WorldWideScience

Sample records for ck2 regulates cytoskeletal

  1. Protein Kinase CK2 Regulates Cytoskeletal Reorganization during Ionizing Radiation-Induced Senescence of Human Mesenchymal Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Jang, Deok-Jin

    2009-08-21

    Human mesenchymal stem cells (hMSC) are critical for tissue regeneration. How hMSC respond to genotoxic stresses and potentially contribute to aging and cancer remain underexplored. We demonstrated that ionizing radiation induced cellular senescence of hMSC over a period of 10 days, showing a critical transition between day 3 and day 6. This was confirmed by senescence-associated beta-galactosidase (SA-{beta}-gal) staining, protein expression profiles of key cell cycle regulators (retinoblastoma (Rb) protein, p53, p21{sup waf1/Cip1}, and p16{sup INK4A}), and senescence-associated secretory phenotypes (SASPs) (IL-8, IL-12, GRO, and MDC). We observed dramatic cytoskeletal reorganization of hMSC through reduction of myosin-10, redistribution of myosin-9, and secretion of profilin-1. Using a SILAC-based phosphoproteomics method, we detected significant reduction of myosin-9 phosphorylation at Ser1943, coinciding with its redistribution. Importantly, through treatment with cell permeable inhibitors (4,5,6,7-tetrabromo-1H-benzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT)), and gene knockdown using RNA interference, we identified CK2, a kinase responsible for myosin-9 phosphorylation at Ser1943, as a key factor contributing to the radiation-induced senescence of hMSC. We showed that individual knockdown of CK2 catalytic subunits CK2{alpha} and CK2{alpha}{prime} induced hMSC senescence. However, only knockdown of CK2{alpha} resulted in morphological phenotypes resembling those of radiation-induced senescence. These results suggest that CK2{alpha} and CK2{alpha}{prime} play differential roles in hMSC senescence progression, and their relative expression might represent a novel regulatory mechanism for CK2 activity.

  2. CK2 phosphorylates Sec31 and regulates ER-To-Golgi trafficking.

    Directory of Open Access Journals (Sweden)

    Mayuko Koreishi

    Full Text Available Protein export from the endoplasmic reticulum (ER is an initial and rate-limiting step of molecular trafficking and secretion. This is mediated by coat protein II (COPII-coated vesicles, whose formation requires small GTPase Sar1 and 6 Sec proteins including Sec23 and Sec31. Sec31 is a component of the outer layer of COPII coat and has been identified as a phosphoprotein. The initiation and promotion of COPII vesicle formation is regulated by Sar1; however, the mechanism regulating the completion of COPII vesicle formation followed by vesicle release is largely unknown. Hypothesizing that the Sec31 phosphorylation may be such a mechanism, we identified phosphorylation sites in the middle linker region of Sec31. Sec31 phosphorylation appeared to decrease its association with ER membranes and Sec23. Non-phosphorylatable mutant of Sec31 stayed longer at ER exit sites and bound more strongly to Sec23. We also found that CK2 is one of the kinases responsible for Sec31 phosphorylation because CK2 knockdown decreased Sec31 phosphorylation, whereas CK2 overexpression increased Sec31 phosphorylation. Furthermore, CK2 knockdown increased affinity of Sec31 for Sec23 and inhibited ER-to-Golgi trafficking. These results suggest that Sec31 phosphorylation by CK2 controls the duration of COPII vesicle formation, which regulates ER-to-Golgi trafficking.

  3. Regulation of DNA Methylation Patterns by CK2-Mediated Phosphorylation of Dnmt3a

    Directory of Open Access Journals (Sweden)

    Rachel Deplus

    2014-08-01

    Full Text Available DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns.

  4. The Rice CK2 Kinase Regulates Trafficking of Phosphate Transporters in Response to Phosphate Levels[OPEN

    Science.gov (United States)

    Chen, Jieyu; Wang, Yifeng; Wang, Fei; Yang, Jian; Gao, Mingxing; Li, Changying; Liu, Yingyao; Liu, Yu; Yamaji, Naoki; Ma, Jian Feng; Paz-Ares, Javier; Nussaume, Laurent; Zhang, Shuqun; Yi, Keke; Wu, Zhongchang; Wu, Ping

    2015-01-01

    Phosphate transporters (PTs) mediate phosphorus uptake and are regulated at the transcriptional and posttranslational levels. In one key mechanism of posttranslational regulation, phosphorylation of PTs affects their trafficking from the endoplasmic reticulum (ER) to the plasma membrane. However, the kinase(s) mediating PT phosphorylation and the mechanism leading to ER retention of phosphorylated PTs remain unclear. In this study, we identified a rice (Oryza sativa) kinase subunit, CK2β3, which interacts with PT2 and PT8 in a yeast two-hybrid screen. Also, the CK2α3/β3 holoenzyme phosphorylates PT8 under phosphate-sufficient conditions. This phosphorylation inhibited the interaction of PT8 with PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1, a key cofactor regulating the exit of PTs from the ER to the plasma membrane. Additionally, phosphorus starvation promoted CK2β3 degradation, relieving the negative regulation of PT phosphorus-insufficient conditions. In accordance, transgenic expression of a nonphosphorylatable version of OsPT8 resulted in elevated levels of that protein at the plasma membrane and enhanced phosphorus accumulation and plant growth under various phosphorus regimes. Taken together, these results indicate that CK2α3/β3 negatively regulates PTs and phosphorus status regulates CK2α3/β3. PMID:25724641

  5. Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage

    Directory of Open Access Journals (Sweden)

    Olsen Birgitte B

    2012-03-01

    Full Text Available Abstract Background The DNA-dependent protein kinase (DNA-PK is a nuclear complex composed of a large catalytic subunit (DNA-PKcs and a heterodimeric DNA-targeting subunit Ku. DNA-PK is a major component of the non-homologous end-joining (NHEJ repair mechanism, which is activated in the presence of DNA double-strand breaks induced by ionizing radiation, reactive oxygen species and radiomimetic drugs. We have recently reported that down-regulation of protein kinase CK2 by siRNA interference results in enhanced cell death specifically in DNA-PKcs-proficient human glioblastoma cells, and this event is accompanied by decreased autophosphorylation of DNA-PKcs at S2056 and delayed repair of DNA double-strand breaks. Results In the present study, we show that CK2 co-localizes with phosphorylated histone H2AX to sites of DNA damage and while CK2 gene knockdown is associated with delayed DNA damage repair, its overexpression accelerates this process. We report for the first time evidence that lack of CK2 destabilizes the interaction of DNA-PKcs with DNA and with Ku80 at sites of genetic lesions. Furthermore, we show that CK2 regulates the phosphorylation levels of DNA-PKcs only in response to direct induction of DNA double-strand breaks. Conclusions Taken together, these results strongly indicate that CK2 plays a prominent role in NHEJ by facilitating and/or stabilizing the binding of DNA-PKcs and, possibly other repair proteins, to the DNA ends contributing to efficient DNA damage repair in mammalian cells.

  6. Regulation of taurine transport systems by protein kinase CK2 in mammalian cells

    DEFF Research Database (Denmark)

    Lambert, Ian Henry; Hansen, Daniel Bloch

    2011-01-01

    Maintaining cell volume is critical for cellular function yet shift in cell volume is a prerequisite for mitosis and apoptosis. The ubiquitously and evolutionary conserved serine/threonine kinase CK2 promotes cell survival and suppresses apoptosis. The present review describes how mammalian cells...

  7. Cytoskeletal regulation of dermal regeneration.

    Science.gov (United States)

    Strudwick, Xanthe L; Cowin, Allison J

    2012-01-01

    Wound healing results in the repair of injured tissues however fibrosis and scar formation are, more often than not the unfortunate consequence of this process. The ability of lower order vertebrates and invertebrates to regenerate limbs and tissues has been all but lost in mammals; however, there are some instances where glimpses of mammalian regenerative capacity do exist. Here we describe the unlocked potential that exists in mammals that may help us understand the process of regeneration post-injury and highlight the potential role of the actin cytoskeleton in this process. The precise function and regulation of the cytoskeleton is critical to the success of the healing process and its manipulation may therefore facilitate regenerative healing. The gelsolin family of actin remodelling proteins in particular has been shown to have important functions in wound healing and family member Flightless I (Flii) is involved in both regeneration and repair. Understanding the interactions between different cytoskeletal proteins and their dynamic control of processes including cellular adhesion, contraction and motility may assist the development of therapeutics that will stimulate regeneration rather than repair. PMID:24710556

  8. The Protein Kinase CK2 Mediates Cross-Talk between Auxin- and Salicylic Acid-Signaling Pathways in the Regulation of PINOID Transcription.

    Science.gov (United States)

    Armengot, Laia; Caldarella, Eleonora; Marquès-Bueno, Maria Mar; Martínez, M Carmen

    2016-01-01

    The protein kinase CK2 is a ubiquitous and highly conserved enzyme, the activity of which is vital for eukaryotic cells. We recently demonstrated that CK2 modulates salicylic acid (SA) homeostasis in Arabidopsis thaliana, and that functional interplay between CK2 and SA sustains transcriptional expression of PIN-FORMED (PIN) genes. In this work, we show that CK2 also plays a key role in the transcriptional regulation of PINOID (PID), an AGC protein kinase that modulates the apical/basal localization of auxin-efflux transporters. We show that PID transcription is up-regulated by auxin and by SA and that CK2 is involved in both pathways. On the one hand, CK2 activity is required for proteosome-dependent degradation of AXR3, a member of the AUX/IAA family of auxin transcriptional repressors that must be degraded to activate auxin-responsive gene expression. On the other hand, the role of CK2 in SA homeostasis and, indirectly, in SA-driven PID transcription, was confirmed by using Arabidopsis NahG transgenic plants, which cannot accumulate SA. In conclusion, our results evidence a role for CK2 as a functional link in the negative cross-talk between auxin- and SA-signaling. PMID:27275924

  9. The Protein Kinase CK2 Mediates Cross-Talk between Auxin- and Salicylic Acid-Signaling Pathways in the Regulation of PINOID Transcription.

    Directory of Open Access Journals (Sweden)

    Laia Armengot

    Full Text Available The protein kinase CK2 is a ubiquitous and highly conserved enzyme, the activity of which is vital for eukaryotic cells. We recently demonstrated that CK2 modulates salicylic acid (SA homeostasis in Arabidopsis thaliana, and that functional interplay between CK2 and SA sustains transcriptional expression of PIN-FORMED (PIN genes. In this work, we show that CK2 also plays a key role in the transcriptional regulation of PINOID (PID, an AGC protein kinase that modulates the apical/basal localization of auxin-efflux transporters. We show that PID transcription is up-regulated by auxin and by SA and that CK2 is involved in both pathways. On the one hand, CK2 activity is required for proteosome-dependent degradation of AXR3, a member of the AUX/IAA family of auxin transcriptional repressors that must be degraded to activate auxin-responsive gene expression. On the other hand, the role of CK2 in SA homeostasis and, indirectly, in SA-driven PID transcription, was confirmed by using Arabidopsis NahG transgenic plants, which cannot accumulate SA. In conclusion, our results evidence a role for CK2 as a functional link in the negative cross-talk between auxin- and SA-signaling.

  10. Ability of CK2beta to selectively regulate cellular protein kinases

    DEFF Research Database (Denmark)

    Olsen, Birgitte; Guerra, Barbara

    2008-01-01

    The Wee1 protein kinase plays a prominent role in keeping cyclin dependent kinase 1 (CDK1) inactive during the G2 phase of the cell cycle. At the onset of mitosis, Wee1 is ubiquitinated by the E3 ubiquitin ligase SCF(beta-TrCP) and subsequently degraded by the proteasome machinery. Previously, it...... additional phosphodegrons recognised by beta-TrCP. These events contribute to destabilise Wee1 at the onset of mitosis (Watanabe et al. Proc Natl Acad Sci USA 101:4419-4424, 2004). We show here that in addition to the ability of CK2 to phosphorylate Wee1 as reported earlier, the regulatory beta-subunit of...

  11. Protein kinase CK2 in health and disease: Protein kinase CK2: from structures to insights

    DEFF Research Database (Denmark)

    Niefind, K; Raaf, J; Issinger, Olaf-Georg

    2009-01-01

    Within the last decade, 40 crystal structures corresponding to protein kinase CK2 (former name 'casein kinase 2'), to its catalytic subunit CK2alpha and to its regulatory subunit CK2beta were published. Together they provide a valuable, yet by far not complete basis to rationalize the biochemical...... critical region of CK2alpha recruitment is pre-formed in the unbound state. In CK2alpha the activation segment - a key element of protein kinase regulation - adapts invariably the typical conformation of the active enzymes. Recent structures of human CK2alpha revealed a surprising plasticity in the ATP...

  12. Conformational plasticity of the catalytic subunit of protein kinase CK2 and its consequences for regulation and drug design

    DEFF Research Database (Denmark)

    Niefind, Karsten; Issinger, Olaf-Georg

    2010-01-01

    well to the constitutive activity of the enzyme, meaning, its independence from phosphorylation or other characteristic control factors. Most CK2alpha structures are based on the enzyme from Zea mays, supplemented by an increasing number of human CK2alpha structures. In the latter a surprising...... molecule seems to favour the partially and fully inactive states. This observation may be exploited to design effective and selective CK2 inhibitors....

  13. The regulatory beta-subunit of protein kinase CK2 regulates cell-cycle progression at the onset of mitosis

    DEFF Research Database (Denmark)

    Yde, C W; Olsen, B B; Meek, D;

    2008-01-01

    Cell-cycle transition from the G(2) phase into mitosis is regulated by the cyclin-dependent protein kinase 1 (CDK1) in complex with cyclin B. CDK1 activity is controlled by both inhibitory phosphorylation, catalysed by the Myt1 and Wee1 kinases, and activating dephosphorylation, mediated by the CDC...... interference results in delayed cell-cycle progression at the onset of mitosis. Knockdown of CK2beta causes stabilization of Wee1 and increased phosphorylation of CDK1 at the inhibitory Tyr15. PLK1-Wee1 association is an essential event in the degradation of Wee1 in unperturbed cell cycle. We have found that...... regulatory subunit, identifying it as a new component of signaling pathways that regulate cell-cycle progression at the entry of mitosis.Oncogene advance online publication, 12 May 2008; doi:10.1038/onc.2008.146....

  14. Cytoskeletal network morphology regulates intracellular transport dynamics

    CERN Document Server

    Ando, David; Huang, Kerwyn Casey; Gopinathan, Ajay

    2016-01-01

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable time scales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that r...

  15. An in vitro ES cell-based clock recapitulation assay model identifies CK2α as an endogenous clock regulator.

    Science.gov (United States)

    Umemura, Yasuhiro; Yoshida, Junko; Wada, Masashi; Tsuchiya, Yoshiki; Minami, Yoichi; Watanabe, Hitomi; Kondoh, Gen; Takeda, Junji; Inokawa, Hitoshi; Horie, Kyoji; Yagita, Kazuhiro

    2013-01-01

    We previously reported emergence and disappearance of circadian molecular oscillations during differentiation of mouse embryonic stem (ES) cells and reprogramming of differentiated cells, respectively. Here we present a robust and stringent in vitro circadian clock formation assay that recapitulates in vivo circadian phenotypes. This assay system first confirmed that a mutant ES cell line lacking Casein Kinase I delta (CKIδ) induced ∼3 hours longer period-length of circadian rhythm than the wild type, which was compatible with recently reported results using CKIδ null mice. In addition, this assay system also revealed that a Casein Kinase 2 alpha subunit (CK2α) homozygous mutant ES cell line developed significantly longer (about 2.5 hours) periods of circadian clock oscillations after in vitro or in vivo differentiation. Moreover, revertant ES cell lines in which mutagenic vector sequences were deleted showed nearly wild type periods after differentiation, indicating that the abnormal circadian period of the mutant ES cell line originated from the mutation in the CK2α gene. Since CK2α deficient mice are embryonic lethal, this in vitro assay system represents the genetic evidence showing an essential role of CK2α in the mammalian circadian clock. This assay was successfully applied for the phenotype analysis of homozygous mutant ES cells, demonstrating that an ES cell-based in vitro assay is available for circadian genetic screening. PMID:23840637

  16. Biotechnological aspects of cytoskeletal regulation in plants.

    Science.gov (United States)

    Komis, George; Luptovciak, Ivan; Doskocilova, Anna; Samaj, Jozef

    2015-11-01

    The cytoskeleton is a protein-based intracellular superstructure that evolved early after the appearance of bacterial prokaryotes. Eventually cytoskeletal proteins and their macromolecular assemblies were established in eukaryotes and assumed critical roles in cell movements, intracellular organization, cell division and cell differentiation. In biomedicine the small-molecules targeting cytoskeletal elements are in the frontline of anticancer research with plant-derived cytoskeletal drugs such as Vinca alkaloids and toxoids, being routinely used in the clinical practice. Moreover, plants are also major material, food and energy resources for human activities ranging from agriculture, textile industry, carpentry, energy production and new material development to name some few. Most of these inheritable traits are associated with cell wall synthesis and chemical modification during primary and secondary plant growth and inevitably are associated with the dynamics, organization and interactions of the plant cytoskeleton. Taking into account the vast intracellular spread of microtubules and actin microfilaments the cytoskeleton collectively assumed central roles in plant growth and development, in determining the physical stance of plants against the forces of nature and becoming a battleground between pathogenic invaders and the defense mechanisms of plant cells. This review aims to address the role of the plant cytoskeleton in manageable features of plants including cellulose biosynthesis with implications in wood and fiber properties, in biofuel production and the contribution of plant cytoskeletal elements in plant defense responses against pathogens or detrimental environmental conditions. Ultimately the present work surveys the potential of cytoskeletal proteins as platforms of plant genetic engineering, nominating certain cytoskeletal proteins as vectors of favorable traits in crops and other economically important plants. PMID:25784147

  17. The Role of Protein Kinase CK2 in Glioblastoma Development

    OpenAIRE

    Ji, Haitao; Lu, Zhimin

    2013-01-01

    Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor in adults, and its response to current therapies is limited. Protein kinase CK2 is overexpressed in GBM and regulates GBM cell survival, proliferation, and migration and brain tumorigenesis. Targeting CK2 for GBM treatment may benefit GBM patients.

  18. First inactive conformation of CK2 alpha, the catalytic subunit of protein kinase CK2

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Issinger, Olaf-Georg; Niefind, Karsten

    2009-01-01

    The Ser/Thr kinase casein kinase 2 (CK2) is a heterotetrameric enzyme composed of two catalytic chains (CK2alpha, catalytic subunit of CK2) attached to a dimer of two noncatalytic subunits (CK2beta, noncatalytic subunit of CK2). CK2alpha belongs to the superfamily of eukaryotic protein kinases...

  19. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity

    Science.gov (United States)

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  20. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    Directory of Open Access Journals (Sweden)

    Poulomi Ray

    Full Text Available Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF, Bone Morphogenetic Protein (BMP and Transforming Growth Factor beta (TGF-β signaling pathways. Rho Kinase (ROCK-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.

  1. Basic residues in the 74-83 and 191-198 segments of protein kinase CK2 catalytic subunit are implicated in negative but not in positive regulation by the beta-subunit

    DEFF Research Database (Denmark)

    Sarno, S; Vaglio, P; Marin, O; Meggio, F; Issinger, O G; Pinna, L A

    1997-01-01

    Protein kinase CK2 is a ubiquitous pleiotropic serine/threonine protein kinase whose holoenzyme is comprised of two catalytic (alpha and/or alpha') and two non-catalytic, beta-subunits. The beta-subunit possesses antagonist functions that can be physically dissected by generating synthetic...... fragments encompassing its N-terminal and C-terminal domains. Here we show that by mutating basic residues in the 74-77 and in the 191-198 regions of the alpha-subunit, the negative regulation by the beta-subunit and by its N-terminal synthetic fragment CK2beta-(1-77), which is observable using calmodulin...... as a substrate for phosphorylation, is drastically reduced. In contrast, the positive regulation by a C-terminal, CK2beta-(155-215)-peptide is unaffected or even increased. Moreover, the basal activity of alpha mutants K74-77A, K79R80K83A, and R191R195K198A toward specific peptide substrates is...

  2. Interaction between CK2α and CK2β, the subunits of protein kinase CK2: thermodynamic contributions of key residues on the CK2α surface

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Bischoff, Nils; Klopffleisch, Karsten; Brunstein, Elena; Olsen, Birgitte B; Vilk, Greg; Litchfield, David W; Issinger, Olaf-Georg; Niefind, Karsten

    2011-01-01

    tetramer. To this end, we used recombinant, C-terminal truncated forms of human CK2 subunits that are able to form the holoenzyme. We analyzed the interaction thermodynamics between the binding of CK2α and CK2β as well as the impact of changes in temperature, pH, and the ionization enthalpy of the buffer...... Leu41 or Phe54 single mutations were most disruptive to binding of CK2β. Additionally, these CK2α mutants retained their kinase activity. Furthermore, the substitution of Leu41 in combination with Phe54 showed that the individual mutations were not additive, suggesting that the cooperative action of...

  3. Phosphorylation of CRN2 by CK2 regulates F-actin and Arp2/3 interaction and inhibits cell migration

    OpenAIRE

    Xavier, Charles Peter; Rastetter, Raphael H.; Bloemacher, Margit; Morgan Beesly, Reginald Owen; Fernández Fernández, María Pilar; Wang, Conan; Osman, Asiah; Miyata, Yoshihiko; (et al.)

    2012-01-01

    CRN2 (synonyms: coronin 1C, coronin 3) functions in the re-organization of the actin network and is implicated in cellular processes like protrusion formation, secretion, migration and invasion. We demonstrate that CRN2 is a binding partner and substrate of protein kinase CK2, which phosphorylates CRN2 at S463 in its C-terminal coiled coil domain. Phosphomimetic S463D CRN2 loses the wild-type CRN2 ability to inhibit actin polymerization, to bundle F-actin, and to bind to the Arp2/3 complex. A...

  4. Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway

    Directory of Open Access Journals (Sweden)

    Dastidar Eeshita G

    2012-01-01

    Full Text Available Abstract Background Protein kinase CK2 is a pleiotropic serine/threonine protein kinase with hundreds of reported substrates, and plays an important role in a number of cellular processes. The cellular functions of Plasmodium falciparum CK2 (PfCK2 are unknown. The parasite's genome encodes one catalytic subunit, PfCK2α, which we have previously shown to be essential for completion of the asexual erythrocytic cycle, and two putative regulatory subunits, PfCK2β1 and PfCK2β2. Results We now show that the genes encoding both regulatory PfCK2 subunits (PfCK2β1 and PfCK2β2 cannot be disrupted. Using immunofluorescence and electron microscopy, we examined the intra-erythrocytic stages of transgenic parasite lines expressing hemagglutinin (HA-tagged catalytic and regulatory subunits (HA-CK2α, HA-PfCK2β1 or HA-PfCK2β2, and localized all three subunits to both cytoplasmic and nuclear compartments of the parasite. The same transgenic parasite lines were used to purify PfCK2β1- and PfCK2β2-containing complexes, which were analyzed by mass spectrometry. The recovered proteins were unevenly distributed between various pathways, with a large proportion of components of the chromatin assembly pathway being present in both PfCK2β1 and PfCK2β2 precipitates, implicating PfCK2 in chromatin dynamics. We also found that chromatin-related substrates such as nucleosome assembly proteins (Naps, histones, and two members of the Alba family are phosphorylated by PfCK2α in vitro. Conclusions Our reverse-genetics data show that each of the two regulatory PfCK2 subunits is required for completion of the asexual erythrocytic cycle. Our interactome study points to an implication of PfCK2 in many cellular pathways, with chromatin dynamics being identified as a major process regulated by PfCK2. This study paves the way for a kinome-wide interactomics-based approach to elucidate protein kinase function in malaria parasites.

  5. Primary and secondary interactions between CK2alpha and CK2beta lead to ring-like structures in the crystals of the CK2 holoenzyme

    DEFF Research Database (Denmark)

    Niefind, Karsten; Issinger, Olaf-Georg

    Protein kinase CK2 predominantly exists as a heterotetrameric holoenyzme consisting of two catalytic subunits (CK2alpha) and two non-catalytic subunits (CK2beta). Early investigations which we review here had revealed the presence of two types of contacts between CK2alpha and CK2beta: a primary...... interaction responsible for the stability of the CK2 holoenzyme and stimulatory for the catalytic activity, and a secondary interaction which is inhibitory and in which the acidic loop of CK2beta associates with the basic stretch and the (p+1)-loop of CK2alpha. At the end of the last decade both types of...... distinct aggregation propensity of CK2. We demonstrate here that in the CK2 holoenzyme crystals contacts between different CK2 tetramers exists which provide structural details of the secondary CK2alpha/CK2beta interactions. These mainly ionic interactions lead to trimeric rings of CK2 holoenzymes in the...

  6. Protein kinase CK2 in human diseases

    DEFF Research Database (Denmark)

    Guerra, Barbara; Issinger, Olaf-Georg

    2008-01-01

    Protein kinase CK2 (formerly referred to as casein kinase II) is an evolutionary conserved, ubiquitous protein kinase. There are two paralog catalytic subunits, i.e. alpha (A1) and alpha' (A2). The alpha and alpha' subunits are linked to two beta subunits to produce a heterotetrameric structure....... The catalytic alpha subunits are distantly related to the CMGC subfamily of kinases, such as the Cdk kinases. There are some peculiarities associated with protein kinase CK2, which are not found with most other protein kinases: (i) the enzyme is constitutively active, (ii) it can use ATP and GTP and...... specifically target this protein kinase [10]. Since not all the aspects of what has been published on CK2 can be covered in this review, we would like to recommend the following reviews; (i) for general information on CK2 [11-18] and (ii) with a focus on aberrant CK2 [19-22]....

  7. Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2.

    Science.gov (United States)

    Cozza, Giorgio; Mazzorana, Marco; Papinutto, Elena; Bain, Jenny; Elliott, Matthew; di Maira, Giovanni; Gianoncelli, Alessandra; Pagano, Mario A; Sarno, Stefania; Ruzzene, Maria; Battistutta, Roberto; Meggio, Flavio; Moro, Stefano; Zagotto, Giuseppe; Pinna, Lorenzo A

    2009-08-01

    Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a moderately potent and poorly selective inhibitor of protein kinase CK2, one of the most pleiotropic serine/threonine protein kinases, implicated in neoplasia and in other global diseases. By virtual screening of the MMS (Molecular Modeling Section) database, we have now identified quinalizarin (1,2,5,8-tetrahydroxyanthraquinone) as an inhibitor of CK2 that is more potent and selective than emodin. CK2 inhibition by quinalizarin is competitive with respect to ATP, with a Ki value of approx. 50 nM. Tested at 1 microM concentration on a panel of 75 protein kinases, quinalizarin drastically inhibits only CK2, with a promiscuity score (11.1), which is the lowest ever reported so far for a CK2 inhibitor. Especially remarkable is the ability of quinalizarin to discriminate between CK2 and a number of kinases, notably DYRK1a (dual-specificity tyrosine-phosphorylated and -regulated kinase), PIM (provirus integration site for Moloney murine leukaemia virus) 1, 2 and 3, HIPK2 (homeodomain-interacting protein kinase-2), MNK1 [MAPK (mitogen-activated protein kinase)-interacting kinase 1], ERK8 (extracellular-signal-regulated kinase 8) and PKD1 (protein kinase D 1), which conversely tend to be inhibited as drastically as CK2 by commercially available CK2 inhibitors. The determination of the crystal structure of a complex between quinalizarin and CK2alpha subunit highlights the relevance of polar interactions in stabilizing the binding, an unusual characteristic for a CK2 inhibitor, and disclose other structural features which may account for the narrow selectivity of this compound. Tested on Jurkat cells, quinalizarin proved able to inhibit endogenous CK2 and to induce apoptosis more efficiently than the commonly used CK2 inhibitors TBB (4,5,6,7-tetrabromo-1H-benzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole). PMID:19432557

  8. In vitro and in vivo assays of protein kinase CK2 activity.

    Science.gov (United States)

    Prudent, Renaud; Sautel, Céline F; Moucadel, Virginie; Laudet, Béatrice; Filhol, Odile; Cochet, Claude

    2010-01-01

    Protein kinase CK2 (formerly casein kinase 2) is recognized as a central component in the control of the cellular homeostasis; however, much remains unknown regarding its regulation and its implication in cellular transformation and carcinogenesis. Moreover, study of CK2 function and regulation in a cellular context is complicated by the dynamic multisubunit architecture of this protein kinase. Although a number of robust techniques are available to assay CK2 activity in vitro, there is a demand for sensitive and specific assays to evaluate its activity in living cells. We hereby provide a detailed description of several assays for monitoring the CK2 activity and its subunit interaction in living cells. The guidelines presented herein should enable researchers in the field to establish strategies for cellular screenings of CK2 inhibitors. PMID:21050938

  9. Protein kinase CK2 inhibition induces cell death via early impact on mitochondrial function*

    Science.gov (United States)

    Qaiser, Fatima; Trembley, Janeen H.; Kren, Betsy T.; Wu, Jing-Jiang; Naveed, A. Khaliq; Ahmed, Khalil

    2014-01-01

    CK2 (official acronym for casein kinase 2 or II) is a potent suppressor of apoptosis in response to diverse apoptotic stimuli —thus its molecular downregulation or activity inhibition results in potent induction of cell death. CK2 downregulation is known to impact mitochondrial apoptotic circuitry but the underlying mechanism(s) remain unclear. Utilizing prostate cancer cell lines subjected to CK2-specific inhibitors which cause loss of cell viability, we have found that CK2 inhibition in cells causes rapid early decrease in mitochondrial membrane potential (Δψm). Cells treated with the CK2 inhibitors TBB (4,5,6,7-tetrabromobenzotriazole) or TBCA (tetrabromocinnamic acid) demonstrate changes in Δψm which become apparent within 2 h, i.e., significantly prior to evidence of activation of other mitochondrial apoptotic signals whose temporal expression ensues subsequent to loss of Δψm. Further, we have demonstrated the presence of CK2 in purified mitochondria and it appears that the effect on Δψm evoked by inhibition of CK2 may involve mitochondrial localized CK2. Results also suggest that alterations in Ca2+ signaling may be involved in the CK2 mediated regulation of Δψm and mitochondrial permeability. Thus, we propose that a key mechanism of CK2 impact on mitochondrial apoptotic circuitry and cell death involves early loss of Δψm which may be a primary trigger for apoptotic signaling and cell death resulting from CK2 inhibition. PMID:25043911

  10. The CK2 alpha/CK2 beta interface of human protein kinase CK2 harbors a binding pocket for small molecules

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Brunstein, Elena; Issinger, Olaf-Georg; Niefind, Karsten

    2008-01-01

    The Ser/Thr kinase CK2 (previously called casein kinase 2) is composed of two catalytic chains (CK2 alpha) attached to a dimer of noncatalytic subunits (CK2 beta). CK2 is involved in suppression of apoptosis, cell survival, and tumorigenesis. To investigate these activities and possibly affect them......, selective CK2 inhibitors are required. An often-used CK2 inhibitor is 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). In a complex structure with human CK2 alpha, DRB binds to the canonical ATP cleft, but additionally it occupies an allosteric site that can be alternatively filled by glycerol....... Inhibition kinetic studies corroborate the dual binding mode of the inhibitor. Structural comparisons reveal a surprising conformational plasticity of human CK2 alpha around both DRB binding sites. After local rearrangement, the allosteric site serves as a CK2 beta interface. This opens the potential to...

  11. Structure of the gene encoding the murine protein kinase CK2 beta subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Issinger, O G

    1995-01-01

    The mouse protein kinase CK2 beta subunit gene (Csnk2b) is composed of seven exons contained within 7874 bp. The exon and intron lengths extend from 76 to 321 and 111 to 1272 bp, respectively. The lengths of the murine coding exons correspond exactly to the lengths of the exons in the human CK2...... beta gene. Both genes contain a first untranslated exon. Also, the promoter regions from the human and murine CK2 beta gene share some common features, e.g., they contain neither a TATA nor a CAAT box, exon 1 is flanked by a cluster of CpG dinucleotides and recognition sequences for the Hpa...... has no counterpart in the murine gene. Hence, regulation of transcription of the CK2 beta gene by the catalytic CK2 alpha subunit as was described by Robitzki et al. (J. Biol. Chem. 268: 5694-5703, 1993) for the human gene cannot be considered a general regulatory mechanism....

  12. The interaction of CK2alpha and CK2beta, the subunits of protein kinase CK2, requires CK2beta in a preformed conformation and is enthalpically driven

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Brunstein, Elena; Issinger, Olaf-Georg; Niefind, Karsten

    2008-01-01

    The protein kinase CK2 (former name: "casein kinase 2") predominantly occurs as a heterotetrameric holoenzyme composed of two catalytic chains (CK2alpha) and two noncatalytic subunits (CK2beta). The CK2beta subunits form a stable dimer to which the CK2alpha monomers are attached independently. In...... contrast to the cyclins in the case of the cyclin-dependent kinases CK2beta is no on-switch of CK2alpha; rather the formation of the CK2 holoenzyme is accompanied with an overall change of the enzyme's profile including a modulation of the substrate specificity, an increase of the thermostability, and an...... allocation of docking sites for membranes and other proteins. In this study we used C-terminal deletion variants of human CK2alpha and CK2beta that were enzymologically fully competent and in particular able to form a heterotetrameric holoenzyme. With differential scanning calorimetry (DSC) we confirmed the...

  13. Dominant-negative CK2alpha induces potent effects on circadian rhythmicity.

    Directory of Open Access Journals (Sweden)

    Elaine M Smith

    2008-01-01

    Full Text Available Circadian clocks organize the precise timing of cellular and behavioral events. In Drosophila, circadian clocks consist of negative feedback loops in which the clock component PERIOD (PER represses its own transcription. PER phosphorylation is a critical step in timing the onset and termination of this feedback. The protein kinase CK2 has been linked to circadian timing, but the importance of this contribution is unclear; it is not certain where and when CK2 acts to regulate circadian rhythms. To determine its temporal and spatial functions, a dominant negative mutant of the catalytic alpha subunit, CK2alpha(Tik, was targeted to circadian neurons. Behaviorally, CK2alpha(Tik induces severe period lengthening (approximately 33 h, greater than nearly all known circadian mutant alleles, and abolishes detectable free-running behavioral rhythmicity at high levels of expression. CK2alpha(Tik, when targeted to a subset of pacemaker neurons, generates period splitting, resulting in flies exhibiting both long and near 24-h periods. These behavioral effects are evident even when CK2alpha(Tik expression is induced only during adulthood, implicating an acute role for CK2alpha function in circadian rhythms. CK2alpha(Tik expression results in reduced PER phosphorylation, delayed nuclear entry, and dampened cycling with elevated trough levels of PER. Heightened trough levels of per transcript accompany increased protein levels, suggesting that CK2alpha(Tik disturbs negative feedback of PER on its own transcription. Taken together, these in vivo data implicate a central role of CK2alpha function in timing PER negative feedback in adult circadian neurons.

  14. Cooperation of the BTB-Zinc finger protein, Abrupt, with cytoskeletal regulators in Drosophila epithelial tumorigenesis

    Directory of Open Access Journals (Sweden)

    Nezaket Turkel

    2015-08-01

    Full Text Available The deregulation of cell polarity or cytoskeletal regulators is a common occurrence in human epithelial cancers. Moreover, there is accumulating evidence in human epithelial cancer that BTB-ZF genes, such as Bcl6 and ZBTB7A, are oncogenic. From our previous studies in the vinegar fly, Drosophila melanogaster, we have identified a cooperative interaction between a mutation in the apico-basal cell polarity regulator Scribble (Scrib and overexpression of the BTB-ZF protein Abrupt (Ab. Herein, we show that co-expression of ab with actin cytoskeletal regulators, RhoGEF2 or Src64B, in the developing eye-antennal epithelial tissue results in the formation of overgrown amorphous tumours, whereas ab and DRac1 co-expression leads to non-cell autonomous overgrowth. Together with ab, these genes affect the expression of differentiation genes, resulting in tumours locked in a progenitor cell fate. Finally, we show that the expression of two mammalian genes related to ab, Bcl6 and ZBTB7A, which are oncogenes in mammalian epithelial cancers, significantly correlate with the upregulation of cytoskeletal genes or downregulation of apico-basal cell polarity neoplastic tumour suppressor genes in colorectal, lung and other human epithelial cancers. Altogether, this analysis has revealed that upregulation of cytoskeletal regulators cooperate with Abrupt in Drosophila epithelial tumorigenesis, and that high expression of human BTB-ZF genes, Bcl6 and ZBTB7A, shows significant correlations with cytoskeletal and cell polarity gene expression in specific epithelial tumour types. This highlights the need for further investigation of the cooperation between these genes in mammalian systems.

  15. Structure of the human protein kinase CK2 catalytic subunit CK2α' and interaction thermodynamics with the regulatory subunit CK2β

    DEFF Research Database (Denmark)

    Bischoff, Nils; Olsen, Birgitte; Raaf, Jennifer; Bretner, Maria; Issinger, Olaf-Georg; Niefind, Karsten

    2011-01-01

    Protein kinase CK2 (formerly "casein kinase 2") is composed of a central dimer of noncatalytic subunits (CK2β) binding two catalytic subunits. In humans, there are two isoforms of the catalytic subunit (and an additional splicing variant), one of which (CK2α) is well characterized. To supplement ...

  16. Modulation of human checkpoint kinase Chk1 by the regulatory beta-subunit of protein kinase CK2

    DEFF Research Database (Denmark)

    Guerra, Barbara; Issinger, Olaf-Georg; Wang, Jean Y J

    2003-01-01

    Protein kinase CK2 is a serine/threonine protein kinase involved in various aspects of cellular regulation. The regulatory beta-subunit of CK2 exerts a central role not only in mediating formation of tetrameric CK2 complexes but also as a docking partner for several protein kinases. In this study......, CK2beta is found to interact with the human cell cycle checkpoint kinase Chk1. The Chk1-interacting region of CK2beta is localized at the C-terminus and the complex between CK2beta and Chk1 is devoid of the catalytic CK2alpha-subunit. The interaction between CK2beta and Chk1 leads to an increase in...... the Cdc25C phosphorylation activity of Chk1. The screening of several cell lines has revealed that the association between CK2beta and Chk1 also occurs in vivo at a different degree. Collectively, these studies confirm the implication of the regulatory beta-subunit of protein kinase CK2 in cell cycle...

  17. Protein kinase CK2: evidence for a protein kinase CK2beta subunit fraction, devoid of the catalytic CK2alpha subunit, in mouse brain and testicles

    DEFF Research Database (Denmark)

    Guerra, B; Siemer, S; Boldyreff, B;

    1999-01-01

    The highest CK2 activity was found in mouse testicles and brain, followed by spleen, liver, lung, kidney and heart. The activity values were directly correlated with the protein expression level of the CK2 subunits alpha (catalytic) and beta (regulatory). The alpha' subunit was only detected in...... found for testicles and brain. The amount of CK2beta protein in brain in comparison to the other organs (except testicles) was estimated to be ca. 2-3-fold higher whereas the ratio of CK2beta between testicles and brain was estimated to be 3-4-fold. Results from the immunoprecipitation experiments...... support the notion for the existence of free CK2beta population and/or CK2beta in complex with other protein(s) present in brain and testicles. In all other mouse organs investigated, i.e. heart, lung, liver, kidney and spleen, no comparable amount of free CK2beta was observed. This is the first...

  18. The CK2 kinase stabilizes CLOCK and represses its activity in the Drosophila circadian oscillator.

    Directory of Open Access Journals (Sweden)

    Aron Szabó

    Full Text Available Phosphorylation is a pivotal regulatory mechanism for protein stability and activity in circadian clocks regardless of their evolutionary origin. It determines the speed and strength of molecular oscillations by acting on transcriptional activators and their repressors, which form negative feedback loops. In Drosophila, the CK2 kinase phosphorylates and destabilizes the PERIOD (PER and TIMELESS (TIM proteins, which inhibit CLOCK (CLK transcriptional activity. Here we show that CK2 also targets the CLK activator directly. Downregulating the activity of the catalytic α subunit of CK2 induces CLK degradation, even in the absence of PER and TIM. Unexpectedly, the regulatory β subunit of the CK2 holoenzyme is not required for the regulation of CLK stability. In addition, downregulation of CK2α activity decreases CLK phosphorylation and increases per and tim transcription. These results indicate that CK2 inhibits CLK degradation while reducing its activity. Since the CK1 kinase promotes CLK degradation, we suggest that CLK stability and transcriptional activity result from counteracting effects of CK1 and CK2.

  19. Structure-function analysis of the beta regulatory subunit of protein kinase CK2 by targeting embryonic stem cell.

    Science.gov (United States)

    Ziercher, Léa; Filhol, Odile; Laudet, Béatrice; Prudent, Renaud; Cochet, Claude; Buchou, Thierry

    2011-10-01

    Programs that govern stem cell maintenance and pluripotency are dependent on extracellular factors and of intrinsic cell modulators. Embryonic stem (ES) cells with a specific depletion of the gene encoding the regulatory subunit of protein kinase CK2 (CK2β) revealed a viability defect. However, analysis of CK2β functions along the neural lineage established CK2β as a positive regulator for neural stem/progenitor cell (NSC) proliferation and multipotency. By using an in vitro genetic conditional approach, we demonstrate in this work that specific domains of CK2β involved in the regulatory function towards CK2 catalytic subunits are crucial structural determinants for ES cell homeostasis. PMID:21861102

  20. Cytoskeletal Regulation by AUTS2 in Neuronal Migration and Neuritogenesis

    Directory of Open Access Journals (Sweden)

    Kei Hori

    2014-12-01

    Full Text Available Mutations in the Autism susceptibility candidate 2 gene (AUTS2, whose protein is believed to act in neuronal cell nuclei, have been associated with multiple psychiatric illnesses, including autism spectrum disorders, intellectual disability, and schizophrenia. Here we show that cytoplasmic AUTS2 is involved in the regulation of the cytoskeleton and neural development. Immunohistochemistry and fractionation studies show that AUTS2 localizes not only in nuclei, but also in the cytoplasm, including in the growth cones in the developing brain. AUTS2 activates Rac1 to induce lamellipodia but downregulates Cdc42 to suppress filopodia. Our loss-of-function and rescue experiments show that a cytoplasmic AUTS2-Rac1 pathway is involved in cortical neuronal migration and neuritogenesis in the developing brain. These findings suggest that cytoplasmic AUTS2 acts as a regulator of Rho family GTPases to contribute to brain development and give insight into the pathology of human psychiatric disorders with AUTS2 mutations.

  1. Sex hormones regulate cytoskeletal proteins involved in brain plasticity

    OpenAIRE

    VALERIA eHANSBERG-PASTOR; ALIESHA eGONZÁLEZ-ARENAS; ANA GABRIELA PIÑA-MEDINA; IGNACIO eCAMACHO-ARROYO

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depend on the cytoske...

  2. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity

    OpenAIRE

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytos...

  3. The Cytoskeletal Protein Ndel1 Regulates Dynamin 2 GTPase Activity

    OpenAIRE

    Chansard, Mathieu; WANG, Jian; Tran, Hong Chi; Neumayer, Gernot; Shim, Su Yeon; Park, Young-Un; Belzil, Camille; Le, Hoa Thi; Park, Sang Ki; Nguyen, Minh Dang

    2011-01-01

    Cytoskeleton dynamics, membranes trafficking and positioning are essential for the proper functioning of any mammalian cell. The identification of the molecules and mechanisms that allow these cellular processes to interface is vital for understanding cell behaviors. Ndel1, the mammalian homolog of the Aspergillus nidulans NudE, organizes the cytoskeleton and regulates molecular motors, thereby impacting on the positioning of membranes. Hypothetically, Ndel1 can act in concert with enzymes co...

  4. p21WAF1/CIP1 interacts with protein kinase CK2

    DEFF Research Database (Denmark)

    Götz, C; Wagner, P; Issinger, O G;

    1996-01-01

    p21WAF1/CIP1 which belongs to a class of regulatory proteins that interact with cyclin dependent kinases is a potent inhibitor of these kinases. The inhibition of the cyclin dependent kinases induces an arrest of cells in the G phase of the cell cycle. In addition p21WAF1/CIP1 associates with PCNA...... and inhibits DNA replication. Here, we show that p21WAF1/CIP1 binds to the regulatory beta-subunit of protein kinase CK2 but not to the catalytic alpha-subunit. Binding of p21WAF1/CIP1 down regulates the kinase activity of CK2 with respect to the phosphorylation of the beta-subunit of CK2, casein and...... the C-terminus of p53. This study demonstrates a new binding partner for the regulatory beta-subunit of protein kinase CK2 which regulates the activity of the holoenzyme....

  5. CK2: a protein kinase in need of control

    DEFF Research Database (Denmark)

    Guerra, B; Boldyreff, B; Sarno, S;

    1999-01-01

    Protein kinase CK2 is a heterotetrameric alpha2beta2 Ser/Thr protein kinase with some features unusual among the eukaryotic protein kinases: (1) CK2 recognizes phosphoacceptor sites specified by several acidic determinants; (2) CK2 can use both ATP and GTP as phosphoryl donors; and (3) the...... response to nucleotide analogs. The increasing knowledge of CK2 structure-function relationships will allow the design of highly selective inhibitors of this pleiotropic kinase with oncogenic potential....

  6. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking

    Directory of Open Access Journals (Sweden)

    Christian Gonzalez-Billault

    2015-09-01

    Full Text Available A proper balance between chemical reduction and oxidation (known as redox balance is essential for normal cellular physiology. Deregulation in the production of oxidative species leads to DNA damage, lipid peroxidation and aberrant post-translational modification of proteins, which in most cases induces injury, cell death and disease. However, physiological concentrations of oxidative species are necessary to support important cell functions, such as chemotaxis, hormone synthesis, immune response, cytoskeletal remodeling, Ca2+ homeostasis and others. Recent evidence suggests that redox balance regulates actin and microtubule dynamics in both physiological and pathological contexts. Microtubules and actin microfilaments contain certain amino acid residues that are susceptible to oxidation, which reduces the ability of microtubules to polymerize and causes severing of actin microfilaments in neuronal and non-neuronal cells. In contrast, inhibited production of reactive oxygen species (e.g., due to NOXs leads to aberrant actin polymerization, decreases neurite outgrowth and affects the normal development and polarization of neurons. In this review, we summarize emerging evidence suggesting that both general and specific enzymatic sources of redox species exert diverse effects on cytoskeletal dynamics. Considering the intimate relationship between cytoskeletal dynamics and trafficking, we also discuss the potential effects of redox balance on intracellular transport via regulation of the components of the microtubule and actin cytoskeleton as well as cytoskeleton-associated proteins, which may directly impact localization of proteins and vesicles across the soma, dendrites and axon of neurons.

  7. RP1 is a phosphorylation target of CK2 and is involved in cell adhesion.

    Directory of Open Access Journals (Sweden)

    Frank Stenner

    Full Text Available RP1 (synonym: MAPRE2, EB2 is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser(236 in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP(236 show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser(236 by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association.

  8. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Sayed, M; Kim, S O; Salh, B S;

    2000-01-01

    Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of CK2...

  9. Identification of hematein as a novel inhibitor of protein kinase CK2 from a natural product library

    International Nuclear Information System (INIS)

    Casein kinase 2 (CK2) is dysregulated in various human cancers and is a promising target for cancer therapy. To date, there is no small molecular CK2 inhibitor in clinical trial yet. With the aim to identify novel CK2 inhibitors, we screened a natural product library. We adopted cell-based proliferation and CK2 kinase assays to screen CK2 inhibitors from a natural compound library. Dose-dependent response of CK2 inhibitors in vitro was determined by a radioisotope kinase assay. Western blot analysis was used to evaluate down stream Akt phosphorylation and apoptosis. Apoptosis was also evaluated by annexin-V/propidium iodide (PI) labeling method using flow cytometry. Inhibition effects of CK2 inhibitors on the growth of cancer and normal cells were evaluated by cell proliferation and viability assays. Hematein was identified as a novel CK2 inhibitor that is highly selective among a panel of kinases. It appears to be an ATP non-competitive and partially reversible CK2 inhibitor with an IC50 value of 0.55 μM. In addition, hematein inhibited cancer cell growth partially through down-regulation of Akt phosphorylation and induced apoptosis in these cells. Furthermore, hematein exerted stronger inhibition effects on the growth of cancer cells than in normal cells. In this study, we showed that hematein is a novel selective and cell permeable small molecule CK2 inhibitor. Hematein showed stronger growth inhibition effects to cancer cells when compared to normal cells. This compound may represent a promising class of CK2 inhibitors

  10. Downregulation of protein kinase CK2 activity facilitates tumor necrosis factor-α-mediated chondrocyte death through apoptosis and autophagy.

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    Full Text Available Despite the numerous studies of protein kinase CK2, little progress has been made in understanding its function in chondrocyte death. Our previous study first demonstrated that CK2 is involved in apoptosis of rat articular chondrocytes. Recent studies have suggested that CK2 downregulation is associated with aging. Thus examining the involvement of CK2 downregulation in chondrocyte death is an urgently required task. We undertook this study to examine whether CK2 downregulation modulates chondrocyte death. We first measured CK2 activity in articular chondrocytes of 6-, 21- and 30-month-old rats. Noticeably, CK2 activity was downregulated in chondrocytes with advancing age. To build an in vitro experimental system for simulating tumor necrosis factor (TNF-α-induced cell death in aged chondrocytes with decreased CK2 activity, chondrocytes were co-treated with CK2 inhibitors and TNF-α. Viability assay demonstrated that CK2 inhibitors facilitated TNF-α-mediated chondrocyte death. Pulsed-field gel electrophoresis, nuclear staining, flow cytometry, TUNEL staining, confocal microscopy, western blot and transmission electron microscopy were conducted to assess cell death modes. The results of multiple assays showed that this cell death was mediated by apoptosis. Importantly, autophagy was also involved in this process, as supported by the appearance of a punctuate LC3 pattern and autophagic vacuoles. The inhibition of autophagy by silencing of autophage-related genes 5 and 7 as well as by 3-methyladenine treatment protected chondrocytes against cell death and caspase activation, indicating that autophagy led to the induction of apoptosis. Autophagic cells were observed in cartilage obtained from osteoarthritis (OA model rats and human OA patients. Our findings indicate that CK2 down regulation facilitates TNF-α-mediated chondrocyte death through apoptosis and autophagy. It should be clarified in the future if autophagy observed is a consequence

  11. AAA+ Chaperone ClpX Regulates Dynamics of Prokaryotic Cytoskeletal Protein FtsZ*

    OpenAIRE

    Sugimoto, Shinya; Yamanaka, Kunitoshi; Nishikori, Shingo; Miyagi, Atsushi; Ando, Toshio; Ogura, Teru

    2009-01-01

    AAA+ chaperone ClpX has been suggested to be a modulator of prokaryotic cytoskeletal protein FtsZ, but the details of recognition and remodeling of FtsZ by ClpX are largely unknown. In this study, we have extensively investigated the nature of FtsZ polymers and mechanisms of ClpX-regulated FtsZ polymer dynamics. We found that FtsZ polymerization is inhibited by ClpX in an ATP-independent manner and that the N-terminal domain of ClpX plays a crucial role for the inhibition of FtsZ polymerizati...

  12. Protein kinase CK2 modulates IL-6 expression in inflammatory breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Drygin, Denis, E-mail: ddrygin@cylenepharma.com; Ho, Caroline B.; Omori, Mayuko; Bliesath, Joshua; Proffitt, Chris; Rice, Rachel; Siddiqui-Jain, Adam; O' Brien, Sean; Padgett, Claire; Lim, John K.C.; Anderes, Kenna; Rice, William G.; Ryckman, David

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer We examine the potential cross-talk between CK2 and IL-6. Black-Right-Pointing-Pointer Inhibition of CK2 by siRNA or CX-4945 inhibits expression of IL-6 in models of IBC. Black-Right-Pointing-Pointer Treatment of IBC patient in the clinic with CX-4945 reduces her IL-6 plasma levels. Black-Right-Pointing-Pointer We demonstrate that CK2 is a potential therapeutic target for IL-6 driven diseases. -- Abstract: Inflammatory breast cancer is driven by pro-angiogenic and pro-inflammatory cytokines. One of them Interleukin-6 (IL-6) is implicated in cancer cell proliferation and survival, and promotes angiogenesis, inflammation and metastasis. While IL-6 has been shown to be upregulated by several oncogenes, the mechanism behind this phenomenon is not well characterized. Here we demonstrate that the pleotropic Serine/Threonine kinase CK2 is implicated in the regulation of IL-6 expression in a model of inflammatory breast cancer. We used siRNAs targeted toward CK2 and a selective small molecule inhibitor of CK2, CX-4945, to inhibit the expression and thus suppress the secretion of IL-6 in in vitro as well as in vivo models. Moreover, we report that in a clinical trial, CX-4945 was able to dramatically reduce IL-6 levels in plasma of an inflammatory breast cancer patient. Our data shed a new light on the regulation of IL-6 expression and position CX-4945 and potentially other inhibitors of CK2, for the treatment of IL-6-driven cancers and possibly other diseases where IL-6 is instrumental, including rheumatoid arthritis.

  13. Protein kinase CK2 interacts with Chk2 and phosphorylates Mre11 on serine 649

    International Nuclear Information System (INIS)

    The Mre11-Rad50-Nbs1 protein complex has been known to be involved in a variety of DNA metabolic events that involve DNA double-strand breaks (DSBs). The phosphorylation of Mre11 is increased in response to ionizing radiation, which suggests that phosphorylation of Mre11 may be an important regulatory mechanism of this complex. Mre11-phosphorylating kinase activities were observed in Chk2 immunoprecipitates and HeLa nuclear extracts. Through the tandem affinity tagging system and conventional chromatography, this kinase was purified and identified as protein kinase CK2. CK2 phosphorylates Mre11 in vitro. In vitro kinase assay with a series of truncated Mre11 proteins as substrates for CK2 and site-directed mutagenesis showed that serine 649 of Mre11 is mainly phosphorylated by CK2 in vitro. In vivo labeling and phosphopeptide mapping analysis revealed that this phosphorylation occurs in vivo. These data implicate CK2 as a potential upstream regulator of Mre11 function

  14. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock

    Science.gov (United States)

    Tamaru, Teruya; Hattori, Mitsuru; Honda, Kousuke; Nakahata, Yasukazu; Sassone-Corsi, Paolo; van der Horst, Gijsbertus T. J.; Ozawa, Takeaki; Takamatsu, Ken

    2015-01-01

    Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK)-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P) in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein–protein interactions revealed that CRY-mediated periodic binding of CK2β to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1–CK2β binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1–P-BMAL1 loop is an integral part of the core clock oscillator. PMID:26562092

  15. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock.

    Directory of Open Access Journals (Sweden)

    Teruya Tamaru

    Full Text Available Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein-protein interactions revealed that CRY-mediated periodic binding of CK2β to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1-CK2β binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1-P-BMAL1 loop is an integral part of the core clock oscillator.

  16. Protein kinase CK2 structure-function relationship

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Pinna, L A;

    1994-01-01

    Protein kinase CK2 subunits alpha and beta were expressed either separately or together in a bacterial expression system (pT7-7/BL21(DE3)) and purified to homogeneity. After mixing the subunits, a CK2 holoenzyme (alpha 2 beta 2) was spontaneously reconstituted, which displays identical features as...

  17. Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Ermakowa, I; Issinger, O G

    2001-01-01

    The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalyt...

  18. Protein Kinase CK2 Expression Predicts Relapse Survival in ERα Dependent Breast Cancer, and Modulates ERα Expression in Vitro

    Directory of Open Access Journals (Sweden)

    Marlon D. Williams

    2015-12-01

    Full Text Available The heterotetrameric protein kinase CK2 has been associated with oncogenic transformation, and our previous studies have shown that it may affect estrogenic signaling. Here, we investigate the role of the protein kinase CK2 in regulating ERα (estrogen receptor α signaling in breast cancer. We determined the correlation of CK2α expression with relapse free breast cancer patient survival utilizing Kaplan Meier Plotter (kmplot.com/analysis/ to mine breast cancer microarrays repositories. Patients were stratified according to ERα status, histological grade, and hormonal therapy. Luciferase reporter assays and flow cytometry were implemented to determine the impact of CK2 inhibition on ERE-mediated gene expression and expression of ERα protein. CK2α expression is associated with shorter relapse free survival among ERα (+ patients with grade 1 or 2 tumors, as well as among those patients receiving hormonal therapy. Biochemical inhibition of CK2 activity results in increased ER-transactivation as well as increased expression among ERα (+ and ERα (− breast cancer cell lines. These findings suggest that CK2 may contribute to estrogen-independent cell proliferation and breast tumor progression, and may potentially serve as a biomarker and pharmacological target in breast cancer.

  19. Abelson tyrosine kinase links PDGFbeta receptor activation to cytoskeletal regulation of NMDA receptors in CA1 hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Beazely Michael A

    2008-12-01

    Full Text Available Abstract Background We have previously demonstrated that PDGF receptor activation indirectly inhibits N-methyl-D-aspartate (NMDA currents by modifying the cytoskeleton. PDGF receptor ligand is also neuroprotective in hippocampal slices and cultured neurons. PDGF receptors are tyrosine kinases that control a variety of signal transduction pathways including those mediated by PLCγ. In fibroblasts Src and another non-receptor tyrosine kinase, Abelson kinase (Abl, control PDGF receptor regulation of cytoskeletal dynamics. The mechanism whereby PDGF receptor regulates cytoskeletal dynamics in central neurons remains poorly understood. Results Intracellular applications of active Abl, but not heat-inactivated Abl, decreased NMDA-evoked currents in isolated hippocampal neurons. This mimics the effects of PDGF receptor activation in these neurons. The Abl kinase inhibitor, STI571, blocked the inhibition of NMDA currents by Abl. We demonstrate that PDGF receptors can activate Abl kinase in hippocampal neurons via mechanisms similar to those observed previously in fibroblasts. Furthermore, PDGFβ receptor activation alters the subcellular localization of Abl. Abl kinase is linked to actin cytoskeletal dynamics in many systems. We show that the inhibition of NMDA receptor currents by Abl kinase is blocked by the inclusion of the Rho kinase inhibitor, Y-27632, and that activation of Abl correlates with an increase in ROCK tyrosine phosphorylation. Conclusion This study demonstrates that PDGFβ receptors act via an interaction with Abl kinase and Rho kinase to regulated cytoskeletal regulation of NMDA receptor channels in CA1 pyramidal neurons.

  20. The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Sergi Portolés

    2010-11-01

    Full Text Available Circadian rhythms are daily biological oscillations driven by an endogenous mechanism known as circadian clock. The protein kinase CK2 is one of the few clock components that is evolutionary conserved among different taxonomic groups. CK2 regulates the stability and nuclear localization of essential clock proteins in mammals, fungi, and insects. Two CK2 regulatory subunits, CKB3 and CKB4, have been also linked with the Arabidopsis thaliana circadian system. However, the biological relevance and the precise mechanisms of CK2 function within the plant clockwork are not known. By using ChIP and Double-ChIP experiments together with in vivo luminescence assays at different temperatures, we were able to identify a temperature-dependent function for CK2 modulating circadian period length. Our study uncovers a previously unpredicted mechanism for CK2 antagonizing the key clock regulator CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1. CK2 activity does not alter protein accumulation or subcellular localization but interferes with CCA1 binding affinity to the promoters of the oscillator genes. High temperatures enhance the CCA1 binding activity, which is precisely counterbalanced by the CK2 opposing function. Altering this balance by over-expression, mutation, or pharmacological inhibition affects the temperature compensation profile, providing a mechanism by which plants regulate circadian period at changing temperatures. Therefore, our study establishes a new model demonstrating that two opposing and temperature-dependent activities (CCA1-CK2 are essential for clock temperature compensation in Arabidopsis.

  1. Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality

    DEFF Research Database (Denmark)

    Buchou, Thierry; Vernet, Muriel; Blond, Olivier; Jensen, Hans H; Pointu, Hervé; Olsen, Birgitte B; Cochet, Claude; Issinger, Olaf-Georg; Boldyreff, Brigitte

    2003-01-01

    Protein kinase CK2 is a ubiquitous protein kinase implicated in proliferation and cell survival. Its regulatory beta subunit, CK2beta, which is encoded by a single gene in mammals, has been suspected of regulating other protein kinases. In this work, we show that knockout of the CK2beta gene in...... mice leads to postimplantation lethality. Mutant embryos were reduced in size at embryonic day 6.5 (E6.5). They did not exhibit signs of apoptosis but did show reduced cell proliferation. Mutant embryos were resorbed at E7.5. In vitro, CK2beta(-/-) morula development stopped after the blastocyst stage....... Attempts to generate homozygous embryonic stem (ES) cells failed. By using a conditional knockout approach, we show that lack of CK2beta is deleterious for mouse ES cells and primary embryonic fibroblasts. This is in contrast to what occurs with yeast cells, which can survive without functional CK2beta...

  2. Phosphorylation of the regulatory beta-subunit of protein kinase CK2 by checkpoint kinase Chk1: identification of the in vitro CK2beta phosphorylation site

    DEFF Research Database (Denmark)

    Kristensen, Lars P; Larsen, Martin Røssel; Højrup, Peter; Issinger, Olaf-Georg; Guerra, Barbara

    The regulatory beta-subunit of protein kinase CK2 mediates the formation of the CK2 tetrameric form and it has functions independent of CK2 catalytic subunit through interaction with several intracellular proteins. Recently, we have shown that CK2beta associates with the human checkpoint kinase Chk......1. In this study, we show that Chk1 specifically phosphorylates in vitro the regulatory beta-subunit of CK2. Chymotryptic peptides and mutational analyses have revealed that CK2beta is phosphorylated at Thr213. Formation of a stable complex between CK2beta and Chk1 is not affected by the...

  3. TRPV4 regulates calcium homeostasis, cytoskeletal remodeling, conventional outflow and intraocular pressure in the mammalian eye

    Science.gov (United States)

    Ryskamp, Daniel A.; Frye, Amber M.; Phuong, Tam T. T.; Yarishkin, Oleg; Jo, Andrew O.; Xu, Yong; Lakk, Monika; Iuso, Anthony; Redmon, Sarah N.; Ambati, Balamurali; Hageman, Gregory; Prestwich, Glenn D.; Torrejon, Karen Y.; Križaj, David

    2016-01-01

    An intractable challenge in glaucoma treatment has been to identify druggable targets within the conventional aqueous humor outflow pathway, which is thought to be regulated/dysregulated by elusive mechanosensitive protein(s). Here, biochemical and functional analyses localized the putative mechanosensitive cation channel TRPV4 to the plasma membrane of primary and immortalized human TM (hTM) cells, and to human and mouse TM tissue. Selective TRPV4 agonists and substrate stretch evoked TRPV4-dependent cation/Ca2+ influx, thickening of F-actin stress fibers and reinforcement of focal adhesion contacts. TRPV4 inhibition enhanced the outflow facility and lowered perfusate pressure in biomimetic TM scaffolds populated with primary hTM cells. Systemic delivery, intraocular injection or topical application of putative TRPV4 antagonist prodrug analogs lowered IOP in glaucomatous mouse eyes and protected retinal neurons from IOP-induced death. Together, these findings indicate that TRPV4 channels function as a critical component of mechanosensitive, Ca2+-signaling machinery within the TM, and that TRPV4-dependent cytoskeletal remodeling regulates TM stiffness and outflow. Thus, TRPV4 is a potential IOP sensor within the conventional outflow pathway and a novel target for treating ocular hypertension. PMID:27510430

  4. Cell cycle regulation and cytoskeletal remodelling are critical processes in the nutritional programming of embryonic development.

    Directory of Open Access Journals (Sweden)

    Angelina Swali

    Full Text Available Many mechanisms purport to explain how nutritional signals during early development are manifested as disease in the adult offspring. While these describe processes leading from nutritional insult to development of the actual pathology, the initial underlying cause of the programming effect remains elusive. To establish the primary drivers of programming, this study aimed to capture embryonic gene and protein changes in the whole embryo at the time of nutritional insult rather than downstream phenotypic effects. By using a cross-over design of two well established models of maternal protein and iron restriction we aimed to identify putative common "gatekeepers" which may drive nutritional programming.Both protein and iron deficiency in utero reduced the nephron complement in adult male Wistar and Rowett Hooded Lister rats (P<0.05. This occurred in the absence of damage to the glomerular ultrastructure. Microarray, proteomic and pathway analyses identified diet-specific and strain-specific gatekeeper genes, proteins and processes which shared a common association with the regulation of the cell cycle, especially the G1/S and G2/M checkpoints, and cytoskeletal remodelling. A cell cycle-specific PCR array confirmed the down-regulation of cyclins with protein restriction and the up-regulation of apoptotic genes with iron deficiency.The timing and experimental design of this study have been carefully controlled to isolate the common molecular mechanisms which may initiate the sequelae of events involved in nutritional programming of embryonic development. We propose that despite differences in the individual genes and proteins affected in each strain and with each diet, the general response to nutrient deficiency in utero is perturbation of the cell cycle, at the level of interaction with the cytoskeleton and the mitotic checkpoints, thereby diminishing control over the integrity of DNA which is allowed to replicate. These findings offer novel

  5. CK2 Phosphorylates and Inhibits TAp73 Tumor Suppressor Function to Promote Expression of Cancer Stem Cell Genes and Phenotype in Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Hai Lu

    2014-10-01

    Full Text Available Cancer stem cells (CSC and genes have been linked to cancer development and therapeutic resistance, but the signaling mechanisms regulating CSC genes and phenotype are incompletely understood. CK2 has emerged as a key signal serine/threonine kinase that modulates diverse signal cascades regulating cell fate and growth. We previously showed that CK2 is often aberrantly expressed and activated in head and neck squamous cell carcinomas (HNSCC, concomitantly with mutant (mt tumor suppressor TP53, and inactivation of its family member, TAp73. Unexpectedly, we observed that classical stem cell genes Nanog, Sox2, and Oct4, are overexpressed in HNSCC with inactivated TAp73 and mtTP53. However, the potential relationship between CK2, TAp73 inactivation, and CSC phenotype is unknown. We reveal that inhibition of CK2 by pharmacologic inhibitors or siRNA inhibits the expression of CSC genes and side population (SP, while enhancing TAp73 mRNA and protein expression. Conversely, CK2 inhibitor attenuation of CSC protein expression and the SP by was abrogated by TAp73 siRNA. Bioinformatic analysis uncovered a single predicted CK2 threonine phosphorylation site (T27 within the N-terminal transactivation domain of TAp73. Nuclear CK2 and TAp73 interaction, confirmed by co-immunoprecipitation, was attenuated by CK2 inhibitor, or a T27A point-mutation of this predicted CK2 threonine phospho-acceptor site of TAp73. Further, T27A mutation attenuated phosphorylation, while enhancing TAp73 function in repressing CSC gene expression and SP cells. A new CK2 inhibitor, CX-4945, inhibited CSC related SP cells, clonogenic survival, and spheroid formation. Our study unveils a novel regulatory mechanism whereby aberrant CK2 signaling inhibits TAp73 to promote the expression of CSC genes and phenotype.

  6. Bone Morphogenetic Protein-2-Induced Signaling and Osteogenesis Is Regulated by Cell Shape, RhoA/ROCK, and Cytoskeletal Tension

    OpenAIRE

    Wang, Yang-Kao; Yu, Xiang; Cohen, Daniel M.; Wozniak, Michele A.; Yang, Michael T.; Gao, Lin; Eyckmans, Jeroen; Chen, Christopher S.

    2011-01-01

    Osteogenic differentiation of human mesenchymal stem cells (hMSCs) is classically thought to be mediated by different cytokines such as the bone morphogenetic proteins (BMPs). Here, we report that cell adhesion to extracellular matrix (ECM), and its effects on cell shape and cytoskeletal mechanics, regulates BMP-induced signaling and osteogenic differentiation of hMSCs. Using micropatterned substrates to progressively restrict cell spreading and flattening against ECM, we demonstrated that BM...

  7. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock

    OpenAIRE

    Tamaru, Teruya; Hattori, Mitsuru; Honda, Kousuke; Nakahata, Yasukazu; Sassone-Corsi, Paolo; van der Horst, Gijsbertus T. J.; Ozawa, Takeaki; Takamatsu, Ken

    2015-01-01

    Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK)-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P) in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a ...

  8. Detection of phospho-sites generated by protein kinase CK2 in CFTR: mechanistic aspects of Thr1471 phosphorylation.

    Directory of Open Access Journals (Sweden)

    Andrea Venerando

    Full Text Available By mass spectrometry analysis of mouse Cystic Fibrosis Transmembrane-conductance Regulator (mCFTR expressed in yeast we have detected 21 phosphopeptides accounting for 22 potential phospho-residues, 12 of which could be unambiguously assigned. Most are conserved in human CFTR (hCFTR and the majority cluster in the Regulatory Domain, lying within consensus sequences for PKA, as identified in previous mammalian studies. This validates our yeast expression model. A number of phospho-residues were novel and human conserved, notably mouse Ser670, Ser723, Ser737, and Thr1467, that all lie in acidic sequences, compatible with their phosphorylation by protein kinase CK2. Thr1467 is localized in the C-terminal tail, embedded in a functionally important and very acidic sequence (EETEEE which displays an optimal consensus for protein kinase CK2. Herein, we show that Thr1467, homologous to human Thr1471 is readily phosphorylated by CK2. Indeed a 42 amino acid peptide encompassing the C-terminal segment of human CFTR is readily phosphorylated at Thr1471 with favorable kinetics (Km 1.7 µM by CK2 holoenzyme, but neither by its isolated catalytic subunit nor by other acidophilic Ser/Thr kinases (CK1, PLK2/3, GCK/FAM20C. Our finding that by treating CFTR expressing BHK cells with the very specific CK2 inhibitor CX4945, newly synthesized wild type CFTR (and even more its Phe508del mutant accumulates more abundantly than in the absence of CK2 inhibitor, supports the conclusion that phosphorylation of CFTR by CK2 correlates with decreased stability of the protein.

  9. Potent and Selective CK2 Kinase Inhibitors with Effects on Wnt Pathway Signaling in Vivo.

    Science.gov (United States)

    Dowling, James E; Alimzhanov, Marat; Bao, Larry; Chuaqui, Claudio; Denz, Christopher R; Jenkins, Emma; Larsen, Nicholas A; Lyne, Paul D; Pontz, Timothy; Ye, Qing; Holdgate, Geoff A; Snow, Lindsay; O'Connell, Nichole; Ferguson, Andrew D

    2016-03-10

    The Wnt pathway is an evolutionarily conserved and tightly regulated signaling network with important roles in embryonic development and adult tissue regeneration. Impaired Wnt pathway regulation, arising from mutations in Wnt signaling components, such as Axin, APC, and β-catenin, results in uncontrolled cell growth and triggers oncogenesis. To explore the reported link between CK2 kinase activity and Wnt pathway signaling, we sought to identify a potent, selective inhibitor of CK2 suitable for proof of concept studies in vivo. Starting from a pyrazolo[1,5-a]pyrimidine lead (2), we identified compound 7h, a potent CK2 inhibitor with picomolar affinity that is highly selectivity against other kinase family enzymes and inhibits Wnt pathway signaling (IC50 = 50 nM) in DLD-1 cells. In addition, compound 7h has physicochemical properties that are suitable for formulation as an intravenous solution, has demonstrated good pharmacokinetics in preclinical species, and exhibits a high level of activity as a monotherapy in HCT-116 and SW-620 xenografts. PMID:26985319

  10. Phosphorylation by CK2 and MAPK enhances calnexin association with ribosomes.

    Science.gov (United States)

    Chevet, E; Wong, H N; Gerber, D; Cochet, C; Fazel, A; Cameron, P H; Gushue, J N; Thomas, D Y; Bergeron, J J

    1999-07-01

    Calnexin was initially identified as an endoplasmic reticulum (ER) type I integral membrane protein, phosphorylated on its cytosolic domain by ER-associated protein kinases. Although the role of the ER luminal domain of calnexin has been established as a constituent of the molecular chaperone machinery of the ER, less is known about the role of the cytosolic phosphorylation of calnexin. Analysis by two-dimensional phosphopeptide maps revealed that calnexin was in vitro phosphorylated in isolated microsomes by casein kinase 2 (CK2) and extracellular-signal regulated kinase-1 (ERK-1) at sites corresponding to those for in vivo phosphorylation. In canine pancreatic microsomes, synergistic phosphorylation by CK2 and ERK-1 led to increased association of calnexin with membrane-bound ribosomes. In vivo, calnexin-associated ERK-1 activity was identified by co-immunoprecipitation. This activity was abolished in cells expressing a dominant-negative MEK-1. Activation of ERK-1 in cells by addition of serum led to a 4-fold increase in ribosome-associated calnexin over unstimulated cells. Taken together with studies revealing calnexin association with CK2 and ERK-1, a model is proposed whereby phosphorylation of calnexin leads to a potential increase in glycoprotein folding close to the translocon. PMID:10393181

  11. Pharmacologic regulation of AMPK in breast cancer affects cytoskeletal properties involved with microtentacle formation and re-attachment.

    Science.gov (United States)

    Chakrabarti, Kristi R; Whipple, Rebecca A; Boggs, Amanda E; Hessler, Lindsay K; Bhandary, Lekhana; Vitolo, Michele I; Thompson, Keyata; Martin, Stuart S

    2015-11-01

    The presence of tumor cells in the circulation is associated with a higher risk of metastasis in patients with breast cancer. Circulating breast tumor cells use tubulin-based structures known as microtentacles (McTNs) to re-attach to endothelial cells and arrest in distant organs. McTN formation is dependent on the opposing cytoskeletal forces of stable microtubules and the actin network. AMP-activated protein kinase (AMPK) is a cellular metabolic regulator that can alter actin and microtubule organization in epithelial cells. We report that AMPK can regulate the cytoskeleton of breast cancer cells in both attached and suspended conditions. We tested the effects of AMPK on microtubule stability and the actin-severing protein, cofilin. AMPK inhibition with compound c increased both microtubule stability and cofilin activation, which also resulted in higher McTN formation and re-attachment. Conversely, AMPK activation with A-769662 decreased microtubule stability and cofilin activation with concurrent decreases in McTN formation and cell re-attachment. This data shows for the first time that AMPK shifts the balance of cytoskeletal forces in suspended breast cancer cells, which affect their ability to form McTNs and re-attach. These results support a model where AMPK activators may be used therapeutically to reduce the metastatic efficiency of breast tumor cells. PMID:26431377

  12. Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration

    Directory of Open Access Journals (Sweden)

    Suryavanshi Narendra

    2011-08-01

    Full Text Available Abstract Background Cell migration is essential during development and in human disease progression including cancer. Most cell migration studies concentrate on known or predicted components of migration pathways. Results Here we use data from a genome-wide RNAi morphology screen in Drosophila melanogaster cells together with bioinformatics to identify 26 new regulators of morphology and cytoskeletal organization in human cells. These include genes previously implicated in a wide range of functions, from mental retardation, Down syndrome and Huntington's disease to RNA and DNA-binding genes. We classify these genes into seven groups according to phenotype and identify those that affect cell migration. We further characterize a subset of seven genes, FAM40A, FAM40B, ARC, FMNL3, FNBP3/FBP11, LIMD1 and ZRANB1, each of which has a different effect on cell shape, actin filament distribution and cell migration. Interestingly, in several instances closely related isoforms with a single Drosophila homologue have distinct phenotypes. For example, FAM40B depletion induces cell elongation and tail retraction defects, whereas FAM40A depletion reduces cell spreading. Conclusions Our results identify multiple regulators of cell migration and cytoskeletal signalling that are highly conserved between Drosophila and humans, and show that closely related paralogues can have very different functions in these processes.

  13. GTP plus water mimic ATP in the active site of protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Pütter, M; Guerra, B;

    1999-01-01

    The structures of the catalytic subunit of protein kinase CK2 from Zea mays complexed with Mg2+ and with analogs of ATP or GTP were determined to 2.2 A resolution. Unlike most other protein kinases, CK2 from various sources shows 'dual-cosubstrate specificity', that is, the ability to efficiently...... target CK2 or other kinases with this property....

  14. Cytoskeletal Mechanics

    Science.gov (United States)

    Mofrad, Mohammad R. K.; Kamm, Roger D.

    2011-08-01

    1. Introduction and the biological basis for cell mechanics Mohammad R. K. Mofrad and Roger Kamm; 2. Experimental measurements of intracellular mechanics Paul Janmey and Christoph Schmidt; 3. The cytoskeleton as a soft glassy material Jeffrey Fredberg and Ben Fabry; 4. Continuum elastic or viscoelastic models for the cell Mohammad R. K. Mofrad, Helene Karcher and Roger Kamm; 5. Multiphasic models of cell mechanics Farshid Guuilak, Mansoor A. Haider, Lori A. Setton, Tod A. Laursen and Frank P. T. Baaijens; 6. Models of cytoskeletal mechanics based on tensegrity Dimitrije Stamenovic; 7. Cells, gels and mechanics Gerald H. Pollack; 8. Polymer-based models of cytoskeletal networks F. C. MacKintosh; 9. Cell dynamics and the actin cytoskeleton James L. McGrath and C. Forbes Dewey, Jr; 10. Active cellular motion: continuum theories and models Marc Herant and Micah Dembo; 11. Summary Mohammad R. K. Mofrad and Roger Kamm.

  15. Development of a high-throughput screening-compatible assay to identify inhibitors of the CK2alpha/CK2beta interaction

    DEFF Research Database (Denmark)

    Hochscherf, Jennifer; Lindenblatt, Dirk; Steinkrueger, Michaela; Yoo, Eungyoung; Ulucan, Oezlem; Herzig, Stefan; Issinger, Olaf-Georg; Helms, Volkhard; Goetz, Claudia; Neundorf, Ines; Niefind, Karsten; Pietsch, Markus

    crystal structure of the Pc/CK2alpha1-335 complex. The dissociation constants obtained in the fluorescence anisotropy assay for binding of all compounds to human CK2alpha1-335 were validated by isothermal titration calorimetry. I-Pc was identified as the tightest binding ligand with a KD value of 240n...

  16. Effects of the CK2 inhibitors CX-4945 and CX-5011 on drug-resistant cells.

    Directory of Open Access Journals (Sweden)

    Sofia Zanin

    Full Text Available CK2 is a pleiotropic protein kinase, which regulates many survival pathways and plays a global anti-apoptotic function. It is highly expressed in tumor cells, and is presently considered a promising therapeutic target. Among the many inhibitors available for this kinase, the recently developed CX-4945 and CX-5011 have proved to be very potent, selective and effective in inducing cell death in tumor cells; CX-4945 has recently entered clinical trials. However, no data are available on the efficacy of these compounds to overcome drug resistance, a major reasons of cancer therapy failure. Here we address this point, by studying their effects in several tumor cell lines, each available as variant R resistant to drug-induced apoptosis, and normal-sensitive variant S. We found that the inhibition of endogenous CK2 was very similar in S and R treated cells, with more than 50% CK2 activity reduction at sub-micromolar concentrations of CX-4945 and CX-5011. A consequent apoptotic response was induced both in S and R variants of each pairs. Moreover, the combined treatment of CX-4945 plus vinblastine was able to sensitize to vinblastine R cells that are otherwise almost insensitive to this conventional antitumor drug. Consistently, doxorubicin accumulation in multidrug resistant (MDR cells was greatly increased by CX-4945.In summary, we demonstrated that all the R variants are sensitive to CX-4945 and CX-5011; since some of the treated R lines express the extrusion pump Pgp, often responsible of the MDR phenotype, we can also conclude that the two inhibitors can successfully overcome the MDR phenomenon.

  17. Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs)

    International Nuclear Information System (INIS)

    RhoA is a crucial regulator of stress fiber and focal adhesion formation through the activation of actin nucleation and polymerization. It also regulates the nuclear translocation of myocardin-related transcription factor-A and -B (MRTF-A/B, MAL or MKL 1/2), which are co-activators of serum response factor (SRF). In dominant-negative MRTF-A (DN-MRTF-A)-expressing NIH 3T3 cell lines, the expressions of several cytoskeletal/focal adhesion genes were down-regulated, and the formation of stress fiber and focal adhesion was severely diminished. MRTF-A/B-knockdown cells also exhibited such cytoskeletal defects. In reporter assays, both RhoA and MRTF-A enhanced promoter activities of these genes in a CArG-box-dependent manner, and DN-MRTF-A inhibited the RhoA-mediated activation of these promoters. In dominant-negative RhoA (RhoA-N19)-expressing NIH 3T3 cell lines, the nuclear translocation of MRTF-A/B was predominantly prevented, resulting in the reduced expression of cytoskeletal/focal adhesion proteins. Further, constitutive-active MRTF-A/B increased the expression of endogenous cytoskeletal/focal adhesion proteins, and thereby rescued the defective phenotype of stress fibers and focal adhesions in RhoA-N19 expressing cells. These results indicate that MRTF-A/B act as pivotal mediators of stress fiber and focal adhesion formation via the transcriptional regulation of a subset of cytoskeletal/focal adhesion genes

  18. Scaffold mediated regulation of MAPK signaling and cytoskeletal dynamics: A perspective

    OpenAIRE

    Pullikuth, Ashok K.; Catling, Andrew D.

    2007-01-01

    Cell migration is critical for many physiological processes and is often misregulated in developmental disorders and pathological conditions including cancer and neurodegeneration. MAPK signaling and the Rho family of proteins are known regulators of cell migration that exert their influence on cellular cytoskeleton during cell adhesion and migration. Here we review data supporting the view that localized ERK signaling mediated through recently identified scaffold proteins may regulate cell m...

  19. Regulation of cytoskeletal organization and junctional remodeling by the atypical cadherin Fat

    OpenAIRE

    Marcinkevicius, Emily; Zallen, Jennifer A.

    2013-01-01

    The atypical cadherin Fat is a conserved regulator of planar cell polarity, but the mechanisms by which Fat controls cell shape and tissue structure are not well understood. Here, we show that Fat is required for the planar polarized organization of actin denticle precursors, adherens junction proteins and microtubules in the epidermis of the late Drosophila embryo. In wild-type embryos, spatially regulated cell-shape changes and rearrangements organize cells into highly aligned columns. Junc...

  20. Crystal structure of a C-terminal deletion mutant of human protein kinase CK2 catalytic subunit

    DEFF Research Database (Denmark)

    Ermakova, Inessa; Boldyreff, Brigitte; Issinger, Olaf-Georg; Niefind, Karsten

    2003-01-01

    Protein kinase CK2 (formerly called: casein kinase 2) is a heterotetrameric enzyme composed of two separate catalytic chains (CK2alpha) and a stable dimer of two non-catalytic subunits (CK2beta). CK2alpha is a highly conserved member of the superfamily of eukaryotic protein kinases. The crystal s...

  1. Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Pinna, L A;

    1998-01-01

    CK2alpha is the catalytic subunit of protein kinase CK2, an acidophilic and constitutively active eukaryotic Ser/Thr kinase involved in cell proliferation. A crystal structure, at 2.1 A resolution, of recombinant maize CK2alpha (rmCK2alpha) in the presence of ATP and Mg2+, shows the enzyme in an ...

  2. Fas-associated factor 1 interacts with protein kinase CK2 in vivo upon apoptosis induction

    DEFF Research Database (Denmark)

    Guerra, B; Boldyreff, B; Issinger, O G

    2001-01-01

    We show here that in several different cell lines protein kinase CK2 and Fas-associated factor 1 (FAF1) exist together in a complex which is stable to high monovalent salt concentration. The CK2/FAF1 complex formation is significantly increased after induction of apoptosis with various DNA damaging...... view that protein kinase CK2 plays an important role in certain steps of apoptosis....

  3. CK2 activity is modulated by growth rate in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Research highlights: → CK2 subunits are nuclear both in glucose and in ethanol growing yeast cells. → CK2 activity is modulated in S. cerevisiae. → CK2 activity is higher in conditions supporting higher growth rates. → Vmax is higher in faster growing cells, while Km is not affected. -- Abstract: CK2 is a highly conserved protein kinase controlling different cellular processes. It shows a higher activity in proliferating mammalian cells, in various types of cancer cell lines and tumors. The findings presented herein provide the first evidence of an in vivo modulation of CK2 activity, dependent on growth rate, in Saccharomyces cerevisiae. In fact, CK2 activity, assayed on nuclear extracts, is shown to increase in exponential growing batch cultures at faster growth rate, while localization of catalytic and regulatory subunits is not nutritionally modulated. Differences in intracellular CK2 activity of glucose- and ethanol-grown cells appear to depend on both increase in molecule number and kcat. Also in chemostat cultures nuclear CK2 activity is higher in faster growing cells providing the first unequivocal demonstration that growth rate itself can affect CK2 activity in a eukaryotic organism.

  4. miR-8 modulates cytoskeletal regulators to influence cell survival and epithelial organization in Drosophila wings.

    Science.gov (United States)

    Bolin, Kelsey; Rachmaninoff, Nicholas; Moncada, Kea; Pula, Katharine; Kennell, Jennifer; Buttitta, Laura

    2016-04-01

    The miR-200 microRNA family plays important tumor suppressive roles. The sole Drosophila miR-200 ortholog, miR-8 plays conserved roles in Wingless, Notch and Insulin signaling - pathways linked to tumorigenesis, yet homozygous null animals are viable and often appear morphologically normal. We observed that wing tissues mosaic for miR-8 levels by genetic loss or gain of function exhibited patterns of cell death consistent with a role for miR-8 in modulating cell survival in vivo. Here we show that miR-8 levels impact several actin cytoskeletal regulators that can affect cell survival and epithelial organization. We show that loss of miR-8 can confer resistance to apoptosis independent of an epithelial to mesenchymal transition while the persistence of cells expressing high levels of miR-8 in the wing epithelium leads to increased JNK signaling, aberrant expression of extracellular matrix remodeling proteins and disruption of proper wing epithelial organization. Altogether our results suggest that very low as well as very high levels of miR-8 can contribute to hallmarks associated with cancer, suggesting approaches to increase miR-200 microRNAs in cancer treatment should be moderate. PMID:26902111

  5. Protein kinase CK2 inhibition down modulates the NF-κB and STAT3 survival pathways, enhances the cellular proteotoxic stress and synergistically boosts the cytotoxic effect of bortezomib on multiple myeloma and mantle cell lymphoma cells.

    Directory of Open Access Journals (Sweden)

    Sabrina Manni

    Full Text Available CK2 is a pivotal pro-survival protein kinase in multiple myeloma that may likely impinge on bortezomib-regulated cellular pathways. In the present study, we investigated CK2 expression in multiple myeloma and mantle cell lymphoma, two bortezomib-responsive B cell tumors, as well as its involvement in bortezomib-induced cytotoxicity and signaling cascades potentially mediating bortezomib resistance. In both tumors, CK2 expression correlated with that of its activated targets NF-κB and STAT3 transcription factors. Bortezomib-induced proliferation arrest and apoptosis were significantly amplified by the simultaneous inhibition of CK2 with two inhibitors (CX-4945 and K27 in multiple myeloma and mantle cell lymphoma cell lines, in a model of multiple myeloma bone marrow microenvironment and in cells isolated from patients. CK2 inhibition empowered bortezomib-triggered mitochondrial-dependent cell death. Phosphorylation of NF-κB p65 on Ser529 (a CK2 target site and rise of the levels of the endoplasmic reticulum stress kinase/endoribonuclease Ire1α were markedly reduced upon CK2 inhibition, as were STAT3 phospho Ser727 levels. On the contrary, CK2 inhibition increased phospho Ser51 eIF2α levels and enhanced the bortezomib-dependent accumulation of poly-ubiquitylated proteins and of the proteotoxic stress-associated chaperone Hsp70. Our data suggest that CK2 over expression in multiple myeloma and mantle cell lymphoma cells might sustain survival signaling cascades and can antagonize bortezomib-induced apoptosis at different levels. CK2 inhibitors could be useful in bortezomib-based combination therapies.

  6. Integrated transcriptomic and proteomic analysis identifies protein kinase CK2 as a key signaling node in an inflammatory cytokine network in ovarian cancer cells

    Science.gov (United States)

    Kulbe, Hagen; Iorio, Francesco; Chakravarty, Probir; Milagre, Carla S.; Moore, Robert; Thompson, Richard G.; Everitt, Gemma; Canosa, Monica; Montoya, Alexander; Drygin, Denis; Braicu, Ioana; Sehouli, Jalid; Saez-Rodriguez, Julio; Cutillas, Pedro R.; Balkwill, Frances R.

    2016-01-01

    We previously showed how key pathways in cancer-related inflammation and Notch signaling are part of an autocrine malignant cell network in ovarian cancer. This network, which we named the “TNF network”, has paracrine actions within the tumor microenvironment, influencing angiogenesis and the immune cell infiltrate. The aim of this study was to identify critical regulators in the signaling pathways of the TNF network in ovarian cancer cells that might be therapeutic targets. To achieve our aim, we used a systems biology approach, combining data from phospho-proteomic mass spectrometry and gene expression array analysis. Among the potential therapeutic kinase targets identified was the protein kinase Casein kinase II (CK2). Knockdown of CK2 expression in malignant cells by siRNA or treatment with the specific CK2 inhibitor CX-4945 significantly decreased Notch signaling and reduced constitutive cytokine release in ovarian cancer cell lines that expressed the TNF network as well as malignant cells isolated from high grade serous ovarian cancer ascites. The expression of the same cytokines was also inhibited after treatment with CX-4945 in a 3D organotypic model. CK2 inhibition was associated with concomitant inhibition of proliferative activity, reduced angiogenesis and experimental peritoneal ovarian tumor growth. In conclusion, we have identified kinases, particularly CK2, associated with the TNF network that may play a central role in sustaining the cytokine network and/or mediating its effects in ovarian cancer. PMID:26871292

  7. APC2 and Axin promote mitotic fidelity by facilitating centrosome separation and cytoskeletal regulation.

    Science.gov (United States)

    Poulton, John S; Mu, Frank W; Roberts, David M; Peifer, Mark

    2013-10-01

    To ensure the accurate transmission of genetic material, chromosome segregation must occur with extremely high fidelity. Segregation errors lead to chromosomal instability (CIN), with deleterious consequences. Mutations in the tumor suppressor adenomatous polyposis coli (APC) initiate most colon cancers and have also been suggested to promote disease progression through increased CIN, but the mechanistic role of APC in preventing CIN remains controversial. Using fly embryos as a model, we investigated the role of APC proteins in CIN. Our findings suggest that APC2 loss leads to increased rates of chromosome segregation error. This occurs through a cascade of events beginning with incomplete centrosome separation leading to failure to inhibit formation of ectopic cleavage furrows, which result in mitotic defects and DNA damage. We test several hypotheses related to the mechanism of action of APC2, revealing that APC2 functions at the embryonic cortex with several protein partners, including Axin, to promote mitotic fidelity. Our in vivo data demonstrate that APC2 protects genome stability by modulating mitotic fidelity through regulation of the cytoskeleton. PMID:24026117

  8. Expression, purification and crystallization of the catalytic subunit of protein kinase CK2 from Zea mays

    DEFF Research Database (Denmark)

    Guerra, B; Niefind, K; Pinna, L A;

    1998-01-01

    The catalytic (alpha) subunit of protein kinase CK2 (CK2alpha) was originally cloned and overexpressed in the Escherichia coli strain pT7-7/BL21(DE3). The protein has been purified to homogeneity and crystallized. The crystals belong to the monoclinic space group C2, they have unit-cell parameters...

  9. Structure of protein kinase CK2: dimerization of the human beta-subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Mietens, U; Issinger, O G

    1996-01-01

    Protein kinase CK2 has been shown to be elevated in all so far investigated solid tumors and its catalytic subunit has been shown to serve as an oncogene product. CK2 is a heterotetrameric serine-threonine kinase composed of two catalytic (alpha and/or alpha') and two regulatory beta...

  10. Expression and characterization of a recombinant maize CK-2 alpha subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Dobrowolska, G;

    1993-01-01

    CKIIB, one of the CK-2 like enzymes which have been isolated from maize, has been shown to be a monomeric enzyme that cross-reacts with anti CK-2 alpha specific antibodies suggesting a possible relationship between the two proteins (Dobrowolska et al. (1992) Eur. J. Biochem. 204, 299-303). In ord...

  11. A subnanomolar fluorescent probe for protein kinase CK2 interaction studies

    DEFF Research Database (Denmark)

    Enkvist, Erki; Viht, Kaido; Bischoff, Nils;

    2012-01-01

    -1502 with PromoFluor-647 gave the fluorescent probe ARC-1504 that possessed subnanomolar affinity towards both CK2α and the holoenzyme. The probe was used in a fluorescence anisotropy-based binding assay to measure the concentration of CK2α and characterize non-labelled ligands binding to the active...

  12. Purification and characterization of recombinant protein kinase CK2 from Zea mays expressed in Escherichia coli

    DEFF Research Database (Denmark)

    Riera, Marta; Pages, Montserrat; Issinger, Olaf Georg;

    2003-01-01

    Recombinant protein kinase subunits rmCK2alpha-1 and rmCK2beta-1 from Zea mays were expressed separately in Escherichia coli and assembled to a fully active tetrameric holoenzyme complex in vitro. The obtained maize holoenzyme was purified to homogeneity, biochemically characterized, and compared...

  13. A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Issinger, O G

    1997-01-01

    In a search for protein kinase CK2 beta subunit binding proteins using the two-hybrid system, more than 1000 positive clones were isolated. Beside clones for the alpha' and beta subunit of CK2, there were clones coding for a so far unknown protein, whose partial cDNA sequence was already deposited...... in the EMBL database under the accession numbers R08806 and Z17360, for the ribosomal protein L5 and for A-Raf kinase. All isolated clones except the one for CK2 beta showed no interaction with the catalytic alpha subunit of CK2. A-Raf kinase is a new interesting partner of CK2 beta. The isolated A...

  14. The neurogenic basic helix–loop–helix transcription factor NeuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation

    Directory of Open Access Journals (Sweden)

    Kristin Kathleen Baxter

    2009-09-01

    Full Text Available Mitochondria play a central role during neurogenesis by providing energy in the form of ATP for cytoskeletal remodelling, outgrowth of neuronal processes, growth cone activity and synaptic activity. However, the fundamental question of how differentiating neurons control mitochondrial biogenesis remains vastly unexplored. Since our previous studies have shown that the neurogenic bHLH (basic helix–loop–helix transcription factor NeuroD6 is sufficient to induce differentiation of the neuronal progenitor-like PC12 cells and that it triggers expression of mitochondrial-related genes, we investigated whether NeuroD6 could modulate the mitochondrial biomass using our PC12-ND6 cellular paradigm. Using a combination of flow cytometry, confocal microscopy and mitochondrial fractionation, we demonstrate that NeuroD6 stimulates maximal mitochondrial mass at the lamellipodia stage, thus preceding axonal growth. NeuroD6 triggers remodelling of the actin and microtubule networks in conjunction with increased expression of the motor protein KIF5B, thus promoting mitochondrial movement in developing neurites with accumulation in growth cones. Maintenance of the NeuroD6-induced mitochondrial mass requires an intact cytoskeletal network, as its disruption severely reduces mitochondrial mass. The present study provides the first evidence that NeuroD6 plays an integrative role in co-ordinating increase in mitochondrial mass with cytoskeletal remodelling, suggestive of a role of this transcription factor as a co-regulator of neuronal differentiation and energy metabolism.

  15. Exploiting the repertoire of CK2 inhibitors to target DYRK and PIM kinases.

    Science.gov (United States)

    Cozza, Giorgio; Sarno, Stefania; Ruzzene, Maria; Girardi, Cristina; Orzeszko, Andrzej; Kazimierczuk, Zygmunt; Zagotto, Giuseppe; Bonaiuto, Emanuela; Di Paolo, Maria Luisa; Pinna, Lorenzo A

    2013-07-01

    Advantage has been taken of the relative promiscuity of commonly used inhibitors of protein kinase CK2 to develop compounds that can be exploited for the selective inhibition of druggable kinases other than CK2 itself. Here we summarize data obtained by altering the scaffold of CK2 inhibitors to give rise to novel selective inhibitors of DYRK1A and to a powerful cell permeable dual inhibitor of PIM1 and CK2. In the former case one of the new compounds, C624 (naphto [1,2-b]benzofuran-5,9-diol) displays a potency comparable to that of the first-in-class DYRK1A inhibitor, harmine, lacking however the drawback of drastically inhibiting monoamine oxidase-A (MAO-A) as harmine does. On the other hand the promiscuous CK2 inhibitor 4,5,6,7-tetrabromo-1H-benzimidazole (TBI,TBBz) has been derivatized with a sugar moiety to generate a 1-(β-D-2'-deoxyribofuranosyl)-4,5,6,7-tetrabromo-1H-benzimidazole (TDB) compound which inhibits PIM1 and CK2 with comparably high efficacy (IC50 values<100nM) and remarkable selectivity. TDB, unlike other dual PIM1/CK2 inhibitors described in the literature is readily cell permeable and displays a cytotoxic effect on cancer cells consistent with concomitant inhibition of both its onco-kinase targets. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012). PMID:23360763

  16. CK2 activity is required for the interaction of FGF14 with voltage-gated sodium channels and neuronal excitability.

    Science.gov (United States)

    Hsu, Wei-Chun J; Scala, Federico; Nenov, Miroslav N; Wildburger, Norelle C; Elferink, Hannah; Singh, Aditya K; Chesson, Charles B; Buzhdygan, Tetyana; Sohail, Maveen; Shavkunov, Alexander S; Panova, Neli I; Nilsson, Carol L; Rudra, Jai S; Lichti, Cheryl F; Laezza, Fernanda

    2016-06-01

    Recent data shows that fibroblast growth factor 14 (FGF14) binds to and controls the function of the voltage-gated sodium (Nav) channel with phenotypic outcomes on neuronal excitability. Mutations in the FGF14 gene in humans have been associated with brain disorders that are partially recapitulated in Fgf14(-/-) mice. Thus, signaling pathways that modulate the FGF14:Nav channel interaction may be important therapeutic targets. Bioluminescence-based screening of small molecule modulators of the FGF14:Nav1.6 complex identified 4,5,6,7 -: tetrabromobenzotriazole (TBB), a potent casein kinase 2 (CK2) inhibitor, as a strong suppressor of FGF14:Nav1.6 interaction. Inhibition of CK2 through TBB reduces the interaction of FGF14 with Nav1.6 and Nav1.2 channels. Mass spectrometry confirmed direct phosphorylation of FGF14 by CK2 at S228 and S230, and mutation to alanine at these sites modified FGF14 modulation of Nav1.6-mediated currents. In 1 d in vitro hippocampal neurons, TBB induced a reduction in FGF14 expression, a decrease in transient Na(+) current amplitude, and a hyperpolarizing shift in the voltage dependence of Nav channel steady-state inactivation. In mature neurons, TBB reduces the axodendritic polarity of FGF14. In cornu ammonis area 1 hippocampal slices from wild-type mice, TBB impairs neuronal excitability by increasing action potential threshold and lowering firing frequency. Importantly, these changes in excitability are recapitulated in Fgf14(-/-) mice, and deletion of Fgf14 occludes TBB-dependent phenotypes observed in wild-type mice. These results suggest that a CK2-FGF14 axis may regulate Nav channels and neuronal excitability.-Hsu, W.-C. J., Scala, F., Nenov, M. N., Wildburger, N. C., Elferink, H., Singh, A. K., Chesson, C. B., Buzhdygan, T., Sohail, M., Shavkunov, A. S., Panova, N. I., Nilsson, C. L., Rudra, J. S., Lichti, C. F., Laezza, F. CK2 activity is required for the interaction of FGF14 with voltage-gated sodium channels and neuronal

  17. Quinalizarin as a potent, selective and cell permeable inhibitor of protein kinase CK2

    OpenAIRE

    Cozza, Giorgio; Mazzorana, Marco; Papinutto, Elena; Bain, Jenny; Elliott, Matthew; Di Maira, Giovanni; Gianoncelli, Alessandra; Pagano, Mario A.; Sarno, Stefania; Ruzzene, Maria; Battistutta, Roberto; Meggio, Flavio; Moro, Stefano; Zagotto, Giuseppe; Pinna, Lorenzo A.

    2009-01-01

    Abstract Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a moderately potent and poorly selective inhibitor of CK2, one of the most pleiotropic Ser/Thr protein kinases, implicated in neoplasia and in other global diseases. By virtual screening of the MMS database we have now identified quinalizarin (1,2,5,8-tetrahydroxy-anthraquinone) as an inhibitor of CK2 more potent and selective than emodin. CK2 inhibition by quinalizarin is competitive with respect to ATP, with a Ki value ...

  18. Asymmetric expression of protein kinase CK2 subunits in human kidney tumors

    DEFF Research Database (Denmark)

    Stalter, G; Siemer, S; Becht, E; Ziegler, M; Remberger, K; Issinger, O G

    1994-01-01

    of protein kinase CK2 alpha in tumors/normal tissue (T/N) was 1.58 and that of the protein kinase CK2 beta (T/N) was 2.65. The data suggest that the generally described increase in protein kinase CK2 activity in tumor cells may to some extent result from a deregulation in subunit biosynthesis or...... degradation. This at least partly owing to the presence of excess enzymatically active protein kinase alpha-subunit but also to a significantly higher presence of the non-catalytic beta-subunit....

  19. The protein kinase CK2(Andante) holoenzyme structure supports proposed models of autoregulation and trans-autophosphorylation

    DEFF Research Database (Denmark)

    Schnitzler, Alexander; Olsen, Birgitte Brinkmann; Issinger, Olaf-Georg;

    2014-01-01

    (Andante) that contains a CK2β variant mutated in a CK2α-contact helix and described to be responsible for a prolonged circadian rhythm in Drosophila. The increased propensity of CK2(Andante) to form aggregates with completely blocked active sites may contribute to this phenotype....

  20. The scaffolding protein IQGAP1 co-localizes with actin at the cytoplasmic face of the nuclear envelope: implications for cytoskeletal regulation

    OpenAIRE

    Johnson, Michael A.; Henderson, Beric R.

    2012-01-01

    IQGAP1 is an important cytoskeletal regulator, known to act at the plasma membrane to bundle and cap actin filaments, and to tether the cortical actin meshwork to microtubules via plus-end binding proteins. Here we describe the novel subcellular localization of IQGAP1 at the cytoplasmic face of the nuclear envelope, where it co-located with F-actin. The IQGAP1 and F-actin staining overlapped that of microtubules at the nuclear envelope, revealing a pattern strikingly similar to that observed ...

  1. Design, validation and efficacy of bisubstrate inhibitors specifically affecting ecto-CK2 kinase activity.

    Science.gov (United States)

    Cozza, Giorgio; Zanin, Sofia; Sarno, Stefania; Costa, Elena; Girardi, Cristina; Ribaudo, Giovanni; Salvi, Mauro; Zagotto, Giuseppe; Ruzzene, Maria; Pinna, Lorenzo A

    2015-11-01

    By derivatizing the purely competitive CK2 inhibitor N1-(4,5,6,7-tetrabromo-1H-benzimidazol-2-yl)-propane-1,3-diamine (K137) at its 3-amino position with a peptidic fragment composed of three or four glutamic or aspartic acid residues, a new family of bisubstrate inhibitors has been generated whose ability to simultaneously interact with both the ATP and the phosphoacceptor substrate-binding sites has been probed by running mixed competition kinetics and by mutational mapping of the kinase residues implicated in substrate recognition. The most effective bisubstrate inhibitor, K137-E4, interacts with three functional regions of the kinase: the hydrophobic pocket close to the ATP-binding site, the basic residues of the p+1 loop that recognizes the acidic determinant at position n+1 and the basic residues of α-helixC that recognize the acidic determinant at position n+3. Compared with the parent inhibitor (K137), K137-E4 is severalfold more potent (IC50 25 compared with 130 nM) and more selective, failing to inhibit any other kinase as drastically as CK2 out of 140 enzymes, whereas 35 kinases are inhibited more potently than CK2 by K137. K137-E4 is unable to penetrate the cell and to inhibit endogenous CK2, its pro-apoptotic efficacy being negligible compared with cell-permeant inhibitors; however, it readily inhibits ecto-CK2 on the outer cell surface, reducing the phosphorylation of several external phosphoproteins. Inhibition of ecto-CK2 by K137-E4 is accompanied by a slower migration of cancer cells as judged by wound healing assays. On the basis of the cellular responses to K137-E4, we conclude that ecto-CK2 is implicated in cell motility, whereas its contribution to the pro-survival role of CK2 is negligible. PMID:26349539

  2. Association of CK2 with Polycomb complexes and its functional implications

    OpenAIRE

    Chandler, H.

    2013-01-01

    Polycomb group (PcG) proteins are important for establishing the patterns of gene expression in different cell types and are critical for the maintenance of pluripotency. They participate in multi-component complexes, such as Polycomb repressive complex 1 (PRC1), which modify, and bind to, histone tails. A number of auxiliary proteins consistently associate with PRC1, including the three subunits of protein kinase CK2 (CK2). The work described in this thesis investigates the interaction of CK...

  3. Resorufin: a lead for a new protein kinase CK2 inhibitor

    DEFF Research Database (Denmark)

    Sandholt, Iben Skjøth; Olsen, Birgitte Brinkmann; Guerra, Barbara;

    2009-01-01

    Screening a natural compound library led to the identification of resorufin as a highly selective and potent inhibitor of protein kinase CK2. Out of 52 kinases tested, only CK2 was inhibited, in contrast to emodin, a structurally related, known CK2 inhibitor that, in addition to CK2, inhibited ten...... within 24 h. Endogenous protein kinase CK2 was inhibited by resorufin by ca. 80% in the three prostate cell lines. In the case of the HCT116 cells, the inhibition was only 40% supporting the notion of cell line-specific selectivity. Moreover, we analysed the effect of resorufin and emodin on selected...... other kinases by 90%. The IC50 values determined for the CK2 holoenzymes were 1.5 mol/l and for the free catalytic subunits ca. 4 mol/l. Altogether four cell lines were subjected to resorufin and emodin treatment. In the case of the three prostate carcinoma cell lines (PC-3, DU-145, LNCaP), 24 h...

  4. Phosphoproteome Profiling of SH-SY5y Neuroblastoma Cells Treated with Anesthetics: Sevoflurane and Isoflurane Affect the Phosphorylation of Proteins Involved in Cytoskeletal Regulation.

    Science.gov (United States)

    Lee, Joomin; Ahn, Eunsook; Park, Wyun Kon; Park, Seyeon

    2016-01-01

    Inhalation anesthetics are used to decrease the spinal cord transmission of painful stimuli. However, the molecular or biochemical processes within cells that regulate anesthetic-induced responses at the cellular level are largely unknown. Here, we report the phosphoproteome profile of SH-SY5y human neuroblastoma cells treated with sevoflurane, a clinically used anesthetic. Phosphoproteins were isolated from cell lysates and analyzed using two-dimensional gel electrophoresis. The phosphorylation of putative anesthetic-responsive marker proteins was validated using western blot analysis in cells treated with both sevoflurane and isoflurane. A total of 25 phosphoproteins were identified as differentially phosphorylated proteins. These included key regulators that signal cytoskeletal remodeling steps in pathways related to vesicle trafficking, axonal growth, and cell migration. These proteins included the Rho GTPase, Ras-GAP SH3 binding protein, Rho GTPase activating protein, actin-related protein, and actin. Sevoflurane and isoflurane also resulted in the dissolution of F-actin fibers in SH-SY5y cells. Our results show that anesthetics affect the phosphorylation of proteins involved in cytoskeletal remodeling pathways. PMID:27611435

  5. Novelty-induced activity-regulated cytoskeletal-associated protein (Arc) expression in frontal cortex requires serotonin 2A receptor activation

    DEFF Research Database (Denmark)

    Santini, Martin; Klein, A B; El-Sayed, M;

    2011-01-01

    Many psychiatric disorders are characterized by cognitive and emotional alterations that are related to abnormal function of the frontal cortex (FC). FC is involved in working memory and decision making and is activated following exposure to a novel environment. The serotonin 2A receptor (5-HT(2A...... novel environment. As an output of FC activation we measured expression of activity-regulated cytoskeletal-associated protein (Arc). Novelty-exposure (open-field arena) robustly up-regulated FC Arc mRNA expression (~160%) in mice compared to home-cage controls. This response was inhibited with the 5-HT...... hippocampus, indicating that the involvement of 5-HT(2A)R in this response is restricted to the FC. Similarly, the novelty-induced stress as determined by increasing levels of plasma corticosterone, was not influenced by 5-HT(2A)R antagonism suggesting that Arc mRNA and stress are activated via distinct...

  6. Mutational analysis of residues implicated in the interaction between protein kinase CK2 and peptide substrates

    DEFF Research Database (Denmark)

    Sarno, S; Vaglio, P; Marin, O;

    1997-01-01

    Sixteen derivatives of the optimal peptide substrate RRRA-DDSDDDDD in which aspartic acids were singly or multiply substituted by alanine have been assayed for their phosphorylation efficiency by either wild type protein kinase CK2 or CK2 alpha mutants defective in substrate recognition. With wild...... substitutions tend to have a more than additive effect even if they affect individually dispensable aspartic acids; thus, double, triple, and quintuple substitutions at positions n - 2 and -1, and n + 2, +4, and +5 had detrimental consequences comparable to those observed with substitutions at n + 1 and n + 3....... However, if the suboptimal substrate RRRA-AASDDDDD was used, the single mutants K49A, K71A, K77A, R80A, and H160A also exhibited Km values significantly higher than those of wild type CK2. Kinetic analysis with singly substituted derivatives of peptide RRRA-DDSDDDDD revealed that K49 is implicated in the...

  7. Interactions of protein kinase CK2beta subunit within the holoenzyme and with other proteins

    DEFF Research Database (Denmark)

    Kusk, M; Ahmed, R; Thomsen, B;

    1999-01-01

    Protein kinase CK2 is a ubiquitous, highly conserved protein kinase with a tetrameric alpha2beta2 structure. For the formation of this tetrameric complex a beta-alpha dimer seems to be a prerequisite. Using the two-hybrid system and a series of CK2beta deletion mutants, we mapped domains involved...... in alpha-beta and beta-beta interactions. We also detected an intramolecular beta interaction within the amino acid stretch 132-165. Using CK2beta as a bait in a two-hybrid library screening several new putative cellular partners have been identified, among them the S6 kinase p90rsk, the putative...... tumor suppressor protein Doc-1, the Fas-associated protein FAF1, the mitochondrial translational initiation factor 2 and propionyl CoA carboxylase beta subunit....

  8. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    Science.gov (United States)

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  9. Identification of ellagic acid as potent inhibitor of protein kinase CK2: a successful example of a virtual screening application.

    Science.gov (United States)

    Cozza, Giorgio; Bonvini, Paolo; Zorzi, Elisa; Poletto, Giorgia; Pagano, Mario A; Sarno, Stefania; Donella-Deana, Arianna; Zagotto, Giuseppe; Rosolen, Angelo; Pinna, Lorenzo A; Meggio, Flavio; Moro, Stefano

    2006-04-20

    Casein kinase 2 (CK2) is a ubiquitous, essential, and highly pleiotropic protein kinase whose abnormally high constitutive activity is suspected to underlie its pathogenic potential in neoplasia and other diseases. Using a virtual screening approach, we have identified the ellagic acid, a naturally occurring tannic acid derivative, as a novel potent CK2 inhibitor. At present, ellagic acid represents the most potent known CK2 inhibitor (K(i) = 20 nM). PMID:16610779

  10. Protein kinase CK2 and its role in cellular proliferation, development and pathology

    DEFF Research Database (Denmark)

    Guerra, B; Issinger, O G

    1999-01-01

    Protein kinase CK2 is a pleiotropic, ubiquitous and constitutively active protein kinase that can use both ATP and GTP as phosphoryl donors with specificity for serine/threonine residues in the vicinity of acidic amino acids. Recent results show that the enzyme is involved in transcription, signa...

  11. Crystallization and preliminary characterization of crystals of human protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Ermakowa, I;

    2000-01-01

    The heterotetrameric recombinant holoenzyme of human protein kinase CK2 was purified to homogeneity. It degraded spontaneously to a stable and fully active state in which the catalytic subunit was about 5 kDa smaller than the wild type. The degraded enzyme was crystallized using polyethylene glycol...

  12. Mapping the residues of protein kinase CK2 alpha subunit responsible for responsiveness to polyanionic inhibitors

    DEFF Research Database (Denmark)

    Vaglio, P; Sarno, S; Marin, O;

    1996-01-01

    The quadruple mutation of the whole basic cluster, K74KKK77 conserved in the catalytic subunits of protein kinase CK2 and implicated in substrate recognition, not only abolishes inhibition by heparin but even induces with some peptide substrates an up to 5-fold stimulation by heparin in the 0...

  13. Mapping the residues of protein kinase CK2 implicated in substrate recognition

    DEFF Research Database (Denmark)

    Sarno, S; Boldyreff, B; Marin, O;

    1995-01-01

    Six mutants of protein kinase CK2 alpha subunit in which basic residues have been mutated into alanines were assayed for their capability to phosphorylate the peptide RRRADDSDDDDD. Two mutants (R228A and R278K279R280A) behaved more or less as alpha wild type and one (H160,166A) was nearly inactive...

  14. Biophysical characterization of the structural change of Nopp140, an intrinsically disordered protein, in the interaction with CK2α.

    Science.gov (United States)

    Na, Jung-Hyun; Lee, Won-Kyu; Kim, Yuyoung; Jeong, Cherlhyun; Song, Seung Soo; Cha, Sun-Shin; Han, Kyou-Hoon; Shin, Yeon-Kyun; Yu, Yeon Gyu

    2016-08-19

    Nucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568-596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein. In this study, the disordered feature of Nopp140 and the effect of CK2α on the structure of Nopp140 were examined using single-molecule fluorescence resonance energy transfer (smFRET) and electron paramagnetic resonance (EPR). The interaction with CK2α was increased conformational rigidity of the CK2α-interacting region of Nopp140 (Nopp140C), suggesting that the disordered and flexible conformation of Nopp140C became more rigid conformation as it binds to CK2α. In addition, site specific spin labeling and EPR analysis confirmed that the residues 574-589 of Nopp140 are critical for binding to CK2α. Similar technical approaches can be applied to analyze the conformational changes in other IDPs during their interactions with binding partners. PMID:27297113

  15. Isolation and characterization of a monoclonal anti-protein kinase CK2 beta-subunit antibody of the IgG class for the direct detection of CK2 beta-subunit in tissue cultures of various mammalian species and human tumors

    DEFF Research Database (Denmark)

    Nastainczyk, W; Schmidt-Spaniol, I; Boldyreff, B;

    1995-01-01

    A murine monoclonal anti-protein kinase CK2 beta antibody was isolated and characterized. The antibody detects 1 pmol of purified recombinant CK2 beta-subunit after analysis on SDS-PAGE. Alternatively undenatured CK2 beta-subunit was detected by an ELISA assay either as recombinant CK2 beta-subun...

  16. Thermodynamic parameters for binding of some halogenated inhibitors of human protein kinase CK2

    International Nuclear Information System (INIS)

    Highlights: • Two new compounds being potential human CK2a inhibitors are studied. • Their IC50 values were determined in vitro. • The heats of binding and kbind were estimated using DSC. • The increased stability of protein–ligand complexes was followed by fluorescence. • Methylated TBBt derivative (MeBr3Br) is almost as active as TBBt. - Abstract: The interaction of human CK2α with a series of tetrabromobenzotriazole (TBBt) and tetrabromobenzimidazole (TBBz) analogs, in which one of the bromine atoms proximal to the triazole/imidazole ring is replaced by a methyl group, was studied by biochemical (IC50) and biophysical methods (thermal stability of protein–ligand complex monitored by DSC and fluorescence). Two newly synthesized tri-bromo derivatives display inhibitory activity comparable to that of the reference compounds, TBBt and TBBz, respectively. DSC analysis of the stability of protein–ligand complexes shows that the heat of ligand binding (Hbind) is driven by intermolecular electrostatic interactions involving the triazole/imidazole ring, as indicated by a strong correlation between Hbind and ligand pKa. Screening, based on fluorescence-monitored thermal unfolding of protein–ligand complexes, gave comparable results, clearly identifying ligands that most strongly bind to the protein. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly, relative to possible intermolecular halogen bonding, in binding of the ligands to the CK2α ATP-binding site

  17. CK2(beta)tes gene encodes a testis-specific isoform of the regulatory subunit of casein kinase 2 in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Kalmykova, Alla I; Shevelyov, Yuri Y; Polesskaya, Oksana O; Dobritsa, Anna A; Evstafieva, Alexandra G; Boldyreff, Brigitte; Issinger, Olaf-Georg; Gvozdev, Vladimir A

    2002-01-01

    An earlier described CK2(beta)tes gene of Drosophila melanogaster is shown to encode a male germline specific isoform of regulatory beta subunit of casein kinase 2. Western-analysis using anti-CK2(beta)tes Ig revealed CK2(beta)tes protein in Drosophila testes extract. Expression of a CK2(beta)tes-beta......-galactosidase fusion protein driven by the CK2(beta)tes promoter was found in transgenic flies at postmitotic stages of spermatogenesis. Examination of biochemical characteristics of a recombinant CK2(beta)tes protein expressed in Escherichia coli revealed properties similar to those of CK2beta: (a) CK2(beta......)tes protein stimulates CK2alpha catalytic activity toward synthetic peptide; (b) it inhibits phosphorylation of calmodulin and mediates stimulation of CK2alpha by polylysine; (c) it is able to form (CK2(beta)tes)2 dimers, as well as (CK2alpha)2(CK2(beta)tes)2 tetramers. Using the yeast two-hybrid system and...

  18. Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells.

    Science.gov (United States)

    Franchin, Cinzia; Cesaro, Luca; Salvi, Mauro; Millioni, Renato; Iori, Elisabetta; Cifani, Paolo; James, Peter; Arrigoni, Giorgio; Pinna, Lorenzo

    2015-06-01

    CK2 is an extremely pleiotropic Ser/Thr protein kinase, responsible for the generation of a large proportion of the human phosphoproteome and implicated in a wide variety of biological functions. CK2 plays a global role as an anti-apoptotic agent, a property which is believed to partially account for the addiction of many cancer cells to high CK2 levels. To gain information about the CK2 targets whose phosphorylation is primarily implicated in its pro-survival signaling advantage has been taken of quinalizarin (QZ) a cell permeable fairly specific CK2 inhibitor, previously shown to be able to block endogenous CK2 triggering an apoptotic response. HEK-293T cells either treated or not for 3h with 50μM QZ were exploited to perform a quantitative SILAC phosphoproteomic analysis of phosphosites readily responsive to QZ treatment. Our analysis led to the identification of 4883 phosphosites, belonging to 1693 phosphoproteins. 71 phosphosites (belonging to 47 proteins) underwent a 50% or more decreased occupancy upon QZ treatment. Almost 50% of these fulfilled the typical consensus sequence recognized by CK2 (S/T-x-x-E/D/pS) and in several cases were validated as bona fide substrates of CK2 either based on data in the literature or by performing in vitro phosphorylation experiments with purified proteins. The majority of the remaining phosphosites drastically decreased upon QZ treatment display the pS/T-P motif typical of proline directed protein kinases and a web logo extracted from them differentiates from the web logo extracted from all the proline directed phosphosites quantified during our analysis (1151 altogether). A paradoxical outcome of our study was the detection of 116 phosphosites (belonging to 92 proteins altogether) whose occupancy is substantially increased (50% or more), rather than decreased by QZ treatment: 40% of these display the typical motif recognized by proline directed kinases, while about 25% fulfill the CK2 consensus. Collectively taken our

  19. RNA Helicase DDX5 Regulates MicroRNA Expression and Contributes to Cytoskeletal Reorganization in Basal Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Huang, Jing; Hu, Zhi

    2011-11-15

    RNA helicase DDX5 (also p68) is involved in all aspects of RNA metabolism and serves as a transcriptional co-regulator, but its functional role in breast cancer remains elusive. Here, we report an integrative biology study of DDX5 in breast cancer, encompassing quantitative proteomics, global MicroRNA profiling, and detailed biochemical characterization of cell lines and human tissues. We showed that protein expression of DDX5 increased progressively from the luminal to basal breast cancer cell lines, and correlated positively with that of CD44 in the basal subtypes. Through immunohistochemistry analyses of tissue microarrays containing over 200 invasive human ductal carcinomas, we observed that DDX5 was upregulated in the majority of malignant tissues, and its expression correlated strongly with those of Ki67 and EGFR in the triple-negative tumors. We demonstrated that DDX5 regulated a subset of MicroRNAs including miR-21 and miR-182 in basal breast cancer cells. Knockdown of DDX5 resulted in reorganization of actin cytoskeleton and reduction of cellular proliferation. The effects were accompanied by upregulation of tumor suppressor PDCD4 (a known miR-21 target); as well as upregulation of cofilin and profilin, two key proteins involved in actin polymerization and cytoskeleton maintenance, as a consequence of miR-182 downregulation. Treatment with miR-182 inhibitors resulted in morphologic phenotypes resembling those induced by DDX5 knockdown. Using bioinformatics tools for pathway and network analyses, we confirmed that the network for regulation of actin cytoskeleton was predominantly enriched for the predicted downstream targets of miR-182. Our results reveal a new functional role of DDX5 in breast cancer via the DDX5→miR-182→actin cytoskeleton pathway, and suggest the potential clinical utility of DDX5 and its downstream MicroRNAs in the theranostics of breast cancer.

  20. The catalytic subunit of human protein kinase CK2 structurally deviates from its maize homologue in complex with the nucleotide competitive inhibitor emodin

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Klopffleisch, Karsten; Issinger, Olaf-Georg;

    2008-01-01

    The Ser/Thr kinase CK2 (former name: casein kinase 2) is a heterotetrameric enzyme composed of two catalytic chains (CK2alpha) attached to a dimer of noncatalytic subunits. Together with the cyclin-dependent kinases and the mitogen-activated protein kinases, CK2alpha belongs to the CMGC family of...

  1. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers.

    Directory of Open Access Journals (Sweden)

    Timothy Fee

    Full Text Available To examine the influence of substrate topology on the behavior of fibroblasts, tissue engineering scaffolds were electrospun from polycaprolactone (PCL and a blend of PCL and gelatin (PCL+Gel to produce matrices with both random and aligned nanofibrous orientations. The addition of gelatin to the scaffold was shown to increase the hydrophilicity of the PCL matrix and to increase the proliferation of NIH3T3 cells compared to scaffolds of PCL alone. The orientation of nanofibers within the matrix did not have an effect on the proliferation of adherent cells, but cells on aligned substrates were shown to elongate and align parallel to the direction of substrate fiber alignment. A microarray of cyotoskeleton regulators was probed to examine differences in gene expression between cells grown on an aligned and randomly oriented substrates. It was found that transcriptional expression of eight genes was statistically different between the two conditions, with all of them being upregulated in the aligned condition. The proteins encoded by these genes are linked to production and polymerization of actin microfilaments, as well as focal adhesion assembly. Taken together, the data indicates NIH3T3 fibroblasts on aligned substrates align themselves parallel with their substrate and increase production of actin and focal adhesion related genes.

  2. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers

    Science.gov (United States)

    Fee, Timothy; Surianarayanan, Swetha; Downs, Crawford; Zhou, Yong; Berry, Joel

    2016-01-01

    To examine the influence of substrate topology on the behavior of fibroblasts, tissue engineering scaffolds were electrospun from polycaprolactone (PCL) and a blend of PCL and gelatin (PCL+Gel) to produce matrices with both random and aligned nanofibrous orientations. The addition of gelatin to the scaffold was shown to increase the hydrophilicity of the PCL matrix and to increase the proliferation of NIH3T3 cells compared to scaffolds of PCL alone. The orientation of nanofibers within the matrix did not have an effect on the proliferation of adherent cells, but cells on aligned substrates were shown to elongate and align parallel to the direction of substrate fiber alignment. A microarray of cyotoskeleton regulators was probed to examine differences in gene expression between cells grown on an aligned and randomly oriented substrates. It was found that transcriptional expression of eight genes was statistically different between the two conditions, with all of them being upregulated in the aligned condition. The proteins encoded by these genes are linked to production and polymerization of actin microfilaments, as well as focal adhesion assembly. Taken together, the data indicates NIH3T3 fibroblasts on aligned substrates align themselves parallel with their substrate and increase production of actin and focal adhesion related genes. PMID:27196306

  3. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers.

    Science.gov (United States)

    Fee, Timothy; Surianarayanan, Swetha; Downs, Crawford; Zhou, Yong; Berry, Joel

    2016-01-01

    To examine the influence of substrate topology on the behavior of fibroblasts, tissue engineering scaffolds were electrospun from polycaprolactone (PCL) and a blend of PCL and gelatin (PCL+Gel) to produce matrices with both random and aligned nanofibrous orientations. The addition of gelatin to the scaffold was shown to increase the hydrophilicity of the PCL matrix and to increase the proliferation of NIH3T3 cells compared to scaffolds of PCL alone. The orientation of nanofibers within the matrix did not have an effect on the proliferation of adherent cells, but cells on aligned substrates were shown to elongate and align parallel to the direction of substrate fiber alignment. A microarray of cyotoskeleton regulators was probed to examine differences in gene expression between cells grown on an aligned and randomly oriented substrates. It was found that transcriptional expression of eight genes was statistically different between the two conditions, with all of them being upregulated in the aligned condition. The proteins encoded by these genes are linked to production and polymerization of actin microfilaments, as well as focal adhesion assembly. Taken together, the data indicates NIH3T3 fibroblasts on aligned substrates align themselves parallel with their substrate and increase production of actin and focal adhesion related genes. PMID:27196306

  4. Thermodynamic parameters for binding of some halogenated inhibitors of human protein kinase CK2

    Energy Technology Data Exchange (ETDEWEB)

    Winiewska, Maria; Makowska, Małgorzata [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland); Maj, Piotr [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland); Nencki Institute of Experimental Biology PAS, Warszawa (Poland); Wielechowska, Monika; Bretner, Maria [Warsaw University of Technology, Faculty of Chemistry, Warszawa (Poland); Poznański, Jarosław, E-mail: jarek@ibb.waw.pl [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland); Shugar, David [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland)

    2015-01-02

    Highlights: • Two new compounds being potential human CK2a inhibitors are studied. • Their IC50 values were determined in vitro. • The heats of binding and kbind were estimated using DSC. • The increased stability of protein–ligand complexes was followed by fluorescence. • Methylated TBBt derivative (MeBr3Br) is almost as active as TBBt. - Abstract: The interaction of human CK2α with a series of tetrabromobenzotriazole (TBBt) and tetrabromobenzimidazole (TBBz) analogs, in which one of the bromine atoms proximal to the triazole/imidazole ring is replaced by a methyl group, was studied by biochemical (IC{sub 50}) and biophysical methods (thermal stability of protein–ligand complex monitored by DSC and fluorescence). Two newly synthesized tri-bromo derivatives display inhibitory activity comparable to that of the reference compounds, TBBt and TBBz, respectively. DSC analysis of the stability of protein–ligand complexes shows that the heat of ligand binding (H{sub bind}) is driven by intermolecular electrostatic interactions involving the triazole/imidazole ring, as indicated by a strong correlation between H{sub bind} and ligand pK{sub a}. Screening, based on fluorescence-monitored thermal unfolding of protein–ligand complexes, gave comparable results, clearly identifying ligands that most strongly bind to the protein. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly, relative to possible intermolecular halogen bonding, in binding of the ligands to the CK2α ATP-binding site.

  5. Mapping the cytoskeletal prestress

    OpenAIRE

    Park, Chan Young; Tambe, Dhananjay; Alencar, Adriano M.; Trepat, Xavier; Zhou, En Hua; Millet, Emil; Butler, James P.; Fredberg, Jeffrey J.

    2010-01-01

    Cell mechanical properties on a whole cell basis have been widely studied, whereas local intracellular variations have been less well characterized and are poorly understood. To fill this gap, here we provide detailed intracellular maps of regional cytoskeleton (CSK) stiffness, loss tangent, and rate of structural rearrangements, as well as their relationships to the underlying regional F-actin density and the local cytoskeletal prestress. In the human airway smooth muscle cell, we used micro...

  6. Inhibition of protein kinase CK2 by condensed polyphenolic derivatives. An in vitro and in vivo study.

    Science.gov (United States)

    Meggio, Flavio; Pagano, Mario A; Moro, Stefano; Zagotto, Giuseppe; Ruzzene, Maria; Sarno, Stefania; Cozza, Giorgio; Bain, Jenny; Elliott, Matthew; Deana, Arianna Donella; Brunati, Anna Maria; Pinna, Lorenzo A

    2004-10-12

    ATP site-directed inhibitors that can target individual kinases are powerful tools for use in signal transduction research, all the more so in the case of a pleiotropic, constitutively active protein kinase such as CK2, which is not turned on in response to specific stimuli. By screening a library of more than 200 derivatives of natural polyphenolic compounds, we have identified 16 molecules which inhibit CK2 with IC(50) values of CK2 within a panel of 33 protein kinases tested. Treatment of Jurkat cells with these compounds promotes inhibition of endogenous CK2 and induction of apoptosis. A correlation is observed between their efficacy as CK2 inhibitors (as judged from IC(50) values) and their capacity to induce cell death (DC(50) values). Mutations of the unique CK2alpha residues Val66 and/or Ile174 to alanine have a detrimental effect on inhibition by these compounds with 16-67-fold increases in IC(50) values. The combined usage of these reagents can be exploited to gain information about cellular functions mediated by CK2. PMID:15461466

  7. Different Persistence of the Cellular Effects Promoted by Protein Kinase CK2 Inhibitors CX-4945 and TDB

    Directory of Open Access Journals (Sweden)

    Cristina Girardi

    2015-01-01

    Full Text Available We compare the cellular efficacy of two selective and cell permeable inhibitors of the antiapoptotic kinase CK2. One inhibitor, CX-4945, is already in clinical trials as antitumor drug, while the other, TDB, has been recently successfully employed to demonstrate the implication of CK2 in cellular (disregulation. We found that, upon treatment of cancer cells with these compounds, the extent of inhibition of endocellular CK2 is initially comparable but becomes significantly different after the inhibitors are removed from the cellular medium: while in CX-4945 treated cells CK2 activity is restored to control level after 24 h, in the case of TDB it is still strongly reduced after 4 days from removal. The biological effects of the two inhibitors have been analyzed by performing clonogenic, spheroid formation, and wound-healing assays: we observed a permanent inhibition of cell survival and migration in TDB-treated cells even after the inhibitor removal, while in the case of CX-4945 only its maintenance for the whole duration of the assay insured a persisting effect. We suggest that the superiority of TDB in maintaining kinase activity inhibited and perpetuating the consequent effects is an added value to be considered when planning new therapies based on CK2 targeting.

  8. The carboxy terminus of p53 mimics the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation

    DEFF Research Database (Denmark)

    Guerra, B; Götz, C; Wagner, P;

    1997-01-01

    with the holoenzyme. Polylysine stimulated MDM2 phosphorylation by CK2 holoenzyme threefold in contrast to the alpha-subunit-catalyzed MDM2 phosphorylation which was reduced by about 66% when polylysine was added. Full length p53, but also a peptide representing a C-terminal fragment of the tumor...... suppressor gene product p53 (amino acids 264-393 which also harbors the CK2beta interaction site at amino acids 287-340) mimicked the polylysine effect in all respects, ie. stimulation of phosphate incorporation by CK2 holoenzyme and inhibition in the presence of the catalytic CK2 alpha-subunit. Stimulation...... by p53(264-393) was on the average close to twofold and inhibition in the case of the alpha-subunit-catalyzed MDM2 phosphorylation was about 40%. Phosphorylation of MDM2 by CK2 holoenzyme in the presence of the p21(WAF1/CIP1), known to be a potent inhibitor of cyclin-dependent protein kinases, also...

  9. Tetrabromocinnamic acid (TBCA) and related compounds represent a new class of specific protein kinase CK2 inhibitors.

    Science.gov (United States)

    Pagano, Mario A; Poletto, Giorgia; Di Maira, Giovanni; Cozza, Giorgio; Ruzzene, Maria; Sarno, Stefania; Bain, Jenny; Elliott, Matthew; Moro, Stefano; Zagotto, Giuseppe; Meggio, Flavio; Pinna, Lorenzo A

    2007-01-01

    Abnormally high constitutive activity of protein kinase CK2, levels of which are elevated in a variety of tumours, is suspected to underlie its pathogenic potential. The most widely employed CK2 inhibitor is 4,5,6,7-tetrabromobenzotriazole (TBB), which exhibits a comparable efficacy toward another kinase, DYRK1 a. Here we describe the development of a new class of CK2 inhibitors, conceptually derived from TBB, which have lost their potency toward DYRK1 a. In particular, tetrabromocinnamic acid (TBCA) inhibits CK2 five times more efficiently than TBB (IC50 values 0.11 and 0.56 microM, respectively), without having any comparable effect on DYRK1 a (IC50 24.5 microM) or on a panel of 28 protein kinases. The usefulness of TBCA for cellular studies has been validated by showing that it reduces the viability of Jurkat cells more efficiently than TBB through enhancement of apoptosis. Collectively taken, the reported data support the view that suitably derivatized tetrabromobenzene molecules may provide powerful reagents for dissecting the cellular functions of CK2 and counteracting its pathogenic potentials. PMID:17133643

  10. Urolithin as a converging scaffold linking ellagic acid and coumarin analogues: design of potent protein kinase CK2 inhibitors.

    Science.gov (United States)

    Cozza, Giorgio; Gianoncelli, Alessandra; Bonvini, Paolo; Zorzi, Elisa; Pasquale, Riccardo; Rosolen, Angelo; Pinna, Lorenzo A; Meggio, Flavio; Zagotto, Giuseppe; Moro, Stefano

    2011-12-01

    Casein kinase 2 (CK2) is a ubiquitous, essential, and highly pleiotropic protein kinase; its abnormally high constitutive activity is suspected to underlie its pathogenic potential in neoplasia and other relevant diseases. Previously, using different in silico screening approaches, two potent and selective CK2 inhibitors were identified by our group: ellagic acid, a naturally occurring tannic acid derivative (K(i)=20 nM) and 3,8-dibromo-7-hydroxy-4-methylchromen-2-one (DBC, K(i)=60 nM). Comparing the crystallographic binding modes of both ellagic acid and DBC, an X-ray structure-driven merging approach was taken to design novel CK2 inhibitors with improved target affinity. A urolithin moiety is proposed as a possible bridging scaffold between the two known CK2 inhibitors, ellagic acid and DBC. Optimization of urolithin A as the bridging moiety led to the identification of 4-bromo-3,8-dihydroxy-benzo[c]chromen-6-one as a novel, potent and selective CK2 inhibitor, which shows a K(i) value of 7 nM against the protein kinase, representing a significant improvement in affinity for the target compared with the two parent fragments. PMID:21972104

  11. Inhibition of CK2 Activity by TCDD via Binding to ATP-competitive Binding Site of Catalytic Subunit:Insight from Computational Studies

    Institute of Scientific and Technical Information of China (English)

    XU Xian-jin; CANNISTRARO Salvatore; BIZZARRI Anna-rita; ZENG Yi; CHEN Wei-zu; WANG Cun-xin

    2013-01-01

    Alternative mechanisms of toxic effects induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD),instead of the binding to aryl hydrocarbon receptor(AhR),have been taken into consideration.It has been recently shown that TCDD reduces rapidly the activity of CK2(casein kinase Ⅱ) both in vivo and in vitro.It is found that TCDD has high molecular similarities to the known inhibitors of CK2 catalytic subunit(CK2α).This suggests that TCDD could also be an ATP-competitive inhibitor of CK2α.In this work,docking TCDD to CK2 was carried out based on the two structures of CK2α from maize and human,respectively.The binding free energies of the predicted CK2α-TCDD complexes estimated by the molecular mechanics/Poisson-Boltzmann surface area(MM/PBSA) method are from -85.1 kJ/mol to-114.3 kJ/mol for maize and are from-96.1 kJ/mol to-118.2 kJ/mol for human,which are comparable to those estimated for the known inhibitor and also ATP with CK2α.The energetic analysis also reveals that the van der Waals interaction is the dominant contribution to the binding free energy.These results are also useful for designing new drugs for a target of overexpressing CK2 in cancers.

  12. Isolation and characterization of a monoclonal anti CK-2 alpha subunit antibody of the IgG1 subclass

    DEFF Research Database (Denmark)

    Schmidt-Spaniol, I; Boldyreff, B; Issinger, O G

    1992-01-01

    A monoclonal antibody was produced against the recombinant human alpha subunit of CK-2. The antibody was of the IgG1 subclass and it was isolated from serum-free cell culture media and purified by affinity chromatography on Protein G Sepharose. The antibody can be used to detect specifically the ...

  13. Isomeric mono-, di-, and tri-bromobenzo-1H-triazoles as inhibitors of human protein kinase CK2α.

    Directory of Open Access Journals (Sweden)

    Romualda Wąsik

    Full Text Available To further clarify the role of the individual bromine atoms of 4,5,6,7-tetrabromotriazole (TBBt, a relatively selective inhibitor of protein kinase CK2, we have examined the inhibition (IC(50 of human CK2α by the two mono-, the four di-, and the two tri- bromobenzotriazoles relative to that of TBBt. Halogenation of the central vicinal C(5/C(6 atoms proved to be a key factor in enhancing inhibitory activity, in that 5,6-di-Br(2Bt and 4,5,6-Br(3Bt were almost as effective inhibitors as TBBt, notwithstanding their marked differences in pK(a for dissociation of the triazole proton. The decrease in pK(a on halogenation of the peripheral C(4/C(7 atoms virtually nullifies the gain due to hydrophobic interactions, and does not lead to a decrease in IC(50. Molecular modeling of structures of complexes of the ligands with the enzyme, as well as QSAR analysis, pointed to a balance of hydrophobic and electrostatic interactions as a discriminator of inhibitory activity. The role of halogen bonding remains debatable, as originally noted for the crystal structure of TBBt with CK2α (pdb1j91. Finally we direct attention to the promising applicability of our series of well-defined halogenated benzotriazoles to studies on inhibition of kinases other than CK2.

  14. Inhibition of protein kinase CK2 by anthraquinone-related compounds. A structural insight.

    Science.gov (United States)

    De Moliner, Erika; Moro, Stefano; Sarno, Stefania; Zagotto, Giuseppe; Zanotti, Giuseppe; Pinna, Lorenzo A; Battistutta, Roberto

    2003-01-17

    Protein kinases play key roles in signal transduction and therefore are among the most attractive targets for drug design. The pharmacological aptitude of protein kinase inhibitors is highlighted by the observation that various diseases with special reference to cancer are because of the abnormal expression/activity of individual kinases. The resolution of the three-dimensional structure of the target kinase in complex with inhibitors is often the starting point for the rational design of this kind of drugs, some of which are already in advanced clinical trial or even in clinical practice. Here we present and discuss three new crystal structures of ATP site-directed inhibitors in complex with "casein kinase-2" (CK2), a constitutively active protein kinase implicated in a variety of cellular functions and misfunctions. With the help of theoretical calculations, we disclose some key features underlying the inhibitory efficiency of anthraquinone derivatives, outlining three different binding modes into the active site. In particular, we show that a nitro group in a hydroxyanthraquinone scaffold decreases the inhibitory constants K(i) because of electron-withdrawing and resonance effects that enhance the polarization of hydroxylic substituents in paraposition. PMID:12419810

  15. Identification and characterization of a novel gene, c1orf109, encoding a CK2 substrate that is involved in cancer cell proliferation

    Directory of Open Access Journals (Sweden)

    Liu Shan-shan

    2012-05-01

    Full Text Available Abstract Background In the present study we identified a novel gene, Homo Sapiens Chromosome 1 ORF109 (c1orf109, GenBank ID: NM_017850.1, which encodes a substrate of CK2. We analyzed the regulation mode of the gene, the expression pattern and subcellular localization of the predicted protein in the cell, and its role involving in cell proliferation and cell cycle control. Methods Dual-luciferase reporter assay, chromatin immunoprecipitation and EMSA were used to analysis the basal transcriptional requirements of the predicted promoter regions. C1ORF109 expression was assessed by western blot analysis. The subcellular localization of C1ORF109 was detected by immunofluorescence and immune colloidal gold technique. Cell proliferation was evaluated using MTT assay and colony-forming assay. Results We found that two cis-acting elements within the crucial region of the c1orf109 promoter, one TATA box and one CAAT box, are required for maximal transcription of the c1orf109 gene. The 5′ flanking region of the c1orf109 gene could bind specific transcription factors and Sp1 may be one of them. Employing western blot analysis, we detected upregulated expression of c1orf109 in multiple cancer cell lines. The protein C1ORF109 was mainly located in the nucleus and cytoplasm. Moreover, we also found that C1ORF109 was a phosphoprotein in vivo and could be phosphorylated by the protein kinase CK2 in vitro. Exogenous expression of C1ORF109 in breast cancer Hs578T cells induced an increase in colony number and cell proliferation. A concomitant rise in levels of PCNA (proliferating cell nuclear antigen and cyclinD1 expression was observed. Meanwhile, knockdown of c1orf109 by siRNA in breast cancer MDA-MB-231 cells confirmed the role of c1orf109 in proliferation. Conclusions Taken together, our findings suggest that C1ORF109 may be the downstream target of protein kinase CK2 and involved in the regulation of cancer cell proliferation.

  16. Characterization of protein kinase CK2 protein subunits and p53 in F9 teratocarcinoma cells in the absence and presence of cisplatin

    DEFF Research Database (Denmark)

    Küpper, M; Köster, M; Schmidt-Spaniol, I;

    1994-01-01

    ) after separation by anionic exchange chromatography (MA7Q, BioRad) of the crude cellular extracts from cisplatin-treated cells, lower CK2 activity was found in the peak fractions confirming the results obtained with crude cellular extracts; (c) besides the detection of CK2 alpha subunit by...

  17. Phosphorylation of the Fas associated factor FAF1 by protein kinase CK2 and identification of serines 289 and 291 as the in vitro phosphorylation sites

    DEFF Research Database (Denmark)

    Jensen, H H; Hjerrild, M; Guerra, B; Larsen, Martin Røssel; Højrup, P; Boldyreff, B

    2001-01-01

    We previously identified the human Fas associated factor (FAF1) as one of the interacting partners of protein kinase CK2 beta subunit. Since FAF1 is a phosphoprotein we investigated whether it is a substrate for CK2. Here, we report the full length human FAF1 cDNA sequence, expression of FAF1 in...

  18. CK2 inhibitor CX-4945 blocks TGF-β1-induced epithelial-to-mesenchymal transition in A549 human lung adenocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jiyeon Kim

    Full Text Available BACKGROUND: The epithelial-to-mesenchymal transition (EMT is a major phenotype of cancer metastasis and invasion. As a druggable cancer target, the inhibition of protein kinase CK2 (formally named to casein kinase 2 has been suggested as a promising therapeutic strategy to treat EMT-controlled cancer metastasis. This study aimed to evaluate the effect of the CK2 inhibitor CX-4945 on the processes of cancer migration and invasion during the EMT in A549 human lung adenocarcinoma cells. MATERIALS AND METHODS: The effect of CX-4945 on TGF-β1-induced EMT was evaluated in A549 cells treated with TGF-β1 (5 ng/ml and CX-4945. The effect of CX-4945 on TGF-β1-induced cadherin switch and activation of key signaling molecules involved in Smad, non-Smad, Wnt and focal adhesion signaling pathways were investigated by Western blot analysis, immunocytochemistry and reporter assay. Additionally, the effect of CX-4945 on TGF-β1-induced migration and invasion was investigated by wound healing assay, Boyden chamber assay, gelatin zymography, and the quantitative real-time PCR. RESULTS: CX-4945 inhibits the TGF-β1-induced cadherin switch and the activation of key signaling molecules involved in Smad (Smad2/3, Twist and Snail, non-Smad (Akt and Erk, Wnt (β-catenin and focal adhesion signaling pathways (FAK, Src and paxillin that cooperatively regulate the overall process of EMT. As a result, CX-4945 inhibits the migration and invasion of A549 cells accompanied with the downregulation of MMP-2 and 9. CONCLUSIONS: Clinical evaluation of CX-4945 in humans as a single agent in solid tumors and multiple myeloma has established its promising pharmacokinetic, pharmacodynamic, and safety profiles. Beyond regression of tumor mass, CX-4945 may be advanced as a new therapy for cancer metastasis and EMT-related disorders.

  19. Exploring the prominent performance of CX-4945 derivatives as protein kinase CK2 inhibitors by a combined computational study.

    Science.gov (United States)

    Wang, Xuwen; Pan, Peichen; Li, Youyong; Li, Dan; Hou, Tingjun

    2014-05-01

    Protein kinase CK2, also known as casein kinase II, is related to various cellular events and is a potential target for numerous cancers. In this study, we attempted to gain more insight into the inhibition process of CK2 by a series of CX-4945 derivatives through an integrated computational study that combines molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations. Based on the binding poses predicted by molecular docking, the MD simulations were performed to explore the dynamic binding processes for ten selected inhibitors. Then, both Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) techniques were employed to predict the binding affinities of the studied systems. The predicted binding energies of the selected inhibitors correlate well with their experimental activities (r(2) = 0.78). The van der Waals term is the most favorable component for the total energies. The free energy decomposition on a per residue basis reveals that the residue K68 is essential for the electrostatic interactions between CK2 and the studied inhibitors and numerous residues, including L45, V53, V66, F113, M163 and I174, play critical roles in forming van der Waals interactions with the inhibitors. Finally, a number of new derivatives were designed and the binding affinity and the predicted binding free energies of each designed molecule were obtained on the basis of molecular docking and MM/PBSA. It is expected that our research will benefit the future rational design of novel and potent inhibitors of CK2. PMID:24647611

  20. The C-terminal domain of human grp94 protects the catalytic subunit of protein kinase CK2 (CK2alpha) against thermal aggregation. Role of disulfide bonds

    DEFF Research Database (Denmark)

    Roher, N; Miró, F; Boldyreff, B; Llorens, F; Plana, M; Issinger, O G; Itarte, E

    2001-01-01

    The C-terminal domain (residues 518-803) of the 94 kDa glucose regulated protein (grp94) was expressed in Escherichia coli as a fusion protein with a His6-N-terminal tag (grp94-CT). This truncated form of grp94 formed dimers and oligomers that could be dissociated into monomers by treatment with...

  1. Coumarin as attractive casein kinase 2 (CK2) inhibitor scaffold: an integrate approach to elucidate the putative binding motif and explain structure-activity relationships.

    Science.gov (United States)

    Chilin, Adriana; Battistutta, Roberto; Bortolato, Andrea; Cozza, Giorgio; Zanatta, Samuele; Poletto, Giorgia; Mazzorana, Marco; Zagotto, Giuseppe; Uriarte, Eugenio; Guiotto, Adriano; Pinna, Lorenzo A; Meggio, Flavio; Moro, Stefano

    2008-02-28

    Casein kinase 2 (CK2) is an ubiquitous, essential, and highly pleiotropic protein kinase whose abnormally high constitutive activity is suspected to underlie its pathogenic potential in neoplasia and other diseases. Recently, using different virtual screening approaches, we have identified several novel CK2 inhibitors. In particular, we have discovered that coumarin moiety can be considered an attractive CK2 inhibitor scaffold. In the present work, we have synthetized and tested a small library of coumarins (more than 60), rationalizing the observed structure-activity relationship. Moreover, the most promising inhibitor, 3,8-dibromo-7-hydroxy-4-methylchromen-2-one (DBC), has been also crystallized in complex with CK2, and the experimental binding mode has been used to derive a linear interaction energy (LIE) model. PMID:18251491

  2. Selectivity analysis of protein kinase CK2 inhibitors DMAT, TBB and resorufin in cisplatin-induced stress responses

    DEFF Research Database (Denmark)

    Fritz, Gerhard; Issinger, Olaf-Georg; Olsen, Birgitte Brinkmann

    2009-01-01

    DMAT, TBB and resorufin differ in their selectivity against PI3K family members, since PI3K and DNA-PK are subject to inhibition by DMAT and TBB, however, not by resorufin. TBB and DMAT treatment together with cisplatin lead to an inhibition of cisplatin-induced stress signaling (as detected...... by phosphorylation of JNK and H2AX). In the case of resorufin no interference with the stress-signaling pathway is observed, supporting the notion that TBB and DMAT interfere with upstream molecules involved in genotoxic stress signaling. We have also tested the protein kinase CK2 inhibitors with respect to cell...

  3. Cytoskeletal Dynamics: Concepts in Measles Virus Replication and Immunomodulation

    Directory of Open Access Journals (Sweden)

    Sibylle Schneider-Schaulies

    2011-01-01

    Full Text Available In common with most viruses, measles virus (MV relies on the integrity of the cytoskeleton of its host cells both with regard to efficient replication in these cells, but also retention of their motility which favors viral dissemination. It is, however, the surface interaction of the viral glycoprotein (gp complex with receptors present on lymphocytes and dendritic cells (DCs, that signals effective initiation of host cell cytoskeletal dynamics. For DCs, these may act to regulate processes as diverse as viral uptake and sorting, but also the ability of these cells to successfully establish and maintain functional immune synapses (IS with T cells. In T cells, MV signaling causes actin cytoskeletal paralysis associated with a loss of polarization, adhesion and motility, which has been linked to activation of sphingomyelinases and subsequent accumulation of membrane ceramides. MV modulation of both DC and T cell cytoskeletal dynamics may be important for the understanding of MV immunosuppression at the cellular level.

  4. Chorein Sensitive Arrangement of Cytoskeletal Architecture

    Directory of Open Access Journals (Sweden)

    Sabina Honisch

    2015-08-01

    Full Text Available Background/Aims: Chorein is a protein expressed in various cell types. Loss of function mutations of the chorein encoding gene VPS13A lead to chorea-acanthocytosis, an autosomal recessive genetic disease characterized by movement disorder and behavioral abnormalities. Recent observations revealed that chorein is a powerful regulator of actin cytoskeleton in erythrocytes, platelets, K562 and endothelial HUVEC cells. Methods: In the present study we have used Western blotting to study actin polymerization dynamics, laser scanning microscopy to evaluate in detail the role of chorein in microfilaments, microtubules and intermediate filaments cytoskeleton architecture and RT-PCR to assess gene transcription of the cytoskeletal proteins. Results: We report here powerful depolymerization of actin microfilaments both, in erythrocytes and fibroblasts isolated from chorea-acanthocytosis patients. Along those lines, morphological analysis of fibroblasts from chorea-acanthocytosis patients showed disarranged microtubular network, when compared to fibroblasts from healthy donors. Similarly, the intermediate filament networks of desmin and cytokeratins showed significantly disordered organization with clearly diminished staining in patient's fibroblasts. In line with this, RT-PCR analysis revealed significant downregulation of desmin and cytokeratin gene transcripts. Conclusion: Our results provide for the first time evidence that defective chorein is accompanied by significant structural disorganization of all cytoskeletal structures in human fibroblasts from chorea-acanthocytosis patients.

  5. CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy.

    Science.gov (United States)

    Siddiqui-Jain, Adam; Drygin, Denis; Streiner, Nicole; Chua, Peter; Pierre, Fabrice; O'Brien, Sean E; Bliesath, Josh; Omori, Mayuko; Huser, Nanni; Ho, Caroline; Proffitt, Chris; Schwaebe, Michael K; Ryckman, David M; Rice, William G; Anderes, Kenna

    2010-12-15

    Malignant transformation and maintenance of the malignant phenotype depends on oncogenic and non-oncogenic proteins that are essential to mediate oncogene signaling and to support the altered physiologic demands induced by transformation. Protein kinase CK2 supports key prosurvival signaling pathways and represents a prototypical non-oncogene. In this study, we describe CX-4945, a potent and selective orally bioavailable small molecule inhibitor of CK2. The antiproliferative activity of CX-4945 against cancer cells correlated with expression levels of the CK2α catalytic subunit. Attenuation of PI3K/Akt signaling by CX-4945 was evidenced by dephosphorylation of Akt on the CK2-specific S129 site and the canonical S473 and T308 regulatory sites. CX-4945 caused cell-cycle arrest and selectively induced apoptosis in cancer cells relative to normal cells. In models of angiogenesis, CX-4945 inhibited human umbilical vein endothelial cell migration, tube formation, and blocked CK2-dependent hypoxia-induced factor 1 alpha (HIF-1α) transcription in cancer cells. When administered orally in murine xenograft models, CX-4945 was well tolerated and demonstrated robust antitumor activity with concomitant reductions of the mechanism-based biomarker phospho-p21 (T145). The observed antiproliferative and anti-angiogenic responses to CX-4945 in tumor cells and endothelial cells collectively illustrate that this compound exerts its antitumor effects through inhibition of CK2-dependent signaling in multiple pathways. Finally, CX-4945 is the first orally bioavailable small molecule inhibitor of CK2 to advance into human clinical trials, thereby paving the way for an entirely new class of targeted treatment for cancer. PMID:21159648

  6. GRAIL (Gene Related to Anergy in Lymphocytes) Regulates Cytoskeletal Reorganization through Ubiquitination and Degradation of Arp2/3 Subunit 5 and Coronin 1A*

    OpenAIRE

    Ichikawa, Daiju; Mizuno, Miho; Yamamura, Takashi; Miyake, Sachiko

    2011-01-01

    Anergy is an important mechanism for the maintenance of peripheral tolerance and avoidance of autoimmunity. The up-regulation of E3 ubiqitin ligases, including GRAIL (gene related to anergy in lymphocytes), is a key event in the induction and preservation of anergy in T cells. However, the mechanisms of GRAIL-mediated anergy induction are still not completely understood. We examined which proteins serve as substrates for GRAIL in anergic T cells. Arp2/3-5 (actin-related protein 2/3 subunit 5)...

  7. Endothelial permeability is controlled by spatially defined cytoskeletal mechanics: AFM force mapping of pulmonary endothelial monolayer

    OpenAIRE

    Birukova, Anna A.; Arce, Fernando T.; Moldobaeva, Nurgul; Dudek, Steven M.; Garcia, Joe G. N.; Lal, Ratnesh; Birukov, Konstantin G.

    2008-01-01

    Actomyosin contraction directly regulates endothelial cell (EC) permeability, but intracellular redistribution of cytoskeletal tension associated with EC permeability is poorly understood. We used atomic force microscopy (AFM), EC permeability assays and fluorescence microscopy to link barrier regulation, cell remodeling and cytoskeletal mechanical properties in EC treated with barrier-protective as well as barrier-disruptive agonists. Thrombin, VEGF and H2O2 increased EC permeability, disrup...

  8. A CK2-dependent mechanism for activation of the JAK-STAT signaling pathway

    OpenAIRE

    Zheng, Ying; Qin, Hongwei; Frank, Stuart J.; Deng, Luqin; Litchfield, David W.; Tefferi, Ayalew; Pardanani, Animesh; Lin, Fang-Tsyr; Li, Jingzhi; Sha, Bingdong; Benveniste, Etty N.

    2011-01-01

    JAK-STAT signaling is involved in the regulation of cell survival, proliferation, and differentiation. JAK tyrosine kinases can be transiently activated by cytokines or growth factors in normal cells, whereas they become constitutively activated as a result of mutations that affect their function in tumors. Specifically, the JAK2V617F mutation is present in the majority of patients with myeloproliferative disorders (MPDs) and is implicated in the pathogenesis of these diseases. In the present...

  9. Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in Proliferating Muscle Progenitors.

    Directory of Open Access Journals (Sweden)

    Natalia González

    Full Text Available Skeletal muscle regeneration and long term maintenance is directly link to the balance between self-renewal and differentiation of resident adult stem cells known as satellite cells. In turn, satellite cell fate is influenced by a functional interaction between the transcription factor Pax7 and members of the MyoD family of muscle regulatory factors. Thus, changes in the Pax7-to-MyoD protein ratio may act as a molecular rheostat fine-tuning acquisition of lineage identity while preventing precocious terminal differentiation. Pax7 is expressed in quiescent and proliferating satellite cells, while its levels decrease sharply in differentiating progenitors Pax7 is maintained in cells (reacquiring quiescence. While the mechanisms regulating Pax7 levels based on differentiation status are not well understood, we have recently described that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4, thus promoting proteasome-dependent Pax7 degradation in differentiating satellite cells. Here we show that Pax7 levels are maintained in proliferating muscle progenitors by a mechanism involving casein kinase 2-dependent Pax7 phosphorylation at S201. Point mutations preventing S201 phosphorylation or casein kinase 2 inhibition result in decreased Pax7 protein in proliferating muscle progenitors. Accordingly, this correlates directly with increased Pax7 ubiquitination. Finally, Pax7 down regulation induced by casein kinase 2 inhibition results in precocious myogenic induction, indicating early commitment to terminal differentiation. These observations highlight the critical role of post translational regulation of Pax7 as a molecular switch controlling muscle progenitor fate.

  10. Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in Proliferating Muscle Progenitors

    Science.gov (United States)

    González, Natalia; Moresco, James J.; Bustos, Francisco; Yates, John R.; Olguín, Hugo C.

    2016-01-01

    Skeletal muscle regeneration and long term maintenance is directly link to the balance between self-renewal and differentiation of resident adult stem cells known as satellite cells. In turn, satellite cell fate is influenced by a functional interaction between the transcription factor Pax7 and members of the MyoD family of muscle regulatory factors. Thus, changes in the Pax7-to-MyoD protein ratio may act as a molecular rheostat fine-tuning acquisition of lineage identity while preventing precocious terminal differentiation. Pax7 is expressed in quiescent and proliferating satellite cells, while its levels decrease sharply in differentiating progenitors Pax7 is maintained in cells (re)acquiring quiescence. While the mechanisms regulating Pax7 levels based on differentiation status are not well understood, we have recently described that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4, thus promoting proteasome-dependent Pax7 degradation in differentiating satellite cells. Here we show that Pax7 levels are maintained in proliferating muscle progenitors by a mechanism involving casein kinase 2-dependent Pax7 phosphorylation at S201. Point mutations preventing S201 phosphorylation or casein kinase 2 inhibition result in decreased Pax7 protein in proliferating muscle progenitors. Accordingly, this correlates directly with increased Pax7 ubiquitination. Finally, Pax7 down regulation induced by casein kinase 2 inhibition results in precocious myogenic induction, indicating early commitment to terminal differentiation. These observations highlight the critical role of post translational regulation of Pax7 as a molecular switch controlling muscle progenitor fate. PMID:27144531

  11. CK2-mediated stimulation of Pol I transcription by stabilization of UBF–SL1 interaction

    OpenAIRE

    Lin, Chih-Yin; Navarro, Sonia; Reddy, Sita; Comai, Lucio

    2006-01-01

    High levels of rRNA synthesis by RNA polymerase I are important for cell growth and proliferation. In vitro studies have indicated that the formation of a stable complex between the HMG box factor [Upstream binding factor (UBF)] and SL1 at the rRNA gene promoter is necessary to direct multiple rounds of Pol I transcription initiation. The recruitment of SL1 to the promoter occurs through protein interactions with UBF and is regulated by phosphorylation of UBF. Here we show that the protein ki...

  12. Structure and Property Based Design of Pyrazolo[1,5-a]pyrimidine Inhibitors of CK2 Kinase with Activity in Vivo.

    Science.gov (United States)

    Dowling, James E; Alimzhanov, Marat; Bao, Larry; Block, Michael H; Chuaqui, Claudio; Cooke, Emma L; Denz, Christopher R; Hird, Alex; Huang, Shan; Larsen, Nicholas A; Peng, Bo; Pontz, Timothy W; Rivard-Costa, Caroline; Saeh, Jamal Carlos; Thakur, Kumar; Ye, Qing; Zhang, Tao; Lyne, Paul D

    2013-08-01

    In this letter, we describe the design, synthesis, and structure-activity relationship of 5-anilinopyrazolo[1,5-a]pyrimidine inhibitors of CK2 kinase. Property-based optimization of early leads using the 7-oxetan-3-yl amino group led to a series of matched molecular pairs with lower lipophilicity, decreased affinity for human plasma proteins, and reduced binding to the hERG ion channel. Agents in this study were shown to modulate pAKT(S129), a direct substrate of CK2, in vitro and in vivo, and exhibited tumor growth inhibition when administered orally in a murine DLD-1 xenograft. PMID:24900749

  13. An In Vitro ES Cell-Based Clock Recapitulation Assay Model Identifies CK2α as an Endogenous Clock Regulator

    OpenAIRE

    Umemura, Yasuhiro; Yoshida, Junko; Wada, Masashi; Tsuchiya, Yoshiki; Minami, Yoichi; Watanabe, Hitomi; Kondoh, Gen; Takeda, Junji; Inokawa, Hitoshi; Horie, Kyoji; Yagita, Kazuhiro

    2013-01-01

    We previously reported emergence and disappearance of circadian molecular oscillations during differentiation of mouse embryonic stem (ES) cells and reprogramming of differentiated cells, respectively. Here we present a robust and stringent in vitro circadian clock formation assay that recapitulates in vivo circadian phenotypes. This assay system first confirmed that a mutant ES cell line lacking Casein Kinase I delta (CKIδ) induced ∼3 hours longer period-length of circadian rhythm than the w...

  14. The Cytoskeletal Regulatory Scaffold Protein GIT2 Modulates Mesenchymal Stem Cell Differentiation and Osteoblastogenesis

    OpenAIRE

    Wang, Xiaojuan; Liao, Shaoxi; Nelson, Erik R.; Schmalzigaug, Robert; Spurney, Robert F.; Guilak, Farshid; Premont, Richard T.; Gesty-Palmer, Diane

    2012-01-01

    G protein-coupled receptor kinase interacting protein 2 (GIT2) is a signaling scaffold protein involved in the regulation of cytoskeletal structure, membrane trafficking, and G protein-coupled receptor internalization. Since dynamic cytoskeletal reorganization plays key roles both in osteoblast differentiation and in the maintenance of osteoclast polarity during bone resorption, we hypothesized that skeletal physiology would be altered in GIT2−/− mice. We found that adult GIT2−/− mice have de...

  15. Structural features underlying the selectivity of the kinase inhibitors NBC and dNBC: role of a nitro group that discriminates between CK2 and DYRK1A.

    Science.gov (United States)

    Sarno, Stefania; Mazzorana, Marco; Traynor, Ryan; Ruzzene, Maria; Cozza, Giorgio; Pagano, Mario A; Meggio, Flavio; Zagotto, Giuseppe; Battistutta, Roberto; Pinna, Lorenzo A

    2012-02-01

    8-hydroxy-4-methyl-9-nitrobenzo(g)chromen-2-one (NBC) has been found to be a fairly potent ATP site-directed inhibitor of protein kinase CK2 (Ki = 0.22 μM). Here, we show that NBC also inhibits PIM kinases, especially PIM1 and PIM3, the latter as potently as CK2. Upon removal of the nitro group, to give 8-hydroxy-4-methyl-benzo(g)chromen-2-one (here referred to as "denitro NBC", dNBC), the inhibitory power toward CK2 is almost entirely lost (IC(50) > 30 μM) whereas that toward PIM1 and PIM3 is maintained; in addition, dNBC is a potent inhibitor of a number of other kinases that are weakly inhibited or unaffected by NBC, with special reference to DYRK1A whose IC(50) values with NBC and dNBC are 15 and 0.60 μM, respectively. Therefore, the observation that NBC, unlike dNBC, is a potent inducer of apoptosis is consistent with the notion that this effect is mediated by inhibition of endogenous CK2. The structural features underlying NBC selectivity have been revealed by inspecting its 3D structure in complex with the catalytic subunit of Z. mays CK2. The crucial role of the nitro group is exerted both through a direct electrostatic interaction with the side chain of Lys68 and, indirectly, by enhancing the acidic dissociation constant of the adjacent hydroxyl group which interacts with a conserved water molecule in the deepest part of the cavity. By contrast, the very same nitro group is deleterious for the binding to the active site of DYRK1A, as disclosed by molecular docking. This provides the rationale for preferential inhibition of DYRK1A by dNBC. PMID:21720886

  16. Identification of a Dual Inhibitor of SRPK1 and CK2 That Attenuates Pathological Angiogenesis of Macular Degeneration in Mice.

    Science.gov (United States)

    Morooka, Satoshi; Hoshina, Mitsuteru; Kii, Isao; Okabe, Takayoshi; Kojima, Hirotatsu; Inoue, Naoko; Okuno, Yukiko; Denawa, Masatsugu; Yoshida, Suguru; Fukuhara, Junichi; Ninomiya, Kensuke; Ikura, Teikichi; Furuya, Toshio; Nagano, Tetsuo; Noda, Kousuke; Ishida, Susumu; Hosoya, Takamitsu; Ito, Nobutoshi; Yoshimura, Nagahisa; Hagiwara, Masatoshi

    2015-08-01

    Excessive angiogenesis contributes to numerous diseases, including cancer and blinding retinopathy. Antibodies against vascular endothelial growth factor (VEGF) have been approved and are widely used in clinical treatment. Our previous studies using SRPIN340, a small molecule inhibitor of SRPK1 (serine-arginine protein kinase 1), demonstrated that SRPK1 is a potential target for the development of antiangiogenic drugs. In this study, we solved the structure of SRPK1 bound to SRPIN340 by X-ray crystallography. Using pharmacophore docking models followed by in vitro kinase assays, we screened a large-scale chemical library, and thus identified a new inhibitor of SRPK1. This inhibitor, SRPIN803, prevented VEGF production more effectively than SRPIN340 owing to the dual inhibition of SRPK1 and CK2 (casein kinase 2). In a mouse model of age-related macular degeneration, topical administration of eye ointment containing SRPIN803 significantly inhibited choroidal neovascularization, suggesting a clinical potential of SRPIN803 as a topical ointment for ocular neovascularization. Thus SRPIN803 merits further investigation as a novel inhibitor of VEGF. PMID:25993998

  17. Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

    CERN Document Server

    Appert-Rolland, Cecile; Santen, Ludger

    2015-01-01

    Cells are strongly out-of-equilibrium systems driven by continuous energy supply. They carry out many vital functions requiring active transport of various ingredients and organelles, some being small, others being large. The cytoskeleton, composed of three types of filaments, determines the shape of the cell and plays a role in cell motion. It also serves as a road network for the so-called cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated, in particular because its breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. We first review some biological facts obtained from experiments, and present some modeling attempts based on cellular automata. We start with background knowledge on the origi...

  18. The crystal structure of the complex of Zea mays alpha subunit with a fragment of human beta subunit provides the clue to the architecture of protein kinase CK2 holoenzyme

    DEFF Research Database (Denmark)

    Battistutta, R; Sarno, S; De Moliner, E;

    2000-01-01

    The crystal structure of a complex between the catalytic alpha subunit of Zea mays CK2 and a 23-mer peptide corresponding the C-terminal sequence 181-203 of the human CK2 regulatory beta subunit has been determined at 3.16-A resolution. The complex, composed of two alpha chains and two peptides...

  19. p53 and the ribosomal protein L5 participate in high molecular mass complex formation with protein kinase CK2 in murine teratocarcinoma cell line F9 after serum stimulation and cisplatin treatment

    DEFF Research Database (Denmark)

    Guerra, B; Issinger, O G

    evidence by immunoprecipitation for an association of protein kinase CK2 holoenzyme (alpha2beta2), p53, and the ribosomal protein L5. The results suggest complexes between the CK2 holoenzyme and p53 but also p53/CKbeta complexes. Furthermore we provide evidence for the existence of high molecular mass...

  20. Monitoring the cytoskeletal EGF response in live gastric carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Marco Felkl

    Full Text Available Altered cell motility is considered to be a key factor in determining tumor invasion and metastasis. Epidermal growth factor (EGF signaling has been implicated in this process by affecting cytoskeletal organization and dynamics in multiple ways. To sort the temporal and spatial regulation of EGF-dependent cytoskeletal re-organization in relation to a cell's motile behavior time-lapse microscopy was performed on EGF-responsive gastric carcinoma-derived MKN1 cells co-expressing different fluorescently labeled cytoskeletal filaments and focal adhesion components in various combinations. The experiments showed that EGF almost instantaneously induces a considerable increase in membrane ruffling and lamellipodial activity that can be inhibited by Cetuximab EGF receptor antibodies and is not elicited in non-responsive gastric carcinoma Hs746T cells. The transient cell extensions are rich in actin but lack microtubules and keratin intermediate filaments. We show that this EGF-induced increase in membrane motility can be measured by a simple image processing routine. Microtubule plus-ends subsequently invade growing cell extensions, which start to accumulate focal complexes at the lamellipodium-lamellum junction. Such paxillin-positive complexes mature into focal adhesions by tyrosine phosphorylation and recruitment of zyxin. These adhesions then serve as nucleation sites for keratin filaments which are used to enlarge the neighboring peripheral keratin network. Focal adhesions are either disassembled or give rise to stable zyxin-rich fibrillar adhesions which disassemble in the presence of EGF to support formation of new focal adhesion sites in the cell periphery. Taken together the results serve as a basis for modeling the early cytoskeletal EGF response as a tightly coordinated and step-wise process which is relevant for the prediction of the effectiveness of anti-EGF receptor-based tumor therapy.

  1. Enhancing the Apoptotic Potential of Insulin-Like Growth Factor-Binding Protein-3 in Prostate Cancer by Modulation of CK2 Phosphorylation

    OpenAIRE

    Cobb, Laura J.; Mehta, Hemal; Cohen, Pinchas

    2009-01-01

    IGF-binding protein 3 (IGFBP-3) promotes apoptosis by both IGF-dependent and -independent mechanisms. We have previously reported that phosphorylation of IGFBP-3 (S156) by DNA-dependent protein kinase enhances its nuclear accumulation and is essential for its ability to interact with retinoid X receptor-α and induce apoptosis in cultured prostate cancer cells. Using specific chemical inhibitors and small interfering RNA, we demonstrate that preventing casein kinase 2 (CK2) activation enhanced...

  2. Human herpesvirus 6B induces phosphorylation of p53 in its regulatory domain by a CK2- and p38-independent pathway

    DEFF Research Database (Denmark)

    Øster, Bodil; Bundgaard, Bettina; Hupp, TR;

    2008-01-01

    Here, we demonstrate that human herpesvirus 6B (HHV-6B) infection upregulates the tumour suppressor p53 and induces phosphorylation of p53 at Ser392. Interestingly, phosphorylation at the equivalent site has previously been shown to correlate with p53 tumour suppression in murine models. Although...... or Cdk9, eluted in column fractions that phosphorylated p53 at Ser392. However, treatment of cells with neither the CK2 and Cdk9 inhibitor 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB) nor p38 kinase inhibitors reduced HHV-6B-induced Ser392 phosphorylation significantly. Knockdown of the CK2......beta subunit or p38alpha by small interfering RNA had no effect on HHV-6B-induced phosphorylation of p53 at Ser392. Thus, HHV-6B induces p53 Ser392 phosphorylation by an atypical pathway independent of CK2 and p38 kinases, whereas mitogen-activated protein (MAP) kinase signalling pathways are involved...

  3. Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking.

    Science.gov (United States)

    Chan, Ting; Cheung, Florence Shin Gee; Zheng, Jian; Lu, Xiaoxi; Zhu, Ling; Grewal, Thomas; Murray, Michael; Zhou, Fanfan

    2016-01-01

    Human organic anion transporting polypeptides (OATPs) mediate the influx of many important drugs into cells. Casein kinase 2 (CK2) is a critical protein kinase that phosphorylates >300 protein substrates and is dysregulated in a number of disease states. Among the CK2 substrates are several transporters, although whether this includes human OATPs has not been evaluated. The current study was undertaken to evaluate the regulation of human OATP1A2 by CK2. HEK-239T cells in which OATP1A2 was overexpressed were treated with CK2 specific inhibitors or transfected with CK2 specific siRNA, and the activity, expression, and subcellular trafficking of OATP1A2 was evaluated. CK2 inhibition decreased the uptake of the prototypic OATP1A2 substrate estrone-3-sulfate (E3S). Kinetic studies revealed that this was due to a decrease in the maximum velocity (Vmax) of E3S uptake, while the Michaelis constant was unchanged. The cell surface expression, but not the total cellular expression of OATP1A2, was impaired by CK2 inhibition and knockdown of the catalytic α-subunits of CK2. CK2 inhibition decreased the internalization of OATP1A2 via a clathrin-dependent pathway, decreased OATP1A2 recycling, and likely impaired OATP1A2 targeting to the cell surface. Consistent with these findings, CK2 inhibition also disrupted the colocalization of OATP1A2 and Rab GTPase (Rab)4-, Rab8-, and Rab9-positive endosomal and secretory vesicles. Taken together, CK2 has emerged as a novel regulator of the subcellular trafficking and stability of OATP1A2. Because OATP1A2 transports many molecules of physiological and pharmacological importance, the present data may inform drug selection in patients with diseases in which CK2 and OATP1A2 are dysregulated. PMID:26580496

  4. PTP-PEST controls EphA3 activation and ephrin-induced cytoskeletal remodelling.

    Science.gov (United States)

    Mansour, Mariam; Nievergall, Eva; Gegenbauer, Kristina; Llerena, Carmen; Atapattu, Lakmali; Hallé, Maxime; Tremblay, Michel L; Janes, Peter W; Lackmann, Martin

    2016-01-15

    Eph receptors and their corresponding membrane-bound ephrin ligands regulate cell positioning and establish tissue patterns during embryonic and oncogenic development. Emerging evidence suggests that assembly of polymeric Eph signalling clusters relies on cytoskeletal reorganisation and underlies regulation by protein tyrosine phosphatases (PTPs). PTP-PEST (also known as PTPN12) is a central regulator of actin cytoskeletal dynamics. Here, we demonstrate that an N-terminal fragment of PTP-PEST, generated through an ephrinA5-triggered and spatially confined cleavage mediated by caspase-3, attenuates EphA3 receptor activation and its internalisation. Isolation of EphA3 receptor signalling clusters within intact plasma membrane fragments obtained by detergent-free cell fractionation reveals that stimulation of cells with ephrin triggers effective recruitment of this catalytically active truncated form of PTP-PEST together with key cytoskeletal and focal adhesion proteins. Importantly, modulation of actin polymerisation using pharmacological and dominant-negative approaches affects EphA3 phosphorylation in a similar manner to overexpression of PTP-PEST. We conclude that PTP-PEST regulates EphA3 activation both by affecting cytoskeletal remodelling and through its direct action as a PTP controlling EphA3 phosphorylation, indicating its multifaceted regulation of Eph signalling. PMID:26644181

  5. pVHL acts as an Adapter to Promote the Inhibitory Phosphorylation of the NF-κB Agonist Card9 by CK2

    OpenAIRE

    Yang, Haifeng; Minamishima, Yoji Andrew; Yan, Qin; Schlisio, Susanne; Benjamin L Ebert; Zhang, Xiaoping; Zhang, Liang; Kim, William Y.; Olumi, Aria F.; William G Kaelin

    2007-01-01

    The VHL tumor suppressor protein (pVHL) is part of an E3 ubiquitin ligase that targets HIF for destruction. pVHL-defective renal carcinoma cells exhibit increased NF-κB activity but the mechanism is unclear. NF-κB affects tumorigenesis and therapeutic resistance in some settings. We found that pVHL associates with the NF-κB agonist Card9 but does not target Card9 for destruction. Instead, pVHL serves as an adaptor that promotes the phosphorylation of the Card9 C-terminus by CK2. Elimination o...

  6. Cytoskeletal elements in the bacterium Mycoplasma pneumoniae

    Science.gov (United States)

    Hegermann, Jan; Herrmann, Richard; Mayer, Frank

    2002-09-01

    Mycoplasma pneumoniae is a pathogenic eubacterium lacking a cell wall. Three decades ago, a "rod", an intracellular cytoskeletal structure, was discovered that was assumed to define and stabilize the elongated cell shape. Later, by treatment with detergent, a "Triton shell" (i.e. a fraction of detergent-insoluble cell material) could be obtained, believed to contain additional cytoskeletal elements. Now, by application of a modified Triton X-100 treatment, we are able to demonstrate that M. pneumoniae possesses a cytoskeleton consisting of a blade-like rod and a peripheral lining located close to the inner face of the cytoplasmic membrane, exhibiting features of a highly regular network. Attached "stalks" may support the cytoplasmic membrane. The rod was connected to the cell periphery by "spokes" and showed a defined ultrastructure. Its proximal end was found to be attached to a wheel-like complex. Fibrils extended from the proximal end of the rod into the cytoplasm.

  7. Cell Forces and Cytoskeletal Order Parameters

    Science.gov (United States)

    Discher, Dennis

    2012-02-01

    Nematic, Smectic and Isotropic Order parameters have found wide-spread use in characterizing all manner of soft matter systems, but have not yet been applied to characterize and understand the structures within living cells, particularly cytoskeletal structures. Several examples will be used to illustrate the utility of such analyses, ranging from experiments on stem cells attached to or in various elastic matrices to embryonic heart tissue and simulations of membrane cytoskeletons under all manner of stressing. Recently developed theory will be shown to apply in general with account of cell contractility, matrix elasticity and dimensionality as well as cell shape and a newly defined ``cytoskeletal polarizability.'' The latter property of cells is likely different between different cell types due to different amounts of key cytoskeletal components with some types of stem cells being more polarizable than others. Evidence of coupling to the nucleus as a viscoelastic inclusion will also be presented. [4pt] References: (1) P. Dalhaimer, D.E. Discher, T. Lubensky. Crosslinked actin networks exhibit liquid crystal elastomer behavior, including soft-mode elasticity. Nature Physics 3: 354-360 (2007). (2) A. Zemel, F.Rehfeldt, A.E.X. Brown, D.E. Discher, and S.A. Safran. Optimal matrix rigidity in the self-polarization of stem cells. Nature Physics 6: 468 - 473 (2010).

  8. Effect of an inhibitor of protein kinase CK2 on radiosensitivity of human lung cancer cells%蛋白激酶CK2抑制剂对肺癌细胞系放射敏感性的影响

    Institute of Scientific and Technical Information of China (English)

    李倩雯; 刘莉; 伍钢; 孟睿; 李珂; 张盛; 杨天洋; 周瑜; 李振宇; 周方正; 马虹; 董晓荣

    2015-01-01

    Objective To evaluate the effect of an inhibitor of protein kinase CK2 on the radiosensitivity of human lung cancer cells. Methods The protein levels of CK2 α and β subunits in different lung cancer cell lines were measured by Western blot. Clonogenic assays were performed to assess the effect of a CK2 inhibitor, quinalizarin, on the radiosensitivity of lung adenocarcinoma A549 cells and large cell lung cancer H460 cells. The effects of the combination of quinalizarin and X⁃ray irradiation on the apoptosis and cell cycle of A549 and H460 cells were measured by flow cytometry. The differences between two groups were analyzed by analysis of variance and t⁃test. Results Western blot revealed that theαandβsubunits of CK2 were overexpressed in non⁃small cell lung cancer cells (A549,H460, and H1650 cells), which were considered insensitive to X⁃ray irradiation, whereas a lower expression of these two subunits were found in small cell lung cancer cells ( H446 cells) , which were sensitive to X⁃ray irradiation. The clonogenic assays showed that A549 and H460 cells pre⁃exposed to quinalizarin had a significantly lower survival fraction compared with the control group and had a sensitization enhancement ratio greater than 1. 0( D0 were 2. 771 and 2. 463 respectively) . The combination of quinalizarin and X⁃ray irradiation did not increase the apoptosis of A549 and H460 cells ( X⁃ray+Quinalizarin vs. Quinalizarin, A549, P=0. 487 and H460, P=0. 254) , but caused significant G2/M arrest compared with under X⁃ray irradiation only ( X⁃ray +Quinalizarin:X⁃ray, A549, P=0. 000;H460, P=0. 002 and X⁃ray+Quinalizarin:Quinalizarin, A549, P=0. 000;H460,P=0. 000) . Conclusions Quinalizarin, as a CK2 inhibitor, can increase the radiosensitivity of non⁃small cell lung cancer cells.%目的:探讨蛋白激酶CK2抑制剂对肺癌细胞系放射敏感性的影响。方法通过蛋白印迹法检测蛋白激酶CK2α、β亚基在不同肺癌细胞系中的表达

  9. Measurements and models of cytoskeletal rheology

    Science.gov (United States)

    Kamm, Roger

    2006-11-01

    Much attention has recently focused on understanding the rheology of living cells and reconstituted actin gels using a variety of experimental methods (e.g., single- and multi-particle tracking, magnetic twisting cytometry, AFM indentation) and several different models or descriptors (e.g., biopolymer models, tensegrity, cellular solids, power-law rheology), but the debate continues regarding the fundamental basis for the experimental observations. Our recent studies examine the time-dependent behavior of neutrophils as they deform to enter a narrow channel with capillary-scale dimensions. A sudden drop in the shear modulus is observed, followed by recovery to pre-deformation values in < 1 minute. These rheological changes coincide with a reduction in f-actin content and a transient increase in calcium ion concentration [Ca^++], and the change in storage modulus can be prevented by calcium chelation, suggesting that these observations are causally linked. Cells lacking the ability to increase [Ca^++] also become activated more rapidly following deformation, and the time to activation is independent of intracellular strain rates, contrary to experiments lacking the chelating agent. To better understand these processes and the nature of cytoskeletal rheology in general, we have developed a Brownian dynamics model for cytoskeletal self-assembly and subsequent rheological measurement by single particle tracking. Cross-linking proteins are included possessing a range of properties that lead to a variety of cytoskeletal structures from a fine, homogeneous mesh to a structure containing large stress fibers of varying thickness. These results are described in a multi-dimensional phase space that takes into account the geometry, dimensions and stiffness of the cross-linkers.

  10. Diversity-oriented synthesis of pyrazolo[4,3-b]indoles by gold-catalysed three-component annulation: application to the development of a new class of CK2 inhibitors.

    OpenAIRE

    Hou, Zengye; Oishi, Shinya; Suzuki, Yamato; Kure, Tatsuhide; Nakanishi, Isao; Hirasawa, Akira; Tsujimoto, Gozoh; Ohno, Hiroaki; Fujii, Nobutaka

    2013-01-01

    Pyrazolo[4,3-b]indole derivatives have been designed as novel CK2 inhibitor compounds based on the binding mode analysis of a previously reported phenylpyrazole-type CK2 inhibitor. A series of pyrazolo[4,3-b]indoles and related dihydropyrazolo[4,3-b]indoles were efficiently prepared from simple starting materials using a gold-catalysed three-component annulation reaction as a key step. Several of the newly synthesized compounds displayed high levels of inhibitory activity, indicating that the...

  11. A POROELASTIC MODEL FOR CELL CRAWLING INCLUDING MECHANICAL COUPLING BETWEEN CYTOSKELETAL CONTRACTION AND ACTIN POLYMERIZATION.

    Science.gov (United States)

    Taber, L A; Shi, Y; Yang, L; Bayly, P V

    2011-01-01

    Much is known about the biophysical mechanisms involved in cell crawling, but how these processes are coordinated to produce directed motion is not well understood. Here, we propose a new hypothesis whereby local cytoskeletal contraction generates fluid flow through the lamellipodium, with the pressure at the front of the cell facilitating actin polymerization which pushes the leading edge forward. The contraction, in turn, is regulated by stress in the cytoskeleton. To test this hypothesis, finite element models for a crawling cell are presented. These models are based on nonlinear poroelasticity theory, modified to include the effects of active contraction and growth, which are regulated by mechanical feedback laws. Results from the models agree reasonably well with published experimental data for cell speed, actin flow, and cytoskeletal deformation in migrating fish epidermal keratocytes. The models also suggest that oscillations can occur for certain ranges of parameter values. PMID:21765817

  12. Determination of mRNA, and protein levels of p53, MDM2 and protein kinase CK2 subunits in F9 cells after treatment with the apoptosis-inducing drugs cisplatin and carboplatin

    DEFF Research Database (Denmark)

    Siemer, S; Ornskov, D; Guerra, B;

    1999-01-01

    Protein kinase CK2 is a pleiotropic serine/threonine kinase which has been shown to phosphorylate numerous substrates. Evidence is accumulating that CK2 may exist complexed to a variety of cellular proteins, e.g. p53, MDM2, and A-Raf. Here, we explored the effects of the chemotherapeutic drugs...... cisplatin and carboplatin on the mRNA and protein levels of p53, MDM2 and CK2 in a murine teratocarcinoma cell line F9. Northern and Western blot analyses were performed and the CK2 activity was determined. The degree of apoptosis after drug treatment was assessed using the TUNEL test. Six hours after...... cisplatin and carboplatin treatment, the RNA level of p53 dropped by 59% +/- 9% and 86% +/- 8% respectively, whereas the observed level of p53 protein rose to 7 and 10 times over the untreated control, respectively. Treatment with 33 microM cisplatin prompted apoptosis as early as 4 h after drug treatment...

  13. Mertk Deficiency Affects Macrophage Directional Migration via Disruption of Cytoskeletal Organization

    OpenAIRE

    Tang, Yong; Wu, Shen; Liu, Qian; Xie, Jiayi; Zhang, Jingxue; Han, Dong; Lu, Qingxian; Lu, Qingjun

    2015-01-01

    Mertk belongs to the Tyro3, Axl and Mertk (TAM) family of receptor tyrosine kinases, and plays a pivotal role in regulation of cytoskeletal rearrangement during phagocytosis. Phagocytosis by either professional or non-professional phagocytes is impaired in the Mertk deficient individual. In the present study, we further investigated the effects of Mertk mutation on peritoneal macrophage morphology, attachment, spreading and movement. Mertk-mutated macrophages exhibited decreased attachment, w...

  14. Mechanical models of the cellular cytoskeletal network for the analysis of intracellular mechanical properties and force distributions: a review.

    Science.gov (United States)

    Chen, Ting-Jung; Wu, Chia-Ching; Su, Fong-Chin

    2012-12-01

    The cytoskeleton, which is the major mechanical component of cells, supports the cell body and regulates the cellular motility to assist the cell in performing its biological functions. Several cytoskeletal network models have been proposed to investigate the mechanical properties of cells. This review paper summarizes these models with a focus on the prestressed cable network, the semi-flexible chain network, the open-cell foam, the tensegrity, and the granular models. The components, material parameters, types of connection joints, tension conditions, and the advantages and disadvantages of each model are evaluated from a structural and biological point of view. The underlying mechanisms that are associated with the morphological changes of spreading cells are expected to be simulated using a cytoskeletal model; however, it is still paid less attention most likely due to the lack of a suitable cytoskeletal model that can accurately model the spreading process. In this review article, the established cytoskeletal models are hoped to provide useful information for the development of future cytoskeletal models with different degrees of cell attachment for the study of the mechanical mechanisms underlying the cellular behaviors in response to external stimulations. PMID:23062682

  15. Structural basis of regulation and substrate specificity of protein kinase CK2 deduced from the modeling of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Srinivasan N

    2003-05-01

    Full Text Available Abstract Background Protein Kinase Casein Kinase 2 (PKCK2 is an ubiquitous Ser/Thr kinase expressed in all eukaryotes. It phosphorylates a number of proteins involved in various cellular processes. PKCK2 holoenzyme is catalytically active tetramer, composed of two homologous or identical and constitutively active catalytic (α and two identical regulatory (β subunits. The tetramer cannot phosphorylate some substrates that can be phosphorylated by PKCK2α in isolation. The present work explores the structural basis of this feature using computational analysis and modeling. Results We have initially built a model of PKCK2α bound to a substrate peptide with a conformation identical to that of the substrates in the available crystal structures of other kinases complexed with the substrates/ pseudosubstrates. In this model however, the fourth acidic residue in the consensus pattern of the substrate, S/T-X-X-D/E where S/T is the phosphorylation site, did not result in interaction with the active form of PKCK2α and is highly solvent exposed. Interaction of the acidic residue is observed if the substrate peptide adopts conformations as seen in β turn, α helix, or 310 helices. This type of conformation is observed and accommodated well by PKCK2α in calmodulin where the phosphorylation site is at the central helix. PP2A carries sequence patterns for PKCK2α phosphorylation. While the possibility of PP2A being phosphorylated by PKCK2 has been raised in the literature we use the model of PP2A to generate a model of PP2A-PKCK2α complex. PKCK2β undergoes phosphorylation by holoenzyme at the N-terminal region, and is accommodated very well in the limited space available at the substrate-binding site of the holoenzyme while the space is insufficient to accommodate the binding of PP2A or calmodulin in the holoenzyme. Conclusion Charge and shape complimentarity seems to play a role in substrate recognition and binding to PKCK2α, along with the consensus pattern. The detailed conformation of the substrate peptide binding to PKCK2 differs from the conformation of the substrate/pseudo substrate peptide that is bound to other kinases in the crystal structures reported. The ability of holoenzyme to phosphorylate substrate proteins seems to depend on the accessibility of the P-site in limited space available in holoenzyme.

  16. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness.

    Directory of Open Access Journals (Sweden)

    Ramaswamy Krishnan

    Full Text Available Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment.

  17. Methods for modeling cytoskeletal and DNA filaments

    International Nuclear Information System (INIS)

    This review summarizes the models that researchers use to represent the conformations and dynamics of cytoskeletal and DNA filaments. It focuses on models that address individual filaments in continuous space. Conformation models include the freely jointed, Gaussian, angle-biased chain (ABC), and wormlike chain (WLC) models, of which the first three bend at discrete joints and the last bends continuously. Predictions from the WLC model generally agree well with experiment. Dynamics models include the Rouse, Zimm, stiff rod, dynamic WLC, and reptation models, of which the first four apply to isolated filaments and the last to entangled filaments. Experiments show that the dynamic WLC and reptation models are most accurate. They also show that biological filaments typically experience strong hydrodynamic coupling and/or constrained motion. Computer simulation methods that address filament dynamics typically compute filament segment velocities from local forces using the Langevin equation and then integrate these velocities with explicit or implicit methods; the former are more versatile and the latter are more efficient. Much remains to be discovered in biological filament modeling. In particular, filament dynamics in living cells are not well understood, and current computational methods are too slow and not sufficiently versatile. Although primarily a review, this paper also presents new statistical calculations for the ABC and WLC models. Additionally, it corrects several discrepancies in the literature about bending and torsional persistence length definitions, and their relations to flexural and torsional rigidities. (topical review)

  18. Cyclin G2 Promotes Hypoxia- Driven Local Invasion of Glioblastoma by Orchestrating Cytoskeletal Dynamics

    Directory of Open Access Journals (Sweden)

    Atsushi Fujimura

    2013-11-01

    Full Text Available Microenvironmental conditions such as hypoxia potentiate the local invasion of malignant tumors including glioblastomas by modulating signal transduction and protein modification, yet the mechanism by which hypoxia controls cytoskeletal dynamics to promote the local invasion is not well defined. Here, we show that cyclin G2 plays pivotal roles in the cytoskeletal dynamics in hypoxia-driven invasion by glioblastoma cells. Cyclin G2 is a hypoxia-induced and cytoskeleton-associated protein and is required for glioblastoma expansion. Mechanistically, cyclin G2 recruits cortactin to the juxtamembrane through its SH3 domain-binding motif and consequently promotes the restricted tyrosine phosphorylation of cortactin in concert with src. Moreover, cyclin G2 interacts with filamentous actin to facilitate the formation of membrane ruffles. In primary glioblastoma, cyclin G2 is abundantly expressed in severely hypoxic regions such as pseudopalisades, which consist of actively migrating glioma cells. Furthermore, we show the effectiveness of dasatinib against hypoxia-driven, cyclin G2-involved invasion in vitro and in vivo. Our findings elucidate the mechanism of cytoskeletal regulation by which severe hypoxia promotes the local invasion and may provide a therapeutic target in glioblastoma.

  19. Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid

    Czech Academy of Sciences Publication Activity Database

    Pleskot, Roman; Li, J.J.; Žárský, Viktor; Potocký, Martin; Staiger, C.J.

    2013-01-01

    Roč. 18, č. 9 (2013), s. 496-504. ISSN 1360-1385 R&D Projects: GA ČR GA13-19073S Institutional research plan: CEZ:AV0Z50380511 Keywords : cytoskeleton * microtubules * phosphatidic acid Subject RIV: ED - Physiology Impact factor: 13.479, year: 2013

  20. Regulation of Ikaros function by casein kinase 2 and protein phosphatase 1

    Institute of Scientific and Technical Information of China (English)

    Amy; K; Erbe; Aleksandar; Savic; Sinisa; Dovat

    2011-01-01

    The Ikaros gene encodes a zinc finger,DNA-binding protein that regulates gene transcription and chromatin remodeling.Ikaros is a master regulator of hematopoiesis and an established tumor suppressor.Moderate alteration of Ikaros activity (e.g.haploinsufficiency) appears to be sufficient to promote malignant transformation in human hematopoietic cells.This raises questions about the mechanisms that normally regulate Ikaros function and the potential of these mechanisms to contribute to the development of leukemia.The focus of this review is the regulation of Ikaros function by phosphorylation/dephosphorylation.Site-specific phosphorylation of Ikaros by casein kinase 2 (CK2) controls Ikaros DNA-binding ability and subcellular localization.As a consequence,the ability of Ikaros to regulate cell cycle progression,chromatin remodeling,target gene expression,and thymocyte differentiation are controlled by CK2.In addition,hyperphosphorylation of Ikaros by CK2 leads to decreased Ikaros levels due to ubiquitinmediated degradation.Dephosphorylation of Ikaros by protein phosphatase 1 (PP1) acts in opposition to CK2 to increase Ikaros stability and restore Ikaros DNA binding ability and pericentromeric localization.Thus,the CK2 and PP1 pathways act in concert to regulate Ikaros activity in hematopoiesis and as a tumor suppressor.This highlights the importance of these signal transduction pathways as potential mediators of leukemogenesis via their role in regulating the activities of Ikaros.

  1. Inactivation of the FoxO3a transcription factor is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated senescence in human colon cancer and breast cancer cells.

    Science.gov (United States)

    Park, Seong-Yeol; Bae, Young-Seuk

    2016-09-01

    We previously showed that protein kinase CK2 downregulation mediates senescence through the reactive oxygen species (ROS)-p53-p21(Cip1/WAF1) pathway in various human cells. In the present study, we investigated whether the FoxO3a transcription factor is associated with ROS production during CK2 downregulation-induced senescence in human colon cancer HCT116 and breast cancer MCF-7 cells. FoxO3a overexpression suppressed ROS production and p53 stabilization induced by a CK2α knockdown. CK2α downregulation induced nuclear export of FoxO3a through stimulation of AKT-mediated phosphorylation of FoxO3a and decreased transcription of its target genes (Cu/ZnSOD, MnSOD, and catalase). In contrast, CK2α overexpression inhibited AKT-mediated FoxO3a phosphorylation. This resulted in nuclear accumulation of FoxO3a, and elevated expression of its target genes. Therefore, these data indicate for the first time that CK2 downregulation stimulates ROS generation by inhibiting FoxO3a during premature senescence in human colon and breast cancer cells. PMID:27470586

  2. Detection of cytoskeletal proteins in small cell lung carcinoma

    Czech Academy of Sciences Publication Activity Database

    Hložánková, M.; Lukáš, Z.; Viklický, Vladimír

    1999-01-01

    Roč. 18, - (1999), s. 47-49. ISSN 0231-5882 Grant ostatní: MŠk1(CZ) OE10a/EU1450 Keywords : cytoskeletal proteins * small cell lung carcinoma Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.400, year: 1999

  3. Artificial cytoskeletal structures within enzymatically active bio-inorganic protocells.

    Science.gov (United States)

    Kumar, Ravinash Krishna; Li, Mei; Olof, Sam N; Patil, Avinash J; Mann, Stephen

    2013-02-11

    The fabrication of enzymatically active, semi-permeable bio-inorganic protocells capable of self-assembling a cytoskeletal-like interior and undergoing small-molecule dephosphorylation reactions is described. Reversible disassembly of an amino acid-derived supramolecular hydrogel within the internalized reaction space is used to tune the enzymatic activity of the nanoparticle-bounded inorganic compartments. PMID:23027575

  4. Cytoskeleton, cytoskeletal interactions, and vascular endothelial function

    Directory of Open Access Journals (Sweden)

    Wang J

    2012-12-01

    Full Text Available Jingli Wang,1 Michael E Widlansky1,21Department of Medicine, Cardiovascular Medicine Division, 2Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USAAbstract: Far from being inert, the vascular endothelium is a critical regulator of vascular function. While the endothelium participates in autocrine, paracrine, and endocrine signaling, it also transduces mechanical signals from the cell surface involving key cell structural elements. In this review, we discuss the structure of the vascular endothelium and its relationship to traditional cardiovascular risk factors and clinical cardiovascular events. Further, we review the emerging evidence that cell structural elements, including the glycocalyx, intercellular junctions, and cytoskeleton elements, help the endothelium to communicate with its environment to regulate vascular function, including vessel permeability and signal transduction via nitric oxide bioavailability. Further work is necessary to better delineate the regulatory relationships between known key regulators of vascular function and endothelial cell structural elements.Keywords: endothelium, shear stress, eNOS, cardiovascular risk factors, glycocalyx

  5. Orexin A reverses propofol and thiopental induced cytoskeletal rearrangement in rat neurons.

    Science.gov (United States)

    Turina, D; Gerhardsson, H; Bjornstrom, K

    2014-08-01

    Orexin A (OA) is an endogenous peptide regulating awakefulness, known to reduce anaesthesia in animals, but on cellular level its mechanisms to reverse anaesthetics are unknown. Primary cortical cell cultures from newborn rat brains are used and live cell light microscopy is performed to measure 1) neurite retraction after propofol, thiopental, barbituric acid and ketamine exposure and 2) the effect of OA application either before or after anaesthetics. Cytoskeletal reorganization is evaluated with fluorescence microscopy, protein changes are detected with Western blots and mass spectrometry is used to identify proteins after treatment with anaesthetics and/or OA. Adult rats are anaesthesized with propofol, and the cytoskeletal morphology is studied. Orexin A reverses and inhibits neurite retraction and actin ring formation induced by propofol and thiopental. No effect on retraction or actin rings was seen for ketamine (not active on gamma-aminobutiric acid A (GABA(A)) receptors), the non-anaesthetic barbituric acid, OA or solvents used. OA increases the tyrosine phosphorylation of a 50 kDa protein, identified as vimentin. Propofol induces an immediate granular appearance of vimentin, which OAreverses to a smooth distribution. Cytoskeletal morphology changes are also induced by propofol in vivo. All OA effects are blocked with an orexin receptor1 (OX1) antagonist. We conclude that OA reverses the GABAA receptor mediated cellular effects of both propofol and thiopental in rat brain cells. The morphologic changes of actin and vimentin caused by propofol and thiopental, and the subsequent reversal by OA, deepens our understanding of the mechanisms of anaesthesia. PMID:25179085

  6. Casein Kinase 2 Regulates the mRNA-destabilizing Activity of Tristetraprolin*

    OpenAIRE

    Lee, Won Hyeok; Lee, Hyun Hee; Vo, Mai-Tram; Kim, Hyo Jeong; Ko, Myoung Seok; Im, Yeong-Cheol; Min, Young Joo; Lee, Byung Ju; Cho, Wha Ja; Park, Jeong Woo

    2011-01-01

    Tristetraprolin (TTP) is an AU-rich element-binding protein that regulates mRNA stability. We previously showed that TTP acts as a negative regulator of VEGF gene expression in colon cancer cells. The p38 MAPK pathway is known to suppress the TTP activity. However, until now the signaling pathway to enhance TTP function is not well known. Here, we show that casein kinase 2 (CK2) enhances the TTP function in the regulation of the VEGF expression in colon cancer cells. CK2 increased TTP protein...

  7. The regulatory beta-subunit of protein kinase CK2 accelerates the degradation of CDC25A phosphatase through the checkpoint kinase Chk1

    DEFF Research Database (Denmark)

    Kreutzer, Jan Nicolas; Guerra, Barbara

    2007-01-01

    Human CDC25 phosphatases play an important role in cell cycle regulation by removing inhibitory phosphate groups on cyclin-CDKs. Chk1 has been shown to phosphorylate CDC25 family members down-regulating their phosphatase activity through distinct mechanisms. The kinase activity of Chk1 is evident...... cell cycle progression is shown to enhance CDC25A degradation, and this occurs in a manner similar to that by which CDC25A is down-regulated upon activation of cellular checkpoint responses. By using RNA interference to specifically deplete cells of Chk1, we demonstrate that Chk1 mediates the down-regulation...... cell cycle regulation and indicate the mechanism by which CDC25A turnover might be regulated by Chk1 in the absence of DNA damage....

  8. Molecular Mechanotransduction: how forces trigger cytoskeletal dynamics

    Science.gov (United States)

    Ehrlicher, Allen

    2012-02-01

    Mechanical stresses elicit cellular reactions mediated by chemical signals. Defective responses to forces underlie human medical disorders, such as cardiac failure and pulmonary injury. Despite detailed knowledge of the cytoskeleton's structure, the specific molecular switches that convert mechanical stimuli into chemical signals have remained elusive. Here we identify the actin-binding protein, filamin A (FLNa) as a central mechanotransduction element of the cytoskeleton by using Fluorescence Loss After photoConversion (FLAC), a novel high-speed alternative to FRAP. We reconstituted a minimal system consisting of actin filaments, FLNa and two FLNa-binding partners: the cytoplasmic tail of ß-integrin, and FilGAP. Integrins form an essential mechanical linkage between extracellular and intracellular environments, with ß integrin tails connecting to the actin cytoskeleton by binding directly to filamin. FilGAP is a FLNa-binding GTPase-activating protein specific for Rac, which in vivo regulates cell spreading and bleb formation. We demonstrate that both externally-imposed bulk shear and myosin II driven forces differentially regulate the binding of integrin and FilGAP to FLNa. Consistent with structural predictions, strain increases ß-integrin binding to FLNa, whereas it causes FilGAP to dissociate from FLNa, providing a direct and specific molecular basis for cellular mechanotransduction. These results identify the first molecular mechanotransduction element within the actin cytoskeleton, revealing that mechanical strain of key proteins regulates the binding of signaling molecules. Moreover, GAP activity has been shown to switch cell movement from mesenchymal to amoeboid motility, suggesting that mechanical forces directly impact the invasiveness of cancer.

  9. Visualization of Cytoskeletal Elements by the Atomic Force Microscope

    CERN Document Server

    Berdyyeva, T; Sokolov, I

    2004-01-01

    We describe a novel application of atomic force microscopy (AFM) to directly visualize cytoskeletal fibers in human foreskin epithelial cells. The nonionic detergent Triton X-100 in a low concentration was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized in either liquid or air-dried ambient conditions. These two types of scanning provide complimentary information. Scanning in liquid visualizes the surface filaments of the cytoskeleton, whereas scanning in air shows both the surface filaments and the total "volume" of the cytoskeletal fibers. The smallest fibers observed were ca. 50 nm in diameter. The lateral resolution of this technique was ca.20 nm, which can be increased to a single nanometer level by choosing sharper AFM tips. Because the AFM is a true three dimensional technique, we are able to quantify the observed cytoskeleton by its density and volume. The types of fibers can be identified by their size, similar to...

  10. The interplay of nonlinearity and architecture in equilibrium cytoskeletal mechanics.

    Science.gov (United States)

    Wang, Shenshen; Shen, Tongye; Wolynes, Peter G

    2011-01-01

    The interplay between cytoskeletal architecture and the nonlinearity of the interactions due to bucklable filaments plays a key role in modulating the cell's mechanical stability and affecting its structural rearrangements. We study a model of cytoskeletal structure treating it as an amorphous network of hard centers rigidly cross-linked by nonlinear elastic strings, neglecting the effects of motorization. Using simulations along with a self-consistent phonon method, we show that this minimal model exhibits diverse thermodynamically stable mechanical phases that depend on excluded volume, cross-link concentration, filament length, and stiffness. Within the framework set by the free energy functional formulation and making use of the random first order transition theory of structural glasses, we further estimate the characteristic densities for a kinetic glass transition to occur in this model system. Network connectivity strongly modulates the transition boundaries between various equilibrium phases, as well as the kinetic glass transition density. PMID:21219010

  11. Epigenetic repression of ribosomal RNA transcription by ROCK-dependent aberrant cytoskeletal organization

    Science.gov (United States)

    Wu, Tse-Hsiang; Kuo, Yuan-Yeh; Lee, Hsiao-Hui; Kuo, Jean-Cheng; Ou, Meng-Hsin; Chang, Zee-Fen

    2016-01-01

    It is known that ribosomal RNA (rRNA) synthesis is regulated by cellular energy and proliferation status. In this study, we investigated rRNA gene transcription in response to cytoskeletal stress. Our data revealed that the cell shape constrained by isotropic but not elongated micropatterns in HeLa cells led to a significant reduction in rRNA transcription dependent on ROCK. Expression of a dominant-active form of ROCK also repressed rRNA transcription. Isotropic constraint and ROCK over-activation led to different types of aberrant F-actin organization, but their suppression effects on rRNA transcription were similarly reversed by inhibition of histone deacetylase (HDAC) or overexpression of a dominant negative form of Nesprin, which shields the signal transmitted from actin filament to the nuclear interior. We further showed that the binding of HDAC1 to the active fraction of rDNA genes is increased by ROCK over-activation, thus reducing H3K9/14 acetylation and suppressing transcription. Our results demonstrate an epigenetic control of active rDNA genes that represses rRNA transcription in response to the cytoskeletal stress. PMID:27350000

  12. Dynamical organization of the cytoskeletal cortex probed by micropipette aspiration

    OpenAIRE

    Brugués, Jan; Maugis, Benoit; Casademunt, Jaume; Nassoy, Pierre; Amblard, François; Sens, Pierre

    2010-01-01

    Bleb-based cell motility proceeds by the successive inflation and retraction of large spherical membrane protrusions (“blebs”) coupled with substrate adhesion. In addition to their role in motility, cellular blebs constitute a remarkable illustration of the dynamical interactions between the cytoskeletal cortex and the plasma membrane. Here we study the bleb-based motions of Entamoeba histolytica in the constrained geometry of a micropipette. We construct a generic theoretical model that comb...

  13. Cytoskeletal disease: a role in the etiology of adult periodontitis.

    Science.gov (United States)

    Binderman, I; Gadban, N; Yaffe, A

    2014-01-01

    All cells and organisms across the evolutionary spectrum, from the most primitive to the most complex, are mechanosensitive. As the cytoskeleton is a key in controlling the normal basal prestress of cells and therefore is involved in virtually all physiological cellular processes, abnormalities in this essential cellular characteristic may result in diseases. Indeed, many diseases have now been associated with abnormalities in cytoskeletal and nucleoskeletal proteins. We propose that adult periodontitis is, at least in part, such a cytoskeletal disease. It is well established that adult periodontitis starts by bacterial invasion at the interface between the tooth surface and marginal gingiva that induces a local inflammatory response. The inflammatory cells release metalloproteinases which degrade gingival collagenous fibrous tissue and loss of local tissue integrity that reduces the normal prestressed cell-extracellular matrix network. This is a major signaling trigger that induces a local and rapid release of ATP, which then activates P2X receptors and stimulates a calcium influx, further activating osteoclastic resorption of the alveolar bone. As periodontitis is a chronic disease, it seems reasonable to suggest that agents that maintain cytoskeletal tensegrity, for example, inhibitors of ATP receptors, may diminish the bone loss and may have a role in future periodontal therapy. PMID:23679579

  14. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    DEFF Research Database (Denmark)

    Biondi, R M; Engel, M; Sauane, M;

    1996-01-01

    Although a number of nucleoside diphosphate kinases (NDPKs) have been reported to act as inhibitors of metastasis or as a transcription factor in mammals, it is not known whether these functions are linked to their enzymatic activity or how this protein is regulated. In this report, we show that ...... on histidine residues, however, only the B isoform appeared to be serine phosphorylated....

  15. Synergistic cytotoxic effects of bortezomib and CK2 inhibitor CX-4945 in acute lymphoblastic leukemia: turning off the prosurvival ER chaperone BIP/Grp78 and turning on the pro-apoptotic NF-κB

    Science.gov (United States)

    Buontempo, Francesca; Orsini, Ester; Lonetti, Annalisa; Cappellini, Alessandra; Chiarini, Francesca; Evangelisti, Camilla; Evangelisti, Cecilia; Melchionda, Fraia; Pession, Andrea; Bertaina, Alice; Locatelli, Franco; Bertacchini, Jessika; Neri, Luca Maria; McCubrey, James A.; Martelli, Alberto Maria

    2016-01-01

    The proteasome inhibitor bortezomib is a new targeted treatment option for refractory or relapsed acute lymphoblastic leukemia (ALL) patients. However, a limited efficacy of bortezomib alone has been reported. A terminal pro-apoptotic endoplasmic reticulum (ER) stress/unfolded protein response (UPR) is one of the several mechanisms of bortezomib-induced apoptosis. Recently, it has been documented that UPR disruption could be considered a selective anti-leukemia therapy. CX-4945, a potent casein kinase (CK) 2 inhibitor, has been found to induce apoptotic cell death in T-ALL preclinical models, via perturbation of ER/UPR pathway. In this study, we analyzed in T- and B-ALL preclinical settings, the molecular mechanisms of synergistic apoptotic effects observed after bortezomib/CX-4945 combined treatment. We demonstrated that, adding CX-4945 after bortezomib treatment, prevented leukemic cells from engaging a functional UPR in order to buffer the bortezomib-mediated proteotoxic stress in ER lumen. We documented that the combined treatment decreased pro-survival ER chaperon BIP/Grp78 expression, via reduction of chaperoning activity of Hsp90. Bortezomib/CX-4945 treatment inhibited NF-κB signaling in T-ALL cell lines and primary cells from T-ALL patients, but, intriguingly, in B-ALL cells the drug combination activated NF-κB p65 pro-apoptotic functions. In fact in B-cells, the combined treatment induced p65-HDAC1 association with consequent repression of the anti-apoptotic target genes, Bcl-xL and XIAP. Exposure to NEMO (IKKγ)-binding domain inhibitor peptide reduced the cytotoxic effects of bortezomib/CX-4945 treatment. Overall, our findings demonstrated that CK2 inhibition could be useful in combination with bortezomib as a novel therapeutic strategy in both T- and B-ALL. PMID:26593250

  16. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy

    Science.gov (United States)

    Tagawa, H.; Wang, N.; Narishige, T.; Ingber, D. E.; Zile, M. R.; Cooper, G. 4th

    1997-01-01

    We have shown that the cellular contractile dysfunction characteristic of pressure-overload cardiac hypertrophy results not from an abnormality intrinsic to the myofilament portion of the cardiocyte cytoskeleton but rather from an increased density of the microtubule component of the extramyofilament portion of the cardiocyte cytoskeleton. To determine how, in physical terms, this increased microtubule density mechanically overloads the contractile apparatus at the cellular level, we measured cytoskeletal stiffness and apparent viscosity in isolated cardiocytes via magnetic twisting cytometry, a technique by which magnetically induced force is applied directly to the cytoskeleton through integrin-coupled ferromagnetic beads coated with Arg-Gly-Asp (RGD) peptide. Measurements were made in two groups of cardiocytes from cats with right ventricular (RV) hypertrophy induced by pulmonary artery banding: (1) those from the pressure-overloaded RV and (2) those from the normally loaded same-animal control left ventricle (LV). Cytoskeletal stiffness increased almost twofold, from 8.53 +/- 0.77 dyne/cm2 in the normally loaded LV cardiocytes to 16.46 +/- 1.32 dyne/cm2 in the hypertrophied RV cardiocytes. Cytoskeletal apparent viscosity increased almost fourfold, from 20.97 +/- 1.92 poise in the normally loaded LV cardiocytes to 87.85 +/- 6.95 poise in the hypertrophied RV cardiocytes. In addition to these baseline data showing differing stiffness and, especially, apparent viscosity in the two groups of cardiocytes, microtubule depolymerization by colchicine was found to return both the stiffness and the apparent viscosity of the pressure overload-hypertrophied RV cells fully to normal. Conversely, microtubule hyperpolymerization by taxol increased the stiffness and apparent viscosity values of normally loaded LV cardiocytes to the abnormal values given above for pressure-hypertrophied RV cardiocytes. Thus, increased microtubule density constitutes primarily a viscous load on

  17. Arabidopsis Actin-Depolymerizing Factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics.

    Directory of Open Access Journals (Sweden)

    Katie Porter

    Full Text Available The primary role of Actin-Depolymerizing Factors (ADFs is to sever filamentous actin, generating pointed ends, which in turn are incorporated into newly formed filaments, thus supporting stochastic actin dynamics. Arabidopsis ADF4 was recently shown to be required for the activation of resistance in Arabidopsis following infection with the phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (Pst expressing the effector protein AvrPphB. Herein, we demonstrate that the expression of RPS5, the cognate resistance protein of AvrPphB, was dramatically reduced in the adf4 mutant, suggesting a link between actin cytoskeletal dynamics and the transcriptional regulation of R-protein activation. By examining the PTI (PAMP Triggered Immunity response in the adf4 mutant when challenged with Pst expressing AvrPphB, we observed a significant reduction in the expression of the PTI-specific target gene FRK1 (Flg22-Induced Receptor Kinase 1. These data are in agreement with recent observations demonstrating a requirement for RPS5 in PTI-signaling in the presence of AvrPphB. Furthermore, MAPK (Mitogen-Activated Protein Kinase-signaling was significantly reduced in the adf4 mutant, while no such reduction was observed in the rps5-1 point mutation under similar conditions. Isoelectric focusing confirmed phosphorylation of ADF4 at serine-6, and additional in planta analyses of ADF4's role in immune signaling demonstrates that nuclear localization is phosphorylation independent, while localization to the actin cytoskeleton is linked to ADF4 phosphorylation. Taken together, these data suggest a novel role for ADF4 in controlling gene-for-gene resistance activation, as well as MAPK-signaling, via the coordinated regulation of actin cytoskeletal dynamics and R-gene transcription.

  18. On the significance of microtubule flexural behavior in cytoskeletal mechanics.

    Science.gov (United States)

    Mehrbod, Mehrdad; Mofrad, Mohammad R K

    2011-01-01

    Quantitative description of cell mechanics has challenged biological scientists for the past two decades. Various structural models have been attempted to analyze the structure of the cytoskeleton. One important aspect that has been largely ignored in all these modeling approaches is related to the flexural and buckling behavior of microtubular filaments. The objective of this paper is to explore the influence of this flexural and buckling behavior in cytoskeletal mechanics.In vitro the microtubules are observed to buckle in the first mode, reminiscent of a free, simply-supported beam. In vivo images of microtubules, however, indicate that the buckling mostly occurs in higher modes. This buckling mode switch takes place mostly because of the lateral support of microtubules via their connections to actin and intermediate filaments. These lateral loads are exerted throughout the microtubule length and yield a considerable bending behavior that, unless properly accounted for, would produce erroneous results in the modeling and analysis of the cytoskeletal mechanics.One of the promising attempts towards mechanical modeling of the cytoskeleton is the tensegrity model, which simplifies the complex network of cytoskeletal filaments into a combination merely of tension-bearing actin filaments and compression-bearing microtubules. Interestingly, this discrete model can qualitatively explain many experimental observations in cell mechanics. However, evidence suggests that the simplicity of this model may undermine the accuracy of its predictions, given the model's underlying assumption that "every single member bears solely either tensile or compressive behavior," i.e. neglecting the flexural behavior of the microtubule filaments. We invoke an anisotropic continuum model for microtubules and compare the bending energy stored in a single microtubule with its axial strain energy at the verge of buckling. Our results suggest that the bending energy can exceed the axial energy

  19. On the significance of microtubule flexural behavior in cytoskeletal mechanics.

    Directory of Open Access Journals (Sweden)

    Mehrdad Mehrbod

    Full Text Available Quantitative description of cell mechanics has challenged biological scientists for the past two decades. Various structural models have been attempted to analyze the structure of the cytoskeleton. One important aspect that has been largely ignored in all these modeling approaches is related to the flexural and buckling behavior of microtubular filaments. The objective of this paper is to explore the influence of this flexural and buckling behavior in cytoskeletal mechanics.In vitro the microtubules are observed to buckle in the first mode, reminiscent of a free, simply-supported beam. In vivo images of microtubules, however, indicate that the buckling mostly occurs in higher modes. This buckling mode switch takes place mostly because of the lateral support of microtubules via their connections to actin and intermediate filaments. These lateral loads are exerted throughout the microtubule length and yield a considerable bending behavior that, unless properly accounted for, would produce erroneous results in the modeling and analysis of the cytoskeletal mechanics.One of the promising attempts towards mechanical modeling of the cytoskeleton is the tensegrity model, which simplifies the complex network of cytoskeletal filaments into a combination merely of tension-bearing actin filaments and compression-bearing microtubules. Interestingly, this discrete model can qualitatively explain many experimental observations in cell mechanics. However, evidence suggests that the simplicity of this model may undermine the accuracy of its predictions, given the model's underlying assumption that "every single member bears solely either tensile or compressive behavior," i.e. neglecting the flexural behavior of the microtubule filaments. We invoke an anisotropic continuum model for microtubules and compare the bending energy stored in a single microtubule with its axial strain energy at the verge of buckling. Our results suggest that the bending energy can

  20. Altered cytoskeletal structures in transformed cells exhibiting obviously metastatic capabilities

    Institute of Scientific and Technical Information of China (English)

    LINZHONGXIANG; WUBINGQUAN; 等

    1990-01-01

    Cytoskeletal changes in transformed cells (LM-51) eshibiting obviously metastatic capabilities were investigated by utilization of double-fluorescent labelling through combinations of:(1) tubulin indirect immunofluorescence plus Rhodamine-phalloidin staining of F-actins;(2) indirect immunofluorescent staining with α-actinin polyclonal-and vinculin monoclonal antibodies.The LM-51 cells which showed metastatic index of >50% were derived from lung metastasis in nude mice after subcutaneous inoculation of human highly metastatic tumor DNA transfected NIH3T3 cell transformants.The parent NIH3T3 cells exhibited well-organized microtubules,prominent stress fibers and adhesion plaques while their transformants showed remarkable cytoskeletal alterations:(1)reduced microtubules but increased MTOC fluorescence;(2)disrupted stress fibers and fewer adhesion plaques with their protein components redistributed in the cytoplasm;(3)Factin-and α-actinin/vinculin aggregates appeared in the cytoplasm.These aggregates were dot-like,varied in size(0.1-0.4μm) and number,located near the ventral surface of the cells.TPA-induced actin/vinculin bodies were studied too.Indications that actin and α-actinin/vinculin redistribution might be important alterations involved in the expression of metastatic capabilities of LM-51 transformed cells were discussed.

  1. Role of cyclic nucleotide-dependent actin cytoskeletal dynamics:Ca(2+](i and force suppression in forskolin-pretreated porcine coronary arteries.

    Directory of Open Access Journals (Sweden)

    Kyle M Hocking

    Full Text Available Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca(2+]i and phosphorylation of myosin light chains (MLC. However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca(2+]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm.

  2. Hierarchical Distribution of the Tau Cytoskeletal Pathology in the Thalamus of Alzheimer's Disease Patients

    NARCIS (Netherlands)

    Rueb, Udo; Stratmann, Katharina; Heinsen, Helmut; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; den Dunnen, Wilfred; Korf, Horst-Werner

    2015-01-01

    In spite of considerable progress in neuropathological research on Alzheimer's disease (AD), knowledge regarding the exact pathoanatomical distribution of the tau cytoskeletal pathology in the thalamus of AD patients in the advanced Braak and Braak AD stages V or VI of the cortical cytoskeletal path

  3. Precortical Phase of Alzheimer's Disease (AD)-Related Tau Cytoskeletal Pathology.

    Science.gov (United States)

    Stratmann, Katharina; Heinsen, Helmut; Korf, Horst-Werner; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; Bouzrou, Mohamed; Grinberg, Lea T; Bohl, Jürgen; Wharton, Stephen B; den Dunnen, Wilfred; Rüb, Udo

    2016-05-01

    Alzheimer's disease (AD) represents the most frequent progressive neuropsychiatric disorder worldwide leading to dementia. We systematically investigated the presence and extent of the AD-related cytoskeletal pathology in serial thick tissue sections through all subcortical brain nuclei that send efferent projections to the transentorhinal and entorhinal regions in three individuals with Braak and Braak AD stage 0 cortical cytoskeletal pathology and fourteen individuals with Braak and Braak AD stage I cortical cytoskeletal pathology by means of immunostainings with the anti-tau antibody AT8. These investigations revealed consistent AT8 immunoreactive tau cytoskeletal pathology in a subset of these subcortical nuclei in the Braak and Braak AD stage 0 individuals and in all of these subcortical nuclei in the Braak and Braak AD stage I individuals. The widespread affection of the subcortical nuclei in Braak and Braak AD stage I shows that the extent of the early subcortical tau cytoskeletal pathology has been considerably underestimated previously. In addition, our novel findings support the concept that subcortical nuclei become already affected during an early 'pre-cortical' evolutional phase before the first AD-related cytoskeletal changes occur in the mediobasal temporal lobe (i.e. allocortical transentorhinal and entorhinal regions). The very early involved subcortical brain regions may represent the origin of the AD-related tau cytoskeletal pathology, from where the neuronal cytoskeletal pathology takes an ascending course toward the secondarily affected allocortex and spreads transneuronally along anatomical pathways in predictable sequences. PMID:26193084

  4. Probing mechanics and activity of cytoskeletal networks using carbon nanotubes

    Science.gov (United States)

    Fakhri, Nikta

    2013-03-01

    We use single-walled carbon nanotubes (SWNTs) as multi-scale micro-probes to monitor transport and fluctuations in cytoskeletal networks. SWNTs are nanometer-diameter hollow carbon filaments with micrometer lengths and a tunable bending stiffness. Their persistence length varies between 20-100 microns. We study the motion of individual SWNTs in reconstituted actin networks by near-infrared fluorescence microscopy. At long times, SWNTs reptate through the networks. At short times, SWNTs sample the spectrum of thermal fluctuations in the networks. We can calculate complex shear moduli from recorded fluctuations and observe power-law scaling in equilibrium actin networks. In the non-equilibrium cytoskeleton of cells we have targeted SWNTs to kinesin motors and thereby to their microtubule tracks. We observe both transport along the tracks as well as active fluctuations of the tracks themselves. Human Frontier Science Program Cross-Disciplinary Fellow

  5. Run-and-tumble dynamics of cytoskeletal motor proteins

    CERN Document Server

    Hafner, Anne E; Rieger, Heiko; Shaebani, M Reza

    2016-01-01

    Cytoskeletal motor proteins are involved in major intracellular transport processes which are vital for maintaining appropriate cellular function. The motor exhibits distinct states of motility: active motion along filaments, and effectively stationary phase in which it detaches from the filaments and performs passive diffusion in the vicinity of the detachment point due to cytoplasmic crowding. The transition rates between motion and pause phases are asymmetric in general, and considerably affected by changes in environmental conditions which influences the efficiency of cargo delivery to specific targets. By considering the motion of molecular motor on a single filament as well as a dynamic filamentous network, we present an analytical model for the dynamics of self-propelled particles which undergo frequent pause phases. The interplay between motor processivity, structural properties of filamentous network, and transition rates between the two states of motility drastically changes the dynamics: multiple t...

  6. Towards Experimental Tests of Quantum Effects in Cytoskeletal Proteins

    CERN Document Server

    Mershin, A; Miller, J H; Nawarathna, D; Skoulakis, E M C; Mavromatos, Nikolaos E; Kolomenskij, A A; Schüssler, H A; Luduena, R F; Nanopoulos, Dimitri V; Mershin, Andreas; Sanabria, Hugo; Miller, John H.; Nawarathna, Dharmakeerthna; Skoulakis, Efthimios M.C.; Mavromatos, Nikolaos E.; Kolomenskii, Alexadre A.; Schuessler, Hans A.; Luduena, Richard F.; Nanopoulos, Dimitri V.

    2005-01-01

    It has become increasingly evident that fabrication of novel biomaterials through molecular self-assembly is going to play a significant role in material science and possibly the information technology of the future. Tubulin, microtubules (MTs) and the cytoskeleton are dynamic, self-assembling systems and we asked whether their structure and function contain the clues on how to fabricate biomolecular information processing devices. Here we review our neurobiological studies of transgenic Drosophila that strongly suggest the microtubular cytoskeleton is near the 'front lines' of intracellular information manipulation and storage. We also establish that spectroscopic techniques such as refractometry, surface plasmon resonance sensing and dielectric spectroscopy, coupled with molecular dynamic simulations and (quantum) electrodynamic analytical theory are useful tools in the study of the electrodynamic and possible quantum effects in cytoskeletal proteins. Implicit in our driving question is the possibility that...

  7. Cell elasticity with altered cytoskeletal architectures across multiple cell types.

    Science.gov (United States)

    Grady, Martha E; Composto, Russell J; Eckmann, David M

    2016-08-01

    The cytoskeleton is primarily responsible for providing structural support, localization and transport of organelles, and intracellular trafficking. The structural support is supplied by actin filaments, microtubules, and intermediate filaments, which contribute to overall cell elasticity to varying degrees. We evaluate cell elasticity in five different cell types with drug-induced cytoskeletal derangements to probe how actin filaments and microtubules contribute to cell elasticity and whether it is conserved across cell type. Specifically, we measure elastic stiffness in primary chondrocytes, fibroblasts, endothelial cells (HUVEC), hepatocellular carcinoma cells (HUH-7), and fibrosarcoma cells (HT 1080) subjected to two cytoskeletal destabilizers: cytochalasin D and nocodazole, which disrupt actin and microtubule polymerization, respectively. Elastic stiffness is measured by atomic force microscopy (AFM) and the disruption of the cytoskeleton is confirmed using fluorescence microscopy. The two cancer cell lines showed significantly reduced elastic moduli values (~0.5kPa) when compared to the three healthy cell lines (~2kPa). Non-cancer cells whose actin filaments were disrupted using cytochalasin D showed a decrease of 60-80% in moduli values compared to untreated cells of the same origin, whereas the nocodazole-treated cells showed no change in elasticity. Overall, we demonstrate actin filaments contribute more to elastic stiffness than microtubules but this result is cell type dependent. Cancer cells behaved differently, exhibiting increased stiffness as well as stiffness variability when subjected to nocodazole. We show that disruption of microtubule dynamics affects cancer cell elasticity, suggesting therapeutic drugs targeting microtubules be monitored for significant elastic changes. PMID:26874250

  8. Cytoskeletal proteins participate in conserved viral strategies across kingdoms of life.

    Science.gov (United States)

    Erb, Marcella L; Pogliano, Joe

    2013-12-01

    The discovery of tubulin-like cytoskeletal proteins carried on the genomes of bacteriophages that are actively used for phage propagation during both the lytic and lysogenic cycle have revealed that there at least two ways that viruses can utilize a cytoskeleton; co-opt the host cytoskeleton or bring their own homologues. Either strategy underscores the deep evolutionary relationship between viruses and cytoskeletal proteins and points to a conservation of viral strategies that crosses the kingdoms of life. Here we review some of the most recent discoveries about tubulin cytoskeletal elements encoded by phages and compare them to some of the strategies utilized by the gammaherpesvirues of mammalian cells. PMID:24055040

  9. Forcing it on: Cytoskeletal dynamics during lymphocyte activation

    Science.gov (United States)

    Upadhyaya, Arpita

    2012-02-01

    Formation of the immune synapse during lymphocyte activation involves cell spreading driven by large scale physical rearrangements of the actin cytoskeleton and the cell membrane. Several recent observations suggest that mechanical forces are important for efficient T cell activation. How forces arise from the dynamics of the cytoskeleton and the membrane during contact formation, and their effect on signaling activation is not well understood. We have imaged membrane topography, actin dynamics and the spatiotemporal localization of signaling clusters during the very early stages of spreading. Formation of signaling clusters was closely correlated with the movement and topography of the membrane in contact with the activating surface. Further, we observed membrane waves driven by actin polymerization originating at these signaling clusters. Actin-driven membrane protrusions likely play an important role in force generation at the immune synapse. In order to study cytoskeletal forces during T-cell activation, we studied cell spreading on elastic gels. We found that gel stiffness influences cell morphology, actin dynamics and receptor activation. Efforts to determine the quantitative relationships between cellular forces and signaling are underway. Our results suggest a role for cytoskeleton driven forces during signaling activation in lymphocytes.

  10. Cytoskeletal Interactions at the Nuclear Envelope Mediated by Nesprins

    Directory of Open Access Journals (Sweden)

    Surayya Taranum

    2012-01-01

    Full Text Available Nesprin-1 is a giant tail-anchored nuclear envelope protein composed of an N-terminal F-actin binding domain, a long linker region formed by multiple spectrin repeats and a C-terminal transmembrane domain. Based on this structure, it connects the nucleus to the actin cytoskeleton. Earlier reports had shown that Nesprin-1 binds to nuclear envelope proteins emerin and lamin through C-terminal spectrin repeats. These repeats can also self-associate. We focus on the N-terminal Nesprin-1 sequences and show that they interact with Nesprin-3, a further member of the Nesprin family, which connects the nucleus to the intermediate filament network. We show that upon ectopic expression of Nesprin-3 in COS7 cells, which are nearly devoid of Nesprin-3 in vitro, vimentin filaments are recruited to the nucleus and provide evidence for an F-actin interaction of Nesprin-3 in vitro. We propose that Nesprins through interactions amongst themselves and amongst the various Nesprins form a network around the nucleus and connect the nucleus to several cytoskeletal networks of the cell.

  11. Hierarchical self-organization of cytoskeletal active networks

    International Nuclear Information System (INIS)

    The structural reorganization of the actin cytoskeleton is facilitated through the action of motor proteins that crosslink the actin filaments and transport them relative to each other. Here, we present a combined experimental-computational study that probes the dynamic evolution of mixtures of actin filaments and clusters of myosin motors. While on small spatial and temporal scales the system behaves in a very noisy manner, on larger scales it evolves into several well distinct patterns such as bundles, asters and networks. These patterns are characterized by junctions with high connectivity, whose formation is possible due to the organization of the motors in ‘oligoclusters’ (intermediate-size aggregates). The simulations reveal that the self-organization process proceeds through a series of hierarchical steps, starting from local microscopic moves and ranging up to the macroscopic large scales where the steady-state structures are formed. Our results shed light on the mechanisms involved in processes such as cytokinesis and cellular contractility, where myosin motors organized in clusters operate cooperatively to induce the structural organization of cytoskeletal networks. (paper)

  12. Modulators of cytoskeletal reorganization in CA1 hippocampal neurons show increased expression in patients at mid-stage Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Patricia F Kao

    Full Text Available During the progression of Alzheimer's disease (AD, hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that actin capping protein beta2 subunit, Capzb2, binds tubulin and, in the presence of tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons resulted in short, dystrophic neurites, seen in neurodegenerative diseases including AD. Here we demonstrate the statistically significant increase in the Capzb2 expression in the postmortem hippocampi in persons at mid-stage, Braak and Braak stage (BB III-IV, non-familial AD in comparison to controls. The dynamics of Capzb2 expression in progressive AD stages cannot be attributed to reactive astrocytosis. Moreover, the increased expression of Capzb2 mRNA in CA1 pyramidal neurons in AD BB III-IV is accompanied by an increased mRNA expression of brain derived neurotrophic factor (BDNF receptor tyrosine kinase B (TrkB, mediator of synaptic plasticity in hippocampal neurons. Thus, the up-regulation of Capzb2 and TrkB may reflect cytoskeletal reorganization and/or regenerative response occurring in hippocampal CA1 neurons at a specific stage of AD progression.

  13. Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines

    International Nuclear Information System (INIS)

    Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion. (paper)

  14. Antibodies to cytoskeletal proteins as evidenced by immunofluorescence microscopy and radioimmunoassay

    International Nuclear Information System (INIS)

    In patients suffering from chronic hepatitis, collagenosis and infectious mononucleosis, resp., as well as in blood donors antibodies against cytoskeletal antigens such as actin, myosin, actinin, desmin, keratin, and tubulin were determined by radioimmunoassay

  15. Osteoclasts and monocytes have similar cytoskeletal structures and adhesion property in vitro.

    OpenAIRE

    Zallone, A Z; Teti, A; Primavera, M V; Naldini, L; Marchisio, P. C.

    1983-01-01

    The distribution of some cytoskeletal structures (microtubules, microfilaments, intermediate filaments) has been studied by indirect immunofluorescence microscopy and affinity purified antibodies in osteoclasts isolated from medullary bone of laying hens and in hen blood monocytes cultured in vitro. Both cell types show similar patterns of distribution of cytoskeletal structures and this further supports the concept that these cells are closely related. Osteoclasts and monocytes are also simi...

  16. MAPK uncouples cell cycle progression from cell spreading and cytoskeletal organization in cycling cells

    OpenAIRE

    Margadant, Coert; Cremers, Lobke; Sonnenberg, Arnoud; Boonstra, Johannes

    2012-01-01

    Integrin-mediated cytoskeletal tension supports growth-factor-induced proliferation, and disruption of the actin cytoskeleton in growth factor-stimulated cells prevents the re-expression of cyclin D and cell cycle re-entry from quiescence. In contrast to cells that enter the cell cycle from G0, cycling cells continuously express cyclin D, and are subject to major cell shape changes during the cell cycle. Here, we investigated the cell cycle requirements for cytoskeletal tension and cell sprea...

  17. The membrane cytoskeletal crosslinker ezrin is required for metastasis of breast carcinoma cells

    International Nuclear Information System (INIS)

    The membrane cytoskeletal crosslinker ezrin participates in several functions including cell adhesion, motility and cell survival, and there is increasing evidence that it regulates tumour progression. However, the role played by ezrin in breast cancer metastasis has not been clearly delineated. We examined the role of ezrin in metastasis using a highly metastatic murine mammary carcinoma cell line, namely AC2M2. Stable cell clones that overexpress wild-type ezrin or a dominant-negative amino-terminal domain of ezrin were selected. They were then tested for cell motility and invasion in vitro, and metastasis in a mouse in vivo tumour transplantation model. Parental AC2M2 cells and cells overexpressing wild-type ezrin were transplanted into the mammary fat pad of syngeneic recipient mice; these animals subsequently developed lung metastases. In contrast, expression of the dominant-negative amino-terminal ezrin domain markedly inhibited lung metastasis. Consistent with this effect, we observed that the expression of amino-terminal ezrin caused strong membrane localization of cadherin, with increased cell–cell contact and a decrease in cell motility and invasion, whereas cells expressing wild-type ezrin exhibited strong cytoplasmic expression of cadherins and pseudopodia extensions. In addition, inhibitors of phosphatidylinositol 3-kinase and c-Src significantly blocked cell motility and invasion of AC2M2 cells expressing wild-type ezrin. We further found that overexpression of amino-terminal ezrin reduced levels of Akt pS473 and cytoskeletal-associated c-Src pY418 in AC2M2 cells, which contrasts with the high levels of phosphorylation of these proteins in cells expressing wild-type ezrin. Phosphorylated Erk1/2 was also reduced in amino-terminal ezrin expressing cells, although a mitogen-activated protein kinase kinase (MEK) inhibitor had no detectable effect on cell motility or invasion in this system. Our findings indicate that ezrin is required for breast cancer

  18. Mertk deficiency affects macrophage directional migration via disruption of cytoskeletal organization.

    Directory of Open Access Journals (Sweden)

    Yong Tang

    Full Text Available Mertk belongs to the Tyro3, Axl and Mertk (TAM family of receptor tyrosine kinases, and plays a pivotal role in regulation of cytoskeletal rearrangement during phagocytosis. Phagocytosis by either professional or non-professional phagocytes is impaired in the Mertk deficient individual. In the present study, we further investigated the effects of Mertk mutation on peritoneal macrophage morphology, attachment, spreading and movement. Mertk-mutated macrophages exhibited decreased attachment, weak spreading, loss of spindle-like body shape and lack of clear leading and trailing edges within the first few hours of culture, as observed by environmental scanning electron microscopy. Time-lapse video photography recording showed that macrophage without Mertk conducted mainly random movement with oscillating swing around the cell body, and lost the directional migration action seen on the WT cells. Western blotting showed a decreased phosphorylation of focal adhesion kinase (FAK. Immunocytochemistry revealed that actin filaments and dynamic protein myosin II failed to concentrate in the leading edge of migrating cells. Microtubules were localized mainly in one side of mutant cell body, with no clear MTOC and associated radially-distributed microtubule bundles, which were clearly evident in the WT cells. Our results suggest that Mertk deficiency affects not only phagocytosis but also cell shape and migration, likely through a common regulatory mechanism on cytoskeletons.

  19. Mertk deficiency affects macrophage directional migration via disruption of cytoskeletal organization.

    Science.gov (United States)

    Tang, Yong; Wu, Shen; Liu, Qian; Xie, Jiayi; Zhang, Jingxue; Han, Dong; Lu, Qingxian; Lu, Qingjun

    2015-01-01

    Mertk belongs to the Tyro3, Axl and Mertk (TAM) family of receptor tyrosine kinases, and plays a pivotal role in regulation of cytoskeletal rearrangement during phagocytosis. Phagocytosis by either professional or non-professional phagocytes is impaired in the Mertk deficient individual. In the present study, we further investigated the effects of Mertk mutation on peritoneal macrophage morphology, attachment, spreading and movement. Mertk-mutated macrophages exhibited decreased attachment, weak spreading, loss of spindle-like body shape and lack of clear leading and trailing edges within the first few hours of culture, as observed by environmental scanning electron microscopy. Time-lapse video photography recording showed that macrophage without Mertk conducted mainly random movement with oscillating swing around the cell body, and lost the directional migration action seen on the WT cells. Western blotting showed a decreased phosphorylation of focal adhesion kinase (FAK). Immunocytochemistry revealed that actin filaments and dynamic protein myosin II failed to concentrate in the leading edge of migrating cells. Microtubules were localized mainly in one side of mutant cell body, with no clear MTOC and associated radially-distributed microtubule bundles, which were clearly evident in the WT cells. Our results suggest that Mertk deficiency affects not only phagocytosis but also cell shape and migration, likely through a common regulatory mechanism on cytoskeletons. PMID:25617898

  20. Form, Fabric, and Function of a Flagellum-Associated Cytoskeletal Structure

    Directory of Open Access Journals (Sweden)

    Brooke Morriswood

    2015-11-01

    Full Text Available Trypanosoma brucei is a uniflagellated protist and the causative agent of African trypanosomiasis, a neglected tropical disease. The single flagellum of T. brucei is essential to a number of cellular processes such as motility, and has been a longstanding focus of scientific enquiry. A number of cytoskeletal structures are associated with the flagellum in T. brucei, and one such structure—a multiprotein complex containing the repeat motif protein TbMORN1—is the focus of this review. The TbMORN1-containing complex, which was discovered less than ten years ago, is essential for the viability of the mammalian-infective form of T. brucei. The complex has an unusual asymmetric morphology, and is coiled around the flagellum to form a hook shape. Proteomic analysis using the proximity-dependent biotin identification (BioID technique has elucidated a number of its components. Recent work has uncovered a role for TbMORN1 in facilitating protein entry into the cell, thus providing a link between the cytoskeleton and the endomembrane system. This review summarises the extant data on the complex, highlights the outstanding questions for future enquiry, and provides speculation as to its possible role in a size-exclusion mechanism for regulating protein entry. The review additionally clarifies the nomenclature associated with this topic, and proposes the adoption of the term “hook complex” to replace the former name “bilobe” to describe the complex.

  1. Form, Fabric, and Function of a Flagellum-Associated Cytoskeletal Structure.

    Science.gov (United States)

    Morriswood, Brooke

    2015-01-01

    Trypanosoma brucei is a uniflagellated protist and the causative agent of African trypanosomiasis, a neglected tropical disease. The single flagellum of T. brucei is essential to a number of cellular processes such as motility, and has been a longstanding focus of scientific enquiry. A number of cytoskeletal structures are associated with the flagellum in T. brucei, and one such structure-a multiprotein complex containing the repeat motif protein TbMORN1-is the focus of this review. The TbMORN1-containing complex, which was discovered less than ten years ago, is essential for the viability of the mammalian-infective form of T. brucei. The complex has an unusual asymmetric morphology, and is coiled around the flagellum to form a hook shape. Proteomic analysis using the proximity-dependent biotin identification (BioID) technique has elucidated a number of its components. Recent work has uncovered a role for TbMORN1 in facilitating protein entry into the cell, thus providing a link between the cytoskeleton and the endomembrane system. This review summarises the extant data on the complex, highlights the outstanding questions for future enquiry, and provides speculation as to its possible role in a size-exclusion mechanism for regulating protein entry. The review additionally clarifies the nomenclature associated with this topic, and proposes the adoption of the term "hook complex" to replace the former name "bilobe" to describe the complex. PMID:26540076

  2. Hierarchical Distribution of the Tau Cytoskeletal Pathology in the Thalamus of Alzheimer's Disease Patients.

    Science.gov (United States)

    Rüb, Udo; Stratmann, Katharina; Heinsen, Helmut; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; den Dunnen, Wilfred; Korf, Horst-Werner

    2015-01-01

    In spite of considerable progress in neuropathological research on Alzheimer's disease (AD), knowledge regarding the exact pathoanatomical distribution of the tau cytoskeletal pathology in the thalamus of AD patients in the advanced Braak and Braak AD stages V or VI of the cortical cytoskeletal pathology is still fragmentary. Investigation of serial 100 μm-thick brain tissue sections through the thalamus of clinically diagnosed AD patients with Braak and Braak AD stage V or VI cytoskeletal pathologies immunostained with the anti-tau AT8 antibody, along with the affection of the extraterritorial reticular nucleus of the thalamus, reveals a consistent and severe tau immunoreactive cytoskeletal pathology in the limbic nuclei of the thalamus (e.g., paraventricular, anterodorsal and laterodorsal nuclei, limitans-suprageniculate complex). The thalamic nuclei integrated into the associative networks of the human brain (e.g., ventral anterior and mediodorsal nuclei) are only mildly affected, while its motor precerebellar (ventral lateral nucleus) and sensory nuclei (e.g., lateral and medial geniculate bodies, ventral posterior medial and lateral nuclei, parvocellular part of the ventral posterior medial nucleus) are more or less spared. The highly stereotypical and characteristic thalamic distribution pattern of the AD-related tau cytoskeletal pathology represents an anatomical mirror of the hierarchical topographic distribution of the cytoskeletal pathology in the interconnected regions of the cerebral cortex of AD patients. These pathoanatomical parallels support the pathophysiological concept of a transneuronal spread of the disease process of AD along anatomical pathways. The AD-related tau cytoskeletal pathology in the thalamus most likely contributes substantially to the neuropsychiatric disease symptoms (e.g., dementia), attention deficits, oculomotor dysfunctions, altered non-discriminative aspects of pain experience of AD patients, and the disruption of their

  3. N-WASp is required for Schwann cell cytoskeletal dynamics, normal myelin gene expression and peripheral nerve myelination

    Science.gov (United States)

    Jin, Fuzi; Dong, Baoxia; Georgiou, John; Jiang, Qiuhong; Zhang, Jinyi; Bharioke, Arjun; Qiu, Frank; Lommel, Silvia; Feltri, M. Laura; Wrabetz, Lawrence; Roder, John C.; Eyer, Joel; Chen, Xiequn; Peterson, Alan C.; Siminovitch, Katherine A.

    2011-01-01

    Schwann cells elaborate myelin sheaths around axons by spirally wrapping and compacting their plasma membranes. Although actin remodeling plays a crucial role in this process, the effectors that modulate the Schwann cell cytoskeleton are poorly defined. Here, we show that the actin cytoskeletal regulator, neural Wiskott-Aldrich syndrome protein (N-WASp), is upregulated in myelinating Schwann cells coincident with myelin elaboration. When N-WASp is conditionally deleted in Schwann cells at the onset of myelination, the cells continue to ensheath axons but fail to extend processes circumferentially to elaborate myelin. Myelin-related gene expression is also severely reduced in the N-WASp-deficient cells and in vitro process and lamellipodia formation are disrupted. Although affected mice demonstrate obvious motor deficits these do not appear to progress, the mutant animals achieving normal body weights and living to advanced age. Our observations demonstrate that N-WASp plays an essential role in Schwann cell maturation and myelin formation. PMID:21385763

  4. Exposure to brominated flame retardant PBDE-99 affects cytoskeletal protein expression in the neonatal mouse cerebral cortex

    DEFF Research Database (Denmark)

    Alm, Henrik; Kultima, Kim; Scholz, Birger;

    2008-01-01

    Polybrominated diphenyl ethers (PBDEs) are environmental contaminants found in human and animal tissues worldwide. Neonatal exposure to the flame retardant 2,2', 4,4',5-pentabromodiphenyl ether (PBDE-99) disrupts normal brain development in mice, and results in disturbed spontaneous behavior in the...... adult. The mechanisms underlying the late effects of early exposure are not clear. To gain insight into the initial neurodevelopmental damage inflicted by PBDE-99, we investigated the short-term effects of PBDE-99 on protein expression in the developing cerebral cortex of neonatal mice, and the......-3 activity. These results indicate that the permanent neurological damage induced by PBDE-99 during the brain growth spurt involve detrimental effects on cytoskeletal regulation and neuronal maturation in the developing cerebral cortex....

  5. Cytoskeletal arrangement and its intercellular connection in wheat young leaf cells

    Institute of Scientific and Technical Information of China (English)

    SEIXIANGYUN; LINGCHENGJIAN

    1993-01-01

    By using the techniques of partial digestion of cell wall and selective extraction,we examined the cytoskeleton of wheat yong leaf cells under scanning electron microscope(SEM).A 3-dimensional cytoskeletal system,showing some new features,was observed.The cortical network located beneath the cross wall was an anastomosing organization.The association of nucleus with the cell wall by some skeletal filaments was also found.It is notice able that there were cytoskeletal filaments,which passed through cell wall and connected together with cytoskeletal arrays of adjacent cells,Thus,it is possible that an integral skeletal network existed within the yong leaf tissue of wheat.

  6. Adhesion and cytoskeletal organisation of fibroblasts in response to fibronectin fragments

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R; Johansson, S;

    1986-01-01

    , they do not form stress fibres terminating in focal adhesions. An additional external stimulus is needed for this cytoskeletal reorganisation and may be provided by one of two heparin-binding fragments of fibronectin. The two 'signals' required for complete adhesion need not be provided simultaneously...

  7. CYP1A-immunopositive proteins in bivalves identified as cytoskeletal and major vault proteins

    DEFF Research Database (Denmark)

    Grøsvik, Bjørn Einar; Jonsson, Henrik; Rodríguez-Ortega, Manuel J;

    2006-01-01

    To identify possible CYP1A-immunopositive proteins in bivalves, we used anti-fish CYP1A antibodies combined with one- and two-dimensional gel electrophoresis and mass spectrometry, and found that two of the main CYP1A-immunopositive proteins in digestive gland of Mytilus edulis, were cytoskeletal...

  8. In vivo and in vitro phosphorylation and subcellular localization of trypanosomatid cytoskeletal giant proteins.

    Science.gov (United States)

    Baqui, M M; Milder, R; Mortara, R A; Pudles, J

    2000-09-01

    Promastigote forms of Phytomonas serpens, Leptomonas samueli, and Leishmania tarentolae express cytoskeletal giant proteins with apparent molecular masses of 3,500 kDa (Ps 3500), 2,500 kDa (Ls 2500), and 1,200 kDa (Lt 1200), respectively. Polyclonal antibodies to Lt 1200 and to Ps 3500 specifically recognize similar polypeptides of the same genera of parasite. In addition to reacting with giant polypeptides of the Leptomonas species, anti-Ls 2500 also cross reacts with Ps 3500, and with a 500-kDa polypeptide of Leishmania. Confocal immunofluorescence and immunogold electron microscopy showed major differences in topological distribution of these three proteins, though they partially share a common localization at the anterior end of the cell body skeleton. Furthermore, Ps 3500, Ls 2500, and Lt 1200 are in vivo phosphorylated at serine and threonine residues, whereas, in vitro phosphorylation of cytoskeletal fractions reveal that only Ps 3500 and Ls 2500 are phosphorylated. Heat treatment (100 degrees C) of high salt cytoskeletal extracts demonstrates that Ps 3500 and Ls 2500 remain stable in solution, whereas Lt 1200 is denatured. Kinase assays with immunocomplexes of heat-treated giant proteins show that only Ps 3500 and Ls 2500 are phosphorylated. These results demonstrate the existence of a novel class of megadalton phosphoproteins in promastigote forms of trypanosomatids that appear to be genera specific with distinct cytoskeletal functions. In addition, there is also evidence that Ps 3500 and Ls 2500, in contrast to Lt 1200, seem to be autophosphorylating serine and threonine protein kinases, suggesting that they might play regulatory roles in the cytoskeletal organization. PMID:11002308

  9. Beta-actin deficiency with oxidative posttranslational modifications in Rett syndrome erythrocytes: insights into an altered cytoskeletal organization.

    Directory of Open Access Journals (Sweden)

    Alessio Cortelazzo

    Full Text Available Beta-actin, a critical player in cellular functions ranging from cell motility and the maintenance of cell shape to transcription regulation, was evaluated in the erythrocyte membranes from patients with typical Rett syndrome (RTT and methyl CpG binding protein 2 (MECP2 gene mutations. RTT, affecting almost exclusively females with an average frequency of 1∶10,000 female live births, is considered the second commonest cause of severe cognitive impairment in the female gender. Evaluation of beta-actin was carried out in a comparative cohort study on red blood cells (RBCs, drawn from healthy control subjects and RTT patients using mass spectrometry-based quantitative analysis. We observed a decreased expression of the beta-actin isoforms (relative fold changes for spots 1, 2 and 3: -1.82±0.15, -2.15±0.06, and -2.59±0.48, respectively in pathological RBCs. The results were validated by western blotting and immunofluorescence microscopy. In addition, beta-actin from RTT patients also showed a dramatic increase in oxidative posttranslational modifications (PTMs as the result of its binding with the lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE. Our findings demonstrate, for the first time, a beta-actin down-regulation and oxidative PTMs for RBCs of RTT patients, thus indicating an altered cytoskeletal organization.

  10. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus

    OpenAIRE

    Ryder, L. S.; Dagdas, Y.F; Mentlak, T. A.; Kershaw, M. J.; Thornton, C. R.; Schuster, M.; Chen, J; Wang, Z.; Talbot, N.J.

    2013-01-01

    The rice blast fungus Magnaporthe oryzae infects plants with a specialized cell called an appressorium, which uses turgor to drive a rigid penetration peg through the rice leaf cuticle. Here, we show that NADPH oxidases (Nox) are necessary for septin-mediated reorientation of the F-actin cytoskeleton to facilitate cuticle rupture and plant cell invasion. We report that the Nox2–NoxR complex spatially organizes a heteroligomeric septin ring at the appressorium pore, required for assembly of a ...

  11. APC2 and Axin promote mitotic fidelity by facilitating centrosome separation and cytoskeletal regulation

    OpenAIRE

    Poulton, John S; Mu, Frank W.; Roberts, David M.; Peifer, Mark

    2013-01-01

    To ensure the accurate transmission of genetic material, chromosome segregation must occur with extremely high fidelity. Segregation errors lead to chromosomal instability (CIN), with deleterious consequences. Mutations in the tumor suppressor adenomatous polyposis coli (APC) initiate most colon cancers and have also been suggested to promote disease progression through increased CIN, but the mechanistic role of APC in preventing CIN remains controversial. Using fly embryos as a model, we inv...

  12. Regulation of Latent Membrane Protein 1 Signaling through Interaction with Cytoskeletal Proteins

    OpenAIRE

    Holthusen, Kirsten; Talaty, Pooja; Everly, David N.

    2015-01-01

    Latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) induces constitutive signaling in EBV-infected cells to ensure the survival of the latently infected cells. LMP1 is localized to lipid raft domains to induce signaling. In the present study, a genome-wide screen based on bimolecular fluorescence complementation (BiFC) was performed to identify LMP1-binding proteins. Several actin cytoskeleton-associated proteins were identified in the screen. Overexpression of these proteins affecte...

  13. Hepatocyte adhesion to carbohydrate-derivatized surfaces. II. Regulation of cytoskeletal organization and cell morphology

    OpenAIRE

    1991-01-01

    Rat hepatic lectins mediate adhesion of isolated rat hepatocytes to synthetic surfaces derivatized with galactosides. Initial weak adhesion is followed by rapid adhesion strengthening. After hepatocytes contact galactose-derivatized gels, the hepatic lectins move rapidly into an inaccessible patch at the adhesive surface (Weisz, O. A., and R. L. Schnaar. 1991. J. Cell Biol. 115:485-493). Hepatic lectin patching, which occurs both at 37 degrees C and 4 degrees C, is not responsible for adhesio...

  14. Cell Cycle Regulation and Cytoskeletal Remodelling Are Critical Processes in the Nutritional Programming of Embryonic Development

    OpenAIRE

    Angelina Swali; Sarah McMullen; Helen Hayes; Lorraine Gambling; McArdle, Harry J.; Langley-Evans, Simon C

    2011-01-01

    Many mechanisms purport to explain how nutritional signals during early development are manifested as disease in the adult offspring. While these describe processes leading from nutritional insult to development of the actual pathology, the initial underlying cause of the programming effect remains elusive. To establish the primary drivers of programming, this study aimed to capture embryonic gene and protein changes in the whole embryo at the time of nutritional insult rather than downstream...

  15. Phosphatidylinositol 4,5-Biphosphate (PIP2) Lipids Regulate the Phosphorylation of Syntaxin N-Terminus by Modulating Both Its Position and Local Structure

    OpenAIRE

    Khelashvili, George; Galli, Aurelio; Weinstein, Harel

    2012-01-01

    Syntaxin (STX) is a N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein that binds to the plasma membrane and regulates ion channels and neurotransmitter transporters. Experiments have established the involvement of the N-terminal segment of STX in direct protein–protein interactions and have suggested a critical role for the phosphorylation of serine 14 (S14) by casein kinase-2 (CK2). Because the organization of STX in the plasma membrane was shown to be regulated b...

  16. [Cytoskeletal actin and its associated proteins. Some examples in Protista].

    Science.gov (United States)

    Guillén, N; Carlier, M F; Brugerolle, G; Tardieux, I; Ausseil, J

    1998-06-01

    Many processes, cell motility being an example, require cells to remodel the actin cytoskeleton in response to both intracellular and extracellular signals. Reorganization of the actin cytoskeleton involves the rapid disassembly and reassembly of actin filaments, a phenomenon regulated by the action of particular actin-binding proteins. In recent years, an interest in studying actin regulation in unicellular organisms has arisen. Parasitic protozoan are among these organisms and studies of the cytoskeleton functions of these protozoan are relevant related to either cell biology or pathogenicity. To discuss recent data in this field, a symposium concerning "Actin and actin-binding proteins in protists" was held on May 8-11 in Paris, France, during the XXXV meeting of the French Society of Protistology. As a brief summary of the symposium we report here findings concerning the in vitro actin dynamic assembly, as well as the characterization of several actin-binding proteins from the parasitic protozoan Entamoeba histolytica, Trichomonas vaginalis and Plasmodium knowlesi. In addition, localization of actin in non-pathogen protists such as Prorocentrum micans and Crypthecodinium cohnii is also presented. The data show that some actin-binding proteins facilitate organization of filaments into higher order structures as pseudopods, while others have regulatory functions, indicating very particular roles for actin-binding proteins. One of the proteins discussed during the symposium, the actin depolymerizing factor ADF, was shown to enhance the treadmilling rate of actin filaments. In vitro, ADF binds to the ADP-bound forms of G-actin and F-actin, thereby participating in and changing the rate of actin assembly. Biochemical approaches allowed the identification of a protein complex formed by HSP/C70-cap32-34 which might also be involved in depolymerization of F-actin in P. knowlesi. Molecular and cellular approaches were used to identify proteins such as ABP-120 and myosin

  17. Photoelectron microscopy and immunofluorescence microscopy of cytoskeletal elements in the same cells.

    OpenAIRE

    Nadakavukaren, K K; Chen, L. B.; Habliston, D L; Griffith, O. H.

    1983-01-01

    Pt K2 rat kangaroo epithelial cells and Rat-1 fibroblasts were grown on conductive glass discs, fixed, and permeabilized, and the cytoskeletal elements actin, keratin, and vimentin were visualized by indirect immunofluorescence. After the fluorescence microscopy, the cells were postfixed and dehydrated for photoelectron microscopy. The contrast in these photoelectron micrographs is primarily topographical in origin, and the presence of fluorescent dyes at low density does not contribute signi...

  18. γ-Diketone Axonopathy: Analyses of Cytoskeletal Motors and Highways in CNS Myelinated Axons

    OpenAIRE

    Zhang, Lihai; Gavin, Terrence; DeCaprio, Anthony P; LoPachin, Richard M.

    2010-01-01

    2,5-Hexanedione (HD) intoxication is associated with axon atrophy that might be responsible for the characteristic gait abnormalities, hindlimb skeletal muscle weakness and other neurological deficits that accompany neurotoxicity. Although previous mechanistic research focused on neurofilament triplet proteins (NFL, NFM, NFH), other cytoskeletal targets are possible. Therefore, to identify potential non-NF protein targets, we characterized the effects of HD on protein-protein interactions in ...

  19. Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium

    Directory of Open Access Journals (Sweden)

    Brown David M

    2005-10-01

    Full Text Available Abstract Background Particulate air pollution is reported to cause adverse health effects in susceptible individuals. Since most of these particles are derived form combustion processes, the primary composition product is carbon with a very small diameter (ultrafine, less than 100 nm in diameter. Besides the induction of reactive oxygen species and inflammation, ultrafine particles (UFP can cause intracellular calcium transients and suppression of defense mechanisms of alveolar macrophages, such as impaired migration or phagocytosis. Methods In this study the role of intracellular calcium transients caused by UFP was studied on cytoskeleton related functions in J774A.1 macrophages. Different types of fine and ultrafine carbon black particles (CB and ufCB, respectively, such as elemental carbon (EC90, commercial carbon (Printex 90, diesel particulate matter (DEP and urban dust (UD, were investigated. Phagosome transport mechanisms and mechanical cytoskeletal integrity were studied by cytomagnetometry and cell viability was studied by fluorescence microscopy. Macrophages were exposed in vitro with 100 and 320 μg UFP/ml/million cells for 4 hours in serum free medium. Calcium antagonists Verapamil, BAPTA-AM and W-7 were used to block calcium channels in the membrane, to chelate intracellular calcium or to inhibit the calmodulin signaling pathways, respectively. Results Impaired phagosome transport and increased cytoskeletal stiffness occurred at EC90 and P90 concentrations of 100 μg/ml/million cells and above, but not with DEP or UD. Verapamil and W-7, but not BAPTA-AM inhibited the cytoskeletal dysfunctions caused by EC90 or P90. Additionally the presence of 5% serum or 1% bovine serum albumin (BSA suppressed the cytoskeletal dysfunctions. Cell viability showed similar results, where co-culture of ufCB together with Verapamil, W-7, FCS or BSA produced less cell dead compared to the particles only.

  20. Diffusion in Cytoplasm: Effects of Excluded Volume Due to Internal Membranes and Cytoskeletal Structures

    OpenAIRE

    Novak, Igor L.; Kraikivski, Pavel; Slepchenko, Boris M.

    2009-01-01

    The intricate geometry of cytoskeletal networks and internal membranes causes the space available for diffusion in cytoplasm to be convoluted, thereby affecting macromolecule diffusivity. We present a first systematic computational study of this effect by approximating intracellular structures as mixtures of random overlapping obstacles of various shapes. Effective diffusion coefficients are computed using a fast homogenization technique. It is found that a simple two-parameter power law prov...

  1. Immunohistochemical study of cytoskeletal and extracellular matrix components in the notochord and notochordal sheath of amphioxus

    OpenAIRE

    Bočina, Ivana; Saraga-Babić, Mirna

    2006-01-01

    A major cytoskeletal and extracellular matrix proteins of the amphioxus notochordal cells and sheath were detected by immunohistochemical techniques. The three-layered amphioxus notochordal sheath strongly expressed fish collagen type I in its outer and middle layers, while in the innermost layer expression did not occur. The amphioxus notochordal sheath was reactive to applied anti-human antibodies for intermediate filament proteins such as cytokeratins, desmin and vimentin, as well as to mi...

  2. Location of and post-mortem changes in some cytoskeletal proteins in pork and cod muscle

    DEFF Research Database (Denmark)

    Morrison, E.H.; Bremner, Allan; Purslow, P.P.

    2000-01-01

    The cytoskeletal proteins actin, nebulin, spectrin, desmin, vinculin and talin were labelled immunohistochemically in sections of muscle from commercially available pigs and cod (Gadus morhua) taken pre-rigor and from samples stored for several days. Actin, nebulin and spectrin gave similar...... and location of spectrin and vinculin in fish muscle and of the location of talin. The results are discussed in terms of muscle structure, function and post-mortem tenderisation. (C) 2000 Society of Chemical Industry....

  3. A quantitative analysis of contractility in active cytoskeletal protein networks.

    Science.gov (United States)

    Bendix, Poul M; Koenderink, Gijsje H; Cuvelier, Damien; Dogic, Zvonimir; Koeleman, Bernard N; Brieher, William M; Field, Christine M; Mahadevan, L; Weitz, David A

    2008-04-15

    Cells actively produce contractile forces for a variety of processes including cytokinesis and motility. Contractility is known to rely on myosin II motors which convert chemical energy from ATP hydrolysis into forces on actin filaments. However, the basic physical principles of cell contractility remain poorly understood. We reconstitute contractility in a simplified model system of purified F-actin, muscle myosin II motors, and alpha-actinin cross-linkers. We show that contractility occurs above a threshold motor concentration and within a window of cross-linker concentrations. We also quantify the pore size of the bundled networks and find contractility to occur at a critical distance between the bundles. We propose a simple mechanism of contraction based on myosin filaments pulling neighboring bundles together into an aggregated structure. Observations of this reconstituted system in both bulk and low-dimensional geometries show that the contracting gels pull on and deform their surface with a contractile force of approximately 1 microN, or approximately 100 pN per F-actin bundle. Cytoplasmic extracts contracting in identical environments show a similar behavior and dependence on myosin as the reconstituted system. Our results suggest that cellular contractility can be sensitively regulated by tuning the (local) activity of molecular motors and the cross-linker density and binding affinity. PMID:18192374

  4. 2',3'-Cyclic nucleotide 3'-phosphodiesterase binds to actin-based cytoskeletal elements in an isoprenylation-independent manner.

    Science.gov (United States)

    De Angelis, D A; Braun, P E

    1996-09-01

    2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP) is an isoprenylated protein enriched in myelin and oligodendrocytes but also present in several other tissues at low levels. CNP binds avidly to membranes and in addition possesses several characteristics of cytoskeletal proteins. The role of isoprenylation in the association of CNP with the cytoskeleton was analyzed by ectopic expression in L cells of epitope-tagged CNP1 and a non-isoprenylated mutant CNP1. Using nonionic detergent extraction, drug-mediated cytoskeletal disruption, and coimmunoprecipitation with an anti-actin antibody, we show that CNP1 is associated with actin-based cytoskeletal elements independently of its isoprenylation status. A control protein, p21c-H-ras, which is also modified by isoprenylation at its carboxyl-terminus, does not bind to cytoskeletal structures as judged by the same criteria. We present a model that accounts for the association of CNP1 with membranes and the cytoskeleton. PMID:8752099

  5. Loss of cytoskeletal proteins and lens cell opacification in the selenite cataract model.

    Science.gov (United States)

    Matsushima, H; David, L L; Hiraoka, T; Clark, J I

    1997-03-01

    This study of lens protein composition found that some cytoskeletal proteins were degraded during the earliest stages of cataract formation. Cataract was induced in 13-14 day old rats by a single subcutaneous injection of sodium selenite (19 mumol kg-1). By 24 hr after the injection of selenite, the ratio of insoluble to soluble protein increased as lens opacification began. The increase in insoluble protein aggregates was correlated with an accelerated loss of proteins having molecular weights of 42, 55/57 and 235 kDa which reacted with antibodies to the cytoskeletal proteins actin, tubulin/vimentin and spectrin, respectively. We observed the loss of 49, 60 and 90 kDa proteins which were not identified. In the lenses of animals protected from protein aggregation and opacification by administration of 1.5 mmol kg-1 pantethine, the pattern of proteins in SDS-PAGE gels resembled the pattern for proteins from transparent lenses of normal untreated animals and loss of cytoskeletal proteins was prevented. PMID:9196390

  6. Identification of paralogous life-cycle stage specific cytoskeletal proteins in the parasite Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Neil Portman

    Full Text Available The life cycle of the African trypanosome Trypanosoma brucei, is characterised by a transition between insect and mammalian hosts representing very different environments that present the parasite with very different challenges. These challenges are met by the expression of life-cycle stage-specific cohorts of proteins, which function in systems such as metabolism and immune evasion. These life-cycle transitions are also accompanied by morphological rearrangements orchestrated by microtubule dynamics and associated proteins of the subpellicular microtubule array. Here we employed a gel-based comparative proteomic technique, Difference Gel Electrophoresis, to identify cytoskeletal proteins that are expressed differentially in mammalian infective and insect form trypanosomes. From this analysis we identified a pair of novel, paralogous proteins, one of which is expressed in the procyclic form and the other in the bloodstream form. We show that these proteins, CAP51 and CAP51V, localise to the subpellicular corset of microtubules and are essential for correct organisation of the cytoskeleton and successful cytokinesis in their respective life cycle stages. We demonstrate for the first time redundancy of function between life-cycle stage specific paralogous sets in the cytoskeleton and reveal modification of cytoskeletal components in situ prior to their removal during differentiation from the bloodstream form to the insect form. These specific results emphasise a more generic concept that the trypanosome genome encodes a cohort of cytoskeletal components that are present in at least two forms with life-cycle stage-specific expression.

  7. Ultrastructural appearance and cytoskeletal architecture of the clear, chromophilic, and chromophobe types of human renal cell carcinoma in vitro.

    OpenAIRE

    Gerharz, C D; Moll, R.; Störkel, S.; Ramp, U; Thoenes, W.; Gabbert, H E

    1993-01-01

    The clear, chromophilic, and chromophobe types of human renal cell carcinoma have been defined as distinct morphological entities and can be clearly separated by differences of ultrastructural appearance, cytoskeletal architecture, enzyme synthesis, and cytogenetic aberrations. In this report, the cytomorphological aspects of these tumor types are compared in vitro, showing that essential ultrastructural and cytoskeletal characteristics of each tumor type are expressed even after prolonged in...

  8. Induction of membrane ceramides: a novel strategy to interfere with T lymphocyte cytoskeletal reorganisation in viral immunosuppression.

    Directory of Open Access Journals (Sweden)

    Evelyn Gassert

    2009-10-01

    Full Text Available Silencing of T cell activation and function is a highly efficient strategy of immunosuppression induced by pathogens. By promoting formation of membrane microdomains essential for clustering of receptors and signalling platforms in the plasma membrane, ceramides accumulating as a result of membrane sphingomyelin breakdown are not only essential for assembly of signalling complexes and pathogen entry, but also act as signalling modulators, e. g. by regulating relay of phosphatidyl-inositol-3-kinase (PI3K signalling. Their role in T lymphocyte functions has not been addressed as yet. We now show that measles virus (MV, which interacts with the surface of T cells and thereby efficiently interferes with stimulated dynamic reorganisation of their actin cytoskeleton, causes ceramide accumulation in human T cells in a neutral (NSM and acid (ASM sphingomyelinase-dependent manner. Ceramides induced by MV, but also bacterial sphingomyelinase, efficiently interfered with formation of membrane protrusions and T cell spreading and front/rear polarisation in response to beta1 integrin ligation or alphaCD3/CD28 activation, and this was rescued upon pharmacological or genetic ablation of ASM/NSM activity. Moreover, membrane ceramide accumulation downmodulated chemokine-induced T cell motility on fibronectin. Altogether, these findings highlight an as yet unrecognised concept of pathogens able to cause membrane ceramide accumulation to target essential processes in T cell activation and function by preventing stimulated actin cytoskeletal dynamics.

  9. Effect of focal adhesion kinase on cytoskeletal arrangement of HepG2 cells induced by hypoxia%黏着斑激酶在缺氧促进肝癌细胞细胞骨架重组中的作用研究

    Institute of Scientific and Technical Information of China (English)

    Wei Yan; Yu Fu; Jiazhi Liao; Limin Xia; Min Luo; Oian Zhu; Dean Tian

    2009-01-01

    Objective: To study focal adhesion kinase (FAK) expression in hypoxic HepG2 cells and the effect of FAK siRNA on cytoskeletal arrangement of HepG2 cells induced by hypoxia. Methods: HepG2 cells were cultured in 21% O2 and 1%O2. Morphological changes were observed after hypoxia treatment. Westem blot was used to measure FAK expression. The siRNA expression vector pshRNA-FAK targeting the mRNA of FAK and vector pGensil-2 (as a control) were constructed, and then transfected into HepG2 cells. Western blot was used to detect FAK. The cytoskeletal arrangement of HepG2 cells trans fected with pshRNA-FAK induced by hypoxia was analyzed by phalloidin. The migratory ability of HepG2 cells transfected with pshRNA-FAK induced by hypoxia was analyzed by cell migration assay. Results: Hypoxia-treated cells displayed a more elongated shape with a large degree of cell detachment. FAK expression increased in hypoxic HepG2 cells. FAK protein level was decreased by 75.64% ± 3.12% (P < 0.01) after the pshRNA-FAK transfection. Hypoxia induced cytoskeletal arrangement of HepG2 cells. However, cytoskeletal arrangement of HepG2 cells transfected with pshRNA-FAK induced by hypoxia was inhibited in 1% O2. As cell migration assay showed, the migrating number of HepG cells transfected with pshRNA-FAK was significantly lower than that of control (P < 0.05). Conclusion: The expression of FAK in hypoxic HCC might have a close relationship to the cytoskeletal arrangement of HepG2 cells induced by hypoxia. Up-regulation of FAK expression may be one of mechanisms of cytoskeletal arrangement and invasion of hepatocellular carcinoma induced by hypoxia.

  10. Structure, chromosome location, and expression of the human. gamma. -actin gene: Differential evolution, location, and expression of the cytoskeletal BETA- and. gamma. -actin genes

    Energy Technology Data Exchange (ETDEWEB)

    Erba, H.P.; Eddy, R.; Shows, T.; Kedes, L.; Gunning, P.

    1988-04-01

    The accumulation of the cytoskeletal ..beta..-and ..gamma..-actin mRNAs was determined in a variety of mouse tissues and organs. The ..beta..-iosform is always expressed in excess of the ..gamma..-isoform. However, the molar ratio of ..beta..- to ..gamma..-actin mRNA varies from 1.7 in kidney and testis to 12 in sarcomeric muscle to 114 in liver. The authors conclude that, whereas the cytoskeletal ..beta..- and ..gamma..-actins are truly coexpressed, their mRNA levels are subject to differential regulation between different cell types. The human ..gamma..-actin gene has been cloned and sequenced, and its chromosome location has been determined. The gene is located on human chromosome 17, unlike ..beta..-actin which is on chromosome 7. Thus, if these genes are also unlinked in the mouse, the coexpression of the ..beta..- and ..gamma..-actin genes in rodent tissues cannot be determined by gene linkage. Comparison of the human ..beta..- and ..gamma..-actin genes reveals that noncoding sequences in the 5'-flanking region and in intron III have been conserved since the duplication that gave rise to these two genes. In contrast, there are sequences in intron III and the 3'-untranslated region which are not present in the ..beta..-actin gene but are conserved between the human ..gamma..-actin and the Xenopus borealis type 1 actin genes. Such conserved noncoding sequences may contribute to the coexpression of ..beta..- and ..gamma..-actin or to the unique regulation and function of the ..gamma..-actin gene. Finally, the authors demonstrate that the human ..gamma..-actin gene is expressed after introduction into mouse L cells and C2 myoblasts and that, upon fusion of C2 cells to form myotubes, the human ..gamma..-actin gene is appropriately regulated.

  11. Regulation of the formation of osteoclastic actin rings by proline-rich tyrosine kinase 2 interacting with gelsolin

    OpenAIRE

    Wang, Qiang; Xie, Yi; Du, Quan-Sheng; Wu, Xiao-Jun; FENG, XU; Mei, Lin; McDonald, Jay M.; Xiong, Wen-Cheng

    2003-01-01

    Osteoclast activation is important for bone remodeling and is altered in multiple bone disorders. This process requires cell adhesion and extensive actin cytoskeletal reorganization. Proline-rich tyrosine kinase 2 (PYK2), a major cell adhesion–activated tyrosine kinase in osteoclasts, plays an important role in regulating this event. The mechanisms by which PYK2 regulates actin cytoskeletal organization and osteoclastic activation remain largely unknown. In this paper, we provide evidence tha...

  12. Regulating Rho GTPases and their regulators.

    Science.gov (United States)

    Hodge, Richard G; Ridley, Anne J

    2016-08-01

    Rho GTPases regulate cytoskeletal and cell adhesion dynamics and thereby coordinate a wide range of cellular processes, including cell migration, cell polarity and cell cycle progression. Most Rho GTPases cycle between a GTP-bound active conformation and a GDP-bound inactive conformation to regulate their ability to activate effector proteins and to elicit cellular responses. However, it has become apparent that Rho GTPases are regulated by post-translational modifications and the formation of specific protein complexes, in addition to GTP-GDP cycling. The canonical regulators of Rho GTPases - guanine nucleotide exchange factors, GTPase-activating proteins and guanine nucleotide dissociation inhibitors - are regulated similarly, creating a complex network of interactions to determine the precise spatiotemporal activation of Rho GTPases. PMID:27301673

  13. Cytoskeletal dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    I worked with reconstitutted contractile acto-myosin systems containing mainly actin, actin cross-linkers and myosin motors. Contractility and rheology of such systems was studied using confocal microscopy and rheology....

  14. Cytoskeletal inhibitors, anti-adhesion molecule antibodies, and lectins inhibit hepatocyte spheroid formation.

    Directory of Open Access Journals (Sweden)

    Nakamura M

    2002-02-01

    Full Text Available We investigated the role of cytoskeletons, adhesion molecules, membrane-glycosylations, and proteoglycans in forming the shape of adult rat hepatocyte spheroids. Isolated hepatocytes were cultured on dishes coated with chondroitin sulfate phosphatidyl ethanolamine (CS-PE. Spheroid-forming ability was observed after adding cytoskeletal inhibitors (cytochalasin D, colchicine, okadaic acid, mycalolide B, anti-adhesion molecule antibodies (anti-E-cadherin, anti-connexin 32, anti-zo-1, a glycosphingolipid synthetic inhibitor (N-butyldeoxynojirimycin, a proteoglycan synthetic inhibitor (p-nitrophenyl-beta-D-xylopyranoside, and several lectins. Localization of actin was studied using confocal microscopy after rhodamine-phalloidin staining. Adding cytoskeletal inhibitors on the initial day resulted in weakly clustered cell aggregates rather than smoothly formed spheroids. These effects disappeared at lower reagent concentrations. When reagents were added on day 3, after the formation of spheroids, only mycalolide B was associated with an irregular spheroid surface; the others had no effect. Adding the anti-E-cadherin, anti-connexin 32 on the initial day showed inhibition of spheroid formation, but anti-zo-1 and proteoglycan synthetic inhibitor had no effects. Among the several lectins, only Wheat Germ Agglutinin (WGA, Ricinus communis Agglutinin I (RCA-I, and Concanavalin A (ConA showed inhibition. These results suggest that cytoskeletal conformation and some adhesion molecules are necessary to form spheroids. Based on the interactions between lectins and hepatocytes in the present study, hepatocytes appear to contain an N-linked complex or N-linked hybrid glycosylated chains.

  15. The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Pierozan, Paula; Ferreira, Fernanda; Ortiz de Lima, Bárbara; Gonçalves Fernandes, Carolina [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003 (Brazil); Totarelli Monteforte, Priscila; Castro Medaglia, Natalia de; Bincoletto, Claudia; Soubhi Smaili, Soraya [Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP (Brazil); Pessoa-Pureur, Regina, E-mail: rpureur@ufrgs.br [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003 (Brazil)

    2014-04-01

    Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24 h incubation with 100 µM QUIN, cells were exposed to {sup 32}P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca{sup 2+}/calmodulin II (PKCaMII) or protein kinase C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10 nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca{sup 2+} quelators (1 mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca{sup 2+} influx through voltage-dependent Ca{sup 2+} channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24 h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative

  16. The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid

    International Nuclear Information System (INIS)

    Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24 h incubation with 100 µM QUIN, cells were exposed to 32P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca2+/calmodulin II (PKCaMII) or protein kinase C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10 nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca2+ quelators (1 mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca2+ influx through voltage-dependent Ca2+ channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24 h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative disorders. - Highlights:

  17. Cytoskeletal reorganizations in human umbilical vein endothelial cells as a result of cytokine exposure

    International Nuclear Information System (INIS)

    Treatment of HUVECs in culture with several cytokines and phorbol esters caused reorganizations of the actin and microtubule networks, as well as a redistribution of focal contract proteins. However, expression of the cytoskeletal proteins which link cells, via integrins, to the substrate, was not significantly affected. Indirect immunofluorescence microscopy of endothelial cells after treatment with interleukin-1 alpha and beta, gamma-interferon, tumor necrosis factor (TNF), phorbol 12-myristate 13-acetate, and phorbol 12,13-dibutyrate allowed us to observe reductions in the areas of cell-cell contact, redistribution of the stress fiber network, and concomitant changes in focal contacts. Microtubule arrays in TNF-treated cells became bundled. Phorbol esters induced formation of microtubule organizing centers not seen in resting or TNF-treated HUVECs. Talin was distributed along stress fibers and not exclusively in focal contacts. Vitronectin receptor was observed in focal contacts, occasionally at cell-cell contacts, and in vesicular structures close to the lumenal surface, after both types of treatment. Although these morphological changes were easily observed by indirect immunofluorescence, no quantitative differences in specific cytoskeletal proteins were detected by immunoblots and [35S]cysteine metabolic labeling experiments

  18. Probing bilayer-cytoskeletal interactions in erythrocytes using a two-component dissipative particle dynamics model

    Science.gov (United States)

    Peng, Zhangli; Li, Xuejin; Pivkin, Igor; Dao, Ming; Karniadakis, George

    2013-11-01

    We develop a two-component dissipative particle dynamics (DPD) model of the red blood cell (RBC) membrane by modeling the lipid bilayer and the cytoskeleton separately. By applying this model to simulate four different experiments on RBCs, including micropipette aspiration, membrane fluctuations, tank-treading motions in shear flow and bilayer tethering in a flow channel, we validated our model and studied the mechanical properties of the bilayer-cytoskeletal interaction in a systematic and controlled manner, such as its elastic stiffness, viscous friction and strength. In the same time, we also resolved several controversies in RBC mechanics, e.g., the dependence of tank-treading frequency on shear rates and the possibility of bilayer-cytoskeletal slip. Furthermore, to investigate RBC dynamics in the microcirculation, we simulated the passages of RBCs through narrow channels of the flow cytometer in vitro and their passages through the splenic inter-endothelial slits in vivo. The effects of RBC geometry and membrane stiffness on the critical pressure gradient of passage were studied, and the simulation results agree well with experimental measurements. This work was supported by National Institutes of Health Grant R01HL094270 and the new Department of Energy Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4).

  19. Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis.

    Science.gov (United States)

    Madeddu, Roberto; Farace, Cristiano; Tolu, Paola; Solinas, Giuliana; Asara, Yolande; Sotgiu, Maria Alessandra; Delogu, Lucia Gemma; Prados, Jose Carlos; Sotgiu, Stefano; Montella, Andrea

    2013-02-01

    The axonal cytoskeleton is a finely organized system, essential for maintaining the integrity of the axon. Axonal degeneration is implicated in the pathogenesis of unremitting disability of multiple sclerosis (MS). Purpose of this study is to evaluate levels of cytoskeletal proteins such as neurofilament light protein (NFL), glial fibrillary acidic protein (GFAP), and β-tubulin (β-Tub) isoforms II and III in the cerebrospinal fluid (CSF) of MS patients and their correlation with MS clinical indices. CSF levels of cytoskeletal proteins were determined in 51 patients: 33 with MS and 18 with other neurological diseases (OND). NFL, GFAP and β-Tub II proteins were significantly higher (p 0.05) was found between MS and OND with regard to β-Tub III. Interestingly, levels of β-Tub III and NFL were higher in progressive than in remitting MS forms; on the contrary, higher levels of β-Tub II and GFAP were found in remitting MS forms. However, with the exception of β-Tub III, all proteins tend to decrease their CSF levels concomitantly with the increasing disability (EDSS) score. Overall, our results might indicate β-Tub II as a potential candidate for diagnostic and β-Tub III as a possible prognostic biomarker of MS. Therefore, further analyses are legitimated and desirable. PMID:22362332

  20. Fibronectin in cultured rat keratinocytes: distribution, synthesis, and relationship to cytoskeletal proteins

    DEFF Research Database (Denmark)

    Gibson, W T; Couchman, J R; Badley, R A; Saunders, H J; Smith, C G

    1983-01-01

    The aim of this study was to investigate whether epidermal cells can synthesise fibronectin and whether the distribution of this glycoprotein is related to the adhesion and cytoskeletal organisation of these cells. The production of fibronectin by newborn rat epidermal cells was shown by indirect...... immunofluorescence staining of cultures grown in the absence of a feeder layer using an antiserum which had been cross-adsorbed with foetal calf serum proteins to remove antibodies which recognised serum fibronectin. The distribution of fibronectin in areas of cell-cell and cell-substratum contact...... revealed evidence of a relationship between external fibronectin and internal structure in epidermal cells. Immunofluorescence showed that tonofilaments (keratin) and microtubules were present as fibrillar arrays but were not related to fibronectin distribution. Vimentin and desmin were absent. Actin was...

  1. Effect of lead on cytoskeletal protein stability in crucian carp Carassius auratus

    Science.gov (United States)

    Cheng, Jia; Zhang, Dongyi; Chu, Wuying; Liu, Fang; Liu, Zhen; Zhou, Ruixue; Meng, Tao; Zhang, Jianshe

    2008-11-01

    Inorganic lead (Pb) is one of the most common environmental pollutants. Much evidence indicates that Pb exposure could directly affect fish growth and development. In this study, we investigated the cytotoxic effects of Pb on cytoskeletal protein stability at both protein and mRNA level in crucian carp Carassius auratus. Pb(NO3)2 treatment in concentration of 100 μmol/L resulted in decreased expression of both α- and β-tubulin but γ-tubulin as assayed with SDS-PAGE, Western Blot, and ELISA. In vivo and in vitro analyses on protein expression of tubulins are consistent. The effect of Pb on mRNA expression varied among different tissues. Our results suggest that cytotoxicity of Pb at protein translation level is stronger than at mRNA expression level.

  2. Immunohistochemical study of cytoskeletal and extracellular matrix components in the notochord and notochordal sheath of amphioxus

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available A major cytoskeletal and extracellular matrix proteins of the amphioxus notochordal cells and sheath were detected by immunohistochemical techniques. The three-layered amphioxus notochordal sheath strongly expressed fish collagen type I in its outer and middle layers, while in the innermost layer expression did not occur. The amphioxus notochordal sheath was reactive to applied anti-human antibodies for intermediate filament proteins such as cytokeratins, desmin and vimentin, as well as to microtubule components (ß-tubulin, particularly in the area close to the epipharyngeal groove. Alpha-smooth muscle actin was expressed in some notochordal cells and in the area of the notochordal attachment to the sheath. Thus muscular nature of notochordal cells was shown by immunohistochemistry in tissue section. Our results confirm that genes encoding intermediate filament proteins, microtubules and microfilaments are highly conserved during evolution. Collagen type I was proven to be the key extracellular matrix protein that forms the amphioxus notochordal sheath.

  3. Characterization of CK2 holoenzyme variants with regard to crystallization

    DEFF Research Database (Denmark)

    Guerra, B; Niefind, K; Ermakowa, I;

    2001-01-01

    efforts severely. One of the approaches chosen was the production of a chimeric holoenzyme made up from a human regulatory subunit and a catalytic subunit from Z. mays. The plant catalytic subunit, in contrast to the human counterpart is very stable and does not undergo this kind of degradation. The...

  4. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.

    Directory of Open Access Journals (Sweden)

    Samantha F Kornfeld

    Full Text Available Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as

  5. Conditioning nerve crush accelerates cytoskeletal protein transport in sprouts that form after a subsequent crush

    International Nuclear Information System (INIS)

    To examine the relationship between axonal outgrowth and the delivery of cytoskeletal proteins to the growing axon tip, outgrowth was accelerated by using a conditioning nerve crush. Because slow component b (SCb) of axonal transport is the most rapid vehicle for carrying cytoskeletal proteins to the axon tip, the rate of SCb was measured in conditioned vs. sham-conditioned sprouts. In young Sprague-Dawley rats, the conditioning crush was made to sciatic nerve branches at the knee; 14 days later, the test crush was made where the L4 and L5 spinal nerves join to form the sciatic nerve in the flank. Newly synthesized proteins were labeled in motor neurons by injecting 35S-methionine into the lumbar spinal cord 7 days before the test crush. The wave of pulse-labeled SCb proteins reached the crush by the time it was made and subsequently entered sprouts. The nerve was removed and sectioned for SDS-PAGE and fluorography 4-12 days after the crush. Tubulins, neurofilament proteins, and representative 'cytomatrix' proteins (actin, calmodulin, and putative microtubule-associated proteins) were removed from gels for liquid scintillation counting. Labeled SCb proteins entered sprouts without first accumulating in parent axon stumps, presumably because sprouts begin to grow within hours after axotomy. The peak of SCb moved 11% faster in conditioned than in sham-conditioned sprouts: 3.0 vs. 2.7 mm/d (p less than 0.05). To confirm that sprouts elongate more rapidly when a test crush is preceded by a conditioning crush, outgrowth distances were measured in a separate group of rats by labeling fast axonal transport with 3H-proline 24 hours before nerve retrieval

  6. Why is cytoskeletal contraction required for cardiac fusion before but not after looping begins?

    Science.gov (United States)

    Shi, Yunfei; Varner, Victor D.; Taber, Larry A.

    2015-02-01

    Cytoskeletal contraction is crucial to numerous morphogenetic processes, but its role in early heart development is poorly understood. Studies in chick embryos have shown that inhibiting myosin-II-based contraction prior to Hamburger-Hamilton (HH) stage 10 (33 h incubation) impedes fusion of the mesodermal heart fields that create the primitive heart tube (HT), as well as the ensuing process of cardiac looping. If contraction is inhibited at or after looping begins at HH10, however, fusion and looping proceed relatively normally. To explore the mechanisms behind this seemingly fundamental change in behavior, we measured spatiotemporal distributions of tissue stiffness, stress, and strain around the anterior intestinal portal (AIP), the opening to the foregut where contraction and cardiac fusion occur. The results indicate that stiffness and tangential tension decreased bilaterally along the AIP with distance from the embryonic midline. The gradients in stiffness and tension, as well as strain rate, increased to peaks at HH9 (30 h) and decreased afterward. Exposure to the myosin II inhibitor blebbistatin reduced these effects, suggesting that they are mainly generated by active cytoskeletal contraction, and finite-element modeling indicates that the measured mechanical gradients are consistent with a relatively uniform contraction of the endodermal layer in conjunction with constraints imposed by the attached mesoderm. Taken together, our results suggest that, before HH10, endodermal contraction pulls the bilateral heart fields toward the midline where they fuse to create the HT. By HH10, however, the fusion process is far enough along to enable apposing cardiac progenitor cells to keep ‘zipping’ together during looping without the need for continued high contractile forces. These findings should shed new light on a perplexing question in early heart development.

  7. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    Energy Technology Data Exchange (ETDEWEB)

    Karki, Rajendra [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City (United States); Department of Oriental Medicine Resources, Mokpo National University (Korea, Republic of); Kim, Seong-Bin [Jeollanamdo Development Institute for Korean Traditional Medicine, Jangheung gun, Jeollanamdo (Korea, Republic of); Kim, Dong-Wook, E-mail: dbkim@mokpo.ac.kr [Department of Oriental Medicine Resources, Mokpo National University (Korea, Republic of)

    2013-12-10

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  8. Gamma-diketone axonopathy: analyses of cytoskeletal motors and highways in CNS myelinated axons.

    Science.gov (United States)

    Zhang, Lihai; Gavin, Terrence; DeCaprio, Anthony P; LoPachin, Richard M

    2010-09-01

    2,5-Hexanedione (HD) intoxication is associated with axon atrophy that might be responsible for the characteristic gait abnormalities, hindlimb skeletal muscle weakness and other neurological deficits that accompany neurotoxicity. Although previous mechanistic research focused on neurofilament triplet proteins (NFL, NFM, NFH), other cytoskeletal targets are possible. Therefore, to identify potential non-NF protein targets, we characterized the effects of HD on protein-protein interactions in cosedimentation assays using microtubules and NFs prepared from spinal cord of rats intoxicated at different daily dose rates (175 and 400 mg/kg/day). Results indicate that HD did not alter the presence of alpha- or beta-tubulins in these preparations, nor were changes noted in the distribution of either anterograde (KIF1A, KIF3, KIF5) or retrograde (dynein) molecular motors. The cosedimentation of dynactin, a dynein-associated protein, also was not affected. Immunoblot analysis of microtubule-associated proteins (MAPs) in microtubule preparations revealed substantial reductions (45-80%) in MAP1A, MAP1B heavy chain, MAP2, and tau regardless of HD dose rate. MAP1B light chain content was not altered. Finally, HD intoxication did not influence native NF protein content in either preparation. As per previous research, microtubule and NF preparations were enriched in high-molecular weight NF species. However, these NF derivatives were common to both HD and control samples, suggesting a lack of pathognomonic relevance. These data indicate that, although motor proteins were not affected, HD selectively impaired MAP-microtubule binding, presumably through adduction of lysine residues that mediate such interactions. Given their critical role in cytoskeletal physiology, MAPs could represent a relevant target for the induction of gamma-diketone axonopathy. PMID:20554699

  9. γ-Diketone Axonopathy: Analyses of Cytoskeletal Motors and Highways in CNS Myelinated Axons

    Science.gov (United States)

    Zhang, Lihai; Gavin, Terrence; DeCaprio, Anthony P.; LoPachin, Richard M.

    2010-01-01

    2,5-Hexanedione (HD) intoxication is associated with axon atrophy that might be responsible for the characteristic gait abnormalities, hindlimb skeletal muscle weakness and other neurological deficits that accompany neurotoxicity. Although previous mechanistic research focused on neurofilament triplet proteins (NFL, NFM, NFH), other cytoskeletal targets are possible. Therefore, to identify potential non-NF protein targets, we characterized the effects of HD on protein-protein interactions in cosedimentation assays using microtubules and NFs prepared from spinal cord of rats intoxicated at different daily dose rates (175 and 400 mg/kg/day). Results indicate that HD did not alter the presence of α- or β-tubulins in these preparations, nor were changes noted in the distribution of either anterograde (KIF1A, KIF3, KIF5) or retrograde (dynein) molecular motors. The cosedimentation of dynactin, a dynein-associated protein, also was not affected. Immunoblot analysis of microtubule-associated proteins (MAPs) in microtubule preparations revealed substantial reductions (45–80%) in MAP1A, MAP1B heavy chain, MAP2, and tau regardless of HD dose rate. MAP1B light chain content was not altered. Finally, HD intoxication did not influence native NF protein content in either preparation. As per previous research, microtubule and NF preparations were enriched in high–molecular weight NF species. However, these NF derivatives were common to both HD and control samples, suggesting a lack of pathognomonic relevance. These data indicate that, although motor proteins were not affected, HD selectively impaired MAP-microtubule binding, presumably through adduction of lysine residues that mediate such interactions. Given their critical role in cytoskeletal physiology, MAPs could represent a relevant target for the induction of γ-diketone axonopathy. PMID:20554699

  10. Cytoskeletal binding proteins distinguish cultured dental follicle cells and periodontal ligament cells.

    Science.gov (United States)

    Li, Jie; Li, Hui; Tian, Ye; Yang, Yaling; Chen, Guoqing; Guo, Weihua; Tian, Weidong

    2016-07-01

    Human dental follicle cells (DFCs) and periodontal ligament cells (PDLCs) derived from the ectomesenchymal tissue, have been shown to exhibit stem/progenitor cell properties and the ability to induce tissue regeneration. Stem cells in dental follicle differentiate into cementoblasts, periodontal ligament fibroblasts and osteoblasts, these cells form cementum, periodontal ligament and alveolar bone, respectively. While stem cells in dental follicle are a precursor to periodontal ligament fibroblasts, the molecular changes that distinguish cultured DFCs from PDLCs are still unknown. In this study, we have compared the immunophenotypic features and cell cycle status of the two cell lines. The results suggest that DFCs and PDLCs displayed similar features related to immunophenotype and cell cycle. Then we employed an isobaric tag for relative and absolute quantitation (iTRAQ) proteomics strategy to reveal the molecular differences between the two cell types. A total of 2138 proteins were identified and 39 of these proteins were consistently differentially expressed between DFCs and PDLCs. Gene ontology analyses revealed that the protein subsets expressed higher in PDLCs were related to actin binding, cytoskeletal protein binding, and structural constituent of muscle. Upon validation by real-time PCR, western blotting, and immunofluorescence staining. Tropomyosin 1 (TPM1) and caldesmon 1 (CALD1) were expressed higher in PDLCs than in DFCs. Our results suggested that PDLCs display enhanced actin cytoskeletal dynamics relative to DFCs while DFCs may exhibit a more robust antioxidant defense ability relative to PDLCs. This study expands our knowledge of the cultured DFCs and PDLCs proteome and provides new insights into possible mechanisms responsible for the different biological features observed in each cell type. PMID:26708290

  11. Estradiol influences the mechanical properties of human fetal osteoblasts through cytoskeletal changes

    International Nuclear Information System (INIS)

    Highlights: ► Estradiol induced stiffness changes of osteoblasts were quantified using AFM. ► Estradiol causes significant decrease in the stiffness of osteoblasts. ► Decreased stiffness was caused by decreased density of f-actin network. ► Stiffness changes were not associated with mineralized matrix of osteoblasts. ► Estradiol increases inherent alkaline phosphatase activity of osteoblasts. -- Abstract: Estrogen is known to have a direct effect on bone forming osteoblasts and bone resorbing osteoclasts. The cellular and molecular effects of estrogen on osteoblasts and osteoblasts-like cells have been extensively studied. However, the effect of estrogen on the mechanical property of osteoblasts has not been studied yet. It is important since mechanical property of the mechanosensory osteoblasts could be pivotal to its functionality in bone remodeling. This is the first study aimed to assess the direct effect of estradiol on the apparent elastic modulus (E∗) and corresponding cytoskeletal changes of human fetal osteoblasts (hFOB 1.19). The cells were cultured in either medium alone or medium supplemented with β-estradiol and then subjected to Atomic Force Microscopy indentation (AFM) to determine E∗. The underlying changes in cytoskeleton were studied by staining the cells with TRITC-Phalloidin. Following estradiol treatment, the cells were also tested for proliferation, alkaline phosphatase activity and mineralization. With estradiol treatment, E∗ of osteoblasts significantly decreased by 43–46%. The confocal images showed that the changes in f-actin network observed in estradiol treated cells can give rise to the changes in the stiffness of the cells. Estradiol also increases the inherent alkaline phosphatase activity of the cells. Estradiol induced stiffness changes of osteoblasts were not associated with changes in the synthesized mineralized matrix of the cells. Thus, a decrease in osteoblast stiffness with estrogen treatment was

  12. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    International Nuclear Information System (INIS)

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  13. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xionggao [State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou (China); Department of Ophthalmology, Hainan Medical College, Haikou (China); Wei, Yantao; Ma, Haizhi [State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou (China); Zhang, Shaochong, E-mail: zhshaochong@163.com [State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou (China)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. Black-Right-Pointing-Pointer Rac1 is activated in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous

  14. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    International Nuclear Information System (INIS)

    Highlights: ► Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. ► Rac1 is activated in vitreous-transformed RPE cells. ► Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. ► Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. ► The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous-transformed human RPE cells undergo cytoskeletal rearrangements via Rac1 GTPase-dependent pathways that modulate LIMK1 and

  15. The Na+–H+ exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells

    International Nuclear Information System (INIS)

    An increasing body of evidence shows that the tumour microenvironment is essential in driving neoplastic progression. The low serum component of this microenvironment stimulates motility/invasion in human breast cancer cells via activation of the Na+–H+ exchanger (NHE) isoform 1, but the signal transduction systems that underlie this process are still poorly understood. We undertook the present study to elucidate the role and pattern of regulation by the Rho GTPases of this serum deprivation-dependent activation of both NHE1 and subsequent invasive characteristics, such as pseudopodia and invadiopodia protrusion, directed cell motility and penetration of normal tissues. The present study was performed in a well characterized human mammary epithelial cell line representing late stage metastatic progression, MDA-MB-435. The activity of RhoA and Rac1 was modified using their dominant negative and constitutively active mutants and the activity of NHE1, cell motility/invasion, F-actin content and cell shape were measured. We show for the first time that serum deprivation induces NHE1-dependent morphological and cytoskeletal changes in metastatic cells via a reciprocal interaction of RhoA and Rac1, resulting in increased chemotaxis and invasion. Deprivation changed cell shape by reducing the amount of F-actin and inducing the formation of leading edge pseudopodia. Serum deprivation inhibited RhoA activity and stimulated Rac1 activity. Rac1 and RhoA were antagonistic regulators of both basal and stimulated tumour cell NHE1 activity. The regulation of NHE1 activity by RhoA and Rac1 in both conditions was mediated by an alteration in intracellular proton affinity of the exchanger. Interestingly, the role of each of these G-proteins was reversed during serum deprivation; basal NHE1 activity was regulated positively by RhoA and negatively by Rac1, whereas RhoA negatively and Rac1 positively directed the stimulation of NHE1 during serum deprivation. Importantly, the same

  16. Estradiol influences the mechanical properties of human fetal osteoblasts through cytoskeletal changes

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, Padmalosini [Department of Bioengineering, National University of Singapore (Singapore); Lim, Chwee Teck [Department of Bioengineering, National University of Singapore (Singapore); Department of Mechanical Engineering, National University of Singapore (Singapore); Mechanobiology Institute, National University of Singapore (Singapore); Singapore-MIT Alliance for Research and Technology (SMART), National University of Singapore (Singapore); Lee, Taeyong, E-mail: bielt@nus.edu.sg [Department of Bioengineering, National University of Singapore (Singapore)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Estradiol induced stiffness changes of osteoblasts were quantified using AFM. Black-Right-Pointing-Pointer Estradiol causes significant decrease in the stiffness of osteoblasts. Black-Right-Pointing-Pointer Decreased stiffness was caused by decreased density of f-actin network. Black-Right-Pointing-Pointer Stiffness changes were not associated with mineralized matrix of osteoblasts. Black-Right-Pointing-Pointer Estradiol increases inherent alkaline phosphatase activity of osteoblasts. -- Abstract: Estrogen is known to have a direct effect on bone forming osteoblasts and bone resorbing osteoclasts. The cellular and molecular effects of estrogen on osteoblasts and osteoblasts-like cells have been extensively studied. However, the effect of estrogen on the mechanical property of osteoblasts has not been studied yet. It is important since mechanical property of the mechanosensory osteoblasts could be pivotal to its functionality in bone remodeling. This is the first study aimed to assess the direct effect of estradiol on the apparent elastic modulus (E{sup Asterisk-Operator }) and corresponding cytoskeletal changes of human fetal osteoblasts (hFOB 1.19). The cells were cultured in either medium alone or medium supplemented with {beta}-estradiol and then subjected to Atomic Force Microscopy indentation (AFM) to determine E{sup Asterisk-Operator }. The underlying changes in cytoskeleton were studied by staining the cells with TRITC-Phalloidin. Following estradiol treatment, the cells were also tested for proliferation, alkaline phosphatase activity and mineralization. With estradiol treatment, E{sup Asterisk-Operator} of osteoblasts significantly decreased by 43-46%. The confocal images showed that the changes in f-actin network observed in estradiol treated cells can give rise to the changes in the stiffness of the cells. Estradiol also increases the inherent alkaline phosphatase activity of the cells. Estradiol induced stiffness

  17. Analysis of cytoskeletal features in dried and living cells and slow dynamic experiments using atomic force microscopy

    International Nuclear Information System (INIS)

    The ability to interact with live cells in vitro in combination with either sequential image acquisition or continuous force sensing provide the means for tracking the dynamics of intra- or inter-cell processes. The former operational mode is relatively slow and is most suitable for events where the temporal evolution takes place on a time scale of several minutes to hours. For instance, aspects of cytoskeletal dynamics, cell motility or conformational response to external stimuli fall into this category. In this study we demonstrate cell responses from exposure to cytochalasin, glutaraldehyde and a tetrazolium salt. Significant changes in mechanical properties and structural features are observed on time scales up to 3 hrs. In addition, comparative studies of cytoskeletal components of dried and living cells are undertaken

  18. Low ozone concentrations stimulate cytoskeletal organization, mitochondrial activity and nuclear transcription

    Directory of Open Access Journals (Sweden)

    M. Costanzo

    2015-04-01

    Full Text Available Ozone therapy is a modestly invasive procedure based on the regeneration capabilities of low ozone concentrations and used in medicine as an alternative/adjuvant treatment for different diseases. However, the cellular mechanisms accounting for the positive effects of mild ozonization are still largely unexplored. To this aim, in the present study the effects of low ozone concentrations (1 to 20 µg O3/mL O2 on structural and functional cell features have been investigated in vitro by using morphological, morphometrical, cytochemical and immunocytochemical techniques at bright field, fluorescence and transmission electron microscopy. Cells exposed to pure O2 or air served as controls. The results demonstrated that the effects of ozoneadministration are dependent on gas concentration, and the cytoskeletal organization, mitochondrial activity and nuclear transcription may be differently affected. This suggests that, to ensure effective and permanent metabolic cell activation, ozone treatments should take into account the cytological and cytokinetic features of the different tissues. 

  19. Proteomic and Microscopic Strategies towards the Analysis of the Cytoskeletal Networks in Major Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Joëlle V. F. Coumans

    2016-04-01

    Full Text Available Mental health disorders have become worldwide health priorities. It is estimated that in the next 20 years they will account for a 16 trillion United State dollars (US$ loss. Up to now, the underlying pathophysiology of psychiatric disorders remains elusive. Altered cytoskeleton proteins expression that may influence the assembly, organization and maintenance of cytoskeletal integrity has been reported in major depressive disorders, schizophrenia and to some extent bipolar disorders. The use of quantitative proteomics, dynamic microscopy and super-resolution microscopy to investigate disease-specific protein signatures holds great promise to improve our understanding of these disorders. In this review, we present the currently available quantitative proteomic approaches use in neurology, gel-based, stable isotope-labelling and label-free methodologies and evaluate their strengths and limitations. We also reported on enrichment/subfractionation methods that target the cytoskeleton associated proteins and discuss the need of alternative methods for further characterization of the neurocytoskeletal proteome. Finally, we present live cell imaging approaches and emerging dynamic microscopy technology that will provide the tools necessary to investigate protein interactions and their dynamics in the whole cells. While these areas of research are still in their infancy, they offer huge potential towards the understanding of the neuronal network stability and its modification across neuropsychiatric disorders.

  20. Proteomic and Microscopic Strategies towards the Analysis of the Cytoskeletal Networks in Major Neuropsychiatric Disorders

    Science.gov (United States)

    Coumans, Joëlle V. F.; Palanisamy, Suresh K. A.; McFarlane, Jim; Moens, Pierre D. J.

    2016-01-01

    Mental health disorders have become worldwide health priorities. It is estimated that in the next 20 years they will account for a 16 trillion United State dollars (US$) loss. Up to now, the underlying pathophysiology of psychiatric disorders remains elusive. Altered cytoskeleton proteins expression that may influence the assembly, organization and maintenance of cytoskeletal integrity has been reported in major depressive disorders, schizophrenia and to some extent bipolar disorders. The use of quantitative proteomics, dynamic microscopy and super-resolution microscopy to investigate disease-specific protein signatures holds great promise to improve our understanding of these disorders. In this review, we present the currently available quantitative proteomic approaches use in neurology, gel-based, stable isotope-labelling and label-free methodologies and evaluate their strengths and limitations. We also reported on enrichment/subfractionation methods that target the cytoskeleton associated proteins and discuss the need of alternative methods for further characterization of the neurocytoskeletal proteome. Finally, we present live cell imaging approaches and emerging dynamic microscopy technology that will provide the tools necessary to investigate protein interactions and their dynamics in the whole cells. While these areas of research are still in their infancy, they offer huge potential towards the understanding of the neuronal network stability and its modification across neuropsychiatric disorders. PMID:27104521

  1. Directional memory arises from long-lived cytoskeletal asymmetries in polarized chemotactic cells.

    Science.gov (United States)

    Prentice-Mott, Harrison V; Meroz, Yasmine; Carlson, Andreas; Levine, Michael A; Davidson, Michael W; Irimia, Daniel; Charras, Guillaume T; Mahadevan, L; Shah, Jagesh V

    2016-02-01

    Chemotaxis, the directional migration of cells in a chemical gradient, is robust to fluctuations associated with low chemical concentrations and dynamically changing gradients as well as high saturating chemical concentrations. Although a number of reports have identified cellular behavior consistent with a directional memory that could account for behavior in these complex environments, the quantitative and molecular details of such a memory process remain unknown. Using microfluidics to confine cellular motion to a 1D channel and control chemoattractant exposure, we observed directional memory in chemotactic neutrophil-like cells. We modeled this directional memory as a long-lived intracellular asymmetry that decays slower than observed membrane phospholipid signaling. Measurements of intracellular dynamics revealed that moesin at the cell rear is a long-lived element that when inhibited, results in a reduction of memory. Inhibition of ROCK (Rho-associated protein kinase), downstream of RhoA (Ras homolog gene family, member A), stabilized moesin and directional memory while depolymerization of microtubules (MTs) disoriented moesin deposition and also reduced directional memory. Our study reveals that long-lived polarized cytoskeletal structures, specifically moesin, actomyosin, and MTs, provide a directional memory in neutrophil-like cells even as they respond on short time scales to external chemical cues. PMID:26764383

  2. A multi-structural single cell model of force-induced interactions of cytoskeletal components.

    Science.gov (United States)

    Barreto, Sara; Clausen, Casper H; Perrault, Cecile M; Fletcher, Daniel A; Lacroix, Damien

    2013-08-01

    Several computational models based on experimental techniques and theories have been proposed to describe cytoskeleton (CSK) mechanics. Tensegrity is a prominent model for force generation, but it cannot predict mechanics of individual CSK components, nor explain the discrepancies from the different single cell stimulating techniques studies combined with cytoskeleton-disruptors. A new numerical concept that defines a multi-structural 3D finite element (FE) model of a single-adherent cell is proposed to investigate the biophysical and biochemical differences of the mechanical role of each cytoskeleton component under loading. The model includes prestressed actin bundles and microtubule within cytoplasm and nucleus surrounded by the actin cortex. We performed numerical simulations of atomic force microscopy (AFM) experiments by subjecting the cell model to compressive loads. The numerical role of the CSK components was corroborated with AFM force measurements on U2OS-osteosarcoma cells and NIH-3T3 fibroblasts exposed to different cytoskeleton-disrupting drugs. Computational simulation showed that actin cortex and microtubules are the major components targeted in resisting compression. This is a new numerical tool that explains the specific role of the cortex and overcomes the difficulty of isolating this component from other networks in vitro. This illustrates that a combination of cytoskeletal structures with their own properties is necessary for a complete description of cellular mechanics. PMID:23702149

  3. Nonequilibrium statistical mechanical models for cytoskeletal assembly: Towards understanding tensegrity in cells

    Science.gov (United States)

    Shen, Tongye; Wolynes, Peter G.

    2005-10-01

    The cytoskeleton is not an equilibrium structure. To develop theoretical tools to investigate such nonequilibrium assemblies, we study a statistical physical model of motorized spherical particles. Though simple, it captures some of the key nonequilibrium features of the cytoskeletal networks. Variational solutions of the many-body master equation for a set of motorized particles accounts for their thermally induced Brownian motion as well as for the motorized kicking of the structural elements. These approximations yield stability limits for crystalline phases and for frozen amorphous structures. The methods allow one to compute the effects of nonequilibrium behavior and adhesion (effective cross-linking) on the mechanical stability of localized phases as a function of density, adhesion strength, and temperature. We find that nonequilibrium noise does not necessarily destabilize mechanically organized structures. The nonequilibrium forces strongly modulate the phase behavior and have comparable effect as the adhesion due to cross-linking. Modeling transitions such as these allows the mechanical properties of cytoskeleton to rapidly and adaptively change. The present model provides a statistical mechanical underpinning for a tensegrity picture of the cytoskeleton.

  4. [Contractile properties of fibers and cytoskeletal proteins of gerbil's hindlimb muscles after space flight].

    Science.gov (United States)

    Lipets, E N; Ponomareva, E V; Ogneva, I V; Vikhliantsev, I M; Karaduleva, E V; Kratashkina, N L; Kuznetsov, S L; Podlubnaia, Z A; Shenkman, B S

    2009-01-01

    The work had the goal to compare the microgravity effects on gerbil's muscles-antagonists, m. soleus and m. tibialis anterior. The animals were exposed in 12-d space microgravity aboard Earth's artificial satellite "Foton-M3". Findings of the analysis of single skinned fibers contractility are 19.7% diminution of the diameter and 21.8% loss of the total contractive force of m. soleus fibers post flight. However, there was no significant difference in calcium sensitivity which agrees with the absence of changes in the relative content of several major cytoskeletal proteins (titin and nebulin ratios to heavy chains of myosin were identical in the flight and control groups) and a slight shifting of the myosin phenotype toward the "fast type" (9%, p < 0.05). These parameters were mostly unaffected by the space flight in m. tibialis anterior. To sum up, the decline of contractility and diminution of gerbil's myofibers after the space flight were less significant as compared with rats and did not impact the sytoskeletal protein ratios. PMID:19711860

  5. Effects of fixation protocol and gravistimulation on cytoskeletal organization in Brassica rapa roots

    Science.gov (United States)

    Edge, Andrea; Hasenstein, Karl H.

    2012-07-01

    In preparation for a flight experiment we have studied the optimization of the staining protocols for microtubules and actin filaments in Brassica rapa seedlings. Microtubules (MT) were stained with monoclonal antibody (mAb) YOL 1/34. F-actin (FA) staining was achieved with C4 mAb antibody. Fixative prepared more than three weeks before use produces specimens that stained poorly. Storage in fixative for more than four weeks resulted in noticeably poorer staining. Staining was best in cortical cells but more difficult and less consistent in cap cells, especially for FA. In addition, the quality of staining of root cap cells was dependent on the age of the formaldehyde. The organization of the MTs corresponded with previously published descriptions; FA was prominent in the stele with thick and numerous parallel bundles; cortical cells showed less dense and less directional organization of mostly thinner filaments. FA organization was determined by tissue rather than by differential elongation. The organization of MTs in cortical cells of curving roots was uniformly circular and perpendicular to the long cell axis despite different cell length. The effect of clinorotation around the horizontal axis and centrifugation on the cytoskeletal organization was inconsistent. (Supported by NASA grant NNX10AP91G)

  6. Quantitative analysis of cytoskeletal reorganization during epithelial tissue sealing by large-volume electron tomography.

    Science.gov (United States)

    Eltsov, Mikhail; Dubé, Nadia; Yu, Zhou; Pasakarnis, Laurynas; Haselmann-Weiss, Uta; Brunner, Damian; Frangakis, Achilleas S

    2015-05-01

    The closure of epidermal openings is an essential biological process that causes major developmental problems such as spina bifida in humans if it goes awry. At present, the mechanism of closure remains elusive. Therefore, we reconstructed a model closure event, dorsal closure in fly embryos, by large-volume correlative electron tomography. We present a comprehensive, quantitative analysis of the cytoskeletal reorganization, enabling separated epidermal cells to seal the epithelium. After establishing contact through actin-driven exploratory filopodia, cells use a single lamella to generate 'roof tile'-like overlaps. These shorten to produce the force, 'zipping' the tissue closed. The shortening overlaps lack detectable actin filament ensembles but are crowded with microtubules. Cortical accumulation of shrinking microtubule ends suggests a force generation mechanism in which cortical motors pull on microtubule ends as for mitotic spindle positioning. In addition, microtubules orient filopodia and lamellae before zipping. Our 4D electron microscopy picture describes an entire developmental process and provides fundamental insight into epidermal closure. PMID:25893916

  7. Cytoskeletal and functional changes in bioreactor assembled thyroid tissue organoids exposed to gamma radiation

    International Nuclear Information System (INIS)

    Fischer rat thyroid cells were grown under low-shear stress in a bioreactor to a stage of organization composed of integrated follicles resembling small thyroid glands prior to exposure to 3 Gray-gamma radiation. Bioreactor tissues and controls (both irradiated and non-irradiated) were harvested at 24, 48, 96 and 144 hours post-exposure. Tissue samples were fixed and fluorescently labeled for actin and microtubules. Tissues were assessed for changes in cytoskeletal components induced by radiation and quantified by laser scanning cytometry. Enzyme-linked immunosorbent assay (ELISA's) were used to quantify transforming growth factor-beta and thyroxin released from cells to the culture supernatant. Tissue architecture was disrupted by exposure to radiation with the structural organization of actin and loss of follicular content the most obviously affected. With time post-irradiation the actin appeared disordered and the levels of fluorescence associated with filamentous-actin and microtubules cycled in the tissue analogs, but not in the flask-grown cultures. Active transforming growth factor-beta was higher in supernatants from the irradiated bioreactor tissue. Thyroxin release paralleled cell survival in the bioreactors and control cultures. Thus, the engineered tissue responses to radiation differed from those of conventional tissue culture making it a potentially better mimic of the in vivo situation. (author)

  8. Dithiocarbamate propineb induces acetylcholine release through cytoskeletal actin depolymerization in PC12 cells.

    Science.gov (United States)

    Viviani, Barbara; Bartesaghi, Stefano; Binaglia, Marco; Corsini, Emanuela; Boraso, Mariaserena; Grazi, Enrico; Galli, Corrado L; Marinovich, Marina

    2008-11-10

    Neurological complications as well as movement disorders are relevant symptoms in animals and humans chronically exposed to dithiocarbamates. Using rat pheochromocytoma cells differentiated by NGF (PC12), we investigated whether propineb affects acetylcholine (Ach) release and the molecular mechanisms involved. Propineb (0.001-100 nM) dose-dependently increased Ach release from PC12. Thus, 0.001-1 nM propineb-induced Ach release, reaching a maximal effect ( approximately 50%) at 0.1-1 nM. Higher concentrations of propineb (10-100 nM) caused a progressive disappearance of the effect. Chelation of extra- and intracellular Ca(2+) did not affect Ach release by propineb, which was prevented by the actin stabilizer jasplakinolide (500 nM). Accordingly, actin depolymerization was observed after exposure of differentiated PC12 to 0.1-1 nM propineb, a loss of effect was evident at higher concentrations (100 nM), and the effect was Ca(2+)-independent. Disulfiram, a related dithiocarbamate not coordinated with Zn(2+), also depolymerized actin, suggesting the involvement of the organic structure of dithiocarbamates rather than the leakage of Zn(2+). Nevertheless, propineb did not depolymerize actin in a cell-free system. These data suggest that dithiocarbamates, through the activation of intracellular cascade(s), impair cytoskeletal actin. This effect may contribute to affect synaptic vesicles processing resulting in an impaired cholinergic transmission. PMID:18822360

  9. Determination of Phosphorylation Sites in the DivIVA Cytoskeletal Protein of Streptomyces coelicolor by Targeted LC–MS/MS

    OpenAIRE

    Saalbach, Gerhard; Hempel, Antje M.; Vigouroux, Marielle; Flärdh, Klas; Buttner, Mark J.; Naldrett, Michael J.

    2013-01-01

    The filamentous bacterium Streptomyces coelicolor modulates polar growth and branching by phosphorylating the cytoskeletal protein DivIVA. Previous MALDI-TOF analysis of DivIVA showed that a large 7.2 kDa tryptic peptide was multiply phosphorylated. To aid localization of the phosphorylation sites, we introduced additional tryptic cleavage sites into DivIVA, and the resulting phosphopeptides were analyzed by LC–MS/MS. Phosphopeptide isomers could be separated chromatographically, but because ...

  10. Biosynthesis of intestinal microvillar proteins. Rapid expression of cytoskeletal components in microvilli of pig small intestinal mucosal explants

    DEFF Research Database (Denmark)

    Cowell, G M; Danielsen, E M

    1984-01-01

    Using alkaline extraction to separate cytoskeletal and membrane proteins of intestinal microvilli, the kinetics of assembly of these two microvillar protein compartments was studied by pulse-chase labelling of pig small intestinal mucosal explants, kept in organ culture. Following a 10 min pulse of...... pulse. These different kinetics of appearance indicate that the two microvillar protein compartments have separate mechanisms of biosynthesis and microvillar expression....

  11. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: Implications for cytoskeletal integrity

    International Nuclear Information System (INIS)

    Cadmium disrupts the actin cytoskeleton in rat mesangial cells, and we have previously shown that this involves a complex interplay involving activation of kinase signaling, protein translocation, and disruption of focal adhesions. Here we investigate the role that glutathionylation of actin plays in Cd2+-associated cytoskeletal reorganization. Low concentrations of Cd2+ (0.5–2 μM) caused an increase in actin glutathionylation by 6 h, whereas at higher concentrations glutathionylation remained at basal levels. Although oxidation with diamide increased glutathionylation, reactive oxygen species (ROS) were not involved in the Cd2+-dependent effect, as only Cd2+ concentrations above 2 μM were sufficient to increase ROS. However, low [Cd2+] increased total glutathione levels without affecting the ratio of reduced/oxidized glutathione, and inhibition of glutathione synthesis suppressed actin glutathionylation. Cadmium increased the activity of the enzyme glutaredoxin, which influences the equilibrium between glutathionylated and deglutathionylated proteins and thus may influence levels of glutathionylated actin. Together these observations show that cadmium-dependent effects on actin glutathionylation are affected by glutathione metabolism and not by direct effects of ROS on thiol chemistry. In vitro polymerization assays with glutathionylated actin show a decreased rate of polymerization. In contrast, immunofluorescence of cytoskeletal structure in intact cells suggests that increases in actin glutathionylation accompanying increased glutathione levels occurring under low Cd2+ exposure are protective in vivo, with cytoskeletal disruption ensuing only when higher Cd2+ concentrations increase ROS levels and prevent an increase in actin–glutathione conjugates. - Highlights: • Cadmium disrupts the actin cytoskeleton in mesangial cells. • Cadmium induces glutathionylation of actin at low concentrations. • Glutathionylation requires glutathione synthesis but is

  12. The Neurofibromatosis Type 2 Gene Product, merlin, Reverses the F-Actin Cytoskeletal Defects in Primary Human Schwannoma Cells

    OpenAIRE

    Bashour, Anne-Marie; Meng, J.-J.; Ip, Wallace; MacCollin, Mia; Ratner, Nancy

    2002-01-01

    Schwannoma tumors, which occur sporadically and in patients with neurofibromatosis, account for 8% of intracranial tumors and can only be treated by surgical removal. Most schwannomas have biallelic mutations in the NF2 tumor suppressor gene. We previously showed that schwannoma-derived Schwann cells exhibit membrane ruffling and aberrant cell spreading when plated onto laminin, indicative of fundamental F-actin cytoskeletal defects. Here we expand these observations to a large group of spora...

  13. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: Implications for cytoskeletal integrity

    Energy Technology Data Exchange (ETDEWEB)

    Choong, Grace; Liu, Ying; Xiao, Weiqun; Templeton, Douglas M., E-mail: doug.templeton@utoronto.ca

    2013-10-15

    Cadmium disrupts the actin cytoskeleton in rat mesangial cells, and we have previously shown that this involves a complex interplay involving activation of kinase signaling, protein translocation, and disruption of focal adhesions. Here we investigate the role that glutathionylation of actin plays in Cd{sup 2+}-associated cytoskeletal reorganization. Low concentrations of Cd{sup 2+} (0.5–2 μM) caused an increase in actin glutathionylation by 6 h, whereas at higher concentrations glutathionylation remained at basal levels. Although oxidation with diamide increased glutathionylation, reactive oxygen species (ROS) were not involved in the Cd{sup 2+}-dependent effect, as only Cd{sup 2+} concentrations above 2 μM were sufficient to increase ROS. However, low [Cd{sup 2+}] increased total glutathione levels without affecting the ratio of reduced/oxidized glutathione, and inhibition of glutathione synthesis suppressed actin glutathionylation. Cadmium increased the activity of the enzyme glutaredoxin, which influences the equilibrium between glutathionylated and deglutathionylated proteins and thus may influence levels of glutathionylated actin. Together these observations show that cadmium-dependent effects on actin glutathionylation are affected by glutathione metabolism and not by direct effects of ROS on thiol chemistry. In vitro polymerization assays with glutathionylated actin show a decreased rate of polymerization. In contrast, immunofluorescence of cytoskeletal structure in intact cells suggests that increases in actin glutathionylation accompanying increased glutathione levels occurring under low Cd{sup 2+} exposure are protective in vivo, with cytoskeletal disruption ensuing only when higher Cd{sup 2+} concentrations increase ROS levels and prevent an increase in actin–glutathione conjugates. - Highlights: • Cadmium disrupts the actin cytoskeleton in mesangial cells. • Cadmium induces glutathionylation of actin at low concentrations.

  14. Effect of Rapid Chilling on Beef Quality and Cytoskeletal Protein Degradation in M. longissimus of Chinese Yellow Crossbred Bulls

    Science.gov (United States)

    Mao, Yanwei; Zhang, Yimin; Liang, Rongrong; Ren, Lulu; Zhu, He; Li, Ke; Zhu, Lixian; Luo, Xin

    2012-01-01

    The objective of this study was to investigate the effect of rapid chilling (RC) on beef quality and the degradation of cytoskeletal proteins. Twenty Chinese Yellow crossbred bulls were selected and randomly divided into two groups. RC and conventional chilling (CC) were applied to left and right sides of the carcasses respectively after slaughtering. To determine whether electrical stimulation (ES) treatment can alleviate the potential hazard of RC on meat quality, ES was applied to one group. The effects of RC and ES were determined by meat color, shear force and cytoskeletal protein degradation postmortem (PM). The results showed that RC decreased beef tenderness at 1 d and 3 d postmortem, but had no detrimental effect on meat color. Western blotting showed that RC decreased the degradation rate of desmin and troponin-T, but the effects weakened gradually as postmortem aging extended. Degradation rates of both desmin and troponin-T were accelerated by ES. The combination of RC and ES could improve beef color, accelerate degradation rate of cytoskeletal protein and improve beef tenderness. PMID:25049681

  15. Cytoskeletárni proteiny v jádrech a v průběhu mitózy a meiozy u rostlin

    Czech Academy of Sciences Publication Activity Database

    Cenklová, Věra; Binarová, Pavla

    Praha : Československá biologická společnost, 2001, s. 1-1. [9. cytoskeletární klub.. Vranovská Ves (CZ), 25.04.2001-27.04.2001] R&D Projects: GA ČR GA204/99/D092; GA AV ČR IAA5020803 Institutional research plan: CEZ:AV0Z5038910 Keywords : Cytoskeletal proteins * mitosis Subject RIV: EB - Genetics ; Molecular Biology

  16. Proteomic screen in the simple metazoan Hydra identifies 14-3-3 binding proteins implicated in cellular metabolism, cytoskeletal organisation and Ca2+ signalling

    Science.gov (United States)

    Pauly, Barbara; Lasi, Margherita; MacKintosh, Carol; Morrice, Nick; Imhof, Axel; Regula, Jörg; Rudd, Stephen; David, Charles N; Böttger, Angelika

    2007-01-01

    Background 14-3-3 proteins have been implicated in many signalling mechanisms due to their interaction with Ser/Thr phosphorylated target proteins. They are evolutionarily well conserved in eukaryotic organisms from single celled protozoans and unicellular algae to plants and humans. A diverse array of target proteins has been found in higher plants and in human cell lines including proteins involved in cellular metabolism, apoptosis, cytoskeletal organisation, secretion and Ca2+ signalling. Results We found that the simple metazoan Hydra has four 14-3-3 isoforms. In order to investigate whether the diversity of 14-3-3 target proteins is also conserved over the whole animal kingdom we isolated 14-3-3 binding proteins from Hydra vulgaris using a 14-3-3-affinity column. We identified 23 proteins that covered most of the above-mentioned groups. We also isolated several novel 14-3-3 binding proteins and the Hydra specific secreted fascin-domain-containing protein PPOD. In addition, we demonstrated that one of the 14-3-3 isoforms, 14-3-3 HyA, interacts with one Hydra-Bcl-2 like protein in vitro. Conclusion Our results indicate that 14-3-3 proteins have been ubiquitous signalling components since the start of metazoan evolution. We also discuss the possibility that they are involved in the regulation of cell numbers in response to food supply in Hydra. PMID:17651497

  17. Proteomic screen in the simple metazoan Hydra identifies 14-3-3 binding proteins implicated in cellular metabolism, cytoskeletal organisation and Ca2+ signalling

    Directory of Open Access Journals (Sweden)

    Imhof Axel

    2007-07-01

    Full Text Available Abstract Background 14-3-3 proteins have been implicated in many signalling mechanisms due to their interaction with Ser/Thr phosphorylated target proteins. They are evolutionarily well conserved in eukaryotic organisms from single celled protozoans and unicellular algae to plants and humans. A diverse array of target proteins has been found in higher plants and in human cell lines including proteins involved in cellular metabolism, apoptosis, cytoskeletal organisation, secretion and Ca2+ signalling. Results We found that the simple metazoan Hydra has four 14-3-3 isoforms. In order to investigate whether the diversity of 14-3-3 target proteins is also conserved over the whole animal kingdom we isolated 14-3-3 binding proteins from Hydra vulgaris using a 14-3-3-affinity column. We identified 23 proteins that covered most of the above-mentioned groups. We also isolated several novel 14-3-3 binding proteins and the Hydra specific secreted fascin-domain-containing protein PPOD. In addition, we demonstrated that one of the 14-3-3 isoforms, 14-3-3 HyA, interacts with one Hydra-Bcl-2 like protein in vitro. Conclusion Our results indicate that 14-3-3 proteins have been ubiquitous signalling components since the start of metazoan evolution. We also discuss the possibility that they are involved in the regulation of cell numbers in response to food supply in Hydra.

  18. Freezing tolerance of sea urchin embryonic cells: Differentiation commitment and cytoskeletal disturbances in culture.

    Science.gov (United States)

    Odintsova, Nelly A; Ageenko, Natalya V; Kipryushina, Yulia O; Maiorova, Mariia A; Boroda, Andrey V

    2015-08-01

    This study focuses on the freezing tolerance of sea urchin embryonic cells. To significantly reduce the loss of physiological activity of these cells that occurs after cryopreservation and to study the effects of ultra-low temperatures on sea urchin embryonic cells, we tested the ability of the cells to differentiate into spiculogenic or pigment directions in culture, including an evaluation of the expression of some genes involved in pigment differentiation. A morphological analysis of cytoskeletal disturbances after freezing in a combination of penetrating (dimethyl sulfoxide and ethylene glycol) and non-penetrating (trehalose and polyvinylpyrrolidone) cryoprotectants revealed that the distribution pattern of filamentous actin and tubulin was similar to that in the control cultures. In contrast, very rare spreading cells and a small number of cells with filamentous actin and tubulin were detected after freezing in the presence of only non-penetrating cryoprotectants. The largest number of pigment cells was found in cultures frozen with trehalose or trehalose and dimethyl sulfoxide. The ability to induce the spicule formation was lost in the cells frozen only with non-penetrating cryoprotectants, while it was maximal in cultures frozen in a cryoprotective mixture containing both non-penetrating and penetrating cryoprotectants (particularly, when ethylene glycol was present). Using different markers for cell state assessment, an effective cryopreservation protocol for sea urchin cells was developed: three-step freezing with a low cooling rate (1-2°C/min) and a combination of non-penetrating and penetrating cryoprotectants made it possible to obtain a high level of cell viability (up to 65-80%). PMID:26049089

  19. FtsZ Cytoskeletal Filaments as a Template for Metallic Nanowire Fabrication.

    Science.gov (United States)

    Ostrov, Nili; Fichman, Galit; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-01-01

    Supramolecular protein assemblies can serve as templates for the fabrication of inorganic nanowires due to their morphological reproducibility and innate proclivity to form well-ordered structures. Amongst the variety of naturally occurring nano-scale assemblies, cytoskeletal fibers from diverse biological sources represent a unique family of scaffolds for biomimetics as they efficiently self-assemble in vitro in a controllable manner to form stable filaments. Here, we harness the bacterial FtsZ filament system as a scaffold for protein-based metal nanowires, and further demonstrate the control of wire alignment with the use of an external magnetic field. Due to the ease at which the bacterial FtsZ is overexpressed and purified, as well as the extensive studies of its ultrastructural properties and physiological significance, FtsZ filaments are an ideal substrate for large-scale production and chemical manipulation. Using a biologically compatible electroless metal deposition technique initiated by adsorption of platinum as a surface catalyst, we demonstrate the coating of assembled FtsZ filaments with iron, nickel, gold, and copper to fabricate continuous nanowires with diameters ranging from 10-50 nm. Organic-inorganic hybrid wires were analyzed using high-resolution field-emission-gun transmission and scanning electron microscopy, and confirmed by energy-dispersive elemental analysis. We also achieved alignment of ferrofluid-coated FtsZ filaments using an external magnetic field. Overall, we provide evidence for the robustness of the FtsZ filament system as a molecular scaffold, and offer an efficient, biocompatible procedure for facile bottom-up assembly of metallic wires on biological templates. We believe that bottom-up fabrication methods as reported herein significantly contribute to the expanding toolkit available for the incorporation of biological materials in nano-scale devices for electronic and electromechanical applications. PMID:26328401

  20. Initiation of Chondrocyte Self-Assembly Requires an Intact Cytoskeletal Network.

    Science.gov (United States)

    Lee, Jennifer K; Hu, Jerry C Y; Yamada, Soichiro; Athanasiou, Kyriacos A

    2016-02-01

    Self-assembly and self-organization have recently emerged as robust scaffold-free tissue engineering methodologies that can be used to generate various tissues, including cartilage, vessel, and liver. Self-assembly, in particular, is a scaffold-free platform for tissue engineering that does not require the input of exogenous energy to the system. Although self-assembly can generate functional tissues, most notably neocartilage, the mechanisms of self-assembly remain unclear. To study the self-assembling process, we used articular chondrocytes as a model to identify parameters that can affect this process. Specifically, the roles of cell-cell and cell-matrix adhesion molecules, surface-bound collagen, and the actin cytoskeletal network were investigated. Using time-lapse imaging, we analyzed the early stages of chondrocyte self-assembly. Within hours, chondrocytes rapidly coalesced into cell clusters before compacting to form tight cellular structures. Chondrocyte self-assembly was found to depend primarily on integrin function and secondarily on cadherin function. In addition, actin or myosin II inhibitors prevented chondrocyte self-assembly, suggesting that cell adhesion alone is not sufficient, but rather the active contractile actin cytoskeleton is essential for proper chondrocyte self-assembly and the formation of neocartilage. Better understanding of the self-assembly mechanisms allows for the rational modulation of this process toward generating neocartilages with improved properties. These findings are germane to understanding self-assembly, an emerging platform for tissue engineering of a plethora of tissues, especially as these neotissues are poised for translation. PMID:26729374

  1. The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons

    OpenAIRE

    Einheber, Steven; Maurel, Patrice; Meng, Xiaosong; Rubin, Marina; Lam, Isabel; Mohandas, Narla; An, Xiuli; Shrager, Peter; Kissil, Joseph; Salzer, James L.

    2012-01-01

    Myelinated axons are organized into specialized domains critical to their function in saltatory conduction, i.e. nodes, paranodes, juxtaparanodes, and internodes. Here, we describe the distribution and role of the 4.1B protein in this organization. 4.1B is expressed by neurons, and at lower levels by Schwann cells, which also robustly express 4.1G. Immunofluorescence and immuno-EM demonstrates 4.1B is expressed subjacent to the axon membrane in all domains except the nodes. Mice deficient in ...

  2. Selective ablation of the androgen receptor in mouse sertoli cells affects sertoli cell maturation, barrier formation and cytoskeletal development.

    Directory of Open Access Journals (Sweden)

    Ariane Willems

    Full Text Available The observation that mice with a selective ablation of the androgen receptor (AR in Sertoli cells (SC (SCARKO mice display a complete block in meiosis supports the contention that SC play a pivotal role in the control of germ cell development by androgens. To delineate the physiological and molecular mechanism responsible for this control, we compared tubular development in pubertal SCARKO mice and littermate controls. Particular attention was paid to differences in SC maturation, SC barrier formation and cytoskeletal organization and to the molecular mediators potentially involved. Functional analysis of SC barrier development by hypertonic perfusion and lanthanum permeation techniques and immunohistochemical analysis of junction formation showed that SCARKO mice still attempt to produce a barrier separating basal and adluminal compartment but that barrier formation is delayed and defective. Defective barrier formation was accompanied by disturbances in SC nuclear maturation (immature shape, absence of prominent, tripartite nucleoli and SC polarization (aberrant positioning of SC nuclei and cytoskeletal elements such as vimentin. Quantitative RT-PCR was used to study the transcript levels of genes potentially related to the described phenomena between day 8 and 35. Differences in the expression of SC genes known to play a role in junction formation could be shown from day 8 for Cldn11, from day 15 for Cldn3 and Espn, from day 20 for Cdh2 and Jam3 and from day 35 for ZO-1. Marked differences were also noted in the transcript levels of several genes that are also related to cell adhesion and cytoskeletal dynamics but that have not yet been studied in SC (Actn3, Ank3, Anxa9, Scin, Emb, Mpzl2. It is concluded that absence of a functional AR in SC impedes the remodeling of testicular tubules expected at the onset of spermatogenesis and interferes with the creation of the specific environment needed for germ cell development.

  3. Gamma-Diketone central neuropathy: quantitative analyses of cytoskeletal components in myelinated axons of the rat rubrospinal tract.

    Science.gov (United States)

    Lopachin, Richard M; Jortner, Bernard S; Reid, Maria L; Monir, Alim

    2005-12-01

    Loss of axon caliber is a primary component of gamma-diketone neuropathy [LoPachin RM, DeCaprio AP. gamma-Diketone central neuropathy: axon atrophy and the role of cytoskeletal protein adduction. Toxicol Appl Pharmacol 2004;199:20-34]. It is possible that this effect is mediated by changes in the density of cytoskeletal components and corresponding spatial relationships. To examine this possibility, morphometric methods were used to quantify the effects of 2,5-hexanedione (HD) intoxication on neurofilament-microtubule densities and nearest neighbor distances in myelinated rubrospinal axons. Rats were exposed to HD at one of two daily dose-rates (175 or 400 mg/kg per day, gavage) until a moderate level of neurotoxicity was achieved (99 or 21 days of intoxication, respectively) as determined by gait analysis and measurements of hindlimb grip strength. Results indicate that, regardless of dose-rate, HD intoxication did not cause changes in axonal neurofilament (NF) density, but did significantly increase microtubule (MT) density. No consistent alterations in interneurofilament or NF-MT distances were detected by ultrastructural morphometric analyses. These data suggest that the axon atrophy induced by HD was not mediated by major disruptions of stationary cytoskeletal organization. Recent biochemical studies of spinal cord from HD intoxicated rats showed that, although the NF protein content in the stationary cytoskeleton (polymer fraction) was not affected, the mobile subunit pool was depleted substantially [LoPachin RM, He D, Reid ML, Opanashuk LA. 2,5-Hexanedione-induced changes in the monomeric neurofilament protein content of rat spinal cord fractions. Toxicol Appl Pharmacol 2004;198:61-73]. The stability of the polymer fraction during HD intoxication is consistent with the absence of significant ultrastructural modifications noted in the present study. Together, these findings implicate loss of mobile NF proteins as the primary mechanism of axon atrophy. PMID

  4. Autothixotropy of Water and its Possible Importance for the Cytoskeletal Structures

    Science.gov (United States)

    Vybíral, Bohumil

    2011-12-01

    an organization of water in cytoskeletal structures are outlined.

  5. Antibody-based analysis reveals “filamentous vs. non-filamentous” and “cytoplasmic vs. nuclear” crosstalk of cytoskeletal proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kumeta, Masahiro, E-mail: kumeta@lif.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Kyoto 606-8501 (Japan); Hirai, Yuya; Yoshimura, Shige H. [Graduate School of Biostudies, Kyoto University, Kyoto 606-8501 (Japan); Horigome, Tsuneyoshi [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Takeyasu, Kunio [Graduate School of Biostudies, Kyoto University, Kyoto 606-8501 (Japan)

    2013-12-10

    To uncover the molecular composition and dynamics of the functional scaffold for the nucleus, three fractions of biochemically-stable nuclear protein complexes were extracted and used as immunogens to produce a variety of monoclonal antibodies. Many helix-based cytoskeletal proteins were identified as antigens, suggesting their dynamic contribution to nuclear architecture and function. Interestingly, sets of antibodies distinguished distinct subcellular localization of a single isoform of certain cytoskeletal proteins; distinct molecular forms of keratin and actinin were found in the nucleus. Their nuclear shuttling properties were verified by the apparent nuclear accumulations under inhibition of CRM1-dependent nuclear export. Nuclear keratins do not take an obvious filamentous structure, as was revealed by non-filamentous cytoplasmic keratin-specific monoclonal antibody. These results suggest the distinct roles of the helix-based cytoskeletal proteins in the nucleus. - Highlights: • A set of monoclonal antibodies were raised against nuclear scaffold proteins. • Helix-based cytoskeletal proteins were involved in nuclear scaffold. • Many cytoskeletal components shuttle into the nucleus in a CRM1-dependent manner. • Sets of antibodies distinguished distinct subcellular localization of a single isoform. • Nuclear keratin is soluble and does not form an obvious filamentous structure.

  6. Comprehensive maternal serum proteomics identifies the cytoskeletal proteins as non-invasive biomarkers in prenatal diagnosis of congenital heart defects.

    Science.gov (United States)

    Chen, Lizhu; Gu, Hui; Li, Jun; Yang, Ze-Yu; Sun, Xiao; Zhang, Li; Shan, Liping; Wu, Lina; Wei, Xiaowei; Zhao, Yili; Ma, Wei; Zhang, Henan; Cao, Songying; Huang, Tianchu; Miao, Jianing; Yuan, Zhengwei

    2016-01-01

    Congenital heart defects (CHDs) are the most common group of major birth defects. Presently there are no clinically used biomarkers for prenatally detecting CHDs. Here, we performed a comprehensive maternal serum proteomics assessment, combined with immunoassays, for the discovery of non-invasive biomarkers for prenatal diagnosis of CHDs. A total of 370 women were included in this study. An isobaric tagging for relative and absolute quantification (iTRAQ) proteomic approach was used first to compare protein profiles in pooled serum collected from women who had CHD-possessing or normal fetuses, and 47 proteins displayed significant differential expressions. Targeted verifications were performed on 11 proteins using multiple reaction monitoring mass spectrometry (MRM-MS), and the resultant candidate biomarkers were then further validated using ELISA analysis. Finally, we identified a biomarker panel composed of 4 cytoskeletal proteins capable of differentiating CHD-pregnancies from normal ones [with an area under the receiver operating characteristic curve (AUC) of 0.938, P < 0.0001]. The discovery of cytoskeletal protein changes in maternal serum not only could help us in prenatal diagnosis of CHDs, but also may shed new light on CHD embryogenesis studies. PMID:26750556

  7. Physiology of cell volume regulation in vertebrates

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Lambert, Ian H; Pedersen, Stine F

    2009-01-01

    cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage...... regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate...

  8. Ionising Radiation Immediately Impairs Synaptic Plasticity-Associated Cytoskeletal Signalling Pathways in HT22 Cells and in Mouse Brain: An In Vitro/In Vivo Comparison Study

    Science.gov (United States)

    Kempf, Stefan J.; Buratovic, Sonja; von Toerne, Christine; Moertl, Simone; Stenerlöw, Bo; Hauck, Stefanie M.; Atkinson, Michael J.; Eriksson, Per; Tapio, Soile

    2014-01-01

    Patients suffering from brain malignancies are treated with high-dose ionising radiation. However, this may lead to severe learning and memory impairment. Preventive treatments to minimise these side effects have not been possible due to the lack of knowledge of the involved signalling pathways and molecular targets. Mouse hippocampal neuronal HT22 cells were irradiated with acute gamma doses of 0.5 Gy, 1.0 Gy and 4.0 Gy. Changes in the cellular proteome were investigated by isotope-coded protein label technology and tandem mass spectrometry after 4 and 24 hours. To compare the findings with the in vivo response, male NMRI mice were irradiated on postnatal day 10 with a gamma dose of 1.0 Gy, followed by evaluation of the cellular proteome of hippocampus and cortex 24 hours post-irradiation. Analysis of the in vitro proteome showed that signalling pathways related to synaptic actin-remodelling were significantly affected at 1.0 Gy and 4.0 Gy but not at 0.5 Gy after 4 and 24 hours. We observed radiation-induced reduction of the miR-132 and Rac1 levels; miR-132 is known to regulate Rac1 activity by blocking the GTPase-activating protein p250GAP. In the irradiated hippocampus and cortex we observed alterations in the signalling pathways similar to those in vitro. The decreased expression of miR-132 and Rac1 was associated with an increase in hippocampal cofilin and phospho-cofilin. The Rac1-Cofilin pathway is involved in the modulation of synaptic actin filament formation that is necessary for correct spine and synapse morphology to enable processes of learning and memory. We suggest that acute radiation exposure leads to rapid dendritic spine and synapse morphology alterations via aberrant cytoskeletal signalling and processing and that this is associated with the immediate neurocognitive side effects observed in patients treated with ionising radiation. PMID:25329592

  9. Ionising radiation immediately impairs synaptic plasticity-associated cytoskeletal signalling pathways in HT22 cells and in mouse brain: an in vitro/in vivo comparison study.

    Directory of Open Access Journals (Sweden)

    Stefan J Kempf

    Full Text Available Patients suffering from brain malignancies are treated with high-dose ionising radiation. However, this may lead to severe learning and memory impairment. Preventive treatments to minimise these side effects have not been possible due to the lack of knowledge of the involved signalling pathways and molecular targets. Mouse hippocampal neuronal HT22 cells were irradiated with acute gamma doses of 0.5 Gy, 1.0 Gy and 4.0 Gy. Changes in the cellular proteome were investigated by isotope-coded protein label technology and tandem mass spectrometry after 4 and 24 hours. To compare the findings with the in vivo response, male NMRI mice were irradiated on postnatal day 10 with a gamma dose of 1.0 Gy, followed by evaluation of the cellular proteome of hippocampus and cortex 24 hours post-irradiation. Analysis of the in vitro proteome showed that signalling pathways related to synaptic actin-remodelling were significantly affected at 1.0 Gy and 4.0 Gy but not at 0.5 Gy after 4 and 24 hours. We observed radiation-induced reduction of the miR-132 and Rac1 levels; miR-132 is known to regulate Rac1 activity by blocking the GTPase-activating protein p250GAP. In the irradiated hippocampus and cortex we observed alterations in the signalling pathways similar to those in vitro. The decreased expression of miR-132 and Rac1 was associated with an increase in hippocampal cofilin and phospho-cofilin. The Rac1-Cofilin pathway is involved in the modulation of synaptic actin filament formation that is necessary for correct spine and synapse morphology to enable processes of learning and memory. We suggest that acute radiation exposure leads to rapid dendritic spine and synapse morphology alterations via aberrant cytoskeletal signalling and processing and that this is associated with the immediate neurocognitive side effects observed in patients treated with ionising radiation.

  10. Intracellular fibril formation, calcification, and enrichment of chaperones, cytoskeletal, and intermediate filament proteins in the adult hippocampus CA1 following neonatal exposure to the nonprotein amino acid BMAA.

    Science.gov (United States)

    Karlsson, Oskar; Berg, Anna-Lena; Hanrieder, Jörg; Arnerup, Gunnel; Lindström, Anna-Karin; Brittebo, Eva B

    2015-03-01

    The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) has been implicated in the etiology of neurodegenerative disease, and recent studies indicate that BMAA can be misincorporated into proteins. BMAA is a developmental neurotoxicant that can induce long-term learning and memory deficits, as well as regionally restricted neuronal degeneration and mineralization in the hippocampal CA1. The aim of the study was to characterize long-term changes (2 weeks to 6 months) further in the brain of adult rats treated neonatally (postnatal days 9-10) with BMAA (460 mg/kg) using immunohistochemistry (IHC), transmission electron microscopy, and laser capture microdissection followed by LC-MS/MS for proteomic analysis. The histological examination demonstrated progressive neurodegenerative changes, astrogliosis, microglial activation, and calcification in the hippocampal CA1 3-6 months after exposure. The IHC showed an increased staining for α-synuclein and ubiquitin in the area. The ultrastructural examination revealed intracellular deposition of abundant bundles of closely packed parallel fibrils in neurons, axons, and astrocytes of the CA1. Proteomic analysis of the affected site demonstrated an enrichment of chaperones (e.g., clusterin, GRP-78), cytoskeletal and intermediate filament proteins, and proteins involved in the antioxidant defense system. Several of the most enriched proteins (plectin, glial fibrillar acidic protein, vimentin, Hsp 27, and ubiquitin) are known to form complex astrocytic inclusions, so-called Rosenthal fibers, in the neurodegenerative disorder Alexander disease. In addition, TDP-43 and the negative regulator of autophagy, GLIPR-2, were exclusively detected. The present study demonstrates that neonatal exposure to BMAA may offer a novel model for the study of hippocampal fibril formation in vivo. PMID:24798087

  11. Identification of a novel function of CX-4945 as a splicing regulator.

    Directory of Open Access Journals (Sweden)

    Hyeongki Kim

    Full Text Available Alternative splicing is a nearly ubiquitous versatile process that controls gene expression and creates numerous protein isoforms with different functions from a single gene. The significance of alternative splicing has been confirmed by the increasing number of human diseases that are caused by misregulation of splicing events. Very few compounds, however, have been reported to act as inhibitors of alternative splicing, and their potential clinical use needs to be evaluated. Here, we report that CX-4945, a previously well-characterized inhibitor of casein kinase 2 (CK2 and a molecule currently in clinical trials (Phase II for cancer treatment, regulates splicing in mammalian cells in a CK2-independent manner. Transcriptome-wide analysis using exon array also showed a widespread alteration in alternative splicing of numerous genes. We found that CX-4945 potently inhibits the Cdc2-like kinases (Clks in vitro and in turn, leads to suppression of the phosphorylation of serine/arginine-rich (SR proteins in mammalian cells. Surprisingly, the overall efficacy of CX-4945 on Clks (IC50 = 3-90 nM was stronger than that of TG-003, the strongest inhibitor reported to date. Of the Clks, Clk2 was most strongly inhibited by CX-4945 in an ATP-competitive manner. Our research revealed an unexpected activity of the drug candidate CX-4945 as a potent splicing modulator and also suggested a potential application for therapy of diseases caused by abnormal splicing.

  12. Mechanism of regulation of stem cell differentiation by matrix stiffness

    OpenAIRE

    Lv, Hongwei; Li, Lisha; Sun, Meiyu; Zhang, Yin; Chen, Li; Rong, Yue; Li, Yulin

    2015-01-01

    Stem cell behaviors are regulated by multiple microenvironmental cues. As an external signal, mechanical stiffness of the extracellular matrix is capable of governing stem cell fate determination, but how this biophysical cue is translated into intracellular signaling remains elusive. Here, we elucidate mechanisms by which stem cells respond to microenvironmental stiffness through the dynamics of the cytoskeletal network, leading to changes in gene expression via biophysical transduction sign...

  13. Calponin 3 Regulates Actin Cytoskeleton Rearrangement in Trophoblastic Cell Fusion

    OpenAIRE

    Shibukawa, Yukinao; Yamazaki, Natsuko; Kumasawa, Keiichi; Daimon, Etsuko; Tajiri, Michiko; Okada, Yuka; Ikawa, Masahito; Wada, Yoshinao

    2010-01-01

    Cell–cell fusion is an intriguing differentiation process, essential for placental development and maturation. A proteomic approach identified a cytoplasmic protein, calponin 3 (CNN3), related to the fusion of BeWo choriocarcinoma cells. CNN3 was expressed in cytotrophoblasts in human placenta. CNN3 gene knockdown promoted actin cytoskeletal rearrangement and syncytium formation in BeWo cells, suggesting CNN3 to be a negative regulator of trophoblast fusion. Indeed, CNN3 depletion promoted Be...

  14. Xenopus cytoskeletal actin and human c-fos gene promoters share a conserved protein-binding site.

    Science.gov (United States)

    Mohun, T; Garrett, N; Treisman, R

    1987-03-01

    Xenopus laevis cytoskeletal actin gene promoters contain a 20-bp sequence homologous to the serum response element (SRE) required for transient human c-fos gene transcription in response to serum factors. Both sequences bind the same factor in HeLa cell extracts, as shown by binding competition, DNase I and dimethylsulphate (DMS) protection and DMS interference assays. A similar protein is present in Xenopus laevis oocytes. Sequences containing the SRE homology are essential for constitutive activity of the actin promoter in both Xenopus and mouse cells, and a synthetic SRE functions as a promoter element in these cells. In mouse cells, transcription of both transfected Xenopus actin and actin/c-fos fusion genes is activated following serum stimulation. These data suggest that the SRE and its cognate protein form part of a regulatory pathway that has been highly conserved during evolution. PMID:3582369

  15. Neoplastic progression of the human breast cancer cell line G3S1 is associated with elevation of cytoskeletal dynamics and upregulation of MT1-MMP

    Czech Academy of Sciences Publication Activity Database

    Tolde, O.; Rosel, D.; Mierke, C.T.; Paňková, D.; Folk, P.; Veselý, Pavel; Brabek, J.

    2010-01-01

    Roč. 36, č. 4 (2010), s. 833-839. ISSN 1019-6439 R&D Projects: GA MŠk(CZ) LC06061 Institutional research plan: CEZ:AV0Z50520514 Keywords : invasiveness * neoplastic progression * cytoskeletal dynamics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.571, year: 2010

  16. Plasticity of mesenchymal stem cells under microgravity: from cytoskeletal reorganization to commitment shift

    Science.gov (United States)

    Buravkova, Ludmila

    Mesenchymal stem cells (MSCs) can be used to examine osteogenesis of uncommitted cells maintaining the bone differentiation potential such as osteogenic gene expression, osteogenic markers, matrix maturation and mineralization. MSCs are therefore a good model for studying osteogenesis in the space environment. Recent investigations have demonstrated that MSCs change in response to microgravity and, consequently, can be involved in the development of osteopenia detected in space travelers. This is a factor that can limit human space missions due to potential risks of osteoporosis and its aftereffects during and after flight. Simulated microgravity inhibited MSC differentiation towards osteoblasts and accelerated adipocyte development due to cytoskeleton modifications, including its structure and regulation associated with signal transduction cascades. We identified transient changes in the actin cytoskeleton of non-committed human bone marrow MSCs in short-term RPM experiments. In addition, we detected transient changes in the expression of genes encoding actin cytoskeleton proteins and associated elements (ACTA1, ACTG, RHOA, CFL1, VCL). When discussing the microgravity effects on MSC osteogenic differentiation, it should be mentioned the inhibition of Runx2 and ALPL and stimulation of PPARg2 in the MSCs induced for osteogenesis. It is probable that the reciprocal regulation of the two transcription factors is a molecular mechanism underlying progenitor cell response to microgravity. It is very likely that these genes are involved in the universal circuits within which mechanical (or gravity ) signals are sensed by MSCs. Recently, the list of osteogenic markers was extended to include several new proteins as microgravity targets (proteoglycans, osteomodulin, osteoglycin). It can be believed that exposure to microgravity produces similar effects on mature bone cells (osteoblasts) and non-committed osteogenic cells (MSCs). This finds a support in the fact that

  17. Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis

    Science.gov (United States)

    García-Hevia, Lorena; Valiente, Rafael; Martín-Rodríguez, Rosa; Renero-Lecuna, Carlos; González, Jesús; Rodríguez-Fernández, Lidia; Aguado, Fernando; Villegas, Juan C.; Fanarraga, Mónica L.

    2016-05-01

    Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin filament bundling and structural changes in microtubules, transforming these highly dynamic 25 nm diameter polymers into rigid macrotubes of tubulin, severely affecting cell proliferation and survival. Our results demonstrate that nano-ZnO causes acute cytoskeletal collapse that triggers necrosis, followed by a late reactive oxygen species (ROS)-dependent apoptotic process.Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin

  18. Effect of collagen I and fibronectin on the adhesion, elasticity and cytoskeletal organization of prostate cancer cells

    International Nuclear Information System (INIS)

    Research highlights: → Depending on the metastatic origin, prostate cancer cells differ in their affinity to COL1. → COL1 affects specifically the F-actin and cell elasticity of bone-derived prostate cancer cells. → Cell elasticity can be used as a biomarker for cancer cells from different metastases. -- Abstract: Despite of intensive research efforts, the precise mechanism of prostate cancer metastasis in bone is still not fully understood. Several studies have suggested that specific matrix production by the bone cells, such as collagen I, supports cancer cell invasion. The aim of this study was to investigate the effect of collagen I (COL1) and fibronectin (FN) on cell adhesion, cell elasticity and cytoskeletal organization of prostate cancer cells. Two cell lines, bone marrow- (PC3) and lymph node-derived (LNCaP) were cultivated on COL1 and FN (control protein). By using a quantitative adhesion assay and time-lapse analysis, it was found that PC3, but not LNCaP, adhered strongly and were more spread on COL1. Next, PC3 and LNCaP were evaluated by atomic force microscopy (AFM) and flatness shape factor and cellular Young's modulus were calculated. The shape analysis revealed that PC3 were significantly flatter when grown on COL1 in comparison to LNCaP. In general, PC3 were also significantly stiffer than LNCaP and furthermore, their stiffness increased upon interaction with COL1. Since cell stiffness is strongly dependent on actin organization, phalloidin-based actin staining was performed and revealed that, of the two cell types as well as the two different matrix proteins, only PC3 grown on COL1 formed robust actin cytoskeleton. In conclusion, our study showed that PC3 cells have a strong affinity towards COL1. On this matrix protein, the cells adhered strongly and underwent a specific cell flattening. Moreover, with the establishment of PC3 contact to COL1 a significant increase of PC3 stiffness was observed due to a profound cytoskeletal rearrangement.

  19. Filament networks attached to membranes: cytoskeletal pressure and local bilayer deformation

    Energy Technology Data Exchange (ETDEWEB)

    Auth, Thorsten [Department of Materials and Interfaces, Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel); Safran, S A [Department of Materials and Interfaces, Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel); Gov, Nir S [Department of Chemical Physics, Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel)

    2007-11-15

    Several cell types, among them red blood cells, have a cortical, two-dimensional (2D) network of filaments sparsely attached to their lipid bilayer. In many mammalian cells, this 2D polymer network is connected to an underlying 3D, more rigid cytoskeleton. In this paper, we consider the pressure exerted by the thermally fluctuating, cortical network of filaments on the bilayer and predict the bilayer deformations that are induced by this pressure. We treat the filaments as flexible polymers and calculate the pressure that a network of such linear chains exerts on the bilayer; we then minimize the bilayer shape in order to predict the resulting local deformations. We compare our predictions with membrane deformations observed in electron micrographs of red blood cells. The polymer pressure along with the resulting membrane deformation can lead to compartmentalization, regulate in-plane diffusion and may influence protein sorting as well as transmit signals to the polymerization of the underlying 3D cytoskeleton.

  20. The connection of cytoskeletal network with plasma membrane and the cell wall

    Institute of Scientific and Technical Information of China (English)

    Zengyu Liu; Staffan Persson; Yi Zhang

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosyn-thesis and modifications, and aim to provide a platform for further studies in this field.

  1. Brain-Specific Cytoskeletal Damage Markers in Cerebrospinal Fluid: Is There a Common Pattern between Amyotrophic Lateral Sclerosis and Primary Progressive Multiple Sclerosis?

    Science.gov (United States)

    Abdelhak, Ahmed; Junker, Andreas; Brettschneider, Johannes; Kassubek, Jan; Ludolph, Albert C; Otto, Markus; Tumani, Hayrettin

    2015-01-01

    Many neurodegenerative disorders share a common pathophysiological pathway involving axonal degeneration despite different etiological triggers. Analysis of cytoskeletal markers such as neurofilaments, protein tau and tubulin in cerebrospinal fluid (CSF) may be a useful approach to detect the process of axonal damage and its severity during disease course. In this article, we review the published literature regarding brain-specific CSF markers for cytoskeletal damage in primary progressive multiple sclerosis and amyotrophic lateral sclerosis in order to evaluate their utility as a biomarker for disease progression in conjunction with imaging and histological markers which might also be useful in other neurodegenerative diseases associated with affection of the upper motor neurons. A long-term benefit of such an approach could be facilitating early diagnostic and prognostic tools and assessment of treatment efficacy of disease modifying drugs. PMID:26263977

  2. Proteomics displays cytoskeletal proteins and chaperones involvement in Hedyotis corymbosa-induced photokilling in skin cancer cells.

    Science.gov (United States)

    You, Bang-Jau; Wu, Yang-Chang; Wu, Chi-Yu; Bao, Bo-Ying; Chen, Mei-Yu; Chang, Yu-Hao; Lee, Hong-Zin

    2011-08-01

    Photodynamic therapy was found to be an effective therapy for local malignant tumors. This study demonstrated that 80 μg/ml Hedyotis corymbosa extracts with 0.8 J/cm(2) fluence dose caused M21 skin cancer cell death. Photoactivated H. corymbosa-induced M21 cell death is a typical apoptosis that is accompanied by nuclear condensation, externalization of phosphatidylserine and the changes in protein expression of apoptosis-related proteins, such as Bcl-2 and caspase family members. This study applied 2D electrophoresis to analyse the proteins involved in the photoactivated H. corymbosa-induced M21 cell apoptosis. We found 12 proteins to be markedly changed. According to the results of protein sequence analysis of these altered protein spots, we identified that the expression of cytoskeletal proteins and chaperones were involved in the photoactivated H. corymbosa-induced M21 cell apoptosis. We further demonstrated that photoactivated H. corymbosa caused a significant effect on the cytoskeleton distribution and mitochondrial activity in M21 cells. Based on the above findings, this study characterized the effects and mechanisms of the photoactivated H. corymbosa-induced apoptosis in M21 skin cancer cells. PMID:21569101

  3. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    International Nuclear Information System (INIS)

    Experiments were designed to examine the effects of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements (γ- and β-actin and α-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either α-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide, however, revealed several interesting and novel findings: (1) Cycloheximide repressed accumulation of α-tubulin following exposure to high dose-rate neutrons or γ rays; this did not occur following similar low dose-rate exposure (2) Cycloheximide did not affect accumulation of mRNA for actin genes. Cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to γ rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of α-tubulin and fibronectin mRNA accumulation following exposure to ionizing radiation. In addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons

  4. Giardia duodenalis Surface Cysteine Proteases Induce Cleavage of the Intestinal Epithelial Cytoskeletal Protein Villin via Myosin Light Chain Kinase.

    Directory of Open Access Journals (Sweden)

    Amol Bhargava

    Full Text Available Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal disease worldwide. At the height of infection, G. duodenalis trophozoites induce multiple pathophysiological processes within intestinal epithelial cells that contribute to the development of diarrhoeal disease. To date, our understanding of pathophysiological processes in giardiasis remains incompletely understood. The present study reveals a previously unappreciated role for G. duodenalis cathepsin cysteine proteases in intestinal epithelial pathophysiological processes that occur during giardiasis. Experiments first established that Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-incubation of G. duodenalis with human enterocytes enhanced cathepsin production by Assemblage A (NF and S2 isolates trophozoites, but not when epithelial cells were exposed to Assemblage B (GSM isolate trophozoites. Direct contact between G. duodenalis parasites and human intestinal epithelial monolayers resulted in the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abolished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of parasite proteases did not prevent degradation of the intestinal tight junction-associated protein zonula occludens 1 (ZO-1, suggesting that G. duodenalis induces multiple pathophysiological processes within intestinal epithelial cells. Finally, this study demonstrates that G. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of myosin light chain kinase (MLCK. Taken together, this study indicates a novel role for parasite cathepsin cysteine proteases in the pathophysiology of G. duodenalis infections.

  5. Antinuclear, Cytoskeletal, Antineuronal Antibodies in the Serum Samples of Children with Tic Disorders and Obsessive Compulsive Disorders

    Directory of Open Access Journals (Sweden)

    Işık Görker

    2011-11-01

    Full Text Available streptococcus infections in the development of tic and obsessive compulsive disorders (OCD is controversial. The autoimmune hypothesis states that during infection, formation of autoantibodies leads to an autoimmune disorder, which in turn results in movement disorders, tic disorders and/or OCD. In order to test this hypothesis, we assayed these antibodies in children and adolescents diagnosed with tic disorders and/or OCD.Material and Methods: Children and adolescents who were diagnosed with either tic disorders or OCD according to DSM-IV criteria (n=28, were compared with healthy controls (n=15 having similar age and gender characteristics. Regardless of a streptococcus infection history, serum samples of all patients and controls underwent antinuclear, cytoskeletal, and antineuronal antibody assay using indirect immunofluorescence.Results: The rates of antinuclear antibody positivity were 21% and 20% in the patient and control groups respectively (p>0.05. Antineuronal antibody was positive in 2 (7% of 28 patients versus in 1 (6% of 15 controls (p>0.05.Conclusion: These results suggest that such antibodies may not be involved in the pathogenesis of tic disorders/OCD.

  6. Overexpression of dishevelled-1 attenuates wortmannin-induced hyperphosphorylation of cytoskeletal proteins in N2a cell

    Institute of Scientific and Technical Information of China (English)

    Hai-hong WANG; Ai-hong ZHANG; Ling-qiang ZHU; Qun WANG; Jian-zhi WANG

    2005-01-01

    Aim: To investigate the effect of dishevelled- 1 (DVL- 1) on wortmannin-induced Alzheimer-like hyperphosphorylation of cytoskeletal proteins in mouse neuroblastoma 2a (N2a) cells. Methods: Cultured N2a cells were transitorily transfected with DVL-1 expression plasmid using LipofectamineTM 2000. Western blot and immunofluorescence microscopy were used to measure the phosphorylation of neurofilament and tau. Results: Level of phosphorylated neurofilament at SMI31 epitope and phosphorylated tau determined by PHF-1 was increased at 1 h and 3 h and back to normal at 6 h after wortmannin 1 μmol/L treatment. The highest level of phosphorylated neurofilament and phosphorylated tau was seen at 1 h and 3 h after wortmannin treatment, respectively. When DVL- 1 protein was overexpressed,the hyperphosphorylation of neurofilament at SMI31 and SMI32 epitopes and tau at PHF- 1 (Ser-396/404), M4 (Thr-231/Ser-235), and Tau- 1 (Ser- 198/199/202) epitopes was attenuated. Conclusion: Overexpression of mouse DVL-1 protein inhibits wortmannin-induced hyperphosphorylation of neurofilament and tau in N2a cells.

  7. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg(2+) homeostasis and cytoskeletal architecture.

    Science.gov (United States)

    Stritt, Simon; Nurden, Paquita; Favier, Remi; Favier, Marie; Ferioli, Silvia; Gotru, Sanjeev K; van Eeuwijk, Judith M M; Schulze, Harald; Nurden, Alan T; Lambert, Michele P; Turro, Ernest; Burger-Stritt, Stephanie; Matsushita, Masayuki; Mittermeier, Lorenz; Ballerini, Paola; Zierler, Susanna; Laffan, Michael A; Chubanov, Vladimir; Gudermann, Thomas; Nieswandt, Bernhard; Braun, Attila

    2016-01-01

    Mg(2+) plays a vital role in platelet function, but despite implications for life-threatening conditions such as stroke or myocardial infarction, the mechanisms controlling [Mg(2+)]i in megakaryocytes (MKs) and platelets are largely unknown. Transient receptor potential melastatin-like 7 channel (TRPM7) is a ubiquitous, constitutively active cation channel with a cytosolic α-kinase domain that is critical for embryonic development and cell survival. Here we report that impaired channel function of TRPM7 in MKs causes macrothrombocytopenia in mice (Trpm7(fl/fl-Pf4Cre)) and likely in several members of a human pedigree that, in addition, suffer from atrial fibrillation. The defect in platelet biogenesis is mainly caused by cytoskeletal alterations resulting in impaired proplatelet formation by Trpm7(fl/fl-Pf4Cre) MKs, which is rescued by Mg(2+) supplementation or chemical inhibition of non-muscle myosin IIA heavy chain activity. Collectively, our findings reveal that TRPM7 dysfunction may cause macrothrombocytopenia in humans and mice. PMID:27020697

  8. Tyrosine-phosphorylated caveolin-1 blocks bacterial uptake by inducing Vav2-RhoA-mediated cytoskeletal rearrangements.

    Directory of Open Access Journals (Sweden)

    Jan Peter Boettcher

    Full Text Available Certain bacterial adhesins appear to promote a pathogen's extracellular lifestyle rather than its entry into host cells. However, little is known about the stimuli elicited upon such pathogen host-cell interactions. Here, we report that type IV pili (Tfp-producing Neisseria gonorrhoeae (P(+GC induces an immediate recruitment of caveolin-1 (Cav1 in the host cell, which subsequently prevents bacterial internalization by triggering cytoskeletal rearrangements via downstream phosphotyrosine signaling. A broad and unbiased analysis of potential interaction partners for tyrosine-phosphorylated Cav1 revealed a direct interaction with the Rho-family guanine nucleotide exchange factor Vav2. Both Vav2 and its substrate, the small GTPase RhoA, were found to play a direct role in the Cav1-mediated prevention of bacterial uptake. Our findings, which have been extended to enteropathogenic Escherichia coli, highlight how Tfp-producing bacteria avoid host cell uptake. Further, our data establish a mechanistic link between Cav1 phosphorylation and pathogen-induced cytoskeleton reorganization and advance our understanding of caveolin function.

  9. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    International Nuclear Information System (INIS)

    Experiments were designed to examine the effects Of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements (γ- and β-actin and α-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either α-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide revealed that cycloheximide repressed accumulation of α-tubulin following exposure to high dose-rate neutrons or γ rays; this did not occur following similar low dose-rate exposure. (2) Cycloheximide did not affect accumulation of MRNA for actin genes; and that cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to γ rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of α-tubulin and fibronectin MRNA accumulation following exposure to ionizing radiation. in addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons

  10. Cytoskeletal logic: a model for molecular computation via Boolean operations in microtubules and microtubule-associated proteins.

    Science.gov (United States)

    Lahoz-Beltra, R; Hameroff, S R; Dayhoff, J E

    1993-01-01

    Adaptive behaviors and dynamic activities within living cells are organized by the cytoskeleton: intracellular networks of interconnected protein polymers which include microtubules (MTs), actin, intermediate filaments, microtubule associated proteins (MAPs) and other protein structures. Cooperative interactions among cytoskeletal protein subunit conformational states have been used to model signal transmission and information processing. In the present work we present a theoretical model for molecular computing in which Boolean logic is implemented in parallel networks of individual MTs interconnected by MAPs. Conformational signals propagate on MTs as in data buses and in the model MAPs are considered as Boolean operators, either as bit-lines (like MTs) where a signal can be transported unchanged between MTs ('BUS-MAP'), or as bit-lines where a Boolean operation is performed in one of the two MAP-MT attachments ('LOGIC-MAP'). Three logic MAPs have been defined ('NOT-MAP, 'AND-MAP', 'XOR-MAP') and used to demonstrate addition, subtraction and other arithmetic operations. Although our choice of Boolean logic is arbitrary, the simulations demonstrate symbolic manipulation in a connectionist system and suggest that MT-MAP networks can perform computation in living cells and are candidates for future molecular computing devices. PMID:8318677

  11. Motor protein traffic regulation by supply–demand balance of resources

    International Nuclear Information System (INIS)

    In cells and in in vitro assays the number of motor proteins involved in biological transport processes is far from being unlimited. The cytoskeletal binding sites are in contact with the same finite reservoir of motors (either the cytosol or the flow chamber) and hence compete for recruiting the available motors, potentially depleting the reservoir and affecting cytoskeletal transport. In this work we provide a theoretical framework in which to study, analytically and numerically, how motor density profiles and crowding along cytoskeletal filaments depend on the competition of motors for their binding sites. We propose two models in which finite processive motor proteins actively advance along cytoskeletal filaments and are continuously exchanged with the motor pool. We first look at homogeneous reservoirs and then examine the effects of free motor diffusion in the surrounding medium. We consider as a reference situation recent in vitro experimental setups of kinesin-8 motors binding and moving along microtubule filaments in a flow chamber. We investigate how the crowding of linear motor proteins moving on a filament can be regulated by the balance between supply (concentration of motor proteins in the flow chamber) and demand (total number of polymerized tubulin heterodimers). We present analytical results for the density profiles of bound motors and the reservoir depletion, and propose novel phase diagrams that present the formation of jams of motor proteins on the filament as a function of two tuneable experimental parameters: the motor protein concentration and the concentration of tubulins polymerized into cytoskeletal filaments. Extensive numerical simulations corroborate the analytical results for parameters in the experimental range and also address the effects of diffusion of motor proteins in the reservoir. We then propose experiments for validating our models and discuss how the ‘supply–demand’ effects can regulate motor traffic also in in vivo

  12. SINGLE-CELL LEVEL INVESTIGATION OF CYTOSKELETAL/CELLULAR RESPONSE TO EXTERNAL STIMULI

    Energy Technology Data Exchange (ETDEWEB)

    Hiddessen, A L

    2007-02-26

    A detailed understanding of the molecular mechanisms by which chemical signals control cell behavior is needed if the complex biological processes of embryogenesis, development, health and disease are to be completely understood. Yet, if we are to fully understand the molecular mechanisms controlling cell behavior, measurements at the single cell level are needed to supplement information gained from population level studies. One of the major challenges to accomplishing studies at the single cell level has been a lack of physical tools to complement the powerful molecular biological assays which have provided much of what we currently know about cell behavior. The goal of this exploratory project is the development of an experimental platform that facilitates integrated observation, tracking and analysis of the responses of many individual cells to controlled environmental factors (e.g. extracellular signals). Toward this goal, we developed chemically-patterned microarrays of both adherent and suspension mammalian cell types. A novel chemical patterning methodology, based on photocatalytic lithography, was developed to construct biomolecule and cell arrays that facilitate analysis of biological function. Our patterning techniques rely on inexpensive stamp materials and visible light, and do not necessitate mass transport or specified substrates. Patterned silicon and glass substrates are modified such that there is a non-biofouling polymer matrix surrounding the adhesive regions that target biomolecules and cells. Fluorescence and reflectance microscopy reveal successful patterning of proteins and single to small clusters of mammalian cells. In vitro assays conducted upon cells on the patterned arrays demonstrate the viability of cells interfacing with this synthetic system. Hence, we have successfully established a versatile cell measurement platform which can be used to characterize the molecular regulators of cellular behavior in a variety of important

  13. Missing-in-Metastasis regulates cell motility and invasion via PTPδ-mediated changes in SRC activity

    OpenAIRE

    Chaudhary, Fauzia; Lucito, Robert; Tonks, Nicholas K.

    2015-01-01

    Missing in Metastasis (MIM), also known as MTSS1, is a scaffold protein that is down-regulated in multiple metastatic cancer cell lines compared to non-metastatic counterparts. MIM regulates cytoskeletal dynamics and actin polymerization, and has been implicated in the control of cell motility and invasion. MIM has also been shown to bind to a receptor PTP, PTPδ, an interaction that may provide a link between tyrosine phosphorylation-dependent signaling and metastasis. We used shRNA-mediated ...

  14. A role for the actin-bundling protein l-plastin in the regulation of leukocyte integrin function

    OpenAIRE

    Jones, Samuel L.; Wang, Jun; Turck, Christoph W; Brown, Eric J.

    1998-01-01

    Regulation of leukocyte integrin avidity is a crucial aspect of inflammation and immunity. The actin cytoskeleton has an important role in the regulation of integrin function, but the cytoskeletal proteins involved are largely unknown. Because inflammatory stimuli that activate integrin-mediated adhesion in human polymorphonuclear neutrophils (PMN) and monocytes cause phosphorylation of the actin-bundling protein l-plastin, we tested whether l-plastin phosphorylation was involved in integrin ...

  15. Casein Kinase 2α Regulates Glioblastoma Brain Tumor Initiating Cell Growth through the β-Catenin Pathway

    OpenAIRE

    Nitta, Ryan T; Gholamin, Sharareh; Feroze, Abdullah H.; Agarwal, Maya; Cheshier, Samuel H.; Mitra, Siddhartha S.; Li, Gordon

    2014-01-01

    Glioblastoma (GBM) is the most common and fatal primary brain tumor in humans and it is essential that new and better therapies are developed to treat this disease. Previous research suggests that casein kinase 2 (CK2), may be a promising therapeutic target for GBMs. CK2 has enhanced expression or activity in numerous cancers, including GBM and it has been demonstrated that inhibitors of CK2 regressed tumor growth in GBM xenograft mouse models. Our studies demonstrate that the CK2 subunit, CK...

  16. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading

    Science.gov (United States)

    Tagawa, H.; Koide, M.; Sato, H.; Zile, M. R.; Carabello, B. A.; Cooper, G. 4th

    1998-01-01

    Increased microtubule density causes cardiocyte contractile dysfunction in right ventricular (RV) pressure-overload hypertrophy, and these linked phenotypic and contractile abnormalities persist and progress during the transition to failure. Although more severe in cells from failing than hypertrophied RVs, the mechanical defects are normalized in each case by microtubule depolymerization. To define the role of increased microtubule density in left ventricular (LV) pressure-overload hypertrophy and failure, in a given LV we examined ventricular mechanics, sarcomere mechanics, and free tubulin and microtubule levels in control dogs and in dogs with aortic stenosis both with LV hypertrophy alone and with initially compensated hypertrophy that had progressed to LV muscle failure. In comparing initial values with those at study 8 weeks later, dogs with hypertrophy alone had a very substantial increase in LV mass but preservation of a normal ejection fraction and mean systolic wall stress. Dogs with hypertrophy and associated failure had a substantial but lesser increase in LV mass and a reduction in ejection fraction, as well as a marked increase in mean systolic wall stress. Cardiocyte contractile function was equivalent, and unaffected by microtubule depolymerization, in cells from control LVs and those with compensated hypertrophy. In contrast, cardiocyte contractile function in cells from failing LVs was quite depressed but was normalized by microtubule depolymerization. Microtubules were increased only in failing LVs. These contractile and cytoskeletal changes, when assayed longitudinally in a given dog by biopsy, appeared in failing ventricles only when wall stress began to increase and function began to decrease. Thus, the microtubule-based cardiocyte contractile dysfunction characteristic of pressure-hypertrophied myocardium, originally described in the RV, obtains equally in the LV but is shown here to have a specific association with increased wall stress.

  17. Cdc42 and k-Ras Control Endothelial Tubulogenesis through Apical Membrane and Cytoskeletal Polarization: Novel Stimulatory Roles for GTPase Effectors, the Small GTPases, Rac2 and Rap1b, and Inhibitory Influence of Arhgap31 and Rasa1.

    Directory of Open Access Journals (Sweden)

    Pieter R Norden

    Full Text Available A critical and understudied property of endothelial cells is their ability to form lumens and tube networks. Although considerable information has been obtained concerning these issues, including the role of Cdc42 and Rac1 and their effectors such as Pak2, Pak4, Par6b, and co-regulators such as integrins, MT1-MMP and Par3; many key questions remain that are necessary to elucidate molecular and signaling requirements for this fundamental process. In this work, we identify new small GTPase regulators of EC tubulogenesis including k-Ras, Rac2 and Rap1b that act in conjunction with Cdc42 as well as the key downstream effectors, IQGAP1, MRCKβ, beta-Pix, GIT1, and Rasip1 (which can assemble into multiprotein complexes with key regulators including α2β1 integrin and MT1-MMP. In addition, we identify the negative regulators, Arhgap31 (by inactivating Cdc42 and Rac and Rasa1 (by inactivating k-Ras and the positive regulator, Arhgap29 (by inactivating RhoA which play a major functional role during the EC tubulogenic process. Human EC siRNA suppression or mouse knockout of Rasip1 leads to identical phenotypes where ECs form extensive cord networks, but cannot generate lumens or tubes. Essential roles for these molecules during EC tubulogenesis include; i establishment of asymmetric EC cytoskeletal polarization (subapical distribution of acetylated tubulin and basal membrane distribution of F-actin; and ii directed membrane trafficking of pinocytic vacuoles or other intracellular vesicles along acetylated tubulin tracks to the developing apical membrane surface. Cdc42 co-localizes subapically with acetylated tubulin, while Rac1 and k-Ras strongly label vacuole/ vesicle membranes which accumulate and fuse together in a polarized, perinuclear manner. We observe polarized apical membrane and subapical accumulation of key GTPases and effectors regulating EC lumen formation including Cdc42, Rac1, Rac2, k-Ras, Rap1b, activated c-Raf and Rasip1 to control EC

  18. α-Tubulin Tyrosination and CLIP-170 Phosphorylation Regulate the Initiation of Dynein-Driven Transport in Neurons.

    Science.gov (United States)

    Nirschl, Jeffrey J; Magiera, Maria M; Lazarus, Jacob E; Janke, Carsten; Holzbaur, Erika L F

    2016-03-22

    Motor-cargo recruitment to microtubules is often the rate-limiting step of intracellular transport, and defects in this recruitment can cause neurodegenerative disease. Here, we use in vitro reconstitution assays with single-molecule resolution, live-cell transport assays in primary neurons, computational image analysis, and computer simulations to investigate the factors regulating retrograde transport initiation in the distal axon. We find that phosphorylation of the cytoskeletal-organelle linker protein CLIP-170 and post-translational modifications of the microtubule track combine to precisely control the initiation of retrograde transport. Computer simulations of organelle dynamics in the distal axon indicate that while CLIP-170 primarily regulates the time to microtubule encounter, the tyrosination state of the microtubule lattice regulates the likelihood of binding. These mechanisms interact to control transport initiation in the axon in a manner sensitive to the specialized cytoskeletal architecture of the neuron. PMID:26972003

  19. Novelty-induced activity-regulated cytoskeletal-associated protein (Arc) expression in frontal cortex requires serotonin 2A receptor activation

    DEFF Research Database (Denmark)

    Santini, Martin; Klein, A B; El-Sayed, M;

    2011-01-01

    Many psychiatric disorders are characterized by cognitive and emotional alterations that are related to abnormal function of the frontal cortex (FC). FC is involved in working memory and decision making and is activated following exposure to a novel environment. The serotonin 2A receptor (5-HT(2A...

  20. Muscle Activity and Muscle Agrin Regulate the Organization of Cytoskeletal Proteins and Attached Acetylcholine Receptor (Achr) Aggregates in Skeletal Muscle Fibers

    OpenAIRE

    Bezakova, Gabriela; Lømo, Terje

    2001-01-01

    In innervated skeletal muscle fibers, dystrophin and β-dystroglycan form rib-like structures (costameres) that appear as predominantly transverse stripes over Z and M lines. Here, we show that the orientation of these stripes becomes longitudinal in denervated muscles and transverse again in denervated electrically stimulated muscles. Skeletal muscle fibers express nonneural (muscle) agrin whose function is not well understood. In this work, a single application of ≥10 nM purified recombinant...

  1. Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae.

    OpenAIRE

    Bailleul, P A; Newnam, G P; Steenbergen, J N; Chernoff, Y O

    1999-01-01

    Striking similarities between cytoskeletal assembly and the "nucleated polymerization" model of prion propagation suggest that similar or overlapping sets of proteins may assist in both processes. We show that the C-terminal domain of the yeast cytoskeletal assembly protein Sla1 (Sla1C) specifically interacts with the N-terminal prion-forming domain (Sup35N) of the yeast release factor Sup35 (eRF3) in the two-hybrid system. Sla1C and several other Sup35N-interacting proteins also exhibit two-...

  2. Casein kinase 2 regulates the active uptake of the organic osmolyte taurine in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Jacobsen, Jack H; Clement, Christian A; Friis, Martin B;

    2008-01-01

    T to ER but has no detectable effect on TauT protein expression. On the other hand, CK2 inhibition increases the affinity of TauT towards Na(+ )and reduces the Na(+)/taurine stoichiometry for active taurine uptake. It is suggested that CK2 controls the cellular taurine uptake in unperturbated NIH3T3......Inhibition of the constitutively active casein kinase 2 (CK2) with 2-dimethyl-amino-4,5,6,7-tetrabromo-1H-benzimidasole stimulates the Na(+)-dependent taurine influx via the taurine transporter TauT in NIH3T3 cells. CK2 inhibition reduces the TauT mRNA level and increases the localization of Tau...... cells, i.e., inhibition of CK2 increases the affinity of TauT towards Na(+) and hence Na(+)-dependent taurine uptake....

  3. The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking

    International Nuclear Information System (INIS)

    The impact of the RNA-binding protein HuR for the post-transcriptional deregulation of tumor-relevant genes is well established. Despite of elevations in HuR expression levels, an increase in cytoplasmic HuR abundance in many cases correlates with a high grade of malignancy. Here, we demonstrated that administration of the actin-depolymerizing macrolide latrunculin A, or blebbistatin, an inhibitor of myosin II ATPase activity, caused a dose- and time-dependent reduction in the high cytoplasmic HuR content of HepG2 and Huh7 hepatocellular carcinoma (HCC) cells. Subcellular fractionation revealed that in addition, both inhibitors strongly attenuated cytoskeletal and membrane-bound HuR abundance and conversely increased the HuR amount in nuclear cell fractions. Concomitant with changes in intracellular HuR localization, both cytoskeletal inhibitors markedly decreased the half-lives of cyclooxygenase-2 (COX-2), cyclin A and cyclin D1 encoding mRNAs resulting in a significant reduction in their expression levels in HepG2 cells. Importantly, a similar reduction in the expression of these HuR targets was achieved by a RNA interference (RNAi)-mediated knockdown of either HuR or nonmuscle myoin IIA. Using polysomal fractionation, we further demonstrate that the decrease in cytoplasmic HuR by latrunculin A or blebbistatin is accompanied by a marked change in the allocation of HuR and its mRNA cargo from polysomes to ribonucleoprotein (RNP) particles. Functionally, the basal migration and prostaglandin E2 synthesis are similarly impaired in inhibitor-treated and stable HuR-knockdown HepG2 cells. Our data demonstrate that interfering with the actomyosin-dependent HuR trafficking may comprise a valid therapeutic option for antagonizing pathologic posttranscriptional gene expression by HuR and furthermore emphasize the potential benefit of HuR inhibitory strategies for treatment of HCC. - Highlights: • We tested the effects of latrunculin A and blebbistatin on different Hu

  4. The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Doller, Anke; Badawi, Amel [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Schmid, Tobias; Brauß, Thilo [Institut für Biochemie I (Pathobiochemie), Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Pleli, Thomas [Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Meyer zu Heringdorf, Dagmar [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Piiper, Albrecht [Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Pfeilschifter, Josef [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Eberhardt, Wolfgang, E-mail: w.eberhardt@em.uni-frankfurt.de [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany)

    2015-01-01

    The impact of the RNA-binding protein HuR for the post-transcriptional deregulation of tumor-relevant genes is well established. Despite of elevations in HuR expression levels, an increase in cytoplasmic HuR abundance in many cases correlates with a high grade of malignancy. Here, we demonstrated that administration of the actin-depolymerizing macrolide latrunculin A, or blebbistatin, an inhibitor of myosin II ATPase activity, caused a dose- and time-dependent reduction in the high cytoplasmic HuR content of HepG2 and Huh7 hepatocellular carcinoma (HCC) cells. Subcellular fractionation revealed that in addition, both inhibitors strongly attenuated cytoskeletal and membrane-bound HuR abundance and conversely increased the HuR amount in nuclear cell fractions. Concomitant with changes in intracellular HuR localization, both cytoskeletal inhibitors markedly decreased the half-lives of cyclooxygenase-2 (COX-2), cyclin A and cyclin D{sub 1} encoding mRNAs resulting in a significant reduction in their expression levels in HepG2 cells. Importantly, a similar reduction in the expression of these HuR targets was achieved by a RNA interference (RNAi)-mediated knockdown of either HuR or nonmuscle myoin IIA. Using polysomal fractionation, we further demonstrate that the decrease in cytoplasmic HuR by latrunculin A or blebbistatin is accompanied by a marked change in the allocation of HuR and its mRNA cargo from polysomes to ribonucleoprotein (RNP) particles. Functionally, the basal migration and prostaglandin E{sub 2} synthesis are similarly impaired in inhibitor-treated and stable HuR-knockdown HepG2 cells. Our data demonstrate that interfering with the actomyosin-dependent HuR trafficking may comprise a valid therapeutic option for antagonizing pathologic posttranscriptional gene expression by HuR and furthermore emphasize the potential benefit of HuR inhibitory strategies for treatment of HCC. - Highlights: • We tested the effects of latrunculin A and blebbistatin on

  5. Phosphorylation by CK2 and MAPK enhances calnexin association with ribosomes.

    OpenAIRE

    Chevet, E.; Wong, H N; Gerber, D.; Cochet, C; A Fazel; Cameron, P H; Gushue, J N; Thomas, D. Y.; Bergeron, J J

    1999-01-01

    Calnexin was initially identified as an endoplasmic reticulum (ER) type I integral membrane protein, phosphorylated on its cytosolic domain by ER-associated protein kinases. Although the role of the ER luminal domain of calnexin has been established as a constituent of the molecular chaperone machinery of the ER, less is known about the role of the cytosolic phosphorylation of calnexin. Analysis by two-dimensional phosphopeptide maps revealed that calnexin was in vitro phosphorylated in isola...

  6. Die Trinkwasser-Verhältnisse der Stadt Osnabrück : 2. Teil

    OpenAIRE

    Thörner, Wilhelm (Dr.)

    2013-01-01

    Im fünften Jahresbericht für die Jahre 1880-1882 des naturwissenschaftlichen Vereins zu Osnabrück machten wir, an der Hand einer größeren Reihe einschlägiger Untersuchungen, Mitteilungen über die Trinkwasser- Verhältnisse der Stadt Osnabrück. Diese aufklärenden Untersuchungen sind inzwischen stetig fortgesetzt worden und es haben sich, wie aus der umstehenden tabellarischen Zusammenstellung der Resultate der Analysen hervorgeht, die Trinkwasserverhältnisse unserer Stadt eher verschlechtert al...

  7. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock

    NARCIS (Netherlands)

    T. Tamaru (Teruya); M. Hattori (Mitsuru); K. Honda (Kousuke); Y. Nakahata (Yasukazu); P. Sassone-Corsi (Paolo); G.T.J. van der Horst (Gijsbertus); T. Ozawa (Takeaki); K. Takamatsu (Ken)

    2015-01-01

    textabstractIntracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we establi

  8. Protein kinase CK2 mutants defective in substrate recognition. Purification and kinetic analysis

    DEFF Research Database (Denmark)

    Sarno, S; Vaglio, P; Meggio, F; Issinger, O G; Pinna, L A

    1996-01-01

    the recombinant beta subunit. By this latter procedure five mutated tetrameric holoenzymes were obtained as judged from their subunit composition, sedimentation coefficient on sucrose gradient ultracentrifugation, and increased activity toward a specific peptide substrate as compared with the isolated...

  9. Modification of Experimental Protocols for a Space Shuttle Flight and Applications for the Analysis of Cytoskeletal Structures During Fertilization, Cell Division , and Development in Sea Urchin Embryos

    Science.gov (United States)

    Chakrabarti, Amitabha; Stoecker, Andrew; Schatten, Heide

    1995-01-01

    To explore the role of microgravity on cytoskeletal organization and skeletal calcium deposition during fertilization, cell division, and early development, the sea urchin was chosen as a model developmental system. Methods were developed to employ light, immunofluorescence, and electron microscopy on cultures being prepared for flight on the Space Shuttle. For analysis of microfilaments, microtubules, centrosomes, and calcium-requiring events, our standard laboratory protocols had to be modified substantially for experimentation on the Space Shuttle. All manipulations were carried out in a closed culture chamber containing 35 ml artificial sea water as a culture fluid. Unfertilized eggs stored for 24 hours in these chambers were fertilized with sperm diluted in sea water and fixed with concentrated fixatives for final fixation in formaldehyde, taxol, EGTA, and MgCl2(exp -6)H2O for 1 cell to 16 cell stages to preserve cytoskeletal structures for simultaneous analysis with light, immunofluorescence, and electron microscopy, and 1.5 percent glutaraldehyde and 0.4 percent formaldehyde for blastula and plueus stages. The fixed samples wre maintained in chambers without degradation for up to two weeks after which the specimens were processed and analyzed with routine methods. Since complex manipulations are not possible in the closed chambers, the fertilization coat was removed from fixation using 0.5 percent freshly prepared sodium thioglycolate solution at pH 10.0 which provided reliable immunofluorescence staining for microtubules. Sperm/egg fusion, mitosis, cytokinesis, and calcium deposition during spicule formatin in early embryogenesis were found to be without artificial alterations when compared to cells fixed fresh and processed with conventional methods.

  10. Regulation of taurine homeostasis by protein kinase CK2 in mouse fibroblasts

    DEFF Research Database (Denmark)

    Hansen, Daniel Bloch; Guerra, Barbara; Jacobsen, Jack Hummeland;

    2011-01-01

    Increased expression of the ubiquitous serine/threonine protein kinase CK2 has been associated with increased proliferative capacity and increased resistance towards apoptosis. Taurine is the primary organic osmolyte involved in cell volume control in mammalian cells, and shift in cell volume is a...... critical step in cell proliferation, differentiation and induction of apoptosis. In the present study, we use mouse NIH3T3 fibroblasts and Ehrlich Lettré ascites tumour cells with different CK2 expression levels. Taurine uptake via the Na(+) dependent transporter TauT and taurine release are increased and...... reduced, respectively, following pharmacological CK2 inhibition. The effect of CK2 inhibition on TauT involves modulation of transport kinetics, whereas the effect on the taurine release pathway involves reduction in the open-probability of the efflux pathway. Stimulation of PLA(2) activity, exposure to...

  11. Src regulates the activity of SIRT2

    Energy Technology Data Exchange (ETDEWEB)

    Choi, You Hee [College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju (Korea, Republic of); Kim, Hangun [College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon (Korea, Republic of); Lee, Sung Ho [College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju (Korea, Republic of); Jin, Yun-Hye, E-mail: jinyune@hanmail.net [College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju (Korea, Republic of); Lee, Kwang Youl, E-mail: kwanglee@chonnam.ac.kr [College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju (Korea, Republic of)

    2014-07-25

    Highlights: • Src decreases the protein levels of Sirt2. • Src inhibitor and knockdown of Src increase the protein levels of Sirt2. • Src interacts with and phosphorylates Sirt2. • Src regulate the activity of Sirt2. - Abstract: SIRT2 is a mammalian member of the Sirtuin family of NAD{sup +}-dependent protein deacetylases. The tyrosine kinase Src is involved in a variety of cellular signaling pathways, leading to the induction of DNA synthesis, cell proliferation, and cytoskeletal reorganization. The function of SIRT2 is modulated by post-translational modifications; however, the precise molecular signaling mechanism of SIRT2 through interactions with c-Src has not yet been established. In this study, we investigated the potential regulation of SIRT2 function by c-Src. We found that the protein levels of SIRT2 were decreased by c-Src, and subsequently rescued by the addition of a Src specific inhibitor, SU6656, or by siRNA-mediated knockdown of c-Src. The c-Src interacts with and phosphorylates SIRT2 at Tyr104. c-Src also showed the ability to regulate the deacetylation activity of SIRT2. Investigation on the phosphorylation of SIRT2 suggested that this was the method of c-Src-mediated SIRT2 regulation.

  12. The Ovary of Tubifex tubifex (Clitellata, Naididae, Tubificinae Is Composed of One, Huge Germ-Line Cyst that Is Enriched with Cytoskeletal Components.

    Directory of Open Access Journals (Sweden)

    Anna Z Urbisz

    Full Text Available Recent studies on the ovary organization and oogenesis in Tubificinae have revealed that their ovaries are small polarized structures that are composed of germ cells in subsequent stages of oogenesis that are associated with somatic cells. In syncytial cysts, as a rule, each germ cell is connected to the central cytoplasmic mass, the cytophore, via only one stable intercellular bridge (ring canal. In this paper we present detailed data about the composition of germ-line cysts in Tubifex tubifex with special emphasis on the occurrence and distribution of the cytoskeletal elements. Using fixed material and live cell imaging techniques, we found that the entire ovary of T. tubifex is composed of only one, huge multicellular germ-line cyst, which may contain up to 2,600 cells. Its architecture is broadly similar to the cysts that are found in other clitellate annelids, i.e. a common, anuclear cytoplasmic mass in the center of the cyst and germ cells that are connected to it via intercellular bridges. The cytophore in the T. tubifex cyst extends along the long axis of the ovary in the form of elongated and branched cytoplasmic strands. Rhodamine-coupled phalloidin staining revealed that the prominent strands of actin filaments occur inside the cytophore. Similar to the cytophore, F-actin strands are branched and they are especially well developed in the middle and outermost parts of the ovary. Microfilaments are also present in the ring canals that connect the germ cells with the cytophore in the narrow end of the ovary. Using TubulinTracker, we found that the microtubules form a prominent network of loosely and evenly distributed tubules inside the cytophore as well as in every germ cell. The well-developed cytoskeletal elements in T. tubifex ovary seem to ensure the integrity of such a huge germ-line cyst of complex (germ cells-ring canals-cytophore organization. A comparison between the cysts that are described here and other well-known female

  13. Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Lengauer Thomas

    2007-02-01

    Full Text Available Abstract Background Alterations of chromosome 8 and hypomethylation of LINE-1 retrotransposons are common alterations in advanced prostate carcinoma. In a former study including many metastatic cases, they strongly correlated with each other. To elucidate a possible interaction between the two alterations, we investigated their relationship in less advanced prostate cancers. Results In 50 primary tumor tissues, no correlation was observed between chromosome 8 alterations determined by comparative genomic hybridization and LINE-1 hypomethylation measured by Southern blot hybridization. The discrepancy towards the former study, which had been dominated by advanced stage cases, suggests that both alterations converge and interact during prostate cancer progression. Therefore, interaction analysis was performed on microarray-based expression profiles of cancers harboring both alterations, only one, or none. Application of a novel bioinformatic method identified Gene Ontology (GO groups related to innate immunity, cytoskeletal organization and cell adhesion as common targets of both alterations. Many genes targeted by their interaction were involved in type I and II interferon signaling and several were functionally related to hereditary prostate cancer genes. In addition, the interaction appeared to influence a switch in the expression pattern of EPB41L genes encoding 4.1 cytoskeleton proteins. Real-time RT-PCR revealed GADD45A, MX1, EPB41L3/DAL1, and FBLN1 as generally downregulated in prostate cancer, whereas HOXB13 and EPB41L4B were upregulated. TLR3 was downregulated in a subset of the cases and associated with recurrence. Downregulation of EPB41L3, but not of GADD45A, was associated with promoter hypermethylation, which was detected in 79% of carcinoma samples. Conclusion Alterations of chromosome 8 and DNA hypomethylation in prostate cancer probably do not cause each other, but converge during progression. The present analysis implicates their

  14. The Ovary of Tubifex tubifex (Clitellata, Naididae, Tubificinae) Is Composed of One, Huge Germ-Line Cyst that Is Enriched with Cytoskeletal Components.

    Science.gov (United States)

    Urbisz, Anna Z; Chajec, Łukasz; Świątek, Piotr

    2015-01-01

    Recent studies on the ovary organization and oogenesis in Tubificinae have revealed that their ovaries are small polarized structures that are composed of germ cells in subsequent stages of oogenesis that are associated with somatic cells. In syncytial cysts, as a rule, each germ cell is connected to the central cytoplasmic mass, the cytophore, via only one stable intercellular bridge (ring canal). In this paper we present detailed data about the composition of germ-line cysts in Tubifex tubifex with special emphasis on the occurrence and distribution of the cytoskeletal elements. Using fixed material and live cell imaging techniques, we found that the entire ovary of T. tubifex is composed of only one, huge multicellular germ-line cyst, which may contain up to 2,600 cells. Its architecture is broadly similar to the cysts that are found in other clitellate annelids, i.e. a common, anuclear cytoplasmic mass in the center of the cyst and germ cells that are connected to it via intercellular bridges. The cytophore in the T. tubifex cyst extends along the long axis of the ovary in the form of elongated and branched cytoplasmic strands. Rhodamine-coupled phalloidin staining revealed that the prominent strands of actin filaments occur inside the cytophore. Similar to the cytophore, F-actin strands are branched and they are especially well developed in the middle and outermost parts of the ovary. Microfilaments are also present in the ring canals that connect the germ cells with the cytophore in the narrow end of the ovary. Using TubulinTracker, we found that the microtubules form a prominent network of loosely and evenly distributed tubules inside the cytophore as well as in every germ cell. The well-developed cytoskeletal elements in T. tubifex ovary seem to ensure the integrity of such a huge germ-line cyst of complex (germ cells-ring canals-cytophore) organization. A comparison between the cysts that are described here and other well-known female germ-line cysts is

  15. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression.

    Science.gov (United States)

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the "status" of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  16. PKCθ regulates T cell motility via ezrin-radixin-moesin localization to the uropod.

    Directory of Open Access Journals (Sweden)

    Judy L Cannon

    Full Text Available Cell motility is a fundamental process crucial for function in many cell types, including T cells. T cell motility is critical for T cell-mediated immune responses, including initiation, activation, and effector function. While many extracellular receptors and cytoskeletal regulators have been shown to control T cell migration, relatively few signaling mediators have been identified that can modulate T cell motility. In this study, we find a previously unknown role for PKCθ in regulating T cell migration to lymph nodes. PKCθ localizes to the migrating T cell uropod and regulates localization of the MTOC, CD43 and ERM proteins to the uropod. Furthermore, PKCθ-deficient T cells are less responsive to chemokine induced migration and are defective in migration to lymph nodes. Our results reveal a novel role for PKCθ in regulating T cell migration and demonstrate that PKCθ signals downstream of CCR7 to regulate protein localization and uropod formation.

  17. Market, Regulation, Market, Regulation

    DEFF Research Database (Denmark)

    Frankel, Christian; Galland, Jean-Pierre

    2015-01-01

    This paper focuses on the European Regulatory system which was settled both for opening the Single Market for products and ensuring the consumers' safety. It claims that the New Approach and Standardization, and the Global Approach to conformity assessment, which suppressed the last technical...... barriers to trade in Europe, realized the free movement of products by organizing progressively several orders of markets and regulation. Based on historical and institutional documents, on technical publications, and on interviews, this article relates how the European Commission and the Member States had...... alternatively recourse to markets and to regulations, at the three main levels of the New Approach Directives implementation. The article focuses also more specifically on the Medical Devices sector, not only because this New Approach sector has long been controversial in Europe, and has recently been concerned...

  18. Rnd family genes are differentially regulated by 3,4-methylenedioxymethamphetamine and cocaine acute treatment in mice brain.

    OpenAIRE

    Marie-Claire, Cynthia; Salzmann, Julie; David, Alexandre; Courtin, Cindie; Canestrelli, Corinne; Noble, Florence

    2007-01-01

    Drugs of abuse induce alterations in cytoskeletal and cytoskeleton associated genes in several brain areas. We have previously shown that acute MDMA regulates the mRNA level of Rnd3, a Rho GTPase involved in actin cytoskeleton regulation, in mice striatum. In this study we investigated the effects of single administration of cocaine, another psychostimulant with a slightly different mechanism of action, on the mRNA levels of the three members of the Rnd genes family (Rnd1, Rnd2 and Rnd3). Mic...

  19. The Rho GTPase Effector ROCK Regulates Cyclin A, Cyclin D1, and p27Kip1 Levels by Distinct Mechanisms

    OpenAIRE

    Croft, Daniel R.; Olson, Michael F.

    2006-01-01

    The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. H...

  20. Adenosine Diphosphate Ribosylation Factor-GTPaseActivating Protein Stimulates the Transport of AUX1Endosome, Which Relies on Actin Cytoskeletal Organization in Rice Root DevelopmentF

    Institute of Scientific and Technical Information of China (English)

    Cheng Du; Yunyuan XU; Yingdian Wang; Kang Chong

    2011-01-01

    Polar auxin transport,which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX) influx carriers and PIN-FORMED (PIN) efflux carriers,mediates various processes of plant growth and development.Endosomal recycling of PIN1 is mediated by an adenosine diphosphate (ADP)ribosylation factor (ARF)-GTPase exchange factor protein,GNOM.However,the mediation of auxin influx carrier recycling is poorly understood.Here,we report that overexpression of OsAGAP,an ARF-GTPase-activating protein in rice,stimulates vesicle transport from the plasma membrane to the Golgi apparatus in protoplasts and transgenic plants and induces the accumulation of early endosomes and AUX1.AUX1 endosomes could partially colocalize with FM4-64 labeled early endosome after actin disruption.Furthermore,OsAGAP is involved in actin cytoskeletal organization,and its overexpression tends to reduce the thickness and bundling of actin filaments.Fluorescence recovery after photobleaching analysis revealed exocytosis of the AUX1 recycling endosome was not affected in the OsAGAP overexpression cells,and was only slightly promoted when the actin filaments were completely disrupted by Lat B.Thus,we propose that AUX1 accumulation in the OsAGAP overexpression and actin disrupted cells may be due to the fact that endocytosis of the auxin influx carrier AUX1 early endosome was greatly promoted by actin cytoskeleton disruption.

  1. Quantitative Proteomics Reveals β2 Integrin-mediated Cytoskeletal Rearrangement in Vascular Endothelial Growth Factor (VEGF)-induced Retinal Vascular Hyperpermeability.

    Science.gov (United States)

    Jo, Dong Hyun; Bae, Jingi; Chae, Sehyun; Kim, Jin Hyoung; Han, Jong-Hee; Hwang, Daehee; Lee, Sang-Won; Kim, Jeong Hun

    2016-05-01

    Retinal vascular hyperpermeability causes macular edema, leading to visual deterioration in retinal diseases such as diabetic retinopathy and retinal vascular occlusion. Dysregulation of junction integrity between endothelial cells by vascular endothelial growth factor (VEGF) was shown to cause retinal vascular hyperpermeability. Accordingly, anti-VEGF agents have been used to treat retinal vascular hyperpermeability. However, they can confer potential toxicity through their deleterious effects on maintenance and survival of neuronal and endothelial cells in the retina. Thus, it is important to identify novel therapeutic targets for retinal vascular hyperpermeability other than VEGF. Here, we prepared murine retinas showing VEGF-induced vascular leakage from superficial retinal vascular plexus and prevention of VEGF-induced leakage by anti-VEGF antibody treatment. We then performed comprehensive proteome profiling of these samples and identified retinal proteins for which abundances were differentially expressed by VEGF, but such alterations were inhibited by anti-VEGF antibody. Functional enrichment and network analyses of these proteins revealed the β2 integrin pathway, which can prevent dysregulation of junction integrity between endothelial cells through cytoskeletal rearrangement, as a potential therapeutic target for retinal vascular hyperpermeability. Finally, we experimentally demonstrated that inhibition of the β2 integrin pathway salvaged VEGF-induced retinal vascular hyperpermeability, supporting its validity as an alternative therapeutic target to anti-VEGF agents. PMID:26969716

  2. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP-proline-, glutamate-, serine-,and threonine-rich sequence (PEST

    Directory of Open Access Journals (Sweden)

    Yanhua Zheng

    2013-02-01

    Full Text Available Protein tyrosine phosphatase (PTP-proline-, glutamate-, serine-, and threonine-rich sequence (PEST is ubiquitously expressed and is a critical regulator of cell adhesion and migration. PTP-PEST activity can be regulated transcriptionally via gene deletion or mutation in several types of human cancers or via post-translational modifications, including phosphorylation, oxidation, and caspase-dependent cleavage. PTP-PEST interacts with and dephosphorylates cytoskeletal and focal adhesion-associated proteins. Dephos-phorylation of PTP-PEST substrates regulates their enzymatic activities and/or their interaction with other proteins and plays an essential role in the tumor cell migration process.

  3. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-,and threonine-rich sequence (PEST)

    Institute of Scientific and Technical Information of China (English)

    Yanhua Zheng; Zhimin Lu

    2013-01-01

    Protein tyrosine phosphatase (PTP)-proline-,glutamate-,serine-,and threonine-rich sequence (PEST) is ubiquitously expressed and is a critical regulator of cell adhesion and migration.PTP-PEST activity can be regulated transcriptionally via gene deletion or mutation in several types of human cancers or via post-translational modifications,including phosphorylation,oxidation,and caspase-dependent cleavage.PTP-PEST interacts with and dephosphorylates cytoskeletal and focal adhesion-associated proteins.Dephosphorylation of PTP-PEST substrates regulates their enzymatic activities and/or their interaction with other proteins and plays an essential role in the tumor cell migration process.

  4. The herpesvirus associated ubiquitin specific protease, USP7, is a negative regulator of PML proteins and PML nuclear bodies.

    Directory of Open Access Journals (Sweden)

    Feroz Sarkari

    Full Text Available The PML tumor suppressor is the founding component of the multiprotein nuclear structures known as PML nuclear bodies (PML-NBs, which control several cellular functions including apoptosis and antiviral effects. The ubiquitin specific protease USP7 (also called HAUSP is known to associate with PML-NBs and to be a tight binding partner of two herpesvirus proteins that disrupt PML NBs. Here we investigated whether USP7 itself regulates PML-NBs. Silencing of USP7 was found to increase the number of PML-NBs, to increase the levels of PML protein and to inhibit PML polyubiquitylation in nasopharyngeal carcinoma cells. This effect of USP7 was independent of p53 as PML loss was observed in p53-null cells. PML-NBs disruption was induced by USP7 overexpression independently of its catalytic activity and was induced by either of the protein interaction domains of USP7, each of which localized to PML-NBs. USP7 also disrupted NBs formed from some single PML isoforms, most notably isoforms I and IV. CK2α and RNF4, which are known regulators of PML, were dispensable for USP7-associated PML-NB disruption. The results are consistent with a novel model of PML regulation where a deubiquitylase disrupts PML-NBs through recruitment of another cellular protein(s to PML NBs, independently of its catalytic activity.

  5. The herpesvirus associated ubiquitin specific protease, USP7, is a negative regulator of PML proteins and PML nuclear bodies.

    Science.gov (United States)

    Sarkari, Feroz; Wang, Xueqi; Nguyen, Tin; Frappier, Lori

    2011-01-01

    The PML tumor suppressor is the founding component of the multiprotein nuclear structures known as PML nuclear bodies (PML-NBs), which control several cellular functions including apoptosis and antiviral effects. The ubiquitin specific protease USP7 (also called HAUSP) is known to associate with PML-NBs and to be a tight binding partner of two herpesvirus proteins that disrupt PML NBs. Here we investigated whether USP7 itself regulates PML-NBs. Silencing of USP7 was found to increase the number of PML-NBs, to increase the levels of PML protein and to inhibit PML polyubiquitylation in nasopharyngeal carcinoma cells. This effect of USP7 was independent of p53 as PML loss was observed in p53-null cells. PML-NBs disruption was induced by USP7 overexpression independently of its catalytic activity and was induced by either of the protein interaction domains of USP7, each of which localized to PML-NBs. USP7 also disrupted NBs formed from some single PML isoforms, most notably isoforms I and IV. CK2α and RNF4, which are known regulators of PML, were dispensable for USP7-associated PML-NB disruption. The results are consistent with a novel model of PML regulation where a deubiquitylase disrupts PML-NBs through recruitment of another cellular protein(s) to PML NBs, independently of its catalytic activity. PMID:21305000

  6. 4-(1-Ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide – A new pleiotropic HDAC inhibitor targeting cancer cell signalling and cytoskeletal organisation

    Energy Technology Data Exchange (ETDEWEB)

    Mahal, Katharina, E-mail: katharina.mahal@uni-bayreuth.de [Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany); Kahlen, Philip, E-mail: philip.kahlen@uni-bayreuth.de [Department of Genetics, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany); Biersack, Bernhard, E-mail: bernhard.biersack@yahoo.com [Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany); Schobert, Rainer, E-mail: rainer.schobert@uni-bayreuth.de [Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany)

    2015-08-15

    Histone deacetylases (HDAC) which play a crucial role in cancer cell proliferation are promising drug targets. However, HDAC inhibitors (HDACi) modelled on natural hydroxamic acids such as trichostatin A frequently lead to resistance or even an increased agressiveness of tumours. As a workaround we developed 4-(1-ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide (etacrox), a hydroxamic acid that combines HDAC inhibition with synergistic effects of the 4,5-diarylimidazole residue. Etacrox proved highly cytotoxic against a panel of metastatic and resistant cancer cell lines while showing greater specificity for cancer over non-malignant cells when compared to the approved HDACi vorinostat. Like the latter, etacrox and the closely related imidazoles bimacroxam and animacroxam acted as pan-HDACi yet showed some specificity for HDAC6. Akt signalling and interference with nuclear beta-catenin localisation were elicited by etacrox at lower concentrations when compared to vorinostat. Moreover, etacrox disrupted the microtubule and focal adhesion dynamics of cancer cells and inhibited the proteolytic activity of prometastatic and proangiogenic matrix metalloproteinases. As a consequence, etacrox acted strongly antimigratory and antiinvasive against various cancer cell lines in three-dimensional transwell invasion assays and also antiangiogenic in vivo with respect to blood vessel formation in the chorioallantoic membrane assay. These pleiotropic effects and its water-solubility and tolerance by mice render etacrox a promising new HDACi candidate. - Graphical abstract: A novel histone deacetylase inhibitor with pleiotropic anticancer effects. - Highlights: • Etacrox is a new HDACi with cytotoxic, antiangiogenic and antiinvasive activity. • Etacrox causes aberrant cancer cell signalling and cytoskeletal reorganisation. • Pro-metastatic and angiogenic matrix metalloproteinases are inhibited by etacrox. • Etacrox impairs blood vessel maturation in vivo and cancer cell

  7. 4-(1-Ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide – A new pleiotropic HDAC inhibitor targeting cancer cell signalling and cytoskeletal organisation

    International Nuclear Information System (INIS)

    Histone deacetylases (HDAC) which play a crucial role in cancer cell proliferation are promising drug targets. However, HDAC inhibitors (HDACi) modelled on natural hydroxamic acids such as trichostatin A frequently lead to resistance or even an increased agressiveness of tumours. As a workaround we developed 4-(1-ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide (etacrox), a hydroxamic acid that combines HDAC inhibition with synergistic effects of the 4,5-diarylimidazole residue. Etacrox proved highly cytotoxic against a panel of metastatic and resistant cancer cell lines while showing greater specificity for cancer over non-malignant cells when compared to the approved HDACi vorinostat. Like the latter, etacrox and the closely related imidazoles bimacroxam and animacroxam acted as pan-HDACi yet showed some specificity for HDAC6. Akt signalling and interference with nuclear beta-catenin localisation were elicited by etacrox at lower concentrations when compared to vorinostat. Moreover, etacrox disrupted the microtubule and focal adhesion dynamics of cancer cells and inhibited the proteolytic activity of prometastatic and proangiogenic matrix metalloproteinases. As a consequence, etacrox acted strongly antimigratory and antiinvasive against various cancer cell lines in three-dimensional transwell invasion assays and also antiangiogenic in vivo with respect to blood vessel formation in the chorioallantoic membrane assay. These pleiotropic effects and its water-solubility and tolerance by mice render etacrox a promising new HDACi candidate. - Graphical abstract: A novel histone deacetylase inhibitor with pleiotropic anticancer effects. - Highlights: • Etacrox is a new HDACi with cytotoxic, antiangiogenic and antiinvasive activity. • Etacrox causes aberrant cancer cell signalling and cytoskeletal reorganisation. • Pro-metastatic and angiogenic matrix metalloproteinases are inhibited by etacrox. • Etacrox impairs blood vessel maturation in vivo and cancer cell

  8. N-terminal Slit2 inhibits HIV-1 replication by regulating the actin cytoskeleton

    Directory of Open Access Journals (Sweden)

    Anand Appakkudal R

    2013-01-01

    Full Text Available Abstract Background Slit2 is a ~ 200 kDa secreted glycoprotein that has been recently shown to regulate immune functions. However, not much is known about its role in HIV (human immunodeficiency virus-1 pathogenesis. Results In the present study, we have shown that the N-terminal fragment of Slit2 (Slit2N (~120 kDa inhibits replication of both CXCR4 and CCR5-tropic HIV-1 viruses in T-cell lines and peripheral blood T-cells. Furthermore, we demonstrated inhibition of HIV-1 infection in resting CD4+ T-cells. In addition, we showed that Slit2N blocks cell-to-cell transmission of HIV-1. We have shown that Slit2N inhibits HIV-1 infection by blocking viral entry into T-cells. We also ruled out Slit2N-mediated inhibition of various other steps in the life cycle including binding, integration and viral transcription. Elucidation of the molecular mechanism revealed that Slit2N mediates its functional effects by binding to Robo1 receptor. Furthermore, we found that Slit2N inhibited Gp120-induced Robo1-actin association suggesting that Slit2N may inhibit cytoskeletal rearrangements facilitating HIV-1 entry. Studies into the mechanism of inhibition of HIV-1 revealed that Slit2N abrogated HIV-1 envelope-induced actin cytoskeletal dynamics in both T-cell lines and primary T-cells. We further showed that Slit2N specifically attenuated the HIV-1 envelope-induced signaling pathway consisting of Rac1, LIMK and cofilin that regulates actin polymerization. Conclusions Taken together, our results show that Slit2N inhibits HIV-1 replication through novel mechanisms involving modulation of cytoskeletal dynamics. Our study, thus, provides insights into the role of Slit2N in HIV-1 infection and underscores its potential in limiting viral replication in T-cells.

  9. Cdc42 regulates cofilin during the establishment of neuronal polarity

    DEFF Research Database (Denmark)

    Garvalov, Boyan K; Flynn, Kevin C; Neukirchen, Dorothee;

    2007-01-01

    The establishment of polarity is an essential process in early neuronal development. Although a number of molecules controlling neuronal polarity have been identified, genetic evidence about their physiological roles in this process is mostly lacking. We analyzed the consequences of loss of Cdc42......, a central regulator of polarity in multiple systems, on the polarization of mammalian neurons. Genetic ablation of Cdc42 in the brain led to multiple abnormalities, including striking defects in the formation of axonal tracts. Neurons from the Cdc42 null animals sprouted neurites but had a strongly...... suppressed ability to form axons both in vivo and in culture. This was accompanied by disrupted cytoskeletal organization, enlargement of the growth cones, and inhibition of filopodial dynamics. Axon formation in the knock-out neurons was rescued by manipulation of the actin cytoskeleton, indicating that the...

  10. Moderate alterations of the cytoskeleton in human chondrocytes after short-term microgravity produced by parabolic flight maneuvers could be prevented by up-regulation of BMP-2 and SOX-9.

    Science.gov (United States)

    Aleshcheva, Ganna; Wehland, Markus; Sahana, Jayashree; Bauer, Johann; Corydon, Thomas J; Hemmersbach, Ruth; Frett, Timo; Egli, Marcel; Infanger, Manfred; Grosse, Jirka; Grimm, Daniela

    2015-06-01

    Real and simulated microgravity induce a variety of changes in human cells. Most importantly, changes in the cytoskeleton have been noted, and studies on microtubules have shown that they are gravisensitive. This study focuses on the effects of short-term real microgravity on gene expression, protein content, and cytoskeletal structure of human chondrocytes. We cultivated human chondrocytes, took them along a parabolic flight during the 24th Deutsches Zentrum für Luft- und Raumfahrt Parabolic (DLR) Flight Campaign, and fixed them after the 1st and the 31st parabola. Immunofluorescence microscopy revealed no changes after the 1st parabola, but disruptions of β-tubulin, vimentin, and cytokeratin networks after the 31st parabola. No F-actin stress fibers were detected even after 31 parabolas. Furthermore, mRNA and protein quantifications after the 31st parabola showed a clear up-regulation of cytoskeletal genes and proteins. The mRNAs were significantly up-regulated as follows: TUBB, 2-fold; VIM, 1.3-fold; KRT8, 1.8-fold; ACTB, 1.9-fold; ICAM1, 4.8-fold; OPN, 7-fold; ITGA10, 1.5-fold; ITGB1, 1.2-fold; TGFB1, 1.5-fold; CAV1, 2.6-fold; SOX9, 1.7-fold; BMP-2, 5.3-fold. However, SOX5 (-25%) and SOX6 (-28%) gene expression was decreased. Contrary, no significant changes in gene expression levels were observed during vibration and hypergravity experiments. These data suggest that short-term microgravity affects the gene expression of distinct proteins. In contrast to poorly differentiated follicular thyroid cancer cells or human endothelial cells, chondrocytes only exert moderate cytoskeletal alterations. The up-regulation of BMP-2, TGF-β1, and SOX9 in chondrocytes may play a key role in preventing cytoskeletal alterations. PMID:25681461

  11. FBXL5 targets cortactin for ubiquitination-mediated destruction to regulate gastric cancer cell migration.

    Science.gov (United States)

    Cen, Gang; Ding, Hong-Hua; Liu, Bin; Wu, Wei-Dong

    2014-09-01

    Cortactin, an actin-interacting protein, is implicated in cytoskeletal architecture and often amplified in several types of cancer including gastric adenocarcinomas. Downregulation of cortactin decreases cell migration and invasion. However, how to regulate cortactin in gastric cancer remains largely unknown. Here, we report that FBXL5 interacts with and targets cortactin for ubiquitylation and subsequent proteasomal degradation. Furthermore, we showed that FBXL5-induced cortactin degradation is mediated by extracellular regulated signal kinase (ERK). Serine phosphorylation sites mutant, cortactinS405A/S418A, prevent FBXL5-induced cortactin degradation. Moreover, CortactinS405A/S418A exhibited stronger effects in promoting gastric cancer cell migration when compared to wild-type cortactin. Taken together, our data suggested a novel molecular mechanism for the negative regulation of cortactin by FBXL5 in gastric cancer cells migration. PMID:24867096

  12. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    Energy Technology Data Exchange (ETDEWEB)

    Flaskos, J., E-mail: flaskos@vet.auth.gr [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Nikolaidis, E. [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Harris, W. [School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom); Sachana, M. [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Hargreaves, A.J., E-mail: alan.hargreaves@ntu.ac.uk [School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom)

    2011-11-15

    protein are reduced Black-Right-Pointing-Pointer Neurofilament heavy chain forms aggregates in cell bodies Black-Right-Pointing-Pointer Thus at least two axon-associated cytoskeletal proteins are disrupted by this agent.

  13. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    International Nuclear Information System (INIS)

    bodies ► Thus at least two axon-associated cytoskeletal proteins are disrupted by this agent

  14. Global analysis of neuronal phosphoproteome regulation by chondroitin sulfate proteoglycans.

    Directory of Open Access Journals (Sweden)

    Panpan Yu

    Full Text Available Chondroitin sulfate proteoglycans (CSPGs are major components of the extracellular matrix which mediate inhibition of axonal regeneration after injury to the central nervous system (CNS. Several neuronal receptors for CSPGs have recently been identified; however, the signaling pathways by which CSPGs restrict axonal growth are still largely unknown. In this study, we applied quantitative phosphoproteomics to investigate the global changes in protein phosphorylation induced by CSPGs in primary neurons. In combination with isobaric Tags for Relative and Absolute Quantitation (iTRAQ labeling, strong cation exchange chromatography (SCX fractionation, immobilized metal affinity chromatography (IMAC and LC-MS/MS, we identified and quantified 2214 unique phosphopeptides corresponding to 1118 phosphoproteins, with 118 changing significantly in abundance with CSPG treatment. The proteins that were regulated by CSPGs included key components of synaptic vesicle trafficking, axon guidance mediated by semaphorins, integrin signaling, cadherin signaling and EGF receptor signaling pathways. A significant number of the regulated proteins are cytoskeletal and related proteins that have been implicated in regulating neurite growth. Another highly represented protein category regulated by CSPGs is nucleic acid binding proteins involved in RNA post-transcriptional regulation. Together, by screening the overall phosphoproteome changes induced by CSPGs, this data expand our understanding of CSPG signaling, which provides new insights into development of strategies for overcoming CSPG inhibition and promoting axonal regeneration after CNS injury.

  15. Cellular and systemic effects of Parkinson’s disease-related LRRK2 mutations: An investigation of cytoskeletal function and the innate immune system in transgenic mice and human LRRK2 mutation carriers

    OpenAIRE

    Caesar, Mareike

    2016-01-01

    Parkinson’s disease (PD) is, after Alzheimer’s disease, the most common neurodegenerative disorder. Mutations in the leucine rich repeat kinase 2 (LRRK2) are the most common known cause of familial PD but also constitute about 3.5 % of all sporadic PD cases. This work focuses on the effects of LRRK2 mutations on cytoskeletal function and on the innate immune system. Findings from animal models were translated to human material to assess their relevance in human disease states. Changes in ...

  16. Telomerase Regulation

    OpenAIRE

    Cifuentes-Rojas, Catherine; Dorothy E Shippen

    2011-01-01

    The intimate connection between telomerase regulation and human disease is now well established. The molecular basis for telomerase regulation is highly complex and entails multiple layers of control. While the major target of enzyme regulation is the catalytic subunit TERT, the RNA subunit of telomerase is also implicated in telomerase control. In addition, alterations in gene dosage and alternative isoforms of core telomerase components have been described. Finally, telomerase localization,...

  17. Radiation regulation

    International Nuclear Information System (INIS)

    The five main areas of radiation regulation considered are radiation exposure in the mining of uranium and other minerals, exposure in the use of uranium in nuclear reactors, risks in the transport of radioactive materials and hazards associated with the disposal of used materials. In Australia these problems are regulated by mines departments, the Australian Atomic Energy Commission and radiation control branches in state health departments. Each of these instutional areas of regulation is examined

  18. The potential impact of low dose ionizing γ-radiation on immune response activity up-regulated by Ikaros in IM-9 B lymphocytes

    International Nuclear Information System (INIS)

    The biological effects of low dose ionizing radiation (LDIR) remain insufficiently understood. We examined for the scientific evidence to show the biological effects of LDIR using radiation-sensitive immune cells. We found that Ikaros protein was responded to low dose-dependent effects of gamma radiation in IM-9 B lymphocytes. Ikaros encodes zinc finger transcription factors that is important regulators of a hematopoietic stem cells (HSCs) progression to the B lymphoid lineage development, differentiation and proliferation. In this study, we observed that cell proliferation was enhanced from 10% to 20% by LDIR (0.05 Gy) in IM-9 B lymphocytes. The Ikaros protein was phosphorylated in its serine/threonine (S/T) region and decreased its DNA binding activity in the cells exposed to LDIR. We found that Ikaros phosphorylation was up-regulated by CK2/AKT pathway and the residues of ser-304 and ser-306 in Ikaros was phosphorylated by LDIR. We also observed that Ikaros protein was localized from the nucleus to the cytoplasm after LDIR and bound with Autotaxin (ENPP2, ATX) protein, stimulating proliferation, migration and survival of immune cells. In addition, we found that the lysoPLD activity of ATX was dependent on Ikaros-ATX binding activity. These results indicate that the Ikaros is an important regulator of immune activation. Therefore, we suggest that low dose ionizing radiation can be considered as a beneficial effects, stimulating the activation of immune cells.

  19. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    Science.gov (United States)

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition. PMID:26240174

  20. NOISE REGULATION

    OpenAIRE

    Cristina Voican; Constantin Stanescu

    2012-01-01

    Noise regulation includes statutes or guidelines relating to sound transmission established by national, state or provincial and municipal levels of government. After the watershed passage of the United States Noise Control Act of 1972, other local and state governments passed further regulations. Although the UK and Japan enacted national laws in 1960 and 1967 respectively, these laws were not at all comprehensive or fully enforceable as to address generally rising ambient noise, enforceable...

  1. Motor regulation results in distal forces that bend partially disintegrated Chlamydomonas axonemes into circular arcs

    CERN Document Server

    Mukundan, V; Geyer, V F; Julicher, F; Howard, J

    2014-01-01

    The bending of cilia and flagella is driven by forces generated by dynein motor proteins. These forces slide adjacent microtubule doublets within the axoneme, the motile cytoskeletal structure. To create regular, oscilla- tory beating patterns, the activities of the axonemal dyneins must be coordinated both spatially and temporally. It is thought that coordination is mediated by stresses or strains, which build up within the moving axoneme, and somehow regulate dynein activity. While experimenting with axonemes subjected to mild proteolysis, we observed pairs of doublets associate with each other and form bends with almost constant curvature. By model- ing the statics of a pair of filaments, we show that the activity of the motors concentrates at the distal tips of the doublets. Furthermore, we show that this distribution of motor activity accords with models in which curvature, or curvature-induced normal forces, regulates the activity of the motors. These observations, together with our theoretical analysis...

  2. Funktionelle Charakterisierung der Protein-Kinase CK2 in der Suppression Th2-vermittelter Immunantworten durch regulatorische T-Zellen

    OpenAIRE

    Ulges, Alexander

    2013-01-01

    Regulatorische T-Zellen (Tregs) leisten durch ihre suppressiven Eigenschaften einen essenziellen Beitrag zur Aufrechterhaltung der immunologischen Toleranz. Sie verhindern schädliche Immunreaktionen gegen Autoantigene, kommensale Bakterien, sowie harmlose Nahrungsmittel-bestandteile. Gleichzeitig gewährleisten sie die Entwicklung effektiver Immunantworten gegen eindringende Pathogene, wie z.B. Parasiten, Bakterien und Viren. Damit haben Tregs direkten Einfluss auf das Gleichgewicht zwischen I...

  3. Nuclear deformability and telomere dynamics are regulated by cell geometric constraints.

    Science.gov (United States)

    Makhija, Ekta; Jokhun, D S; Shivashankar, G V

    2016-01-01

    Forces generated by the cytoskeleton can be transmitted to the nucleus and chromatin via physical links on the nuclear envelope and the lamin meshwork. Although the role of these active forces in modulating prestressed nuclear morphology has been well studied, the effect on nuclear and chromatin dynamics remains to be explored. To understand the regulation of nuclear deformability by these active forces, we created different cytoskeletal states in mouse fibroblasts using micropatterned substrates. We observed that constrained and isotropic cells, which lack long actin stress fibers, have more deformable nuclei than elongated and polarized cells. This nuclear deformability altered in response to actin, myosin, formin perturbations, or a transcriptional down-regulation of lamin A/C levels in the constrained and isotropic geometry. Furthermore, to probe the effect of active cytoskeletal forces on chromatin dynamics, we tracked the spatiotemporal dynamics of heterochromatin foci and telomeres. We observed increased dynamics and decreased correlation of the heterochromatin foci and telomere trajectories in constrained and isotropic cell geometry. The observed enhanced dynamics upon treatment with actin depolymerizing reagents in elongated and polarized geometry were regained once the reagent was washed off, suggesting an inherent structural memory in chromatin organization. We conclude that active forces from the cytoskeleton and rigidity from lamin A/C nucleoskeleton can together regulate nuclear and chromatin dynamics. Because chromatin remodeling is a necessary step in transcription control and its memory, genome integrity, and cellular deformability during migration, our results highlight the importance of cell geometric constraints as critical regulators in cell behavior. PMID:26699462

  4. NORM regulations

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P. [ed.

    1997-02-01

    The author reviews the question of regulation for naturally occuring radioactive material (NORM), and the factors that have made this a more prominent concern today. Past practices have been very relaxed, and have often involved very poor records, the involvment of contractors, and the disposition of contaminated equipment back into commercial service. The rationale behind the establishment of regulations is to provide worker protection, to exempt low risk materials, to aid in scrap recycling, to provide direction for remediation and to examine disposal options. The author reviews existing regulations at federal and state levels, impending legislation, and touches on the issue of site remediation and potential liabilities affecting the release of sites contaminated by NORM.

  5. Rap2B GTPase: structure, functions, and regulation.

    Science.gov (United States)

    Zhu, Zhesi; Di, Jiehui; Lu, Zheng; Gao, Keyu; Zheng, Junnian

    2016-06-01

    Rap2B GTPase, a member of Ras-related protein superfamily, was first discovered from a platelet cDNA library in the early 1990s. Since then, it has been reported to play an important role in regulating cellular processes including cytoskeletal organization, cell growth, and proliferation. It can be stimulated and suppressed by a wide range of external and internal inducers, circulating between GTP-bound active state and GDP-bound inactive state. Increasing focus on Ras signaling pathway reveals critical effects of Rap2B on tumorigenesis. In particular, Rap2B behaves in a p53-dependent manner in regulation of apoptosis and migration. Apart from being an oncogenic activator, Rap2B has been found to participate in many other physiological events via diverse downstream effectors. In this review, we present recent studies on the structure, regulation, and multiple biological functions of Rap2B, shedding light on its potential status in treatment of cancer as well as other diseases. PMID:27012552

  6. aura (mid1ip1l) regulates the cytoskeleton at the zebrafish egg-to-embryo transition.

    Science.gov (United States)

    Eno, Celeste; Solanki, Bharti; Pelegri, Francisco

    2016-05-01

    Embryos from females homozygous for a recessive maternal-effect mutation in the gene aura exhibit defects including reduced cortical integrity, defective cortical granule (CG) release upon egg activation, failure to complete cytokinesis, and abnormal cell wound healing. We show that the cytokinesis defects are associated with aberrant cytoskeletal reorganization during furrow maturation, including abnormal F-actin enrichment and microtubule reorganization. Cortical F-actin prior to furrow formation fails to exhibit a normal transition into F-actin-rich arcs, and drug inhibition is consistent with aura function promoting F-actin polymerization and/or stabilization. In mutants, components of exocytic and endocytic vesicles, such as Vamp2, Clathrin and Dynamin, are sequestered in unreleased CGs, indicating a need for CG recycling in the normal redistribution of these factors. However, the exocytic targeting factor Rab11 is recruited to the furrow plane normally at the tip of bundling microtubules, suggesting an alternative anchoring mechanism independent of membrane recycling. A positional cloning approach indicates that the mutation in aura is associated with a truncation of Mid1 interacting protein 1 like (Mid1ip1l), previously identified as an interactor of the X-linked Opitz G/BBB syndrome gene product Mid1. A Cas9/CRISPR-induced mutant allele in mid1ip1l fails to complement the originally isolated aura maternal-effect mutation, confirming gene assignment. Mid1ip1l protein localizes to cortical F-actin aggregates, consistent with a direct role in cytoskeletal regulation. Our studies indicate that maternally provided aura (mid1ip1l) acts during the reorganization of the cytoskeleton at the egg-to-embryo transition and highlight the importance of cytoskeletal dynamics and membrane recycling during this developmental period. PMID:26965374

  7. Recruitment of Ikaros to Pericentromeric Heterochromatin Is Regulated by Phosphorylation*

    OpenAIRE

    Gurel, Zafer; Ronni, Tapani; Ho, Sam; Kuchar, Jason; Payne, Kimberly J.; Turk, Christoph W.; Dovat, Sinisa

    2008-01-01

    Ikaros encodes a zinc finger protein that is involved in heritable gene silencing. In hematopoietic cells, Ikaros localizes to pericentromeric heterochromatin (PC-HC) where it recruits its target genes, resulting in their activation or repression via chromatin remodeling. The function of Ikaros is controlled by post-translational modifications. CK2 kinase has been shown to phosphorylate Ikaros at its C terminus, affecting cell cycle progression. Using in vivo labeling ...

  8. RegulatING chromatin regulators

    DEFF Research Database (Denmark)

    Satpathy, Shankha; Nabbi, Arash; Riabowol, Karl

    2013-01-01

    The five human ING genes encode at least 15 splicing isoforms, most of which affect cell growth, differentiation and apoptosis through their ability to alter gene expression by epigenetic mechanisms. Since their discovery in 1996, ING proteins have been classified as type II tumour suppressors on...... the basis of reports describing their down-regulation and mislocalization in a variety of cancer types. In addition to their regulation by transcriptional mechanisms, understanding the range of PTMs (post-translational modifications) of INGs is important in understanding how ING functions are fine...... stresses. We also describe the ING PTMs that have been identified by several unbiased MS-based PTM enrichment techniques and subsequent proteomic analysis. Among the ING PTMs identified to date, a subset has been characterized for their biological significance and have been shown to affect processes...

  9. Structural interaction and functional regulation of polycystin-2 by filamin.

    Directory of Open Access Journals (Sweden)

    Qian Wang

    Full Text Available Filamins are important actin cross-linking proteins implicated in scaffolding, membrane stabilization and signal transduction, through interaction with ion channels, receptors and signaling proteins. Here we report the physical and functional interaction between filamins and polycystin-2, a TRP-type cation channel mutated in 10-15% patients with autosomal dominant polycystic kidney disease. Yeast two-hybrid and GST pull-down experiments demonstrated that the C-termini of filamin isoforms A, B and C directly bind to both the intracellular N- and C-termini of polycystin-2. Reciprocal co-immunoprecipitation experiments showed that endogenous polycystin-2 and filamins are in the same complexes in renal epithelial cells and human melanoma A7 cells. We then examined the effect of filamin on polycystin-2 channel function by electrophysiology studies with a lipid bilayer reconstitution system and found that filamin-A substantially inhibits polycystin-2 channel activity. Our study indicates that filamins are important regulators of polycystin-2 channel function, and further links actin cytoskeletal dynamics to the regulation of this channel protein.

  10. Calponin 3 regulates actin cytoskeleton rearrangement in trophoblastic cell fusion.

    Science.gov (United States)

    Shibukawa, Yukinao; Yamazaki, Natsuko; Kumasawa, Keiichi; Daimon, Etsuko; Tajiri, Michiko; Okada, Yuka; Ikawa, Masahito; Wada, Yoshinao

    2010-11-15

    Cell-cell fusion is an intriguing differentiation process, essential for placental development and maturation. A proteomic approach identified a cytoplasmic protein, calponin 3 (CNN3), related to the fusion of BeWo choriocarcinoma cells. CNN3 was expressed in cytotrophoblasts in human placenta. CNN3 gene knockdown promoted actin cytoskeletal rearrangement and syncytium formation in BeWo cells, suggesting CNN3 to be a negative regulator of trophoblast fusion. Indeed, CNN3 depletion promoted BeWo cell fusion. CNN3 at the cytoplasmic face of cytoskeleton was dislocated from F-actin with forskolin treatment and diffused into the cytoplasm in a phosphorylation-dependent manner. Phosphorylation sites were located at Ser293/296 in the C-terminal region, and deletion of this region or site-specific disruption of Ser293/296 suppressed syncytium formation. These CNN3 mutants were colocalized with F-actin and remained there after forskolin treatment, suggesting that dissociation of CNN3 from F-actin is modulated by the phosphorylation status of the C-terminal region unique to CNN3 in the CNN family proteins. The mutant missing these phosphorylation sites displayed a dominant negative effect on cell fusion, while replacement of Ser293/296 with aspartic acid enhanced syncytium formation. These results indicated that CNN3 regulates actin cytoskeleton rearrangement which is required for the plasma membranes of trophoblasts to become fusion competent. PMID:20861310

  11. Nuclear regulation

    International Nuclear Information System (INIS)

    Today, 112 nuclear power plants, 22 facilities that support these plants, 54 reactors used in research, and approximately 23,000 organizations hold licenses from either the Nuclear Regulator Commission or various states to use radioactive material; other facilities are operated by various government agencies. Eventually most of these facilities will be decommissioned, which involves removing the radioactive material and terminating the license. NRC needs to ensure that licensees appropriately decontaminate their facilities because, under current regulations, NRC cannot specifically require additional cleanup once it terminates a license. This paper presents a GAO report on NRC's decommissioning procedures. In two of eight cases GAO reviewed, NRC fully or partially released sites for unrestricted use where radioactive contamination was higher than its guidelines allowed; in the other cases, NRC's information was inadequate or incomplete. Further, NRC lacks information on the types and amounts of radioactive waste buried on-site. At five sites reviewed by GAO, groundwater has been found to be contaminated by radioactive waste

  12. Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella

    CERN Document Server

    Sartori, Pablo; Scholich, Andre; Jülicher, Frank; Howard, Jonathon

    2015-01-01

    Axonemal dyneins are the molecular motors responsible for the beating of cilia and flagella. These motors generate sliding forces between adjacent microtubule doublets within the axoneme, the motile cytoskeletal structure inside the flagellum. To create regular, oscillatory beating patterns, the activities of the axonemal dyneins must be coordinated both spatially and temporally. It is thought that coordination is mediated by stresses or strains that build up within the moving axoneme, but it is not known which components of stress or strain are involved, nor how they feed back on the dyneins. To answer this question, we used isolated, reactivate axonemes of the unicellular alga Chlamydomonas as a model system. We derived a theory for beat regulation in a two-dimensional model of the axoneme. We then tested the theory by measuring the beat waveforms of wild type axonemes, which have asymmetric beats, and mutant axonemes, in which the beat is nearly symmetric, using high-precision spatial and temporal imaging....

  13. Structures of the nucleoid occlusion protein SlmA bound to DNA and the C-terminal domain of the cytoskeletal protein FtsZ.

    Science.gov (United States)

    Schumacher, Maria A; Zeng, Wenjie

    2016-05-01

    Cell division in most prokaryotes is mediated by FtsZ, which polymerizes to create the cytokinetic Z ring. Multiple FtsZ-binding proteins regulate FtsZ polymerization to ensure the proper spatiotemporal formation of the Z ring at the division site. The DNA-binding protein SlmA binds to FtsZ and prevents Z-ring formation through the nucleoid in a process called "nucleoid occlusion" (NO). As do most FtsZ-accessory proteins, SlmA interacts with the conserved C-terminal domain (CTD) that is connected to the FtsZ core by a long, flexible linker. However, SlmA is distinct from other regulatory factors in that it must be DNA-bound to interact with the FtsZ CTD. Few structures of FtsZ regulator-CTD complexes are available, but all reveal the CTD bound as a helix. To deduce the molecular basis for the unique SlmA-DNA-FtsZ CTD regulatory interaction and provide insight into FtsZ-regulator protein complex formation, we determined structures of Escherichia coli, Vibrio cholera, and Klebsiella pneumonia SlmA-DNA-FtsZ CTD ternary complexes. Strikingly, the FtsZ CTD does not interact with SlmA as a helix but binds as an extended conformation in a narrow, surface-exposed pocket formed only in the DNA-bound state of SlmA and located at the junction between the DNA-binding and C-terminal dimer domains. Binding studies are consistent with the structure and underscore key interactions in complex formation. Combined, these data reveal the molecular basis for the SlmA-DNA-FtsZ interaction with implications for SlmA's NO function and underscore the ability of the FtsZ CTD to adopt a wide range of conformations, explaining its ability to bind diverse regulatory proteins. PMID:27091999

  14. Behavioral and hippocampal cytoskeletal alterations in rats following chronic unpredictable mild stress and fluoxetine treatment%慢性应激及氟西汀治疗后大鼠海马细胞支架的改变

    Institute of Scientific and Technical Information of China (English)

    杨灿; 王高华; 王惠玲; 王晓萍; 刘忠纯; 朱志先

    2010-01-01

    目的 探讨慢性不可预见性应激及氟西汀治疗后大鼠细胞支架微管系统的动态性变化及其可能机制.方法 将24只大鼠按随机数字表法分为对照组(空白对照+生理盐水)、慢性不可预见性温和应激(CUMS)组(CUMS+生理盐水)和氟西汀组(CUMS+氟西汀),每组8只.对大鼠进行连续21 d CUMS后,氟西汀组给予氟西汀(10 mg/kg)治疗21 d,对照组和CUMS组给予生理盐水.实验结束后进行行为学观察,并使用免疫印迹法(western blot)检测大鼠海马乙酰化微管蛋白(Acet-Tub),酪氨酸化微管蛋白(Tyr-Tub),微管结合蛋白2(MAP-2)及磷酸化微管结合蛋白2(phospho-MAP-2).结果 (1)CUMS组糖水偏好[(55.13±11.80)%],总行程[(2736.59±511.20)cm],运动平均速度[(5.69±1.08)cm/s]及直立次数[(2.50±2.00)次]均低于对照组,差异有统计学意义(P<0.01);氟西汀组上述指标与对照组比较差异无统计学意义(P>0.05).(2)CUMS组与对照组相比,Acet-Tub表达升高[(171.84±10.34)%],Tyr-Tub[(62.06±9.24)%]和phospho-MAP-2[(68.81±8.93)%]的表达降低,差异有统计学意义(P均<0.01),MAP-2的表达与对照组比较无统计学意义(P>0.05);经氟西汀治疗后,Acet-Tub的表达降低为[(96.18±8.92)%],Tyr-Tub和phospho-MAP-2的表达分别升高为[(95.06±8.00)%]、[(100.60±7.30)%],与对照组比较均无统计学意义(P>0.05).结论 慢性应激后微管动态性减低,神经可塑性受损,氟西汀可以逆转海马的这些损伤,上述过程可能与微管相关蛋白磷酸化水平的变化有关.%Objective To investigate behavior and hippocampal cytoskeletal alterations in rats following chronic unpredictable mild stress and fluoxetine treatment, and explore the possible mechanism. Methods Twenty four male Sprague-Dawley (SD) rats were divided into three groups, with 8 exposed to 21 consecutive days of chronic unpredicted mild stresses (CUMS) and treated with vehicle, 8 exposed to CUMS and treated with fluoxetine, and 8 as

  15. NMDA Receptors and Oxidative Stress Induced by the Major Metabolites Accumulating in HMG Lyase Deficiency Mediate Hypophosphorylation of Cytoskeletal Proteins in Brain From Adolescent Rats: Potential Mechanisms Contributing to the Neuropathology of This Disease.

    Science.gov (United States)

    Fernandes, Carolina Gonçalves; Pierozan, Paula; Soares, Gilberto Machado; Ferreira, Fernanda; Zanatta, Ângela; Amaral, Alexandre Umpierrez; Borges, Clarissa Günther; Wajner, Moacir; Pessoa-Pureur, Regina

    2015-10-01

    Neurological symptoms and cerebral abnormalities are commonly observed in patients with 3-hydroxy-3-methylglutaryl-CoA lyase (HMG lyase) deficiency, which is biochemically characterized by predominant tissue accumulation of 3-hydroxy-3-methylglutaric (HMG), 3-methylglutaric (MGA), and 3-methylglutaconic (MGT) acids. Since the pathogenesis of this disease is poorly known, the present study evaluated the effects of these compounds on the cytoskeleton phosphorylating system in rat brain. HMG, MGA, and MGT caused hypophosphorylation of glial fibrillary acidic protein (GFAP) and of the neurofilament subunits NFL, NFM, and NFH. HMG-induced hypophosphorylation was mediated by inhibiting the cAMP-dependent protein kinase (PKA) on Ser55 residue of NFL and c-Jun kinase (JNK) by acting on KSP repeats of NFM and NFH subunits. We also evidenced that the subunit NR2B of NMDA receptor and Ca(2+) was involved in HMG-elicited hypophosphorylation of cytoskeletal proteins. Furthermore, the antioxidants L-NAME and TROLOX fully prevented both the hypophosphorylation and the inhibition of PKA and JNK caused by HMG, suggesting that oxidative damage may underlie these effects. These findings indicate that the main metabolites accumulating in HMG lyase deficiency provoke hypophosphorylation of cytoskeleton neural proteins with the involvement of NMDA receptors, Ca(2+), and reactive species. It is presumed that these alterations may contribute to the neuropathology of this disease. PMID:26174040

  16. Arp2/3 inhibition induces amoeboid-like protrusions in MCF10A epithelial cells by reduced cytoskeletal-membrane coupling and focal adhesion assembly.

    Directory of Open Access Journals (Sweden)

    Yvonne Beckham

    Full Text Available Here we demonstrate that Arp2/3 regulates a transition between mesenchymal and amoeboid protrusions in MCF10A epithelial cells. Using genetic and pharmacological means, we first show Arp2/3 inhibition impairs directed cell migration. Arp2/3 inhibition results in a dramatically impaired cell adhesion, causing deficient cell attachment and spreading to ECM as well as an 8-fold decrease in nascent adhesion assembly at the leading edge. While Arp2/3 does not play a significant role in myosin-dependent adhesion growth, mature focal adhesions undergo large scale movements against the ECM suggesting reduced coupling to the ECM. Cell edge protrusions occur at similar rates when Arp2/3 is inhibited but their morphology is dramatically altered. Persistent lamellipodia are abrogated and we observe a markedly increased incidence of blebbing and unstable pseuodopods. Micropipette-aspiration assays indicate that Arp2/3-inhibited cells have a weak coupling between the cell cortex and the plasma membrane, and suggest a potential mechanism for increased pseudopod and bleb formation. Pseudopods are not sensitive to reduced in formin or myosin II activity. Collectively, these results indicate that Arp2/3 is not necessary for rapid protrusion of the cell edge but plays a crucial role in assembling focal adhesions required for its stabilization.

  17. Experimental and computational assessment of F-actin influence in regulating cellular stiffness and relaxation behaviour of fibroblasts.

    Science.gov (United States)

    Fallqvist, Björn; Fielden, Matthew L; Pettersson, Torbjörn; Nordgren, Niklas; Kroon, Martin; Gad, Annica K B

    2016-06-01

    In biomechanics, a complete understanding of the structures and mechanisms that regulate cellular stiffness at a molecular level remain elusive. In this paper, we have elucidated the role of filamentous actin (F-actin) in regulating elastic and viscous properties of the cytoplasm and the nucleus. Specifically, we performed colloidal-probe atomic force microscopy (AFM) on BjhTERT fibroblast cells incubated with Latrunculin B (LatB), which results in depolymerisation of F-actin, or DMSO control. We found that the treatment with LatB not only reduced cellular stiffness, but also greatly increased the relaxation rate for the cytoplasm in the peripheral region and in the vicinity of the nucleus. We thus conclude that F-actin is a major determinant in not only providing elastic stiffness to the cell, but also in regulating its viscous behaviour. To further investigate the interdependence of different cytoskeletal networks and cell shape, we provided a computational model in a finite element framework. The computational model is based on a split strain energy function of separate cellular constituents, here assumed to be cytoskeletal components, for which a composite strain energy function was defined. We found a significant influence of cell geometry on the predicted mechanical response. Importantly, the relaxation behaviour of the cell can be characterised by a material model with two time constants that have previously been found to predict mechanical behaviour of actin and intermediate filament networks. By merely tuning two effective stiffness parameters, the model predicts experimental results in cells with a partly depolymerised actin cytoskeleton as well as in untreated control. This indicates that actin and intermediate filament networks are instrumental in providing elastic stiffness in response to applied forces, as well as governing the relaxation behaviour over shorter and longer time-scales, respectively. PMID:26766328

  18. Regulation of vacuolar H+-ATPase in microglia by RANKL

    International Nuclear Information System (INIS)

    Vacuolar H+-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor κB-ligand (RANKL). We found that Receptor Activator of Nuclear Factor κB (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  19. Regulating Rac in the Nervous System: Molecular Function and Disease Implication of Rac GEFs and GAPs

    Directory of Open Access Journals (Sweden)

    Yanyang Bai

    2015-01-01

    Full Text Available Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal organization. Rho GTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange factors (GEFs as the activators and GTPase-activating proteins (GAPs as the inhibitors. Through coordinated regulation by GEFs and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So far, more than 70 members of either GEFs or GAPs of Rho GTPases have been identified in mammals, but only a small subset of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these regulators in the nervous system.

  20. Megakaryocytes regulate expression of Pyk2 isoforms and caspase-mediated cleavage of actin in osteoblasts.

    Science.gov (United States)

    Kacena, Melissa A; Eleniste, Pierre P; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E; Mayo, Lindsey D; Bruzzaniti, Angela

    2012-05-18

    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton. PMID:22447931

  1. Megakaryocytes Regulate Expression of Pyk2 Isoforms and Caspase-mediated Cleavage of Actin in Osteoblasts*

    Science.gov (United States)

    Kacena, Melissa A.; Eleniste, Pierre P.; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E.; Mayo, Lindsey D.; Bruzzaniti, Angela

    2012-01-01

    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton. PMID:22447931

  2. Multiple roles for keratin intermediate filaments in the regulation of epithelial barrier function and apico-basal polarity.

    Science.gov (United States)

    Salas, Pedro J; Forteza, Radia; Mashukova, Anastasia

    2016-01-01

    As multicellular organisms evolved a family of cytoskeletal proteins, the keratins (types I and II) expressed in epithelial cells diversified in more than 20 genes in vertebrates. There is no question that keratin filaments confer mechanical stiffness to cells. However, such a number of genes can hardly be explained by evolutionary advantages in mechanical features. The use of transgenic mouse models has revealed unexpected functional relationships between keratin intermediate filaments and intracellular signaling. Accordingly, loss of keratins or mutations in keratins that cause or predispose to human diseases, result in increased sensitivity to apoptosis, regulation of innate immunity, permeabilization of tight junctions, and mistargeting of apical proteins in different epithelia. Precise mechanistic explanations for these phenomena are still lacking. However, immobilization of membrane or cytoplasmic proteins, including chaperones, on intermediate filaments ("scaffolding") appear as common molecular mechanisms and may explain the need for so many different keratin genes in vertebrates. PMID:27583190

  3. 一次力竭性离心运动损伤模型大鼠骨骼肌波形蛋白的表达%Cytoskeletal vimentin protein expression in rats with exhaustive eccentric exercise injury

    Institute of Scientific and Technical Information of China (English)

    刘向东; 李阳

    2014-01-01

    背景:由于不同学者采用的实验方法不同,对离心运动后细胞骨架蛋白的变化仍有争议。  目的:构建一次力竭性离心运动损伤大鼠模型,观察不同时刻骨骼肌细胞骨架波形蛋白表达的变化。  方法:雄性48只 SD 大鼠建立下坡跑运动损伤模型,按运动时间分为安静对照组、运动后即刻组、运动后12 h组、运动后24 h组、运动后48 h组和运动后72 h组,每组8只。各运动组大鼠以速度16 m/min,坡度-16°进行跑台运动,运动100 min后,休息5 min,然后再运动100 min;安静对照组不做运动。应用抗波形蛋白抗体对大鼠骨骼肌波形蛋白进行免疫组化染色,通过观察其目标面积百分比的变化反映在一次力竭性离心运动后不同时刻大鼠骨骼肌细胞骨架波形蛋白的表达水平。  结果与结论:大鼠骨骼肌细胞骨架波形蛋白目标面积百分比结果显示,安静对照组和运动后即刻组两组间差异无显著性意义(P >0.05);与运动后即刻组相比,运动后12 h组目标面积百分比略有增加,但差异无显著性意义(P >0.05);与运动后12 h组相比,运动后24 h组目标面积百分比略有增加,但差异无显著性意义(P>0.05);与安静对照组和运动后即刻组相比,运动后24 h组目标面积百分比有所增加(P OBJECTIVE:To establish exhaustive eccentric exercise injury model in rats and to observe cytoskeletal vimentin protein expression at different time. METHODS:A total of 48 male Sprague-Dawley rats were randomly and equal y divided into six groups:quiet control group, immediately after exercise group, and 12, 24, 48, 72 hours after exercise groups. In the exercise groups, the rats were subject treadmil exercise at the speed of 16 m/min in a-16° slope, for 100 minutes at the interval of 5 minutes. The quiet control group maintained unchanged, without exercise. The cytoskeletal vimentin was detected with

  4. Casein kinase 2 inhibits HomolD-directed transcription by Rrn7 in Schizosaccharomyces pombe.

    Science.gov (United States)

    Moreira-Ramos, Sandra; Rojas, Diego A; Montes, Matías; Urbina, Fabiola; Miralles, Vicente J; Maldonado, Edio

    2015-02-01

    In Schizosaccharomyces pombe, ribosomal protein gene (RPG) promoters contain a TATA analogue element called the HomolD box. The HomolD-binding protein Rrn7 forms a complex with the RNA polymerase II machinery. Despite the importance of ribosome biogenesis to cell survival, the mechanisms involved in the regulation of transcription of eukaryotic RPGs are unknown. In this study, we identified Rrn7 as a new substrate of the pleiotropic casein kinase 2 (CK2), which is a regulator of basal transcription. Recombinant Rrn7 from S. pombe, which is often used as a model organism for studying eukaryotic transcription, interacted with CK2 in vitro and in vivo. Furthermore, CK2-mediated phosphorylation of Rrn7 inhibited its HomolD-directed transcriptional activity and ability to bind to an oligonucleotide containing a HomolD box in vitro. Mutation of Rrn7 at Thr67 abolished these effects, indicating that this residue is a critical CK2 phosphorylation site. Finally, Rrn7 interacted with the regulatory subunit of CK2 in vivo, inhibition of CK2 in vivo potentiated ribosomal protein gene transcription, and chromatin immunoprecipitation analyses identified that the catalytic subunit of CK2 was associated with the rpk5 gene promoter in S. pombe. Taken together, these data suggest that CK2 inhibits ribosomal protein gene transcription in S. pombe via phosphorylation of Rrn7 at Thr67. PMID:25410910

  5. Toward the rational design of protein kinase casein kinase-2 inhibitors.

    Science.gov (United States)

    Sarno, Stefania; Moro, Stefano; Meggio, Flavio; Zagotto, Giuseppe; Dal Ben, Diego; Ghisellini, Paola; Battistutta, Roberto; Zanotti, Giuseppe; Pinna, Lorenzo A

    2002-01-01

    Casein kinase-2 (CK2) probably is the most pleiotropic member of the protein kinase family, with more than 200 substrates known to date. Unlike the great majority of protein kinases, which are tightly regulated enzymes, CK2 is endowed with high constitutive activity, a feature that is suspected to underlie its oncogenic potential and possible implication in viral infections. This makes CK2 an attractive target for anti-neoplastic and antiviral drugs. Here, we present an overview of our present knowledge about CK2 inhibitors, with special reference to the information drawn from two recently solved crystal structures of CK2alpha in complex with emodin and with 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), this latter being the most specific CK2 inhibitor known to date. A comparison with a series of anthraquinone and xanthenone derivatives highlights the crucial relevance of the hydroxyl group at position 3 for inhibition by emodin, and discloses the possibility of increasing the inhibitory potency by placing an electron withdrawing group at position 5. We also present mutational data corroborating the relevance of two hydrophobic residues unique to CK2, Val66 and Ile174, for the interactions with emodin and TBB, but not with the flavonoid inhibitors quercetin and fisetin. In particular, the CK2alpha mutant V66A displays 27- and 11-fold higher IC(50) values with emodin and TBB, respectively, as compared with the wild-type, while the IC(50) value with quercetin is unchanged. The data presented pave the road toward the rational design of more potent and selective inhibitors of CK2 and the generation of CK2 mutants refractory to inhibition, useful to probe the implication of CK2 in specific cellular functions. PMID:12191608

  6. Myosin X Regulates Neuronal Radial Migration through Interacting with N-cadherin

    Directory of Open Access Journals (Sweden)

    Mingming Lai

    2015-08-01

    Full Text Available Proper brain function depends on correct neuronal migration during development, which is known to be regulated by cytoskeletal dynamics and cell-cell adhesion. Myosin X (Myo10, an uncharacteristic member of the myosin family, is an important regulator of cytoskeleton that modulates cell motilities in many different cellular contexts. We previously reported that Myo10 was required for neuronal migration in the developing cerebral cortex, but the underlying mechanism was still largely unknown. Here, we found that knockdown of Myo10 expression disturbed the adherence of migrating neurons to radial glial fibers through abolishing surface N-cadherin expression, thereby impaired neuronal migration in the developmental cortex. Next, we found Myo10 interacted with N-cadherin cellular domain through its FERM domain. Furthermore, we found knockdown of Myo10 disrupted N-cadherin subcellular distribution and led to localization of N-cadherin into Golgi apparatus and endosomal sorting vesicle. Taking together, these results reveal a novel mechanism of Myo10 interacting with N-cadherin and regulating its cell-surface expression, which is required for neuronal adhesion and migration.

  7. Motor Regulation Results in Distal Forces that Bend Partially Disintegrated Chlamydomonas Axonemes into Circular Arcs

    Science.gov (United States)

    Mukundan, V.; Sartori, P.; Geyer, V. F.; Jülicher, F.; Howard, J.

    2014-06-01

    The bending of cilia and flagella is driven by forces generated by dynein motor proteins. These forces slide adjacent microtubule doublets within the axoneme, the motile cytoskeletal structure. To create regular, oscilla- tory beating patterns, the activities of the axonemal dyneins must be coordinated both spatially and temporally. It is thought that coordination is mediated by stresses or strains, which build up within the moving axoneme, and somehow regulate dynein activity. While experimenting with axonemes subjected to mild proteolysis, we observed pairs of doublets associate with each other and form bends with almost constant curvature. By model- ing the statics of a pair of filaments, we show that the activity of the motors concentrates at the distal tips of the doublets. Furthermore, we show that this distribution of motor activity accords with models in which curvature, or curvature-induced normal forces, regulates the activity of the motors. These observations, together with our theoretical analysis, provide evidence that dynein activity can be regulated by curvature or normal forces, which may, therefore, play a role in coordinating the beating of cilia and flagella.

  8. Role of Scaffolding Proteins in the Regulation of TRPC-Dependent Calcium Entry.

    Science.gov (United States)

    Constantin, Bruno

    2016-01-01

    Plasma membrane ion channels, and in particular TRPC channels need a specific membrane environment and association with scaffolding, signaling, and cytoskeleton proteins in order to play their important functional role. The molecular composition of TRPC channels is an important factor in determining channel activation mechanisms. TRPC proteins are incorporated in macromolecular complexes including several key Ca(2 +) signaling proteins as well as proteins involved in vesicle trafficking, cytoskeletal interactions, and scaffolding. Evidence has been provided for association of TRPC with calmodulin (CaM), IP3R, PMCA, Gq/11, RhoA, and a variety of scaffolding proteins. The interaction between TRPC channels with adaptor proteins, determines their mode of regulation as well as their cellular localization and function. Adaptor proteins do not display any enzymatic activity but act as scaffold for the building of signaling complexes. The scaffolding proteins are involved in the assembling of these Ca(2+) signaling complexes, the correct sub-cellular localization of protein partners, and the regulation of the TRPC channelosome. In particular, these proteins, via their multiple protein-protein interaction motifs, can interact with various ion channels involved in the transmembrane potential, and membrane excitability. Scaffolding proteins are key components for the functional organization of TRPC channelosomes that serves as a platform regulating slow Ca(2+) entry, spatially and temporally controlled [Ca(2+)]i signals and Ca(2+) -dependent cellular functions. PMID:27161237

  9. Lysophosphatidic acid regulates adhesion molecules and enhances migration of human oral keratinocytes.

    Science.gov (United States)

    Thorlakson, Hong H; Schreurs, Olav; Schenck, Karl; Blix, Inger J S

    2016-04-01

    Oral keratinocytes are connected via cell-to-cell adhesions to protect underlying tissues from physical and bacterial damage. Lysophosphatidic acids (LPAs) are a family of phospholipid mediators that have the ability to regulate gene expression, cytoskeletal rearrangement, and cytokine/chemokine secretion, which mediate proliferation, migration, and differentiation. Several forms of LPA are found in saliva and gingival crevicular fluid, but it is unknown how they affect human oral keratinocytes (HOK). The aim of the present study was therefore to examine how different LPA forms affect the expression of adhesion molecules and the migration and proliferation of HOK. Keratinocytes were isolated from gingival biopsies obtained from healthy donors and challenged with different forms of LPA. Quantitative real-time RT-PCR, immunocytochemistry, and flow cytometry were used to analyze the expression of adhesion molecules. Migration and proliferation assays were performed. Lysophosphatidic acids strongly promoted expression of E-cadherin and occludin mRNAs and translocation of E-cadherin protein from the cytoplasm to the membrane. Occludin and claudin-1 proteins were up-regulated by LPA. Migration of HOK in culture was increased, but proliferation was reduced, by the addition of LPA. This indicates that LPA can have a role in the regulation of the oral epithelial barrier by increasing the expression of adhesion molecules of HOK, by promotion of migration and by inhibition of proliferation. PMID:26913569

  10. Regulations and instructions

    International Nuclear Information System (INIS)

    Regulations and instructions for operating the RA reactor consist of the following chapters: general regulations with the fundamental RA reactor characteristics, operating regulations and instructions for the personnel on duty, regulations for accidental conditions, training program for the staff of the Laboratory for reactor operation

  11. Widespread cytoskeletal pathology characterizes corticobasal degeneration.

    OpenAIRE

    Feany, M B; Dickson, D W

    1995-01-01

    Corticobasal degeneration (CBD) is a rare, progressive neurological disorder characterized by widespread neuronal and glial pathology. Using immunohistochemistry and laser confocal microscopy, we demonstrate that the nonamyloid cortical plaques of CBD are actually collections of abnormal tau in the distal processes of astrocytes. These glial cells express both vimentin and CD44, markers of astrocyte activation. Glial pathology also includes tau-positive cytoplasmic inclusions, here localized ...

  12. Mechanoregulation of cytoskeletal dynamics by TRP channels

    NARCIS (Netherlands)

    Kuipers, A.J.; Middelbeek, J.; Leeuwen, F.N. van

    2012-01-01

    The ability of cells to respond to mechanical stimulation is crucial to a variety of biological processes, including cell migration, axonal outgrowth, perception of pain, cardiovascular responses and kidney physiology. The translation of mechanical cues into cellular responses, a process known as me

  13. Simulated cytoskeletal collapse via tau degradation.

    Directory of Open Access Journals (Sweden)

    Austin Sendek

    Full Text Available We present a coarse-grained two dimensional mechanical model for the microtubule-tau bundles in neuronal axons in which we remove taus, as can happen in various neurodegenerative conditions such as Alzheimers disease, tauopathies, and chronic traumatic encephalopathy. Our simplified model includes (i taus modeled as entropic springs between microtubules, (ii removal of taus from the bundles due to phosphorylation, and (iii a possible depletion force between microtubules due to these dissociated phosphorylated taus. We equilibrate upon tau removal using steepest descent relaxation. In the absence of the depletion force, the transverse rigidity to radial compression of the bundles falls to zero at about 60% tau occupancy, in agreement with standard percolation theory results. However, with the attractive depletion force, spring removal leads to a first order collapse of the bundles over a wide range of tau occupancies for physiologically realizable conditions. While our simplest calculations assume a constant concentration of microtubule intercalants to mediate the depletion force, including a dependence that is linear in the detached taus yields the same collapse. Applying percolation theory to removal of taus at microtubule tips, which are likely to be the protective sites against dynamic instability, we argue that the microtubule instability can only obtain at low tau occupancy, from 0.06-0.30 depending upon the tau coordination at the microtubule tips. Hence, the collapse we discover is likely to be more robust over a wide range of tau occupancies than the dynamic instability. We suggest in vitro tests of our predicted collapse.

  14. Casein Kinase 2: a novel player in glioblastoma therapy and cancer stem cells.

    Science.gov (United States)

    Agarwal, Maya; Nitta, Ryan T; Li, Gordon

    2013-12-01

    Casein kinase 2 (CK2) is an oncogenic protein kinase which contributes to tumor development, proliferation, and suppression of apoptosis in multiple cancer types. The mechanism by which CK2 expression and activity leads to tumorigenesis in glioblastoma (GBM), a stage IV primary brain tumor, is being studied. Recent studies demonstrate that CK2 plays an important role in GBM formation and growth through the inhibition of tumor suppressors and activation of oncogenes. In addition, intriguing new reports indicate that CK2 may regulate GBM formation in a novel manner; CK2 may play a critical role in cancer stem cell (CSC) maintenance. Since glial CSCs have the ability to self-renew and initiate tumor growth, new treatments which target these CSCs are needed to treat this fatal disease. Inhibition of CK2 is potentially a novel method to inhibit GBM growth and reoccurrence by targeting the glial CSCs. A new, orally available, selective CK2 inhibitor, CX-4945 has had promising results when tested in cancer cell lines, in vivo xenograft models, and human clinical trials. The development of CK2 targeted inhibitors, starting with CX-4945, may lead to a new class of more effective cancer therapies. PMID:25264454

  15. Motors and Adaptors : Transport Regulation within Neurons

    OpenAIRE

    van Spronsen, C.S.A.M.

    2012-01-01

    Human thoughts and behavior are the outcome of communication between neurons in our brains. There is an entire world inside each of these neurons where transactions are established and meeting points are set. By using molecular motors to transport proteins and organelles along cytoskeletal tracks, neurons create the internal order of the bustling community of macromolecules. Given the challenging geometry of the neuron, the mechanisms that deliver fuel and materials to sustain the distant syn...

  16. Integrins Regulate Apical Constriction via Microtubule Stabilization in the Drosophila Eye Disc Epithelium

    Directory of Open Access Journals (Sweden)

    Vilaiwan M. Fernandes

    2014-12-01

    Full Text Available During morphogenesis, extracellular signals trigger actomyosin contractility in subpopulations of cells to coordinate changes in cell shape. To illuminate the link between signaling-mediated tissue patterning and cytoskeletal remodeling, we study the progression of the morphogenetic furrow (MF, the wave of apical constriction that traverses the Drosophila eye imaginal disc preceding photoreceptor neurogenesis. Apical constriction depends on actomyosin contractility downstream of the Hedgehog (Hh and bone morphogenetic protein (BMP pathways. We identify a role for integrin adhesion receptors in MF progression. We show that Hh and BMP regulate integrin expression, the loss of which disrupts apical constriction and slows furrow progression; conversely, elevated integrins accelerate furrow progression. We present evidence that integrins regulate MF progression by promoting microtubule stabilization, since reducing microtubule stability rescues integrin-mediated furrow acceleration. Thus, integrins act as a genetic link between tissue-level signaling events and morphological change at the cellular level, leading to morphogenesis and neurogenesis in the eye.

  17. Structural and functional diversity in the activity and regulation of DAPK-related protein kinases.

    Science.gov (United States)

    Temmerman, Koen; Simon, Bertrand; Wilmanns, Matthias

    2013-11-01

    Within the large group of calcium/calmodulin-dependent protein kinases (CAMKs) of the human kinome, there is a distinct branch of highly related kinases that includes three families: death-associated protein-related kinases, myosin light-chain-related kinases and triple functional domain protein-related kinases. In this review, we refer to these collectively as DMT kinases. There are several functional features that span the three families, such as a broad involvement in apoptotic processes, cytoskeletal association and cellular plasticity. Other CAMKs contain a highly conserved HRD motif, which is a prerequisite for kinase regulation through activation-loop phosphorylation, but in all 16 members of the DMT branch, this is replaced by an HF/LD motif. This DMT kinase signature motif substitutes phosphorylation-dependent active-site interactions with a local hydrophobic core that maintains an active kinase conformation. Only about half of the DMT kinases have an additional autoregulatory domain, C-terminal to the kinase domain that binds calcium/calmodulin in order to regulate kinase activity. Protein substrates have been identified for some of the DMT kinases, but little is known about the mechanism of recognition. Substrate conformation could be an equally important parameter in substrate recognition as specific preferences in sequence position. Taking the data together, this kinase branch encapsulates a treasure trove of features that renders it distinct from many other protein kinases and calls for future research activities in this field. PMID:23745726

  18. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Deshu Lin; Huibo Ren; Ying Fu

    2015-01-01

    In multicel ular plant organs, cel shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cel‐to‐cel communi-cation. Plants have a specific subfamily of the Rho GTPase family, usual y cal ed Rho of Plants (ROP), which serve as a critical signal transducer involved in many cel ular processes. In the last decade, important advances in the ROP‐mediated regulation of plant cel morphogenesis have been made by using Arabidopsis thaliana leaf and cotyledon pavement cel s. Especial y, the auxin‐ROP signaling networks have been demonstrated to control interdigitated growth of pavement cel s to form jigsaw‐puzzle shapes. Here, we review findings related to the discovery of this novel auxin‐signaling mecha-nism at the cel surface. This signaling pathway is to a large extent independent of the wel‐known Transport Inhibitor Response (TIR)–Auxin Signaling F‐Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane‐localized, transmembrane kinase (TMK) receptor‐like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PIN1. The present review focuses on ROP signaling and its self‐organizing feature al owing ROP proteins to serve as a bustling signal decoder and integrator for plant cel morphogenesis.

  19. NKp46 clusters at the immune synapse and regulates NK cell polarization

    Directory of Open Access Journals (Sweden)

    Uzi eHadad

    2015-09-01

    Full Text Available Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.

  20. Ocean Dumping Control Regulations

    International Nuclear Information System (INIS)

    These Regulations were made further to the Ocean Dumping Control Act which provides for restrictions in dumping operations. The Regulations contain model applications for permits to dump or load a series of materials. (NEA)

  1. Trout Stream Special Regulations

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer shows Minnesota trout streams that have a special regulation as described in the 2006 Minnesota Fishing Regulations. Road crossings were determined using...

  2. Regulation of Genetic Tests

    Science.gov (United States)

    ... advertised. The Commission has the authority to regulate advertising that delivers health-related information to consumers to ensure that it is not false or misleading. Top of page FDA Regulation and ...

  3. Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55-64 region of the beta-subunit. A study with calmodulin as phosphorylatable substrate

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Issinger, O G; Pińna, L A

    1994-01-01

    The noncatalytic beta-subunit is responsible for the latency of casein kinase 2 (CK2) activity toward calmodulin. Twenty-one mutants of the beta-subunit bearing either deletions or Ala substitutions for charged residues in the 5-6, 55-70, and 171-178 sequences have been assayed for their ability to...... substitute for wild-type beta-subunit as a suppressor of activity toward calmodulin. The only mutations that reduced the ability of the beta-subunit to suppress calmodulin phosphorylation activity, though being compatible with normal reconstitution of CK2 holoenzyme, were those affecting Asp55, Glu57 and the...... conversely ineffective. The latent "calmodulin kinase" activity of CK2 can also be specifically unmasked by a peptide (alpha[66-86]) reproducing a basic insert of the catalytic subunit. This effect is reversed by equimolar addition of a peptide (beta[55-71]) including the 55-64 acidic stretch of the beta...

  4. Activists versus Captured Regulators

    OpenAIRE

    Daubanes, Julien; Rochet, Jean-Charles

    2013-01-01

    We analyze the consequences of activism in a regulated industry where the regulator has been captured by the industry. Unlike ordinary economic agents, activists are insensitive to monetary incentives. Moreover, they are less well informed than regulators and their actions generate dead-weight costs. Yet we find that activism may increase social welfare because it disciplines captured regulators and reduces the social cost of imperfect regulatory systems.

  5. Hepcidin: regulation of the master iron regulator

    OpenAIRE

    2015-01-01

    Iron, an essential nutrient, is required for many diverse biological processes. The absence of a defined pathway to excrete excess iron makes it essential for the body to regulate the amount of iron absorbed; a deficiency could lead to iron deficiency and an excess to iron overload and associated disorders such as anaemia and haemochromatosis respectively. This regulation is mediated by the iron-regulatory hormone hepcidin. Hepcidin binds to the only known iron export protein, ferroportin (FP...

  6. RhoC GTPase Is a Potent Regulator of Glutamine Metabolism and N-Acetylaspartate Production in Inflammatory Breast Cancer Cells.

    Science.gov (United States)

    Wynn, Michelle L; Yates, Joel A; Evans, Charles R; Van Wassenhove, Lauren D; Wu, Zhi Fen; Bridges, Sydney; Bao, Liwei; Fournier, Chelsea; Ashrafzadeh, Sepideh; Merrins, Matthew J; Satin, Leslie S; Schnell, Santiago; Burant, Charles F; Merajver, Sofia D

    2016-06-24

    Inflammatory breast cancer (IBC) is an extremely lethal cancer that rapidly metastasizes. Although the molecular attributes of IBC have been described, little is known about the underlying metabolic features of the disease. Using a variety of metabolic assays, including (13)C tracer experiments, we found that SUM149 cells, the primary in vitro model of IBC, exhibit metabolic abnormalities that distinguish them from other breast cancer cells, including elevated levels of N-acetylaspartate, a metabolite primarily associated with neuronal disorders and gliomas. Here we provide the first evidence of N-acetylaspartate in breast cancer. We also report that the oncogene RhoC, a driver of metastatic potential, modulates glutamine and N-acetylaspartate metabolism in IBC cells in vitro, revealing a novel role for RhoC as a regulator of tumor cell metabolism that extends beyond its well known role in cytoskeletal rearrangement. PMID:27129239

  7. Radiation Control Regulation 1993

    International Nuclear Information System (INIS)

    This Regulation (No. 434-1993) was made in pursuance of the Radiation Control Act 1990 and replaces the Active Substances Regulations 1959 repealed by the Act. It entered into force on 1 September 1993. The Regulation specifies that the technical radiation protection definitions have the same meaning as in the 1990 recommendations. The Regulation provides for the licensing of persons to use radioactive substances and radiation apparatus. It prescribes activities which may only be carried out by an accredited radiation expert and regulates the use of radiation apparatus and radioactive substances as well as the disposal and transport of radiation apparatus and radioactive substances. (NEA)

  8. Views of the regulators

    International Nuclear Information System (INIS)

    In dealing with a challenging problem in occupational exposure the nuclear regulator in South Africa concluded that the involvement of stake holders was critical. Valuable lessons were learnt in the process. These related to co-operation amongst regulators, the involvement of regulators in addressing occupational exposure problems, the training of workers by the regulator and the need for technical training of the workers. In general, it was also learnt that regulators should establish mechanisms to measure and continuously improve the satisfaction of their stake holders. (author)

  9. Nuclear safety regulations

    International Nuclear Information System (INIS)

    The Nuclear Safety Regulations for Nuclear Installations and Nuclear Safety Codes for Nuclear Pressure Retaining Components were issued by the NNSA in 1995. The Atomic Act and Regulations on the Safety Regulation for Transportation of Radioactive Materials have been finished and submitted to the State Council in 1995. At the same time the NNSA organized a revised collection of regulations on nuclear safety in both Chinese and English, titled 'The Collection of Regulations on Nuclear Safety of the People's Republic of China'. To enhance the implementation of newly issued nuclear safety regulations, the NNSA conducted seven times of propagating activities in relation to the regulations for nuclear pressure retaining components and research reactors design and operating in 1995

  10. Phosphorylation of murine double minute clone 2 (MDM2) protein at serine-267 by protein kinase CK2 in vitro and in cultured cells

    DEFF Research Database (Denmark)

    Hjerrild, M; Milne, D; Dumaz, N; Hay, T; Issinger, O G; Meek, D

    ,6-dichlororibofuranosylbenzimidazole. Radiolabelling of cells expressing tagged recombinant wild-type MDM2 or a S267A (Ser(267)-->Ala) mutant, followed by phosphopeptide analysis, confirmed that Ser(267) is a cellular target for phosphorylation. Ser(267) mutants are still able to direct the degradation of p53, but in a slightly...

  11. Insights from soft X-rays: the chlorine and sulfur sub-structures of a CK2alpha/DRB complex

    OpenAIRE

    Raaf, J.; Issinger, O.-G.; Niefind, K.

    2008-01-01

    The diffraction pattern of a protein crystal is normally a product of the interference of electromagnetic waves scattered by electrons of the crystalline sample. The diffraction pattern undergoes systematic changes in case additionally X-ray absorption occurs, meaning if the wavelength of the primary X-ray beam is relatively close to the absorption edge of selected elements of the sample. The resulting effects are summarized as "anomalous dispersion" and can be always observed with "soft" X-r...

  12. Metastasis-associated protein Mts1 (S100A4) inhibits CK2-mediated phosphorylation and self-assembly of the heavy chain of nonmuscle myosin

    DEFF Research Database (Denmark)

    Kriajevska, M; Bronstein, I B; Scott, D J; Tarabykina, S; Fischer-Larsen, M; Issinger, O; Lukanidin, E

    A role for EF-hand calcium-binding protein Mts1 (S100A4) in the phosphorylation and the assembly of myosin filaments was studied. The nonmuscle myosin molecules form bipolar filaments, which interact with actin filaments to produce a contractile force. Phosphorylation of the myosin plays a regula...

  13. Diacylglycerol kinase-zeta localization in skeletal muscle is regulated by phosphorylation and interaction with syntrophins.

    Science.gov (United States)

    Abramovici, Hanan; Hogan, Angela B; Obagi, Christopher; Topham, Matthew K; Gee, Stephen H

    2003-11-01

    Syntrophins are scaffolding proteins that link signaling molecules to dystrophin and the cytoskeleton. We previously reported that syntrophins interact with diacylglycerol kinase-zeta (DGK-zeta), which phosphorylates diacylglycerol to yield phosphatidic acid. Here, we show syntrophins and DGK-zeta form a complex in skeletal muscle whose translocation from the cytosol to the plasma membrane is regulated by protein kinase C-dependent phosphorylation of the DGK-zeta MARCKS domain. DGK-zeta mutants that do not bind syntrophins were mislocalized, and an activated mutant of this sort induced atypical changes in the actin cytoskeleton, indicating syntrophins are important for localizing DGK-zeta and regulating its activity. Consistent with a role in actin organization, DGK-zeta and syntrophins were colocalized with filamentous (F)-actin and Rac in lamellipodia and ruffles. Moreover, extracellular signal-related kinase-dependent phosphorylation of DGK-zeta regulated its association with the cytoskeleton. In adult muscle, DGK-zeta was colocalized with syntrophins on the sarcolemma and was concentrated at neuromuscular junctions (NMJs), whereas in type IIB fibers it was found exclusively at NMJs. DGK-zeta was reduced at the sarcolemma of dystrophin-deficient mdx mouse myofibers but was specifically retained at NMJs, indicating that dystrophin is important for the sarcolemmal but not synaptic localization of DGK-zeta. Together, our findings suggest syntrophins localize DGK-zeta signaling complexes at specialized domains of muscle cells, which may be critical for the proper control of lipid-signaling pathways regulating actin organization. In dystrophic muscle, mislocalized DGK-zeta may cause abnormal cytoskeletal changes that contribute to disease pathogenesis. PMID:14551255

  14. TOWARD MORE EFFECTIVE REGULATION

    Energy Technology Data Exchange (ETDEWEB)

    J. GRAF

    2000-06-01

    This paper proposes a model relationship between the operator engaged in a hazardous activity, the regulator of that activity, and the general public. The roles and responsibilities of each entity are described in a way that allows effective communication flow. The role of the regulator is developed using the steam boiler as an example of a hazard subject to regulation; however, the model applies to any regulated activity. In this model the safety analyst has the extremely important role of communicating sometimes difficult technical information to the regulator in a way that the regulator can provide credible assurance to the general public as to the adequacy of the control of the hazardous activity. The conclusion asserts that acceptance of the model, understanding of the roles and responsibilities and definition of who communicates what information to whom will mitigate frustration on the part of each of the three entities.

  15. The development of regulations

    International Nuclear Information System (INIS)

    In October 2002, The Act on Protection Against Ionising Radiation and Nuclear Safety which regulates all aspects of protection against ionising radiation and nuclear safety entered into force in Slovenia. The Slovenian government and its responsible ministries shall issue several governmental and ministerial regulations to support the above - mentioned act. The Slovenian Nuclear Safety Administration (SNSA) which acts within the Ministry of the Environment, Spatial Planing and Energy takes an active part in drafting the regulations which are defined in the act. Due to a very comprehensive and pretentious task, that is to be completed in a relatively short period of time, taking into consideration the involvement of stakeholders and all competent ministries, the SNSA within the Quality Management System developed a special procedure that insures the systematic approach to the preparation of regulations. The article will briefly represent the process that: defines the preparation, development, harmonisation, review, approval and issue of regulations and uniforms the format of developed regulations. (author)

  16. 磁刺激对小鼠海马原代神经元即刻早期基因和细胞骨架蛋白表达的影响%Influence of magnetic stimulation on the expression of immediate early genes and cytoskeletal protein in primary cultured mouse hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    张展翅; 马隽; 栾峰; 康林; 苏玉红; 王彦永; 王铭维; 崔慧先

    2012-01-01

    Objective:To observe the effects of magnetic stimulation on the expression of c-fos, activity regulated cytoskeletal protein, microtubule-associated protein 2 and neurite growth in primary cultured mouse hippocampal neurons, and to explore the possible mechanism of magnetic stimulation on cell neurite growth. Methods:The primary cultured hippocampal neurons were divided into five groups: control group, sham group, 20% maximum stimulus intensity group (20% intensity), 30% maximum stimulus intensity group (30% intensity), and 40% maximum stimulus intensity group (40% intensity). The neurons were stimulated at a rate of 1 Hz after 24h, and the maximum output intensity of magnetic field was 3. 7 Tesla. Continuous stimulation for 5d, the stimulation coil was held paralleled 1 cm above the dish. Cellular immunofluorescence staining was executed immediately in the fifth day after stimulation; the immunofluorescence intensity of c-fos, Arc and MAP2-positive neurons was detected, and the multiple neurites neurons and the cell neurite length of MAP2 positive neurons were counted. Meanwhile, semiquantitative RT-PCR and Western blotting were applied to verify the results. Results:The percentage of multiple neurites neurons(n≥2)and the cell neurite length in each stimulation group was significantly higher than that in the control group. Meanwhile, it was higher in the 30% intensity group than that in 20% and 40% intensity groups, and there was significant difference in the results. C-fos positive neurons proportion and the immunofluorescence intensity of Arc and MAP2 in the 30% intensity group was significantly higher than that in the related control group. The results of Western blotting and RT-PCR were consistent with the immunofluorescence. Conclusion: Magnetic stimulation can promote the neurite outgrowth of primary cultured hippocampus neuron, and the mechanism may be related to the up-regulation of c-fos, Arc and MAP2.%目的:观察磁刺激对小鼠海马原代神经

  17. Nuclear safety regulations

    International Nuclear Information System (INIS)

    The enactment of nuclear safety regulations in 1996 is mainly focused on the preparation of related regulations, and safety guides for nuclear materials control, the reprocessing installations of spent fuels, the treatment and disposal for radioactive waste. The NNSA also assists the departments concerned of the State Council for modification on the 'Atomic Energy Act' (draft) and the' Regulations on the Safety Supervision and Control of Radioactive Materials Transportation' (draft)

  18. Attention in emotion regulation

    OpenAIRE

    Gelow, Stefan

    2013-01-01

    The concept of emotion and how to regulate it is a central aspect of modern psychology. Within the process model of emotion regulation (Gross, 1998), one issue is how attentional deployment affects emotion regulation and how this can be measured. In task 1, pictures of positive or negative valence were showed in two conditions, either attend or decrease emotional reaction, while participants’ eye movements were followed with an eye tracker. Ratings of arousal and valence were significantly af...

  19. Accounting Regulation in Ukraine

    OpenAIRE

    Hora, Michal; Chyzevska, Ludmila

    2013-01-01

    The aim of the paper is to evaluate the regulation and organization of accounting in Ukraine under the changes in the national economic system development and impact of IFRS implementation. The system of legal regulation of accounting in Ukraine is presented by five levels, each comprised of a number of corresponding subjects of regulation and documents. Typical Chart of Accounts is evidence of the continental accounting model in Ukraine. The accounting standards provide freedom of choice as ...

  20. Emotional regulation and friendship

    OpenAIRE

    Zaccagnini, J.L.; Ruiz-Aranda, D.

    2013-01-01

    Previous literature has been shown that emotional regulation facilitates the establishment and maintenance of social relations (Dodge Garber, 1991; Saarni, 1999). The objective of the present study was to analyze the influence of emotional regulation (Gross y John, 2003) in positive friendship (Berscheid, 2003), specifically at the level of intimacy with friends. In addition, we examined the mediating role of positive emotions in the relationship between the emotional regulation and the leve...

  1. Benchmarking and regulation

    OpenAIRE

    Agrell, Per Joakim; Bogetoft, Peter

    2013-01-01

    Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators. The application of benchmarking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publication...

  2. Better Regulation in Europe

    OpenAIRE

    Wiener, Jonathan B.

    2006-01-01

    "Better Regulation" is afoot in Europe. After several transatlantic conflicts over regulatory topics such as the precautionary principle, genetically modified foods, and climate change, Europe and America now appear to be converging on the analytic basis for regulation. In a process of hybridization, European institutions are borrowing "Better Regulation" reforms from both the US approach to regulatory review using benefit-cost analysis and from European member states' initiatives on administ...

  3. Protein kinase C, focal adhesions and the regulation of cell migration

    DEFF Research Database (Denmark)

    Fogh, Betina S; Multhaupt, Hinke A B; Couchman, John Robert

    2014-01-01

    Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration and...

  4. Yeast Interacting Proteins Database: YBR270C, YLR423C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YBR270C BIT2 Subunit of TORC2, a membrane-associated complex that regulates actin cytoskeletal dynamics ... sociated complex that regulates actin cytoskeletal dynamics ... during polarized growth and cell wall integrity; i ...

  5. Yeast Interacting Proteins Database: YBR270C, YIL105C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YBR270C BIT2 Subunit of TORC2, a membrane-associated complex that regulates actin cytoskeletal dynamics ... sociated complex that regulates actin cytoskeletal dynamics ... during polarized growth and cell wall integrity; i ...

  6. Yeast Interacting Proteins Database: YBR270C, YNL047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YBR270C BIT2 Subunit of TORC2, a membrane-associated complex that regulates actin cytoskeletal dynamics ... sociated complex that regulates actin cytoskeletal dynamics ... during polarized growth and cell wall integrity; i ...

  7. Emotion-regulation choice

    NARCIS (Netherlands)

    Sheppes, Gal; Scheibe, Susanne; Suri, Gaurav; Gross, James J.

    2011-01-01

    Despite centuries of speculation about how to manage negative emotions, little is actually known about which emotion-regulation strategies people choose to use when confronted with negative situations of varying intensity. On the basis of a new process conception of emotion regulation, we hypothesiz

  8. Benchmarking and Regulation

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    nchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators. The applica...

  9. Reconceptualizing Civil Regulation

    DEFF Research Database (Denmark)

    Galang, Roberto Martin; Castello, Itziar

    2011-01-01

    This article re-conceptualizes the notion of civil regulation, through an analysis of 775 projects by firms located in 21 Asian countries, wherein we map the state of civil regulation initiatives in the region. We challenge two established assumptions in the Corporate Social Responsibility...... literature. First, contrary to what is commonly argued, we claim that strong states in Asia promote civil regulation in what we call the “paradox of the weak state”. Second, we not only argue that civil regulation is mainly enforced by multinational enterprises willing to promote international social and...... environmental standards; but also that local, small and medium companies play a key role in the development of Asian civil regulation. We call this second finding the “CSR importation trap”. Our findings are supported by evidence on the limitations in the interchangeable properties of business and governments...

  10. Effects of oridonin on cytoskeletal protein F-actin in human pancreatic carcinoma cells%冬凌草甲素对胰腺癌细胞骨架蛋白F-actin的影响

    Institute of Scientific and Technical Information of China (English)

    刘军楼; 沈洪; 徐力; 杨继兵; 于希忠; 孙志岭

    2015-01-01

    Background and purpose:Traditional Chinese medicine with notable effect and little adverse reaction is increasingly concerned about the medical profession because of its great potential and advantage in treating pancreatic carcinoma. In this experiment, we studied the effects of oridonin on apoptosis and cytoskeletal protein F-actin in human pancreatic carcinoma SW1990 cells. Methods:SW1990 cells in culture medium were treated with different concentrations of oridonin. The inhibitory rate of the cells was measured by MTT assay. Morphology of cell apoptosis was observed by DAPI stain and cell apoptotic rate was detected by lfow cytometry (FCM). The morphological changes of F-actin were observed by laser confocal microscopy. Results:The growth of human pancreatic carcinoma SW1990 cells was signiifcantly inhibited by oridonin. Apoptosis morphological changes including condensation of chromatin and nuclear fragmentation were observed clearly by DAPI stain. The early apoptotic rate of SW1990 cells treated with 25, 50μmol/L oridonin was signiifcantly higher than that of the control group (3.78±0.46, 9.51±0.63 vs 0.73±0.06, P<0.05), and the late apoptotic rate and cell necrosis rate were also signiifcantly higher than that of the control group (14.40±1.78, 20.53±2.54 vs 4.16±0.31, P<0.05). F-actin was showed from polymerization to depolymerization after oridonin treatment. Conclusion:Oridonin can obviously inhibit the proliferation and induce apoptosis of SW1990 cells. The mechanisms may involve the depolymerization of F-actin after treatment with oridonin.%背景与目的:中医药治疗肿瘤不良反应低且疗效显著,在防治胰腺癌方面有较大的潜力与优势,日益受到国内、外医学界的关注。本研究观察中草药冬凌草的有效成分冬凌草甲素对人胰腺癌SW1990凋亡及细胞骨架蛋白F-actin的影响。方法:以不同浓度的冬凌草甲素作用于体外培养的SW1990细胞,采用MTT法检测细胞生长

  11. Effects of oridonin on cytoskeletal protein F-actin in human pancreatic carcinoma cells%冬凌草甲素对胰腺癌细胞骨架蛋白F-actin的影响

    Institute of Scientific and Technical Information of China (English)

    刘军楼; 沈洪; 徐力; 杨继兵; 于希忠; 孙志岭

    2015-01-01

    背景与目的:中医药治疗肿瘤不良反应低且疗效显著,在防治胰腺癌方面有较大的潜力与优势,日益受到国内、外医学界的关注。本研究观察中草药冬凌草的有效成分冬凌草甲素对人胰腺癌SW1990凋亡及细胞骨架蛋白F-actin的影响。方法:以不同浓度的冬凌草甲素作用于体外培养的SW1990细胞,采用MTT法检测细胞生长抑制率,DAPI染色法染色后荧光显微镜观察细胞核凋亡、流式细胞仪检测细胞凋亡率,激光共聚焦显微镜观察F-actin形态学变化。结果:冬凌草甲素对人胰腺癌SW1990细胞具有明显的增殖抑制作用,荧光显微镜见到典型的凋亡形态学改变。流式细胞仪检测结果显示,25、50μmol/L冬凌草甲素给药组早期凋亡的百分率显著高于对照组(3.78±0.46,9.51±0.63 vs 0.73±0.06,P<0.05),晚期凋亡和坏死细胞的百分率也显著高于未给药组(14.40±1.78,20.53±2.54 vs 4.16±0.31,P<0.05)。细胞骨架蛋白F-actin呈现解聚状态。结论:冬凌草甲素可抑制胰腺癌SW1990细胞增殖,促进肿瘤细胞凋亡,其作用机制可能是药物引起了细胞骨架蛋白F-actin解聚。%Background and purpose:Traditional Chinese medicine with notable effect and little adverse reaction is increasingly concerned about the medical profession because of its great potential and advantage in treating pancreatic carcinoma. In this experiment, we studied the effects of oridonin on apoptosis and cytoskeletal protein F-actin in human pancreatic carcinoma SW1990 cells. Methods:SW1990 cells in culture medium were treated with different concentrations of oridonin. The inhibitory rate of the cells was measured by MTT assay. Morphology of cell apoptosis was observed by DAPI stain and cell apoptotic rate was detected by lfow cytometry (FCM). The morphological changes of F-actin were observed by laser confocal microscopy. Results:The growth of human pancreatic

  12. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics.

    Science.gov (United States)

    Ho, Chin Yee; Jaalouk, Diana E; Vartiainen, Maria K; Lammerding, Jan

    2013-05-23

    Laminopathies, caused by mutations in the LMNA gene encoding the nuclear envelope proteins lamins A and C, represent a diverse group of diseases that include Emery-Dreifuss muscular dystrophy (EDMD), dilated cardiomyopathy (DCM), limb-girdle muscular dystrophy, and Hutchison-Gilford progeria syndrome. Most LMNA mutations affect skeletal and cardiac muscle by mechanisms that remain incompletely understood. Loss of structural function and altered interaction of mutant lamins with (tissue-specific) transcription factors have been proposed to explain the tissue-specific phenotypes. Here we report in mice that lamin-A/C-deficient (Lmna(-/-)) and Lmna(N195K/N195K) mutant cells have impaired nuclear translocation and downstream signalling of the mechanosensitive transcription factor megakaryoblastic leukaemia 1 (MKL1), a myocardin family member that is pivotal in cardiac development and function. Altered nucleo-cytoplasmic shuttling of MKL1 was caused by altered actin dynamics in Lmna(-/-) and Lmna(N195K/N195K) mutant cells. Ectopic expression of the nuclear envelope protein emerin, which is mislocalized in Lmna mutant cells and also linked to EDMD and DCM, restored MKL1 nuclear translocation and rescued actin dynamics in mutant cells. These findings present a novel mechanism that could provide insight into the disease aetiology for the cardiac phenotype in many laminopathies, whereby lamin A/C and emerin regulate gene expression through modulation of nuclear and cytoskeletal actin polymerization. PMID:23644458

  13. Lamin A/C and emerin regulate MKL1/SRF activity by modulating actin dynamics

    Science.gov (United States)

    Ho, Chin Yee; Jaalouk, Diana E.; Vartiainen, Maria K.; Lammerding, Jan

    2013-01-01

    Laminopathies, caused by mutations in the LMNA gene encoding the nuclear envelope proteins lamins A and C, represent a diverse group of diseases that include Emery-Dreifuss Muscular Dystrophy (EDMD), dilated cardiomyopathy (DCM), limb-girdle muscular dystrophy, and Hutchison-Gilford progeria syndrome (HGPS).1 The majority of LMNA mutations affect skeletal and cardiac muscle by mechanisms that remain incompletely understood. Loss of structural function and disturbed interaction of mutant lamins with (tissue-specific) transcription factors have been proposed to explain the tissue-specific phenotypes.1 We report here that lamin A/C-deficient (Lmna−/−) and Lmna N195K mutant cells have impaired nuclear translocation and downstream signaling of the mechanosensitive transcription factor megakaryoblastic leukaemia 1 (MKL1), a myocardin family member that is pivotal in cardiac development and function.2 Disturbed nucleo-cytoplasmic shuttling of MKL1 was caused by altered actin dynamics in Lmna−/− and N195K mutant cells. Ectopic expression of the nuclear envelope protein emerin, which is mislocalized in Lmna mutant cells and also linked to EDMD and DCM, restored MKL1 nuclear translocation and rescued actin dynamics in mutant cells. These findings present a novel mechanism that could provide insight into the disease etiology for the cardiac phenotype in many laminopathies, whereby lamins A/C and emerin regulate gene expression through modulation of nuclear and cytoskeletal actin polymerization. PMID:23644458

  14. Tubulin cofactor B regulates microtubule densities during microglia transition to the reactive states

    International Nuclear Information System (INIS)

    Microglia are highly dynamic cells of the CNS that continuously survey the welfare of the neural parenchyma and play key roles modulating neurogenesis and neuronal cell death. In response to injury or pathogen invasion parenchymal microglia transforms into a more active cell that proliferates, migrates and behaves as a macrophage. The acquisition of these extra skills implicates enormous modifications of the microtubule and actin cytoskeletons. Here we show that tubulin cofactor B (TBCB), which has been found to contribute to various aspects of microtubule dynamics in vivo, is also implicated in microglial cytoskeletal changes. We find that TBCB is upregulated in post-lesion reactive parenchymal microglia/macrophages, in interferon treated BV-2 microglial cells, and in neonate amoeboid microglia where the microtubule densities are remarkably low. Our data demonstrate that upon TBCB downregulation both, after microglia differentiation to the ramified phenotype in vivo and in vitro, or after TBCB gene silencing, microtubule densities are restored in these cells. Taken together these observations support the view that TBCB functions as a microtubule density regulator in microglia during activation, and provide an insight into the understanding of the complex mechanisms controlling microtubule reorganization during microglial transition between the amoeboid, ramified, and reactive phenotypes

  15. Regulation of endothelial cell shape and monolayer permeability by atrial natriuretic peptide

    International Nuclear Information System (INIS)

    Atrial natriuretic peptide (ANP), considered to be an important regulator of intravascular fluid volume, binds specifically to receptors on endothelial cells. In this study, the role of ANP-specific binding was investigated by examining the effect of ANP on the morphology and macromolecular permeability of monolayer cultures of bovine aortic endothelial cells. ANP alone had no observable effect on the monolayers. However, incubation of monolayers with ANP antagonized thrombin- or glucose oxidase-induced cell shape changes and intercellular gap formation. ANP pretreatment also opposed the effect of thrombin and glucose oxidase on actin filament distribution as observed by rhodamine-phalloidin staining and digital image analysis of F0actin staining. In addition, ANP reversed cell shape changes and cytoskeletal alterations induced by thrombin treatment but did not reverse alternations induced by glucose oxidase treatment. ANP significantly reduced increases in monolayer permeability to albumin resulting from thrombin or glucose oxidases treatment. Thrombin caused a 2-fold increase in monolayer permeability to 125I-labeled albumin, which was abolished by 10-8-10-6M ANP pretreatment. Glucose oxidase caused similar increases in permeability and was inhibited by ANP at slightly shorter time periods

  16. SLAMF1 regulation of chemotaxis and autophagy determines CLL patient response

    Science.gov (United States)

    Bologna, Cinzia; Buonincontri, Roberta; Serra, Sara; Vaisitti, Tiziana; Audrito, Valentina; Brusa, Davide; Pagnani, Andrea; Coscia, Marta; D’Arena, Giovanni; Mereu, Elisabetta; Piva, Roberto; Furman, Richard R.; Rossi, Davide; Gaidano, Gianluca; Terhorst, Cox; Deaglio, Silvia

    2015-01-01

    Chronic lymphocytic leukemia (CLL) is a variable disease; therefore, markers to identify aggressive forms are essential for patient management. Here, we have shown that expression of the costimulatory molecule and microbial sensor SLAMF1 (also known as CD150) is lost in a subset of patients with an aggressive CLL that associates with a shorter time to first treatment and reduced overall survival. SLAMF1 silencing in CLL-like Mec-1 cells, which constitutively express SLAMF1, modulated pathways related to cell migration, cytoskeletal organization, and intracellular vesicle formation and recirculation. SLAMF1 deficiency associated with increased expression of CXCR4, CD38, and CD44, thereby positively affecting chemotactic responses to CXCL12. SLAMF1 ligation with an agonistic monoclonal antibody increased ROS accumulation and induced phosphorylation of p38, JNK1/2, and BCL2, thereby promoting the autophagic flux. Beclin1 dissociated from BCL2 in response to SLAMF1 ligation, resulting in formation of the autophagy macrocomplex, which contains SLAMF1, beclin1, and the enzyme VPS34. Accordingly, SLAMF1-silenced cells or SLAMF1lo primary CLL cells were resistant to autophagy-activating therapeutic agents, such as fludarabine and the BCL2 homology domain 3 mimetic ABT-737. Together, these results indicate that loss of SLAMF1 expression in CLL modulates genetic pathways that regulate chemotaxis and autophagy and that potentially affect drug responses, and suggest that these effects underlie unfavorable clinical outcome experienced by SLAMF1lo patients. PMID:26619119

  17. Rab, Arf, and Arl-Regulated Membrane Traffic in Cortical Neuron Migration.

    Science.gov (United States)

    Tang, Bor Luen

    2016-07-01

    The migration of projection neurons from its birthplace in the subventricular zone to their final destination in the cortical plate is a complex process that requires a series of highly coordinated cellular events. Amongst the key factors involved in the processes are modulators of cytoskeletal dynamics, as well as cellular membrane traffic. Members of the small GTPases family responsible for the latter process, the Rabs and Arfs, have been recently implicated in cortical neuron migration. Rab5 and Rab11, which are key modulators of endocytosis and endocytic recycling respectively, ensure proper surface expression and distribution of N-cadherin, a key adhesion protein that tethers migrating neurons to the radial glia fiber tracts during pia-directed migration. Rab7, which is associated with lysosomal biogenesis and function, is important for the final step of terminal translocation when N-cadherin is downregulated by lysosomal degradation. Arf6 activity, which is known to be important in neuronal processes outgrowth, may negatively impact the multipolar-bipolar transition of cortical neurons undergoing radial migration, but the downstream effector of Arf6 in this regard is not yet known. In addition to the above, members of the Arl family which have been recently shown to be important in radial glia scaffold formation, would also be important for cortical neuron migration. In this short review, we discuss recent advances in our understanding of the importance of membrane traffic regulated by the Rab, Arf, and Arl family members in cortical neuron migration. PMID:26587959

  18. The role of Bni5 in the regulation of septin higher-order structure formation.

    Science.gov (United States)

    Patasi, Csilla; Godočíková, Jana; Michlíková, Soňa; Nie, Yan; Káčeriková, Radka; Kválová, Katarína; Raunser, Stefan; Farkašovský, Marian

    2015-12-01

    Septins are a family of conserved cytoskeletal proteins playing an essential role in cytokinesis and in many other cellular processes in fungi and animals. In budding yeast Saccharomyces cerevisiae, septins form filaments and higher-order structures at the mother-bud neck depending on the particular stage of the cell cycle. Septin structures at the division plane serve as a scaffold to recruit the proteins required for particular cellular processes. The formation and localization of septin structures at particular stages of the cell cycle also determine functionality of these proteins. Many different proteins participate in regulating septin assembly. Despite recent developments, we are only beginning to understand how specific protein-protein interactions lead to changes in the polymerization of septin filaments or assembly of higher-order structures. Here, using fluorescence and electron microscopy, we found that Bni5 crosslinks septin filaments into networks by bridging pairs or multiple filaments, forming structures that resemble railways. Furthermore, Bni5 appears to be a substrate of the Elm1 protein kinase in vitro. Moreover, Elm1 induces in the presence of Bni5 disassembly of long septin filaments, suggesting that these proteins may participate in the hourglass to double ring transition. This work gives new insight into the regulatory role of Bni5 in the structural changes of septins. PMID:26351911

  19. Regulation of vacuolar H{sup +}-ATPase in microglia by RANKL

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Ochotny, Noelle [Department of Pharmacology, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Manolson, Morris F. [Faculty of Dentistry, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Holliday, L. Shannon, E-mail: sholliday@dental.ufl.edu [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610 (United States)

    2009-11-06

    Vacuolar H{sup +}-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor {kappa}B-ligand (RANKL). We found that Receptor Activator of Nuclear Factor {kappa}B (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  20. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships.

    Science.gov (United States)

    Zeke, András; Misheva, Mariya; Reményi, Attila; Bogoyevitch, Marie A

    2016-09-01

    The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  1. Multiple oxygen tension environments reveal diverse patterns of transcriptional regulation in primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Wayne Chadwick

    Full Text Available The central nervous system normally functions at O(2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O(2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O(2 tensions compared to the cell culture standard of 20% O(2, to investigate their ability to sense and translate this O(2 information to transcriptional activity. Variance of ambient O(2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O(2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O(2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O(2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional 'programs' may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity.

  2. Regulation of megakaryocytopoiesis.

    Science.gov (United States)

    Caen, J P; Han, Z C; Bellucci, S; Alemany, M

    1999-09-01

    After 35 years of research, a physiological regulator of platelet production has been identified and the recombinant protein is available. With the discovery of thrombopoietin (TPO), its potential use in a wide variety of clinical megakaryocytic and platelet disorders has been expected and clinical trials have been undertaken. To date, the reported encouraging pre-clinical studies indicate that, as with erythropoietin or G-CSF, minimal toxicity can be expected. A potential limiting side-effect of TPO could be the induction of thrombosis. Nevertheless, it is too early to know whether this cytokine will be of major therapeutic importance for patients with life-threatening thrombocytopenia, such as patients undergoing bone marrow transplantation or subjected to a high dose of chemotherapy. Several experimental and clinical studies are still needed to determine the efficacy of TPO in the prevention or the amelioration of bleeding, which is the ultimate goal for the appropriate use of cytokines with haemostatic benefit. Basic and clinical studies on regulators of megakaryocytopoiesis have rapidly progressed. Now, there is no doubt that some of these regulators are effective in correcting haematopoietic disorders of various aetiologies. Studies on negative regulators not only are important to understand the regulation of megakaryocytopoiesis in normal and pathological states but also have a potential clinical application. Some of these regulators have been shown to be effective in the treatment of essential thrombocythaemia and other myeloproliferative disorders. Platelet factor 4 (PF4) and some other chemokines are also capable of protecting progenitor cells from the cytotoxicity of chemotherapeutic drugs. However, detailed investigations are still required to determine the precise mechanism(s) of action of these regulators and to establish the optimal clinical protocols of negative regulators alone or in association with positive regulators for the treatment of various

  3. Electrical installations and regulations

    CERN Document Server

    Whitfield, J F

    1966-01-01

    Electrical Installations and Regulations focuses on the regulations that apply to electrical installations and the reasons for them. Topics covered range from electrical science to alternating and direct current supplies, as well as equipment for providing protection against excess current. Cables, wiring systems, and final subcircuits are also considered, along with earthing, discharge lighting, and testing and inspection.Comprised of 12 chapters, this book begins with an overview of electrical installation work, traits of a good electrician, and the regulations governing installations. The r

  4. The power of regulation

    International Nuclear Information System (INIS)

    Slides accompanying a presentation at The Power of Change Conference in Vancouver, BC in April 1995 about regulations affecting the power industry were presented. Issues addressed included customer choice, incentive regulation changes (price-caps, revenue sharing and pricing flexibility), the reactions of Canadian industry to regulatory changes, and anticipated reactions of the financial markets to changes in regulations. The potential effects of competition and changes that will create competition were discussed. The level of readiness of Canadian financial, ownership and regulatory bodies was discussed. The needs and expectations of investors from a new regulatory regime were quesstimated. Possible alternatives to the present regulatory framework were suggested

  5. Fluvastatin mediated breast cancer cell death: a proteomic approach to identify differentially regulated proteins in MDA-MB-231 cells.

    Directory of Open Access Journals (Sweden)

    Anantha Koteswararao Kanugula

    Full Text Available Statins are increasingly being recognized as anti-cancer agents against various cancers including breast cancer. To understand the molecular pathways targeted by fluvastatin and its differential sensitivity against metastatic breast cancer cells, we analyzed protein alterations in MDA-MB-231 cells treated with fluvastatin using 2-DE in combination with LC-MS/MS. Results revealed dys-regulation of 39 protein spots corresponding to 35 different proteins. To determine the relevance of altered protein profiles with breast cancer cell death, we mapped these proteins to major pathways involved in the regulation of cell-to-cell signaling and interaction, cell cycle, Rho GDI and proteasomal pathways using IPA analysis. Highly interconnected sub networks showed that vimentin and ERK1/2 proteins play a central role in controlling the expression of altered proteins. Fluvastatin treatment caused proteolysis of vimentin, a marker of epithelial to mesenchymal transition. This effect of fluvastatin was reversed in the presence of mevalonate, a downstream product of HMG-CoA and caspase-3 inhibitor. Interestingly, fluvastatin neither caused an appreciable cell death nor did modulate vimentin expression in normal mammary epithelial cells. In conclusion, fluvastatin alters levels of cytoskeletal proteins, primarily targeting vimentin through increased caspase-3- mediated proteolysis, thereby suggesting a role for vimentin in statin-induced breast cancer cell death.

  6. Sport Fishing Regulations

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The regulations for sport fishing on St. Vincent National Wildlife Refuge are outlined in this document. Fishing is only permitted from sunrise to sunset, and only...

  7. Legislation and regulation

    International Nuclear Information System (INIS)

    This document presents the fulfilling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 3 of the document contains some details about the Brazilian legislation and regulation, the nuclear and environmental licensing, and emergency preparedness legislation

  8. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    - serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...... of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume......, controlled cell death and cellular migration. Volume regulatory mechanisms has long been in focus for regulating cellular proliferation and my thesis work have been focusing on the role of Cl- channels in proliferation with specific emphasis on ICl, swell. Pharmacological blockage of the ubiquitously...

  9. Optimal Regulation of Auditing

    OpenAIRE

    Pagano, Marco; Immordino, Giovanni

    2007-01-01

    We study regulation of the auditing profession in a model where audit quality is unobservable and enforcing regulation is costly. The optimal audit standard falls short of the first-best audit quality, and is increasing in the riskiness of firms and in the amount of funding they seek. The model can encompass collusion between clients and auditors, arising from the joint provision of auditing and consulting services: deflecting collusion requires less ambitious standards. Finally, banning the ...

  10. Restructuring nuclear regulations.

    OpenAIRE

    Mossman, Kenneth L.

    2003-01-01

    Nuclear regulations are a subset of social regulations (laws to control activities that may negatively impact the environment, health, and safety) that concern control of ionizing radiation from radiation-producing equipment and from radioactive materials. The impressive safety record among nuclear technologies is due, in no small part, to the work of radiation safety professionals and to a protection system that has kept pace with the rapid technologic advancements in electric power generati...

  11. Rethinking financial regulation

    OpenAIRE

    Thomas M. Hoenig

    1996-01-01

    In recent years, revolutionary changes in financial markets, combined with incidents such as Barings and Daiwa, have revived concerns about the adequacy of financial regulation. Historically, financial regulatory policy has been driven by the view that to maintain the health of the financial system you must maintain the health of individual institutions.> In light of ongoing changes in financial markets, however, extending the traditional approach to financial market regulation may not work. ...

  12. Supermarkets and Planning Regulation

    OpenAIRE

    Griffith, Rachel; Harmgart, Heike

    2008-01-01

    We are interested in evaluating the impact of restrictive planning regulation on entry into the UK grocery retail industry. We estimate a model similar to Bresnahan and Reiss (1991) where we allow for multiple store formats. We find that more restrictive planning regulation reduces the number of large format supermarkets in equilibrium. However, the impact is overstated if variation in demographic characteristics across markets is not also controlled for. Our estimates suggest that restrictiv...

  13. Regulating deregulated energy markets

    International Nuclear Information System (INIS)

    The North American gas and electricity markets are fast evolving, and regulators are currently faced with a host of issues such as market-based rates, unbundling, stranded costs, open access, and incentive regulation are surfacing as a result of deregulation. The regulatory environment in Ontario was reviewed by the author. Deregulated markets rule, from commodities to gas and electricity. Additionally, there is an evolution of traditional utility regulation. A look at deregulated markets revealed that there are regulations on boundary conditions on the deregulated market. Under the Ontario Energy Board (OEB), all generators, transmitters, distributors, and retailers of electricity must be licensed. The standard supply service (SSS) offered by electricity distributors and system gas which is still being sold by natural gas distributors continues to be regulated by OEB. One issue that was addressed was separation for revenues and costs of the utility's purchase and sale of gas business, at least for accounting purposes. The next issue discussed was cost of system gas and SSS, followed by timely signals and prudent incurred costs. Historical benefits were reviewed, such as historical commitments to low-cost electricity. Pooling transportation costs, transmission pricing continued, market-based rates, unbundling, stranded costs, open access, incentive regulation/ performance based regulation (PBR) were all discussed. Price cap on PBR, both partial and comprehensive were looked at. A requirement to review guidelines on cost of capital and an application to extend blanket approval provisions for gas storage were discussed, as they are amongst some of the challenges of the future. Other challenges include revised rules and practice and procedure; practice directions for cost awards, appeals, and other functions; confidentiality guidelines; and refinements to the role of and approaches to alternative dispute resolution. The future role of regulators was examined in light

  14. Summary of the regulations

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) prescribes regulations for the international movement of all radioactive materials among member nations. The U.S. governmental agencies regulating the transportation of radioactive materals include the Department of Transportation (DOT), which is responsible for safety in packaging, shipping, carriage, stowage, storage, and handling of all radioactive materials; the Nuclear Regulatory Commission (NRC), which is responsible for (1) safety and safeguards in receipt, possession, use, transfer of by-product, source, and special nuclear materials and (2) safety in packaging of fissile and radioactive materials in quantities exceeding Type A limits, defined in the Code of Federal Regulations; the Energy Research and Development Administration, which is responsible for safety in all aspects of radioactive material transport by its license-exempt contractors; and the Postal Service, which is responsible for safety in shipment by mail. Current regulatory actions involving NRC that may influence the transportation of radioactive materials include the examination of the regulations, legal contests, and the adoption of new regulations. The NRC published a draft of an environmental impact statement on transportation in March 1976 and will conduct a rulemaking proceeding after the final version of the statement is published in the fall. Of the new regulations, the most recent innovations in the IAEA regulations and a quality assurance program of increased rigor are foremost. The two most prominent ideas of the reguations IAEA regulations are the assignment of radiotoxicity values to each radionuclide rather than to grups of radionuclides, providing for increased flexibility in package limits for most radionuclides, and the allowance of small releases from Type B packages under hypothetical accident conditions. The DOT and NRC are in the process of adopting these IAEA revisions

  15. Financial Regulation Going Forward

    OpenAIRE

    Franklin Allen; Elena Carletti

    2010-01-01

    The financial sector is heavily regulated in order to prevent financial crises. The recent crisis showed how ineffective this regulation and other types of government intervention were in achieving this aim. We argue that the crisis was primarily caused by housing price bubbles. These occurred because of too loose monetary policies and the easy availability of credit resulting from the build up of large foreign exchange reserves by Asian central banks. A number of regulatory reforms are sugge...

  16. On Globalisation of Regulation

    Directory of Open Access Journals (Sweden)

    Bob Wessels

    2009-04-01

    Full Text Available In this article the opinion that financial regulation should be dealt with on a national, and not on a global scale is criticised. The objections against global regulation are discussed and dismissed. The greater good of a solid global system is inconsistent with maintaining the full force of national social or economic policies. Bob Wessels submits that the best way forward is to look for (a combination of the best methods of regulation on the basis of geography, the nature of regulation itself (hard law, best practices, guidelines, the function of certain rules in relation to the goals or the expectations they aim to address and the character of these rules. A parallel is drawn with the way in which cross-border insolvencies are regulated, including solutions from practitioners in the global insolvency of Lehman Brothers Group of Companies. Given the essential role courts play the presence of new rules of the international insolvency should be supported by more robust rules for the cross-border judicial coordination of cross-border cases, such as a convention. The body of financial regulation should be guided by international accepted principles and guidelines and international regulation and national implementation should reflect a balance between what is necessary in the light of the past events, while still leaving room for fair national demands and policies. The allocation of clear responsibility and authority to regulating bodies should warrant an efficient and effective answer for what, at the core, is a global problem, related to international financial markets.

  17. Corruption, Institutions and Regulation

    OpenAIRE

    Breen, Michael; Gillanders, Robert

    2011-01-01

    We analyze the effects of corruption and institutional quality on the quality of business regulation. Our key findings indicate that corruption negatively affects the quality of regulation and that general institutional quality is insignificant once corruption is con- trolled for. These findings hold over a number of specifications which include additional exogenous historical and geographic controls. The findings imply that policy-makers should focus on curbing corruption to improve regulati...

  18. The regulator's viewpoint

    International Nuclear Information System (INIS)

    The speaker recalls the task of regulators in establishing criteria and standards and assessing and controlling their fulfillment, as well as the fact that there are many types of radiological regulators, depending on their targets, structures, level of independence, and others. She also stresses that regulators take the environment presently into account to protect people as far as ionising radiation is concerned, that is, environmental protection is provided by present regulations, although implicitly based on an anthropocentric focus. In this sense, there is a clear need to develop a framework for the protection of environment, on the basis of the evolution of the present system. There is a preference for a unique, coherent, timely, integrated and manageable radiological human and environment protection system, which has to be developed internationally. Such an enhanced environmental protection framework needs of clearly defined specific 'bricks' (principles/criteria/tools). Regulators will face important challenges in adapting to an integrated man/environment protection framework, and need to act nationally in the meantime to fulfill obligations, as well as actively encourage international initiatives. A proposal on a radiological environmental framework is laid down, and finally she states the overall regulators viewpoint on this process: 'The path towards pragmatism and credibility'. (author)

  19. Regulating energy industries

    International Nuclear Information System (INIS)

    The concept of sector-based regulation takes on significant importance in the context of market liberalization. The overall aim is to conciliate, in the considered sector, fair competition with the achievement of public service missions. However, the nature of the authority in charge of this regulation is not prone to harmonized clauses, even in Europe. For electricity for example, the 96/92/CE directive of 19 December 1996 concerning common rules for the inner electricity market, does not state this and Germany, which has not designed any sector-based regulator, applies the general procedure of litigation settlement by the equivalent of the competition Council. In France, the law Nr 2000-108 of 10 February 2000 defines the CRE (Electricity Regulation Commission) is article 28 as including six members, three of which are appointed by Government and the three others respectively by each of the presidents of the parliamentary assemblies. Many other countries have made the same choice. However, the scope of the missions given to these specialized authorities varies considerably according to the country. At European level, what are the different models of organisation of sector-based regulation in the energy field? How are the new regulators organised in relation with the competition authorities? Will the new models converge on the medium term or on the long term? Must we anticipate the creation of European regulation authorities to rule the problems concerning several national markets? What can we learn from the recent electricity crisis in California? To try and answer these questions, Mr Michel Matheu presented a European comparative study and before the debate started, Mr Pierre Couveinhes suggested a reflection on the practical implications of the analyses carried out. (authors)

  20. Nuclear regulation in transition

    International Nuclear Information System (INIS)

    The current state of nuclear regulations in the USA is examined. Since Three Mile Island the regulation of the nuclear power industry has been undergoing a noticeable transition. It will be argued here that the transition is characterized by two indicia. First, the primary focus of state and federal regulators has been on the financial aspects of the industry: this is best seen in the context of decisions allocating the costs of nuclear plant cancellations. Second, decisionmaking power has been decentralized: although the regulatory history of nuclear power demonstrates the tradition of centralized decisionmaking power (i.e., formerly the primary decisionmaking body was the Atomic Energy Commission), now States share decisionmaking power with the Nuclear Regulatory Commission. In Section 1 a brief legislative history of nuclear regulation is presented to establish the assertion that nuclear regulation, both de jure and de facto, was centralized. Next, Section 2 canvasses recent United States Supreme Court opinions regarding nuclear regulation. The Court frequently acts as policymaker through the consequences of its opinions, if not by its intent. In the area of nuclear policymaking, the Court has paid allegiance recently both to the tradition of centralization and to the movement toward decentralization. This dualism is reflected in other federal court decisions as well which will be briefly mentioned. Continuing the analysis of Federal regulation, Section 3 examines the current reform efforts of the NRC. Section 4 presents an examination of State responses to nuclear plant cancellations. In this section, State administrative agency and court decisions will be examined and recent State legislation will be discussed. (author)

  1. Radiation emitting devices regulations

    International Nuclear Information System (INIS)

    The Radiation Emitting Devices Regulations are the regulations referred to in the Radiation Emitting Devices Act and relate to the operation of devices. They include standards of design and construction, standards of functioning, warning symbol specifications in addition to information relating to the seizure and detention of machines failing to comply with the regulations. The radiation emitting devices consist of the following: television receivers, extra-oral dental x-ray equipment, microwave ovens, baggage inspection x-ray devices, demonstration--type gas discharge devices, photofluorographic x-ray equipment, laser scanners, demonstration lasers, low energy electron microscopes, high intensity mercury vapour discharge lamps, sunlamps, diagnostic x-ray equipment, ultrasound therapy devices, x-ray diffraction equipment, cabinet x-ray equipment and therapeutic x-ray equipment

  2. Probiotics and Appetite Regulation

    DEFF Research Database (Denmark)

    Bjerg, Anne Toksvig

    resistance and blood lipid profile among others. Probiotics which are health promoting bacteria can potentially be used to affect the GM and thereby change metabolic outcomes of the host. Animal studies have shown associations between intake of probiotics and appetite regulation, but currently no human...... intestine, in an animal study and in two human studies the effect of the probiotic bacteria Lactobacillus paracasei subsp. paracasei L. casei W8 (W8) on appetite regulation, blood lipids and blood fatty acids. In addition, it was investigated if W8 had an effect on the fecal microbiota of the human...... (GCG) gene encoding GLP-1 and GLP-2 and expression of the gene SCD1 encoding stearoyl-CoA desaturase-1 (SCD1); which is involved in the formation of triacylglycerol (TAG); was studied in piglets supplemented with W8 for two weeks. To study the acute effect of W8 on appetite regulation, glycemic...

  3. Staff rules and regulations

    CERN Multimedia

    HR Department

    2007-01-01

    The 11th edition of the Staff Rules and Regulations, dated 1 January 2007, adopted by the Council and the Finance Committee in December 2006, is currently being distributed to departmental secretariats. The Staff Rules and Regulations, together with a summary of the main modifications made, will be available, as from next week, on the Human Resources Department's intranet site: http://cern.ch/hr-web/internal/admin_services/rules/default.asp The main changes made to the Staff Rules and Regulations stem from the five-yearly review of employment conditions of members of the personnel. The changes notably relate to: the categories of members of the personnel (e.g. removal of the local staff category); the careers structure and the merit recognition system; the non-residence, installation and re-installation allowances; the definition of family, family allowances and family-related leave; recognition of partnerships; education fees. The administrative circulars, some of which are being revised following the ...

  4. ANTICIPATING AND REGULATING BIOSYSTEM

    Directory of Open Access Journals (Sweden)

    Ion Iorga Siman

    2010-06-01

    Full Text Available Regulating biosystems closely related to human beings are structures still difficult to understand.Numerous intimate processes taking place in these systems, even their actual constitution, are insufficiently decoded, and that they have populated the world long before man invented the first regulator, appears not to have contributed much to their knowledge. This work is intended to highlight what regulating biosystems are.There is no secret that somatic muscles perform control operations which no act of moving would be possible without. All actions are the result of dynamic controlled processes adjusted to strict control laws. By treating them very seriously may lead to knowledge of processes occurring in complex systems

  5. Environmentally regulated aerospace coatings

    Science.gov (United States)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  6. Regulation as Rhetoric

    DEFF Research Database (Denmark)

    Boll, Karen; Györy, Csaba

    This paper analyses the way regulatory agencies strategically use public ‘rhetoric’ and ‘management of appearance’ to strengthen their regulation. It reports a comparative study of the Securities and Exchange Commission (SEC) which is the US federal securities regulator and the Danish Tax and...... environment, these two agencies apply strategies that appear to be strikingly similar, and these similarities are worth investigating not despite, but exactly because of the differing political and social environment. We track recent shifts in organizational practice at these two agencies and argue that both...

  7. Nuclear regulation and safety

    International Nuclear Information System (INIS)

    Nuclear regulation and safety are discussed from the standpoint of a hypothetical country that is in the process of introducing a nuclear power industry and setting up a regulatory system. The national policy is assumed to be in favor of nuclear power. The regulators will have responsibility for economic, reliable electric production as well as for safety. Reactor safety is divided into three parts: shut it down, keep it covered, take out the afterheat. Emergency plans also have to be provided. Ways of keeping the core covered with water are discussed

  8. Nuclear regulations and environment

    International Nuclear Information System (INIS)

    After an historical overview of the nuclear regulation system in Argentina a description is made of the country's Nuclear Regulatory Authority (ARN) and of its regulation and control functions. Its organic structure is also outlined. A detailed report is given of the environmental monitoring activities in the sites of the operating Argentine nuclear power plants as well as those of the nuclear research centres. A special reference is made of the monitoring of the relevant uranium mining districts in Argentina. The radon determination in houses of several regions of the country is also mentioned

  9. Regulated underground storage tanks

    International Nuclear Information System (INIS)

    This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ''roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation

  10. Regulation, Competition, and Information

    OpenAIRE

    Mian Muhammad Javed

    2002-01-01

    You know it is very hard after the Governor, State Bank, to make a presentation but I will try to do it in a very mundane way. You know the Regulatory Bodies specially in the Economic Sector in recent times. There has been a sort of resurgence, leaving aside the regulation of the financial sector, which has been doing very well. Our old memory of regulation is not so pleasant. Long ago, there used to be a transport Authority which used to dole out “Route Permits” as political favours, and the...

  11. Cyberplagiarism in University Regulations

    Directory of Open Access Journals (Sweden)

    Santiago Cavanillas

    2008-12-01

    Full Text Available The article examines the legal framework for plagiarism, and its twofold nature of illicit appropriation (from the author of the plagiarized work and fraud (with regard to the target audience of the plagiarism. Based on these premises, academic cyberplagiarism is analysed as a form of plagiarism carried out using electronic tools in the university setting. The question of responsibility (who can regulate the legal consequences of plagiarism? before and after the Ley Orgánica de Universidades (organic law on universities, LOU is studied, as is the disciplinary handling of cyberplagiarism with the limited regulations currently in place at universities.

  12. The Impact of Regulating Social Science Research with Biomedical Regulations

    Science.gov (United States)

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  13. Nuclear safety regulations

    International Nuclear Information System (INIS)

    The Departmental Rules and The Safety Guides were issued by the NNSA in 1998. The NNSA performed the activities of propagation and implementation of nuclear safety regulations at QTNPP in order to improve the nuclear safety culture of operating organization and construct and contract organizations

  14. Emotion regulation during isolation

    Czech Academy of Sciences Publication Activity Database

    Poláčková Šolcová, Iva; Šolcová, Iva

    2012-01-01

    Roč. 47, Suppl. 1 (2012). ISSN 0020-7594. [International Congress of Psychology /30./. 22.07.2012-27.07.2012, Cape Town] R&D Projects: GA ČR(CZ) GAP407/11/2226 Institutional support: RVO:68081740 Keywords : emotion regulation * isolation * Mars500 Subject RIV: AN - Psychology

  15. International telecommunications market regulation

    OpenAIRE

    Productivity Commission

    2001-01-01

    On 23 February 1999 the Assistant Treasurer referred international telecommunic-ations market regulation for inquiry and report within six months. The report focused on the reform of international telecommunications markets, in particular on the payment arrangements between providers of international telecommunications services.

  16. Regulation after Bush

    OpenAIRE

    Hahn Robert; Passell Peter

    2008-01-01

    Barack Obama and John McCain have staked out very different positions on serious questions involving economic regulation everything from housing finance to alternative energy mandates but practical considerations will dissolve many of these differences, according to Robert Hahn and Peter Passell.

  17. Vehicle recycling regulations

    DEFF Research Database (Denmark)

    Smink, Carla

    2007-01-01

    The number of end-of-life vehicles (ELVs) in the EU is increasing continously. Around 75 percent of an ELV are recyclable metals. The forecast growth in the number of ELVs calls for regulation that aims to minimise the environmental impact of a car. Using Denmark as an example, this article...

  18. Jordan Corporate Governance Regulations

    OpenAIRE

    Jordan Institute of Directors

    2013-01-01

    As the importance of Corporate Governance increases, an awareness and understanding of the different relevant regulations becomes of paramount value. The importance and value of Corporate Governance is not the core of this publication. The publication is built around the premise that Corporate Governance is important and increasingly becoming of significant importance for growth, continued...

  19. Regulation of cholesterol homeostasis

    NARCIS (Netherlands)

    van der Wulp, Mariette Y. M.; Verkade, Henkjan J.; Groen, Albert K.

    2013-01-01

    Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-codin

  20. Legislation and regulation

    International Nuclear Information System (INIS)

    This document presents the fulfilling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 3 of the document contains some details about the Brazilian legislation and regulation, the legislative and regulatory framework, regulatory body and responsibility of the license holder