconium hydride so that the fuel and the moderator material are axially distributed in the predetermined ones of the fuel rods in an asymmetrical manner relative to a plane through the axial midpoint of each rod and perpendicular to the axis of the rod; placing the moderator material in the first predetermined ones of the fuel rods in respective sealed internal cladding tubes, which are separate from respective external cladding tubes of the first predetermined ones of the fuel rods, to prevent interaction between the moderator material and the external cladding tube of each of the first predetermined ones of the fuel rods; and wherein the number of the first predetermined ones of the fuel rods is at least thirty, and further comprising the steps of: replacing with the moderator material all of the fuel in the upper quarter of each of the at least thirty rods; and also replacing with the moderator material all of the fuel in the adjacent lower quarter of at least sixteen of the at least thirty rods

  19. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    International Nuclear Information System (INIS)

    Roake, W.E.

    1977-01-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals

  20. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States)

    1977-04-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals.

  1. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction: Tests ESSI-1,2,3

    International Nuclear Information System (INIS)

    Hagen, S.; Malauschek, H.; Wallenfels, K.P.; Peck, S.O.

    1983-08-01

    This report discusses the test conduct, results, and posttest appearance of three scoping tests (ESSI-1,2,3) investigating temperature escalation in zircaloy clad fuel rods. The experiments are part of an out-of-pile program using electrically heated fuel rod simulators to investigate PWR fuel element behavior up to temperatures of 2000 0 C. These experiments are part of the PNS Severe Fuel Damage Program. The temperature escalation is caused by the exothermal zircaloy/steam reaction, whose reaction rate increases exponentially with the temperature. The tests were performed using different initial oxide layers as a major parameter, obtained by varying the heatup rates and steam exposure times. (orig./RW) [de

  2. Semi-empirical corrosion model for Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Nadeem Elahi, Waseem; Atif Rana, Muhammad

    2015-01-01

    The Zircaloy-4 cladding tube in Pressurize Water Reactors (PWRs) bears corrosion due to fast neutron flux, coolant temperature, and water chemistry. The thickness of Zircaloy-4 cladding tube may be decreased due to the increase in corrosion penetration which may affect the integrity of the fuel rod. The tin content and inter-metallic particles sizes has been found significantly in the magnitude of oxide thickness. In present study we have developed a Semiempirical corrosion model by modifying the Arrhenius equation for corrosion as a function of acceleration factor for tin content and accumulative annealing. This developed model has been incorporated into fuel performance computer code. The cladding oxide thickness data obtained from the Semi-empirical corrosion model has been compared with the experimental results i.e., numerous cases of measured cladding oxide thickness from UO 2 fuel rods, irradiated in various PWRs. The results of the both studies lie within the error band of 20μm, which confirms the validity of the developed Semi-empirical corrosion model. Key words: Corrosion, Zircaloy-4, tin content, accumulative annealing factor, Semi-empirical, PWR. (author)

  3. Review and evaluation of cladding attack of LMFBR fuel

    International Nuclear Information System (INIS)

    Koizumi, M.; Nagai, S.; Furuya, H.; Muto, T.

    1977-01-01

    The behavior of cladding inner wall corrosion during irradiation was evaluated in terms of fuel density, fuel form, O/M ratio, plutonium concentration, cladding composition, cladding pretreatment, cladding inner diameter, burnup and cladding inner wall temperature. Factors which influence the corrosion are O/M ratio (oxygen to metal ratio), burn up, cladding inner diameter and cladding inner wall temperature. Maximum cladding inner wall corrosion depth was formulated as a function of O/M ratio, burn up and cladding inner wall temperature

  4. Cladding properties under simulated fuel pin transients

    International Nuclear Information System (INIS)

    Hunter, C.W.; Johnson, G.D.

    1975-01-01

    A description is given of the HEDL fuel pin testing program utilizing a recently developed Fuel Cladding Transient Tester (FCTT) to generate the requisite mechanical property information on irradiated and unirradiated fast reactor fuel cladding under temperature ramp conditions. The test procedure is described, and data are presented

  5. Fuel cladding mechanical interaction during power ramps

    International Nuclear Information System (INIS)

    Guerin, Y.

    1985-01-01

    Mechanical interaction between fuel and cladding may occur as a consequence of two types of phenomenon: i) fuel swelling especially at levels of caesium accumulation, and ii) thermal differential expansion during power changes. Slow overpower ramps which may occur during incidental events are of course one of the circumstances responsible for this second type of fuel cladding mechanical interaction (FCMI). Experiments and analysis of this problem that have been done at C.E.A. allow to determine the main parameters which will fix the level of stress and the risk of damage induced by the fuel in the cladding during overpower transients

  6. Experimental determination of temperature fields in sodium-cooled rod bundles with hexagonal rod arrangement and grid spacers

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.; Kolodziej, M.

    1977-01-01

    Three-dimensional temperature fields in the claddings of sodium cooled rods were determined experimentally under representative nominal operating conditions for a SNR typical 19-rod bundle model provided with spark-eroded spacers. These experiments are required to verify thermohydraulic computer programs which will provide the output data for strength calculations of the high loaded cladding tubes. In this work the essentials are reported of the measured circumferential distributions of wall temperatures of peripheral rods. In addition the sub-channel temperatures measured over the bundle cross section are indicated, they are required to sustain codes for the global thermohydraulic design of core elements. The most important results are: 1) The whole fuel element is located within the thermal entrance length. 2) High azimuthal temperature differences were measured in the claddings of peripheral rods, which are strongly influenced by the distance between the rod and the shroud, especially for the corner rod. 3) With decreasing Pe-number ( [de

  7. Fuel-cladding chemical interaction in mixed-oxide fuels

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Weber, J.W.; Devary, J.L.

    1978-10-01

    The character and extent of fuel-cladding chemical interaction (FCCI) was established for UO 2 -25 wt% PuO 2 clad with 20% cold worked Type 316 stainless steel irradiated at high cladding temperatures to peak burnups greater than 8 atom %. The data base consists of 153 data sets from fuel pins irradiated in EBR-II with peak burnups to 9.5 atom %, local cladding inner surface temperatures to 725 0 C, and exposure times to 415 equivalent full power days. As-fabricated oxygen-to-metal ratios (O/M) ranged from 1.938 to 1.984 with the bulk of the data in the range 1.96 to 1.98. HEDL P-15 pins provided data at low heat rates, approx. 200 W/cm, and P-23 series pins provided data at higher heat rates, approx. 400 W/cm. A design practice for breeder reactors is to consider an initial reduction of 50 microns in cladding thickness to compensate for possible FCCI. This approach was considered to be a conservative approximation in the absence of a comprehensive design correlation for extent of interaction. This work provides to the designer a statistically based correlation for depth of FCCI which reflects the influences of the major fuel and operating parameters on FCCI

  8. Development and verification of the LIFE-GCFR computer code for predicting gas-cooled fast-reactor fuel-rod performance

    International Nuclear Information System (INIS)

    Hsieh, T.C.; Billone, M.C.; Rest, J.

    1982-03-01

    The fuel-pin modeling code LIFE-GCFR has been developed to predict the thermal, mechanical, and fission-gas behavior of a Gas-Cooled Fast Reactor (GCFR) fuel rod under normal operating conditions. It consists of three major components: thermal, mechanical, and fission-gas analysis. The thermal analysis includes calculations of coolant, cladding, and fuel temperature; fuel densification; pore migration; fuel grain growth; and plenum pressure. Fuel mechanical analysis includes thermal expansion, elasticity, creep, fission-product swelling, hot pressing, cracking, and crack healing of fuel; and thermal expansion, elasticity, creep, and irradiation-induced swelling of cladding. Fission-gas analysis simultaneously treats all major mechanisms thought to influence fission-gas behavior, which include bubble nucleation, resolution, diffusion, migration, and coalescence; temperature and temperature gradients; and fission-gas interaction with structural defects

  9. Challenges in mechanical modeling of SFR fuel rod transient behavior

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2013-07-01

    Modeling of SFR fuel rod mechanical behavior under transient conditions entails the development of a creep law to predict cladding viscoplastic strain. In this regard, this work is focused on defining a proper clad creep law structure as the basis to set a suitable model under SFR off-normal conditions as transient overpower and loss of fluid. To do so, a review of in-codes clad creep models has been done by using SAS-SFR, SCANAIR and ASTEC. The proposed creep model has been structured in two parts: viscoplastic behaviour before the failure (primary and secondary creep) and the failure due to viscoplastic collapse (tertiary creep). In order to model the first part, Norton creep law has been proposed as a conservative option. An irradiation hardening factor should be included for best estimate calculations. The recommendation for the second part is to apply a failure criterion based on strain limit or rupture time, which allows achieving conservative results.

  10. Modelling of pellet-clad interaction during power ramps

    International Nuclear Information System (INIS)

    Zhou, G.; Lindback, J.E.; Schutte, H.C.; Jernkvist, L.O.; Massih, A.R.; Massih, A.R.

    2005-01-01

    A computational method to describe the pellet-clad interaction phenomenon is presented. The method accounts for the mechanical contact between fragmented pellets and the zircaloy clad, as well as for chemical reaction of fission products with zircaloy during power ramps. Possible pellet-clad contact states, soft, hard and friction, are taken into account in the computational algorithm. The clad is treated as an elastic-plastic-viscoplastic material with irradiation hardening. Iodine-induced stress corrosion cracking is described by using a fracture mechanics-based model for crack propagation. This integrated approach is used to evaluate two power ramp experiments made on boiling water reactor fuel rods in test reactors. The influence of the pellet-clad coefficient of friction on clad deformation is evaluated and discussed. Also, clad deformations, pellet-clad gap size and fission product gas release for one of the ramped rods are calculated and compared with measured data. (authors)

  11. Behavior of four PWR rods subjected to a simulated loss-of-coolant accient in the power burst facility

    International Nuclear Information System (INIS)

    Cook, T.F.; Hagrman, D.L.; Sepold, L.K.

    1978-01-01

    Cladding deformation characteristics resulting from the first nuclear blowdown tests (LOC-11) conducted in the Power Burst Facility (PBF) are emphasized in this paper. The objective of the LOC-11 tests was to obtain data on the thermal, mechanical, and materials behavior of pressurized and unpressurized fuel rods when exposed to a blowdown similiar to that expected in a pressurized water reactor (PWR) during a hypothesized double-ended cold-leg break. The test hardware consisted of four separately shrouded fresh fuel rods of PWR 15 x 15 design. Initial plenum pressures ranged from atmospheric to 4.8 MPa (representative of end-of-life). During LOC-11C, the four fuel rods were subjected to 6.5 hours of nuclear operation at approximately 67 kW/m average rod power to cause decay heat build-up. Just before the start of blowdown, cladding surface temperatures were about 620 K and fuel centerline temperatures were in the 2500 to 2600 K range. During the 30-second blowdown transient, CHF occurred 2 seconds after initiation. Fuel centerline temperature dropped continuously, while cladding surface temperatures increased. Maximum cladding temperatures of 1030 to 1050 K occurred 15 seconds into the transient. Posttest destructive examination revealed cladding microstructures and oxide thicknesses consistent with the measured cladding temperatures. The cladding surface thermocouples did not appreciably affect cladding temperature distributuion (fin cooling effect) in the vicinity of the thermocouples

  12. A PCI failure in an experimental MOX fuel rod and its sensitivity analysis

    International Nuclear Information System (INIS)

    Marino, A.C.

    2000-01-01

    Within our interest in studying MOX fuel performance, the irradiation of the first Argentine prototypes of PHWR MOX fuels began in 1986 with six rods fabricated at the α Facility (CNEA, Argentina). These experiences were made in the HFR-Petten reactor, Holland. The goal of this experience was to study the fuel behaviour with respect to PMCI-SCC. An experiment for extended burnup was performed with the last two MOX rods. During the experiment the final test ramp was interrupted due to a failure in the rod. The post-irradiation examinations indicated that PCI-SCC was a mechanism likely to produce the failure. At the Argentine Atomic Energy Commission (CNEA) the BACO code was developed for the simulation of a fuel rod thermo-mechanical behaviour under stationary and transient power situations. BACO includes a probability analysis within its structure. In BACO the criterion for safe operation of the fuel is based on the maximum hoop stress being below a critical value at the cladding inner surface; this is related to susceptibility to stress corrosion cracking (SCC). The parameters of the MOX irradiation, the preparation of the experiments and post-irradiation analysis were sustained by the BACO code predictions. We present in this paper an overview of the different experiences performed with the MOX fuel rods and the main findings of the post-irradiation examinations. A BACO code description, a wide set of examples which sustain the BACO code validation, and a special calculation for BU15 experiment attained using the BACO code, including a probabilistic analysis of the influence of rod parameters on performance, are included. (author)

  13. Postirradiation examination results for the Irradiation Effects Test Series IE-ST-2, Rod IE-002

    International Nuclear Information System (INIS)

    Murdock, B.A.

    1977-12-01

    A postirradiation examination was conducted on a zircaloy-clad, UO 2 -fueled, pressurized water reactor (PWR) type rod which had been tested in the Power Burst Facility as part of the Irradiation Effects Test Series of the Thermal Fuels Behavior Program. The fuel rod, previously irradiated to a burnup of 15,800 MWd/t was subjected to a power ramp from 28 to 55 kW/m peak power at an average ramp rate of 4 kW/m/min. Posttest fuel restructuring and relocation, fission product redistribution, and fuel rod cladding deformation were evaluated and analyzed

  14. Performance evaluation of the Loviisa advanced type fuel rods

    International Nuclear Information System (INIS)

    Ranta-Puska, K.; Pihlatie, M.

    2001-01-01

    The fuel vendor TVEL has supplied to Loviisa WWER-440 power plant six lead assemblies of an advanced type which have profiling of the fuel enrichment, demountability of the assembly and a reduced shroud wall thickness. The pool side examination programme of these assemblies is underway including visual inspections, diameter and length measurements between operation cycles, and end-of-life fission gas release measurements, determined from 85 Kr activity in the plenum. Complementary evaluations and testing of models are done with the ENIGMA fuel performance code. The diameters of the corner rods have decreased to 30 μm during the first cycle and 40 to 70 μm after two cycles (with rod burnups of 24-30 MWd/kgU). The extent of creep-down is generally as expected, and agrees with the creep model adjusted for Russian Zr1%Nb cladding type and the Loviisa coolant and neutron flux conditions. The gap closure and reversed hoop strain are to be awaited during the third cycle so the new data will be an interesting validation exercise for the model and ENIGMA. Calculated temperatures stay low, and therefore low fission gas release fractions are anticipated as well

  15. Experimental assessment of fuel-cladding interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-29

    A range of fuel concepts designed to better tolerate accident scenarios and reactor transients are currently undergoing fundamental development at national laboratories as well as university and industrial partners. Pellet-clad mechanical and chemical interaction can be expected to affect fuel failure rates experienced during steady state operation, as well as dramatically impact the response of the fuel form under loss of coolant and other accident scenarios. The importance of this aspect of fuel design prompted research initiated by AFC in FY14 to begin exploratory efforts to characterize this phenomenon for candidate fuelcladding systems of immediate interest. Continued efforts in FY15 and FY17 aimed to better understand and simulate initial pellet-clad interaction with little-to-no pressure on the pellet-clad interface. Reported here are the results from 1000 h heat treatments at 400, 500, and 600°C of diffusion couples pairing UN with a FeCrAl alloy, SiC, and Zr-based cladding candidate sealed in evacuated quartz ampoules. No gross reactions were observed, though trace elemental contaminants were identified.

  16. Fuel rod quenching with oxidation and precursory cooling

    International Nuclear Information System (INIS)

    Davidi, A.; Elias, E.; Olek, S.

    1999-01-01

    During a loss-of-coolant-accident in LWR fuel rods may be temporarily exposed thus reaching high temperature levels. The injection of cold water into the core, while providing the necessary cooling to prevent melting may also generate steam inducing exothermal oxidation of the cladding. A number of high temperature quenching experiments [I] have demonstrated that during the early phase of the quenching process, the rate of hydrogen generation increased markedly and the surface temperatures rose rapidly. These effects are believed to result from thermal stresses breaking up the oxide layer on the zircalloy cladding, thus exposing the inner surface to oxidizing atmosphere. Steam reacts exothermally with the metallic components of the newly formed surface causing temporarily local temperature escalation. The main objective of this study is to develop and assess a one-dimensional time-dependent rewetting model to address the problem of quenching of hot surfaces undergoing exothermic oxidation reactions. Addressing a time-dependent problem is an important aspect of the work since it is believed that the progression of a quench-front along a hot oxidizing surface is an unsteady process. Several studies dealing with time-dependent rewetting problems have been published, e.g. [2]-[5], but none considers oxidation reactions downstream of the quench-front. The main difficulty in solving time-dependent rewetting problems stems from the fact that either the quench-front velocity or the quench-front positions constitute a time-dependent eigenvalue of the problem. The model is applied to describe the interrelated processes of cooling and exothermic steam-metal reactions at the vapor zirconium-cladding interface during quenching of degraded fuel rods. A constant heat transfer coefficient is assumed upstream of the quenching front whereas the combined effect of oxidation and post dry-out cooling is described by prescribing a heat flux distribution of general form downstream. The

  17. Strategy for Fuel Rod Receipt, Characterization, Sample Allocation for the Demonstration Sister Rods

    Energy Technology Data Exchange (ETDEWEB)

    Marschman, Steven C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Warmann, Stephan A. [Portage, Inc., Idaho Falls, ID (United States); Rusch, Chris [NAC International, Inc., Norcross, GA (United States)

    2014-03-01

    , inert gas backfilling, and transfer to an Independent Spent Fuel Storage Installation (ISFSI) for multi-year storage. To document the initial condition of the used fuel prior to emplacement in a storage system, “sister ” fuel rods will be harvested and sent to a national laboratory for characterization and archival purposes. This report supports the demonstration by describing how sister rods will be shipped and received at a national laboratory, and recommending basic nondestructive and destructive analyses to assure the fuel rods are adequately characterized for UFDC work. For this report, a hub-and-spoke model is proposed, with one location serving as the hub for fuel rod receipt and characterization. In this model, fuel and/or clad would be sent to other locations when capabilities at the hub were inadequate or nonexistent. This model has been proposed to reduce DOE-NE’s obligation for waste cleanup and decontamination of equipment.

  18. Post-irradiation examination of Oconee 1 fuel - cycle 1 destructive test phase

    International Nuclear Information System (INIS)

    1979-07-01

    Standard B and W Mark-B (15 x 15) pressurized water reactor fuel rods were destructively examined after one cycle of irradiation in the Oconee 1 reactor. Fuel rod average burnup ranged from 10,603 to 11,270 MWd/mtU for the rods examined. Data obtained included fuel rod extraction loads, rod dimensional changes, cladding tensile properties, fuel pellet gap length, fission product distribution, fission gas and crud composition, fuel densification, chemical burnup analysis, and fuel and cladding microstructure. As expected, parametric changes were well within the design envelope. Superficial corrosion and wear were found at spacer grid contact points. However, the 19 rods examined were structurally sound and exhibited no indications of cladding defects associated with pelletcladding interactions

  19. The behaviour of water-cooled reactor fuel rods in steady state and transient conditions

    International Nuclear Information System (INIS)

    Strupczewski, A.; Marks, P.

    1997-01-01

    In this report, the results of temperature field and filling gas pressure calculations by means of contemporary calculational models for a WWER-440 and WWER-1000 type fuel rod at low and high burnup operating under steady-state conditions are presented. A review of in-core temperature and pressure measurements for various types of LWR fuel is also included. Basing on calculational and collected measured data, the behaviour of fuel cladding during large and small break LOCA, is estimated with special emphasis on their oxidation and failure resistance. (author)

  20. Status of rod consolidation

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1985-04-01

    Two of the factors that need to be taken into account with rod consolidation are (1) the effects on rods from their removal from the fuel assembly and (2) the effects on rods as a result of the consolidation process. Potential components of both factors are described in the report. Discussed under (1) are scratches on the fuel rod surfaces, rod breakage, crud, extended burnup, and possible cladding embrittlement due to hydrogen injection at BWRs. Discussed under (2) are the increased water temperature (less than 10 0 C) because of closer packing of the rods, formation of crevices between rods in the close-packed mode, contact with dissimilar metals, and the potential for rapid heating of fuel rods following the loss of water from a spent fuel storage pool. Another factor that plays an important role in rod consolidation is the cost of disposal of the nonfuel-bearing components of the fuel assembly. Also, the dose rate from the components - especially Inconel spacer grids - can affect the handling procedures. Several licensing issues that exist are described. A list of recommendations is provided. 98 refs., 5 figs., 5 tabs

  1. Initial Cladding Condition

    International Nuclear Information System (INIS)

    Siegmann, E.

    2000-01-01

    The purpose of this analysis is to describe the condition of commercial Zircaloy clad fuel as it is received at the Yucca Mountain Project (YMP) site. Most commercial nuclear fuel is encased in Zircaloy cladding. This analysis is developed to describe cladding degradation from the expected failure modes. This includes reactor operation impacts including incipient failures, potential degradation after reactor operation during spent fuel storage in pool and dry storage and impacts due to transportation. Degradation modes include cladding creep, and delayed hydride cracking during dry storage and transportation. Mechanical stresses from fuel handling and transportation vibrations are also included. This Analysis and Model Report (AMR) does not address any potential damage to assemblies that might occur at the YMP surface facilities. Ranges and uncertainties have been defined. This analysis will be the initial boundary condition for the analysis of cladding degradation inside the repository. In accordance with AP-2.13Q, ''Technical Product Development Planning'', a work plan (CRWMS M andO 2000c) was developed, issued, and utilized in the preparation of this document. There are constraints, caveats and limitations to this analysis. This cladding degradation analysis is based on commercial Pressurized Water Reactor (PWR) fuel with Zircaloy cladding but is applicable to Boiling Water Reactor (BWR) fuel. Reactor operating experience for both PWRs and BWRs is used to establish fuel reliability from reactor operation. It is limited to fuel exposed to normal operation and anticipated operational occurrences (i.e. events which are anticipated to occur within a reactor lifetime), and not to fuel that has been exposed to severe accidents. Fuel burnup projections have been limited to the current commercial reactor licensing environment with restrictions on fuel enrichment, oxide coating thickness and rod plenum pressures. The information provided in this analysis will be used in

  2. Adaptation the Abaqus thermomechanics code to simulate 3D multipellet steady and transient WWER fuel rod behavior

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Kuznetsov, V.I.; Krupkin, A.V.; Novikov, V.V.

    2015-01-01

    The study of Abaqus technology capabilities for modeling the behavior of the WWER-1000 fuel element for the campaign, taking into account the following features: multi-contact thermomechanical interaction of fuel pellet and fuel can, accounting for creep and swelling of fuel, consideration of creep of the can, setting the mechanisms of thermophysical and mechanical behavior of the fuel - cladding gap. The code was tested on the following developed finite element models: 3D fuel element model with five fuel pellets, 3D fuel element model with one fuel pellet and cleavage in the gap, 3D model of the fuel rod section with one randomly fragmented tablet. The position of the WWER-1000 fuel rod section in the middle of the core and the loads and material properties corresponding to this location were considered. The principal possibility of using Abaqus technology for solving fuel design problems is shown [ru

  3. The evaluation of failure stress and released amount of fission product gas of power ramped rod by fuel behaviour analysis code 'FEMAXI-III'

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujita, Misao

    1984-01-01

    Pellet-Cladding Interaction(PCI) related in-pile failure of Zircaloy sheathed fuel rod is in general considered to be caused by combination of pellet-cladding mechanical interaction(PCMI) with fuel-cladding chemical interaction(FCCI). An understanding of a basic mechanism of PCI-related fuel failure is therefore necessary to get actual cladding hoop stress from mechanical interaction and released amounts of fission product(FP) gas of aggressive environmental agency from chemical interaction. This paper describes results of code analysis performed on fuel failure to cladding hoop stress and amounts of FP gas released under the condition associated with power ramping. Data from Halden(HBWR) and from Studsvik(R2) are used for code analysis. The fuel behaviour analysis code ''FEMAXI-III'' is used as an analytical tool. The followings are revealed from the study: (1) PCI-related fuel failure is dependent upon cladding hoop stress and released amounts of FP gas at power ramping. (2) Preliminary calculated threshold values of hoop stress and of released amounts of FP gas to PCI failure are respectively 330MPa, 10% under the Halden condition, 190MPa, 5% under the Inter ramp(BWR) condition, and 270MPa, 14% under the Over ramp(PWR) condition. The values of hoop stress calculated are almost in the similar range of those obtained from ex-reactor PCI simulated tests searched from references published. (3) The FEMAXI-III code verification is made in mechanical manner by using in-pile deformation data(diametral strain) obtained from power ramping test undertaken by JAERI. While, the code verification is made in thermal manner by using punctured FP gas data obtained from post irradiation examination performed on non-defected power ramped fuel rods. The calculations are resulted in good agreements to both, mechanical and thermal experimental data suggesting the validity of the code evaluation. (J.P.N.)

  4. High burnup fuel onset conditions in dry storage. Prediction of EOL rod internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L.E.

    2015-07-01

    During dry storage, cladding resistance to failure can be affected by several degrading mechanisms like creep or hydrides radial reorientation. The driving force of these effects is the stress at which the cladding is submitted. The maximum stress in the cladding is determined by the end-of-reactor-life (EOL) rod internal pressure, PEOL, at the maximum temperature attained during dry storage. Thus, PEOL sets the initial conditions of storage for potential time-dependent changes in the cladding. Based on FRAPCON-3.5 calculations, the aim of this work is to analyse the PEOL of a PWR fuel rod irradiated to burnups greater than 60 GWd/tU, where limited information is available. In order to be conservative, demanding irradiation histories have been used with a peak linear power of 44 kW/m. FRAPCON-3.5 results show an increasing exponential trend of PEOL with burnup, from which a simple correlation has been derived. The comparison with experimental data found in the literature confirms the enveloping nature of the predicted curve. Based on that, a conservative prediction of cladding stress in dry storage has been obtained. The comparison with a critical stress threshold related to hydrides embrittlement seems to point out that this issue should not be a concern at burnups below 65 GWd/tU. (Author)

  5. UK experience on fuel and cladding interaction in oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Batey, W [Dounreay Experimental Reactor Establishment, Thurso, Caithness (United Kingdom); Findlay, J R [AERE, Harwell, Didcot, Oxon (United Kingdom)

    1977-04-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed.

  6. UK experience on fuel and cladding interaction in oxide fuels

    International Nuclear Information System (INIS)

    Batey, W.; Findlay, J.R.

    1977-01-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed

  7. Gray rod for a nuclear reactor

    International Nuclear Information System (INIS)

    Francis, T.A.; Cerni, Samuel.

    1986-01-01

    The invention relates to an improved gray rod for insertion in a nuclear fuel assembly having an array of fuel rods. The gray rod includes a thin-walled cladding tube a first longitudinal section of which is positioned within, and a second longitudinal section of which is positioned essentially without, the array of fuel rods when the gray rod is inserted in the fuel assembly. The first longitudinal section defines a pellet-receiving space having detained therein a stack of annular pellets with an outer diameter sufficient to lend radial support to the wall of the first longitudinal tube section. The second longitudinal section defines a hollow space devoid of pellets and having means to resist radial collapse under external pressure. This means may be a partially compressed spiral spring which serves the dual purpose of retaining the stack of pellets in the pellet-receiving space and of lending radial support to the wall of the second longitudinal tube section or it may be holes through the wall to allow pressure equalisation. The cladding tube is composed of stainless-steel material having a low neutron-capture cross-section, and the annular pellets preferably being composed of Zircaloy or Zirconia material. (author)

  8. Automated nuclear fuel rod pattern loading system

    International Nuclear Information System (INIS)

    Lambert, D.V.; Nylund, T.W.; Byers, J.W.; Haley, D.E. Jr.; Cioffi, J.V.

    1991-01-01

    This patent describes a method for loading fuel rods in a desired pattern. It comprises providing a supply of fuel rods of known enrichments; providing a magazine defining a matrix of elongated slots open at their forward ends for receiving fuel rods; defining a fuel rod feed path; receiving successively one at a time along the feed path fuel rods selected from the supply thereof; verifying successively one at a time along the feed path the identity of the selected fuel rods, the verifying including blocking passage of each selected fuel rod along the feed path until the identity of each selected fuel rod is confirmed as correct; feeding to the magazine successively one at a time along the feed path the selective and verified fuel rods; and supporting and moving the magazine along X-Y axes to successively align one at a time selected ones of the slots with the feed path for loading in the magazine the successive fuel rods in a desired enrichment pattern

  9. Vernotte-Cattaneo approximation for heat conduction in fuel rod

    International Nuclear Information System (INIS)

    Espinosa P, G.; Espinosa M, E. G.

    2009-10-01

    In this paper we explore the applicability of a fuel rod mathematical model based on the Vernotte-Cattaneo transient heat conduction as constitutive law (Non-Fourier approach) for light water reactors transient analysis. In the classical theory of diffusion, the Fourier law of heat conduction is used to describe the relation between the heat conduction is used to describe the relation between the heat flux vector and the temperature gradient assuming that the heat propagation speeds are infinite. The motivation for this research was to eliminate the paradox of an infinite. The motivation for this research was to eliminate the paradox of an infinite thermal wave speed. The time-dependent heat sources were considered in the fuel rod heat transfer model. The close of the main steam isolated valves transient in a boiling water reactor was analyzed for different relaxation times. The results show that for long-times the heat fluxes on the clad surface under Vernotte-Cattaneo approach can be important, while for short-times and from the engineering point of view the changes are very small. (Author)

  10. Fuel compliance model for pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    Shah, V.N.; Carlson, E.R.

    1985-01-01

    This paper describes two aspects of fuel pellet deformation that play significant roles in determining maximum cladding hoop strains during pellet-cladding mechanical interaction: compliance of fragmented fuel pellets and influence of the pellet end-face design on the transmission of axial compressive force in the fuel stack. The latter aspect affects cladding ridge formation and explains several related observations that cannot be explained by the hourglassing model. An empirical model, called the fuel compliance model and representing the above aspects of fuel deformation, has been developed using the results from two Halden experiments and incorporated into the FRAP-T6 fuel performance code

  11. Method for compacting spent nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    In a nuclear reactor system which requires periodic physical manipulation of spent fuel rods, the method of compacting fuel rods from a fuel rod assembly is described. The method consists of: (1) removing the top end from the fuel rod assembly; (2) passing each of multiple fuel rod pulling elements in sequence through a fuel rod container and thence through respective consolidating passages in a fuel rod directing chamber; (3) engaging one of the pulling elements to the top end of each of the fuel rods; (4) drawing each of the pulling elements axially to draw the respective engaged fuel rods in one axial direction through the respective the passages in the chamber to thereby consolidate the fuel rods into a compacted configuration of a cross-sectional area smaller than the cross-sectional area occupied thereby within the fuel rod assembly; and (5) drawing all of the engaged fuel rods concurrently and substantially parallel to one another in the one axial direction into the fuel rod container while maintaining the compacted configuration whereby the fuel rods are aligned within the container in a fuel rod density of the the fuel rod assembly

  12. Response of unirradiated and irradiated PWR fuel rods tested under power-cooling-mismatch conditions

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Quapp, W.J.; Martinson, Z.R.; McCardell, R.K.; Mehner, A.S.

    1978-01-01

    This report summarizes the results from the single-rod power-cooling-mismatch (PCM) and irradiation effects (IE) tests conducted to date in the Power Burst Facility (PBF) at the U.S. DOE Idaho National Engineering Laboratory. This work was performed for the U.S. NRC under contact to the Department of Energy. These tests are part of the NRC Fuel Behavior Program, which is designed to provide data for the development and verification of analytical fuel behavior models that are used to predict fuel response to abnormal or postulated accident conditions in commercial LWRs. The mechanical, chemical and thermal response of both previously unirradiated and previously irradiated LWR-type fuel rods tested under power-cooling-mismatch condition is discussed. A brief description of the test designs is presented. The results of the PCM thermal-hydraulic studies are summarized. Primary emphasis is placed on the behavior of the fuel and cladding during and after stable film boiling. (orig.) [de

  13. A model finite-element to analyse the mechanical behavior of a PWR fuel rod

    International Nuclear Information System (INIS)

    Galeao, A.C.N.R.; Tanajura, C.A.S.

    1988-01-01

    A model to analyse the mechanical behavior of a PWR fuel rod is presented. We drew our attention to the phenomenon of pellet-pellet and pellet-cladding contact by taking advantage of an elastic model which include the effects of thermal gradients, cladding internal and external pressures, swelling and initial relocation. The problem of contact gives rise ro a variational formulation which employs Lagrangian multipliers. An iterative scheme is constructed and the finite element method is applied to obtain the numerical solution. Some results and comments are presented to examine the performance of the model. (author) [pt

  14. TRANSURANUS: A fuel rod analysis code ready for use

    Energy Technology Data Exchange (ETDEWEB)

    Lassmann, K; O` Carroll, C; Van de Laar, J [Commission of the European Communities, Karlsruhe (Germany). European Inst. for Transuranium Elements; Ott, C [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1994-12-31

    The basic concepts of fuel rod performance codes are discussed. The TRANSURANUS code developed at the Institute for Transuranium Elements, Karlsruhe (GE) is presented. It is a quasi two-dimensional (1{sub 1/2}-D) code designed for treatment of a whole fuel rod for any type of reactor and any situation. The fuel rods found in the majority of test- or power reactors can be analyzed for very different situations (normal, off-normal and accidental). The time scale of the problems to be treated may range from milliseconds to years. The TRANSURANUS code consists of a clearly defined mechanical/mathematical framework into which physical models can easily be incorporated. This framework has been extensively tested and the programming very clearly reflects this structure. The code is well structured and easy to understand. It has a comprehensive material data bank for different fuels, claddings, coolants and their properties. The code can be employed in a deterministic and a statistical version. It is written in standard FORTRAN 77. The code system includes: 2 preprocessor programs (MAKROH and AXORDER) for setting up new data cases; the post-processor URPLOT for plotting all important quantities as a function of the radius, the axial coordinate or the time; the post-processor URSTART evaluating statistical analyses. The TRANSURANUS code exhibits short running times. A new WINDOWS-based interactive interface is under development. The code is now in use in various European institutions and is available to all interested parties. 7 figs., 15 refs.

  15. Release of fission products and post-pile creep behaviour of irradiated fuel rods stored under dry conditions

    International Nuclear Information System (INIS)

    Kaspar, G.; Peehs, M.; Bokelmann, R.; Jorde, D.; Schoenfeld, H.; Haas, W.; Bleier, A.; Rutsch, F.

    1985-06-01

    The release of moisture and fission products (Kr-85, H-3 and I-129) under dry storage conditions has been examined on six fuel rods which have become defective in the reactor. During the examinations, inert conditions prevailed and limited air inlet was allowed temporarily. The storage temperature was 400 0 C. The residual moisture content of the fuel rods was approx. 5 g. At the beginning of the test, the total moisture content and 0,05% (max.) of the fission gas inventory were released. Under inert conditions, fission gas was not released during a prolonged period of time. Under oxidizing conditions, however, fission gas was released in the course of UO 2 oxidation. Post-pile creep of Zircaloy cladding tubes was measured at temperatures between 350 and 395 0 C and interval gauge pressures between 69 and 110 bar. The creep curves indicate that the irradiated cladding tube specimens still bear internal residual stresses which contribute through their relaxation to the post-pile creep. (orig.) [de

  16. Axisym finite element code: modifications for pellet-cladding mechanical interaction analysis

    International Nuclear Information System (INIS)

    Engelman, G.P.

    1978-10-01

    Local strain concentrations in nuclear fuel rods are known to be potential sites for failure initiation. Assessment of such strain concentrations requires a two-dimensional analysis of stress and strain in both the fuel and the cladding during pellet-cladding mechanical interaction. To provide such a capability in the FRAP (Fuel Rod Analysis Program) codes, the AXISYM code (a small finite element program developed at the Idaho National Engineering Laboratory) was modified to perform a detailed fuel rod deformation analysis. This report describes the modifications which were made to the AXISYM code to adapt it for fuel rod analysis and presents comparisons made between the two-dimensional AXISYM code and the FRACAS-II code. FRACAS-II is the one-dimensional (generalized plane strain) fuel rod mechanical deformation subcode used in the FRAP codes. Predictions of these two codes should be comparable away from the fuel pellet free ends if the state of deformation at the pellet midplane is near that of generalized plane strain. The excellent agreement obtained in these comparisons checks both the correctness of the AXISYM code modifications as well as the validity of the assumption of generalized plane strain upon which the FRACAS-II subcode is based

  17. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emmanuel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Forsmann, Bryan [Boise State Univ., ID (United States); Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Henley, Jody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  18. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    International Nuclear Information System (INIS)

    Perez, Emmanuel; Keiser Jr, Dennis D.; Forsmann, Bryan; Janney, Dawn E.; Henley, Jody; Woolstenhulme, Eric C.

    2016-01-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  19. Study of behavior on bonding and failure mode of pressurized and doped BWR fuel rod

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1992-03-01

    The study of transient behavior on the bonding and the failure mode was made using the pressurized/doped 8 x 8 BWR type fuel rod. The dopant was mullite minerals consisted mainly of silicon and aluminum up to 1.5 w/o. Pressurization of the fuel rod with pure helium was made to the magnitude about 0.6 MPa. As a reference, the non-pressurized/non-doped 8 x 8 BWR fuel rod and the pressurized/7 x 7 BWR fuel rod up to 0.6 MPa were prepared. Magnitude of energy deposition given to the tested fuel rods was 248, 253, and 269 cal/g·fuel, respectively. Obtained results from the pulse irradiation in NSRR are as follows. (1) It was found from the experiment that alternation of the fuel design by the adoption of pressurization up to 0.6 MPa and the use of wider gap up to 0.38 mm could avoid the dopant BWR fuel from the overall bonding. The failure mode of the present dopant fuel was revealed to be the melt combined with rupture. (2) The time of fuel failure of the pressurized/doped 8 x 8 BWR fuel defected by the melt/rupture mode is of order of two times shorter than that of the pressurized/ 7 x 7 BWR defected by the rupture mode. Failure threshold of the pressurized/doped 8 x 8 BWR BWR tended to be lower than that of non-pressurized/non-doped 8 x 8 BWR one. Cracked area of the pressurized/doped 8 x 8 BWR was more wider and magnitude of oxidation at the place is relatively larger than the other tested fuels. (3) Failure mode of the non-pressurized/ 8 x 8 BWR fuel rod was the melt/brittle accompanied with a significant bonding at failed location. While, failure mode of the pressurized/ 7 x 7 BWR fuel rod was the cladding rupture accompanied with a large ballooning. No bonding at failed location of the latter was observed. (author)

  20. Rod consolidation at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1986-12-01

    A rod consolidation demonstration with irradiated pressurized water reactor fuel was recently conducted by personnel from Nuclear Assurance Corporation and West Valley Nuclear Services Company at the West Valley Demonstration Project in West Valley, New York. The rod consolidation demonstration involved pulling all of the fuel rods from six fuel Assemblies. In general, the rod pulling proceeded smoothly. The highest compaction ratio attained was 1:8:1. Among the total of 1074 fuel rods were some known degraded rods (they had collapsed cladding, a result of in-reactor fuel densification), but no rods were broken or dropped during the demonstration. One aim was to gather information on the effect of rod consolidation operations on the integrity of the fuel rods during subsequent handling and storage. Another goal was to collect information on the condition and handling of intact, damaged, and failed fuel that has been in storage for an extended period. 9 refs., 8 figs., 1 tab

  1. Pre-conceptual core design of SCWR with annular fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chuanqi [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Cao, Liangzhi, E-mail: caolz@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Hongchun; Zheng, Youqi [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2014-02-15

    Highlights: • Annular fuel with both internal and external cooling is used in supercritical light water reactor (SCWR). • The geometry of the annular fuel has been optimized to achieve better performance for the SCWR. • Based on the annular fuel assembly, an equilibrium core has been designed. • The results show that the equilibrium core has satisfied all the objectives and design criteria. - Abstract: The new design of supercritical light water reactor was proposed using annular fuel assemblies. Annular fuel consists of several concentric rings. Feed water flows through the center and outside of the fuel to give both internal and external cooling. Thanks to this feature, the fuel center temperature and the cladding temperature can be reduced and high power density can be achieved. The water flowing through the center also provides moderation, so there is no need for extra water rods in the assembly. The power distribution can be easily flattened by use of this design. The geometry of the annular fuel has been optimized to achieve better performance for the SCWR. There are 19 fuel pins in an assembly. Burnable poison is utilized to reduce the initial excess reactivity. The fuel reloading pattern and water flow scheme were optimized to achieve more uniform power distribution and lower cladding temperature. An equilibrium core has been designed and analyzed using three dimensional neutronics and thermal-hydraulics coupling calculations. The void reactivity, Doppler coefficient and cold shut down margin were calculated for safety consideration. The present results show that this concept is a promising design for the SCWR.

  2. Development and application of an asymmetric deformation model to describe the fuel rod behaviour during LOCA

    International Nuclear Information System (INIS)

    Chakraborty, A.K.; Schubert, J.D.

    1983-01-01

    For calculation of clad ballooning from single rod and rod bundle experiments a model considering the influences of azimuthal temperature gradients due to the existing eccentricity of the pellets has been developed. This model is based on the secondary creep model of Norton and on the concentric deformation model ending in cladding burst as proposed by F. Erbacher. The new model considers the azimuthal temperature differences along the cladding and the resulting differences in deformations. With this model, calculations of cladding burst deformations from single rod and rod bundle experiments are performed with good agreement

  3. The ballooning of fuel cladding tubes: theory and experiment

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1988-01-01

    Under some conditions, fuel clad ballooning can result in considerable strain before rupture. If ballooning were to occur during a loss-of-coolant accident (LOCA), the resulting substantial blockage of the sub-channel would restrict emergency core cooling. However, circumferential temperature gradients that would occur during a LOCA may significantly limit the average strain at failure. Understandably, the factors that control ballooning and rupture of fuel clad are required for the analysis of a LOCA. Considerable international effort has been spent on studying the deformation of Zircaloy fuel cladding under conditions that would occur during a LOCA. This effort has established a reasonable understanding of the factors that control the ballooning, failure time, and average failure strain of fuel cladding. In this paper, both the experimental and theoretical studies of the fuel clad ballooning are reviewed. (author)

  4. Description and characterization of BRPR series S-0, S-1, S-2, S-3, and S-4 demonstration fuel rods

    International Nuclear Information System (INIS)

    Welty, R.K.

    1981-07-01

    This report describes the process development, fabrication, and pre-irradiation characterization of the demonstration fuel rods for irradiation in the Big Rock Point Reactor as part of the DOE-sponsored Fuel Performance Improvement Program (FPIP). The fuel rods represent advanced designs that are expected to exhibit improved performance with respect to pellet-cladding-interaction and the attainment of extended burnup. Whereas other design variations are described, the primary fuel concepts being evaluated as part of the FPIP are an annular-coated-pressurized design and, at a more modest level, a sphere-pac design. A solid-pellet reference design provides the basis for comparing irradiation behavior

  5. State-of-the-technology review of fuel-cladding interaction

    International Nuclear Information System (INIS)

    Bailey, W.J.; Wilson, C.L.; MacGowan, L.J.; Pankaskie, P.J.

    1977-12-01

    A literature survey and a summarization of postulated fuel-cladding-interaction mechanisms and associated supportive data are reported. The results of that activity are described in the report and include comments on experience with power-ramped fuel, fuel-cladding mechanical interaction, stress-corrosion cracking and fission-product embrittlement, potential remedial actions, fuel-cladding-interaction mechanistic considerations, other ongoing programs, and related patents of interest. An assessment of the candidate fuel concepts to be evaluated as part of this program is provided

  6. Characterization and modeling of the thermal hydraulic and chemical environment of fuel claddings of PWR reactors during boiling

    International Nuclear Information System (INIS)

    March, Ph.

    1999-01-01

    In pressurised water reactors (PWR), nucleate boiling can strongly influence the oxidation rate of the fuel cladding. To improve our understanding of the effect of the boiling phenomenon on corrosion kinetics, information about the chemical and thermal hydraulic boundary conditions at the heating rod surface is needed. Moreover, very few data are available in the range of thermal hydraulic parameters of PWR cores (15,5 MPa and 340 deg C) concerning the two-phase flow pattern close to the fuel cladding. A visualization device has been adapted on an out-of-pile loop Reggae to obtain both qualitative and quantitative data. These observations provide a direct access to the geometrical properties of the vapor inclusions, the onset of nucleate boiling and the gas velocity and trajectory. An image processing method has been validated to measure both void fraction and interfacial area concentration in a bubbly two-phase flow. Thus, the visualization device proves to be a suitable and accurate instrumentation to characterize nucleate boiling in PWR conditions. The experimental results analysis indicates that a local approach is needed for the modelling of the fuel rod chemical environment. To simulate the chemical additives enrichment, a new model is proposed where the vapor bubbles are now considered as physical obstacles for the liquid access to the rod surface. The influence of the two-phase flow pattern appears to be of major importance for the enrichment phenomenon. This study clearly demonstrates the existence of strong interactions between the two-phase flow pattern, the rod surface condition, the corrosion process and the water chemistry. (author)

  7. Comparison between temperature distributions of an annular fuel rod of circular cross-section and of a hemoglobin shaped cross-section rod for PWR reactors in steady state conditions

    International Nuclear Information System (INIS)

    Oliveira, Maria Vitória A. de; Alvim, Antônio Carlos Marques

    2017-01-01

    The objective of this work is to make a comparison between the temperature distributions of an annular fuel rod of circular cross-section and a hemoglobin shaped cross-section for PWR reactors in steady state conditions. The motivation for this article is due to the fact that the symmetric form of the red globules particles allows the O 2 gases to penetrate the center of the cell homogeneously and quickly. The diffusion equation of gases in any environment is very similar to the heat diffusion equation: Diffusion - Fick's Law; Heat Flow - Fourier; where, the temperature (T) replaces the concentration (c). In previous works the comparison between the shape of solid fuel rods with circular section, and a with hemoglobin-shaped cross-section has proved that this new format optimizes the heat transfer, decreasing the thermal resistance between the center of the UO 2 pellets and the clad. With this, a significant increase in the specific power of the reactor was made possible (more precisely a 23% increase). Currently, the advantages of annular fuel rods are being studied and recent works have shown that 12 x 12 arrays of annular fuel rods perform better, increasing the specific power of the reactor by at least 20% in relation to solid fuel rods, without affecting the safety of the reactor. Our proposal is analyzing the temperature distribution in annular fuel rods with cross sections with red blood cell shape and compare with the theoretical results of the annular fuel rods of circular cross section, initially in steady state. (author)

  8. Comparison between temperature distributions of an annular fuel rod of circular cross-section and of a hemoglobin shaped cross-section rod for PWR reactors in steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria Vitória A. de; Alvim, Antônio Carlos Marques, E-mail: moliveira@con.ufrj.br, E-mail: alvim@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The objective of this work is to make a comparison between the temperature distributions of an annular fuel rod of circular cross-section and a hemoglobin shaped cross-section for PWR reactors in steady state conditions. The motivation for this article is due to the fact that the symmetric form of the red globules particles allows the O{sub 2} gases to penetrate the center of the cell homogeneously and quickly. The diffusion equation of gases in any environment is very similar to the heat diffusion equation: Diffusion - Fick's Law; Heat Flow - Fourier; where, the temperature (T) replaces the concentration (c). In previous works the comparison between the shape of solid fuel rods with circular section, and a with hemoglobin-shaped cross-section has proved that this new format optimizes the heat transfer, decreasing the thermal resistance between the center of the UO{sub 2} pellets and the clad. With this, a significant increase in the specific power of the reactor was made possible (more precisely a 23% increase). Currently, the advantages of annular fuel rods are being studied and recent works have shown that 12 x 12 arrays of annular fuel rods perform better, increasing the specific power of the reactor by at least 20% in relation to solid fuel rods, without affecting the safety of the reactor. Our proposal is analyzing the temperature distribution in annular fuel rods with cross sections with red blood cell shape and compare with the theoretical results of the annular fuel rods of circular cross section, initially in steady state. (author)

  9. Zircaloy cladding degradation under repository conditions

    International Nuclear Information System (INIS)

    Santanam, L.; Raghavan, S.; Chin, B.A.

    1990-12-01

    Creep, a potential degradation mechanism of Zircaloy cladding after repository disposal of spent nuclear fuel, has been investigated. The deformation and fracture map methodology has been used to predict maximum allowable initial storage temperatures to achieve a thousand year life without rupture as a function of spent-fuel history. Maximum allowable temperatures are 340 degree C (613 K) for typically stressed rods (70--100 MPa) and 300 degree C (573 K) for highly stressed rods (140--160 MPa). 10 refs., 2 figs

  10. Development of nuclear fuel for the future -Development of performance improvement of the cladding by ion beam-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Hoh; Jung, Moon Kyoo; Jung, Kee Suk; Kim, Wan; Lee, Jae Hyung; Song, Tae Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Han, Jun Kun [Sung Kyoon Kwan Univ., Seoul (Korea, Republic of); Kwon, Hyuk Sang [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-07-01

    In this research we analyzed the state of art related to the surface treatment method of nuclear fuel cladding for the development of the surface treatment technique of nuclear fuel cladding by ion beam while investigating major causes of the leakage of fuel rods. Ion implantation simulation code called TRIM-95 was used to decide basic parameters of ion beams and setup an appropriate process for ion implantation. Performance of the ion beam extraction was measured after adding the needed vacuum and cooling system to the existing gas and metal ion implanters. Target system for the ion implantation of fuel cladding improved and a plasma accelerator was installed on the target chamber of the metal ion implanter. The plasma accelerator is used to produce low energy, high current ion beams. The mechanical and chemical properties of the implanted Zircaloy-4 such as micro hardness, wear resistance, fretting wear, friction coefficient and corrosion resistance was measured under the room temperature and atmosphere. A micro structure and composition analysis of Zircaloy-4 sample was performed before and after the implantation to study the cause of the improvement in the mechanical and chemical characteristics. 94 figs, 11 tabs, 51 refs. (Author).

  11. Advanced LWR Nuclear Fuel Cladding Development

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Griffith, G.

    2012-01-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R and D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental enhancements are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction to allow improved fuel economy via power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an 'accident tolerant' fuel system that would offer improved coping time under accident scenarios. In a staged development approach, the LWRS program will engage stakeholders throughout the development process to ensure commercial viability of the investigated technologies. Applying minimum performance criteria, several of the top-ranked materials and fabrication concepts will undergo a rigorous series of mechanical, thermal and chemical characterization tests to better define their properties and operating potential in a relatively low-cost, nonnuclear test series. A reduced number of options will be recommended for test rodlet fabrication and in-pile nuclear testing under steady-state, transient and accident conditions. (author)

  12. Posttest examination of the VVER-1000 fuel rod bundle CORA-W2

    International Nuclear Information System (INIS)

    Sepold, L.

    1995-06-01

    The bundle meltdown experiment CORA-W2, representing the behavior of a Russian type VVER-1000 fuel element, with one B 4 C/stainless steel absorber rod was selected by the OECD/CSNI as International Standard Problem (ISP-36). The experimental results of CORA-W2 serve as data base for comparison with analytical predictions of the high-temperature material behavior by various code systems. The first part of the experimental results is described in KfK 5363 (1994), the second part is documented in this report which contains the destructive post-test examination results. The metallographical and analytical (SEM/EDX) post-test examinations were performed in Germany and Russia and are summarized in five individual contributions. The upper half of the bundle is completely oxidized, the lower half has kept the fuel rods relatively intact. The post-test examination results show the strong impact of the B 4 C absorber rod and the stainless steel grid spacers on the ''low-temperature'' bundle damage initiation and progression. The B 4 C absorber rod completely disappeared in the upper half of the bundle. The multicomponent melts relocated and formed coolant channel blockages on solidification with a maximum extent of about 30% in the lower part of the bundle. At temperatures above the melting point of the ZrNb1 cladding extensive fuel dissolution occurred. (orig.) [de

  13. Pre-test prediction and post-test analysis of PWR fuel rod ballooning in the MT-3 in-pile LOCA simulation experiment in the NRU reactor

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Horwood, R.A.; Healey, T.

    1983-01-01

    The USNRC and the UKAEA have jointly funded a series of in-pile LOCA simulation experiments in the Canadian NRU reactor in order to secure further information on the thermal hydraulic and clad deformation response of PWR fuel rod bundles. Test MT-3 in the series was performed using reflood rate and rod internal pressure conditions specified by the UK nuclear industry. The parameters were selected to ensure the development of a near-isothermal clad temperature history during which zircaloy was required to balloon and rupture near the alpha-alpha/beta phase transition. Specification of the reflood rate conditions was assisted by the performance of a precursor test on an unpressurised rod bundle and by complementary application of appropriate thermal hydraulic analyses. Identification of the rod internal pressure needed to cause ballooning and rupture was achieved using a creep deformation model, BALLOON, in conjunction with the clad thermal history defined by the prior thermal hydraulic test. This paper presents the basis of the BALLOON analysis and describes its application in calculating the fill gas pressure for rods MT-3, their axial ballooning profile and the clad temperature at peak radial strain elevations. (author)

  14. MABEL-2: a code to analyse cladding deformation in a loss-of-coolant accident: status February 1980

    International Nuclear Information System (INIS)

    Gittus, J.H.; Haste, T.J.; Bowring, R.W.; Cooper, C.A.

    1980-02-01

    MABEL-2 calculates the deformation of a single fuel rod. This rod is surrounded by 8 other rods on a square lattice whose behaviour is specified via Input Data options. A 2-D (r,theta) conduction model is used for the fuel rod, the cladding creep is calculated from the CANSWEL-2 model and the feedback effect of clad strain on heat transfer to the coolant is obtained from subchannel analysis of the coolant passages surrounding the rod. The coding of the first version of MABEL-2 has been completed except for work to optimise the iteration convergence, minimise the running time and generally tidy up the coding. (author)

  15. Simulation of a pellet-clad mechanical interaction with ABAQUS and its verification

    International Nuclear Information System (INIS)

    Cheon, J.-S.; Lee, B.-H.; Koo, Y.-H.; Sohn, D.-S.; Oh, J.-Y.

    2003-01-01

    Pellet-clad mechanical interaction (PCMI) during power transients for MOX fuel is modelled by a FE method. The PCMI model predicts well clad elongation during power ramp and relaxation during power hold except the fuel behaviour during a power decrease. Higher fiction factor results in the earlier occurrence of PCMI and more enhanced clad elongation. The relaxation is dependent on the irradiation creep rate of the pellet and axial compressive force. Verification of the PCMI model was done using recent MOX experimental data. Temperature and clad elongation for the fuel rod can be evaluated in a reasonable way

  16. Influence of the hold period on the fuel rod behaviour during a power ramp

    International Nuclear Information System (INIS)

    Bourreau, S.; Lansiart, S.; Couffin, P.; Verdeau, C.; Decroix, G.M.; Grandjean, M.-C.; Hugot, H.; Mermaz, F.; Van Schel, E.

    2000-01-01

    This paper presents three examples of power ramp tests performed in the OSIRIS experimental reactor, located at Saclay (France). The rods tested during these experiments stem from the same segmented 'mother' rod, pre-irradiated for two cycles in a French PWR. They underwent very similar power transient conditions, except for the hold time at Ramp Terminal Level (RTL) - respectively 41.5 kW/m (J12/2), 40.7 kW/m (J12/4) and 39.5 kW/m (J12/5) for RTL, but zero (J12/2), 16 minutes (J12/4) and 12 hours (J12/5) for the hold time at RTL. No failure was detected for any of the three experiments despite the relatively high mechanical stress applied to the cladding in the case of J12/2. Moreover, although no hold time was maintained at RTL, a permanent deformation clearly appeared on the clad during the power transient. An analysis of the cladding deformation has also been undertaken concerning the J12/2, J12/4 and J12/5 experiments. This study was realized by carrying out post-calculations of the three experiments with a 2D fuel modelling code using the finite element method. The computations satisfactorily reproduce the influence of hold time on the cladding deformation during the power transients, especially for the J12/2 and J12/4 experiments with hold times enclosing the failure times experimentally observed for power ramp tests. For the hold time of 12 hours, the micrographic observations of the fuel, compared to the case of the 16 minutes hold time, support the hypothesis of weak but noticeable gaseous swelling. (author)

  17. Completion of UO2 pellets production and fuel rods load for the RA-8 critical facility

    International Nuclear Information System (INIS)

    Marajofsky, Adolfo; Perez, Lidia E.; Thern, Gerardo G.; Altamirano, Jorge S.; Benitez, Ana M.; Cardenas, Hugo R.; Becerra, Fabian A.; Perez, Aldo E.; Fuente, Mariano de la

    1999-01-01

    The Advanced Fuels Division produced fuel pellets of 235 U with 1.8% and 3.6% enrichment and Zry-4 cladding loads for the RA-8 reactor at Pilcaniyeu Technological Unit. For economical and availability reasons, the powder acquired was initially UO 2 with 3.4% enrichment in 235 U, therefore the 235 U powder with 1.8% enrichment was produced by mechanical mixture. The production of fuel pellets for both enrichments was carried out by cold pressing and sintering processes in reducing atmosphere. The load of Zry-4 claddings was performed manually. The production stages can be divided into setup, qualification and production. This production allows not only to fulfill satisfactorily the new fuel rods supply for the RA-8 reactor but also to count with a new equipment and skilled personnel as well as to meet quality and assurance control methods for future pilot-scale production and even new fuel elements production. (author)

  18. A finite element method with contact for tensile analysis in fuel rods

    International Nuclear Information System (INIS)

    Tanajura, C.A.S.; Galeao, A.C.N.R.

    1987-01-01

    Elements for mechanical analysis of fuel rod of a PWR type reactor, are presented. The rod, consists basically in a cylindrical coating of zircalloy which contains pilling of UO 2 pellets, is submitted to strong internal and external pressures, intense temperature gradients and neutron flux. These conditions lead several phenomena in the pellet (swelling, fracture, densification, creep) and in the cladding (embrittlement, corrosion, creep) which undergo deformations leading them to contact the restriction for the interpenetration is included in the problem without restriction by Lagrange multipliers. Considering a non-linear problem, due to the surface of contact to be not known a priori, the numerical solutions were obtained using the finite element method. (M.C.K.) [pt

  19. Preliminary nuclear design for test MOX Fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Kim, Taek Kyum; Jeong, Hyung Guk; Noh, Jae Man; Cho, Jin Young; Kim, Young Il; Kim, Young Jin; Sohn, Dong Seong

    1997-10-01

    As a part of activity for future fuel development project, test MOX fuel rods are going to be loaded and irradiated in Halden reactor core as a KAERI`s joint international program with Paul Scherrer Institute (PSI). PSI will fabricate test MOX rods with attrition mill device which was developed by KAERI. The test fuel assembly rig contains three MOX rods and three inert matrix rods. One of three MOX rods will be fabricated by BNFL, the other two MOX fuel rods will be manufacturing jointly by KAERI and PSI. Three inert matrix fuel rods will be fabricated with Zr-Y-Er-Pu oxide. Neutronic evaluation was preliminarily performed for test fuel assembly suggested by PSI. The power distribution of test fuel rod in test fuel assembly was analyzed for various fuel rods position in assembly and the depletion characteristic curve for test fuel was also determined. The fuel rods position in test fuel assembly does not effect the rod power distribution, and the proposal for test fuel rods suggested by PSI is proved to be feasible. (author). 2 refs., 13 tabs., 16 figs.

  20. Data summary report for the destructive examination of Rods G7, G9, J8, I9, and H6 from Turkey Point Fuel Assembly B17

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R B; Pasupathi, V

    1981-04-01

    Destructive examination results of five spent fuel rods from a Turkey Point Unit 3 pressurized water reactor are reported. Examinations included fission gas analysis, cladding hydrogen content analysis, fuel burnup analysis, metallographic examination, autoradiography and shielded electron microprobe analysis. All rods were found to be of sound integrity with an average burnup of 27 GWd/MTU and a 0.3% fission gas release.

  1. Performance of refractory alloy-clad fuel pins

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Millhollen, M.K.

    1984-12-01

    This paper discusses objectives and basic design of two fuel-cladding tests being conducted in support of SP-100 technology development. Two of the current space nuclear power concepts use conventional pin type designs, where a coolant removes the heat from the core and transports it to an out-of-core energy conversion system. An extensive irradiation testing program was conducted in the 1950's and 1960's to develop fuel pins for space nuclear reactors. The program emphasized refractory metal clad uranium nitride (UN), uranium carbide (UC), uranium oxide (UO 2 ), and metal matrix fuels (UCZr and BeO-UO 2 ). Based on this earlier work, studies presented here show that UN and UO 2 fuels in conjunction with several refractory metal cladding materials demonstrated high potential for meeting space reactor requirements and that UC could serve as an alternative but higher risk fuel

  2. Fuel rod behaviour at high burnup WWER fuel cycles

    International Nuclear Information System (INIS)

    Medvedev, A.; Bogatyr, S.; Kouznetsov, V.; Khvostov, G.; Lagovsky; Korystin, L.; Poudov, V.

    2003-01-01

    The modernisation of WWER fuel cycles is carried out on the base of complete modelling and experimental justification of fuel rods up to 70 MWd/kgU. The modelling justification of the reliability of fuel rod and fuel rod with gadolinium is carried out with the use of certified START-3 code. START-3 code has a continuous experimental support. The thermophysical and strength reliability of WWER-440 fuel is justified for fuel rod and pellet burnups 65 MWd/kgU and 74 MWd/U, accordingly. Results of analysis are demonstrated by the example of uranium-gadolinium fuel assemblies of second generation under 5-year cycle with a portion of 6-year assemblies and by the example of successfully completed pilot operation of 5-year cycle fuel assemblies during 6 years at unit 3 of Kolskaja NPP. The thermophysical and strength reliability of WWER-1000 fuel is justified for a fuel rod burnup 66 MWd/kgU by the example of fuel operation under 4-year cycles and 6-year test operation of fuel assemblies at unit 1 of Kalininskaya NPP. By the example of 5-year cycle at Dukovany NPP Unit 2 it was demonstrated that WWER fuel rod of a burnup 58 MWd/kgU ensure reliable operation under load following conditions. The analysis has confirmed sufficient reserves of Russian fuel to implement program of JSC 'TVEL' in order to improve technical and economical parameters of WWER fuel cycles

  3. Power Burst Facility Severe Fuel Damage test series

    International Nuclear Information System (INIS)

    Buescher, B.J.; Osetek, D.J.; Ploger, S.A.

    1982-01-01

    The Severe Fuel Damage (SFD) tests planned for the Power Burst Facility (PBF) are described. Bundles containing 32 zircaloy-clad, PWR-type fuel rods will be subjected to severe overheating transients in a high-pressure, superheated-steam environment. Cladding temperatures are expected to reach 2400 0 K, resulting in cladding ballooning and rupture, severe cladding oxidation, cladding melting, fuel dissolution, fuel rod fragmentation, and possibly, rubble bed formation. An experiment effluent collection system is being installed and the PBF fission product monitoring system is being upgraded to meet the special requirements of the SFD tests. Scoping calculations were performed to evaluate performance of the SFD test design and to establish operational requirements for the PBF loop

  4. Accident tolerant fuel cladding development: Promise, status, and challenges

    Science.gov (United States)

    Terrani, Kurt A.

    2018-04-01

    The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding technologies, namely coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and silicon carbide fiber-reinforced silicon carbide matrix composite cladding, is offered. Technical challenges and data gaps for each of these cladding technologies are highlighted. Full development towards commercial deployment of these technologies is identified as a high priority for the nuclear industry.

  5. FRAPCON analysis of cladding performance during dry storage operations

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, David J.; Geelhood, Kenneth J.

    2018-03-01

    There is an increasing need in the U.S. and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations (ISFSI) or interim storage sites. The NRC limits cladding temperature to 400°C while maintaining cladding hoop stress below 90 MPa in an effort to avoid radial hydride reorientation. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at 400 °C. Results were representative of the majority of U.S. LWR fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.

  6. Development Status of Accident Tolerant Fuel Cladding for LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hydrogen explosions and the release of radionuclides are caused by severe damage of current nuclear fuels, which are composed of fuel pellets and fuel cladding, during an accident. To reduce the damage to the public, the fuels have to enhance their integrity under an accident environment. Enhanced accident tolerance fuels (ATFs) can tolerate a loss of active cooling in the reactor core for a considerably longer time period during design-basis and beyond design-basis events while maintaining or improving the fuel performance during normal operations as well as operational transients, in comparison with the current UO{sub 2}-Zr alloy system used in the LWR. Surface modified Zr cladding as a new concept was suggested to apply an enhanced ATF cladding. The aim of the partial ODS treatment is to increase the high-temperature strength to suppress the ballooning/rupture behavior of fuel cladding during an accident event. The target of the surface coating is to increase the corrosion resistance during normal operation and increase the oxidation resistance during an accident event. The partial ODS treatment of Zircaloy-4 cladding can be produced using a laser beam scanning method with Y2O3 powder, and the surface Cr-alloy and Cr/FeCrAl coating on Zircaloy-4 cladding can be obtained after the development of 3D laser coating and arc ion plating technologies.

  7. Demonstration of fuel resistant to pellet-cladding interaction: Phase 2. Third semiannual report, January-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, H.S. (comp.)

    1980-09-01

    Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to avoid the harmful effects of localized stress and reactive fission products during reactor service. Within the work scope of this program one of these concepts is to be selected for demonstration in a commercial power reactor. It was decided to demonstrate Zr-liner in 132 bundles which have liners of either crystal-bar zirconium or of low-oxygen sponge zirconium in the reload for Quad Cities Unit 2, Cycle 6. Irradiation testing or barrier fuel was continued, and the superior PCI resistance of Zr-liner fuel was further substantiated in the current report period. Furthermore, an irradiation experiment in which Zr-liner fuel, having a deliberately fabricated cladding perforation, was operated at a linear heat generation rate of 35 kW/m to a burnup of approx. 3 MWd/kg U showed no unusual signs of degradation compared with a similarly defected reference fuel rod. Four lead test assemblies of barrier fuel (two of Zr-liner and two of Cu-barrier), presently under irradiation in Quad Cities Unit 1, have achieved a burnup of 11 MWd/kg U.

  8. Demonstration of fuel resistant to pellet-cladding interaction: Phase 2. Third semiannual report, January-June 1980

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1980-09-01

    Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to avoid the harmful effects of localized stress and reactive fission products during reactor service. Within the work scope of this program one of these concepts is to be selected for demonstration in a commercial power reactor. It was decided to demonstrate Zr-liner in 132 bundles which have liners of either crystal-bar zirconium or of low-oxygen sponge zirconium in the reload for Quad Cities Unit 2, Cycle 6. Irradiation testing or barrier fuel was continued, and the superior PCI resistance of Zr-liner fuel was further substantiated in the current report period. Furthermore, an irradiation experiment in which Zr-liner fuel, having a deliberately fabricated cladding perforation, was operated at a linear heat generation rate of 35 kW/m to a burnup of approx. 3 MWd/kg U showed no unusual signs of degradation compared with a similarly defected reference fuel rod. Four lead test assemblies of barrier fuel (two of Zr-liner and two of Cu-barrier), presently under irradiation in Quad Cities Unit 1, have achieved a burnup of 11 MWd/kg U

  9. Effect of fission fragment on thermal conductivity via electrons with an energy about 0.5 MeV in fuel rod gap

    Directory of Open Access Journals (Sweden)

    F Golian

    2017-02-01

    Full Text Available The heat transfer process from pellet to coolant is one of the important issues in nuclear reactor. In this regard, the fuel to clad gap and its physical and chemical properties are effective factors on heat transfer in nuclear fuel rod discussion. So, the energy distribution function of electrons with an energy about 0.5 MeV in fuel rod gap in Busherhr’s VVER-1000 nuclear reactor was investigated in this paper. Also, the effect of fission fragments such as Krypton, Bromine, Xenon, Rubidium and Cesium on the electron energy distribution function as well as the heat conduction via electrons in the fuel rod gap have been studied. For this purpose, the Fokker- Planck equation governing the stochastic behavior of electrons in absorbing gap element has been applied in order to obtain the energy distribution function of electrons. This equation was solved via Runge-Kutta numerical method. On the other hand, the electron energy distribution function was determined by using Monte Carlo GEANT4 code. It was concluded that these fission fragments have virtually insignificant effect on energy distribution of electrons and therefore, on thermal conductivity via electrons in the fuel to clad gap. It is worth noting that this result is consistent with the results of other experiments. Also, it is shown that electron relaxation in gap leads to decrease in thermal conductivity via electrons

  10. LOCA testing of high burnup PWR fuel in the HBWR. Additional PIE on the cladding of the segment 650-5

    Energy Technology Data Exchange (ETDEWEB)

    Oberlaender, B.C.; Espeland, M.; Jenssen, H.K.

    2008-07-01

    IFA-650.5, a test with pre-irradiated fuel in the Halden Project LOCA test series, was conducted on October 23rd, 2006. The fuel rod had been used in a commercial PWR and had a high burnup, 83 MWd/kgU. Experimental arrangements of the fifth test were similar to the preceding LOCA tests. The peak cladding temperature (PCT) level was higher than in the third and fourth tests, 1050 C. A peak temperature close to the target was achieved and cladding burst occurred at approx. 750 C. Within the joint programme framework of the Halden Project PIE was done, consisting of gamma scanning, visual inspection, neutron-radiography, hydrogen analysis and metallography / ceramography. An additional extensive PIE including metallography, hydrogen analysis, and hardness measurements of cross-sections at seven axial elevations was done. It was completed to study the high burnup and LOCA induced effects on the Zr-4 cladding, namely the migration of oxygen into the cladding from the inside surface, the cladding distension, and the burst (author)(tk)

  11. Fuel clad chemical interactions in fast reactor MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R., E-mail: rvis@igcar.gov.in

    2014-01-15

    Clad corrosion being one of the factors limiting the life of a mixed-oxide fast reactor fuel element pin at high burn-up, some aspects known about the key elements (oxygen, cesium, tellurium, iodine) in the clad-attack are discussed and many Fuel–Clad-Chemical-Interaction (FCCI) models available in the literature are also discussed. Based on its relatively superior predictive ability, the HEDL (Hanford Engineering Development Laboratory) relation is recommended: d/μm = ({0.507 ⋅ [B/(at.% fission)] ⋅ (T/K-705) ⋅ [(O/M)_i-1.935]} + 20.5) for (O/M){sub i} ⩽ 1.98. A new model is proposed for (O/M){sub i} ⩾ 1.98: d/μm = [B/(at.% fission)] ⋅ (T/K-800){sup 0.5} ⋅ [(O/M){sub i}-1.94] ⋅ [P/(W cm{sup −1})]{sup 0.5}. Here, d is the maximum depth of clad attack, B is the burn-up, T is the clad inner surface temperature, (O/M){sub i} is the initial oxygen-to-(uranium + plutonium) ratio, and P is the linear power rating. For fuels with [n(Pu)/n(M = U + Pu)] > 0.25, multiplication factors f are recommended to consider the potential increase in the depth of clad-attack.

  12. Impact of pellet-cladding interaction on fuel integrity: a status report

    International Nuclear Information System (INIS)

    Pankaskie, P.J.

    1978-02-01

    There appears to be a general consensus that pellet/cladding interaction (PCI) is one of the principal limitations on reactor core power cycling. The economic importance of PCI, as fuel service limiting, is evidenced by the fact that all USLWR fuel suppliers impose some operating restrictions and/or recommendations on rates and magnitudes of power increases for both startup and demand load response modes of operation. In contrast to the economic aspects of PCI, there does not appear to be a similar attitude with regard to the safety significance of PCI in operating USLWRs. The apparent incidence of PCI failures accompanying a transient increase in core/rod power, however, provides a basis for some system safety conern. The predominant role of the economics of PCI failures has led to the individual development, by USLWR fuel suppliers, of specific operating recommendations for minimization of PCI fuel failures under more or less normal operation

  13. Temperature escalation in PWR fuel rod simulator bundles due to the Zircaloy/steam reaction: Test ESBU-2A

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Wallenfels, K.P.; Peck, S.O.

    1984-07-01

    This report describes the test conduct and results of the bundle test ESBU-2A, which was run to investigate the temperature escalation of zircaloy clad fuel rods. This investigation of temperature escalation is part of a series of out-of-pile experiments, performed within the framework of the PNS Severe Fuel Damage Program. The test bundle was of a 3 x 3 array of fuel rod simulators with a 0.4 m heated length. The fuel rod simulators were electrically heated and consisted of tungsten heaters, UO 2 annular pellets, and zircaloy cladding. A nominal steam flow of 0.7 g/s was inlet to the bundle. The bundle was surrounded by a zircaloy shroud which was insulated with ZrO 2 fiber ceramic wrap. The initial heatup rate of the bundle was 0.4 0 C/s. The temperature escalation began at the 255 mm elevation after 1200 0 C had been reached. At this elevation, the measured peak temperature was limited to 1500 0 C. It was concluded from different thermocouple results, that induced by this first escalation melt was formed in the lower part of the bundle. Consequently, the escalation in the lower part must be much higher, at least up to the melting temperature of zircaloy. Due to the failure in the steam production system, steam starvation in the upper region may explain the beginning of the escalation at the 255 mm elevation. The maximum temperature reached was 2175 0 C on the center rod at the end of the test. The unregularities in the steam supply may be the reason for less oxidation than expected. (orig./GL) [de

  14. Thermal-Hydraulic Aspects of Changing the Nuclear Fuel-Cladding Materials from Zircaloy to Silicon Carbides

    International Nuclear Information System (INIS)

    Niceno, Bojan; Pouchon, Manuel

    2014-01-01

    The accident in Fukushima has drastically shown the drawbacks of Zircaloy claddings despite their beneficial properties in normal use. The effect of the lack of cooling and the production of hydrogen would not have been so strong if the fuel cladding had not consisted of a zirconium (or metal) alloy. International activities have been started to search for an alternative to Zircaloy, however, still on a limited basis. A project sponsored by Swissnuclear has been conducted at Paul Scherrer Institute (PSI) with the aim to close the gap in knowledge on application of silicon carbides (SiC) as potential replacement for Zircaloys as material for nuclear fuel cladding. The work was interdisciplinary, result of collaboration between different laboratories at PSI, and has focused on SiC cladding material properties, implication of its usage on neutronics and on thermal-hydraulics. This paper summarizes thermal-hydraulic aspects of changing Zircaloy for SiC as the cladding material. The change of cladding material inevitably changes the surface properties thus making a significant impact on boiling curve, and critical heat flux (CHF). Low chemical reactivity of SiC means fewer particles in the flow (less crud), which leads to fewer failures, but also decreases the CHF. Due to differences in physical properties between SiC and Zircaloys, higher brittleness of SiC in particular, might have impact on fuel-rod assembly design, which has direct influence on flow patterns and heat transfer in the fuel assembly. Higher melting (i.e. decomposition) point for SiC means that severe accident management guidelines (SAMG) should have to be re-assessed. Not only would the core degrade later than in the case of conventional fuels, but the production of hydrogen would be quite different as well. All these issues are explored in this work in two steps; first the SiC properties which may have influence on thermal-hydraulics are outlined, then each thermal-hydraulic issues is explained from

  15. Utilization of carbon/carbon composites in nuclear simulation fuel rods

    International Nuclear Information System (INIS)

    Polidoro, H.A.; Otani, S.; Rezende, M.C.; Ferreira, S.R.; Otani, C.

    1988-01-01

    Thermo-hydraulic problems, in nuclear plants are normally analysed by using electrically heated rods. Carbon/carbon composites were used to make heating elements for testing by indirect heating up to a heat flux of 100 W/cm 2 . It is easy to verify that this value can be exceed if the choice of the complementary materials for insulator and cladding were improved. The swaging process used to reduce the cladding diameter prevented the fabrication of graphite heater rods. (author) [pt

  16. Behaviour of high O/U fuel

    International Nuclear Information System (INIS)

    Davies, J.H.; Hoshi, E.V.; Zimmerman, D.L.

    2000-01-01

    Full text: The effect of increased fuel oxygen potential on fuel behaviour has been studied by fabricating and irradiating urania fuel with an average O/U ratio of 2.05. The fuel was fabricated by re-sintering standard urania pellets in a controlled oxygen potential environment and irradiated in a segmented rod bundle in a U.S. BWR. Preirradiation ceramographic characterization of the pellets revealed the well-known Widmanstaetten precipitation of U-409 platelets in the UO 2 matrix. The high O/U fuel pellets were clad in Zircaloy-2 and irradiated to over 20 GWd/MT. Ramp tests were performed in a test reactor and detailed postirradiation examinations of both ramped and nonramped rods have been performed. The cladding inner surface condition, fission gas release and swelling behavior of high O/U fuel have been characterized and compared with standard UO 2 pellets. Although fuel microstructural features in ramp-tested high O/U fuel showed evidence of higher fuel temperatures and/or enhanced transport processes, fission gas release to the fuel rod free space was less than for similarly tested standard UO 2 fuel. However, fuel swelling and cladding strains were significantly greater. In spite of high cladding strains, PCI crack propagation was inhibited in the high O/U fuel I rods. Evidence is presented that the crystallographically oriented etch features often noted in peripheral regions of high burnup fuels are not an indication of higher oxides of uranium. (author)

  17. Results of the investigations of transient fuel rod behaviour

    International Nuclear Information System (INIS)

    Fiege, A.

    1980-01-01

    The aim of the research on the fuel rod behaviour mainly effected in the KFZ Karlsruhe and at the KWU Erlangen as a part of the German reactor safety research program is to investigate the physical and chemical phenomena which are significant when the zircaloy claddings are failing, and to establish mathematical models verified by experiments by means of which the extent of damage in the reactor core in different incidents can be worked out in a realistic way. These mathematical models (program system SSYST) shall replace the conservative assumptions so far used for incident analyses and quantify their safety reserves, respectively. (orig./HP) [de

  18. Evaluation of the behavior of waterlogged fuel rod failures in LWRs

    International Nuclear Information System (INIS)

    Siegel, B.

    1977-11-01

    A summary of the available information on waterlogged fuel rod failures is presented. The information includes experimental results from waterlogging tests in research reactors, observations of waterlogging failures in commercial reactors, and reactor vendor assessments. It is concluded that (a) operating restrictions to reduce pellet/cladding interactions also reduce the potential for waterlogging failures during transients, (b) tests to simulate accident conditions produced the worst waterlogging failures, and (c) there is no apparent threat from waterlogging failures to the overall coolability of the core or to safe reactor shutdown

  19. Fuel behaviour in the case of severe accidents and potential ATF designs. Fuel Behavior in Severe Accidents and Potential Accident Tolerance Fuel Designs

    International Nuclear Information System (INIS)

    Cheng, Bo

    2013-01-01

    This presentation reviews the conditions of fuel rods under severe loss of coolant conditions, approaches that may increase coping time for plant operators to recover, requirements of advanced fuel cladding to increase tolerance in accident conditions, potential candidate alloys for accident-tolerant fuel cladding and a novel design of molybdenum (Mo) -based fuel cladding. The current Zr-alloy fuel cladding will lose all its mechanical strength at 750-800 deg. C, and will react rapidly with high-pressure steam, producing significant hydrogen and exothermic heat at 700-1000 deg. C. The metallurgical properties of Zr make it unlikely that modifications of the Zr-alloy will improve the behaviour of Zr-alloys at temperatures relevant to severe accidents. The Mo-based fuel cladding is designed to (1) maintain fuel rod integrity, and reduce the release rate of hydrogen and exothermic heat in accident conditions at 1200-1500 deg. C. The EPRI research has thus far completed the design concepts, demonstration of feasibility of producing very thin wall (0.2 mm) Mo tubes. The feasibility of depositing a protective coating using various techniques has also been demonstrated. Demonstration of forming composite Mo-based cladding via mechanical reduction has been planned

  20. Simulation of pellet-cladding interaction with the Pleiades fuel performance software environment

    International Nuclear Information System (INIS)

    Michel, B.; Nonon, C.; Sercombe, J.; Michel, F.; Marelle, V.

    2013-01-01

    This paper focuses on the PLEIADES fuel performance software environment and its application to the modeling of pellet-cladding interaction (PCI). The PLEIADES platform has been under development for 10 yr; a unified software environment, including the multidimensional finite element solver CAST3M, has been used to develop eight computation schemes now under operation. Among the latter, the ALCYONE application is devoted to pressurized water reactor fuel rod behavior. This application provides a three-dimensional (3-D) model for a detailed analysis of fuel element behavior and enables validation through comparing simulation and post-irradiation examination results (cladding residual diameter and ridges, dishing filling, pellet cracking, etc.). These last years the 3-D computation scheme of the ALCYONE application has been enriched with a complete set of physical models to take into account thermomechanical and chemical-physical behavior of the fuel element under irradiation. These models have been validated through the ALCYONE application on a large experimental database composed of approximately 400 study cases. The strong point of the ALCYONE application concerns the local approach of stress-corrosion-cracking rupture under PCI, which can be computed with the 3-D finite element solver. Further developments for PCI modeling in the PLEIADES platform are devoted to a new mesh refinement method for assessing stress-and-strain concentration (multigrid technique) and a new component for assessing fission product chemical recombination. (authors)

  1. POST CRITICAL HEAT TRANSFER AND FUEL CLADDING OXIDATION

    Directory of Open Access Journals (Sweden)

    Vojtěch Caha

    2016-12-01

    Full Text Available The knowledge of heat transfer coefficient in the post critical heat flux region in nuclear reactor safety is very important. Although the nuclear reactors normally operate at conditions where critical heat flux (CHF is not reached, accidents where dryout occur are possible. Most serious postulated accidents are a loss of coolant accident or reactivity initiated accident which can lead to CHF or post CHF conditions and possible disruption of core integrity. Moreover, this is also influenced by an oxide layer on the cladding surface. The paper deals with the study of mathematical models and correlations used for heat transfer calculation, especially in post dryout region, and fuel cladding oxidation kinetics of currently operated nuclear reactors. The study is focused on increasing of accuracy and reliability of safety limit calculations (e.g. DNBR or fuel cladding temperature. The paper presents coupled code which was developed for the solution of forced convection flow in heated channel and oxidation of fuel cladding. The code is capable of calculating temperature distribution in the coolant, cladding and fuel and also the thickness of an oxide layer.

  2. Spacers for fuel rod clusters

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    The proposition deals with the fixing of nuclear fuel element rods in a grid which consists of a number of crossed Zy-plates which form cells. The rectangular cells have projections which serve as spacers for the fuel rods. According to the invention there are additional butt straps which can be moved in such a way that insertion and extraction of the fuel rods can be done without obstruction and they can be spring-loaded hold in their final position. (UWI) [de

  3. Fabrication of internally instrumented reactor fuel rods

    International Nuclear Information System (INIS)

    Schmutz, J.D.; Meservey, R.H.

    1975-01-01

    Procedures are outlined for fabricating internally instrumented reactor fuel rods while maintaining the original quality assurance level of the rods. Instrumented fuel rods described contain fuel centerline thermocouples, ultrasonic thermometers, and pressure tubes for internal rod gas pressure measurements. Descriptions of the thermocouples and ultrasonic thermometers are also contained

  4. Segmented fuel and moderator rod

    International Nuclear Information System (INIS)

    Doshi, P.K.

    1987-01-01

    This patent describes a continuous segmented fuel and moderator rod for use with a water cooled and moderated nuclear fuel assembly. The rod comprises: a lower fuel region containing a column of nuclear fuel; a moderator region, disposed axially above the fuel region. The moderator region has means for admitting and passing the water moderator therethrough for moderating an upper portion of the nuclear fuel assembly. The moderator region is separated from the fuel region by a water tight separator

  5. Estimation of penetration depth of fission products in cladding Hull

    International Nuclear Information System (INIS)

    Kim, Hee Moon; Jung, Yang Hong; Yoo, Byong Ok; Choo, Yong Sun; Hong, Kwon Pyo

    2005-01-01

    A disposal and a reprocessing for spent fuel rod with high burnup need de-cladding procedure. Pellet in this rod has been separated from a cladding hull to reduce a radioactivity of hull by chemical and mechanical methods. But fission products and actinides(U,Pu) still remain inside of cladding hull by chemical bonding and fission spike, which is called as 'contamination'. More specific removal of this contamination would have been considered. In this study, the sorts of fission products and penetration depth in hull were observed by EPMA test. To analyze this behavior, SRIM 2000 code was also used as energies of fission products and an oxide thickness of hull

  6. Detection of failed fuel rods in shrouded BWR fuel assemblies

    International Nuclear Information System (INIS)

    Baero, G.; Boehm, W.; Goor, B.; Donnelly, T.

    1988-01-01

    A manipulator and an ultrasonic testing (UT) technique were developed to identify defective fuel rods in shrouded BWR fuel assemblies. The manipulator drives a UT probe axially through the bottom tie plate into the water channels between the fuel rods. The rotating UT probe locates defective fuel rods by ingressed water which attenuates the UT-signal. (author)

  7. Development of cutting device for irradiated fuel rod

    International Nuclear Information System (INIS)

    Lee, E. P.; Jun, Y. B.; Hong, K. P.; Min, D. K.; Lee, H. K.; Su, H. S.; Kim, K. S.; Kwon, H. M.; Joo, Y. S.; Yoo, K. S.; Joo, J. S.; Kim, E. K.

    2004-01-01

    Post Irradiation Examination(PIE) on irradiated fuel rods is essential for the evaluation of integrity and irradiation performance of fuel rods of commercial reactor fuel. For PIE, fuel rods should be cut very precisely. The cutting positions selected from NDT data are very important for further destructive examination and analysis. A fuel rod cutting device was developed witch can cut fuel rods longitudinal very precisely and can also cut the fuels into the same length rod cuts repeatedly. It is also easy to remove the fuel cutting powder after cutting works and it can extend the life time of cutting device and lower the contamination level of hot cell

  8. Fuel rod response to BWR power oscillations during anticipated transient without scram

    International Nuclear Information System (INIS)

    Cunningham, M.; Scott, H.

    1998-01-01

    The US NRC is examining fuel behaviour during a postulated BWR anticipated transient without scram (ATWS) with power oscillations to determine if current regulatory criteria are adequate. Currently, the 280 cal/g limit for RIAs is used to show that coolable geometry is maintained and pressure pulses are avoided during ATWSs. Two specific questions have now been raised about the continued use of the 280 cal/g value. First, this value was derived from energy deposition values whereas the regulatory requirements are written in terms of fuel enthalpy. The second is that fuel rod rupture with fuel dispersal has been observed in RIA tests with high bum-up fuel rods having energy deposition values well below the current limit. However, the BWR ATWS power oscillation transient is slower than a RIA power pulse, thus reducing the likelihood of failure. Therefore questions about the adequacy of the 280 cal/g limit do not necessarily imply unacceptable fuel damage occurring during such power oscillations and there is no immediate safety concern. The reported analysis, using the FRAPTRAN transient fuel rod analysis code, was thus undertaken to determine if further investigation might be appropriate and with the intention of starting some discussions about the issue. There was a comment that a limit of 100 cal/g fuel enthalpy had been mentioned following the scoping calculations but that perhaps enthalpy was not the main concern in an ATWS. It was also observed that cladding stresses are lower than in all RIA. The question was what really is the main concern. It was replied that the main concern was a question of maintaining a coolable geometry i.e. not loosing fuel particles out of the rod. And it was agreed that enthalpy may not be the important issue, rather that it previously had been used as the parameter and so had been considered. Confirmation of this presently being an evaluation and not a regulatory concern was sought and provided, it being pointed out that the NRC

  9. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The reference fuel for Integral Fast Reactor (IFR) is a ternary U-Pu-Zr alloy with a low swelling austenitic or ferritic stainless steel cladding. It is known that low melting point eutectics may form in such metallic fuel-cladding systems which could contribute to cladding failure under accident conditions. This paper will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel

  10. Fuel rod behaviour during transients

    International Nuclear Information System (INIS)

    Hughes, H.; Haste, T.J.; Cameron, R.F.; Sinclair, J.E.

    1982-04-01

    The fuel pin performance code SLEUTH, the transient codes FRAP-T5 and TRAFIC and the clad deformation code CANSWEL-2 are described. It is shown how the codes treat gas release, pin cooling, cladding deformation and interaction, gap conductance etc. The materials properties used are indicated. (author)

  11. Advanced ceramic cladding for water reactor fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    2000-01-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of approximately 60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies ge50% would be examined

  12. Nondestructive analysis of irradiated fuels

    International Nuclear Information System (INIS)

    Dudey, N.D.; Frick, D.C.

    1977-01-01

    The principal nondestructive examination techniques presently used to assess the physical integrity of reactor fuels and cladding materials include gamma-scanning, profilometry, eddy current, visual inspection, rod-to-rod spacing, and neutron radiography. LWR fuels are generally examined during annual refueling outages, and are conducted underwater in the spent fuel pool. FBR fuels are primarily examined in hot cells after fuel discharge. Although the NDE techniques are identical, LWR fuel examinations emphasize tests to demonstrate adherence to technical specification and reliable fuel performance; whereas, FBR fuel examinations emphasize aspects more related to the relative performance of different types of fuel and cladding materials subjected to variable irradiation conditions

  13. Design of active-neutron fuel rod scanner

    International Nuclear Information System (INIS)

    Griffith, G.W.; Menlove, H.O.

    1996-01-01

    An active-neutron fuel rod scanner has been designed for the assay of fissile materials in mixed oxide fuel rods. A 252 Cf source is located at the center of the scanner very near the through hole for the fuel rods. Spontaneous fission neutrons from the californium are moderated and induce fissions within the passing fuel rod. The rod continues past a combined gamma-ray and neutron shield where delayed gamma rays above 1 MeV are detected. We used the Monte Carlo code MCNP to design the scanner and review optimum materials and geometries. An inhomogeneous beryllium, graphite, and polyethylene moderator has been designed that uses source neutrons much more efficiently than assay systems using polyethylene moderators. Layers of borated polyethylene and tungsten are used to shield the detectors. Large NaI(Tl) detectors were selected to measure the delayed gamma rays. The enrichment zones of a thermal reactor fuel pin could be measured to within 1% counting statistics for practical rod speeds. Applications of the rod scanner include accountability of fissile material for safeguards applications, quality control of the fissile content in a fuel rod, and the verification of reactivity potential for mixed oxide fuels. (orig.)

  14. Management of cladding hulls and fuel hardware

    International Nuclear Information System (INIS)

    1985-01-01

    The reprocessing of spent fuel from power reactors based on chop-leach technology produces a solid waste product of cladding hulls and other metallic residues. This report describes the current situation in the management of fuel cladding hulls and hardware. Information is presented on the material composition of such waste together with the heating effects due to neutron-induced activation products and fuel contamination. As no country has established a final disposal route and the corresponding repository, this report also discusses possible disposal routes and various disposal options under consideration at present

  15. A Procedure to Address the Fuel Rod Failures during LB-LOCA Transient in Atucha-2 NPP

    Directory of Open Access Journals (Sweden)

    Martina Adorni

    2011-01-01

    Full Text Available Depending on the specific event scenario and on the purpose of the analysis, the availability of calculation methods that are not implemented in the standard system thermal hydraulic codes might be required. This may imply the use of a dedicated fuel rod thermomechanical computer code. This paper provides an outline of the methodology for the analysis of the 2A LB-LOCA accident in Atucha-2 NPP and describes the procedure adopted for the use of the fuel rod thermomechanical code. The methodology implies the application of best estimate thermalhydraulics, neutron physics, and fuel pin performance computer codes, with the objective to verify the compliance with the specific acceptance criteria. The fuel pin performance code is applied with the main objective to evaluate the extent of cladding failures during the transient. The procedure consists of a deterministic calculation by the fuel performance code of each individual fuel rod during its lifetime and in the subsequent LB-LOCA transient calculations. The boundary and initial conditions are provided by core physics and three-dimensional neutron kinetic coupled thermal-hydraulic system codes calculations. The procedure is completed by the sensitivity calculations and the application of the probabilistic method, which are outside the scope of the current paper.

  16. Power ramp tests of BWR-MOX fuels

    International Nuclear Information System (INIS)

    Asahi, K.; Oguma, M.; Higuchi, S.; Kamimua, K.; Shirai, Y.; Bodart, S.; Mertens, L.

    1996-01-01

    Power ramp test of BWR-MOX and UO 2 fuel rods base irradiated up to about 60 GWd/t in Dodewaard reactor have been conducted in BR2 reactor in the framework of the international DOMO programme. The MOX pellets were provided by BN (MIMAS process) and PNC (MH method). The MOX fuel rods with Zr-liner and non-liner cladding and the UO 2 fuel rods with Zr-liner cladding remained intact during the stepwise power ramp tests to about 600 W/cm, even at about 60 GWd/t

  17. Fuel rod pellet loading head

    International Nuclear Information System (INIS)

    Howell, T.E.

    1975-01-01

    An assembly for loading nuclear fuel pellets into a fuel rod comprising a loading head for feeding pellets into the open end of the rod is described. The pellets rest in a perforated substantially V-shaped seat through which air may be drawn for removal of chips and dust. The rod is held in place in an adjustable notched locator which permits alignment with the pellets

  18. Techniques and results of examination of fission product release from VVER fuel rods with artificial defects and a burnup of ∼60 MWd/kgU at the MIR loop facility

    International Nuclear Information System (INIS)

    Burukin, A.; Goryachev, A.; Ilyenko, S.; Izhutov, A.; Konyashov, V.; Shishin, V.; Shulimov, V.; Luzanova, L.; Miglo, V.

    2009-01-01

    Complex of equipment and several techniques for examination of radioactive fission product release from defective fuel rods were developed, prepared and tested at the PV-1 loop facility of the MIR reactor. During the first test, which was conducted at the PV-1 loop facility and aimed at testing of developed equipment and techniques, measurement of radioactive fission product release from an experimental re-fabricated fuel rod with a burnup of ∼60 MWd/kgU and an artificial defect was performed under design-basis steady-state operating conditions of the VVER-1000 reactor. PIE of all main parameters of the experimental defective fuel rod did not reveal any state peculiarities which could be caused by the artificial defect, i.e. fuel and cladding characteristics in the defect area did not differ from the initial ones (before testing) as well as their characteristics in areas distant from the defect; they are typical for fuel rods with a similar irradiation history in the VVER NPP. The gap in the experimental fuel rod was bridged due to close contact between fuel and cladding at increased fuel burnup; it can appreciable reduce release of radioactive fission products into the PV-1 primary coolant. This suggestion and quantitative characteristics of effect of gap bridging in a high-burnup fuel rod on radioactive fission product release should be investigated during the next tests performed at the PV-1 loop facility. Values of radioactive fission product release measured during the first test at the PV-1 loop facility in the MIR reactor will be used for development of an empirical engineering model in order to take into account high burnup effects and their impact on fission product release from fuel and defective fuel rods

  19. Automated nuclear fuel rod pattern loading system

    International Nuclear Information System (INIS)

    Lambert, D.V.; Nyland, T.W.; Byers, J.W.; Haley, D.E. Jr.; Cioffi, J.V.

    1990-01-01

    This patent describes an apparatus for loading fuel rods in a desired pattern. It comprises: a carousel having a plurality of movable gondolas for stocking thereon fuel rods of known enrichments; an elongated magazine defining a matrix of elongated slots being open at their forward ends for receiving fuel rods; a workstation defining a fuel rod feed path; and a holder and indexing mechanism for movably supporting the magazine and being actuatable for moving the magazine along X-Y axes to successively align one at a time selected ones of the slots with the feed path for loading in the magazine the successive fuel rods in a desired enrichment pattern

  20. First interim examination of defected BWR and PWR rods tested in unlimited air at 2290C

    International Nuclear Information System (INIS)

    Einziger, R.E.; Cook, J.A.

    1983-01-01

    A five-year whole rod test was initiated to investigate the long-term stability of spent fuel rods under a variety of possible dry storage conditions. Both PWR and BWR rods were included in the test. The first interim examination was conducted after three months of testing to determine if there was any degradation in those defected rods stored in an unlimited air atmosphere. Visual observations, diametral measurements and radiographic smears were used to assess the degree of cladding deformation and particulate dispersal. The PWR rod showed no measurable change from the pre-test condition. The two original artificial defects had not changed in appearance and there was no diametral growth of the cladding. One of the defects in BWR rod showed significant deformation. There was approximately 10% cladding strain at the defect site and a small axial crack had formed. The fuel in the defect did not appear to be friable. The second defect showed no visible change and no cladding strain. Following examination, the test was continued at 230 0 C. Another interim examination is planned during the summer of 1983. This paper discusses the details and meaning of the data from the first interim examination

  1. Nuclear reactor fuel rod attachment system

    International Nuclear Information System (INIS)

    Christiansen, D.W.

    1983-01-01

    The invention involves a technique to quickly, inexpensively and rigidly attach a nuclear reactor fuel rod to a support member. The invention also allows for the repeated non-destructive removal and replacement of the fuel rod. The proposed fuel rod and support member attachment and removal system consists of a locking cap fastened to the fuel rod and a locking strip fastened to the support member or vice versa. The locking cap has two or more opposing fingers shaped to form a socket. The fingers spring back when moved apart and released. The locking strip has an extension shaped to rigidly attach to the socket's body portion

  2. Irradiation effects on mechanical properties of fuel element cladding from thermal reactors

    International Nuclear Information System (INIS)

    Chatterjee, S.

    2005-01-01

    During reactor operation, UO 2 expands more than the cladding tube (Zirconium alloys for thermal reactors), is hotter, cracks and swells. The fuel therefore will interact with the cladding, resulting in straining of the later. To minimize the possibility of rupture of the cladding, ideally it should have good ductility as well as high strength. However, the ductility reduces with increase in fuel element burn-up. Increased burn-up also increases swelling of the fuel, leading to increased contact pressure between the fuel and the cladding tube. This would cause strains to be concentrated over localized regions of the cladding. For fuel elements burnup exceeding 40 GWd/T, the contribution of embrittlement due to hydriding, and the increased possibility of embrittlement due to stress corrosion cracking, also need to be considered. In addition to the tensile properties, the other mechanical properties of interest to the performance of cladding tube in an operating fuel element are creep rate and fatigue endurance. Irradiation is reported to have insignificant effect on high cycle endurance limit, and fatigue from fuel element vibration is most unlikely, to be life limiting. Even though creep rates due to irradiation are reported to increase by an order of magnitude, the cladding creep ductility would be so high that creep type failures in fuel element would be most improbable. Thus, the most important limiting aspect of mechanical performance of fuel element cladding has been recognized as the tensile ductility resulting from the stress conditions experienced by the cladding. Some specific fission products of threshold amount (if) deposited on the cladding, and hydride morphology (e.g. hydride lenses). The presentation will brief about irradiation damage in cladding materials and its significance, background of search for better Zirconium alloys as cladding materials, and elaborate on the types of mechanical tests need to be conducted for the evaluation of claddings

  3. Delayed hydride cracking of Zircaloy-4 fuel cladding

    International Nuclear Information System (INIS)

    Pizarro, Luis M.; Fernandez, Silvia; Lafont, Claudio; Mizrahi, Rafael; Haddad, Roberto

    2007-01-01

    Crack propagation rates, grown by the delayed hydride cracking mechanism, were measured in Zircaloy-4 fuel cladding, according to a Coordinated Research Project (CRP) sponsored by the International Atomic Energy Agency (IAEA). During the first stage of the program a Round Robin Testing was performed on fuel cladding samples provided by Studsvik (Sweden), of the type used in PWR reactors. Crack growth in the axial direction is obtained through the specially developed 'pin load testing' (PLT) device. In these tests, crack propagation rates were determined at 250 C degrees on several samples of the material described above, obtaining a mean value of about 2.5 x 10 -8 m s -1 . The results were analyzed and compared satisfactorily with those obtained by the other laboratories participating in the CRP. At the present moment, similar tests on CANDU and Atucha I type fuel cladding are being performed. It is thought that the obtained results will give valuable information concerning the analysis of possible failures affecting fuel cladding under reactor operation. (author) [es

  4. Nuclear fuel operation at Balakovo NPP

    International Nuclear Information System (INIS)

    Morozov, A.

    2015-01-01

    The presentation addressed the positive experience of the TVS-2M assemblies implementation at Balakovo NPP in 18 month fuel cycles, at uprated power (104%) and the usage of the axial profiled Gd-rods in order to minimize the power peaking factors and linear heat rate in the upper part in some of the fuel rods. The results of the test operation of fuel rods with different claddings, made by E110M, E125 and E635M alloys at Balakovo NPP were also provided. The recently observed problem with the “white crust” on the cladding surfaces was also discussed

  5. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    International Nuclear Information System (INIS)

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-01

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  6. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongbing [Univ. of Texas, Austin, TX (United States); Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  7. Release of fission products from a fuel rod with an artificial hole through cladding irradiated in an in-pile water loop, (2)

    International Nuclear Information System (INIS)

    Ishiwatari, Nasumi

    1978-11-01

    To make clear the iodine spiking phenomenon from a defective fuel rod into the primary coolant, the fuel rod (UO 2 pellets, with stainless steel sheath) with an artificial pin hole was irradiated in the inpile test section of water loop JMTR.OWL-1. Experimental conditions were depressurization and temperature drop of the primary loop coolant and diameter and position of the pin hole. Iodine 131 and cesium 137 in loop coolant were measured under various coolant conditions. The inventory and translation rate of iodine 131 in fuel rod related to irradiation histories were calculated. The levels of I-131 and Cs-137 released to loop coolant from fuel rod were compared. Comparison of the results with LWRs was made by way of the spiked amount and release rate of iodine 131. (author)

  8. System for manipulating radioactive fuel rods within a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Tolino, R.W.; King, W.E.; Blickenderfer, J.L.; Roth, C.H. Jr.

    1987-01-01

    A tool is described for manipulating the peripherally located fuel rods of a fuel assembly so that the rods can be visually inspected. The fuel assembly includes top and bottom nozzles, each of which is connected to a support skeleton, as well as grids, and wherein the rods are retained within the grids and confined between the top and bottom nozzles thereof. It consists of: (a) a fixture that is detachably connectable to one of the nozzles of the fuel assembly. The fixture having holes therein, (b) rotating means pivotally mountable within the holes of the fixture for selectively gripping and rotating the rod, and (c) a displacing means mounted on the fixture for reciprocably displacing the rods within the fuel assembly, including a lifting assembly and a push-down assembly for lifting and pushing down a selected one of the rods, respectively, whereby the rods can be selectively rotated, lifted, and pushed down in order to expose portions of the rods which are normally hidden to visual inspection while the nozzles stay connected to the support skeleton and the rods stay confined between the top and bottom nozzles of the fuel assembly

  9. Refabricated and instrumented fuel rods

    International Nuclear Information System (INIS)

    Silberstein, K.

    2005-01-01

    Nuclear Fuel for power reactors capabilities evaluation is strongly based on the intimate knowledge of its behaviour under irradiation. This knowledge can be acquired from refabricated and instrumented fuel rods irradiated at different levels in commercial reactors. This paper presents the development and qualification of a new technique called RECTO related to a double-instrumented rod re-fabrication process developed by CEA/LECA hot laboratory facility at CADARACHE. The technique development includes manufacturing of the properly dimensioned cavity in the fuel pellet stack to house the thermocouple and the use of a newly designed pressure transducer. An analytic irradiation of such a double-instrumented fuel rod will be performed in OSIRIS test reactor starting October 2004. (Author)

  10. Conditioning of nuclear reactor fuel

    International Nuclear Information System (INIS)

    1975-01-01

    A method of conditioning the fuel of a nuclear reactor core to minimize failure of the fuel cladding comprising increasing the fuel rod power to a desired maximum power level at a rate below a critical rate which would cause cladding damage is given. Such conditioning allows subsequent freedom of power changes below and up to said maximum power level with minimized danger of cladding damage. (Auth.)

  11. Demonstration of fuel resistant to pellet-cladding interaction: Phase 2. Second semiannual report, July-December 1979

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1980-03-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel and (b) Zr-liner fuel. In the current report period the nuclear design of the demonstration was begun. The design calls for 132 bundles of barrier fuel to be inserted into the core of Quad Cities Unit 2 at the beginning of Cycle 6. Laboratory and in-reactor tests were started to evaluate the stability of Zr-liner fuel which remains in service after a defect has occurred which allows water to enter the rod. Results to date on intentionally defected fuel indicate that the Zr-liner fuel is not rapidly degraded despite ingress of water

  12. Analysis of irradiation temperature in fuel rods of OGL-1 fuel assembly

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kobayashi, Fumiaki; Minato, Kazuo; Ikawa, Katsuichi; Iwamoto, Kazumi

    1984-10-01

    Irradiation temperature in the fuel rods of 5th OGL-1 fuel assembly was analysed by the system composed by STPDSP2 and TRUMP codes. As the measured input-data, following parameters were allowed for; circumferential heating distribution around the fuel rod, which was measured in the JMTR critical assembly, axial heating distribution through the fuel rod, ratio of peak heatings of three fuel rods, and pre- and post-irradiation outer radii of the fuel compacts and inner radii of the graphite sleeves, which had been measured in PIE of the 5th OGL-1 fuel assembly. In computation the axial distributions of helium coolant temperature through the fuel rod and the heating value of each fuel rod were, firstly, calculated as input data for TRUMP. The TRUMP calculation yielded the temperatures which were fitted in those measured by all of the thermo-couples installed in the fuel rods, by adjusting only the value of the surface heat transfer coefficient, and consequently, the temperatures in all portions of the fuel rod were obtained. The apparent heat transfer coefficient changed to 60% of the initial values in the middle period of irradiation. For this reduction it was deduced that shoot had covered the surface of the fuel rod during irradiation, which was confirmed in PIE. Beside it, several things were found in this analysis. (author)

  13. The prediction problems of VVER fuel element cladding failure theory

    International Nuclear Information System (INIS)

    Pelykh, S.N.; Maksimov, M.V.; Ryabchikov, S.D.

    2016-01-01

    Highlights: • Fuel cladding failure forecasting is based on the fuel load history and the damage distribution. • The limit damage parameter is exceeded, though limit stresses are not reached. • The damage parameter plays a significant role in predicting the cladding failure. • The proposed failure probability criterion can be used to control the cladding tightness. - Abstract: A method for forecasting of VVER fuel element (FE) cladding failure due to accumulation of deformation damage parameter, taking into account the fuel assembly (FA) loading history and the damage parameter distribution among FEs included in the FA, has been developed. Using the concept of conservative FE groups, it is shown that the safety limit for damage parameter is exceeded for some FA rearrangement, though the limits for circumferential and equivalent stresses are not reached. This new result contradicts the wide-spread idea that the damage parameter value plays a minor role when estimating the limiting state of cladding. The necessary condition of rearrangement algorithm admissibility and the criterion for minimization of the probability of cladding failure due to damage parameter accumulation have been derived, for using in automated systems controlling the cladding tightness.

  14. Microcomputer system for controlling fuel rod length

    International Nuclear Information System (INIS)

    Meyer, E.R.; Bouldin, D.W.; Bolfing, B.J.

    1979-01-01

    A system is being developed at the Oak Ridge National Laboratory (ORNL) to automatically measure and control the length of fuel rods for use in a high temperature gas-cooled reactor (HTGR). The system utilizes an LSI-11 microcomputer for monitoring fuel rod length and for adjusting the primary factor affecting length. Preliminary results indicate that the automated system can maintain fuel rod length within the specified limits of 1.940 +- 0.040 in. This system provides quality control documentation and eliminates the dependence of the current fuel rod molding process on manual length control. In addition, the microcomputer system is compatible with planned efforts to extend control to fuel rod fissile and fertile material contents

  15. Irradiation effects on thermal properties of LWR hydride fuel

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt, E-mail: terrani@berkeley.edu [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Balooch, Mehdi [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Carpenter, David; Kohse, Gordon [Massachusetts Institute of Technology, 138 Albany St., Cambridge, MA 02139 (United States); Keiser, Dennis; Meyer, Mitchell [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Olander, Donald [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States)

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH{sub 1.6}) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  16. Fuel cladding mechanical properties for transient analysis

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.; Hanson, J.E.

    1976-01-01

    Out-of-pile simulated transient tests have been conducted on irradiated fast-reactor fuel pin cladding specimens at heating rates of 10 0 F/s (5.6 0 K/s) and 200 0 F/s (111 0 K/s) to generate mechanical property information for use in describing cladding behavior during off-normal events. Mechanical property data were then analyzed, applying the Larson-Miller Parameter to the effects of heating rate and neutron fluence. Data from simulated transient tests on TREAT-tested fuel pins demonstrate that Plant Protective System termination of 3$/s transients prevents significant damage to cladding. The breach opening produced during simulated transient testing is shown to decrease in size with increasing neutron fluence

  17. Failure position detection device for nuclear fuel rod

    International Nuclear Information System (INIS)

    Ishida, Takeshi; Higuchi, Shin-ichi; Ito, Masaru; Matsuda, Yasuhiko

    1987-01-01

    Purpose: To easily detect failure position of a nuclear fuel rod by relatively moving an air-tightly shielded detection portion to a fuel rod. Constitution: For detecting the failure position of a leaked fuel assembly, the fuel assembly is dismantled and a portion of withdrawn fuel rod is air-tightly sealed with an inspection portion. The inside of the inspection portion is maintained at a pressure-reduced state. Then, in a case if failed openings are formed at a portion sealed by the inspection portion in the fuel rod, FP gases in the fuel rod are released based on the reduced pressure and the FP gases are detected in the detection portion. Accordingly, by relatively moving the detection portion to the fuel rod, the failure position can be detected. (Yoshino, Y.)

  18. Failure position detection device for nuclear fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Takeshi; Higuchi, Shin-ichi; Ito, Masaru; Matsuda, Yasuhiko

    1987-03-24

    Purpose: To easily detect failure position of a nuclear fuel rod by relatively moving an air-tightly shielded detection portion to a fuel rod. Constitution: For detecting the failure position of a leaked fuel assembly, the fuel assembly is dismantled and a portion of withdrawn fuel rod is air-tightly sealed with an inspection portion. The inside of the inspection portion is maintained at a pressure-reduced state. Then, in a case if failed openings are formed at a portion sealed by the inspection portion in the fuel rod, FP gases in the fuel rod are released based on the reduced pressure and the FP gases are detected in the detection portion. Accordingly, by relatively moving the detection portion to the fuel rod, the failure position can be detected. (Yoshino, Y.).

  19. Corrosion effect of fast reactor fuel claddings on their mechanical properties

    International Nuclear Information System (INIS)

    Davydov, E.F.; Krykov, F.N.; Shamardin, V.K.

    1985-01-01

    Fast reactor fuel cladding corrosion effect on its mechanical properties was investigated. UO 2 fuel elements were irradiated in the BOP-60 reactor at the linear heat rate of 42 kw/m. Fuel cladding is made of stainless steel OKh16N15M3BR. Calculated maximum cladding temperature is 920 K. Neutron fluence in the central part of fuel elements is 6.3x10 26 m+H- 2 . To investigate the strength changes temperature dependence of corrossion depth, cladding strength reduction factors was determined. Samples plasticity reduction with corrosion layer increase is considered to be a characteristic feature

  20. Effect of PWR Re-start ramp rate on pellet-cladding interactions

    International Nuclear Information System (INIS)

    Yagnik, S.K.; Chang, B.C.; Sunderland, D.J.

    2005-01-01

    To mitigate pellet-cladding interaction (PCI) leading to fuel rod failures, fuel suppliers specify reactor power ramp rate limitations during reactor start-up after an outage. Typical re-start ramp rates are restricted and range between 3-4% per hour of full reactor power above a threshold power level. Relaxation of threshold power and ramp rate restrictions has the potential to improve plant economics. The paper will compare known re-start power ascension procedures employed in the US, German, French and Korean PWRs after a refuelling outage. A technical basis for optimising power ascension procedures during reactor start-up can be developed using analytical modelling. The main objective of the modelling is to determine the potential for PCI failure for various combinations of threshold power levels and ramp rate levels. A key element of our analysis is to estimate the decrease in margin to cladding failure by ISCC based on a time-temperature-stress failure criterion fashioned Act a cumulative cladding damage index. The analysis approach and the cladding damage model will be described and the results from three case studies based on the FALCON fuel rod behaviour code will be reported. We conclude that the PCI behaviour is more affected by ramp rate and threshold power than by the fuel design and that the fuel power history is the most important parameter. (authors)

  1. General considerations on the oxide fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Pascard, R.

    1977-01-01

    Since the very first experimental irradiations in thermal reactors, performed in view of the future Rapsodie fuel general study, corrosion cladding anomalies were observed. After 10 years of Rapsodie and more than two years of Phenix, performance brought definite confirmation of the chemical reactions between the irradiated fuel and cladding. That is the reason for which the fuel designers express an urgent need for determining the corrosion rates. Semi-empirical laws and mechanisms describing corrosion processes are proposed. Erratic conditions for appearance of the oxide-cladding corrosion are stressed upon. Obviously such a problem can be fully appreciated only by a statistical approach based on a large number of observations on the true LMFBR fuel pins

  2. Welding nuclear reactor fuel rod end plugs

    International Nuclear Information System (INIS)

    Yeo, D.

    1984-01-01

    Apparatus for applying a vacuum to a nuclear fuel rod cladding tube's interior through its open end while girth welding an inserted end plug to its other end. An airtight housing has an orifice with a seal which can hermetically engage the tube's open end. A vacuum hose has one end connected to the housing and the other end connected to a vacuum pump. A mechanized device which moves the housing to engage or disengage its seal with the tube's open end includes at least one arm having one end attached to the housing and the other end pivotally attached to a movable table; an arm rotating device to coaxially align the housing's orifice with the welding-positioned tube; and a table moving device to engage the seal of the coaxially aligned orifice with the tube's open end. (author)

  3. Temperature measurements of the aluminium claddings of fuel elements in nuclear reactor

    International Nuclear Information System (INIS)

    Chen Daolong

    1986-01-01

    A method for embedding the sheathed thermocouples in the aluminium claddings of some fuel elements of experimental reactors by ultrasonic welding technique is described. The measurement results of the cladding temperature of fuel elements in reactors are given. By means of this method, the joint between the sheathed thermocouples and the cladding of fuel elements can be made very tight, there are no bulges on the cladding surfaces, and the sheathed thermocouples are embedded strongly and reliably. Therefore an essential means is provided for acquiring the stable and dynamic state data of the cladding temperature of in-core fuel elements

  4. Parametric study of the behaviour of a pre irradiated BWR fuel rod under conditions of LOCA simulated in the halden in pile test system with the FALCON code

    Energy Technology Data Exchange (ETDEWEB)

    Khvostov, G.; Zimmermann, M. A. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institut, Villigen (Switzerland); Ledergerber, G. [Kernkraftwerk Leibstadt AG, Leibstadt (Switzerland); Kolstad, E. [Institute for Energy Technology - OECD Halden Reactor Project, Halden (Norway); Montgomery, R. O. [Anatech Corporation, San Diego (United States)

    2008-10-15

    A new LOCA test at Halden was planned as the first experiment within the Halden LOCA program addressing the behaviour of commercially irradiated BWR fuel of medium burn up with burst of the cladding expected to occur at a temperature of about 1050.deg.C, which is essentially higher than in the preceding experiments. The specific measures to be adopted have been suggested based upon a parametric study using the FALCON fuel behaviour code and aimed at an optimized design of the test fuel rod for the given high target cladding temperature of 1150 .deg. C (peak local). The analysis has shown a reasonable agreement with the fundamental experimental findings, such as correlations of NUREG 0630, as well as consistency with the data from Halden LOCA testing available so far. Thus, a general conclusion is drawn about the applicability of the methodology developed at PSI to the analysis of LWR fuel rod behaviour during LOCA, in consideration of the effects of fuel burn up.

  5. Engineered zircaloy cladding modifications for improved accident tolerance of LWR fuel: US DOE NEUP Integrated Research Project

    International Nuclear Information System (INIS)

    Heuser, Brent

    2013-01-01

    cladding composition to promote precipitation of minor phase(s) during fabrication. These precipitates will be stable under normal operation, but dissolve during the temperature excursions; the migration of solute elements to the free surface will then shift the reaction away from oxide formation. This pathway is referred to as the 'bulk self-healing' solution. A synergistic response of the fuel rod is anticipated in which the combined mitigation of brittle exothermic oxide formation and associated reduction in cladding temperature lead to accident tolerance with respect to cladding failure. The proposed cladding modifications potentially may influence neutronics and thermal hydraulics, both under normal operation and off-normal scenarios; a favourable reactor system response must therefore be demonstrated for both solution pathways. The objectives of the proposed IRP is four-fold: 1) demonstration of the performance of modified cladding material under normal BWR and PWR operation with respect to corrosion, in particular, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC); 2) the mitigation of accelerated cladding oxidation during off-normal scenarios that fall below unchecked LOCA events, as well as uncovering scenarios that involve used fuel in on-site storage pools; 3) the benchmarking of the fuel performance code against the databases developed in 1 and 2; 4) demonstration of overall reactor system performance with the proposed modifications to the pellet and cladding

  6. Method and apparatus for compacting spent nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    In a nuclear reactor system requiring periodic physical manipulation of spent fuel rods, the method of compacting fuel rods from a fuel rod assembly is described comprising the steps of: (1) removing the top end from pulling members having electrodes of weld elements in leading ends thereof in sequence through a fuel rod container and thence through respective consolidating passages in a fuel-rod directing chamber; (3) welding the weld elements of the pulling members to the top end of respective fuel rods corresponding to the respective pulling members; (4) drawing each of the pulling members axially to draw the respective engaged fuel rods in one axial direction through the respective passages in the chamber to thereby consolidate the fuel rods into a compacted configuration of a cross-sectional area smaller than the cross-sectional area occupied thereby within the fuel rod assembly; and (5) drawing all of the engaged fuel rods concurrently and substantially parallel to one another to the one axial direction into the fuel rod container while maintaining the compacting configuration in a fuel rod density which is greater than that of the fuel rod density of the fuel rod assembly

  7. Development of a simplified fuel-cladding gap conductance model for nuclear feedback calculation in 16x16 FA

    International Nuclear Information System (INIS)

    Yoo, Jong Sung; Park, Chan Oh; Park, Yong Soo

    1995-01-01

    The accurate determination of the fuel-cladding gap conductance as functions of rod burnup and power level may be a key to the design and safety analysis of a reactor. The incorporation of a sophisticated gap conductance model into nuclear design code for computing thermal hydraulic feedback effect has not been implemented mainly because of computational inefficiency due to complicated behavior of gap conductance. To avoid the time-consuming iteration scheme, simplification of the gap conductance model is done for the current design model. The simplified model considers only the heat conductance contribution to the gap conductance. The simplification is made possible by direct consideration of the gap conductivity depending on the composition of constituent gases in the gap and the fuel-cladding gap size from computer simulation of representative power histories. The simplified gap conductance model is applied to the various fuel power histories and the predicted gap conductances are found to agree well with the results of the design model

  8. Scientific basis for storage criteria for interim dry storage of aluminum-clad fuels

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Peacock, H.B. Jr.; Lam, P.S.; Iyer, N.C.; Louthan, M.R. Jr.; Murphy, J.R.

    1996-01-01

    An engineered system for dry storage of aluminum-clad foreign and domestic research reactor spent fuel owned by the US Department of Energy is being considered to store the fuel up to a nominal period of 40 years prior to ultimate disposition. Scientifically-based criteria for environmental limits to drying and storing the fuels for this system are being developed to avoid excessive degradation in sealed and non-sealed (open to air) dry storage systems. These limits are based on consideration of degradation modes that can cause loss of net section of the cladding, embrittlement of the cladding, distortion of the fuel, or release of fuel and fission products from the fuel/clad system. Potential degradation mechanisms include corrosion mechanisms from exposure to air and/or sources of humidity, hydrogen blistering of the aluminum cladding, distortion of the fuel due to creep, and interdiffusion of the fuel and fission products with the cladding. The aluminum-clad research reactor fuels are predominantly highly-enriched aluminum uranium alloy fuel which is clad with aluminum alloys similar to 1100, 5052, and 6061 aluminum. In the absence of corrodant species, degradation due to creep and diffusion mechanisms limit the maximum fuel storage temperature to 200 C. The results of laboratory scale corrosion tests indicate that this fuel could be stored under air up to 200 C at low relative humidity levels (< 20%) to limit corrosion of the cladding and fuel (exposed to the storage environment through assumed pre-existing pits in the cladding). Excessive degradation of fuels with uranium metal up to 200 C can be avoided if the fuel is sufficiently dried and contained in a sealed system; open storage can be achieved if the temperature is controlled to avoid excessive corrosion even in dry air

  9. Cesium chemistry in GCFR fuel pins

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1979-01-01

    The fuel rod design for the Gas Cooled Fast-Breeder Reactor (GCFR) is similar to that employed for the Liquid Metal Fast Breeder Reactor (LMFBR) with the exception of the unique features inherent to the use of helium as the coolant. These unique design features include the use of (1) vented and pressure-equalized fuel rods, and (2) ribbed cladding along 75% of the fuel section. The former design feature enables reduction in cladding thickness and prevention of possible creep collapse of the cladding due to the high coolant pressure (8.5 MPa). The latter design feature brings about improved heat transfer characteristics. Each GCFR fuel rod is vented to a manifold whereby gaseous fission products diffusing out of the fuel pin are retained on charcoal traps. As a result, the internal pressure of a GCFR fuel pin does not increase during irradiation. In addition, the venting system also maintains the pressure within the fuel pin slightly below (0.3 to 0.5 MPa) the coolant pressure outside the fuel pin. Consequently, should a breach occur in the cladding, helium flows into the breached fuel pin thereby minimizing fission product contamination of the coolant. These desirable aspects of a GCFR fuel pin can be maintained only as long as axial gas transport paths are available and operating within the fuel pin

  10. Performance of high burned PWR fuel during transient

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujishiro, Toshio

    1992-01-01

    In a majority of Japanese light water type commercial powder reactors (LWRs), UO 2 pellet sheathed by zircaloy cladding is used. Licensed discharged burn-up of the PWR fuel rod is going to be increased from 39 MWd/kgU to 48 MWd/kgU. This requests the increased reliability of cladding material as a strong barrier against fission product (FP). A long time usage in the neutron field and in the high temperature coolant will cause the zircaloy hardening and embrittlement. The cladding material is also degraded by waterside corrosion. These degradations are enhanced much by increased burn-up. A increased magnitude of the pellet-cladding mechanical interaction (PCMI) is of importance for increasing the stress of cladding material. In addition, aggressive FPs released from the fuel tends to attack the cladding material to cause stress corrosion cracking (SCC). At the Nuclear Safety Research Reactor (NSRR) in JAERI, 14 x 14 PWR type fuel rods preirradiation up to 42 MWd/kgU was prepared for the transient pulse irradiation under the simulated reactivity initiated accident (RIA) conditions. This will cause a prompt increase of the fuel temperature and stress on the highly burned cladding material. In the present paper, steady-state and transient behavior observed from the tested PWR fuel rod and calculational results obtained from the computer code FPRETAIN will be described. (author)

  11. FRAP-T, Temperature and Pressure in Oxide Fuel During LWR LOCA

    International Nuclear Information System (INIS)

    Siefken, L.J.; Shah, V.N.; Berna, G.A.; Hohorst, J.K.

    1984-01-01

    1 - Description of problem or function: FRAP-T6 is the most recent in the FRAP-T (Fuel Rod Analysis Program - Transient) series of programs for calculating the transient behavior of light water reactor fuel rods during reactor transients and hypothetical accidents, such as loss-of-coolant and reactivity-initiated accidents. The program calculates the temperature and deformation histories of fuel rods as functions of time-dependent fuel rod power and coolant boundary conditions. FRAP-T6 can be used as a 'stand-alone' code or, using steady state fuel rod conditions supplied by FRAPCON2 (NESC NO. 694), can perform a transient analysis. In either case, the phenomena modeled by FRAP-T6 include: heat conduction, heat transfer from cladding to coolant, elastic- plastic fuel and cladding deformation, cladding oxidation, fission gas release, fuel rod gas pressure, and pellet cladding mechanical interaction. Licensing audit models have been added, also. The program includes a user's option that automatically provides a detailed uncertainty analysis of the calculated fuel rod variables due to uncertainties in fuel rod fabrication, material properties, power and cooling. 2 - Method of solution: The models in FRAP-T6 use finite difference techniques to calculate the variables which influence fuel rod performance. The variables are calculated at user-specified slices of the fuel rod. Each slice is at a different elevation and is defined to be an axial node. At each axial node, the variables are calculated at user-specified locations. Each location is at a different radius and is defined to be a radial node. The variables at any given axial node are assumed to be independent of the variables at all other axial nodes. The solution for the fuel rod variables begins with the calculation of the fuel and cladding temperatures. Then, the temperature of the gases in the plenum of the fuel rod is calculated. Next, the stresses and strains in the fuel and cladding and the pressure of the

  12. Nondestructive assay of HTGR fuel rods

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1974-01-01

    Performance characteristics of three different radioactive source NDA systems are compared for the assay of HTGR fuel rods and stacks of rods. These systems include the fast neutron Sb-Be assay system, the 252 Cf ''Shuffler,'' and the thermal neutron PAPAS assay system. Studies have been made to determinethe perturbation on the measurements from particle size, kernel Th/U ratio, thorium content, and hydrogen content. In addition to the total 235 U determination, the pellet-to-pellet or rod-to-rod uniformity of HTGR fuel rod stacks has been measured by counting the delayed gamma rays with a NaI through-hole in the PAPAS system. These measurements showed that rod substitutions can be detected easily in a fuel stack, and that detailed information is available on the loading variations in a uniform stack. Using a 1.0 mg 252 Cf source, assay rates of 2 to 4 rods/s are possible, thus facilitating measurement of 100 percent of a plant's throughput. (U.S.)

  13. Study on dynamic measurement of fuel pellet length during loading into cladding tube

    International Nuclear Information System (INIS)

    Zhang Kai

    1993-09-01

    Various methods are presented for measuring the pellet length in the cladding tube (zirconium tube) during the loading process of the preparation of single rod of nuclear fuel assembly. These methods are used in former Soviet Union, west European countries and China in the manufacturing of nuclear power plant element. Different methods of dynamic measurement by using mechanics, optics and electricity and their special features are analysed and discussed. The structure and measuring principle of a developed measuring device,and its measuring precision and system deviation are also introduced. Finally, the length of loaded pellets is checked with analog pellets. The results are as expected and show that the method and principle used in the measuring device are feasible. It is an ideal and advanced method for the pellet loading of single cladding tube. The principle mentioned above can also be used in other industries

  14. A study of friction and axial effects in pellet-clad mechanical interaction

    International Nuclear Information System (INIS)

    Harriague, S.; Meyer, J.E.

    1983-01-01

    An analysis is made of the effect of friction forces at the pellet-cladding contact points on the behaviour of a fuel rod under a power-up ramp. A thermoelastic description of the pellets is given; the stiffness matrix and initial displacements are obtained from a finite element calculation. The cladding is considered to behave as a thermoelastic thin shell. A method is developed to assemble the stiffness of each pellet and corresponding cladding section on a fuel rod, resulting in an explicit description of the whole stack. The assumption of thermoelasticity allows for a very fast calculation, even when including hundreds of pellets under an arbitrary axial distribution of power. Results showing the pattern of friction and axial forces, and relative and localized displacements along the rod, are presented. In most cases, pellets at the top of the stack slide with respect to the clad. As a result of the build-up of axial forces due to friction, pellets at lower positions in the fuel column may show, at the contact positions, no relative displacements with respect to the cladding. The effect of pellet dishing and L/D ratio on the axial strains and local deformations are shown. The predictions are consistent with the experimental observations on the effect of pellet shape. Finally, a discussion is made of the results of this study. The use of these results as a guideline for establishing proper boundary conditions in a non-linear PCMI model (i.e., including plasticity and pellet cracking) are also discussed. (author)

  15. Preliminary study of mechanical behavior for Cr coated Zr-4 Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do-Hyoung; Kim, Hak-Sung [Hanyang Univ., Seoul (Korea, Republic of); Kim, Hyo-Chan; Yang, Yong-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To decrease the oxidation rate of Zr-based alloy components, many concepts of accident tolerant fuel (ATF) such as Mo-Zr cladding, SiC/SiCf cladding and iron-based alloy cladding are under development. One of the promised concept is the coated cladding which can remarkably increase the corrosion and wear resistance. Recently, KAERI is developing the Cr coated Zircaloy cladding as accident tolerance cladding. To coat the Cr powder on the Zircaloy, 3D laser coating technology has been employed because it is possible to make a coated layer on the tubular cladding surface by controlling the 3-diminational axis. Therefore, for this work, the mechanical integrity of Cr coated Zircaloy should be evaluated to predict the safety of fuel cladding during the operating or accident of nuclear reactor. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr, which were referred from the literatures and experimental reports. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr. The pellet-clad mechanical interaction (PCMI) properties of Cr coated Zr-4 cladding were investigated by thermo-mechanical finite element analysis (FEA) simulation. The mechanical properties of Zr-4 and Cr was validated by simulation of ring compression test (RCT) of fuel cladding.

  16. Finite element analysis of the contact between fuel rod and spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Kyu; Kim, Young Koon; Kang, Heung Seok; Yoon, Kyung Ho; Song, Kee Nam [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    For the research on the fretting failure problem of nuclear fuel, the contact length and normal stress field are evaluated for the contact between fuel rod and spacer grid by using the Finite Element Method (FEM). An assumption of semi-infiniteness is necessary for applying the Contact Mechanics which is based on the classical theory of elasticity to the present problem. For the contact problem of fuel fretting, the contact mechanical solutions could be utilized well with sufficient accuracy if the contact bodies (i.e., the cladding tube and the spacer grid) can be assumed as semi-infinite bodies. To this end, the contact length evaluated by FEM is discussed together with the relevant research which concerned the effect of dimension for the validity of the assumption of semi-infiniteness. Normal stress profile on the contact is also studied through comparing the theoretical and the FE results. For the analysis of contact problem by FEM, ANSYS code (Version 5.3) is utilized and the geometry is chosen to be the Hertzian (cylinder-to-cylinder), the strip-to-cylinder and the fuel rod/spacer grid contact (strip-to-tube). Present research will be utilized for accessing the fuel fretting problem by FEM together with the theoretical (i.e., contact mechanical) analysis which has been published as KAERI/TR-1113/98. (author). 15 refs., 44 figs., 4 tabs.

  17. A study of friction and axial effects in pellet-clad mechanical interaction

    International Nuclear Information System (INIS)

    Harriague, Santiago; Mayer, J.E.

    1982-01-01

    An analysis is made of the effect of friction and axial forces along the fuel rod in the pellet-cladding mechanical interaction in a commercial reactor under a power-up ramp. The effect of different pellet and rod shapes on their behaviour was also determined. A linear thermoelastic computer program was used in order to obtain the stiffness matrix of a compound structure from the stiffness of its components. Pellet-cladding displacements, localized deformations of the cladding in the interfaces between pellets, as well as pellet and cladding axial deformations were determined for different power axial profiles as well as for pellets with and without dishing and with height/diameter ratios of 1.7, 1 and 0.5. (M.E.L.) [es

  18. Fuel assembly in a reactor

    International Nuclear Information System (INIS)

    Saito, Shozo; Kawahara, Akira.

    1975-01-01

    Object: To provide a fuel assembly in a reactor which can effectively prevent damage of the clad tube caused by mutual interference between pellets and the clad tube. Structure: A clad tube for a fuel element, which is located in the outer peripheral portion, among the fuel elements constituting fuel assemblies arranged in assembled and lattice fashion within a channel box, is increased in thickness by reducing the inside diameter thereof to be smaller than that of fuel elements internally located, thereby preventing damage of the clad tube resulting from rapid rise in output produced when control rods are removed. (Kamimura, M.)

  19. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E.E. [Laboratorio de Nanotecnología Nuclear, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA, San Martín, Prov. Buenos Aires (Argentina); Robinson, A.B. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Porter, D.L., E-mail: Douglas.Porter@inl.gov [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Wachs, D.M. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Finlay, M.R. [Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW, 2234 (Australia)

    2016-10-15

    Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U–(7–10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry–4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction—either from fabrication or in-reactor testing—and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm{sup 3}, 3.8E+21 (peak).

  20. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    International Nuclear Information System (INIS)

    Zirker, L.R.; Bottcher, J.H.; Shikakura, S.; Tsai, C.L.

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab