WorldWideScience

Sample records for citrullinated glycolytic enzymes

  1. Candidate autoantigens identified by mass spectrometry in early rheumatoid arthritis are chaperones and citrullinated glycolytic enzymes

    Science.gov (United States)

    Goëb, Vincent; Thomas-L'Otellier, Marlène; Daveau, Romain; Charlionet, Roland; Fardellone, Patrice; Le Loët, Xavier; Tron, François; Gilbert, Danièle; Vittecoq, Olivier

    2009-01-01

    Introduction The aim of our study was to identify new early rheumatoid arthritis (RA) autoantibodies. Methods Sera obtained from 110 early untreated RA patients (citrullination in each of these proteins was evaluated. FT-ICR mass spectrometry was used to verify experimentally the effect of citrullination upon the mass profile observed by MALDI-TOF analysis. Results The 110 1-DE patterns allowed detection of 10 recurrent immunoreactive bands of 33, 39, 43, 46, 51, 54, 58, 62, 67 and 70 kDa, which were further characterized by 2-DE and proteomic analysis. Six proteins were already described RA antigens: heterogeneous nuclear ribonucleoprotein A2/B1, aldolase, α-enolase, calreticulin, 60 kDa heat shock protein (HSP60) and BiP. Phosphoglycerate kinase 1 (PGK1), stress-induced phosphoprotein 1 and the far upstream element-binding proteins (FUSE-BP) 1 and 2 were identified as new antigens. Post-translational protein modifications were analyzed and potentially deiminated peptides were found on aldolase, α-enolase, PGK1, calreticulin, HSP60 and the FUSE-BPs. We compared the reactivity of RA sera with citrullinated and noncitrullinated α-enolase and FUSE-BP linear peptides, and showed that antigenicity of the FUSE-BP peptide was highly dependent on citrullination. Interestingly, the anti-cyclic citrullinated peptide antibody (anti-CCP2) status in RA serum at inclusion was not correlated to the reactivity directed against FUSE-BP citrullinated peptide. Conclusions Two categories of antigens, enzymes of the glycolytic family and molecular chaperones are also targeted by the early untreated RA autoantibody response. For some of them, and notably the FUSE-BPs, citrullination is involved in the immunological tolerance breakdown observed earlier in RA patients. Autoantibodies recognizing a citrullinated peptide from FUSE-BP may enhance the sensibility for RA of the currently available anti-CCP2 test. PMID:19284558

  2. Non-metabolic functions of glycolytic enzymes in tumorigenesis.

    Science.gov (United States)

    Yu, X; Li, S

    2017-05-11

    Cancer cells reprogram their metabolism to meet the requirement for survival and rapid growth. One hallmark of cancer metabolism is elevated aerobic glycolysis and reduced oxidative phosphorylation. Emerging evidence showed that most glycolytic enzymes are deregulated in cancer cells and play important roles in tumorigenesis. Recent studies revealed that all essential glycolytic enzymes can be translocated into nucleus where they participate in tumor progression independent of their canonical metabolic roles. These noncanonical functions include anti-apoptosis, regulation of epigenetic modifications, modulation of transcription factors and co-factors, extracellular cytokine, protein kinase activity and mTORC1 signaling pathway, suggesting that these multifaceted glycolytic enzymes not only function in canonical metabolism but also directly link metabolism to epigenetic and transcription programs implicated in tumorigenesis. These findings underscore our understanding about how tumor cells adapt to nutrient and fuel availability in the environment and most importantly, provide insights into development of cancer therapy.

  3. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production.

    Science.gov (United States)

    Greiner, E F; Guppy, M; Brand, K

    1994-12-16

    A transition from aerobic to anaerobic metabolism occurs as mitogen-activated thymocytes undergo proliferation. Glucose utilization and lactate formation increases 18- and 38-fold, respectively, during proliferation. The absolute amount of 14CO2 production by pyruvate dehydrogenase remains constant, while 14CO2 production by the tricarboxylic acid cycle is reduced during transition from a resting to a proliferating state. Addition of 2,4-dinitrophenol, an agent uncoupling oxidative phosphorylation, and phenacinemethosulfate, an electron acceptor, provide evidence that the reduction of glucose oxidation in proliferating thymocytes is caused neither by limitation of the tricarboxylic acid cycle itself nor by an insufficient supply of ADP. Our data suggest that enhanced cytosolic regeneration of NAD+ by induction of the glycolytic enzymes during proliferation effectively competes with NADH transport and its subsequent oxidation in the mitochondria. Mitogen-stimulated rat thymocytes cultured in a conventional medium containing glucose induce their glycolytic enzymes 8-10-fold in the S phase of the cell cycle and divide within a culture period of 72 h. Replacement of glucose by glutamine, glutamine and ribose, or glutamine and uridine prevents glycolytic enzyme induction and thymocyte proliferation. The effect of glucose on glycolytic enzyme induction cannot be mimicked by 3-O-methylglucose or 2-deoxyglucose. In conclusion, glucose is required for proliferation and the glycolytic enzyme induction that mediates the transition from oxidative to glycolytic energy production during the G1/S transition of rat thymocytes.

  4. Extracellular functions of glycolytic enzymes of parasites: unpredicted use of ancient proteins.

    Science.gov (United States)

    Gómez-Arreaza, Amaranta; Acosta, Hector; Quiñones, Wilfredo; Concepción, Juan Luis; Michels, Paul A M; Avilán, Luisana

    2014-02-01

    In addition of their usual intracellular localization where they are involved in catalyzing reactions of carbohydrate and energy metabolism by glycolysis, multiple studies have shown that glycolytic enzymes of many organisms, but notably pathogens, can also be present extracellularly. In the case of parasitic protists and helminths, they can be found either secreted or attached to the surface of the parasites. At these extracellular localizations, these enzymes have been shown to perform additional, very different so-called "moonlighting" functions, such as acting as ligands for a variety of components of the host. Due to this recognition, different extracellular glycolytic enzymes participate in various important parasite-host interactions such as adherence and invasion of parasites, modulation of the host's immune and haemostatic systems, promotion of angiogenesis, and acquisition of specific nutrients by the parasites. Accordingly, extracellular glycolytic enzymes are important for the invasion of the parasites and their establishment in the host, and in determining their virulence.

  5. Nonlinear correlations in the hydrophobicity and average flexibility along the glycolytic enzymes sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ciorsac, Alecu, E-mail: aleciorsac@yahoo.co [Politehnica University of Timisoara, Department of Physical Education and Sport, 2 P-ta Victoriei, 300006, Timisoara (Romania); Craciun, Dana, E-mail: craciundana@gmail.co [Teacher Training Department, West University of Timisoara, 4 Boulevard V. Pirvan, Timisoara, 300223 (Romania); Ostafe, Vasile, E-mail: vostafe@cbg.uvt.r [Department of Chemistry, West University of Timisoara, 16 Pestallozi, 300115, Timisoara (Romania); Laboratory of Advanced Researches in Environmental Protection, Nicholas Georgescu-Roegen Interdisciplinary Research and Formation Platform, 4 Oituz, Timisoara, 300086 (Romania); Isvoran, Adriana, E-mail: aisvoran@cbg.uvt.r [Department of Chemistry, West University of Timisoara, 16 Pestallozi, 300115, Timisoara (Romania); Laboratory of Advanced Researches in Environmental Protection, Nicholas Georgescu-Roegen Interdisciplinary Research and Formation Platform, 4 Oituz, Timisoara, 300086 (Romania)

    2011-04-15

    Research highlights: lights: We focus our study on the glycolytic enzymes. We reveal correlation of hydrophobicity and flexibility along their chains. We also reveal fractal aspects of the glycolytic enzymes structures and surfaces. The glycolytic enzyme sequences are not random. Creation of fractal structures requires the operation of nonlinear dynamics. - Abstract: Nonlinear methods widely used for time series analysis were applied to glycolytic enzyme sequences to derive information concerning the correlation of hydrophobicity and average flexibility along their chains. The 20 sequences of different types of the 10 human glycolytic enzymes were considered as spatial series and were analyzed by spectral analysis, detrended fluctuations analysis and Hurst coefficient calculation. The results agreed that there are both short range and long range correlations of hydrophobicity and average flexibility within investigated sequences, the short range correlations being stronger and indicating that local interactions are the most important for the protein folding. This correlation is also reflected by the fractal nature of the structures of investigated proteins.

  6. Exploiting Unique Structural and Functional Properties of Malarial Glycolytic Enzymes for Antimalarial Drug Development

    Directory of Open Access Journals (Sweden)

    Asrar Alam

    2014-01-01

    Full Text Available Metabolic enzymes have been known to carry out a variety of functions besides their normal housekeeping roles known as “moonlighting functions.” These functionalities arise from structural changes induced by posttranslational modifications and/or binding of interacting proteins. Glycolysis is the sole source of energy generation for malaria parasite Plasmodium falciparum, hence a potential pathway for therapeutic intervention. Crystal structures of several P. falciparum glycolytic enzymes have been solved, revealing that they exhibit unique structural differences from the respective host enzymes, which could be exploited for their selective targeting. In addition, these enzymes carry out many parasite-specific functions, which could be of potential interest to control parasite development and transmission. This review focuses on the moonlighting functions of P. falciparum glycolytic enzymes and unique structural differences and functional features of the parasite enzymes, which could be exploited for therapeutic and transmission blocking interventions against malaria.

  7. Exploiting Unique Structural and Functional Properties of Malarial Glycolytic Enzymes for Antimalarial Drug Development

    Science.gov (United States)

    Neyaz, Md. Kausar; Ikramul Hasan, Syed

    2014-01-01

    Metabolic enzymes have been known to carry out a variety of functions besides their normal housekeeping roles known as “moonlighting functions.” These functionalities arise from structural changes induced by posttranslational modifications and/or binding of interacting proteins. Glycolysis is the sole source of energy generation for malaria parasite Plasmodium falciparum, hence a potential pathway for therapeutic intervention. Crystal structures of several P. falciparum glycolytic enzymes have been solved, revealing that they exhibit unique structural differences from the respective host enzymes, which could be exploited for their selective targeting. In addition, these enzymes carry out many parasite-specific functions, which could be of potential interest to control parasite development and transmission. This review focuses on the moonlighting functions of P. falciparum glycolytic enzymes and unique structural differences and functional features of the parasite enzymes, which could be exploited for therapeutic and transmission blocking interventions against malaria. PMID:25580350

  8. Trypanosoma evansi is alike to Trypanosoma brucei brucei in the subcellular localisation of glycolytic enzymes

    Directory of Open Access Journals (Sweden)

    S Andrea Moreno

    2015-06-01

    Full Text Available Trypanosoma evansi, which causes surra, is descended from Trypanosoma brucei brucei, which causes nagana. Although both parasites are presumed to be metabolically similar, insufficient knowledge of T. evansi precludes a full comparison. Herein, we provide the first report on the subcellular localisation of the glycolytic enzymes in T. evansi, which is a alike to that of the bloodstream form (BSF of T. b. brucei: (i fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, hexokinase, phosphofructokinase, glucose-6-phosphate isomerase, phosphoglycerate kinase, triosephosphate isomerase (glycolytic enzymes and glycerol-3-phosphate dehydrogenase (a glycolysis-auxiliary enzyme in glycosomes, (ii enolase, phosphoglycerate mutase, pyruvate kinase (glycolytic enzymes and a GAPDH isoenzyme in the cytosol, (iii malate dehydrogenase in cytosol and (iv glucose-6-phosphate dehydrogenase in both glycosomes and the cytosol. Specific enzymatic activities also suggest that T. evansi is alike to the BSF of T. b. brucei in glycolytic flux, which is much faster than the pentose phosphate pathway flux, and in the involvement of cytosolic GAPDH in the NAD+/NADH balance. These similarities were expected based on the close phylogenetic relationship of both parasites.

  9. Trypanosoma evansi is alike to Trypanosoma brucei brucei in the subcellular localisation of glycolytic enzymes.

    Science.gov (United States)

    Moreno, S Andrea; Nava, Mayerly

    2015-06-01

    Trypanosoma evansi, which causes surra, is descended from Trypanosoma brucei brucei, which causes nagana. Although both parasites are presumed to be metabolically similar, insufficient knowledge of T. evansi precludes a full comparison. Herein, we provide the first report on the subcellular localisation of the glycolytic enzymes in T. evansi, which is a alike to that of the bloodstream form (BSF) of T. b. brucei: (i) fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hexokinase, phosphofructokinase, glucose-6-phosphate isomerase, phosphoglycerate kinase, triosephosphate isomerase (glycolytic enzymes) and glycerol-3-phosphate dehydrogenase (a glycolysis-auxiliary enzyme) in glycosomes, (ii) enolase, phosphoglycerate mutase, pyruvate kinase (glycolytic enzymes) and a GAPDH isoenzyme in the cytosol, (iii) malate dehydrogenase in cytosol and (iv) glucose-6-phosphate dehydrogenase in both glycosomes and the cytosol. Specific enzymatic activities also suggest that T. evansi is alike to the BSF of T. b. brucei in glycolytic flux, which is much faster than the pentose phosphate pathway flux, and in the involvement of cytosolic GAPDH in the NAD+/NADH balance. These similarities were expected based on the close phylogenetic relationship of both parasites.

  10. Potential Role of Peptidylarginine Deiminase Enzymes and Protein Citrullination in Cancer Pathogenesis

    Directory of Open Access Journals (Sweden)

    Sunish Mohanan

    2012-01-01

    Full Text Available The peptidylarginine deiminases (PADs are a family of posttranslational modification enzymes that catalyze the conversion of positively charged protein-bound arginine and methylarginine residues to the uncharged, nonstandard amino acid citrulline. This enzymatic activity is referred to as citrullination or, alternatively, deimination. Citrullination can significantly affect biochemical pathways by altering the structure and function of target proteins. Five mammalian PAD family members (PADs 1–4 and 6 have been described and show tissue-specific distribution. Recent reviews on PADs have focused on their role in autoimmune diseases. Here, we will discuss the potential role of PADs in tumor progression and tumor-associated inflammation. In the context of cancer, increasing clinical evidence suggests that PAD4 (and possibly PAD2 has important roles in tumor progression. The link between PADs and cancer is strengthened by recent findings showing that treatment of cell lines and mice with PAD inhibitors significantly suppresses tumor growth and, interestingly, inflammatory symptoms. At the molecular level, transcription factors, coregulators, and histones are functional targets for citrullination by PADs, and citrullination of these targets can affect gene expression in multiple tumor cell lines. Next generation isozyme-specific PAD inhibitors may have therapeutic potential to regulate both the inflammatory tumor microenvironment and tumor cell growth.

  11. ATP Production in Chlamydomonas reinhardtii Flagella by Glycolytic Enzymes

    DEFF Research Database (Denmark)

    Mitchell, Beth F; Pedersen, Lotte B; Feely, Michael

    2005-01-01

    Eukaryotic cilia and flagella are long, thin organelles, and diffusion from the cytoplasm may not be able to support the high ATP concentrations needed for dynein motor activity. We discovered enzyme activities in the Chlamydomonas reinhardtii flagellum that catalyze three steps of the lower half...... of glycolysis (phosphoglycerate mutase, enolase, and pyruvate kinase). These enzymes can generate one ATP molecule for every substrate molecule consumed. Flagellar fractionation shows that enolase is at least partially associated with the axoneme, whereas phosphoglycerate mutase and pyruvate kinase primarily...... reside in the detergent-soluble (membrane + matrix) compartments. We further show that axonemal enolase is a subunit of the CPC1 central pair complex and that reduced flagellar enolase levels in the cpc1 mutant correlate with the reduced flagellar ATP concentrations and reduced in vivo beat frequencies...

  12. Biomimicry enhances sequential reactions of tethered glycolytic enzymes, TPI and GAPDHS.

    Directory of Open Access Journals (Sweden)

    Chinatsu Mukai

    Full Text Available Maintaining activity of enzymes tethered to solid interfaces remains a major challenge in developing hybrid organic-inorganic devices. In nature, mammalian spermatozoa have overcome this design challenge by having glycolytic enzymes with specialized targeting domains that enable them to function while tethered to a cytoskeletal element. As a step toward designing a hybrid organic-inorganic ATP-generating system, we implemented a biomimetic site-specific immobilization strategy to tether two glycolytic enzymes representing different functional enzyme families: triose phosphoisomerase (TPI; an isomerase and glyceraldehyde 3-phosphate dehydrogenase (GAPDHS; an oxidoreductase. We then evaluated the activities of these enzymes in comparison to when they were tethered via classical carboxyl-amine crosslinking. Both enzymes show similar surface binding regardless of immobilization method. Remarkably, specific activities for both enzymes were significantly higher when tethered using the biomimetic, site-specific immobilization approach. Using this biomimetic approach, we tethered both enzymes to a single surface and demonstrated their function in series in both forward and reverse directions. Again, the activities in series were significantly higher in both directions when the enzymes were coupled using this biomimetic approach versus carboxyl-amine binding. Our results suggest that biomimetic, site-specific immobilization can provide important functional advantages over chemically specific, but non-oriented attachment, an important strategic insight given the growing interest in recapitulating entire biological pathways on hybrid organic-inorganic devices.

  13. Biomimicry enhances sequential reactions of tethered glycolytic enzymes, TPI and GAPDHS.

    Science.gov (United States)

    Mukai, Chinatsu; Gao, Lizeng; Bergkvist, Magnus; Nelson, Jacquelyn L; Hinchman, Meleana M; Travis, Alexander J

    2013-01-01

    Maintaining activity of enzymes tethered to solid interfaces remains a major challenge in developing hybrid organic-inorganic devices. In nature, mammalian spermatozoa have overcome this design challenge by having glycolytic enzymes with specialized targeting domains that enable them to function while tethered to a cytoskeletal element. As a step toward designing a hybrid organic-inorganic ATP-generating system, we implemented a biomimetic site-specific immobilization strategy to tether two glycolytic enzymes representing different functional enzyme families: triose phosphoisomerase (TPI; an isomerase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDHS; an oxidoreductase). We then evaluated the activities of these enzymes in comparison to when they were tethered via classical carboxyl-amine crosslinking. Both enzymes show similar surface binding regardless of immobilization method. Remarkably, specific activities for both enzymes were significantly higher when tethered using the biomimetic, site-specific immobilization approach. Using this biomimetic approach, we tethered both enzymes to a single surface and demonstrated their function in series in both forward and reverse directions. Again, the activities in series were significantly higher in both directions when the enzymes were coupled using this biomimetic approach versus carboxyl-amine binding. Our results suggest that biomimetic, site-specific immobilization can provide important functional advantages over chemically specific, but non-oriented attachment, an important strategic insight given the growing interest in recapitulating entire biological pathways on hybrid organic-inorganic devices.

  14. Serdemetan antagonizes the Mdm2-HIF1α axis leading to decreased levels of glycolytic enzymes.

    Directory of Open Access Journals (Sweden)

    Jason A Lehman

    Full Text Available Serdemetan (JNJ-26854165, an antagonist to Mdm2, was anticipated to promote the activation of p53. While regulation of p53 by Mdm2 is important, Mdm2 also regulates numerous proteins involved in diverse cellular functions. We investigated if Serdemetan would alter the Mdm2-HIF1α axis and affect cell survival in human glioblastoma cells independently of p53. Treatment of cells with Serdemetan under hypoxia resulted in a decrease in HIF1α levels. HIF1α downstream targets, VEGF and the glycolytic enzymes (enolase, phosphoglycerate kinase1/2, and glucose transporter 1, were all decreased in response to Serdemetan. The involvement of Mdm2 in regulating gene expression of glycolytic enzymes raises the possibility of side effects associated with therapeutically targeting Mdm2.

  15. [Glycolytic activity of enzyme preparation from the red king crab (Paralithodes camtschaticus) hepatopancreas].

    Science.gov (United States)

    Rysakova, K S; Novikov, V Iu; Mukhin, V A; Serafimchik, E M

    2008-01-01

    Enzyme preparation exhibiting glycolytic activity yielding chitooligosaccharides along with N-acetyl-D-glucosamine was obtained from the red king crab (Paralithodes camtschaticus) hepatopancreas. The results of the analysis confirmed the presence of endo- and exochitinase activities in the preparation. HPLC showed that the hydrolysis products of chitin and chitosan did not contain D(+)-glucosamine, which is indicative of the absence of deacetylase and, apparently, exochitosanase activities. A comparison of the dependence of the enzyme preparation activity on temperature and pH of the incubation medium suggests that chitinase and protease activities are exhibited by different enzymes.

  16. Trypanosoma evansi contains two auxiliary enzymes of glycolytic metabolism: Phosphoenolpyruvate carboxykinase and pyruvate phosphate dikinase.

    Science.gov (United States)

    Rivero, Luz Amira; Concepción, Juan Luis; Quintero-Troconis, Ender; Quiñones, Wilfredo; Michels, Paul A M; Acosta, Héctor

    2016-06-01

    Trypanosoma evansi is a monomorphic protist that can infect horses and other animal species of economic importance for man. Like the bloodstream form of the closely related species Trypanosoma brucei, T. evansi depends exclusively on glycolysis for its free-energy generation. In T. evansi as in other kinetoplastid organisms, the enzymes of the major part of the glycolytic pathway are present within organelles called glycosomes, which are authentic but specialized peroxisomes. Since T. evansi does not undergo stage-dependent differentiations, it occurs only as bloodstream forms, it has been assumed that the metabolic pattern of this parasite is identical to that of the bloodstream form of T. brucei. However, we report here the presence of two additional enzymes, phosphoenolpyruvate carboxykinase and PPi-dependent pyruvate phosphate dikinase in T. evansi glycosomes. Their colocalization with glycolytic enzymes within the glycosomes of this parasite has not been reported before. Both enzymes can make use of PEP for contributing to the production of ATP within the organelles. The activity of these enzymes in T. evansi glycosomes drastically changes the model assumed for the oxidation of glucose by this parasite.

  17. The existence and neurobiological significance of neuronal and glial forms of the glycolytic enzyme enolase.

    Science.gov (United States)

    Marangos, P J; Schmechel, D; Zis, A P; Goodwin, F K

    1979-08-01

    The isoenzymes of the glycolytic enzyme enolase have been separated and purified. The structural and functional properties of two brain enolases are described. Immunocytochemical techniques have established that one brain enolase is restricted to neuronal cells (neuron-specific enolase, NSE) while the other is localized in glial cells (nonneuronal enolase, NNE). The brain enolases, therefore, represent the first example of functional markers for neuronal and glial cell types in brain. The two enzymes are structurally distinct with the evidence establishing that they are products of separate genes. Functionally, the neuronal enolase has been demonstrated to be uniquely stable to concentrations of chloride salts that rapidly inactivate the glial enzyme. NSE may therefore represent an adaptation of this enzyme that is specifically suited to the neuronal milieu. A specific radioimmunoassay is described for NNE and NSE with the studies reported indicating that neuronal enzyme levels vary considerably when different brain areas are compared, suggesting a relationship between functional activity and levels of NSE. In addition to being a marker for neuronal cells, NSE has also been found to be present in various glands. The cells of the APUD series (amine precursor uptake and decarboxylation cells) in the pituitary, adrenal medulla, pineal, thyroid, and pancreas have been shown to contain NSE. NSE is, therefore, also a marker for these neuronlike endocrine cells since they are the only cells other than neurons that contain this protein.

  18. Interactions of surface-displayed glycolytic enzymes of Mycoplasma pneumoniae with components of the human extracellular matrix.

    Science.gov (United States)

    Gründel, Anne; Jacobs, Enno; Dumke, Roger

    2016-12-01

    Mycoplasma pneumoniae is a major cause of community-acquired respiratory infections worldwide. Due to the strongly reduced genome, the number of virulence factors expressed by this cell wall-less pathogen is limited. To further understand the processes during host colonization, we investigated the interactions of the previously confirmed surface-located glycolytic enzymes of M. pneumoniae (pyruvate dehydrogenase A-C [PdhA-C], glyceraldehyde-3-phosphate dehydrogenase [GapA], lactate dehydrogenase [Ldh], phosphoglycerate mutase [Pgm], pyruvate kinase [Pyk] and transketolase [Tkt]) to the human extracellular matrix (ECM) proteins fibrinogen (Fn), fibronectin (Fc), lactoferrin (Lf), laminin (Ln) and vitronectin (Vc), respectively. Concentration-dependent interactions between Fn and Vc and all eight recombinant proteins derived from glycolytic enzymes, between Ln and PdhB-C, GapA, Ldh, Pgm, Pyk and Tkt, between Lf and PdhA-C, GapA and Pyk, and between Fc and PdhC and GapA were demonstrated. In most cases, these associations are significantly influenced by ionic forces and by polyclonal sera against recombinant proteins. In immunoblotting, the complex of human plasminogen, activator (tissue-type or urokinase plasminogen activator) and glycolytic enzyme was not able to degrade Fc, Lf and Ln, respectively. In contrast, degradation of Vc was confirmed in the presence of all eight enzymes tested. Our data suggest that the multifaceted associations of surface-localized glycolytic enzymes play a potential role in the adhesion and invasion processes during infection of human respiratory mucosa by M. pneumoniae.

  19. Are Bacteria the Major Producers of Extracellular Glycolytic Enzymes in Aquatic Environments?

    Science.gov (United States)

    Vrba, Jaroslav; Callieri, Cristiana; Bittl, Thomas; Imek, Karel; Bertoni, Roberto; Filandr, Pavel; Hartman, Petr; Hejzlar, Josef; Macek, Miroslav; Nedoma, Jií

    2004-01-01

    In aquatic microbial ecology, it has been considered that most extracellular enzymes except phosphatases are of bacterial origin. We tested this paradigm by evaluating the relationship between bacterial cell number and the activity of three glycolytic enzymes from 17 fresh waters and also from a laboratory experiment. Our large sets of pooled data do not seem to support such a simple explanation, because we found only a weak correlation of bacterial number with activity of -glucosidase (rs = 0.63), -glucosidase (rs = 0.45), and -N-acetylhexosaminidase (rs = 0.44). We also tested relations of the enzymatic activities to potential sources of natural substrates: dissolved organic carbon (DOC) and phytoplankton (as chlorophyll a). Their correlations with the enzymatic activities tested were very weak or insignificant. On the other hand, we found evidence for distinct producers of extracellular enzymes by analysing enzyme kinetics. The kinetics usually did not follow the simple Michaelis-Menten model but a more complex one, indicating a mixture of two enzymes with distinct affinity to a substrate. In combination with size fractionation, we could sometimes even distinguish three or more different enzymes. During diatom blooms, the diatom biomass tightly correlated with β-N-acetylhexosaminidase activity (>4 μm fraction). We also documented very tight relationships between activity of both glucosidases and dry weight of Daphnia longispina (rs = 1.0 and 0.60 for α- and β-glucosidases, respectively) in an alpine clear-water lake. Our data and evidence from other studies indicate that extracellular glycosidic activities in aquatic ecosystems cannot generally be assigned only to bacteria. Also invertebrate animals and other eukaryotes (fungi, diatoms, protozoa etc.) should be considered as potentially very important enzyme producers. (

  20. Frequent and recent retrotransposition of orthologous genes plays a role in the evolution of sperm glycolytic enzymes

    Directory of Open Access Journals (Sweden)

    de Villena Fernando

    2010-05-01

    Full Text Available Abstract Background The central metabolic pathway of glycolysis converts glucose to pyruvate, with the net production of 2 ATP and 2 NADH per glucose molecule. Each of the ten reactions in this pathway is typically catalyzed by multiple isozymes encoded by a multigene family. Several isozymes in this pathway are expressed only during spermatogenesis, and gene targeting studies indicate that they are essential for sperm function and male fertility in mouse. At least three of the novel glycolytic isozymes are encoded by retrogenes (Pgk2, Aldoart1, and Aldoart2. Their restricted expression profile suggests that retrotransposition may play a significant role in the evolution of sperm glycolytic enzymes. Results We conducted a comprehensive genomic analysis of glycolytic enzymes in the human and mouse genomes and identified several intronless copies for all enzymes in the pathway, except Pfk. Within each gene family, a single orthologous gene was typically retrotransposed frequently and independently in both species. Several retroposed sequences maintained open reading frames (ORFs and/or provided evidence of alternatively spliced exons. We analyzed expression of sequences with ORFs and Gpi1 transcript in mouse spermatogenic cells. Conclusions Our analysis detected frequent, recent, and lineage-specific retrotransposition of orthologous glycolytic enzymes in the human and mouse genomes. Retrotransposition events are associated with LINE/LTR and genomic integration is random. We found evidence for the alternative splicing of parent genes. Many retroposed sequences have maintained ORFs, suggesting a functional role for these genes.

  1. Diabetes promotes DMH-induced colorectal cancer by increasing the activity of glycolytic enzymes in rats.

    Science.gov (United States)

    Jia, Yanglei; Xu, Gang; Zhou, Wenjing; Wang, Zhenzheng; Meng, Linlin; Zhou, Songnan; Xu, Xia; Yuan, Huiqing; Tian, Keli

    2014-01-01

    The objective of the present study was to investigate the association between diabetes mellitus and colorectal carcinogenesis as well as the possible mechanism involved in this interaction. Diabetes rat models were induced with a low dose of STZ followed by a low dose of DMH to induce colorectal cancer. The formation of ACF in the colon and the incidence, number and size of tumors were measured. The activity of glycolytic enzymes in colonic tissues was also measured. The results demonstrated that both the total number of ACF and the number of foci that contain a different number of crypts were increased in diabetic rats. At the end of the experimental treatment, the incidence, number and size of tumors were also increased in diabetic rats. Overall, these data indicated that diabetes increased the risk of colorectal cancer. The activity of HK and PK in colonic tissues was increased in diabetic rats, whereas the activity of PDH was decreased. In addition, the activities of these enzymes in intratumor were higher than that of in peritumor. These data indicated that the high rate of glycolysis may play a role in colorectal carcinogenesis in diabetic rats.

  2. Effect of hypoxia on the activity and binding of glycolytic and associated enzymes in sea scorpion tissues

    Directory of Open Access Journals (Sweden)

    Lushchak V.I.

    1998-01-01

    Full Text Available The effect of hypoxia on the levels of glycogen, glucose and lactate as well as the activities and binding of glycolytic and associated enzymes to subcellular structures was studied in brain, liver and white muscle of the teleost fish, Scorpaena porcus. Hypoxia exposure decreased glucose levels in liver from 2.53 to 1.70 µmol/g wet weight and in muscle led to its increase from 3.64 to 25.1 µmol/g wet weight. Maximal activities of several enzymes in brain were increased by hypoxia: hexokinase by 23%, phosphoglucoisomerase by 47% and phosphofructokinase (PFK by 56%. However, activities of other enzymes in brain as well as enzymes in liver and white muscle were largely unchanged or decreased during experimental hypoxia. Glycolytic enzymes in all three tissues were partitioned between soluble and particulate-bound forms. In several cases, the percentage of bound enzymes was reduced during hypoxia; bound aldolase in brain was reduced from 36.4 to 30.3% whereas glucose-6-phosphate dehydrogenase fell from 55.7 to 28.7% bound. In muscle PFK was reduced from 57.4 to 41.7% bound. Oppositely, the proportion of bound aldolase and triosephosphate isomerase increased in hypoxic muscle. Phosphoglucomutase did not appear to occur in a bound form in liver and bound phosphoglucomutase disappeared in muscle during hypoxia exposure. Anoxia exposure also led to the disappearance of bound fructose-1,6-bisphosphatase in liver, whereas a bound fraction of this enzyme appeared in white muscle of anoxic animals. The possible function of reversible binding of glycolytic enzymes to subcellular structures as a regulatory mechanism of carbohydrate metabolism is discussed.

  3. Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins.

    Science.gov (United States)

    Glenting, Jacob; Beck, Hans Christian; Vrang, Astrid; Riemann, Holger; Ravn, Peter; Hansen, Anne Maria; Antonsson, Martin; Ahrné, Siv; Israelsen, Hans; Madsen, Søren

    2013-06-12

    An important criterion for the selection of a probiotic bacterial strain is its ability to adhere to the mucosal surface. Adhesion is usually mediated by proteins or other components located on the outer cell surface of the bacterium. In the present study we characterized the adhesive properties of two classical intracellular enzymes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and enolase (ENO) isolated from the outer cell surface of the probiotic bacterium Lactobacillus plantarum 299v. None of the genes encoded signal peptides or cell surface anchoring motifs that could explain their extracellular location on the bacterial surface. The presence of the glycolytic enzymes on the outer surface was verified by western blotting using polyclonal antibodies raised against the specific enzymes. GAPDH and ENO showed a highly specific binding to plasminogen and fibronectin whereas GAPDH but not ENO showed weak binding to mucin. Furthermore, a pH dependent and specific binding of GAPDH and ENO to intestinal epithelial Caco-2 cells at pH 5 but not at pH 7 was demonstrated. The results showed that these glycolytic enzymes could play a role in the adhesion of the probiotic bacterium L. plantarum 299v to the gastrointestinal tract of the host. Finally, a number of probiotic as well non-probiotic Lactobacillus strains were analyzed for the presence of GAPDH and ENO on the outer surface, but no correlation between the extracellular location of these enzymes and the probiotic status of the applied strains was demonstrated.

  4. Effect of protein malnutrition on the glycolytic and glutaminolytic enzyme activity of rat thymus and mesenteric lymph nodes

    Directory of Open Access Journals (Sweden)

    M.A. dos-Santos

    1997-06-01

    Full Text Available The activity of important glycolytic enzymes (hexokinase, phosphofructokinase, aldolase, phosphohexoseisomerase, pyruvate kinase and lactate dehydrogenase and glutaminolytic enzymes (phosphate-dependent glutaminase was determined in the thymus and mesenteric lymph nodes of Wistar rats submitted to protein malnutrition (6% protein in the diet rather than 20% from conception to 12 weeks after birth. The wet weight (g of the thymus and mesenteric lymph nodes decreased due to protein malnutrition by 87% (from 0.30 ± 0.05 to 0.04 ± 0.01 and 75% (0.40 ± 0.04 to 0.10 ± 0.02, respectively. The protein content was reduced only in the thymus from 102.3 ± 4.4 (control rats to 72.6 ± 6.6 (malnourished rats. The glycolytic enzymes were not affected by protein malnutrition, but the glutaminase activity of the thymus and lymph nodes was reduced by half in protein-malnourished rats as compared to controls. This fact may lead to a decrease in the cellularity of the organ and thus in its size, weight and protein content.

  5. How citrullination invaded rheumatoid arthritis research

    OpenAIRE

    van Venrooij, W J; Pruijn, G.J.M.

    2014-01-01

    Citrullination and the immune response to citrullinated proteins have been fundamental for the early recognition of rheumatoid arthritis by serological tests and a better understanding of its pathophysiology. In the first years after the initial publications, the focus was on the antibodies directed to citrullinated proteins. It is now realized that citrullinating enzymes and citrullinated proteins may have important roles in the maintenance of the inflammatory processes in the joints. There ...

  6. Studies on the possible biological effects of 50 Hz electric and/or magnetic fields: evaluation of some glycolytic enzymes, glycolytic flux, energy and oxido-reductive potentials in human erythrocytes exposed in vitro to power frequency fields.

    Science.gov (United States)

    Dachà, M; Accorsi, A; Pierotti, C; Vetrano, F; Mantovani, R; Guidi, G; Conti, R; Nicolini, P

    1993-01-01

    An attempt has been made to understand whether 50 Hz electric and magnetic fields (EMFs) are involved in producing bioeffects by exposing human erythrocytes in vitro. The study evaluated some key glycolytic enzymes, glucose consumption, lactate production, energy charge, 2,3-diphosphoglycerate, and reduced glutathione levels, all of which are biochemical parameters significant to erythrocyte function. Cells exposed to individual or superimposed EMFs have not shown any significant difference compared with the controls.

  7. Transfer of a redox-signal through the cytosol by redox-dependent microcompartmentation of glycolytic enzymes at mitochondria and actin cytoskeleton

    Directory of Open Access Journals (Sweden)

    Joanna eWojtera-Kwiczor

    2013-01-01

    Full Text Available The cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12, GapC plays an important role in glycolysis by providing the cell with ATP and NADH. Interestingly, despite its glycolytic function in the cytosol, GAPDH was reported to possess additional non-glycolytic activities, correlating with its nuclear or cytoskeletal localization in animal cells. In transiently transformed mesophyll protoplasts from Arabidopsis. thaliana colocalization and interaction of the glycolytic enzymes with the mitochondria and with the actin cytoskeleton was visualized by confocal laser scanning microscopy (cLSM using fluorescent protein fusions and by bimolecular fluorescence complementation (BiFC, respectively. Yeast two-hybrid screens, dot-blot overlay assays, and co-sedimentation assays were used to identify potential protein-protein interactions between two cytosolic GAPDH isoforms (GapC1, At3g04120; GapC2, At1g13440 from A. thaliana with the neighbouring glycolytic enzyme, fructose 1,6-bisphosphate aldolase (FBA6, At2g36460, the mitochondrial porin (VDAC3; At5g15090, and actin in vitro. From these experiments, a mitochondrial association is suggested for both glycolytic enzymes, GAPDH and aldolase, which appear to bind to the outer mitochondrial membrane, in a redox-dependent manner. In addition, both glycolytic enzymes were found to bind to F-actin in cosedimentation assays, and lead to bundling of purified rabbit actin, as visualized by cLSM. Actin binding and bundling occurred reversibly under oxidizing conditions. We speculate that such dynamic formation of microcompartments is part of a redox-dependent retrograde signal transduction network for adaptation upon oxidative stress.

  8. Nuclear glycolytic enzyme enolase of Toxoplasma gondii functions as a transcriptional regulator.

    Directory of Open Access Journals (Sweden)

    Thomas Mouveaux

    Full Text Available Apicomplexan parasites including Toxoplasma gondii have complex life cycles within different hosts and their infectivity relies on their capacity to regulate gene expression. However, little is known about the nuclear factors that regulate gene expression in these pathogens. Here, we report that T. gondii enolase TgENO2 is targeted to the nucleus of actively replicating parasites, where it specifically binds to nuclear chromatin in vivo. Using a ChIP-Seq technique, we provide evidence for TgENO2 enrichment at the 5' untranslated gene regions containing the putative promoters of 241 nuclear genes. Ectopic expression of HA-tagged TgENO1 or TgENO2 led to changes in transcript levels of numerous gene targets. Targeted disruption of TgENO1 gene results in a decrease in brain cyst burden of chronically infected mice and in changes in transcript levels of several nuclear genes. Complementation of this knockout mutant with ectopic TgENO1-HA fully restored normal transcript levels. Our findings reveal that enolase functions extend beyond glycolytic activity and include a direct role in coordinating gene regulation in T. gondii.

  9. Echinococcus multilocularis phosphoglucose isomerase (EmPGI): a glycolytic enzyme involved in metacestode growth and parasite-host cell interactions.

    Science.gov (United States)

    Stadelmann, Britta; Spiliotis, Markus; Müller, Joachim; Scholl, Sabrina; Müller, Norbert; Gottstein, Bruno; Hemphill, Andrew

    2010-11-01

    In Echinococcus multilocularis metacestodes, the surface-associated and highly glycosylated laminated layer, and molecules associated with this structure, is believed to be involved in modulating the host-parasite interface. We report on the molecular and functional characterisation of E. multilocularis phosphoglucose isomerase (EmPGI), which is a component of this laminated layer. The EmPGI amino acid sequence is virtually identical to that of its homologue in Echinococcus granulosus, and shares 64% identity and 86% similarity with human PGI. Mammalian PGI is a multi-functional protein which, besides its glycolytic function, can also act as a cytokine, growth factor and inducer of angiogenesis, and plays a role in tumour growth, development and metastasis formation. Recombinant EmPGI (recEmPGI) is also functionally active as a glycolytic enzyme and was found to be present, besides the laminated layer, in vesicle fluid and in germinal layer cell extracts. EmPGI is released from metacestodes and induces a humoral immune response in experimentally infected mice, and vaccination of mice with recEmPGI renders these mice more resistant towards secondary challenge infection, indicating that EmPGI plays an important role in parasite development and/or in modulating the host-parasite relationship. We show that recEmPGI stimulates the growth of isolated E. multilocularis germinal layer cells in vitro and selectively stimulates the proliferation of bovine adrenal cortex endothelial cells but not of human fibroblasts and rat hepatocytes. Thus, besides its role in glycolysis, EmPGI could also act as a factor that stimulates parasite growth and potentially induces the formation of novel blood vessels around the developing metacestode in vivo.

  10. Upregulation of glycolytic enzymes, mitochondrial dysfunction and increased cytotoxicity in glial cells treated with Alzheimer's disease plasma.

    Directory of Open Access Journals (Sweden)

    Tharusha Jayasena

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder associated with increased oxidative stress and neuroinflammation. Markers of increased protein, lipid and nucleic acid oxidation and reduced activities of antioxidant enzymes have been reported in AD plasma. Amyloid plaques in the AD brain elicit a range of reactive inflammatory responses including complement activation and acute phase reactions, which may also be reflected in plasma. Previous studies have shown that human AD plasma may be cytotoxic to cultured cells. We investigated the effect of pooled plasma (n = 20 each from healthy controls, individuals with amnestic mild cognitive impairment (aMCI and Alzheimer's disease (AD on cultured microglial cells. AD plasma and was found to significantly decrease cell viability and increase glycolytic flux in microglia compared to plasma from healthy controls. This effect was prevented by the heat inactivation of complement. Proteomic methods and isobaric tags (iTRAQ found the expression level of complement and other acute phase proteins to be altered in MCI and AD plasma and an upregulation of key enzymes involved in the glycolysis pathway in cells exposed to AD plasma. Altered expression levels of acute phase reactants in AD plasma may alter the energy metabolism of glia.

  11. Regulation of aflatoxin biosynthesis: effect of glucose on activities of various glycolytic enzymes.

    Science.gov (United States)

    Buchanan, R L; Lewis, D F

    1984-08-01

    Catabolism of carbohydrates has been implicated in the regulation of aflatoxin synthesis. To characterize this effect further, the activities of various enzymes associated with glucose catabolism were determined in Aspergillus parasiticus organisms that were initially cultured in peptone-mineral salts medium and then transferred to glucose-mineral salts and peptone-mineral salts media. After an initial increase in activity, the levels of glucose 6-phosphate dehydrogenase, mannitol dehydrogenase, and malate dehydrogenase were lowered in the presence of glucose. Phosphofructokinase activity was greater in the peptone-grown mycelium, but fructose diphosphatase was largely unaffected by carbon source. Likewise, carbon source had relatively little effect on the activities of pyruvate kinase, malic enzyme, isocitrate-NADP dehydrogenase, and isocitrate-NAD dehydrogenase. The results suggest that glucose may, in part, regulate aflatoxin synthesis via a carbon catabolite repression of NADPH-generating and tricarboxylic acid cycle enzymes.

  12. Effect of Dietary ω-3 Polyunsaturated Fatty Acid DHA on Glycolytic Enzymes and Warburg Phenotypes in Cancer

    Directory of Open Access Journals (Sweden)

    Laura Manzi

    2015-01-01

    Full Text Available The omega-3 polyunsaturated fatty acids (ω-3 PUFAs are a class of lipids that has been shown to have beneficial effects on some chronic degenerative diseases such as cardiovascular diseases, rheumatoid arthritis, inflammatory disorders, diabetes, and cancer. Among ω-3 polyunsaturated fatty acids (PUFAs, docosahexaenoic acid (DHA has received particular attention for its antiproliferative, proapoptotic, antiangiogenetic, anti-invasion, and antimetastatic properties, even though the involved molecular mechanisms are not well understood. Recently, some in vitro studies showed that DHA promotes the inhibition of glycolytic enzymes and the Warburg phenotype. For example, it was shown that in breast cancer cell lines the modulation of bioenergetic functions is due to the capacity of DHA to activate the AMPK signalling and negatively regulate the HIF-1α functions. Taking into account these considerations, this review is focused on current knowledge concerning the role of DHA in interfering with cancer cell metabolism; this could be considered a further mechanism by which DHA inhibits cancer cell survival and progression.

  13. Glycolytic enzyme activity is essential for domestic cat (Felis catus) and cheetah (Acinonyx jubatus) sperm motility and viability in a sugar-free medium.

    Science.gov (United States)

    Terrell, Kimberly A; Wildt, David E; Anthony, Nicola M; Bavister, Barry D; Leibo, S P; Penfold, Linda M; Marker, Laurie L; Crosier, Adrienne E

    2011-06-01

    We have previously reported a lack of glucose uptake in domestic cat and cheetah spermatozoa, despite observing that these cells produce lactate at rates that correlate positively with sperm function. To elucidate the role of glycolysis in felid sperm energy production, we conducted a comparative study in the domestic cat and cheetah, with the hypothesis that sperm motility and viability are maintained in both species in the absence of glycolytic metabolism and are fueled by endogenous substrates. Washed ejaculates were incubated in chemically defined medium in the presence/absence of glucose and pyruvate. A second set of ejaculates was exposed to a chemical inhibitor of either lactate dehydrogenase (sodium oxamate) or glyceraldehyde-3-phosphate dehydrogenase (alpha-chlorohydrin). Sperm function (motility and acrosomal integrity) and lactate production were assessed, and a subset of spermatozoa was assayed for intracellular glycogen. In both the cat and cheetah, sperm function was maintained without exogenous substrates and following lactate dehydrogenase inhibition. Lactate production occurred in the absence of exogenous hexoses, but only if pyruvate was present. Intracellular glycogen was not detected in spermatozoa from either species. Unexpectedly, glycolytic inhibition by alpha-chlorohydrin resulted in an immediate decline in sperm motility, particularly in the domestic cat. Collectively, our findings reveal an essential role of the glycolytic pathway in felid spermatozoa that is unrelated to hexose metabolism or lactate formation. Instead, glycolytic enzyme activity could be required for the metabolism of endogenous lipid-derived glycerol, with fatty acid oxidation providing the primary energy source in felid spermatozoa.

  14. Allometric scaling in centrarchid fish: origins of intra- and inter-specific variation in oxidative and glycolytic enzyme levels in muscle.

    Science.gov (United States)

    Davies, Rhiannon; Moyes, Christopher D

    2007-11-01

    The influence of body size on metabolic rate, muscle enzyme activities and the underlying patterns of mRNA for these enzymes were explored in an effort to explain the genetic basis of allometric variation in metabolic enzymes. We studied two pairs of sister species of centrarchid fish: black bass (largemouth bass Micropterus salmoides and smallmouth bass Micropterus dolomieui) and sunfish (pumpkinseed Lepomis gibbosus and bluegill Lepomis macrochirus). Our goal was to assess the regulatory basis of both intraspecific and interspecific variation relative to body size, as well as to gain insights into the evolutionary constraints within lineages. Whole animal routine metabolic rate showed scaling coefficients not significantly different from 1, ranging from (+0.87 to +0.96). However, there were significant effects of body size on the specific activities of oxidative and glycolytic enzymes. Mass-specific activity of the oxidative enzyme citrate synthase (CS) scaled negatively with body size in each species, with scaling coefficients ranging from -0.15 to -0.19, whereas the glycolytic enzyme pyruvate kinase (PK) showed positive scaling, with scaling coefficients ranging from +0.08 to +0.23. The ratio of mass-specific enzyme activity in PK to CS increased with body size, whereas the ratio of mRNA transcripts of PK to CS was unaffected, suggesting the enzyme relationships were not due simply to transcriptional regulation of both genes. The mass-dependent differences in PK activities were best explained by transcriptional regulation of the muscle PK gene; PK mRNA was a good predictor of PK specific enzyme activity within species and between species. Conversely, CS mRNA did not correlate with CS specific enzyme activities, suggesting post-transcriptional mechanisms may explain the observed inter-specific and intraspecific differences in oxidative enzymes.

  15. A global transcriptional regulator in Thermococcus kodakaraensis controls the expression levels of both glycolytic and gluconeogenic enzyme-encoding genes

    NARCIS (Netherlands)

    Kanai, T.; Akerboom, A.P.; Takedomi, S.; Werken, van de H.J.G.; Blombach, F.; Oost, van der J.; Murakami, T.; Atomi, H.; Imanaka, T.

    2007-01-01

    We identified a novel regulator, Thermococcales glycolytic regulator (Tgr), functioning as both an activator and a repressor of transcription in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Tgr (TK1769) displays similarity (28% identical) to Pyrococcus furiosus TrmB (PF1743), a tr

  16. A global transcriptional regulator in Thermococcus kodakaraensis controls the expression levels of both glycolytic and gluconeogenic enzyme-encoding genes.

    Science.gov (United States)

    Kanai, Tamotsu; Akerboom, Jasper; Takedomi, Shogo; van de Werken, Harmen J G; Blombach, Fabian; van der Oost, John; Murakami, Taira; Atomi, Haruyuki; Imanaka, Tadayuki

    2007-11-16

    We identified a novel regulator, Thermococcales glycolytic regulator (Tgr), functioning as both an activator and a repressor of transcription in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Tgr (TK1769) displays similarity (28% identical) to Pyrococcus furiosus TrmB (PF1743), a transcriptional repressor regulating the trehalose/maltose ATP-binding cassette transporter genes, but is more closely related (67%) to a TrmB paralog in P. furiosus (PF0124). Growth of a tgr disruption strain (Deltatgr) displayed a significant decrease in growth rate under gluconeogenic conditions compared with the wild-type strain, whereas comparable growth rates were observed under glycolytic conditions. A whole genome microarray analysis revealed that transcript levels of almost all genes related to glycolysis and maltodextrin metabolism were at relatively high levels in the Deltatgr mutant even under gluconeogenic conditions. The Deltatgr mutant also displayed defects in the transcriptional activation of gluconeogenic genes under these conditions, indicating that Tgr functions as both an activator and a repressor. Genes regulated by Tgr contain a previously identified sequence motif, the Thermococcales glycolytic motif (TGM). The TGM was positioned upstream of the Transcription factor B-responsive element (BRE)/TATA sequence in gluconeogenic promoters and downstream of it in glycolytic promoters. Electrophoretic mobility shift assay indicated that recombinant Tgr protein specifically binds to promoter regions containing a TGM. Tgr was released from the DNA when maltotriose was added, suggesting that this sugar is most likely the physiological effector. Our results strongly suggest that Tgr is a global transcriptional regulator that simultaneously controls, in response to sugar availability, both glycolytic and gluconeogenic metabolism in T. kodakaraensis via its direct binding to the TGM.

  17. Carbohydrate metabolism of Xylella fastidiosa: Detection of glycolytic and pentose phosphate pathway enzymes and cloning and expression of the enolase gene

    Directory of Open Access Journals (Sweden)

    Facincani Agda Paula

    2003-01-01

    Full Text Available The objective of this work was to assess the functionality of the glycolytic pathways in the bacterium Xylella fastidiosa. To this effect, the enzymes phosphoglucose isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase of the glycolytic pathway, and glucose 6-phosphate dehydrogenase of the Entner-Doudoroff pathway were studied, followed by cloning and expression studies of the enolase gene and determination of its activity. These studies showed that X. fastidiosa does not use the glycolytic pathway to metabolize carbohydrates, which explains the increased duplication time of this phytopatogen. Recombinant enolase was expressed as inclusion bodies and solubilized with urea (most efficient extractor, Triton X-100, and TCA. Enolase extracted from X. fastidiosa and from chicken muscle and liver is irreversibly inactivated by urea. The purification of enolase was partial and resulted in a low yield. No enzymatic activity was detected for either recombinant and native enolases, aldolase, and glyceraldehyde-3-phosphate dehydrogenase, suggesting that X. fastidiosa uses the Entner-Doudoroff pathway to produce pyruvate. Evidence is presented supporting the idea that the regulation of genes and the presence of isoforms with regulation patterns might make it difficult to understand the metabolism of carbohydrates in X. fastidiosa.

  18. Key glycolytic enzyme activities of skeletal muscle are decreased under fed and fasted states in mice with knocked down levels of Shc proteins.

    Directory of Open Access Journals (Sweden)

    Kevork Hagopian

    Full Text Available Shc proteins interact with the insulin receptor, indicating a role in regulating glycolysis. To investigate this idea, the activities of key glycolytic regulatory enzymes and metabolites levels were measured in skeletal muscle from mice with low levels of Shc proteins (ShcKO and wild-type (WT controls. The activities of hexokinase, phosphofructokinase-1 and pyruvate kinase were decreased in ShcKO versus WT mice under both fed and fasted conditions. Increased alanine transaminase and branched-chain amino acid transaminase activities were also observed in ShcKO mice under both fed and fasting conditions. Protein expression of glycolytic enzymes was unchanged in the ShcKO and WT mice, indicating that decreased activities were not due to changes in their transcription. Changes in metabolite levels were consistent with the observed changes in enzyme activities. In particular, the levels of fructose-2,6-bisphosphate, a potent activator of phosphofructokinase-1, were consistently decreased in the ShcKO mice. Furthermore, the levels of lactate (inhibitor of hexokinase and phosphofructokinase-1 and citrate (inhibitor of phosphofructokinase-1 and pyruvate kinase were increased in fed and fasted ShcKO versus WT mice. Pyruvate dehydrogenase activity was lower in ShcKO versus WT mice under fed conditions, and showed inhibition under fasting conditions in both ShcKO and WT mice, with ShcKO mice showing less inhibition than the WT mice. Pyruvate dehydrogenase kinase 4 levels were unchanged under fed conditions but were lower in the ShcKO mice under fasting conditions. These studies indicate that decreased levels of Shc proteins in skeletal muscle lead to a decreased glycolytic capacity in both fed and fasted states.

  19. Influence of exercise on the activity and the distribution between free and bound forms of glycolytic and associated enzymes in tissues of horse mackerel

    Directory of Open Access Journals (Sweden)

    Lushchak V.I.

    2001-01-01

    Full Text Available The effects of short-term burst (5 min at 1.8 m/s swimming and long-term cruiser (60 min at 1.2 m/s swimming on maximal enzyme activities and enzyme distribution between free and bound states were assessed for nine glycolytic and associated enzymes in tissues of horse mackerel, Trachurus mediterraneus ponticus. The effects of exercise were greatest in white muscle. The activities of phosphofructokinase (PFK, pyruvate kinase (PK, fructose-1,6-bisphosphatase (FBPase, and phosphoglucomutase (PGM all decreased to 47, 37, 37 and 67%, respectively, during 60-min exercise and all enzymes except phosphoglucoisomerase (PGI and PGM showed a change in the extent of binding to subcellular particulate fractions during exercise. In red muscle, exercise affected the activities of PGI, FBPase, PFK, and lactate dehydrogenase (LDH and altered percent binding of only PK and LDH. In liver, exercise increased the PK activity 2.3-fold and reduced PGI 1.7-fold only after 5 min of exercise but altered the percent binding of seven enzymes. Fewer effects were seen in brain, with changes in the activities of aldolase and PGM and in percent binding of hexokinase, PFK and PK. Changes in enzyme activities and in binding interactions with subcellular particulate matter appear to support the altered demands of tissue energy metabolism during exercise.

  20. A new nuclear function of the Entamoeba histolytica glycolytic enzyme enolase: the metabolic regulation of cytosine-5 methyltransferase 2 (Dnmt2 activity.

    Directory of Open Access Journals (Sweden)

    Ayala Tovy

    2010-02-01

    Full Text Available Cytosine-5 methyltransferases of the Dnmt2 family function as DNA and tRNA methyltransferases. Insight into the role and biological significance of Dnmt2 is greatly hampered by a lack of knowledge about its protein interactions. In this report, we address the subject of protein interaction by identifying enolase through a yeast two-hybrid screen as a Dnmt2-binding protein. Enolase, which is known to catalyze the conversion of 2-phosphoglycerate (2-PG to phosphoenolpyruvate (PEP, was shown to have both a cytoplasmatic and a nuclear localization in the parasite Entamoeba histolytica. We discovered that enolase acts as a Dnmt2 inhibitor. This unexpected inhibitory activity was antagonized by 2-PG, which suggests that glucose metabolism controls the non-glycolytic function of enolase. Interestingly, glucose starvation drives enolase to accumulate within the nucleus, which in turn leads to the formation of additional enolase-E.histolytica DNMT2 homolog (Ehmeth complex, and to a significant reduction of the tRNA(Asp methylation in the parasite. The crucial role of enolase as a Dnmt2 inhibitor was also demonstrated in E.histolytica expressing a nuclear localization signal (NLS-fused-enolase. These results establish enolase as the first Dnmt2 interacting protein, and highlight an unexpected role of a glycolytic enzyme in the modulation of Dnmt2 activity.

  1. Altered expression profile of glycolytic enzymes during testicular ischemia reperfusion injury is associated with the p53/TIGAR pathway: effect of fructose 1,6-diphosphate

    Directory of Open Access Journals (Sweden)

    May Al-Maghrebi

    2016-07-01

    Full Text Available Background. Testicular ischemia reperfusion injury (tIRI is considered the mechanism underlying the pathology of testicular torsion and detorsion. Left untreated, tIRI can induce testis dysfunction, damage to spermatogenesis and possible infertility. In this study, we aimed to assess the activities and expression of glycolytic enzymes (GEs in the testis and their possible modulation during tIRI. The effect of fructose 1,6-diphosphate (FDP, a glycolytic intermediate, on tIRI was also investigated. Methods. Male Sprague-Dawley rats were divided into three groups: sham, unilateral tIRI, and tIRI + FDP (2 mg/kg. tIRI was induced by occlusion of the testicular artery for 1 h followed by 4 h of reperfusion. FDP was injected peritoneally 30 min prior to reperfusion. Histological and biochemical analyses were used to assess damage to spermatogenesis, activities of major GEs, and energy and oxidative stress markers. The relative mRNA expression of GEs was evaluated by real-time PCR. ELISA and immunohistochemistry were used to evaluate the expression of p53 and TP53-induced glycolysis and apoptosis regulator (TIGAR. Results. Histological analysis revealed tIRI-induced spermatogenic damage as represented by a significant decrease in the Johnsen biopsy score. In addition, tIRI reduced the activities of hexokinase 1, phosphofructokinase-1, glyceraldehyde 3-phosphate dehydrogenase, and lactate dehydrogenase C. However, mRNA expression downregulation was detected only for hexokinase 1, phosphoglycerate kinase 2, and lactate dehydrogenase C. ATP and NADPH depletion was also induced by tIRI and was accompanied by an increased Malondialdehyde concentration, reduced glutathione level, and reduced superoxide dismutase and catalase enzyme activities. The immunoexpression of p53 and TIGAR was markedly increased after tIRI. The above tIRI-induced alterations were attenuated by FDP treatment. Discussion. Our findings indicate that tIRI-induced spermatogenic damage is

  2. Altered expression profile of glycolytic enzymes during testicular ischemia reperfusion injury is associated with the p53/TIGAR pathway: effect of fructose 1,6-diphosphate.

    Science.gov (United States)

    Al-Maghrebi, May; Renno, Waleed M

    2016-01-01

    Background. Testicular ischemia reperfusion injury (tIRI) is considered the mechanism underlying the pathology of testicular torsion and detorsion. Left untreated, tIRI can induce testis dysfunction, damage to spermatogenesis and possible infertility. In this study, we aimed to assess the activities and expression of glycolytic enzymes (GEs) in the testis and their possible modulation during tIRI. The effect of fructose 1,6-diphosphate (FDP), a glycolytic intermediate, on tIRI was also investigated. Methods. Male Sprague-Dawley rats were divided into three groups: sham, unilateral tIRI, and tIRI + FDP (2 mg/kg). tIRI was induced by occlusion of the testicular artery for 1 h followed by 4 h of reperfusion. FDP was injected peritoneally 30 min prior to reperfusion. Histological and biochemical analyses were used to assess damage to spermatogenesis, activities of major GEs, and energy and oxidative stress markers. The relative mRNA expression of GEs was evaluated by real-time PCR. ELISA and immunohistochemistry were used to evaluate the expression of p53 and TP53-induced glycolysis and apoptosis regulator (TIGAR). Results. Histological analysis revealed tIRI-induced spermatogenic damage as represented by a significant decrease in the Johnsen biopsy score. In addition, tIRI reduced the activities of hexokinase 1, phosphofructokinase-1, glyceraldehyde 3-phosphate dehydrogenase, and lactate dehydrogenase C. However, mRNA expression downregulation was detected only for hexokinase 1, phosphoglycerate kinase 2, and lactate dehydrogenase C. ATP and NADPH depletion was also induced by tIRI and was accompanied by an increased Malondialdehyde concentration, reduced glutathione level, and reduced superoxide dismutase and catalase enzyme activities. The immunoexpression of p53 and TIGAR was markedly increased after tIRI. The above tIRI-induced alterations were attenuated by FDP treatment. Discussion. Our findings indicate that tIRI-induced spermatogenic damage is associated with

  3. Changes of the activities of glycolytic and oxidative enzymes before and after slaughter in the longissimus muscle of Pietrain and Duroc pigs and a Duroc-Pietrain crossbreed.

    Science.gov (United States)

    Werner, C; Natter, R; Wicke, M

    2010-12-01

    After slaughter of pigs, the pH of the meat decreases due to lactate accumulation within the tissue. In addition to calcium homeostasis, energy metabolism plays a key role during the muscle-to-meat transition, and it is interesting to know how specific enzymes of the glycolytic and oxidative pathways change during this process, especially in relation to the antemortem situation, and if there is an impact of these alterations on the meat quality characteristics. Therefore, in the present study samples of the LM from the pig genetic groups Pietrain (Pi), Duroc (Du), and a Du × Pi crossbreed population (DuPi) were collected 24 h before as well as 1 min, 40 min, and 12 h after slaughter, and the activities of the glycogen phosphorylase (GP), phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS), NADH-ubiquinone oxidoreductase (complex I), and cytochrome oxidase were analyzed. Additional investigations include carcass and meat quality characteristics as well as the microstructure of the LM. The Pi breed had greater (P meat values, but no differences (P > 0.05) of the meat quality traits could be determined between the investigated pig breeds. The Pi pigs exhibited a greater (P after slaughter (1 min postmortem) of the pigs and the activity of the LDH within 40 min postmortem. After 12 h, the GP, PFK, LDH, and complex I activities decreased to the amount of the preslaughter sample. No differences could be found with regard to the enzyme activities of the CS and cytochrome oxidase at all determination times. Considering the enzyme activities within the different breeds, the Pi pigs exhibited greater (P animals exhibited greater (P meat transition process after slaughter of the animals without an impact on the muscle quality. The activities of the GP, PFK, CS, and complex I reflect the differences of the muscle fiber composition between the Pi and Du pigs.

  4. Evaluation of anti-citrullinated type II collagen and anti-citrullinated vimentin antibodies in patients with juvenile idiopathic arthritis

    Science.gov (United States)

    2013-01-01

    Background To determine the prevalence and significance of anti-citrullinated vimentin and anti-citrullinated type II collagen antibodies and elucidate their role in the disease process of juvenile idiopathic arthritis (JIA). Methods Sera were obtained from 95 patients with various subtypes of JIA, 19 systemic lupus erythematosus (SLE) patients, and 10 healthy children. Antibodies were measured in the sera against citrullinated and native type II collagen and vimentin (vim1-16 and vim 59-74) by enzyme-linked immunosorbent assay. Samples were compared to anti-cyclic citrullinated peptide (anti-CCP) antibody and rheumatoid factor (RF) isotypes, and our previously measured anti-citrullinated fibrinogen and α-enolase antibodies on the same patient population, in addition to erythrocyte sedimentation rate and C-reactive protein. The relationship between the anti-citrullinated antibody profile and disease activity and joint damage were also investigated. Results Twenty-three JIA patients (24%) demonstrated reactivity to anti-citrullinated type II collagen. Ten JIA patients (10.5%) demonstrated reactivity to anti-citrullinated vimentin 1–16 antibodies and 7 (7.4%) to anti-citrullinated vimentin 59–74 antibodies. One IgM RF-positive polyarticular patient was positive for all 5 of the citrullinated autoantibodies tested. Thirty-seven different subsets of patients were identified based on their anti-citrullinated autoantibody and RF isotype profile. No significant associations were noted with anti-citrullinated type II collagen and anti-citrullinated vimentin antibodies with joint damage or disease activity. Anti-citrullinated vimentin 59–74 antibodies demonstrated the highest overall specificity at 89.7%, with anti-citrullinated vimentin 1–16 and anti-citrullinated type II collagen antibodies at 86.2%. Conclusion This study demonstrates that antibodies to multiple citrullinated epitopes are present in the sera of patients with various subtypes of JIA. It also

  5. Decreased lactate concentration and glycolytic enzyme expression reflect inhibition of mTOR signal transduction pathway in B-cell lymphoma

    Science.gov (United States)

    Lee, Seung-Cheol; Marzec, Michal; Liu, Xiaobin; Wehrli, Suzanne; Kantekure, Kanchan; Ragunath, Puthiyaveettil N; Nelson, David S.; Delikatny, Edward J.; Glickson, Jerry D.; Wasik, Mariusz A.

    2012-01-01

    Application of the kinase inhibitors in cancer treatment is rapidly growing. However, the methods for monitoring the effectiveness of the inhibitors are still poorly developed and currently rely mainly on tracking changes in the tumor volume, a rather late and relatively insensitive marker of therapeutic response. In contrast, magnetic resonance spectroscopy (MRS) can detect changes in cell metabolism, which has potential for providing early and patient-specific markers of drug activity. Using human B-cell lymphoma models and MRS, we demonstrate that inhibition of the mTOR signaling pathway can be detected in malignant cells in vitro and noninvasively in vivo by measuring lactate levels. An mTOR inhibitor, rapamycin, suppressed lactic acid production in the lymphoma cell line cultures and also diminished steady state lactate levels in xenotransplants. The inhibition was time dependent and first detectable 8 hours after drug administration in cell cultures. In the xenotransplants, two days of rapamycin treatment produced significant changes in lactic acid concentration in the tumor measured in vivo that were followed by tumor growth arrest and tumor volume regression. The rapamycin-induced changes in lactate production strongly correlated with inhibition of expression of hexokinase II, the key enzyme in the glycolytic pathway. These studies suggest that MRS or FDG PET detection of changes in glucose metabolism may be effective noninvasive methods for monitoring mTOR targeting therapy in lymphomas and other malignancies. Furthermore, measuring glucose metabolic inhibition by MRS or by FDG PET imaging may also prove effective in monitoring the efficacy of other kinase inhibitors, given that the rapamycin-sensitive mTOR is down-stream of many oncogenic signaling pathways. PMID:22711601

  6. Insulin/IGF1-PI3K-dependent nucleolar localization of a glycolytic enzyme--phosphoglycerate mutase 2, is necessary for proper structure of nucleolus and RNA synthesis.

    Science.gov (United States)

    Gizak, Agnieszka; Grenda, Marcin; Mamczur, Piotr; Wisniewski, Janusz; Sucharski, Filip; Silberring, Jerzy; McCubrey, James A; Wisniewski, Jacek R; Rakus, Dariusz

    2015-07-10

    Phosphoglycerate mutase (PGAM), a conserved, glycolytic enzyme has been found in nucleoli of cancer cells. Here, we present evidence that accumulation of PGAM in the nucleolus is a universal phenomenon concerning not only neoplastically transformed but also non-malignant cells. Nucleolar localization of the enzyme is dependent on the presence of the PGAM2 (muscle) subunit and is regulated by insulin/IGF-1-PI3K signaling pathway as well as drugs influencing ribosomal biogenesis. We document that PGAM interacts with several 40S and 60S ribosomal proteins and that silencing of PGAM2 expression results in disturbance of nucleolar structure, inhibition of RNA synthesis and decrease of the mitotic index of squamous cell carcinoma cells. We conclude that presence of PGAM in the nucleolus is a prerequisite for synthesis and initial assembly of new pre-ribosome subunits.

  7. Enzymatic Production of l-Citrulline by Pseudomonas putida

    Science.gov (United States)

    Kakimoto, Toshio; Shibatani, Takeji; Nishimura, Noriyuki; Chibata, Ichiro

    1971-01-01

    To develop an efficient method for the production of l-citrulline, optimum conditions for the conversion of l-arginine to l-citrulline by microbial l-arginine deiminase and for production of the enzyme were studied. A number of micro-organisms were screened to test their ability to form and accumulate l-citrulline from l-arginine. Pseudomonas putida was selected as the best organism. With this organism, enzyme activity as high as 9.20 units per ml could be produced by a shaking culture at 30 C in a medium containing glucose, ammonium phosphate, l-arginine hydrochloride, yeast extract, peptone, and inorganic salts. Appropriate addition of a surface active agent to the reaction mixture was found to shorten the time required for the conversion. A large amount of l-arginine hydrochloride was converted stoichiometrically to l-citrulline in 62 hr at 37 C. Accumulated l-citrulline was readily isolated in pure form by ordinary procedures with ion-exchange resins. Yields of isolated l-citrulline of over 90.5% from l-arginine hydrochloride were easily attainable. PMID:5137589

  8. NITRIC OXIDE (NO, CITRULLINE - NO CYCLE ENZYMES, GLUTAMINE SYNTHETASE AND OXIDATIVE STRESS IN ANOXIA (HYPOBARIC HYPOXIA AND REPERFUSION IN RAT BRAIN

    Directory of Open Access Journals (Sweden)

    M. Swamy, Mohd Jamsani Mat Salleh, K. N .S. Sirajudeen, Wan Roslina Wan Yusof, G. Chandran

    2010-01-01

    Full Text Available Nitric oxide is postulated to be involved in the pathophysiology of neurological disorders due to hypoxia/ anoxia in brain due to increased release of glutamate and activation of N-methyl-D-aspartate receptors. Reactive oxygen species have been implicated in pathophysiology of many neurological disorders and in brain function. To understand their role in anoxia (hypobaric hypoxia and reperfusion (reoxygenation, the nitric oxide synthase, argininosuccinate synthetase, argininosuccinate lyase, glutamine synthetase and arginase activities along with the concentration of nitrate /nitrite, thiobarbituric acid reactive substances and total antioxidant status were estimated in cerebral cortex, cerebellum and brain stem of rats subjected to anoxia and reperfusion. The results of this study clearly demonstrated the increased production of nitric oxide by increased activity of nitric oxide synthase. The increased activities of argininosuccinate synthetase and argininosuccinate lyase suggest the increased and effective recycling of citrulline to arginine in anoxia, making nitric oxide production more effective and contributing to its toxic effects. The decreased activity of glutamine synthetase may favor the prolonged availability of glutamic acid causing excitotoxicity leading to neuronal damage in anoxia. The increased formation of thiobarbituric acid reactive substances and decreased total antioxidant status indicate the presence of oxidative stress in anoxia and reperfusion. The increased arginase and sustained decrease of GS activity in reperfusion group likely to be protective.

  9. Glyceraldehyde-3-phosphate dehydrogenase has no control over glycolytic flux in Lactococcus lactis MG1363

    DEFF Research Database (Denmark)

    Solem, Christian; Købmann, Brian Jensen; Jensen, Peter Ruhdal

    2003-01-01

    that the glycolytic flux was unchanged in the mutants overproducing GAPDH. Also, a decrease in the GAPDH activity had very little effect on the growth rate and the glycolytic flux until 25% activity was reached. Below this activity level, the glycolytic flux decreased proportionally with decreasing GAPDH activity....... These data show that GAPDH activity has no control over the glycolytic flux (flux control coefficient = 0.0) at the wild-type enzyme level and that the enzyme is present in excess capacity by a factor of 3 to 4. The early experiments by Poolman and coworkers were performed with cells resuspended in buffer, i...

  10. Roles for fructose-2,6-bisphosphate in the control of fuel metabolism: beyond its allosteric effects on glycolytic and gluconeogenic enzymes.

    Science.gov (United States)

    Wu, Chaodong; Khan, Salmaan A; Peng, Li-Jen; Lange, Alex J

    2006-01-01

    Fructose-2,6-bisphosphate (F26P2) was identified as a regulator of glucose metabolism over 25 years ago. A truly bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PFK2/FBP2), with two active sites synthesizes F26P2 from fructose-6-phosphate (F6P) and ATP or degrades F26P2 to F6P and Pi. In the classic view, F26P2 regulates glucose metabolism by allosteric effects on 6-phosphofructo-1-kinase (6PFK1, activation) and fructose-1,6-bisphosphatase (FBPase, inhibition). When levels of F26P2 are high, glycolysis is enhanced and gluconeogenesis is inhibited. In this regard, altering levels of F26P2 via 6PFK2/FBP2 overexpression has been used for metabolic modulation, and has been shown capable of restoring euglycemia in rodent models of diabetes. Recently, a number of novel observations have suggested that F26P2 has much broader effects on the enzymes of glucose metabolism. This is evidenced by the effects of F26P2 on the gene expression of two key glucose metabolic enzymes, glucokinase (GK) and glucose-6-phosphatase (G6Pase). When levels of F26P2 are elevated in the liver, the gene expression and protein amount of GK is increased whereas G6Pase is decreased. These coordinated changes in GK and G6Pase protein illustrate how F26P2 regulates glucose metabolism. F26P2 also affects the gene expression of enzymes related to lipid metabolism. When F26P2 levels are elevated in liver, the expression of two key lipogenic enzymes, acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FAS) is reduced, contributing to a unique coordinated decrease in lipogenesis. When combined, F26P2 effects on glucose and lipid metabolism provide cooperative regulation of fuel metabolism. The regulatory roles for F26P2 have also expanded to transcription factors, as well as certain key proteins (enzymes) of signaling and/or energy sensoring. Although some effects may be secondary to changes in metabolite levels, high levels of F26P2 have been shown to regulate protein

  11. Effect of proteolytic and glycolytic enzymes on a factor in Sorghum bicolor that induces mycelial growth in the smut fungus, Sporisorium reilianum.

    Science.gov (United States)

    Bhaskaran, S; Smith, R H

    1995-05-01

    Proteins obtained from seedling shoots and floral meristems of Sorghum bicolor (L.) Moench cv. NK 1210 induced mycelial growth in the smut fungus, Sporisorium reilianum in vitro. Proteins precipitated with trichloroacetic acid and ammonium sulfate were equally effective as inducers, although there were minor variations in the pattern of mycelial growth. Hydrolysis of the protein fraction with the proteolytic enzyme pronase E resulted in considerable reduction in the proteins' ability to induce mycelial growth. Digestion of the protein fraction with driselase, resulted in a slight enhancement of biological activity. The results suggest that amino sugar moieties in glycoproteins may act as inducers of mycelial growth in Sporisorium reilianum.

  12. Excessive Cu and Zn affecting on distribution of the metals and activities of glycolytic and nitrogen incorporating key enzymes in mycelia of ectomycorrhizal fungi Suillus bovinus

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Concentration of copper and zinc in isolated Suillus bovinus mycelia, used nutrient solution and 0.5 mol/L EDTA mycelia washing solution were measured to investigate the distribution of heavy metals in mycelia growth in excess copper or zinc nutrient solution. Treated with zinc, most of added zinc maintained in used solution, and 9.8%/14.6% was in/on mycelia in treatment, and in treetment 2 was 3.9%/8.0%in/on mycelia. In the copper applications, copper stimulated in more than on mycelis, i.e., 25.9%/4.5% in/on mycelia in treatment, and 7%/18.8% in/on mycelia while most of copper retained in used nutrient solution. Certain amount of copper or zinc uptake by mycelia led to pronounced influence on glycolysis and nitrogen incorporating process of Suillus bovinus, while the tested enzymes kept constant in treatment.In crude extracts of copper treatment 2 mycelia, activities of HK, PFK and GS were inhibited and decrease to 63%, 48% and 38% and GlDH ncreased by 68 % of the control, respectively. The behaviors of these tested enzymes toward sinc corresponded in general with that towards copper. The potential protection of Suillus bpvoninus for its host plant under excess copper or zinc threaten was discussed.

  13. Role of Glycolytic Intermediates in Global Regulation and Signal Transduction. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.C.

    2000-05-08

    The goal of this project is to determine the role of glycolytic intermediates in regulation of cell physiology. It is known that many glycolytic intermediates are involved in regulation of enzyme activities at the kinetic level. However, little is known regarding the role of these metabolites in global regulation and signal transduction. This project aims to investigate the role of glycolytic intermediates in the regulation of gene expression.

  14. Citrullination regulates pluripotency and histone H1 binding to chromatin

    Science.gov (United States)

    Christophorou, Maria A.; Castelo-Branco, Gonçalo; Halley-Stott, Richard P.; Oliveira, Clara Slade; Loos, Remco; Radzisheuskaya, Aliaksandra; Mowen, Kerri A.; Bertone, Paul; Silva, José C. R.; Zernicka-Goetz, Magdalena; Nielsen, Michael L.; Gurdon, John B.; Kouzarides, Tony

    2014-03-01

    Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.

  15. Contribution of the mannan backbone of cryptococcal glucuronoxylomannan and a glycolytic enzyme of Staphylococcus aureus to contact-mediated killing of Cryptococcus neoformans.

    Science.gov (United States)

    Ikeda, Reiko; Saito, Fumito; Matsuo, Miki; Kurokawa, Kenji; Sekimizu, Kazuhisa; Yamaguchi, Masashi; Kawamoto, Susumu

    2007-07-01

    The fungal pathogen Cryptococcus neoformans is killed by the bacterium Staphylococcus aureus, and the killing is inhibited by soluble capsular polysaccharides. To investigate the mechanism of killing, cells in coculture were examined by scanning and transmission electron microscopy. S. aureus attached to the capsule of C. neoformans, and the ultrastructure of the attached C. neoformans cells was characteristic of dead cells. To identify the molecules that contributed to the fungal-bacterial interaction, we treated each with NaIO(4) or protease. Treatment of C. neoformans with NaIO(4) promoted adherence. It was inferred that cleavage of xylose and glucuronic acid side chains of glucuronoxylomannan (GXM) allowed S. aureus to recognize mannose residues in the backbone, which resisted periodate oxidation. On the other hand, treatment of S. aureus with protease decreased adherence, suggesting that protein contributed to attachment in S. aureus. In confirmation, side chain-cleaved polysaccharide or defined alpha-(1-->3)-mannan inhibited the killing at lower concentrations than native GXM did. Also, these polysaccharides reduced the adherence of the two species and induced clumping of pure S. aureus cells. alpha-(1-->3)-Mannooligosaccharides with a degree of polymerization (DP) of >/=3 induced cluster formation of S. aureus in a dose-dependent manner. Surface plasmon resonance analyses showed interaction of GXM and surface protein from S. aureus; the interaction was inhibited by oligosaccharides with a DP of > or =3. Conformations of alpha-(1-->3) oligosaccharides were predicted. The three-dimensional structures of mannooligosaccharides larger than triose appeared curved and could be imagined to be recognized by a hypothetical staphylococcal lectin. Native polyacrylamide gel electrophoresis of staphylococcal protein followed by electroblotting, enzyme-linked immunolectin assay, protein staining, and N-terminal amino acid sequencing suggested that the candidate protein was

  16. The glycolytic pathway of Trimastix pyriformis is an evolutionary mosaic

    Directory of Open Access Journals (Sweden)

    Silberman Jeffrey D

    2006-11-01

    Full Text Available Abstract Background Glycolysis and subsequent fermentation is the main energy source for many anaerobic organisms. The glycolytic pathway consists of ten enzymatic steps which appear to be universal amongst eukaryotes. However, it has been shown that the origins of these enzymes in specific eukaryote lineages can differ, and sometimes involve lateral gene transfer events. We have conducted an expressed sequence tag (EST survey of the anaerobic flagellate Trimastix pyriformis to investigate the nature of the evolutionary origins of the glycolytic enzymes in this relatively unstudied organism. Results We have found genes in the Trimastix EST data that encode enzymes potentially catalyzing nine of the ten steps of the glycolytic conversion of glucose to pyruvate. Furthermore, we have found two different enzymes that in principle could catalyze the conversion of phosphoenol pyruvate (PEP to pyruvate (or the reverse reaction as part of the last step in glycolysis. Our phylogenetic analyses of all of these enzymes revealed at least four cases where the relationship of the Trimastix genes to homologs from other species is at odds with accepted organismal relationships. Although lateral gene transfer events likely account for these anomalies, with the data at hand we were not able to establish with confidence the bacterial donor lineage that gave rise to the respective Trimastix enzymes. Conclusion A number of the glycolytic enzymes of Trimastix have been transferred laterally from bacteria instead of being inherited from the last common eukaryotic ancestor. Thus, despite widespread conservation of the glycolytic biochemical pathway across eukaryote diversity, in a number of protist lineages the enzymatic components of the pathway have been replaced by lateral gene transfer from disparate evolutionary sources. It remains unclear if these replacements result from selectively advantageous properties of the introduced enzymes or if they are neutral

  17. Physical characteristics of a citrullinated pro-filaggrin epitope recognized by anti-citrullinated protein antibodies in rheumatoid arthritis sera

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Holm, Bettina Eide; Slot, Ole

    2016-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease of complex etiology. A characteristic feature of a subset of RA is the presence of anti-citrullinated protein antibodies (ACPA), which correlate with a progressive disease course. In this study, we employed streptavidin capture enzyme...

  18. Characterization of glycolytic enzymes--rAldolase and rEnolase of Leishmania donovani, identified as Th1 stimulatory proteins, for their immunogenicity and immunoprophylactic efficacies against experimental visceral leishmaniasis.

    Science.gov (United States)

    Gupta, Reema; Kumar, Vikash; Kushawaha, Pramod Kumar; Tripathi, Chandradev Pati; Joshi, Sumit; Sahasrabuddhe, Amogh Anant; Mitra, Kalyan; Sundar, Shyam; Siddiqi, Mohammad Imran; Dube, Anuradha

    2014-01-01

    Th1 immune responses play an important role in controlling Visceral Leishmaniasis (VL) hence, Leishmania proteins stimulating T-cell responses in host, are thought to be good vaccine targets. Search of such antigens eliciting cellular responses in Peripheral blood mononuclear cells (PBMCs) from cured/exposed/Leishmania patients and hamsters led to the identification of two enzymes of glycolytic pathway in the soluble lysate of a clinical isolate of Leishmania donovani--Enolase (LdEno) and aldolase (LdAld) as potential Th1 stimulatory proteins. The present study deals with the molecular and immunological characterizations of LdEno and LdAld. The successfully cloned and purified recombinant proteins displayed strong ability to proliferate lymphocytes of cured hamsters' along with significant nitric-oxide production and generation of Th1-type cytokines (IFN-γ and IL-12) from stimulated PBMCs of cured/endemic VL patients. Assessment of their prophylactic potentials revealed ∼ 90% decrease in parasitic burden in rLdEno vaccinated hamsters against Leishmania challenge, strongly supported by an increase in mRNA expression levels of iNOS, IFN-γ, TNF-α and IL-12 transcripts along with extreme down-regulation of TGF-β, IL-4 and IL-10. However, animals vaccinated with rLdAld showed comparatively lesser prophylactic efficacy (∼ 65%) with inferior immunological response. Further, with a possible implication in vaccine design against VL, identification of potential T-cell epitopes of both the proteins was done using computational approach. Additionally, in-silico 3-D modelling of the proteins was done in order to explore the possibility of exploiting them as potential drug targets. The comparative molecular and immunological characterizations strongly suggest rLdEno as potential vaccine candidate against VL and supports the notion of its being effective T-cell stimulatory protein.

  19. Interrelationships between glutamine and citrulline metabolism

    Science.gov (United States)

    This article analyzes the contribution of glutamine to the synthesis of citrulline and reviews the evidence that glutamine supplementation increases citrulline production. Glutamine supplementation has been proposed in the treatment of critically ill patients; however, a recent large multicenter ran...

  20. Identification of a glycolytic regulon in the Archaea Pyrococcus and Thermococcus

    NARCIS (Netherlands)

    Werken, van de H.J.G.; Verhees, C.H.; Akerboom, A.P.; Vos, de W.M.; Oost, van der J.

    2006-01-01

    The glycolytic pathway of the hyperthermophilic archaea that belong to the order Thermococcales (Pyrococcus, Thermococcus and Palaeococcus) differs significantly from the canonical Embden-Meyerhof pathway in bacteria and eukarya. This archaeal glycolysis variant consists of several novel enzymes, so

  1. Citrullinated Chemokines in Rheumatoid Arthritis

    Science.gov (United States)

    2014-10-01

    Clavel C, Arnaud J, Nogueira L, et al. Epitopes of human fibrin recognized by the rheumatoid arthritis-specific autoantibodies to citrullinated... Clavel C, Chapuy-Regaud S, Al Badine R, Mechin MC, et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are

  2. Autoantibodies From Single Circulating Plasmablasts React With Citrullinated Antigens and Porphyromonas gingivalis in Rheumatoid Arthritis.

    Science.gov (United States)

    Li, Song; Yu, Yangsheng; Yue, Yinshi; Liao, Hongyan; Xie, Wanqin; Thai, Jessica; Mikuls, Ted R; Thiele, Geoffrey M; Duryee, Michael J; Sayles, Harlan; Payne, Jeffrey B; Klassen, Lynell W; O'Dell, James R; Zhang, Zhixin; Su, Kaihong

    2016-03-01

    Anti-citrullinated protein antibodies (ACPAs) are highly specific for rheumatoid arthritis (RA). However, the molecular basis for ACPA production is still unclear. The purpose of this study was to determine if circulating plasmablasts from RA patients produce ACPAs and whether Porphyromonas gingivalis facilitates the generation of ACPAs. Using a single-cell antibody cloning approach, we generated 217 and 110 monoclonal recombinant antibodies from circulating plasmablasts from 7 RA patients and 4 healthy controls, respectively. Antibody reactivity with citrullinated antigens was tested by a second-generation anti-cyclic citrullinated peptide (anti-CCP) kit and by enzyme-linked immunosorbent assays (ELISAs) against citrullinated human antigens. Antibody reactivity with P gingivalis was tested by ELISAs against outer membrane antigens (OMAs) and citrullinated enolase from P gingivalis. Approximately 19.5% of plasmablast-derived antibodies from anti-CCP-positive RA patients, but none from 1 anti-CCP-negative RA patient or the healthy controls, specifically recognized citrullinated antigens. The immunoglobulin genes encoding these ACPAs were highly mutated, with increased ratios of replacement mutations to silent mutations, suggesting the involvement of active antigen selection in ACPA generation. Interestingly, 63% of the ACPAs cross-reacted with OMAs and/or citrullinated enolase from P gingivalis. The reactivity of ACPAs against citrullinated proteins from P gingivalis was confirmed by immunoblotting and mass spectrometry. Furthermore, some germline-reverted ACPAs retained their reactivity with P gingivalis antigens but completely lost their reactivity with citrullinated human antigens. These results suggest that circulating plasmablasts in RA patients produce ACPAs and that this process may be facilitated by anti-P gingivalis immune responses. © 2016, American College of Rheumatology.

  3. Glutamine and citrulline concentrations reflect nitric oxide synthesis in the human nervous system.

    Science.gov (United States)

    Pérez-Neri, I; Ramírez-Bermúdez, J; Ojeda-López, C; Montes, S; Soto-Hernández, J L; Ríos, C

    2017-08-31

    Although citrulline is produced by nitric oxide (NO) synthase upon activation of the NMDA glutamate receptor, nitrite and nitrate (NOx) concentration is considered the best marker of NO synthesis, as citrulline is also metabolised by other enzymes. This study analyses the correlation between human cerebrospinal fluid NOx and citrulline concentrations in order to determine the extent to which citrulline reflects NO synthesis and glutamatergic neurotransmission. Participants were patients with acute neurological diseases undergoing lumbar puncture (n=240). NOx and amino acid concentrations were determined by HPLC. NOx concentrations did not vary significantly where infection (p=0,110) or inflammation (p=0,349) were present. Multiple regression analysis showed that NOx concentration was correlated with glutamine (r=-0,319, p<0,001) and citrulline concentrations (r=0,293, p=0,005) but not with the citrulline/arginine ratio (r=-0,160, p=0,173). ANCOVA confirmed that NOx concentration was correlated with citrulline concentration (F=7,6, p=0,007) but not with the citrulline/arginine ratio (F=2,2, p=0,136), or presence of infection (F=1,8, p=0,173) or inflammation (F=1,4, p=0,227). No association was found between NOx and arginine or glutamate concentrations. The results suggest that CSF citrulline concentration reflects NOx synthesis to some extent, despite the contribution of other metabolic pathways. In addition, this study shows that glutamine is an important modulator of NO synthase activity, and that arginine and glutamate are not correlated with NOx. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Is there a link between carbamylation and citrullination in periodontal disease and rheumatoid arthritis?

    Science.gov (United States)

    Bright, R; Proudman, S M; Rosenstein, E D; Bartold, P M

    2015-06-01

    The remarkable similarity in inflammatory response and pathology of periodontal disease and rheumatoid arthritis has been recognized for several decades. However, how these two disease may be interrelated has been less clear. During the pathogenesis of rheumatoid arthritis there is a preclinical immunological phase which precedes the clinical manifestation of rheumatoid arthritis. During this phase serum autoantibodies appear many years before the clinical signs and symptoms of rheumatoid arthritis become apparent. To date, the two best studied autoantibodies have been rheumatoid factor and anti-citrullinated protein antibodies (ACPA). Of these the production of ACPA has been considered very important due to their high predictive value in future manifestation of rheumatoid arthritis. Citrullination is a common post-translational modification of proteins based on the enzymatic conversion of arginine into citrulline. Extra-articular citrullination and production of ACPA, as a priming immunological experience, is well documented in many tissues including the inflamed gingival tissues associated with periodontal disease. More recently, carbamylation of proteins has also been implicated in the pathogenesis of rheumatoid arthritis in a manner similar to citrullination. Carbamylation is a post translational modification of proteins by an enzyme-independent modification of lysine residues against which autoantibodies are subsequently induced. In this article we hypothesise that, like citrullination, carbamylation of proteins and associated antibody production during the gingival inflammation associated with gingivitis and periodontitis may play a role in the pathogenesis of rheumatoid arthritis.

  5. Myelin Basic Protein Citrullination in Multiple Sclerosis: A Potential Therapeutic Target for the Pathology.

    Science.gov (United States)

    Yang, Lei; Tan, Dewei; Piao, Hua

    2016-08-01

    Multiple sclerosis (MS) is a multifactorial demyelinating disease characterized by neurodegenerative events and autoimmune response against myelin component. Citrullination or deimination, a post-translational modification of protein-bound arginine into citrulline, catalyzed by Ca(2+) dependent peptidylarginine deiminase enzyme (PAD), plays an essential role in physiological processes include gene expression regulation, apoptosis and the plasticity of the central nervous system, while aberrant citrullination can generate new epitopes, thus involving in the initiation and/or progression of autoimmune disorder like MS. Myelin basic protein (MBP) is the major myelin protein and is generally considered to maintain the stability of the myelin sheath. This review describes the MBP citrullination and its consequence, as well as offering further support for the "inside-out" hypothesis that MS is primarily a neurodegenerative disease with secondary inflammatory demyelination. In addition, it discusses the role of MBP citrullination in the immune inflammation and explores the potential of inhibition of PAD enzymes as a therapeutic strategy for the disease.

  6. Evidence for loss of a partial flagellar glycolytic pathway during trypanosomatid evolution.

    Directory of Open Access Journals (Sweden)

    Robert W B Brown

    Full Text Available Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma brucei flagellar proteins resembling glyceraldehyde-3-phosphate dehydrogenase (GAPDH and phosphoglycerate kinase (PGK: we show the latter associates with the axoneme and the former is a novel paraflagellar rod component. The paraflagellar rod is an essential extra-axonemal structure in trypanosomes and related protists, providing a platform into which metabolic activities can be built. Yet, bioinformatics interrogation and structural modelling indicate neither the trypanosome PGK-like nor the GAPDH-like protein is catalytically active. Orthologs are present in a free-living ancestor of the trypanosomatids, Bodo saltans: the PGK-like protein from B. saltans also lacks key catalytic residues, but its GAPDH-like protein is predicted to be catalytically competent. We discuss the likelihood that the trypanosome GAPDH-like and PGK-like proteins constitute molecular evidence for evolutionary loss of a flagellar glycolytic pathway, either as a consequence of niche adaptation or the re-localization of glycolytic enzymes to peroxisomes and the extensive changes to glycolytic flux regulation that accompanied this re-localization. Evidence indicating loss of localized ATP provision via glycolytic enzymes therefore provides a novel contribution to an emerging theme of hidden diversity with respect to compartmentalization of the ubiquitous glycolytic pathway in eukaryotes. A possibility that trypanosome GAPDH-like protein additionally represents a degenerate example of a moonlighting protein is also discussed.

  7. IgG reactivity against citrullinated myelin basic protein in multiple sclerosis.

    Science.gov (United States)

    de Seze, J; Dubucquoi, S; Lefranc, D; Virecoulon, F; Nuez, I; Dutoit, V; Vermersch, P; Prin, L

    2001-07-02

    An increased level of citrullinated myelin basic protein (MBP-C8) has been reported in the brains of multiple sclerosis (MS) patients. However, the involvement of the immune response to post-translational modified MBP in the pathophysiology of MS remains speculative. The aim of this study was to compare the levels of immunoglobulin G antibodies to several MBP epitopes, before and after citrullination, in the cerebrospinal fluid (CSF) and sera of MS patients using enzyme-linked immunosorbent assay (ELISA). We analyzed antibody reactivity against various MBP-peptides in the CSF and sera of 60 MS patients, and 30 patients with other neurological diseases (OND) as controls. The peptides tested were: MBP(75-98) (peptide 1), native (peptide 2) and citrullinated (peptide 3) MBP(108-126) (ARG(122)-->Cit(122)), and native (peptide 4) and citrullinated (peptide 5) MBP(151-170) (ARG(159, 170)-->Cit(159, 170)). All selected peptides could support an immune reactivity in CSF and sera of MS and OND patients. A higher reactivity against peptide 4 was found in the CSF of MS patients compared with OND patients (P<0.0001), but not against citrullinated peptides (peptides 3 and 5). However, we observed that the citrullination state of peptide 2 modified the patterns of immune reactivity more markedly in MS patients (P<0.0001) than in OND patients (P<0.02). Although some MBP epitopes could be a potential target in MS, our data did not demonstrate any difference of antibody response to MBP peptides in their citrullinated forms.

  8. The glycolytic flux in Escherichia coli is controlled by the demand for ATP

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Westerhoff, H.V.; Snoep, J.L.

    2002-01-01

    not inside but outside the pathway, i.e., with the enzymes that hydrolyze ATP. These data further allowed us to answer the question of whether catabolic or anabolic reactions control the growth of E. coli. We show that the majority of the control of growth rate resides in the anabolic reactions, i...... of the membrane-bound (F1F0) H+-ATP synthase were expressed in steadily growing Escherichia coli cells, which lowered the intracellular [ATP]/[ADP] ratio. This resulted in a strong stimulation of the specific glycolytic flux concomitant with a smaller decrease in the growth rate of the cells. By optimizing...... additional ATP hydrolysis, we increased the flux through glycolysis to 1.7 times that of the wild-type flux. The results demonstrate why attempts in the past to increase the glycolytic flux through overexpression of glycolytic enzymes have been unsuccessful: the majority of flux control (> 75%) resides...

  9. Glycolytic activities in size-fractionated water samples: emphasis on rhamnosidase, arabinosidase and fucosidase activities

    OpenAIRE

    Vanessa Colombo-Corbi; Maria José Dellamano-Oliveira; Armando Augusto Henriques Vieira

    2011-01-01

    Glycolytic activities of eight enzymes in size-fractionated water samples from a eutrophic tropical reservoir are presented in this study, including enzymes assayed for the first time in a freshwater environment. Among these enzymes, rhamnosidase, arabinosidase and fucosidase presented high activity in the free-living fraction, while glucosidase, mannosidase and galactosidase exhibited high activity in the attached fraction. The low activity registered for rhamnosidase, arabinosidase and fuco...

  10. Identification of a glycolytic regulon in the archaea Pyrococcus and Thermococcus.

    Science.gov (United States)

    van de Werken, Harmen J G; Verhees, Corné H; Akerboom, Jasper; de Vos, Willem M; van der Oost, John

    2006-07-01

    The glycolytic pathway of the hyperthermophilic archaea that belong to the order Thermococcales (Pyrococcus, Thermococcus and Palaeococcus) differs significantly from the canonical Embden-Meyerhof pathway in bacteria and eukarya. This archaeal glycolysis variant consists of several novel enzymes, some of which catalyze unique conversions. Moreover, the enzymes appear not to be regulated allosterically, but rather at transcriptional level. To elucidate details of the gene expression control, the transcription initiation sites of the glycolytic genes in Pyrococcus furiosus have been mapped by primer extension analysis and the obtained promoter sequences have been compared with upstream regions of non-glycolytic genes. Apart from consensus sequences for the general transcription factors (TATA-box and BRE) this analysis revealed the presence of a potential transcription factor binding site (TATCAC-N(5)-GTGATA) in glycolytic and starch utilizing promoters of P. furiosus and several thermococcal species. The absence of this inverted repeat in Pyrococcus abyssi and Pyrococcus horikoshii probably reflects that their reduced catabolic capacity does not require this regulatory system. Moreover, this phyletic pattern revealed a TrmB-like regulator (PF0124 and TK1769) which may be involved in recognizing the repeat. This Thermococcales glycolytic regulon, with more than 20 genes, is the largest regulon that has yet been described for Archaea.

  11. Phenylglyoxal-Based Visualization of Citrullinated Proteins on Western Blots

    Directory of Open Access Journals (Sweden)

    Sanne M. M. Hensen

    2015-04-01

    Full Text Available Citrullination is the conversion of peptidylarginine to peptidylcitrulline, which is catalyzed by peptidylarginine deiminases. This conversion is involved in different physiological processes and is associated with several diseases, including cancer and rheumatoid arthritis. A common method to detect citrullinated proteins relies on anti-modified citrulline antibodies directed to a specific chemical modification of the citrulline side chain. Here, we describe a versatile, antibody-independent method for the detection of citrullinated proteins on a membrane, based on the selective reaction of phenylglyoxal with the ureido group of citrulline under highly acidic conditions. The method makes use of 4-azidophenylglyoxal, which, after reaction with citrullinated proteins, can be visualized with alkyne-conjugated probes. The sensitivity of this procedure, using an alkyne-biotin probe, appeared to be comparable to the antibody-based detection method and independent of the sequence surrounding the citrulline.

  12. Anti-cyclic citrullinated peptide positivity in non-rheumatoid arthritis disease samples: citrulline-dependent or not?

    NARCIS (Netherlands)

    Nini, A. van; Cheung, K.; Fusconi, M.; Stammen-Vogelzangs, J.; Drenth, J.P.H.; Dall'aglio, A.C.; Bianchi, F.B.; Bakker-Jonges, L.E.; Venrooij, W.J.W. van; Pruijn, G.J.M.; Zendman, A.J.W.

    2007-01-01

    BACKGROUND: Antibodies directed against citrullinated proteins (eg anti-cyclic citrullinated peptide (CCP)) have excellent diagnostic and good prognostic potential for rheumatoid arthritis. Type 1 autoimmune hepatitis (AIH-1) is a chronic liver disease characterised by a variety of serum

  13. Evidence of fibrinogen as a target of citrullination in IgM rheumatoid factor-positive polyarticular juvenile idiopathic arthritis

    Directory of Open Access Journals (Sweden)

    Dehlendorf Amanda B

    2011-03-01

    Full Text Available Abstract Background Several studies have noted the significance of measuring anti-cyclic citrullinated peptide (CCP antibodies in juvenile idiopathic arthritis (JIA as an important indicator for destructive disease, as is the case in rheumatoid arthritis (RA. While the role of anti-CCP antibodies in RA and JIA has become better understood, the identity of the target proteins of this modification has remained elusive. In this study, we evaluated serum from patients with various subtypes of JIA to investigate the presence of anti-deiminated (citrullinated fibrinogen and anti-citrullinated α-enolase antibodies, and their association with RF and anti-CCP antibody isotypes. Methods Sera were obtained from 96 JIA patients, 19 systemic lupus erythematosus (SLE patients, and 10 healthy children. All sera were measured for antibodies against citrullinated and native fibrinogen and α-enolase by an enzyme linked immunosorbent assay (ELISA. In addition, all sera were assayed for anti-CCP antibody isotypes and rheumatoid factor (RF isotypes by ELISA. The relationship between anti-citrullinated fibrinogen and anti-α-enolase antibodies and disease activity and joint damage were also investigated. All results were correlated with clinical and laboratory parameters using Spearman's rho correlation coefficient. Multiple logistic regression analysis was utilized to identify which variables were associated with joint erosions and diagnosis of JIA. Results Thirty-one JIA patients (32% demonstrated reactivity to citrullinated fibrinogen and 9 (9% to citrullinated α-enolase. Reactivity to citrullinated fibrinogen and α-enolase was predominantly found in IgM RF-positive polyarthritis patients. Fourteen JIA patients reacted with native α-enolase and a higher percentage of SLE patients reacted with citrullinated α-enolase when compared to JIA patients. Anti-citrullinated fibrinogen antibodies correlated with the presence of IgG anti-CCP antibodies and IgA and Ig

  14. Modeling diauxic glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Sørensen, Preben Graae

    2010-01-01

    Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can be characteri...

  15. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  16. Antibodies to mutated citrullinated vimentin and anti-cyclic citrullinated peptide antibodies in inflammatory bowel disease and related arthritis.

    Science.gov (United States)

    Al-Jarallah, Khaled; Shehab, Diaa; Al-Attiyah, Rajaa; Al-Azmi, Waleed; Al-Fadli, Ahmad; Zafar Haider, Mohammed; Panaccione, Remo; Ghosh, Subrata

    2012-09-01

    Antibodies that react with citrullinated proteins (anti-mutated citrullinated vimentin [anti-MCV] and second-generation anti-cyclic citrullinated peptide antibodies [anti-CCP2]) are markers for rheumatoid arthritis. Recent studies have demonstrated that these antibodies are present in other arthropathies including the spondyloarthritis, psoriatic arthritis, and juvenile idiopathic arthritis. Arthritis associated with inflammatory bowel disease (IBD) takes various forms, with some shared similarities with classic spondylarthropathies. Our objective was to investigate the role of anti-MCV and anti-CCP2 as potential biomarkers in IBD and related arthritis. In all, 125 IBD patients (71 males, 54 females) were compared to 81 age- and sex-matched healthy controls. Anti-MCV and Anti-CCP2 IgG were measured using an enzyme linked immunosorbent assay. In the 125 IBD patients (mean age 32.6 ± 12.3 years), 44 (35.2%) had ulcerative colitis and 81 (64.8%) had Crohn's disease. Forty-four (35.2%) IBD patients developed arthritic manifestations. Antibody positivity was observed in 24/125 (19.2%) IBD patients and in 18/81 (22.2%) healthy subjects. The proportion of anti-MCV positivity among IBD patients and healthy individuals were similar: 16.8% vs. 16.0%, P = 0.887. Anti-CCP2 positivity among IBD patients and healthy individuals was also comparable: 6.4% vs. 6.2%, P = 0.948. Similarly, the presence of anti-MCV and anti-CCP2 antibodies was not different among IBD patients with and without arthritis. The mean titers of antibodies were low: anti-MCV (29.6 ± 7.5 U/mL) and anti-CCP2 (27.6 ± 4.0 U/mL) in IBD patients with arthritis. Autoantibodies to citrullinated proteins were low in IBD-related arthritis. These findings suggest that these antibodies are not useful biomarkers in IBD to predict who may develop IBD-related arthropathy. Copyright © 2011 Crohn's & Colitis Foundation of America, Inc.

  17. Citrullination in Rheumatoid Arthritis—A Process Promoted by Neutrophil Lysis?

    Science.gov (United States)

    Gazitt, Tal; Lood, Christian; Elkon, Keith B.

    2016-01-01

    Anti-citrullinated protein antibodies (ACPAs) are highly specific serologic markers for rheumatoid arthritis (RA) and can pre-date clinical disease onset by up to 10 years, also predicting erosive disease. The process of citrullination, the post-translational conversion of arginine to citrulline residues, is mediated by peptidylarginine deiminase (PAD) enzymes present in polymorphonuclear cells (PMNs). Calcium ions (Ca2+) are required for PAD activation, but the intracellular Ca2+ concentration in normal cells is much lower than the optimal Ca2+ concentration needed for PAD activation. For this reason, it has been proposed that PAD activation, and thus citrullination, occurs only during PMN cell death when PAD enzymes leak out of the cells into the extracellular matrix, or extracellular Ca2+ enters the cells, with the high Ca2+ concentration activating PAD. Recently, using artificial in vitro systems to corroborate their hypothesis, Romero et al. demonstrated that “hypercitrullination,” citrullination of multiple intracellular proteins, occurs within synovial fluid (SF) cells of RA patients, and that only modes of death leading to membranolysis such as perforin-granzyme pathway or complement membrane attack complex activation cause hypercitrullination. In order for Romero’s hypothesis to hold, it is reasonable to surmise that PMN-directed lysis should occur in the rheumatoid joint or the circulation of RA patients. Research conducted thus far has shown that immunoglobulin G (IgG) targeting PMNs are present in RA SF and mediate PMN activation. However, the role of anti-PMN IgG in mediating complement activation and subsequent PMN lysis and hypercitrullination has not been fully evaluated. PMID:27824546

  18. Citrullination in Rheumatoid Arthritis—A Process Promoted by Neutrophil Lysis?

    Directory of Open Access Journals (Sweden)

    Tal Gazitt

    2016-10-01

    Full Text Available Anti-citrullinated protein antibodies (ACPAs are highly specific serologic markers for rheumatoid arthritis (RA and can pre-date clinical disease onset by up to 10 years, also predicting erosive disease. The process of citrullination, the post-translational conversion of arginine to citrulline residues, is mediated by peptidylarginine deiminase (PAD enzymes present in polymorphonuclear cells (PMNs. Calcium ions (Ca2+ are required for PAD activation, but the intracellular Ca2+ concentration in normal cells is much lower than the optimal Ca2+ concentration needed for PAD activation. For this reason, it has been proposed that PAD activation, and thus citrullination, occurs only during PMN cell death when PAD enzymes leak out of the cells into the extracellular matrix, or extracellular Ca2+ enters the cells, with the high Ca2+ concentration activating PAD. Recently, using artificial in vitro systems to corroborate their hypothesis, Romero et al. demonstrated that “hypercitrullination,” citrullination of multiple intracellular proteins, occurs within synovial fluid (SF cells of RA patients, and that only modes of death leading to membranolysis such as perforin-granzyme pathway or complement membrane attack complex activation cause hypercitrullination. In order for Romero’s hypothesis to hold, it is reasonable to surmise that PMN-directed lysis should occur in the rheumatoid joint or the circulation of RA patients. Research conducted thus far has shown that immunoglobulin G (IgG targeting PMNs are present in RA SF and mediate PMN activation. However, the role of anti-PMN IgG in mediating complement activation and subsequent PMN lysis and hypercitrullination has not been fully evaluated.

  19. Anti-cyclic citrullinated peptide positivity in non-rheumatoid arthritis disease samples: citrulline-dependent or not?

    Science.gov (United States)

    Vannini, A; Cheung, K; Fusconi, M; Stammen-Vogelzangs, J; Drenth, J P H; Dall'Aglio, A C; Bianchi, F B; Bakker-Jonges, L E; van Venrooij, W J; Pruijn, G J M; Zendman, A J W

    2007-04-01

    Antibodies directed against citrullinated proteins (eg anti-cyclic citrullinated peptide (CCP)) have excellent diagnostic and good prognostic potential for rheumatoid arthritis. Type 1 autoimmune hepatitis (AIH-1) is a chronic liver disease characterised by a variety of serum autoantibodies. Recently, in a large group of patients with AIH-1 without clear rheumatoid arthritis overlap, a relatively high percentage (9%) of anti-CCP2 positivity was scored. To characterise the citrulline-dependence of the observed anti-CCP2 positivity in AIH-1 sera as well as in other groups of patients without rheumatoid arthritis (mainly rheumatic diseases). Serum samples of 57 patients with AIH-1 and 66 patients without rheumatoid arthritis, most of them reported as anti-CCP positive, were tested for citrulline-specific reactivity with a second generation anti-CCP kit, with the citrullinated and the corresponding non-citrullinated (arginine-containing) antigen. A subset of AIH-1 sera was also tested with a CCP1 ELISA (and arginine control). The anti-CCP2 reactivity of most non-rheumatoid arthritis rheumatic diseases samples (87-93%) was citrulline-specific, whereas a relatively high percentage of AIH-1 samples (42-50%) turned out to be reactive in a citrulline-independent manner. The use of citrullinated and non-citrullinated CCP1 peptides confirmed a high occurrence of citrulline-independent reactivity in AIH-1 samples. In rheumatoid arthritis and most non-rheumatoid arthritis rheumatologic disease sera, anti-CCP positivity is citrulline-dependent. However in some patients, particularly patients with AIH-1, citrulline-independent reactivity in the anti-CCP2 test can occur. A positive CCP test in a non-rheumatic disease (eg liver disease) should therefore be interpreted with care, and preferably followed by a control ELISA with a non-citrullinated antigen.

  20. High Resolution Measurement of the Glycolytic Rate

    Science.gov (United States)

    Bittner, Carla X.; Loaiza, Anitsi; Ruminot, Iván; Larenas, Valeria; Sotelo-Hitschfeld, Tamara; Gutiérrez, Robin; Córdova, Alex; Valdebenito, Rocío; Frommer, Wolf B.; Barros, L. Felipe

    2010-01-01

    The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis. PMID:20890447

  1. High resolution measurement of the glycolytic rate

    Directory of Open Access Journals (Sweden)

    Carla X Bittner

    2010-09-01

    Full Text Available The glycolytic rate is sensitive to physiological activity, hormones, stress, aging and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently-developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.

  2. Intestinal and hepatic metabolism of glutamine and citrulline in humans.

    Science.gov (United States)

    van de Poll, Marcel C G; Ligthart-Melis, Gerdien C; Boelens, Petra G; Deutz, Nicolaas E P; van Leeuwen, Paul A M; Dejong, Cornelis H C

    2007-06-01

    Glutamine plays an important role in nitrogen homeostasis and intestinal substrate supply. It has been suggested that glutamine is a precursor for arginine through an intestinal-renal pathway involving inter-organ transport of citrulline. The importance of intestinal glutamine metabolism for endogenous arginine synthesis in humans, however, has remained unaddressed. The aim of this study was to investigate the intestinal conversion of glutamine to citrulline and the effect of the liver on splanchnic citrulline metabolism in humans. Eight patients undergoing upper gastrointestinal surgery received a primed continuous intravenous infusion of [2-(15)N]glutamine and [ureido-(13)C-(2)H(2)]citrulline. Arterial, portal venous and hepatic venous blood were sampled and portal and hepatic blood flows were measured. Organ specific amino acid uptake (disposal), production and net balance, as well as whole body rates of plasma appearance were calculated according to established methods. The intestines consumed glutamine at a rate that was dependent on glutamine supply. Approximately 13% of glutamine taken up by the intestines was converted to citrulline. Quantitatively glutamine was the only important precursor for intestinal citrulline release. Both glutamine and citrulline were consumed and produced by the liver, but net hepatic flux of both amino acids was not significantly different from zero. Plasma glutamine was the precursor of 80% of plasma citrulline and plasma citrulline in turn was the precursor of 10% of plasma arginine. In conclusion, glutamine is an important precursor for the synthesis of arginine after intestinal conversion to citrulline in humans.

  3. Glutamine: precursor or nitrogen donor for citrulline synthesis?

    Science.gov (United States)

    Marini, Juan C; Didelija, Inka Cajo; Castillo, Leticia; Lee, Brendan

    2010-07-01

    Although glutamine is considered the main precursor for citrulline synthesis, the current literature does not differentiate between the contribution of glutamine carbon skeleton vs. nonspecific nitrogen (i.e., ammonia) and carbon derived from glutamine oxidation. To elucidate the role of glutamine and nonspecific nitrogen in the synthesis of citrulline, l-[2-(15)N]- and l-[5-(15)N]glutamine and (15)N-ammonium acetate were infused intragastrically in mice. The amino group of glutamine labeled the three nitrogen groups of citrulline almost equally. The amido group and ammonium acetate labeled the ureido and amino groups of citrulline, but not the delta-nitrogen. D(5)-glutamine also infused in this arm of the study, which traces the carbon skeleton of glutamine, was utilized poorly, accounting for only 0.2-0.4% of the circulating citrulline. Dietary glutamine nitrogen (both N groups) incorporation was 25-fold higher than the incorporation of its carbon skeleton into citrulline. To investigate the relative contributions of the carbon skeleton and nonspecific carbon of glutamine, arginine, and proline to citrulline synthesis, U-(13)C(n) tracers of these amino acids were infused intragastrically. Dietary arginine was the main precursor for citrulline synthesis, accounting for approximately 40% of the circulating citrulline. Proline contribution was minor (3.4%), and glutamine was negligible (0.4%). However, the glutamine tracer resulted in a higher enrichment in the ureido group, indicating incorporation of nonspecific carbon from glutamine oxidation into carbamylphosphate used for citrulline synthesis. In conclusion, dietary glutamine is a poor carbon skeleton precursor for the synthesis of citrulline, although it contributes both nonspecific nitrogen and carbon to citrulline synthesis.

  4. Citrullination and Carbamylation in the Pathophysiology of Rheumatoid Arthritis

    OpenAIRE

    Pruijn, Ger J. M.

    2015-01-01

    The discovery that citrullination was crucial for the recognition of antigens by the most disease-specific class of autoantibodies in rheumatoid arthritis had a huge impact on studies aimed at understanding autoimmunity in this disease. In addition to the detailed characterization of anti-citrullinated protein antibodies, various studies have addressed the identity of citrullinated antigens. These investigations were facilitated by new methods to characterize these proteins, the analysis of p...

  5. Optimizing the identification of citrullinated peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Bennike, Tue; Lauridsen, Kasper B.; Olesen, Michael Kruse

    2013-01-01

    using digested synovial fluid samples from a rheumatoid arthritis patient. The samples were analyzed using liquid chromatography/tandem MS with electrospray ionization. Our in vivo and in vitro studies clearly demonstrate the inability of trypsin to cleave after citrulline residues. Based on our......Citrullinated proteins have been associated with several diseases and citrullination can most likely function as a target for novel diagnostic agents and unravel disease etiologies. The correct identification of citrullinated proteins is therefore of most importance. Mass spectrometry (MS) driven...

  6. Variations of the enzymatic activity of the rat's gum glycolytic cycle following administration of sweeteners.

    Science.gov (United States)

    Seri, S; D'Alessandro, A; Seri, M

    1995-01-01

    The effects of saccharose and isomalt on the rat's gum carbohydrate metabolism have been studied through evaluation of the activity of hexokinase (HK), phosphoglucoisomerase (PGI), lactatedehydrogenase (LDH), glucose-6-phosphate-dehydrogenase (G6PD), phosphofructokinase (PFK) and phosphoglucomutase (PGM). The values obtained by administering a drink sweetened with 10% isomalt are significantly lower (p isomalt on the rat's gum glycolytic cycle enzymes was found to be lower than that detected for other polyalcohols.

  7. Comparison of Chemiluminescent Microparticle Immunoassay with Enzyme Linked Immunosorbent Assay for the Measurement of Amti-Cyclic Citrullinated Peptide Antibody%化学发光免疫分析(CLIA)和酶联免疫吸附法(ELISA)检测抗环瓜氨酸肽抗体评价

    Institute of Scientific and Technical Information of China (English)

    杨曙梅; 丛辉; 王建新; 王惠民

    2013-01-01

    Objective To compare an automatic immunological analyzer for the determination of anti-cyclic citrullinated peptide (anti-CCP) antibody by chemiluminescent microparticle immunoassay (CLIA) with that enzyme-linked immunosorbent assay (ELISA).Methods 58 patients with rheumatoid arthritis, 67 with other rheumatic disease and 67 healthy controls presenting to the Affiliated Hospital of the Nantong University from February to April 2012 were enrolled according to 2010 ACR/EULAR.Anti-cyclic citrullinated peptide antibody was measured by CLIA and ELISA.The method of CLIA,including sensitivity,specificity,positive likelihood ratio,negative likelihood ratio and its correlation with ELISA, were fully evaluated.Results The diagnostic sensitivity and specificity of CLIA were 72.41% and 97.01%, respectively.Positive likelihood ratio was 91.30%,while negative likelihood ratio was 89.04%.No difference was exist between CLIS and ELISA (χ2=1.207,P >0.05).Conclusion The CLIA is a new automation technique with advantage of high intelligentification which is rapid and convenient,especially for quality control.%目的 对化学发光免疫分析(CLIA)和酶联免疫吸附法(ELISA)检测抗环瓜氨酸肽(抗CCP)抗体进行评价.方法 依据2010 ACR/EULAR类风湿关节炎分类诊断标准收集2012年1月~4月南通大学附属医院RA患者58例,其他风湿性疾病患者67例,南通大学附属医院体检健康且排除自身抗体阳性的健康体检者67例.用CLIA法和ELISA法分别检测所有研究对象血清中的抗CCP抗体;评估CLIA法检测抗CCP抗体的敏感度、特异度、阳性预测值、阴性预测值及与ELISA法的相关性.结果 CLIA法对RA的诊断敏感度和特异度分别为72.41%和97.01%;阳性预测值和阴性预测值分别为91.30%和89.04%;CLIA与ELISA方法差异无统计学意义(χ2=1.207,P>0.05).结论 CLIA自动化仪器检测,其操作的智能化程度高,快速简便,且易于进行质量控制.

  8. Citrullination of synovial proteins in murine models of rheumatoid arthritis.

    NARCIS (Netherlands)

    Vossenaar, E.R.; Nijenhuis, S.; Helsen, M.M.A.; Heijden, A.G. van der; Senshu, T.; Berg, W.B. van den; Venrooij, W.J.W. van; Joosten, L.A.B.

    2003-01-01

    OBJECTIVE: Antibodies directed to citrulline-containing proteins are highly specific for rheumatoid arthritis (RA) and can be detected in up to 80% of patients with RA. Citrulline is a nonstandard amino acid that can be incorporated into proteins only by posttranslational modification of arginine by

  9. Extrarenal citrulline disposal in mice with impaired renal function

    Science.gov (United States)

    The endogenous synthesis of arginine, a semiessential amino acid, relies on the production of citrulline by the gut and its conversion into arginine by the kidney in what has been called the "intestinal-renal axis" for arginine synthesis. Although the kidney is the main site for citrulline disposal,...

  10. Citrullination regulates pluripotency and histone H1 binding to chromatin

    DEFF Research Database (Denmark)

    Christophorou, Maria A; Castelo-Branco, Gonçalo; Halley-Stott, Richard P

    2014-01-01

    Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate...

  11. N-Carbamoylputrescine, a citrulline-derived polyamine, is not a significant citrulline metabolite in rats.

    Science.gov (United States)

    Ramani, D; Nakib, S; Chen, H; Garbay, C; Loukaci, A; Cynober, L; De Bandt, J P

    2012-04-01

    Citrulline, a key amino acid of the urea cycle, has been shown to play a regulatory role in protein and energy metabolism in mammals. We questioned whether N-carbamoyl-putrescine (NCP), the decarboxylated derivative of citrulline, could play a role in the biological properties of this amino acid. To evidence the presence of NCP in mammalian tissues, we developed a sensitive reverse-phase high-performance liquid chromatography (HPLC) with fluorimetric detection method with precolumn dansyl derivatization and solid-phase extraction for the determination of NCP together with polyamines in biological samples. Dansyl NCP was identified with a 5.85-min retention time. Linearity was obtained in a concentration range of 0.125 to 12.5 μM. Intraday and day-to-day relative coefficients of variation ranged from 8.9% to 12.3% and from 14% to 14.3%, respectively. Recovery rates in serum ranged from 75% to 83%. Thereafter, we used this method to search for the presence of NCP in serum, muscle, liver, jejunum, and ileum in rats after both short-term intraperitoneal injection and long-term oral citrulline supplementation. We failed to detect NCP in these animals. These data suggest that NCP is not a significant citrulline metabolite in rats.

  12. Yeast glycolytic oscillations that are not controlled by a single oscillophore: a new definition of oscillophore strength.

    Science.gov (United States)

    Reijenga, Karin A; van Megen, Yvonne M G A; Kooi, Bob W; Bakker, Barbara M; Snoep, Jacky L; van Verseveld, Henk W; Westerhoff, Hans V

    2005-02-07

    Biochemical oscillations, such as glycolytic oscillations, are often believed to be caused by a single so-called 'oscillophore'. The main characteristics of yeast glycolytic oscillations, such as frequency and amplitude, are however controlled by several enzymes. In this paper, we develop a method to quantify to which extent any enzyme determines the occurrence of oscillations. Principles extrapolated from metabolic control analysis are applied to calculate the control exerted by individual enzymes on the real and imaginary parts of the eigenvalues of the Jacobian matrix. We propose that the control exerted by an enzyme on the real part of the smallest eigenvalue, in terms of absolute value, quantifies to which extent that enzyme contributes to the emergence of instability. Likewise the control exerted by an enzyme on the imaginary part of complex eigenvalues may serve to quantify the extent to which that enzyme contributes to the tendency of the system to oscillate. The method was applied both to a core model and to a realistic model of yeast glycolytic oscillations. Both the control over stability and the control over oscillatory tendency were distributed among several enzymes, of which glucose transport, pyruvate decarboxylase and ATP utilization were the most important. The distributions of control were different for stability and oscillatory tendency, showing that control of instability does not imply control of oscillatory tendency nor vice versa. The control coefficients summed up to 1, suggesting the existence of a new summation theorem. These results constitute proof that glycolytic oscillations in yeast are not caused by a single oscillophore and provide a new, subtle, definition for the oscillophore strength of an enzyme.

  13. Streptococcus pyogenes arginine and citrulline catabolism promotes infection and modulates innate immunity.

    Science.gov (United States)

    Cusumano, Zachary T; Watson, Michael E; Caparon, Michael G

    2014-01-01

    A bacterium's ability to acquire nutrients from its host during infection is an essential component of pathogenesis. For the Gram-positive pathogen Streptococcus pyogenes, catabolism of the amino acid arginine via the arginine deiminase (ADI) pathway supplements energy production and provides protection against acid stress in vitro. Its expression is enhanced in murine models of infection, suggesting an important role in vivo. To gain insight into the function of the ADI pathway in pathogenesis, the virulence of mutants defective in each of its enzymes was examined. Mutants unable to use arginine (ΔArcA) or citrulline (ΔArcB) were attenuated for carriage in a murine model of asymptomatic mucosal colonization. However, in a murine model of inflammatory infection of cutaneous tissue, the ΔArcA mutant was attenuated but the ΔArcB mutant was hyperattenuated, revealing an unexpected tissue-specific role for citrulline metabolism in pathogenesis. When mice defective for the arginine-dependent production of nitric oxide (iNOS(-/-)) were infected with the ΔArcA mutant, cutaneous virulence was rescued, demonstrating that the ability of S. pyogenes to utilize arginine was dispensable in the absence of nitric oxide-mediated innate immunity. This work demonstrates the importance of arginine and citrulline catabolism and suggests a novel mechanism of virulence by which S. pyogenes uses its metabolism to modulate innate immunity through depletion of an essential host nutrient.

  14. Cyanohydrin reactions enhance glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian

    2015-01-01

    Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here......, (13)C NMR is used to confirm our previous hypothesis, that cyanide directly affects glycolytic fluxes through reaction with carbonyl-containing compounds. Intracellularly, at least 3 cyanohydrins were identified. Extracellularly, all signals could be identified and lactonitrile was found to account...... for ~66% of total cyanide removal. Simulations of our updated computational model show that intracellular cyanide reactions increase the amplitude of oscillations and that cyanide addition lowers [ACA] instantaneously. We conclude that cyanide provides the following means of inducing global oscillations...

  15. Combining citrulline with atorvastatin preserves glucose homeostasis in a murine model of diet-induced obesity.

    Science.gov (United States)

    Capel, Frédéric; Chabrier, Gwladys; Pitois, Elodie; Rigaudière, Jean-Paul; Le Plenier, Servane; Durand, Christine; Jouve, Chrystèle; de Bandt, Jean-Pascal; Cynober, Luc; Moinard, Christophe; Morio, Béatrice

    2015-10-01

    NO is a crucial regulator of energy and lipid metabolism, whose homeostasis is compromised during obesity. Combination of citrulline and atorvastatin potentiated NO production in vitro. Here we have assessed the effects of this combination in mice with diet-induced obesity (DIO). C57BL/6J male mice were given a standard diet (control) or a high fat-high sucrose diet (DIO) for 8 weeks. DIO mice were then treated with DIO alone, DIO with citrulline, DIO with atorvastatin or DIO with citrulline and atorvastatin (DIOcit-stat) for 3 weeks. Thereafter, body composition, glucose tolerance, insulin sensitivity and liver fat metabolism were measured. DIOcit-stat mice showed lower body weight, fat mass and epididymal fat depots compared with other DIO groups. Unlike other DIO groups, glucose tolerance and insulin sensitivity of DIOcit-stat, along with blood glucose and insulin concentrations in response to feeding, were restored to control values. Refeeding-induced changes in liver lipogenic activity were also reduced in DIOcit-stat mice compared with those of DIO animals. This was associated with decreased gene expression of the transcription factor SREBP-1, liver X receptor α, ChREBP and of target lipogenic enzymes in the liver of DIOcit-stat mice compared with those of other DIO groups. The citrulline-atorvastatin combination prevented fat mass accumulation and maintained glucose homeostasis in DIO mice. Furthermore, it potentiated inhibition of hepatic de novo lipogenesis activity. This combination has potential for preservation of glucose homeostasis in patients receiving statin therapy. © 2015 The British Pharmacological Society.

  16. Citrullination and carbamylation in the pathophysiology of rheumatoid arthritits

    Directory of Open Access Journals (Sweden)

    Ger J.M. Pruijn

    2015-04-01

    Full Text Available The discovery that citrullination was crucial for the recognition of antigens by the most disease-specific class of autoantibodies in rheumatoid arthritis had a huge impact on studies aimed at understanding autoimmunity in this disease. In addition to the detailed characterization of anti-citrullinated protein antibodies, various studies have addressed the identity of citrullinated antigens. These investigations were facilitated by new methods to characterize these proteins, the analysis of protein citrullination by peptidylarginine deiminases, the generation of a catalogue of citrullinated proteins present in the inflamed joints of patients and the finding that the formation of extracellular traps is dependent on the activity of peptidylarginine deiminase activity. Recently, it was found that in addition to citrullination also carbamylation, which results in chemically highly related modified proteins, yields antigens that are targeted by rheumatoid arthritis patient sera. Here, all of these aspects will be discussed, culminating in current ideas about the involvement of citrullination and carbamylation in pathophysiological processes in autoimmunity, especially rheumatoid arthritis.

  17. Citrullination and carbamylation in the pathophysiology of rheumatoid arthritis.

    Science.gov (United States)

    Pruijn, Ger J M

    2015-01-01

    The discovery that citrullination was crucial for the recognition of antigens by the most disease-specific class of autoantibodies in rheumatoid arthritis (RA) had a huge impact on studies aimed at understanding autoimmunity in this disease. In addition to the detailed characterization of anti-citrullinated protein antibodies, various studies have addressed the identity of citrullinated antigens. These investigations were facilitated by new methods to characterize these proteins, the analysis of protein citrullination by peptidylarginine deiminases, the generation of a catalog of citrullinated proteins present in the inflamed joints of patients and the finding that the formation of extracellular traps is dependent on the activity of peptidylarginine deiminase activity. Recently, it was found that in addition to citrullination also carbamylation, which results in chemically highly related modified proteins, yields antigens that are targeted by rheumatoid arthritis patient sera. Here, all of these aspects will be discussed, culminating in current ideas about the involvement of citrullination and carbamylation in pathophysiological processes in autoimmunity, especially RA.

  18. Arginine and citrulline supplementation in sports and exercise: ergogenic nutrients?

    Science.gov (United States)

    Sureda, Antoni; Pons, Antoni

    2012-01-01

    Dietary L-citrulline malate supplements may increase levels of nitric oxide (NO) metabolites, although this response has not been related to an improvement in athletic performance. NO plays an important role in many functions in the body regulating vasodilatation, blood flow, mitochondrial respiration and platelet function. L-Arginine is the main precursor of NO via nitric oxide synthase (NOS) activity. Additionally, L-citrulline has been indicated to be a second NO donor in the NOS-dependent pathway, since it can be converted to L-arginine. The importance of L-citrulline as an ergogenic support derives from the fact that L-citrulline is not subject to pre-systemic elimination and, consequently, could be a more efficient way to elevate extracellular levels of L-arginine by itself. L-Citrulline malate can develop beneficial effects on the elimination of NH(3) in the course of recovery from exhaustive muscular exercise and also as an effective precursor of L-arginine and creatine. Dietary supplementation with L-citrulline alone does not improve exercise performance. The ergogenic response of L-citrulline or L-arginine supplements depends on the training status of the subjects. Studies involving untrained or moderately healthy subjects showed that NO donors could improve tolerance to aerobic and anaerobic exercise. However, when highly-trained subjects were supplemented, no positive effect on performance was indicated.

  19. Association analysis of anti-Epstein-Barr nuclear antigen-1 antibodies, anti-cyclic citrullinated peptide antibodies, the shared epitope and smoking status in Brazilian patients with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Michel Alexandre Yazbek

    2011-01-01

    Full Text Available INTRODUCTION: Epstein-Barr virus exposure appears to be an environmental trigger for rheumatoid arthritis that interacts with other risk factors. Relationships among anti-cyclic citrullinated peptide antibodies, the shared epitope, and smoking status have been observed in patients with rheumatoid arthritis from different populations. OBJECTIVE: To perform an association analysis of anti-Epstein-Barr nuclear antigen-1 antibodies, anti-cyclic citrullinated peptide antibodies, the shared epitope, and smoking status in Brazilian patients with rheumatoid arthritis. METHODS: In a case-control study, 140 rheumatoid arthritis patients and 143 healthy volunteers who were matched for age, sex, and ethnicity were recruited. Anti-Epstein-Barr nuclear antigen-1 antibodies and anti-cyclic citrullinated peptide antibodies were examined using an enzyme-linked immunosorbent assay, and shared epitope alleles were identified by genotyping. Smoking information was collected from all subjects. A comparative analysis of anti-Epstein-Barr nuclear antigen-1 antibodies, anti-cyclic citrullinated peptide antibodies, the shared epitope, and smoking status was performed in the patient group. Logistic regression analysis models were used to analyze the risk of rheumatoid arthritis. RESULTS: Anti-Epstein-Barr nuclear antigen-1 antibodies were not associated with anti-cyclic citrullinated peptide antibodies, shared epitope alleles, or smoking status. Anti-cyclic citrullinated peptide antibody positivity was significantly higher in smoking patients with shared epitope alleles (OR = 3.82. In a multivariate logistic regression analysis using stepwise selection, only anti-cyclic citrullinated peptide antibodies were found to be independently associated with rheumatoid arthritis (OR = 247.9. CONCLUSION: Anti-Epstein-Barr nuclear antigen-1 antibodies did not increase the risk of rheumatoid arthritis and were not associated with the rheumatoid arthritis risk factors studied. Smoking

  20. Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch

    Science.gov (United States)

    Lee, Su Yeon; Jeon, Hyun Min; Ju, Min Kyung; Jeong, Eui Kyong; Kim, Cho Hee; Park, Hye Gyeong; Han, Song Iy; Kang, Ho Sung

    2016-01-01

    Most cancer cells depend on enhanced glucose and glutamine (Gln) metabolism for growth and survival. Oncogenic metabolism provides biosynthetic precursors for nucleotides, lipids, and amino acids; however, its specific roles in tumor progression are largely unknown. We previously showed that distal-less homeobox-2 (Dlx-2), a homeodomain transcription factor involved in embryonic and tumor development, induces glycolytic switch and epithelial-mesenchymal transition (EMT) by inducing Snail expression. Here we show that Dlx-2 also induces the expression of the crucial Gln metabolism enzyme glutaminase (GLS1), which converts Gln to glutamate. TGF-β and Wnt induced GLS1 expression in a Dlx-2-dependent manner. GLS1 shRNA (shGLS1) suppressed in vivo tumor metastasis and growth. Inhibition of Gln metabolism by shGLS1, Gln deprivation, and Gln metabolism inhibitors (DON, 968 and BPTES) prevented Dlx-2-, TGF-β-, Wnt-, and Snail-induced EMT and glycolytic switch. Finally, shDlx-2 and Gln metabolism inhibition decreased Snail mRNA levels through p53-dependent upregulation of Snail-targeting microRNAs. These results demonstrate that the Dlx-2/GLS1/Gln metabolism axis is an important regulator of TGF-β/Wnt-induced, Snail-dependent EMT, metastasis, and glycolytic switch. PMID:26771232

  1. Anti-cyclic citrullinated peptide antibody in systemic sclerosis.

    Science.gov (United States)

    Morita, Y; Muro, Y; Sugiura, K; Tomita, Y

    2008-01-01

    To determine if anti-cyclic citrullinated peptide (anti-CCP) antibody titers can distinguish the overlap syndrome of systemic sclerosis and rheumatoid arthritis (SSc-RA) in patients with systemic sclerosis (SSc) and to investigate the clinical significance of anti-CCP antibodies in SSc. Serum levels of anti-CCP antibodies were measured by enzyme-linked immunosorbent assay in 159 outpatients: 114 with SSc, 14 with rheumatoid arthritis, 7 with SSc-RA overlap syndrome, and 24 with Sjögren's syndrome. In patients with SSc and SSc-RA, we also measured serum levels of matrix metalloproteinase-3 and anti-agalactosyl IgG antibody. Elevated serum levels of anti-CCP antibodies were observed in 3 of 114 patients (2.6%) with SSc, 9 of 14 patients (64%) with RA, 6 of 7 patients (86%) with SSc-RA, and only 1 of 24 patients (4.2%) with SjS. In patients with SSc-RA, serum anti-CCP antibody levels were significantly higher than those seen in SSc (pelevated anti-CCP titers for SSc-RA were higher than either matrix metalloproteinase-3 and anti-agalactosyl IgG antibodies as markers. In addition, almost all SSc-RA and SSc patients with elevated serum levels of anti-CCP antibodies exhibited arthralgias and interstitial pneumonia. Anti-CCP antibody titers are a reliable marker of SSc-RA facilitating its distinction from SSc alone.

  2. Asymmetric Dimethylarginine Is a Well Established Mediating Risk Factor for Cardiovascular Morbidity and Mortality-Should Patients with Elevated Levels Be Supplemented with Citrulline?

    Science.gov (United States)

    McCarty, Mark F

    2016-07-08

    The arginine metabolite asymmetric dimethylarginine (ADMA) is a competitive inhibitor and uncoupler of endothelial nitric oxide synthase (eNOS), an enzyme that acts in multifarious ways to promote cardiovascular health. This phenomenon likely explains, at least in part, why elevated ADMA has been established as an independent risk factor for cardiovascular events, ventricular hypertrophy, and cardiovascular mortality. Fortunately, the suppressive impact of ADMA on eNOS activity can be offset by increasing intracellular arginine levels with supplemental citrulline. Although the long-term impact of supplemental citrulline on cardiovascular health in patients with elevated ADMA has not yet been studied, shorter-term clinical studies of citrulline administration demonstrate effects suggestive of increased NO synthesis, such as reductions in blood pressure and arterial stiffness, improved endothelium-dependent vasodilation, increased erection hardness, and increased ejection fractions in patients with heart failure. Supplemental citrulline could be a practical option for primary or secondary prevention of cardiovascular events and mortality, as it is inexpensive, has a mild flavor, and is well tolerated in doses (3-6 g daily) that can influence eNOS activity. Large and long-term clinical trials, targeting patients at high risk for cardiovascular events in whom ADMA is elevated, are needed to evaluate citrulline's potential for aiding cardiovascular health.

  3. Demonstration of extracellular peptidylarginine deiminase (PAD) activity in synovial fluid of patients with rheumatoid arthritis using a novel assay for citrullination of fibrinogen

    DEFF Research Database (Denmark)

    Damgaard, Dres; Senolt, Ladislav; Nielsen, Michael Friberg

    2014-01-01

    INTRODUCTION: Members of the peptidylarginine deiminase (PAD) family catalyse the posttranslational conversion of peptidylarginine to peptidylcitrulline. Citrullination of proteins is well described in rheumatoid arthritis (RA), and hypercitrullination of proteins may be related to inflammation...... in general. PAD activity has been demonstrated in various cell lysates, but so far not in synovial fluid. We aimed to develop an assay for detection of PAD activity, if any, in synovial fluid from RA patients. METHODS: An enzyme-linked immunosorbent assay using human fibrinogen as the immobilized substrate...... for citrullination and anti-citrullinated fibrinogen antibody as the detecting agent were used for measurement of PAD activity in synovial fluid samples from five RA patients. The concentrations of PAD2 and calcium were also determined. RESULTS: Approximately 150 times lower levels of recombinant human PAD2 (rhPAD2...

  4. A novel role for protein arginine deiminase 4 in pluripotency: the emerging role of citrullinated histone H1 in cellular programming.

    Science.gov (United States)

    Slade, Daniel J; Horibata, Sachi; Coonrod, Scott A; Thompson, Paul R

    2014-08-01

    Histone post-translational modifications (PTMs) alter the chromatin architecture, generating "open" and "closed" states, and these structural changes can modulate gene expression under specific cellular conditions. While methylation and acetylation are the best-characterized histone PTMs, citrullination by the protein arginine deiminases (PADs) represents another important player in this process. In addition to "fine tuning" chromatin structure at specific loci, histone citrullination can also promote rapid global chromatin decondensation during the formation of extracellular traps (ETs) in immune cells. Recent studies now show that PAD4-mediated citrullination of histone H1 at promoter elements can also promote localized chromatin decondensation in stem cells, thus regulating the pluripotent state. These observations suggest that PAD-mediated histone deimination profoundly affects chromatin structure, possibly above and beyond that of other PTMs. Additionally, these recent findings further enhance our understanding of PAD biology and the important contributions that these enzymes play in development, health, and disease.

  5. Mitochondria: role of citrulline and arginine supplementation in MELAS syndrome.

    Science.gov (United States)

    El-Hattab, Ayman W; Emrick, Lisa T; Chanprasert, Sirisak; Craigen, William J; Scaglia, Fernando

    2014-03-01

    Mitochondria are found in all nucleated human cells and generate most of the cellular energy. Mitochondrial disorders result from dysfunctional mitochondria that are unable to generate sufficient ATP to meet the energy needs of various organs. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a frequent maternally inherited mitochondrial disorder. There is growing evidence that nitric oxide (NO) deficiency occurs in MELAS syndrome and results in impaired blood perfusion that contributes significantly to several complications including stroke-like episodes, myopathy, and lactic acidosis. Both arginine and citrulline act as NO precursors and their administration results in increased NO production and hence can potentially have therapeutic utility in MELAS syndrome. Citrulline raises NO production to a greater extent than arginine, therefore, citrulline may have a better therapeutic effect. Controlled studies assessing the effects of arginine or citrulline supplementation on different clinical aspects of MELAS syndrome are needed.

  6. Local administration of glucocorticoids decreases synovial citrullination in rheumatoid arthritis

    OpenAIRE

    2012-01-01

    Introduction Protein citrullination is present in the rheumatoid synovium, presumably contributing to the perpetuation of chronic inflammation, in the presence of specific autoimmunity. As a result, the present study examined the possibility that effective antirheumatic treatment will decrease the level of synovial citrullination. Methods Synovial biopsies were obtained from 11 rheumatoid arthritis (RA) patients before and after 8 weeks of treatment with 20 mg methotrexate weekly, 15 RA patie...

  7. Maternal citrulline supplementation prevents prenatal dexamethasone-induced programmed hypertension.

    Science.gov (United States)

    Tain, Y L; Sheen, J M; Chen, C C; Yu, H R; Tiao, M M; Kuo, H C; Huang, L T

    2014-05-01

    Glucocorticoids are administered to premature infants to accelerate pulmonary maturation. In experimental model, prenatal dexamethasone (DEX) results in reduced nephron number and adulthood hypertension. Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), can cause oxidative stress and is involved in the development of hypertension. L-citrulline can be converted to l-arginine (the substrate for NOS) in the body. Thus we intended to determine if maternal L-citrulline therapy can prevent prenatal DEX-induced programmed hypertension by restoration ADMA/nitric oxide (NO) balance, alterations of renin-angiotensin system (RAS) and sodium transporters, and epigenetic regulation by histone deacetylases (HDACs). Male offspring were assigned to four groups: control, pregnancy rats received intraperitoneal DEX (0.2 mg/kg body weight) daily on gestational days 15 and 16 (DEX), pregnancy rats received 0.25% L-citrulline in drinking water during the entire pregnancy and lactation period (CIT), and DEX + CIT. We found DEX group developed hypertension at 16 weeks of age, which was prevented by maternal L-citrulline therapy. Prenatal DEX exposure increased plasma ADMA concentrations and reduced renal NO production. However, L-citrulline reduced plasma ADMA level and increased renal level of NO in DEX + CIT group. Next, prenatal DEX-induced programmed hypertension is related to increased mRNA expression of angiotensin and angiotensin II type 1 receptor, and class I HDACs in the kidney. Prenatal DEX exposure increased renal protein abundance of Na(+)/Cl(-) cotransporter (NCC), which was prevented by L-citrulline therapy. The beneficial effects of L-citrulline therapy include restoration of ADMA/NO balance and alteration of NCC, to prevent the prenatal DEX-induced programmed hypertension.

  8. Environmental pH determines citrulline and ornithine release through the arginine deiminase pathway in Lactobacillus fermentum IMDO 130101.

    Science.gov (United States)

    Vrancken, G; Rimaux, T; Weckx, S; De Vuyst, L; Leroy, F

    2009-11-15

    Sourdough lactic acid bacteria (LAB) need to be adapted to a highly acidic and, therefore, challenging environment. Different mechanisms are employed to enhance competitiveness, among which conversion of arginine into ornithine through the arginine deiminase (ADI) pathway is an important one. A combined molecular and kinetic approach of the ADI pathway in Lactobacillus fermentum IMDO 130101, a highly competitive sourdough LAB strain, identified mechanisms with advantageous technological effects and quantified the impact of these effects. First, molecular analysis of the arcBCAD operon of 4.8 kb revealed the genes encoding the enzymes ornithine transcarbamoylase, carbamate kinase, arginine deiminase, and an arginine/ornithine (A/O) antiporter, respectively, with an additional A/O antiporter 702.5 kb downstream of the ADI operon. The latter could play a role in citrulline transport. Second, pH-controlled batch fermentations were carried out, generating data for the development of a mathematical model to describe the temporal evolution of the three amino acids involved in the ADI pathway (arginine, citrulline, and ornithine) as a result of the activity of these enzymes and transporter(s). Free arginine in the medium was converted completely into a mixture of citrulline and ornithine under all conditions tested. However, the ratio between these end-products and the pattern of their formation showed variation as a function of environmental pH. Under optimal pH conditions for growth, citrulline release and some further conversion into ornithine was observed. When growing under sub-optimal pH conditions, ornithine was the main product of the ADI pathway. These kinetic data suggest a role in adaptation of L. fermentum IMDO 130101 to growth under sub-optimal conditions.

  9. 注射葡萄糖对吉富罗非鱼血浆生化指标、胰岛素和糖酵解关键酶的影响%Effects of glucose injection on biochemical parameters, insulin, and glycolytic enzymes in GIFT (Oreochromis niloticus)

    Institute of Scientific and Technical Information of China (English)

    刘含亮; 孙敏敏; 王红卫; 付佩胜; 周庆杰; 万文菊; 王纪亭

    2012-01-01

    We evaluated the effect of glucose injection on a range of biochemical parameters, insulin, and glycolytic enzymes in GIFT (Oreochromis niloticus). Fish (n=150, mean weight 80±5 g) were randomly assigned to one of two groups, a control group that was injected with sterile 0.7% saline and a treatment group that was injected intraperitoneally with glucose (30 mg/100 g wet weight). The fish in both groups were euthanized 1-12 h after injection. Glucose injection resulted in hyperglycemia with maximum glucose levels observed 1 h after injection (P<0.05) and a return to normal levels after 3 h. Cholesterol content also increased significantly (P<0.05) after glucose injection. Conversely, triglycerides, plasma protein, and glutamic-pyruvic transaminase (GPT) levels were unaffected by glucose injection. The level of glutamic-oxalacetic transaminase (GOT) decreased significantly (.P<0.05) after injection. Liver glycogen peaked 6 h after injection with glucose, then decreased significantly (P<0.05). Glucose injection had no effect on muscle glycogen levels. Insulin levels increased significantly (.P<0.05) in the plasma and muscle, but not in the liver, following glucose injection. Pyruvate kinase levels peaked 6 h after glucose injection (P<0.05). Conversely, there was no change in hexokinase activity after injection. Our results suggest that metabolic adjustment caused by glucose administration is reflective of the regulatory action of insulin and pyruvate kinase. The levels of insulin and pyruvate kinase (PK) were unable to maintain pace with the absorption speed of carbohydrates in fish and a shortage in hexokinase (HK) activity limited glucose utilization, leading to higher concentrations of cholesterol.%研究注射葡萄糖对吉富罗非鱼(Oreochromis miloticus)生化指标、胰岛素和糖酵解酶的影响.选取体质量约80 g的吉富罗非鱼150尾,随机分为2个实验组,对照组腹腔注射0.7%的无菌生理盐水,处理组按照30 mg/100

  10. Arginine and Citrulline for the Treatment of MELAS Syndrome

    Directory of Open Access Journals (Sweden)

    Ayman W. El-Hattab MD, FACMG

    2017-03-01

    Full Text Available Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS syndrome is a maternally inherited mitochondrial disease with a broad spectrum of manifestations. In addition to impaired energy production, nitric oxide (NO deficiency occurs in MELAS syndrome and leads to impaired blood perfusion in microvasculature that can contribute to several complications including stroke-like episodes, myopathy, and lactic acidosis. The supplementation of NO precursors, L-arginine and L-citrulline, increases NO production and hence can potentially have therapeutic utility in MELAS syndrome. L-citrulline raises NO production to a greater extent than L-arginine; therefore, L-citrulline may have a better therapeutic effect. The clinical effect of L-citrulline has not yet been studied and clinical studies on L-arginine, which are limited, only evaluated the stroke-like episodes’ aspects of the disease. Controlled studies are still needed to assess the clinical effects of L-arginine and L-citrulline on different aspects of MELAS syndrome.

  11. Exogenous normal mammary epithelial mitochondria suppress glycolytic metabolism and glucose uptake of human breast cancer cells.

    Science.gov (United States)

    Jiang, Xian-Peng; Elliott, Robert L; Head, Jonathan F

    2015-10-01

    We hypothesized that normal mitochondria inhibited cancer cell proliferation and increased drug sensitivity by the mechanism of suppression of cancer aerobic glycolysis. To demonstrate the mechanism, we used real-time PCR and glycolysis cell-based assay to measure gene expression of glycolytic enzymes and glucose transporters, and extracellular lactate production of human breast cancer cells. We found that isolated fluorescent probe-stained mitochondria of MCF-12A (human mammary epithelia) could enter into human breast cancer cell lines MCF-7, T47D, and MDA-MB-231, confirmed by fluorescent and confocal microscopy. Mitochondria from the untransformed human mammary epithelia increased drug sensitivity of MCF-7 cells to paclitaxel. Real-time PCR showed that exogenous normal mitochondria of MCF-12A suppressed gene expression of glycolytic enzymes, lactate dehydrogenase A, and glucose transporter 1 and 3 of MCF-7 and MDA-MB-231 cells. Glycolysis cell-based assay revealed that normal mitochondria significantly suppressed lactate production in culture media of MCF-7, T47D, and MDA-MB-231 cells. In conclusion, normal mitochondria suppress cancer proliferation and increase drug sensitivity by the mechanism of inhibition of cancer cell glycolysis and glucose uptake.

  12. Entrainment of heterogeneous glycolytic oscillations in single cells

    CERN Document Server

    Gustavsson, A -K; Mehlig, B; Goksör, M

    2015-01-01

    Cell signaling, gene expression, and metabolism are affected by cell-cell heterogeneity and random changes in the environment. The effects of such fluctuations on cell signaling and gene expression have recently been studied intensively using single-cell experiments. In metabolism heterogeneity may be particularly important because it may affect synchronisation of metabolic oscillations, an important example of cell-cell communication. This synchronisation is notoriously difficult to describe theoretically as the example of glycolytic oscillations shows: neither is the mechanism of glycolytic synchronisation understood nor the role of cell-cell heterogeneity. To pin down the mechanism and to assess its robustness and universality we have experimentally investigated the entrainment of glycolytic oscillations in individual yeast cells by periodic external perturbations. We find that oscillatory cells synchronise through phase shifts and that the mechanism is insensitive to cell heterogeneity (robustness) and si...

  13. Autoantibodies against citrullinated histone H3 in rheumatoid arthritis and periodontitis patients

    NARCIS (Netherlands)

    Janssen, Koen M. J.; de Smit, Menke J.; Withaar, Coenraad; Brouwer, Elisabeth; van Winkelhoff, Arie J.; Vissink, Arjan; Westra, Johanna

    Aim: To determine the presence of citrullinated histones in inflamed periodontal tissue and to determine the presence of anti-citrullinated histone autoantibodies in sera from patients with rheumatoid arthritis (RA) and periodontitis (PD) patients. Methods: The presence of citrullinated histone H3,

  14. Autoantibodies against citrullinated histone H3 in rheumatoid arthritis and periodontitis patients

    NARCIS (Netherlands)

    Janssen, Koen M J; de Smit, Menke J; Withaar, Coenraad; Brouwer, Elisabeth; van Winkelhoff, Arie Jan; Vissink, Arjan; Westra, Johanna

    2017-01-01

    AIM: To determine presence of citrullinated histones in inflamed periodontal tissue, and to determine presence of anti-citrullinated histone autoantibodies in sera from rheumatoid arthritis (RA) and periodontitis (PD)-patients . METHODS: Presence of citrullinated histone H3, PAD4 and CD68 was determ

  15. Quasi-periodicity in the autonomous glycolytic system

    Institute of Scientific and Technical Information of China (English)

    GAO Qingyu; ZHANG Lu; ZHANG Xing; WANG Jichang

    2005-01-01

    This study predicts that quasi-periodic oscilla-tions could exist in a detailed model of glycolysis that is ana-lyzed in an autonomous system. In addition to period-dou- bling, quasi-periodic and period-adding bifurcation, a new stationary branch, which lies in between the thermodynamic and flow branches, is also uncovered in the glycolytic reac-tion system. Results presented in this study illustrate that the Michaelis constant (K4GAP) of glyceraldehyde 3-phosphate dehydrogenase for glyceraldehyde 3-phosphate has great influences on glycolytic oscillations, in which increasing K4GAP widens the range of flow rate over which quasi-peri- odic oscillations exist.

  16. Citrullinated peptides in the diagnosis of rheumatoid arthritis.

    Science.gov (United States)

    Gómara, María J; Haro, Isabel

    2013-01-01

    Antibodies directed against citrullinated proteins and peptides (ACPAs) are the most specific serological markers available for diagnosing rheumatoid arthritis (RA). ACPAs may be detected several years before symptoms of RA appear, and their presence at disease onset is a good predictor of the development of erosive joint lesions. RA patients can be classified into two major groups: those who have ACPAs and those who do not. The presence of ACPAs at early stages of RA predicts the development of earlier and more widespread joint erosions, and low remission rates.Synthetic peptides can replace cognate proteins in solid-phase assays for specific autoantibody recognition in RA patients. The use of synthetic peptides instead of proteins represents an advantage in terms of the reproducibility of such immunoassays. Proteins also contain non-citrullinated epitopes that are recognized by non-RA sera and this could reduce the specificity of the test. The use of synthetic citrullinated peptides gives absolute control over the exact epitopes presented. Furthermore, it is difficult to prepare sufficient amounts of high-quality antigenic proteins with a well-defined degree of citrullination. Synthetic citrullinated peptides, in contrast, are easily obtained in a pure form with a well-defined chemical structure and the epitopes can be precisely oriented in the plate by covalent binding of the peptides.Chimeric peptides bearing different citrullinated protein domains have recently been used in the design of RA diagnosis systems. The results of the application of those systems indicate that more than one serological test is required to classify RA patients based on the presence or absence of ACPAs. Each of the target molecules reported (fibrin, vimentin and filaggrin) helps to identify a particular subset of RA patients.

  17. Anti-cyclic citrullinated peptide antibodies in children with Juvenile Idiopathic Arthritis.

    Science.gov (United States)

    Hamooda, Mohamed; Fouad, Hala; Galal, Nermeen; Sewelam, Nadia; Megahed, Dina

    2016-09-01

    The purpose of present study was to access the prevalence of anti-cyclic citrullinated peptide (anti-CCP) antibodies in children with Juvenile Idiopathic Arthritis (JIA), and to investigate the clinical significance and diagnostic value of the anti-CCP antibodies in correlation with age, sex & activity. This case-control study was performed on 50 patients with JIA in addition to 40 sex and age-matched children as a control group. The participants were recruited from rheumatology Outpatient Clinic of Cairo University Specialized Pediatric Hospital. Patients were subjected to full history taking, clinical examination, routine laboratory investigations and x-rays on involved joints. Both patients and controls underwent assay of anti-CCP antibodies by AxSYM Anti-CCP IgG Microparticle Enzyme Immunoassay (MEIA) which is a semi-quantitative determination of the IgG class of autoantibodies specific to cyclic citrullinated peptide (CCP) in patients' serum or plasma. Data were analyzed using Mann-Whitney U test, ANOVA, and independent-samples t-test by SPSS version 15. Anti-CCP positivity was identified amongst patients with JIA, particularly those JIA patients experiencing RF positive polyarticular disease onset. Above all, it is important that anti-CCP positivity and bone erosions, degree of joint damage, and ESR levels were significantly correlated. Anti-CCP could be utilized as a valuable marker in the polyarticular form of JIA to direct early, and could be aggressive therapeutic intervention.

  18. Anti-cyclic citrullinated peptide antibodies in children with Juvenile Idiopathic Arthritis

    Science.gov (United States)

    Hamooda, Mohamed; Fouad, Hala; Galal, Nermeen; Sewelam, Nadia; Megahed, Dina

    2016-01-01

    Aim The purpose of present study was to access the prevalence of anti-cyclic citrullinated peptide (anti-CCP) antibodies in children with Juvenile Idiopathic Arthritis (JIA), and to investigate the clinical significance and diagnostic value of the anti-CCP antibodies in correlation with age, sex & activity. Methods This case-control study was performed on 50 patients with JIA in addition to 40 sex and age-matched children as a control group. The participants were recruited from rheumatology Outpatient Clinic of Cairo University Specialized Pediatric Hospital. Patients were subjected to full history taking, clinical examination, routine laboratory investigations and x-rays on involved joints. Both patients and controls underwent assay of anti-CCP antibodies by AxSYM Anti-CCP IgG Microparticle Enzyme Immunoassay (MEIA) which is a semi-quantitative determination of the IgG class of autoantibodies specific to cyclic citrullinated peptide (CCP) in patients’ serum or plasma. Data were analyzed using Mann-Whitney U test, ANOVA, and independent-samples t-test by SPSS version 15. Results Anti-CCP positivity was identified amongst patients with JIA, particularly those JIA patients experiencing RF positive polyarticular disease onset. Above all, it is important that anti-CCP positivity and bone erosions, degree of joint damage, and ESR levels were significantly correlated. Conclusion Anti-CCP could be utilized as a valuable marker in the polyarticular form of JIA to direct early, and could be aggressive therapeutic intervention. PMID:27790341

  19. Citrullination of histone H3 interferes with HP1-mediated transcriptional repression.

    Directory of Open Access Journals (Sweden)

    Priyanka Sharma

    2012-09-01

    Full Text Available Multiple Sclerosis (MS is an autoimmune disease associated with abnormal expression of a subset of cytokines, resulting in inappropriate T-lymphocyte activation and uncontrolled immune response. A key issue in the field is the need to understand why these cytokines are transcriptionally activated in the patients. Here, we have examined several transcription units subject to pathological reactivation in MS, including the TNFα and IL8 cytokine genes and also several Human Endogenous RetroViruses (HERVs. We find that both the immune genes and the HERVs require the heterochromatin protein HP1α for their transcriptional repression. We further show that the Peptidylarginine Deiminase 4 (PADI4, an enzyme with a suspected role in MS, weakens the binding of HP1α to tri-methylated histone H3 lysine 9 by citrullinating histone H3 arginine 8. The resulting de-repression of both cytokines and HERVs can be reversed with the PADI-inhibitor Cl-amidine. Finally, we show that in peripheral blood mononuclear cells (PBMCs from MS patients, the promoters of TNFα, and several HERVs share a deficit in HP1α recruitment and an augmented accumulation of histone H3 with a double citrulline 8 tri-methyl lysine 9 modifications. Thus, our study provides compelling evidence that HP1α and PADI4 are regulators of both immune genes and HERVs, and that multiple events of transcriptional reactivation in MS patients can be explained by the deficiency of a single mechanism of gene silencing.

  20. The NLRP3 inflammasome contributes to sarcopenia and lower muscle glycolytic potential in old mice.

    Science.gov (United States)

    McBride, Marin Jane; Foley, Kevin P; D'Souza, Donna M; Li, Yujin E; Lau, Trevor C; Hawke, Thomas J; Schertzer, Jonathan D

    2017-08-01

    The mechanisms underpinning decreased skeletal muscle strength and slowing of movement during aging are ill-defined. "Inflammaging," increased inflammation with advancing age, may contribute to aspects of sarcopenia, but little is known about the participatory immune components. We discovered that aging was associated with increased caspase-1 activity in mouse skeletal muscle. We hypothesized that the caspase-1-containing NLRP3 inflammasome contributes to sarcopenia in mice. Male C57BL/6J wild-type (WT) and NLRP3(-/-) mice were aged to 10 (adult) and 24 mo (old). NLRP3(-/-) mice were protected from decreased muscle mass (relative to body mass) and decreased size of type IIB and IIA myofibers, which occurred between 10 and 24 mo of age in WT mice. Old NLRP3(-/-) mice also had increased relative muscle strength and endurance and were protected from age-related increases in the number of myopathic fibers. We found no evidence of age-related or NLRP3-dependent changes in markers of systemic inflammation. Increased caspase-1 activity was associated with GAPDH proteolysis and reduced GAPDH enzymatic activity in skeletal muscles from old WT mice. Aging did not alter caspase-1 activity, GAPDH proteolysis, or GAPDH activity in skeletal muscles of NLRP3(-/-) mice. Our results show that the NLRP3 inflammasome participates in age-related loss of muscle glycolytic potential. Deletion of NLRP3 mitigates both the decline in glycolytic myofiber size and the reduced activity of glycolytic enzymes in muscle during aging. We propose that the etiology of sarcopenia involves direct communication between immune responses and metabolic flux in skeletal muscle. Copyright © 2017 the American Physiological Society.

  1. Modeling cancer glycolysis under hypoglycemia, and the role played by the differential expression of glycolytic isoforms.

    Science.gov (United States)

    Marín-Hernández, Alvaro; López-Ramírez, Sayra Y; Del Mazo-Monsalvo, Isis; Gallardo-Pérez, Juan C; Rodríguez-Enríquez, Sara; Moreno-Sánchez, Rafael; Saavedra, Emma

    2014-08-01

    The effect of hypoglycemia on the contents of glycolytic proteins, activities of enzymes/transporters and flux of HeLa and MCF-7 tumor cells was experimentally analyzed and modeled in silico. After 24 h hypoglycemia (2.5 mm initial glucose), significant increases in the protein levels of glucose transporters 1 and 3 (GLUT 1 and 3) (3.4 and 2.1-fold, respectively) and hexokinase I (HKI) (2.3-fold) were observed compared to the hyperglycemic standard cell culture condition (25 mm initial glucose). However, these changes did not bring about a significant increase in the total activities (Vmax ) of GLUT and HK; instead, the affinity of these proteins for glucose increased, which may explain the twofold increased glycolytic flux under hypoglycemia. Thus, an increase in more catalytically efficient isoforms for two of the main controlling steps was sufficient to induce increased flux. Further, a previous kinetic model of tumor glycolysis was updated by including the ratios of GLUT and HK isoforms, modified pyruvate kinase kinetics and an oxidative phosphorylation reaction. The updated model was robust in terms of simulating most of the metabolite levels and fluxes of the cells exposed to various glycemic conditions. Model simulations indicated that the main controlling steps were glycogen degradation > HK > hexosephosphate isomerase under hyper- and normoglycemia, and GLUT > HK > glycogen degradation under hypoglycemia. These predictions were experimentally evaluated: the glycolytic flux of hypoglycemic cells was more sensitive to cytochalasin B (a GLUT inhibitor) than that of hyperglycemic cells. The results indicated that cancer glycolysis should be inhibited at multiple controlling sites, regardless of external glucose levels, to effectively block the pathway. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.mib.ac.uk/database/achcar/index.html. [Database section added 21

  2. Study of glycolytic intermediates in hereditary elliptocytosis with thalassemia

    Directory of Open Access Journals (Sweden)

    Pavri Roshan

    1977-01-01

    Full Text Available Glycolytic intermediates like ATP, DPG and GSH have been studied in a family with. hereditary elliptocytosis and thalassemia. Results indicate a fall in ATP with a concomitant rise in DPG in the Patient. Findings are discussed in relation to other data.

  3. Asymmetric Dimethylarginine Is a Well Established Mediating Risk Factor for Cardiovascular Morbidity and Mortality—Should Patients with Elevated Levels Be Supplemented with Citrulline?

    Science.gov (United States)

    McCarty, Mark F.

    2016-01-01

    The arginine metabolite asymmetric dimethylarginine (ADMA) is a competitive inhibitor and uncoupler of endothelial nitric oxide synthase (eNOS), an enzyme that acts in multifarious ways to promote cardiovascular health. This phenomenon likely explains, at least in part, why elevated ADMA has been established as an independent risk factor for cardiovascular events, ventricular hypertrophy, and cardiovascular mortality. Fortunately, the suppressive impact of ADMA on eNOS activity can be offset by increasing intracellular arginine levels with supplemental citrulline. Although the long-term impact of supplemental citrulline on cardiovascular health in patients with elevated ADMA has not yet been studied, shorter-term clinical studies of citrulline administration demonstrate effects suggestive of increased NO synthesis, such as reductions in blood pressure and arterial stiffness, improved endothelium-dependent vasodilation, increased erection hardness, and increased ejection fractions in patients with heart failure. Supplemental citrulline could be a practical option for primary or secondary prevention of cardiovascular events and mortality, as it is inexpensive, has a mild flavor, and is well tolerated in doses (3–6 g daily) that can influence eNOS activity. Large and long-term clinical trials, targeting patients at high risk for cardiovascular events in whom ADMA is elevated, are needed to evaluate citrulline’s potential for aiding cardiovascular health. PMID:27417628

  4. Asymmetric Dimethylarginine Is a Well Established Mediating Risk Factor for Cardiovascular Morbidity and Mortality—Should Patients with Elevated Levels Be Supplemented with Citrulline?

    Directory of Open Access Journals (Sweden)

    Mark F. McCarty

    2016-07-01

    Full Text Available The arginine metabolite asymmetric dimethylarginine (ADMA is a competitive inhibitor and uncoupler of endothelial nitric oxide synthase (eNOS, an enzyme that acts in multifarious ways to promote cardiovascular health. This phenomenon likely explains, at least in part, why elevated ADMA has been established as an independent risk factor for cardiovascular events, ventricular hypertrophy, and cardiovascular mortality. Fortunately, the suppressive impact of ADMA on eNOS activity can be offset by increasing intracellular arginine levels with supplemental citrulline. Although the long-term impact of supplemental citrulline on cardiovascular health in patients with elevated ADMA has not yet been studied, shorter-term clinical studies of citrulline administration demonstrate effects suggestive of increased NO synthesis, such as reductions in blood pressure and arterial stiffness, improved endothelium-dependent vasodilation, increased erection hardness, and increased ejection fractions in patients with heart failure. Supplemental citrulline could be a practical option for primary or secondary prevention of cardiovascular events and mortality, as it is inexpensive, has a mild flavor, and is well tolerated in doses (3–6 g daily that can influence eNOS activity. Large and long-term clinical trials, targeting patients at high risk for cardiovascular events in whom ADMA is elevated, are needed to evaluate citrulline’s potential for aiding cardiovascular health.

  5. Formate generated by cellular oxidation of formaldehyde accelerates the glycolytic flux in cultured astrocytes.

    Science.gov (United States)

    Tulpule, Ketki; Dringen, Ralf

    2012-04-01

    Formaldehyde is a neurotoxic compound that can be endogenously generated in the brain. Because astrocytes play a key role in metabolism and detoxification processes in brain, we have investigated the capacity of these cells to metabolize formaldehyde using primary astrocyte-rich cultures as a model system. Application of formaldehyde to these cultures resulted in the appearance of formate in cells and in a time-, concentration- and temperature-dependent disappearance of formaldehyde from the medium that was accompanied by a matching extracellular accumulation of formate. This formaldehyde-oxidizing capacity of astrocyte cultures is likely to be catalyzed by alcohol dehydrogenase 3 and aldehyde dehydrogenase 2, because the cells of the cultures contain the mRNAs of these formaldehyde-oxidizing enzymes. In addition, exposure to formaldehyde increased both glucose consumption and lactate production by the cells. Both the strong increase in the cellular formate content and the increase in glycolytic flux were only observed after application of formaldehyde to the cells, but not after treatment with exogenous methanol or formate. The accelerated lactate production was not additive to that obtained for azide, a known inhibitor of complex IV of the respiratory chain, and persisted after removal of formaldehyde after a formaldehyde exposure for 1.5 h. These data demonstrate that cultured astrocytes efficiently oxidize formaldehyde to formate, which subsequently enhances glycolytic flux, most likely by inhibition of mitochondrial respiration.

  6. Bioactive food components, cancer cell growth limitation and reversal of glycolytic metabolism.

    Science.gov (United States)

    Keijer, Jaap; Bekkenkamp-Grovenstein, Melissa; Venema, Dini; Dommels, Yvonne E M

    2011-06-01

    Cancer cells are resistant to apoptosis and show a shift in energy production from mitochondrial oxidative phosphorylation to cytosolic glycolysis. Apoptosis resistance and metabolic reprogramming are linked in many cancer cells and both processes center on mitochondria. Clearly, mutated cancer cells escape surveillance and turn into selfish cells. However, many of the mechanisms that operate cellular metabolic control still function in cancer cells. This review describes the metabolic importance of glucose and glutamine, glycolytic enzymes, oxygen, growth cofactors and mitochondria and focuses on the potential role of bioactive food components, including micronutrients. The role of B- and A-vitamin cofactors in (mitochondrial) metabolism is highlighted and the cancer protective potential of omega-3 fatty acids and several polyphenols is discussed in relation to metabolic reprogramming, including the mechanisms that may be involved. Furthermore, it is shown that cancer cell growth reduction by limiting the growth cofactor folic acid seems to be associated with reversal of metabolic reprogramming. Altogether, reversal of metabolic reprogramming may be an attractive strategy to increase susceptibility to apoptotic surveillance. Food bioactive components that affect various aspects of metabolism may be important tools to reverse glycolytic to oxidative metabolism and enhance sensitivity to apoptosis. The success of such a strategy may depend on several actors, acting in concert. Growth cofactors may be one of these, which call for careful (re)evaluation of their function in normal and in cancer metabolism.

  7. Citrulline as a Biomarker in the Murine Total-Body Irradiation Model: Correlation of Circulating and Tissue Citrulline to Small Intestine Epithelial Histopathology.

    Science.gov (United States)

    Jones, Jace W; Tudor, Gregory; Li, Fei; Tong, Yan; Katz, Barry; Farese, Ann M; MacVittie, Thomas J; Booth, Catherine; Kane, Maureen A

    2015-11-01

    The use of plasma citrulline as a biomarker for gastrointestinal acute radiation syndrome via exposure to total-body irradiation in a murine model was investigated. The radiation exposure covered lethal, mid-lethal, and sub-lethal gastrointestinal acute radiation syndrome. Plasma citrulline profiles were generated over the first 6 d following total-body irradiation exposure of 6-15 Gy. In addition, plasma citrulline was comprehensively evaluated in the context of matching small intestine citrulline and histopathology. Higher plasma citrulline was significantly associated with lower irradiation doses over the first 6 d following the irradiation insult. Furthermore, higher plasma citrulline was significantly associated with higher crypt survival. The correlation of the plasma citrulline to crypt survival was more robust for higher irradiation doses and for later time points. The data suggested plasma citrulline was most informative for reflecting gastrointestinal injury resulting from exposure to 9-15 Gy total-body irradiation covering time-points 2-5 d post the irradiation insult.

  8. Ethanologenic Enzymes of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Lonnie O' Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  9. uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells.

    Science.gov (United States)

    Laurenzana, Anna; Chillà, Anastasia; Luciani, Cristina; Peppicelli, Silvia; Biagioni, Alessio; Bianchini, Francesca; Tenedini, Elena; Torre, Eugenio; Mocali, Alessandra; Calorini, Lido; Margheri, Francesca; Fibbi, Gabriella; Del Rosso, Mario

    2017-09-15

    In this manuscript, we show the involvement of the uPA/uPAR system in the regulation of aerobic glycolysis of melanoma cells. uPAR over-expression in human melanoma cells controls an invasive and glycolytic phenotype in normoxic conditions. uPAR down-regulation by siRNA or its uncoupling from integrins, and hence from integrin-linked tyrosine kinase receptors (IL-TKRs), by an antagonist peptide induced a striking inhibition of the PI3K/AKT/mTOR/HIF1α pathway, resulting into impairment of glucose uptake, decrease of several glycolytic enzymes and of PKM2, a checkpoint that controls metabolism of cancer cells. Further, binding of uPA to uPAR regulates expression of molecules that govern cell invasion, including extracellular matrix metallo-proteinases inducer (EMPPRIN) and enolase, a glycolytyc enzyme that also serves as a plasminogen receptor, thus providing a common denominator between tumor metabolism and phenotypic invasive features. Such effects depend on the α5β1-integrin-mediated uPAR connection with EGFR in melanoma cells with engagement of the PI3K-mTOR-HIFα pathway. HIF-1α trans-activates genes whose products mediate tumor invasion and glycolysis, thus providing the common denominator between melanoma metabolism and its invasive features. These findings unveil a unrecognized interaction between the invasion-related uPAR and IL-TKRs in the control of glycolysis and disclose a new pharmacological target (i.e., uPAR/IL-TKRs axis) for the therapy of melanoma. © 2017 UICC.

  10. Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation.

    Science.gov (United States)

    El-Hattab, Ayman W; Hsu, Jean W; Emrick, Lisa T; Wong, Lee-Jun C; Craigen, William J; Jahoor, Farook; Scaglia, Fernando

    2012-04-01

    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most common mitochondrial disorders. Although the pathogenesis of stroke-like episodes remains unclear, it has been suggested that mitochondrial proliferation may result in endothelial dysfunction and decreased nitric oxide (NO) availability leading to cerebral ischemic events. This study aimed to assess NO production in subjects with MELAS syndrome and the effect of the NO precursors arginine and citrulline. Using stable isotope infusion techniques, we assessed arginine, citrulline, and NO metabolism in control subjects and subjects with MELAS syndrome before and after arginine or citrulline supplementation. The results showed that subjects with MELAS had lower NO synthesis rate associated with reduced citrulline flux, de novo arginine synthesis rate, and plasma arginine and citrulline concentrations, and higher plasma asymmetric dimethylarginine (ADMA) concentration and arginine clearance. We conclude that the observed impaired NO production is due to multiple factors including elevated ADMA, higher arginine clearance, and, most importantly, decreased de novo arginine synthesis secondary to decreased citrulline availability. Arginine and, to a greater extent, citrulline supplementation increased the de novo arginine synthesis rate, the plasma concentrations and flux of arginine and citrulline, and NO production. De novo arginine synthesis increased markedly with citrulline supplementation, explaining the superior efficacy of citrulline in increasing NO production. The improvement in NO production with arginine or citrulline supplementation supports their use in MELAS and suggests that citrulline may have a better therapeutic effect than arginine. These findings can have a broader relevance for other disorders marked by perturbations in NO metabolism.

  11. Plasma citrulline levels predict intestinal toxicity in patients treated with pelvic radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Onal, Cem; Kotek, Ayse; Arslan, Gungor; Topkan, Erkan (Dept. of Radiation Oncology, Baskent Univ. Faculty of Medicine, Adana (Turkey)), E-mail: hcemonal@hotmail.com; Unal, Birsel (Dept. of Biochemistry, Baskent Univ. Faculty of Medicine, Ankara (Turkey)); Yavuz, Aydin; Yavuz, Melek (Dept. of Radiation Oncology, Akdeniz Univ. Faculty of Medicine, Antalya (Turkey))

    2011-11-15

    Background. Radiotherapy (RT) for abdominal and pelvic malignancies often causes severe small bowel toxicity. Citrulline concentrations are known to decrease with intestinal failure. We thus evaluated the feasibility of plasma citrulline levels in predicting radiation-induced intestinal toxicity. Material and methods. Fifty-three patients (36 prostate cancer, 17 endometrial cancer) who received 45 Gy pelvic RT using conventional fractionation were prospectively evaluated. Patients with prostate cancer received an additional 25-30.6 Gy conformal boost. Plasma citrulline levels were assessed on day 0, mid- (week 3) and post-RT (week 8), and four months post-RT. Dose-volume histogram, citrulline concentration changes, and weekly intestinal toxicity scores were analyzed. Results. Mean age was 63 years (range: 43-81 years) and mean baseline citrulline concentration was 38.0 +- 10.1 mumol/l. Citrulline concentrations were significantly reduced at week 3 (27.4 +- 5.9 mumol/l; p < 0.0001), treatment end (29.9 +- 8.8 mumol/l; p < 0.0001), and four months post-treatment (34.3 +- 12.1; p 0.01). The following factor pairs were significantly positively correlated: Citrulline concentration/mean bowel dose during, end of treatment, and four months post-RT; dose-volume parameters/citrulline change groups; cumulative mean radiation dose/intestinal toxicity at end and four months post-RT; citrulline changes/intestinal toxicity during and end of RT. Citrulline concentration changes significantly differed during treatment according to RTOG intestinal toxicity grades (p < 0.0001). Although the citrulline changes differed significantly within RTOG intestinal toxicity grades (p = 0.003), the difference between Grade 0 and Grade 1 did not differ significantly at the end of the treatment. At four months after RT, no significant differences were apparent. Conclusion. Citrulline-based assessment scores are objective and should be considered in measuring radiation-induced intestinal toxicity

  12. Anti-cyclic citrullinated peptide antibodies and rheumatoid factor sera titers in leprosy patients from Mexico.

    Science.gov (United States)

    Zavala-Cerna, María G; Fafutis-Morris, Mary; Guillen-Vargas, Cecilia; Salazar-Páramo, Mario; García-Cruz, Diana E; Riebeling, Carlos; Nava, Arnulfo

    2012-11-01

    Leprosy offers a broad spectrum of altered immunological sceneries, ranging from strong cell-mediated immune responses seen in tuberculoid leprosy (TT), through borderline leprosy (BB), to the virtual absence of T cell responses characteristic in lepromatous leprosy (LL). The exact mechanism of autoantibodies production remains unknown in leprosy and other chronic inflammatory diseases and also the contribution of these antibodies to the pathogenesis of the disease. The aim of this study is to evaluate the frequency and profiles of serum anti-cyclic citrullinated peptide antibodies (a-CCP), rheumatoid factor (RF) and its relationship with leprosy spectrum. Serum samples from 67 leprosy patients (54 LL, 5 TT and 8 BB) and 46 clinically healthy subjects (CHS) from the same endemic region were investigated. The clinical chart and questionnaire were used to obtain clinical information. Anti-cyclic citrullinated peptide antibodies (a-CCP) were measured by enzyme-linked immunosorbent assay, whereas the rheumatoid factor (RF) levels were measured by nephelometric method. The mean age of patients was 51.5 ± 13 years. Sera levels of a-CCP where higher in leprosy patients than in CHS (5.9 ± 11.6 vs. 0.3 ± 0.29) (P < 0.0001); the same pattern was found for RF sera titers without reaching statistical significance (16.8 ± 22.5 vs. 9.9 ± 3) (P = NS). We did not find a correlation between a-CCP and RF Rho =0.02786 (IC 95%) P = 0.8229. However, LL patients had higher a-CCP and RF levels than TT patients. Although an absence in correlation was observed, the serum levels of a-CCP antibodies and RF appeared to be useful in distinguishing LL from TT patients with a limited significance in detecting reactional leprosy patients.

  13. Dietary arginine requirements for growth are dependent on the rate of citrulline production in mice.

    Science.gov (United States)

    Marini, Juan C; Agarwal, Umang; Didelija, Inka C

    2015-06-01

    In many species, including humans, arginine is considered a semiessential amino acid because under certain conditions endogenous synthesis cannot meet its demand. The requirements of arginine for growth in mice are ill defined and seem to vary depending on the genetic background of the mice. The objective of this study was to determine the metabolic and molecular basis for the requirement of arginine in 2 mouse strains. Institute of Cancer Research (ICR) and C57BL/6 (BL6) male mice were fed arginine-free or arginine-sufficient diets (Expt. 1) or 1 of 7 diets with increasing arginine concentration (from 0- to 8-g/kg diet, Expt. 2) between day 24 and 42 of life to determine the arginine requirements for growth. Citrulline production and "de novo" arginine synthesis were measured with use of stable isotopes, and arginine requirements were determined by breakpoint analysis and enzyme expression by reverse transcriptase-polymerase chain reaction. In Expt. 1, ICR mice grew at the same rate regardless of the arginine concentration of the diet (mean ± SE: 0.66 ± 0.04 g/d, P = 0.80), but BL6 mice had a reduced growth rate when fed the arginine-free diet (0.25 ± 0.02 g/d, P requirement for growth of BL6 mice was met with 2.32 ± 0.39 g arginine/kg diet; for ICR mice, however, no breakpoint was found. Our data indicate that a reduced expression of OTC in BL6 mice translates into a reduced production of citrulline and arginine compared with ICR mice, which results in a dietary arginine requirement for growth in BL6 mice, but not in ICR mice. © 2015 American Society for Nutrition.

  14. Anti-citrullinated peptide antibodies in Sudanese patients with Leishmania donovani infection exhibit reactivity not dependent on citrullination.

    Science.gov (United States)

    Åhlin, E; Elshafie, A I; Nur, M A M; Rönnelid, J

    2015-03-01

    African patients with Leishmania donovani infections have signs of strong systemic inflammation and high levels of circulating immune complexes (IC) and rheumatoid factor (RF), all serologic markers of rheumatic disease. As inflammation in general is associated with citrullination, we sought to investigate ACPA responses in Sudanese Leishmania patients. Serum samples were collected from Sudanese patients with visceral leishmaniasis (VL) and post-kala-azar dermal leishmaniasis (PKDL) as well as from ACPA-positive Sudanese rheumatoid arthritis patients and compared to healthy Sudanese controls. Levels of circulating C1q-binding IC and anticyclic citrullinated peptide 2(CCP2) were investigated using ELISA, and RF was measured with nephelometry. C1q adsorption was carried out to investigate anti-CCP2 content in IC. Citrulline specificity was evaluated with control plates with cyclic arginine-containing control peptides. Leishmania-infected patients had elevated levels of RF and circulating IC but also a significant increase in anti-CCP2 (12%) as compared to healthy controls. Anti-CCP2-positive Leishmania patients displayed lower anti-CCP2 levels than Sudanese patients with rheumatoid arthritis (RA), and anti-CCP2 levels in Leishmania patients showed a continuum not resembling the dichotomous pattern seen in patients with RA. Whereas the anti-CCP reactivity of Sudanese RA sera was strictly citrulline dependent, anti-CCP2-positive Leishmania sera reacted equally well with ELISA plates containing arginine control peptides. There was a strong correlation between anti-CCP2 and circulating IC among the Leishmania patients, but IC depletion only marginally diminished anti-CCP2 levels. Our findings stress the importance to interpret a positive CCP test carefully when evaluated in non-rheumatic conditions associated with macrophage activation. © 2015 The Authors. Scandinavian Journal of Immunology published by John Wiley & Sons Ltd on behalf of Scandanavian Society of

  15. Enhanced Glycolytic Metabolism Contributes to Cardiac Dysfunction in Polymicrobial Sepsis.

    Science.gov (United States)

    Zheng, Zhibo; Ma, He; Zhang, Xia; Tu, Fei; Wang, Xiaohui; Ha, Tuanzhu; Fan, Min; Liu, Li; Xu, Jingjing; Yu, Kaijiang; Wang, Ruitao; Kalbfleisch, John; Kao, Race; Williams, David; Li, Chuanfu

    2017-05-01

    Cardiac dysfunction is present in >40% of sepsis patients and is associated with mortality rates of up to 70%. Recent evidence suggests that glycolytic metabolism plays a critical role in host defense and inflammation. Activation of Toll-like receptors on immune cells can enhance glycolytic metabolism. This study investigated whether modulation of glycolysis by inhibition of hexokinase will be beneficial to septic cardiomyopathy. Male C57B6/J mice were treated with a hexokinase inhibitor (2-deoxy-d-glucose [2-DG], 0.25-2 g/kg, n = 6-8) before cecal ligation and puncture (CLP) induced sepsis. Untreated septic mice served as control. Sham surgically operated mice treated with or without the 2-DG inhibitor served as sham controls. Cardiac function was assessed 6 hours after CLP sepsis by echocardiography. Serum was harvested for measurement of inflammatory cytokines and lactate. Sepsis-induced cardiac dysfunction was significantly attenuated by administration of 2-DG. Ejection fraction and fractional shortening in 2-DG-treated septic mice were significantly (P sepsis-increased serum levels of tumor necrosis factor α and interleukin 1β as well as lactate, and enhanced the expression of Sirt1 and Sirt3 in the myocardium, which play an important role in mitochondrial function and metabolism. In addition, 2-DG administration suppresses sepsis-increased expression of apoptotic inducers Bak and Bax as well as JNK phosphorylation in the myocardium. Glycolytic metabolism plays an important role in mediating sepsis-induced septic cardiomyopathy. The mechanisms may involve regulation of inflammatory response and apoptotic signaling.

  16. Hypertrehalosaemic neuropeptides decrease levels of the glycolytic signal fructose 2,6-bisphosphate in cockroach fat body

    Science.gov (United States)

    Becker; Wegener

    1998-05-21

    In cockroach fat body, trehalogenesis and glycolysis compete for glucose phosphates as common substrates. During trehalogenesis, glycolysis is inhibited, although the mechanism responsible for this is not known. Incubation of the isolated fat body from the Argentine cockroach Blaptica dubia with an extract of the corpora cardiaca containing as little as 0.005 gland equivalents ml-1 of incubation medium increased the release of trehalose (anthrone-positive material) from the tissue by more than 100 %. The content of the glycolytic activator fructose 2,6-bisphosphate was decreased by up to 50 %. A decapeptide was isolated from the corpora cardiaca of B. dubia and shown to be identical to the naturally occurring Blaberus discoidalis hypertrehalosaemic peptide (Bld HrTH), which was also found in the corpora cardiaca. Synthetic Bld HrTH at 2 nmol l-1 and above increased trehalose production and decreased the content of fructose 2,6-bisphosphate to the same extent as did corpus cardiacum extract. The octapeptides Periplaneta americana cardioacceleratory hormones I and II (Pea CAH-I and Pea CAH-II) also had a significant effect on both parameters. Fructose 2,6-bisphosphate is a potent activator of phosphofructokinase from cockroach fat body if the enzyme is assayed at near-physiological concentrations of substrates and effectors. It is suggested that, because of the decrease in fructose 2,6-bisphosphate levels in the fat body, the activity of the key glycolytic enzyme phosphofructokinase is diminished. This can explain the inhibition of glycolytic flux by hypertrehalosaemic peptides which alters the balance of glucose metabolism in favour of trehalose formation.

  17. Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro.

    Science.gov (United States)

    Valença, Isabel; Morais-Santos, Filipa; Miranda-Gonçalves, Vera; Ferreira, Ana Margarida; Almeida-Aguiar, Cristina; Baltazar, Fátima

    2013-07-19

    Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds.Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death. Propolis from Angra do Heroísmo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits. All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production. Our results show that Portuguese propolis from Angra do Heroísmo (Azores) can be a potential therapeutic agent against human colorectal cancer.

  18. Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro

    Science.gov (United States)

    2013-01-01

    Background Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds. Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death. Methods Propolis from Angra do Heroísmo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits. Results All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production. Conclusion Our results show that Portuguese propolis from Angra do Heroísmo (Azores) can be a potential therapeutic agent against human colorectal cancer. PMID:23870175

  19. Anti-Citrullinated Protein Antibodies Are Associated With Neutrophil Extracellular Traps in the Sputum in Relatives of Rheumatoid Arthritis Patients.

    Science.gov (United States)

    Demoruelle, M Kristen; Harrall, Kylie K; Ho, Linh; Purmalek, Monica M; Seto, Nickie L; Rothfuss, Heather M; Weisman, Michael H; Solomon, Joshua J; Fischer, Aryeh; Okamoto, Yuko; Kelmenson, Lindsay B; Parish, Mark C; Feser, Marie; Fleischer, Chelsie; Anderson, Courtney; Mahler, Michael; Norris, Jill M; Kaplan, Mariana J; Cherrington, Brian D; Holers, V Michael; Deane, Kevin D

    2017-06-01

    Studies suggest that rheumatoid arthritis (RA)-related autoimmunity is initiated at a mucosal site. However, the factors associated with the mucosal generation of this autoimmunity are unknown, especially in individuals who are at risk of future RA. Therefore, we tested anti-cyclic citrullinated peptide (anti-CCP) antibodies in the sputum of RA-free first-degree relatives (FDRs) of RA patients and patients with classifiable RA. We evaluated induced sputum and serum samples from 67 FDRs and 20 RA patients for IgA anti-CCP and IgG anti-CCP, with cutoff levels for positivity determined in a control population. Sputum was also evaluated for cell counts, neutrophil extracellular traps (NETs) using sandwich enzyme-linked immunosorbent assays for protein/nucleic acid complexes, and total citrulline. Sputum was positive for IgA and/or IgG anti-CCP in 14 of 20 RA patients (70%) and 17 of 67 FDRs (25%), including a portion of FDRs who were serum anti-CCP negative. In the FDRs, elevations of sputum IgA and IgG anti-CCP were associated with elevated sputum cell counts and NET levels. IgA anti-CCP was associated with ever smoking and with elevated sputum citrulline levels. Anti-CCP is elevated in the sputum of FDRs, including seronegative FDRs, suggesting that the lung may be a site of anti-CCP generation in this population. The association of anti-CCP with elevated cell counts and NET levels in FDRs supports a hypothesis that local airway inflammation and NET formation may drive anti-CCP production in the lung and may promote the early stages of RA development. Longitudinal studies are needed to follow the evolution of these processes relative to the development of systemic autoimmunity and articular RA. © 2017, American College of Rheumatology.

  20. Frequency and diagnostic significance of anti-cyclic citrullinated peptide antibodies (ACCP and anti-modified citrullinated vimentin antibodies (AMCV in children with early juvenile arthritis

    Directory of Open Access Journals (Sweden)

    S O Salugina

    2008-01-01

    Full Text Available Objective. To determine frequency of anti-cyclic citrullinated peptide antibodies (ACCP and anti-modified citrullinated vimentin antibodies (AMCV elevation and their diagnostic significance in children with early juvenile arthritis (JA. Material and methods. ACCP were evaluated in serum of 80 pts with early JA (36 girls, 44 boys, mean age 8,5±5,03 years, AMCV — in 85 pts with early JA (49 girls and 36 boys aged from 1,5 to 16 years (mean age 8,7±4,9 years. Disease duration in all children was less than 6 months. Control group included 54 grown up pts with early rheumatoid arthritis (RA, 27 - with undifferentiated arthritis (UDA and 37 conditionally healthy children. АССР was assessed by immuno-enzyme assay (IEA with commercial kits “Axis Shield Diagnostics" (Great Britain, upper normal limit 5,0 U/ml. AMCV was examined by IEA with commercial kits “Orgentec Diagnostics” (Germany, upper normal limit — 25 U/ml. Results. ACCP was elevated in 7 children with early JA (8,8%. Frequency was higher than in healthy children but lower than in grown up pts with early RA and comparable with UDA. In juvenile rheumatoid arthritis (JRA ACCP were more frequent than in juvenile chronic arthritis (JCA. Concentration was higher in rheumatoid factor (RF positive pts with polyarticular JA. AMCV level was elevated in in 23 (27,1% pts with early JA (more frequent than in healthy donors but less frequent than in grown up pts with early RA and UDA. AMCV was significantly more frequent in JRA than in JCA and in RF positive than in RF negative pts. AMCV concentration in JA was higher than in healthy children but lower than in grown up pts with RA. It was also higher in RF+ than RF- JA. ACCP and AMCV correlated with swollen joint count, tender joint count and RF. AMCV also correlated with ESR and CRP. Conclusion. In pts with early JA ACCP and AMCV are equally or more frequent than RF. In spite of low sensitivity they have high specificity for JRA in contrast

  1. Spatial accumulation pattern of citrulline and other nutrients in immature and mature watermelon fruits.

    Science.gov (United States)

    Akashi, Kinya; Mifune, Yuki; Morita, Kaori; Ishitsuka, Souichi; Tsujimoto, Hisashi; Ishihara, Toshiyuki

    2017-01-01

    Watermelon (Citrullus lanatus L.) originates from arid regions of southern Africa, and its fruit contains a large amount of the amino acid citrulline, an efficient hydroxyl radical scavenger. Citrulline is implicated in the production of nitric oxide in human endothelium, and potential health benefits including vasodilatation and antioxidant functions have been suggested. However, citrulline metabolism in watermelon fruits is poorly understood. This study examined the accumulation pattern of citrulline and other nutrients in immature and mature watermelon fruits. In mature fruits, highest citrulline concentration was observed in the outer peel, followed by the central portion of the flesh and inner rinds, whereas the level was lower in the peripheral portion of the flesh. Citrulline content was generally low in immature fruits. Spatial and developmental patterns of citrulline accumulation were largely different from those of the antioxidant lycopene, total proteins, and soluble sugars such as glucose, fructose, and sucrose. Principal component analysis suggested a clear distinction of the central flesh and outer peels in mature fruits from other tissues in terms of the levels of major nutrients. These observations suggested that citrulline accumulation may be regulated in a distinct manner from other nutrients during watermelon fruit maturation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Application of synthetic peptides for detection of anti-citrullinated peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Holm, Bettina Eide; Slot, Ole

    2016-01-01

    Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA) and represent an important tool for the serological diagnosis of RA. In this study, we describe ACPA reactivity to overlapping citrullinated Epstein-Barr virus nuclear antigen-1 (EBNA-1)-derived peptides...... and that the presence of Epstein-Barr virus may play a role in the induction of these autoantibodies....

  3. Plasma glutamine is a minor precursor for the synthesis of citrulline: A multispecies study

    Science.gov (United States)

    Glutamine is considered the main precursor for citrulline synthesis in many species, including humans. The transfer of 15N from 2[15N]-glutamine to citrulline has been used as evidence for this precursor-product relationship. However, work in mice has shown that nitrogen and carbon tracers follow di...

  4. The effect of citrulline and arginine supplementation on lactic acidemia in MELAS syndrome.

    Science.gov (United States)

    El-Hattab, Ayman W; Emrick, Lisa T; Williamson, Kaitlin C; Craigen, William J; Scaglia, Fernando

    2013-12-01

    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a mitochondrial disorder in which nitric oxide (NO) deficiency may play a role in the pathogenesis of several complications including stroke-like episodes and lactic acidosis. Supplementing the NO precursors arginine and citrulline restores NO production in MELAS syndrome. In this study we evaluated the effect of arginine or citrulline on lactic acidemia in adults with MELAS syndrome. Plasma lactate decreased significantly after citrulline supplementation, whereas the effect of arginine supplementation did not reach statistical significance. These results support the potential therapeutic utility of arginine and citrulline in MELAS syndrome and suggest that citrulline supplementation may be more efficacious. However, therapeutic efficacy of these compounds should be further evaluated in clinical trials.

  5. Rheumatoid factor and anti-cyclic citrullinated peptide antibodies Clinical application of combined detection%类风湿因子与抗环瓜氨酸肽抗体联合检测的临床应用价值

    Institute of Scientific and Technical Information of China (English)

    李韧; 袁斌; 张娟

    2013-01-01

    Objective To investigate the analysis of rheumatoid factor and anti-citrulline antibody combined detection for the clinical application value. Methods Using enzyme-linked immunosorbent assay(ELISA method) to our hospital for the treatment of 150 cases of rheumatoid arthritis(RA) patients(A group), 28 cases of non-RA patients(B group) and 34 cases of healthy people(C group) were detected in serum, compared three groups of serum rheumatoid factor, anti-citrulline antibody for use alone or in combination for the diagnosis of rheumatoid arthritis sensitivity, specificity and so on. Results A group of people for anti-citrulline antibodies and rheumatoid factor positive rate than the B group, C group high(P <0.01); A group of rheumatoid factor alone sensitive than anti-citrulline antibodies for the anti-citrulline antibody specificity for the above rheumatoid factor, combined use of anti-citrulline conversion and rheumatoid factor antibodies, the detection sensitivity and negative predictive values, and Youden index for other than anti-citrulline antibodies or rheumatoid factor when used alone. Conclusion Anti-changer citrulline antibody and rheumatoid factor used in combination for the diagnosis of rheumatoid arthritis with good clinical practice.%目的探讨类风湿因子(RF)与抗环瓜氨酸肽抗体(抗CCP抗体)联合检测的临床应用价值。方法使用酶联免疫吸附法(ELISA 法)检测我院150例类风湿关节炎(RA)患者(A组)、28例非RA患者(B组)以及34例健康人群(C组)的血清,比较三组人群血清中RF、抗CCP抗体单独或联合使用对诊断RA的敏感性、特异性等。结果 A组人群抗CCP抗体和RF阳性率比B组、C组高(P<0.01);A组中单独使用RF的敏感性高于抗CCP抗体,抗CCP抗体的特异性高于RF,联合使用抗CCP抗体和RF,其检测敏感性、阴性预测值及约登指数等高于抗CCP抗体或RF单独使用。结论抗CCP抗体和RF联合使用用于诊断RA具有良好的临床应用价值。

  6. In or out? On the tightness of glycosomal compartmentalization of metabolites and enzymes in Trypanosoma brucei

    NARCIS (Netherlands)

    Haanstra, Jurgen R.; Bakker, Barbara M.; Michels, Paul A. M.

    2014-01-01

    Trypanosomatids sequester large parts of glucose metabolism inside specialised peroxisomes, called glycosomes. Many studies have shown that correct glycosomal compartmentalization of glycolytic enzymes is essential for bloodstream-form Trypanosoma brucel. The recent finding of pore-forming activitie

  7. Enhanced oxidative stress and the glycolytic switch in superficial urothelial carcinoma of urinary bladder

    Directory of Open Access Journals (Sweden)

    Yu-Wei Lai

    2016-12-01

    Conclusions: UC of the UB manifested that the glycolytic phenotype would reflect the Warburg effect. We suggest that the molecular mechanism in the regulation of glycolytic switch in UC of the UB might provide a specific biomarker for the future development of cancer diagnosis.

  8. Changes in Glycolytic Activity of Lactococcus lactis Induced by Low Temperature

    NARCIS (Netherlands)

    Wouters, Jeroen A.; Kamphuis, Henrike H.; Hugenholtz, Jeroen; Kuipers, Oscar P.; Vos, Willem M. de; Abee, Tjakko

    2000-01-01

    The effects of low-temperature stress on the glycolytic activity of the lactic acid bacterium Lactococcus lactis were studied. The maximal glycolytic activity measured at 30°C increased approximately 2.5-fold following a shift from 30 to 10°C for 4 h in a process that required protein synthesis.

  9. Changes in glycolytic activity of Lactococcus lactis induced by low temperature

    NARCIS (Netherlands)

    Wouters, J.A.; Kamphuis, H.H.; Hugenholtz, J.; Kuipers, O.P.; Vos, de W.M.; Abee, T.

    2000-01-01

    The effects of low-temperature stress on the glycolytic activity of the lactic acid bacterium Lactococcus lactis were studied. The maximal glycolytic activity measured at 30°C increased approximately 2.5-fold following a shift from 30 to 10°C for 4 h in a process that required protein synthesis.

  10. Physical Characteristics of a Citrullinated Pro-Filaggrin Epitope Recognized by Anti-Citrullinated Protein Antibodies in Rheumatoid Arthritis Sera

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Holm, Bettina Eide; Slot, Ole;

    2016-01-01

    whether biotin labelling influence antibody recognition. The full-length cyclic pro-filaggrin peptide and a linear form with a N-terminal biotin, was recognized to the same level, whereas, a notable difference in ACPA reactivity to the linear peptides with a C-terminal biotin was found, probably due...... amino acid in position 4 C-terminal to citrulline. Collectively, peptide structure, length, the presence of charged amino acids and biotin labelling markedly influence antibody reactivity. In relation to the clinical diagnostics of ACPA, these findings may reflect the differences in diagnostic assays...

  11. Sustained glycolytic oscillations in individual isolated yeast cells.

    Science.gov (United States)

    Gustavsson, Anna-Karin; van Niekerk, David D; Adiels, Caroline B; du Preez, Franco B; Goksör, Mattias; Snoep, Jacky L

    2012-08-01

    Yeast glycolytic oscillations have been studied since the 1950s in cell-free extracts and intact cells. For intact cells, sustained oscillations have so far only been observed at the population level, i.e. for synchronized cultures at high biomass concentrations. Using optical tweezers to position yeast cells in a microfluidic chamber, we were able to observe sustained oscillations in individual isolated cells. Using a detailed kinetic model for the cellular reactions, we simulated the heterogeneity in the response of the individual cells, assuming small differences in a single internal parameter. This is the first time that sustained limit-cycle oscillations have been demonstrated in isolated yeast cells. The mathematical model described here has been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/gustavsson/index.html free of charge. © 2012 The Authors Journal compilation © 2012 FEBS.

  12. Identification and quantitation of asparagine and citrulline using high-performance liquid chromatography (HPLC).

    Science.gov (United States)

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2007-03-28

    High-performance liquid chromatography (HPLC) analysis was used for identification of two problematic ureides, asparagine and citrulline. We report here a technique that takes advantage of the predictable delay in retention time of the co-asparagine/citrulline peak to enable both qualitative and quantitative analysis of asparagine and citrulline using the Platinum EPS reverse-phase C18 column (Alltech Associates). Asparagine alone is eluted earlier than citrulline alone, but when both of them are present in biological samples they may co-elute. HPLC retention times for asparagine and citrulline were influenced by other ureides in the mixture. We found that at various asparagines and citrulline ratios [= 3:1, 1:1, and 1:3; corresponding to 75:25, 50:50, and 25:75 (microMol ml(-1)/microMol ml(-1))], the resulting peak exhibited different retention times. Adjustment of ureide ratios as internal standards enables peak identification and quantification. Both chemicals were quantified in xylem sap samples of pecan [Carya illinoinensis (Wangenh.) K. Koch] trees. Analysis revealed that tree nickel nutrition status affects relative concentrations of Urea Cycle intermediates, asparagine and citrulline, present in sap. Consequently, we concluded that the HPLC methods are presented to enable qualitative and quantitative analysis of these metabolically important ureides.

  13. Identification and Quantitation of Asparagine and Citrulline Using High-Performance Liquid Chromatography (HPLC

    Directory of Open Access Journals (Sweden)

    Cheng Bai

    2007-01-01

    Full Text Available High-performance liquid chromatography (HPLC analysis was used for identification of two problematic ureides, asparagine and citrulline. We report here a technique that takes advantage of the predictable delay in retention time of the co-asparagine/citrulline peak to enable both qualitative and quantitative analysis of asparagine and citrulline using the Platinum EPS reverse-phase C18 column (Alltech Associates. Asparagine alone is eluted earlier than citrulline alone, but when both of them are present in biological samples they may co-elute. HPLC retention times for asparagine and citrulline were influenced by other ureides in the mixture. We found that at various asparagines and citrulline ratios [= 3:1, 1:1, and 1:3; corresponding to 75:25, 50:50, and 25:75 (μMol ml–1/μMol ml–1], the resulting peak exhibited different retention times. Adjustment of ureide ratios as internal standards enables peak identification and quantification. Both chemicals were quantified in xylem sap samples of pecan [Carya illinoinensis (Wangenh. K. Koch] trees. Analysis revealed that tree nickel nutrition status affects relative concentrations of Urea Cycle intermediates, asparagine and citrulline, present in sap. Consequently, we concluded that the HPLC methods are presented to enable qualitative and quantitative analysis of these metabolically important ureides.

  14. The amount of citrullinated proteins in synovial tissue is related to serum anti-cyclic citrullinated peptide (anti-CCP) antibody levels.

    Science.gov (United States)

    Olivares-Martínez, Elizabeth; Hernández-Ramírez, Diego F; Núñez-Álvarez, Carlos A; Cabral, Antonio R; Llorente, Luis

    2016-01-01

    The objective of this study was to determine the relationship between citrullinated proteins in synovial tissue with peripheral anti-citrullinated peptides autoantibodies (ACPA) and peptidylarginine deiminase (PADI) PADI2, PADI3, and PADI4 messenger RNA (mRNA) expressions in synovial tissue and fibroblast-like synoviocytes in rheumatoid arthritis (RA) patients. Eleven RA and 12 osteoarthritis (OA) patients who underwent knee replacement surgery were studied. We detected citrullinated proteins in synovial tissue homogenates by western blot and serum ACPA by ELISA to anti-cyclic citrullinated peptide (anti-CCP) antibodies, and PADI2, PADI3, and PADI4 mRNA expressions in synovial tissue and in fibroblast-like synoviocytes. Patients with high amount of citrullinated proteins in synovial tissue (3 out of 7) have high levels of anti-CCP in serum. However, in the remaining 4 patients, the amount of synovial citrullinated proteins was minimal and their sera showed low levels of anti-CCP antibodies. Furthermore, we observed an increase in PADI2 mRNA expression in RA synovial tissue compared with OA patients (p = 0.02). We detected PADI3 mRNA in the synovial tissue of RA patients, but not in the tissue of OA patients. Even though fibroblast-type synoviocytes in RA are not the main source of PADs in the synovial tissue, they express PADI2 mRNA moderately, PADI4 mRNA weakly, while there is no detectable expression of PADI3 mRNA. In conclusion, we found a variety of citrullinated proteins in the synovial tissue of RA patients and the amount of such proteins is related to serum concentration of anti-CCP antibodies. We identified the presence of PADI3 mRNA expression in synovial tissue and PADI2 and PADI4 mRNA expressions in fibroblast-like synoviocytes from patients with RA.

  15. L-citrulline provides a novel strategy for treating chronic pulmonary hypertension in newborn infants

    Science.gov (United States)

    Fike, Candice D.; Summar, Marshall; Aschner, Judy L.

    2014-01-01

    Effective therapies are urgently needed for infants with forms of pulmonary hypertension that develop or persist beyond the first week of life. The L-arginine nitric oxide (NO) precursor, L-citrulline, improves NO signalling and ameliorates pulmonary hypertension in newborn animal models. In vitro studies demonstrate that manipulating L-citrulline transport alters NO production. Conclusion Strategies that increase the supply and transport of L-citrulline merit pursuit as novel approaches to managing infants with chronic, progressive pulmonary hypertension. PMID:24862864

  16. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis

    DEFF Research Database (Denmark)

    Uysal, Hüseyin; Bockermann, Robert; Nandakumar, Kutty S

    2009-01-01

    Antibodies to citrulline-modified proteins have a high diagnostic value in rheumatoid arthritis (RA). However, their biological role in disease development is still unclear. To obtain insight into this question, a panel of mouse monoclonal antibodies was generated against a major triple helical...... collagen type II (CII) epitope (position 359-369; ARGLTGRPGDA) with or without arginines modified by citrullination. These antibodies bind cartilage and synovial tissue, and mediate arthritis in mice. Detection of citrullinated CII from RA patients' synovial fluid demonstrates that cartilage-derived CII...

  17. Potential protein targets of the peptidylarginine deiminase 2 and peptidylarginine deiminase 4 enzymes in rheumatoid synovial tissue and its possible meaning

    Science.gov (United States)

    Badillo-Soto, Martha Adriana; Rodríguez-Rodríguez, Mayra; Pérez-Pérez, María Elena; Daza-Benitez, Leonel; Bollain-y-Goytia, Juan José; Carrillo-Jiménez, Miguel Angel; Avalos-Díaz, Esperanza; Herrera-Esparza, Rafael

    2016-01-01

    Objective The molecular mechanism of citrullination involves the calcium-dependent peptidylarginine deiminase (PAD) family of enzymes. These enzymes induce a stereochemical modification of normal proteins and transform them into autoantigens, which in rheumatoid arthritis trigger a complex cascade of joint inflammatory events followed by chronic synovitis, pannus formation, and finally, cartilage destruction. By hypothesizing that PAD2 and PAD4 enzymes produce autoantigens, we investigated five possible synovial protein targets of PAD enzymes. Material and Methods We measured PAD2, PAD4, and citrullinated proteins in 10 rheumatoid and 10 osteoarthritis synovial biopsies and then assessed the post-translational modifications of fibrinogen, cytokeratin, tubulin, IgG, and vimentin proteins using a double-fluorescence assay with specific antibodies and an affinity-purified anti-citrullinated peptide (CCP) antibody. The degree of co-localization was analyzed, and statistical significance was determined by ANOVA, Fisher’s exact test, and regression analysis. Results The principal results of this study demonstrated that citrullinated proteins, such as fibrinogen, IgG, and other probed proteins, were targets of PAD2 and PAD4 activity in rheumatoid synovial biopsies, whereas osteoarthritis biopsies were negative for this enzyme (p<0.0001). An analysis of citrullination sites using the UniProtKB/Swiss-Prot data bank predicts that the secondary structure of the analyzed proteins displays most of the sites for citrullination; a discussion regarding its possible meaning in terms of pathogenesis is made. Conclusion Our results support the conclusion that the synovial citrullination of proteins is PAD2 and PAD4 dependent. Furthermore, there is a collection of candidate proteins that can be citrullinated. PMID:27708970

  18. Determination of anti-cyclic citrullinated peptide antibodies in the sera of patients with liver diseases.

    Science.gov (United States)

    Koga, T; Migita, K; Miyashita, T; Maeda, Y; Nakamura, M; Abiru, S; Myoji, M; Komori, A; Yano, K; Yatsuhashi, H; Eguchi, K; Ishibashi, H

    2008-01-01

    To determine the frequency of anti-cyclic citrullinated peptide (anti-CCP) antibodies in patients with HCV infection, primary biliary cirrhosis (PBC) and type-I autoimmune hepatitis (AIH) to assess the specificity of anti-CCP antibodies. Rheumatoid factor (RF) and anti-CCP antibodies were measured in the sera from patients with HCV infection (n=45), PBC (n=73), AIH (n=55) and rheumatoid arthritis (n=48), and also from the sera of healthy subjects (n=23). Anti-CCP antibodies were measured using a second generation enzyme-linked immunosorbent assay (ELISA). No sera with elevated anti-CCP were found in the patients with HCV infection. Two PBC patients (2.7%) and six AIH patients (10.5%) had anti-CCP antibodies. The seropositivity for anti-CCP in these autoimmune disease patients was associated with a high frequency of RA association [PBC; 100% (2/2), AIH; 86.4% (5/6)]. Although anti-CCP antibodies may be present in patients with autoimmune liver diseases, almost seropositive patients had concomitant RA. As a result, the measurement of anti-CCP antibodies may therefore be helpful for accurately diagnosing RA in patients with these liver diseases.

  19. Anti-cyclic citrullinated peptides positivity rate in patients with familial Mediterranean fever.

    Science.gov (United States)

    Ceri, Mevlut; Unverdi, Selman; Altay, Mustafa; Ureten, Kemal; Oztürk, M Akif; Gönen, Namik; Duranay, Murat

    2010-01-01

    To investigate the prevalence and levels of anti-cyclic citrullinated peptide antibodies (anti-CCP) in patients with familial Mediterranean fever (FMF) with and without arthritis. Eighty-three patients with FMF and 43 healthy controls were included in the study. Thirty seven FMF patients had a history of arthritis, and 46 patients did not. Serum antibodies directed to the anti-CCP were assessed with a commercial enzyme-linked immunosorbent assay (ELISA) kit. Values 100U high positive. Positivity rate of anti-CCP in the whole FMF group (14.5%) was three-fold higher than the control group (4.7%). However, the difference failed to achieve a statistically significant level (p=0.09). Anti-CCP levels were 21±30.1 in patients with arthritis and 13.1±10.3 in the non arthritic group (p40U/ml). Anti-CCP levels were between 20-39U/ ml in 2FMF patients without arthritis and in 2 healthy controls. Anti-CCP positivity rate is higher in FMF patients with arthritis (27%) than healthy controls (4.7%) (p<0.005). Anti-CCP prevalence is higher in FMF patients with arthritis than without arthritis, and that a significant proportion of FMF patients with arthritis (13.5%) had moderate-high titers of anti-CCP. Therefore, anti-CCP antibodies may not be a reliable indicator to differentiate between FMF arthritis and rheumatoid arthritis.

  20. Assessing glycolytic flux alterations resulting from genetic perturbations in E. coli using a biosensor

    DEFF Research Database (Denmark)

    Lehning, Christina Eva; Siedler, Solvej; Ellabaan, Mostafa M Hashim

    2017-01-01

    We describe the development of an optimized glycolytic flux biosensor and its application in detecting altered flux in a production strain and in a mutant library. The glycolytic flux biosensor is based on the Cra-regulated ppsA promoter of E. coli controlling fluorescent protein synthesis. We...... validated the glycolytic flux dependency of the biosensor in a range of different carbon sources in six different E. coli strains and during mevalonate production. Furthermore, we studied the flux-altering effects of genome-wide single gene knock-outs in E. coli in a multiplex FlowSeq experiment. From...

  1. Recuperative effect of Semecarpus anacardium linn. nut milk extract on carbohydrate metabolizing enzymes in experimental mammary carcinoma-bearing rats.

    Science.gov (United States)

    Sujatha, Venugopal; Sachdanandam, Panchanatham

    2002-03-01

    Semecarpus anacardium Linn. of the family Anacardiaceae has many applications in the Ayurvedic and Siddha systems of medicine. We have tested the antitumour activity of Semecarpus anacardium nut extract against experimental mammary carcinoma in animals. As there is a direct relationship between the proliferation of tumour cells and the activities of the glycolytic and gluconeogenic enzymes, we studied changes in the activities of enzymes involved in this metabolic pathway in the liver and kidney. The enzymes investigated were glycolytic enzymes, namely hexokinase, phosphoglucoisomerase, aldolase and the gluconeogenic enzymes, namely glucose-6-phosphatase and fructose-1,6-biphosphatase in experimental rats. A significant rise in glycolytic enzyme activities and a simultaneous fall in gluconeogenic enzyme activities were found in mammary carcinoma bearing rats. Drug administration returned these enzyme activities to their respective control activities. Copyright 2002 John Wiley & Sons, Ltd.

  2. Glycerophosphoglycerol, Beta-Alanine, and Pantothenic Acid as Metabolic Companions of Glycolytic Activity and Cell Migration in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Antje Hutschenreuther

    2013-11-01

    Full Text Available In cancer research, cell lines are used to explore the molecular basis of the disease as a substitute to tissue biopsies. Breast cancer in particular is a very heterogeneous type of cancer, and different subgroups of cell lines have been established according to their genomic profiles and tumor characteristics. We applied GCMS metabolite profiling to five selected breast cancer cell lines and found this heterogeneity reflected on the metabolite level as well. Metabolite profiles of MCF-7 cells belonging to the luminal gene cluster proved to be more different from those of the basal A cell line JIMT-1 and the basal B cell lines MDA-MB-231, MDA-MB-435, and MDA-MB-436 with only slight differences in the intracellular metabolite pattern. Lactate release into the cultivation medium as an indicator of glycolytic activity was correlated to the metabolite profiles and physiological characteristics of each cell line. In conclusion, pantothenic acid, beta-alanine and glycerophosphoglycerol appeared to be related to the glycolytic activity designated through high lactate release. Other physiological parameters coinciding with glycolytic activity were high glyoxalase 1 (Glo1 and lactate dehydrogenase (LDH enzyme activity as well as cell migration as an additional important characteristic contributing to the aggressiveness of tumor cells. Metabolite profiles of the cell lines are comparatively discussed with respect to known biomarkers of cancer progression.

  3. Antibodies to several citrullinated antigens are enriched in the joints of rheumatoid arthritis patients.

    Science.gov (United States)

    Snir, Omri; Widhe, Mona; Hermansson, Monika; von Spee, Caroline; Lindberg, Johan; Hensen, Sanne; Lundberg, Karin; Engström, Ake; Venables, Patrick J W; Toes, René E M; Holmdahl, Rikard; Klareskog, Lars; Malmström, Vivianne

    2010-01-01

    High titers of specific anti-citrullinated protein antibodies (ACPAs) are frequently present in the serum of rheumatoid arthritis (RA) patients, but their presence in synovial fluid is less well characterized. The purpose of this study was to compare the levels of antibody to 4 well-defined citrullinated candidate RA autoantigens in serum and synovial fluid and to determine whether antibodies to one citrullinated antigen are dominant over another. Furthermore, we studied their relationships with mutated citrullinated vimentin (MCV), a newly identified RA-specific serum assay, and the classic cyclic citrullinated peptide (CCP) in the synovial fluid of well-defined HLA-DR groups. Paired serum and synovial fluid samples from 290 RA patients and serum samples from 100 age- and sex-matched healthy controls were analyzed for the presence of anti-MCV and anti-CCP antibodies and for reactivity to citrullinated fibrinogen, alpha-enolase, type II collagen, and vimentin. A total of 219 of the 290 patients were genotyped for the HLA-DR shared epitope alleles. Significantly higher proportions of antibodies against all RA-associated citrullinated antigens were found in synovial fluid as compared with serum. This was also true for the MCV and CCP responses but not for non-RA-associated anti-tetanus toxoid antibodies. As expected, we found a high correlation between citrullinated vimentin and MCV responses. All synovial fluid ACPAs were predominantly associated with HLA-DRB1*04 alleles and were confined to the CCP+/MCV+ subset of patients. MCV and CCP positivity represent a similar subset of RA patients, whereas ACPAs with different fine specificities fall into subgroups of anti-CCP+/anti-MCV+ patients. The levels of all specific ACPAs were elevated in synovial fluid, suggesting that there is local antibody production and/or retention of ACPAs at the site of inflammation governed by RA-predisposing genes.

  4. The effects of watermelon (Citrullus lanatus) extracts and L-citrulline on rat uterine contractility.

    Science.gov (United States)

    Munglue, Phukphon; Eumkep, Graingsak; Wray, Susan; Kupittayanant, Sajeera

    2013-04-01

    In uterine smooth muscle, the effects of watermelon and its citrulline content are unknown. The aims of this study were therefore, to determine the effects of watermelon extract and citrulline on the myometrium and to investigate their mechanisms of action. The effects of extracts of watermelon flesh and rind and L-citrulline (64 μmol/L) were evaluated on 3 types of contractile activity; spontaneous, those elicited by potassium chloride (KCl) depolarization, or oxytocin (10 nmol/L) application in isolated rat uterus. Inhibitors of nitric oxide (NO) and its mechanisms of action, N ω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 100 μmol/L), LY83583 (1 μmol/L), and tetraethylamonium chloride (5 mmol/L), as well as Ca signaling pathways, were determined. Both flesh and rind extracts significantly decreased the force produced by all 3 mechanisms, in a dose-dependent manner. The extracts could also significantly decrease the force under conditions of sustained high Ca levels (depolarization and agonist) and when the force was produced only by sarcoplasmic reticulum (SR) Ca release. L-citrulline produced the same effects on force as watermelon extracts. With submaximal doses of extract, the additive effects of L-citrulline were found. The inhibitory effects of extracts and L-citrulline were reversed upon the addition of NO inhibitors, and pretreatment of tissues with these inhibitors prevented the actions of both extracts and L-citrulline. Thus, these data show that watermelon and citrulline are potent tocolytics, decreasing the force produced by calcium entry and SR release and arising by different pathways, including oxytocin stimulation. Their major mechanism is to stimulate the NO-cyclic guanosine monophosphate (cGMP) relaxant pathway.

  5. Potential role for PADI-mediated histone citrullination in preimplantation development

    Directory of Open Access Journals (Sweden)

    Kan Rui

    2012-06-01

    Full Text Available Abstract Background The peptidylarginine deiminases (PADIs convert positively charged arginine residues to neutrally charged citrulline on protein substrates in a process that is known as citrullination or deimination. Previous reports have documented roles for histone citrullination in chromatin remodeling and gene regulation in several tissue types, however, a potential role for histone citrullination in chromatin-based activities during early embryogenesis has not been investigated. Results In the present study, we tested by laser scanning confocal indirect immunofluorescence microscopy whether specific arginine residues on the histone H3 and H4 N-terminal tails (H4R3, H3R2 + 8 + 17, and H3R26 were citrullinated in mouse oocytes and preimplantation embryos. Results showed that all of the tested residues were deiminated with each site showing a unique localization pattern during early development. Given these findings, we next tested whether inhibition of PADI activity using the PADI-specific inhibitor, Cl-amidine, may affect embryonic development. We found that treatment of pronuclear stage zygotes with Cl-amidine reduces both histone H3 and H4 tail citrullination and also potently blocks early cleavage divisions in vitro. Additionally, we found that the Cl-amidine treatment reduces acetylation at histone H3K9, H3K18, and H4K5 while having no apparent effect on the repressive histone H3K9 dimethylation modification. Lastly, we found that treatment of zygotes with trichostatin A (TSA to induce hyperacetylation also resulted in an increase in histone citrullination at H3R2 + 8 + 17. Conclusions Given the observed effects of Cl-amidine on embryonic development and the well documented correlation between histone acetylation and transcriptional activation, our findings suggest that histone citrullination may play an important role in facilitating gene expression in early embryos by creating a chromatin environment that is

  6. Obesity Preserves Myocardial Function During Blockade of the Glycolytic Pathway

    Directory of Open Access Journals (Sweden)

    Dijon Henrique Salomé de Campos

    2014-10-01

    Full Text Available Background: Obesity is defined by excessive accumulation of body fat relative to lean tissue. Studies during the last few years indicate that cardiac function in obese animals may be preserved, increased or diminished. Objective: Study the energy balance of the myocardium with the hypothesis that the increase in fatty acid oxidation and reduced glucose leads to cardiac dysfunction in obesity. Methods: 30-day-old male Wistar rats were fed standard and hypercaloric diet for 30 weeks. Cardiac function and morphology were assessed. In this paper was viewed the general characteristics and comorbities associated to obesity. The structure cardiac was determined by weights of the heart and left ventricle (LV. Myocardial function was evaluated by studying isolated papillary muscles from the LV, under the baseline condition and after inotropic and lusitropic maneuvers: myocardial stiffness; postrest contraction; increase in extracellular Ca2+ concentration; change in heart rate and inhibitor of glycolytic pathway. Results: Compared with control group, the obese rats had increased body fat and co-morbities associated with obesity. Functional assessment after blocking iodoacetate shows no difference in the linear regression of DT, however, the RT showed a statistically significant difference in behavior between the control and the obese group, most notable being the slope in group C. Conclusion: The energy imbalance on obesity did not cause cardiac dysfunction. On the contrary, the prioritization of fatty acids utilization provides protection to cardiac muscle during the inhibition of glycolysis, suggesting that this pathway is fewer used by obese cardiac muscle.

  7. Obesity Preserves Myocardial Function During Blockade of the Glycolytic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Dijon Henrique Salomé de, E-mail: dijoncampos@gmail.com [Departamento de Clínica Médica - Faculdade de Medicina de Botucatu da Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Leopoldo, André Soares; Lima-Leopoldo, Ana Paula [Departamento de Esportes - Centro de Educação Física e Desportos da Universidade Federal do Espírito Santo (UFES), Vitória, ES (Brazil); Nascimento, André Ferreira do [Instituto de Ciências da Saúde da Universidade Federal do Mato Grosso (UFMT), Sinop, MT (Brazil); Oliveira-Junior, Silvio Assis de [Escola de Fisioterapia da Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil); Silva, Danielle Cristina Tomaz da [Departamento de Clínica Médica - Faculdade de Medicina de Botucatu da Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Sugizaki, Mario Mateus [Instituto de Ciências da Saúde da Universidade Federal do Mato Grosso (UFMT), Sinop, MT (Brazil); Padovani, Carlos Roberto [Departamento de Bioestatística, Instituto de Ciências Biológicas da Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Cicogna, Antonio Carlos, E-mail: dijoncampos@gmail.com [Departamento de Clínica Médica - Faculdade de Medicina de Botucatu da Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil)

    2014-10-15

    Obesity is defined by excessive accumulation of body fat relative to lean tissue. Studies during the last few years indicate that cardiac function in obese animals may be preserved, increased or diminished. Study the energy balance of the myocardium with the hypothesis that the increase in fatty acid oxidation and reduced glucose leads to cardiac dysfunction in obesity. 30-day-old male Wistar rats were fed standard and hypercaloric diet for 30 weeks. Cardiac function and morphology were assessed. In this paper was viewed the general characteristics and comorbities associated to obesity. The structure cardiac was determined by weights of the heart and left ventricle (LV). Myocardial function was evaluated by studying isolated papillary muscles from the LV, under the baseline condition and after inotropic and lusitropic maneuvers: myocardial stiffness; postrest contraction; increase in extracellular Ca2+ concentration; change in heart rate and inhibitor of glycolytic pathway. Compared with control group, the obese rats had increased body fat and co-morbities associated with obesity. Functional assessment after blocking iodoacetate shows no difference in the linear regression of DT, however, the RT showed a statistically significant difference in behavior between the control and the obese group, most notable being the slope in group C. The energy imbalance on obesity did not cause cardiac dysfunction. On the contrary, the prioritization of fatty acids utilization provides protection to cardiac muscle during the inhibition of glycolysis, suggesting that this pathway is fewer used by obese cardiac muscle.

  8. The increased ability to present citrullinated peptides is not unique to HLA-SE molecules: arginine-to-citrulline conversion also enhances peptide affinity for HLA-DQ molecules.

    Science.gov (United States)

    Kampstra, Arieke S B; van Heemst, Jurgen; Moustakas, Antonis K; Papadopoulos, George K; Huizinga, Tom W J; Toes, René E M

    2016-11-03

    Presentation of citrullinated neo-epitopes by HLA-DRB1 molecules that carry the shared epitope (SE) sequence was proposed to explain the association between HLA and seropositive RA. Although it is shown that several HLA-DRB1-SE molecules display enhanced binding affinities for citrullinated ligands, the ability of other HLA molecules to present citrullinated epitopes has not been investigated in a systematic manner. To better understand the HLA-RA connection, we aimed to investigate if the enhanced capacity to present arginine-to-citrulline-converted peptides is unique for HLA-SE alleles. We selected four HLA molecules (one HLA-DR and three HLA-DQ molecules) that could potentially prefer citrulline over arginine residues in specific pockets and in addition two HLA-SE alleles as a method validation control. The affinity of peptides containing arginine/citrulline residues at positions interacting with the various peptide-binding pockets was compared by HLA class II peptide affinity assays. Pocket 4 of HLA-DRB1*04:04 and -DRB1*04:05 displayed a preference for citrulline over arginine, a property found in other pockets as well. HLA-DRB1*03:01 did not display an enhanced affinity for peptides containing a citrulline. In contrast, several peptide-binding pockets of the analyzed HLA-DQ molecules showed enhanced affinities for citrulline compared to arginine residues: i.e., pockets 4, 6, 7, and 9 of HLA-DQ2 and pockets 1, 6, and 9 of HLA-DQ7 and HLA-DQ8. Arginine-to-citrulline conversion of peptides can also enhance the binding affinity for non-HLA-SE molecules. Hence the capacity to present citrullinated neo-epitopes is not confined to HLA-SE molecules, opening the possibility that also other HLA molecules could potentiate a possible breach of T cell tolerance toward citrullinated antigens.

  9. Citrulline Supplementation Improves Organ Perfusion and Arginine Availability under Conditions with Enhanced Arginase Activity

    Directory of Open Access Journals (Sweden)

    Karolina A.P. Wijnands

    2015-06-01

    Full Text Available Enhanced arginase-induced arginine consumption is believed to play a key role in the pathogenesis of sickle cell disease-induced end organ failure. Enhancement of arginine availability with l-arginine supplementation exhibited less consistent results; however, l-citrulline, the precursor of l-arginine, may be a promising alternative. In this study, we determined the effects of l-citrulline compared to l-arginine supplementation on arginine-nitric oxide (NO metabolism, arginine availability and microcirculation in a murine model with acutely-enhanced arginase activity. The effects were measured in six groups of mice (n = 8 each injected intraperitoneally with sterile saline or arginase (1000 IE/mouse with or without being separately injected with l-citrulline or l-arginine 1 h prior to assessment of the microcirculation with side stream dark-field (SDF-imaging or in vivo NO-production with electron spin resonance (ESR spectroscopy. Arginase injection caused a decrease in plasma and tissue arginine concentrations. l-arginine and l-citrulline supplementation both enhanced plasma and tissue arginine concentrations in arginase-injected mice. However, only the citrulline supplementation increased NO production and improved microcirculatory flow in arginase-injected mice. In conclusion, the present study provides for the first time in vivo experimental evidence that l-citrulline, and not l-arginine supplementation, improves the end organ microcirculation during conditions with acute arginase-induced arginine deficiency by increasing the NO concentration in tissues.

  10. Citrulline as a Biomarker in the Non-human Primate Total- and Partial-body Irradiation Models: Correlation of Circulating Citrulline to Acute and Prolonged Gastrointestinal Injury.

    Science.gov (United States)

    Jones, Jace W; Bennett, Alexander; Carter, Claire L; Tudor, Gregory; Hankey, Kim G; Farese, Ann M; Booth, Catherine; MacVittie, Thomas J; Kane, Maureen A

    2015-11-01

    The use of plasma citrulline as a biomarker for acute and prolonged gastrointestinal injury via exposure to total- and partial-body irradiation (6 MV LINAC-derived photons; 0.80 Gy min) in nonhuman primate models was investigated. The irradiation exposure covered gastrointestinal injuries spanning lethal, mid-lethal, and sub-lethal doses. The acute gastrointestinal injury was assessed via measurement of plasma citrulline and small intestinal histopathology over the first 15 d following radiation exposure and included total-body irradiation at 13.0 Gy, 10.5 Gy, and 7.5 Gy and partial-body irradiation at 11.0 Gy with 5% bone marrow sparing. The dosing schemes of 7.5 Gy total-body irradiation and 11.0 Gy partial-body irradiation included time points out to day 60 and day 180, respectively, which allowed for correlation of plasma citrulline to prolonged gastrointestinal injury and survival. Plasma citrulline values were radiation-dependent for all radiation doses under consideration, with nadir values ranging from 63-80% lower than radiation-naïve NHP plasma. The nadir values were observed at day 5 to 7 post irradiation. Longitudinal plasma citrulline profiles demonstrated prolonged gastrointestinal injury resulting from acute high-dose irradiation had long lasting effects on enterocyte function. Moreover, plasma citrulline did not discriminate between total-body or partial-body irradiation over the first 15 d following irradiation and was not predictive of survival based on the radiation models considered herein.

  11. Anti-Cyclic Citrullinated Peptide (Anti-CCP) and Anti-Mutated Citrullinated Vimentin (Anti-MCV) Relation with Extra-Articular Manifestations in Rheumatoid Arthritis

    OpenAIRE

    2014-01-01

    We evaluated the association between anti-cyclic citrullinated peptide antibodies (anti-CCP) and anti-mutated citrullinated vimentin antibodies (anti-MCV) with the presence of extra-articular (ExRA) manifestations in 225 patients with rheumatoid arthritis (RA). Ninety-five patients had ExRA and 130 had no ExRA. There was no association of anti-CCP and anti-MCV levels with the presence of ExRA as total group (P = 0.40 and P = 0.91, resp.). Making an analysis of individual manifestations, rheum...

  12. Immunological response and protection of mice immunized with plasmid encoding Toxoplasma gondii glycolytic enzyme malate dehydrogenase.

    Science.gov (United States)

    Hassan, I A; Wang, S; Xu, L; Yan, R; Song, X; XiangRui, L

    2014-12-01

    Toxoplasma gondii Malate dehydrogenase (TgMDH) plays an important role as part of the energy production cycle. In this investigation, immunological changes and protection efficiency of this protein delivered as a DNA vaccine have been evaluated. Mice were intramuscularly immunized with pTgMDH, followed by challenge with virulent T. gondii RH strain, 2 weeks after the booster immunization. Compared to the control groups, the results showed that pTgMDH has stimulated specific humoral response as demonstrated by significant high titers of total IgG and subclasses IgG1 and IgG2a , beside IgA and IgM, but not IgE. Analysis of cytokine profiles revealed significant increases of IFN-γ, IL-4 and IL-17, while no significant changes were detected in TGF-β1. In cell-mediated response, both T lymphocytes subpopulations CD4(+) and CD8(+) were positively recruited as significant percentages were recorded in response to immunization with TgMDH. Significant long survival rate, 17 days, has been observed in the TgMDH vaccinated group, in contrast with control groups which died within 8-9 days after challenge. These results demonstrated that TgMDH could induce significant immunological responses leading to a considerable level of protection against acute toxoplasmosis infection.

  13. Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    DEFF Research Database (Denmark)

    Baraibar, Martín A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina

    2016-01-01

    Accumulation of oxidized proteins is a hallmark of cellular and organismal aging. Adult muscle stem cell (or satellite cell) replication and differentiation is compromised with age contributing to sarcopenia. However, the molecular events related to satellite cell dysfunction during aging...

  14. Impaired metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    DEFF Research Database (Denmark)

    Baraibar, Martin; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina;

    2014-01-01

    leading to increased mobilization of non-carbohydrate substrates as branched chain amino acids or long chain fatty acids was observed in senescent cells. In addition, phospho-and glycerolipids metabolism was altered. Increased levels of acyl-carnitines indicated augmented turnover of storage and membrane...

  15. Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    DEFF Research Database (Denmark)

    Baraibar, Martín A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina

    2016-01-01

    Accumulation of oxidized proteins is a hallmark of cellular and organismal aging. Adult muscle stem cell (or satellite cell) replication and differentiation is compromised with age contributing to sarcopenia. However, the molecular events related to satellite cell dysfunction during aging are not...

  16. Plasma arginine and ornithine are the main citrulline precursors in mice infused with arginine-free diets.

    Science.gov (United States)

    Marini, Juan C; Didelija, Inka Cajo; Castillo, Leticia; Lee, Brendan

    2010-08-01

    Dietary arginine is the main dietary precursor for citrulline synthesis, but it is not known if other precursors can compensate when arginine is absent in the diet. To address this question, the contributions of plasma and dietary precursors were determined by using multitracer protocols in conscious mice infused i.g. either an arginine-sufficient diet [Arg(+)] or an arginine-free diet [Arg(-)]. The plasma entry rate of citrulline and arginine did not differ between the 2 diet groups (156 +/- 6 and 564 +/- 30 micromol kg(-1) h(-1), respectively); however, the entry rate of ornithine was greater in the mice fed the Arg(+) than the Arg(-) diet (332 +/- 33 vs. 180 +/- 16 micromol kg(-1) h(-1)). There was a greater utilization of plasma ornithine for the synthesis of citrulline (49 +/- 4 vs. 36 +/- 3 micromol kg(-1) h(-1), 30 +/- 3% vs. 24 +/- 2% of citrulline entry rate) in the mice fed the Arg(-) diet than the Arg(+) diet. The utilization of plasma arginine did not differ between the 2 diet groups for citrulline synthesis, either through plasma ornithine (approximately 29 +/- 3 micromol kg(-1) h(-1)) or at the site of citrulline synthesis (approximately 12 +/- 3 micromol kg(-1) h(-1)). The contribution of dietary proline to the synthesis of citrulline was mainly at the site of citrulline production (17 +/- 1 micromol kg(-1) h(-1)), rather than through plasma ornithine (5 +/- 0.4 micromol kg(-1) h(-1)). Dietary glutamine was utilized only at the site of citrulline synthesis (4 +/- 0.2 micromol kg(-1) h(-1)). Dietary glutamine and proline made a greater contribution to the synthesis of citrulline in mice fed the Arg(-) diet but remained minor sources for citrulline production. Plasma arginine and ornithine are able to support citrulline synthesis during arginine-free feeding.

  17. Long term effect of curcumin in regulation of glycolytic pathway and angiogenesis via modulation of stress activated genes in prevention of cancer.

    Directory of Open Access Journals (Sweden)

    Laxmidhar Das

    Full Text Available Oxidative stress, an important factor in modulation of glycolytic pathway and induction of stress activated genes, is further augmented due to reduced antioxidant defense system, which promotes cancer progression via inducing angiogenesis. Curcumin, a naturally occurring chemopreventive phytochemical, is reported to inhibit carcinogenesis in various experimental animal models. However, the underlying mechanism involved in anticarcinogenic action of curcumin due to its long term effect is still to be reported because of its rapid metabolism, although metabolites are accumulated in tissues and remain for a longer time. Therefore, the long term effect of curcumin needs thorough investigation. The present study aimed to analyze the anticarcinogenic action of curcumin in liver, even after withdrawal of treatment in Dalton's lymphoma bearing mice. Oxidative stress observed during lymphoma progression reduced antioxidant enzyme activities, and induced angiogenesis as well as activation of early stress activated genes and glycolytic pathway. Curcumin treatment resulted in activation of antioxidant enzyme super oxide dismutase and down regulation of ROS level as well as activity of ROS producing enzyme NADPH:oxidase, expression of stress activated genes HIF-1α, cMyc and LDH activity towards normal level. Further, it lead to significant inhibition of angiogenesis, observed via MMPs activity, PKCα and VEGF level, as well as by matrigel plug assay. Thus findings of this study conclude that the long term effect of curcumin shows anticarcinogenic potential via induction of antioxidant defense system and inhibition of angiogenesis via down regulation of stress activated genes and glycolytic pathway in liver of lymphoma bearing mice.

  18. The periodontium of periodontitis patients contains citrullinated proteins which may play a role in ACPA (anti-citrullinated protein antibody) formation

    NARCIS (Netherlands)

    Nesse, Willem; Westra, Johanna; van der Wal, Jacqueline E.; Abbas, Frank; Nicholas, Anthony P.; Vissink, Arjan; Brouwer, Elisabeth; Westra J., [No Value

    Aim To determine the presence and location (stroma versus epithelium) of citrullinated proteins in periodontitis tissue as compared to non-periodontitis tissue and synovial tissue of RA patients. Materials & Methods Periodontitis, healthy periodontal and RA-affected synovial tissue samples were

  19. The periodontium of periodontitis patients contains citrullinated proteins which may play a role in ACPA (anti-citrullinated protein antibody) formation

    NARCIS (Netherlands)

    Nesse, Willem; Westra, Johanna; van der Wal, Jacqueline E.; Abbas, Frank; Nicholas, Anthony P.; Vissink, Arjan; Brouwer, Elisabeth; Westra J., [No Value

    2012-01-01

    Aim To determine the presence and location (stroma versus epithelium) of citrullinated proteins in periodontitis tissue as compared to non-periodontitis tissue and synovial tissue of RA patients. Materials & Methods Periodontitis, healthy periodontal and RA-affected synovial tissue samples were coll

  20. The periodontium of periodontitis patients contains citrullinated proteins which may play a role in ACPA (anti-citrullinated protein antibody) formation

    NARCIS (Netherlands)

    Nesse, Willem; Westra, Johanna; van der Wal, Jacqueline E.; Abbas, Frank; Nicholas, Anthony P.; Vissink, Arjan; Brouwer, Elisabeth; Westra J., [No Value

    2012-01-01

    Aim To determine the presence and location (stroma versus epithelium) of citrullinated proteins in periodontitis tissue as compared to non-periodontitis tissue and synovial tissue of RA patients. Materials & Methods Periodontitis, healthy periodontal and RA-affected synovial tissue samples were coll

  1. Use of glycolytic pathways for inhibiting or measuring oncogenic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Yasuhito; Bissell, Mina

    2017-06-27

    Disclosed are methods in which glucose metabolism is correlated to oncogenesis through certain specific pathways; inhibition of certain enzymes is shown to interfere with oncogenic signaling, and measurement of certain enzyme levels is correlated with patient survival. The present methods comprise measuring level of expression of at least one of the enzymes involved in glucose uptake or metabolism, wherein increased expression of the at least one of the enzymes relative to expression in a normal cell correlates with poor prognosis of disease in a patient. Preferably the genes whose expression level is measured include GLUT3, PFKP, GAPDH, ALDOC, LDHA and GFPT2. Also disclosed are embodiments directed towards downregulating the expression of some genes in glucose uptake and metabolism.

  2. [Citrulline and arginine kinetics and its value as a prognostic factor in pediatric critically ill patients].

    Science.gov (United States)

    Blasco-Alonso, J; SánchezYáñez, P; Rosa Camacho, V; Camacho Alonso, J M; Yahyaoui Macías, R; Gil-Gómez, R; Milano Manso, G

    2015-10-01

    Low concentrations of plasma citrulline and arginine have been reported in children under various pathological conditions. Plasma citrulline and arginine levels undergo different kinetics during the early days of critical illness in children according to the severity of symptoms and can be correlated with other clinical and laboratory parameters associated with the SIR. A single-center prospective observational study in patients 7 days to 14 years admitted to pediatric intensive care unit (PICU). Citrulline and arginine blood levels (blood in dry paper, analysis by mass spectrometry in tandem), acute phase reactants and clinical data were collected on admission, at 12 h, 24 h, 3 and 7 days. A total of 44 critically ill patients were included and control group was formed by 42 healthy children. The citrulline and arginine kinetic analysis showed: 1) Citrulline falls significantly (P<.05) at 12 h of admission; levels remain low until day 7 and begin progressive increase again. 2) Arginine is already lowered at 6h, although an earlier rise occurs (3rd day). 3. The decrease of citrulline in the first 3 days of admission positively correlates with arginine kinetics. Bivariate analysis showed: 1) Correlation of elevated citrulline on the 7th day with shorter duration of mechanical ventilation, lower PICU stay and lower occurrence of complications. The levels of citrulline still descended at day 7 are associated with increased CRP/procalcitonin elevation at first 24 h. 2) The greatest decrease of arginine in the first 12 h is associated with a longer PICU stay and greater number of complications and increase of acute phase reactants at 3 days. There are decreased levels of arginine and citrulline in the first days at PICU, with recovery at the 3rd and 7th day respectively, and a relationship between a greater decrease and a worse outcome and between a longer income and a higher serum CRP/procalcitonin. Copyright © 2015. Published by Elsevier España, S.L.U.

  3. L-citrulline-malate influence over branched chain amino acid utilization during exercise.

    Science.gov (United States)

    Sureda, Antoni; Córdova, Alfredo; Ferrer, Miguel D; Pérez, Gerardo; Tur, Josep A; Pons, Antoni

    2010-09-01

    Exhaustive exercise induces disturbances in metabolic homeostasis which can result in amino acid catabolism and limited L-arginine availability. Oral L-citrulline supplementation raises plasma L-arginine concentration and augments NO-dependent signalling. Our aim was to evaluate the effects of diet supplementation with L-citrulline-malate prior to intense exercise on the metabolic handle of plasma amino acids and on the products of metabolism of arginine as creatinine, urea and nitrite and the possible effects on the hormonal levels. Seventeen voluntary male pre-professional cyclists were randomly assigned to one of two groups: control or supplemented (6 g L-citrulline-malate 2 h prior exercise) and participated in a 137-km cycling stage. Blood samples were taken in basal conditions, 15 min after the race and 3 h post race (recovery). Most essential amino acids significantly decreased their plasma concentration as a result of exercise; however, most non-essential amino acids tended to significantly increase their concentration. Citrulline-malate ingestion significantly increased the plasma concentration of citrulline, arginine, ornithine, urea, creatinine and nitrite (p urea.

  4. L-citrulline supplementation reverses the impaired airway relaxation in neonatal rats exposed to hyperoxia

    Directory of Open Access Journals (Sweden)

    Sopi Ramadan B

    2012-08-01

    Full Text Available Abstract Background Hyperoxia is shown to impair airway relaxation via limiting L-arginine bioavailability to nitric oxide synthase (NOS and reducing NO production as a consequence. L-arginine can also be synthesized by L-citrulline recycling. The role of L-citrulline supplementation was investigated in the reversing of hyperoxia-induced impaired relaxation of rat tracheal smooth muscle (TSM. Methods Electrical field stimulation (EFS, 2–20 V-induced relaxation was measured under in vitro conditions in preconstricted tracheal preparations obtained from 12 day old rat pups exposed to room air or hyperoxia (>95% oxygen for 7 days supplemented with L-citrulline or saline (in vitro or in vivo. The role of the L-citrulline/L-arginine cycle under basal conditions was studied by incubation of preparations in the presence of argininosuccinate synthase (ASS inhibitor [α-methyl-D, L-aspartate, 1 mM] or argininosuccinate lyase inhibitor (ASL succinate (1 mM and/or NOS inhibitor [Nω-nitro-L-arginine methyl ester; 100 μM] with respect to the presence or absence of L-citrulline (2 mM. Results Hyperoxia impaired the EFS-induced relaxation of TSM as compared to room air control (p ; 0.5 ± 0.1% at 2 V to 50.6 ± 5.7% at 20 V in hyperoxic group: 0.7 ± 0.2 at 2 V to 80.0 ± 5.6% at 20 V in room air group. Inhibition of ASS or ASL, and L-citrulline supplementation did not affect relaxation responses under basal conditions. However, inhibition of NOS significantly reduced relaxation responses (p in vivo and in vitro also reversed the hyperoxia-impaired relaxation. The differences were significant (p ; 0.8 ± 0.3% at 2 V to 47.1 ± 4.1% at 20 V without L-citrulline; 0.9 ± 0.3% at 2 V to 68.2 ± 4.8% at 20 V with L-citrulline. Inhibition of ASS or ASL prevented this effect of L-citrulline. Conclusion The results indicate the presence of an L-citrulline/L-arginine cycle in the airways of rat pups

  5. Spatiotemporal Analysis of a Glycolytic Activity Gradient Linked to Mouse Embryo Mesoderm Development.

    Science.gov (United States)

    Bulusu, Vinay; Prior, Nicole; Snaebjornsson, Marteinn T; Kuehne, Andreas; Sonnen, Katharina F; Kress, Jana; Stein, Frank; Schultz, Carsten; Sauer, Uwe; Aulehla, Alexander

    2017-02-27

    How metabolism is rewired during embryonic development is still largely unknown, as it remains a major technical challenge to resolve metabolic activities or metabolite levels with spatiotemporal resolution. Here, we investigated metabolic changes during development of organogenesis-stage mouse embryos, focusing on the presomitic mesoderm (PSM). We measured glycolytic labeling kinetics from (13)C-glucose tracing experiments and detected elevated glycolysis in the posterior, more undifferentiated PSM. We found evidence that the spatial metabolic differences are functionally relevant during PSM development. To enable real-time quantification of a glycolytic metabolite with spatiotemporal resolution, we generated a pyruvate FRET-sensor reporter mouse line. We revealed dynamic changes in cytosolic pyruvate levels as cells transit toward a more anterior PSM state. Combined, our approach identifies a gradient of glycolytic activity across the PSM, and we provide evidence that these spatiotemporal metabolic changes are intrinsically linked to PSM development and differentiation.

  6. Potential role for peptidylarginine deiminase 2 (PAD2 in citrullination of canine mammary epithelial cell histones.

    Directory of Open Access Journals (Sweden)

    Brian D Cherrington

    Full Text Available Peptidylarginine Deiminases (PADs convert arginine residues on substrate proteins to citrulline. Previous reports have documented that PAD2 expression and activity varies across the estrous cycle in the rodent uterus and pituitary gland, however, the expression and function of PAD2 in mammary tissue has not been previously reported. To gain more insight into potential reproductive roles for PAD2, in this study we evaluated PAD2 expression and localization throughout the estrous cycle in canine mammary tissue and then identified possible PAD2 enzymatic targets. Immunohistochemical and immunofluorescence analysis found PAD2 expression is low in anestrus, limited to a distinct, yet sparse, subset of epithelial cells within ductal alveoli during estrus/early diestrus, and encompasses the entire epithelium of the mammary duct in late diestrus. At the subcellular level, PAD2 is expressed in the cytoplasm, and to a lesser extent, the nucleus of these epithelial cells. Surprisingly, stimulation of canine mammary tumor cells (CMT25 shows that EGF, but not estrogen or progesterone, upregulates PAD2 transcription and translation suggesting EGF regulation of PAD2 and possibly citrullination in vivo. To identify potential PAD2 targets, anti-pan citrulline western blots were performed and results showed that citrullination activity is limited to diestrus with histones appearing to represent major enzymatic targets. Use of site-specific anti-citrullinated histone antibodies found that the N-terminus of histone H3, but not H4, appears to be the primary target of PAD activity in mammary epithelium. This observation supports the hypothesis that PAD2 may play a regulatory role in the expression of lactation related genes via histone citrullination during diestrus.

  7. Effects of L-citrulline diet on stress-induced cold hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Yoshinori Kobayashi

    2014-01-01

    Full Text Available Background: L-citrulline is an amino acid discovered in watermelon (Citrullus lanatus, Cucurbitaceae and is a known component of the nitric oxide (NO cycle that plays an important role in adjusting blood circulation and supplying NO and a key component of the endothelium-derived relaxing factor. Objective: The objective of this study is to evaluate the effect of L-citrulline on a newly established stress-induced cold hypersensitivity mouse model. Materials and Methods: When normal mice were forced to swim in water at 25°C for 15 min, their core body temperature dropped to 28.9°C, and then quickly recovered to normal temperature after the mice were transferred to a dry cage at room temperature (25°C. A 1-h immobilization before swimming caused the core body temperature to drop to ca. 24.1°C (4.8°C lower than normal mice, and the speed of core body temperature recovery dropped to 57% of the normal control. We considered this delay in recovery from hypothermia to be a sign of stress-induced cold hypersensitivity. Similar cold hypersensitivity was induced by administration of 50 mM L-NG-nitroarginine methyl ester, a NO synthesis inhibitor. Results: In this study, we showed that recovery speed from the stress-induced hypothermia remarkably improved in mice fed a 1% L-citrulline-containing diet for 20 days. Furthermore, the nonfasting blood level of L-arginine and L-citrulline increased significantly in the L-citrulline diet group, and higher serum nitrogen oxide levels were observed during recovery from the cold. Conclusions: These results suggested that oral L-citrulline supplementation strengthens vascular endothelium function and attenuates stress-induced cold hypersensitivity by improving blood circulation.

  8. The Antidiabetic Drug Metformin Stimulates Glycolytic Lactate Production in Cultured Primary Rat Astrocytes.

    Science.gov (United States)

    Westhaus, Adrian; Blumrich, Eva Maria; Dringen, Ralf

    2017-01-01

    Metformin is the most frequently used drug for the treatment of type 2 diabetes in humans. However, only little is known about effects of metformin on brain metabolism. To investigate potential metabolic consequences of an exposure of brain cells to metformin, we incubated rat astrocyte-rich primary cultures with this compound. Metformin in concentrations of up to 30 mM did not acutely compromise the viability of astrocytes, but caused a time- and concentration-dependent increase in cellular glucose consumption and lactate production. For acute incubations in the hour range, the presence of 10 mM metformin doubled the glycolytic flux, while already 1 mM metformin doubled glycolytic flux during incubation for 24 h. In addition to metformin, also other guanidino compounds increased astrocytic lactate production. After 4 h of incubation, half-maximal stimulation of glycolysis was observed for metformin, guanidine and phenformin at concentrations of around 3 mM, 3 mM and 30 µM, respectively. The acute stimulation of glycolytic lactate production by metformin was persistent after removal of extracellular metformin and was also observed, if glucose was absent from the incubation medium or replaced by other hexoses. The metformin-induced stimulation of glycolytic flux was not prevented by compound C, an inhibitor of AMP-dependent protein kinase, nor was it additive to the stimulation of glycolytic flux caused by respiratory chain inhibitors. These data demonstrate that the antidiabetic drug metformin has the potential to strongly activate glycolytic lactate production in brain astrocytes.

  9. Contribution of peptide backbone to Anti-citrulline-dependent antibody reactivity

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Dam, Catharina; Olsen, Dorthe

    2015-01-01

    Rheumatoid arthritis (RA) is one of the most common autoimmune diseases, affecting approximately 1–2% of the world population. One of the characteristic features of RA is the presence of autoantibodies. Especially the highly specific anti-citrullinated peptide antibodies (ACPAs), which have been...... homology rather than sequence homology are favored between citrullinated epitopes. These findings are important in relation to clarifying the etiology of RA and to determine the nature of ACPAs, e.g. why some Cit-Gly-containing sequences are not targeted by ACPAs....

  10. Arginine Deiminase Enzyme Evolving As A Potential Antitumor Agent.

    Science.gov (United States)

    Somani, Rakesh; Chaskar, Pratip K

    2016-08-17

    Some melanomas and hepatocellular carcinomas have been shown to be auxotrophic for arginine. Arginine deiminase (ADI), an arginine degrading enzyme isolated from Mycoplasma, can inhibit the growth of these tumors. It is a catabolizing enzyme which catabolizes arginine to citrulline. Tumor cells do not express an enzyme called arginosuccinate synthetase (ASS) and hence, these cells becomes auxotrophic for arginine. It is found that ADI is specific for arginine and did not degrade other amino acid. This review covers various aspects of ADIs like origin, properties and chemical modifications for better antitumor activity.

  11. High-intensity interval training-induced metabolic adaptation coupled with an increase in Hif-1α and glycolytic protein expression.

    Science.gov (United States)

    Abe, Takaaki; Kitaoka, Yu; Kikuchi, Dale Manjiro; Takeda, Kohei; Numata, Osamu; Takemasa, Tohru

    2015-12-01

    It is known that repeated bouts of high-intensity interval training (HIIT) lead to enhanced levels of glycolysis, glycogenesis, and lactate transport proteins in skeletal muscle; however, little is known about the molecular mechanisms underlying these adaptations. To decipher the mechanism leading to improvement of skeletal muscle glycolytic capacity associated with HIIT, we examined the role of hypoxia-inducible factor-1α (Hif-1α), the major transcription factor regulating the expression of genes related to anaerobic metabolism, in the adaptation to HIIT. First, we induced Hif-1α accumulation using ethyl 3,4-dihydroxybenzoate (EDHB) to assess the potential role of Hif-1α in skeletal muscle. Treatment with EDHB significantly increased the protein levels of Hif-1α in gastrocnemius muscles, accompanied by elevated expression of genes related to glycolysis, glycogenesis, and lactate transport. Daily administration of EDHB for 1 wk resulted in elevated glycolytic enzyme activity in gastrocnemius muscles. Second, we examined whether a single bout of HIIT could induce Hif-1α protein accumulation and subsequent increase in the expression of genes related to anaerobic metabolism in skeletal muscle. We observed that the protein levels of Hif-1α and expression of the target genes were elevated 3 h after an acute bout of HIIT in gastrocnemius muscles. Last, we examined the effects of long-term HIIT. We found that long-term HIIT increased the basal levels of Hif-1α as well as the glycolytic capacity in gastrocnemius muscles. Our results suggest that Hif-1α is a key regulator in the metabolic adaptation to high-intensity training.

  12. Characterization of phosphofructokinase activity in Mycobacterium tuberculosis reveals that a functional glycolytic carbon flow is necessary to limit the accumulation of toxic metabolic intermediates under hypoxia.

    Directory of Open Access Journals (Sweden)

    Wai Yee Phong

    Full Text Available Metabolic versatility has been increasingly recognized as a major virulence mechanism that enables Mycobacterium tuberculosis to persist in many microenvironments encountered in its host. Glucose is one of the most abundant carbon sources that is exploited by many pathogenic bacteria in the human host. M. tuberculosis has an intact glycolytic pathway that is highly conserved in all clinical isolates sequenced to date suggesting that glucose may represent a non-negligible source of carbon and energy for this pathogen in vivo. Fructose-6-phosphate phosphorylation represents the key-committing step in glycolysis and is catalyzed by a phosphofructokinase (PFK activity. Two genes, pfkA and pfkB have been annotated to encode putative PFK in M. tuberculosis. Here, we show that PFKA is the sole PFK enzyme in M. tuberculosis with no functional redundancy with PFKB. PFKA is required for growth on glucose as sole carbon source. In co-metabolism experiments, we report that disruption of the glycolytic pathway at the PFK step results in intracellular accumulation of sugar-phosphates that correlated with significant impairment of the cell viability. Concomitantly, we found that the presence of glucose is highly toxic for the long-term survival of hypoxic non-replicating mycobacteria, suggesting that accumulation of glucose-derived toxic metabolites does occur in the absence of sustained aerobic respiration. The culture medium traditionally used to study the physiology of hypoxic mycobacteria is supplemented with glucose. In this medium, M. tuberculosis can survive for only 7-10 days in a true non-replicating state before death is observed. By omitting glucose in the medium this period could be extended for up to at least 40 days without significant viability loss. Therefore, our study suggests that glycolysis leads to accumulation of glucose-derived toxic metabolites that limits long-term survival of hypoxic mycobacteria. Such toxic effect is exacerbated when

  13. Characterization of phosphofructokinase activity in Mycobacterium tuberculosis reveals that a functional glycolytic carbon flow is necessary to limit the accumulation of toxic metabolic intermediates under hypoxia.

    Science.gov (United States)

    Phong, Wai Yee; Lin, Wenwei; Rao, Srinivasa P S; Dick, Thomas; Alonso, Sylvie; Pethe, Kevin

    2013-01-01

    Metabolic versatility has been increasingly recognized as a major virulence mechanism that enables Mycobacterium tuberculosis to persist in many microenvironments encountered in its host. Glucose is one of the most abundant carbon sources that is exploited by many pathogenic bacteria in the human host. M. tuberculosis has an intact glycolytic pathway that is highly conserved in all clinical isolates sequenced to date suggesting that glucose may represent a non-negligible source of carbon and energy for this pathogen in vivo. Fructose-6-phosphate phosphorylation represents the key-committing step in glycolysis and is catalyzed by a phosphofructokinase (PFK) activity. Two genes, pfkA and pfkB have been annotated to encode putative PFK in M. tuberculosis. Here, we show that PFKA is the sole PFK enzyme in M. tuberculosis with no functional redundancy with PFKB. PFKA is required for growth on glucose as sole carbon source. In co-metabolism experiments, we report that disruption of the glycolytic pathway at the PFK step results in intracellular accumulation of sugar-phosphates that correlated with significant impairment of the cell viability. Concomitantly, we found that the presence of glucose is highly toxic for the long-term survival of hypoxic non-replicating mycobacteria, suggesting that accumulation of glucose-derived toxic metabolites does occur in the absence of sustained aerobic respiration. The culture medium traditionally used to study the physiology of hypoxic mycobacteria is supplemented with glucose. In this medium, M. tuberculosis can survive for only 7-10 days in a true non-replicating state before death is observed. By omitting glucose in the medium this period could be extended for up to at least 40 days without significant viability loss. Therefore, our study suggests that glycolysis leads to accumulation of glucose-derived toxic metabolites that limits long-term survival of hypoxic mycobacteria. Such toxic effect is exacerbated when the glycolytic

  14. Primordial oscillations in life: Direct observation of glycolytic oscillations in individual HeLa cervical cancer cells

    Science.gov (United States)

    Amemiya, Takashi; Shibata, Kenichi; Itoh, Yoshihiro; Itoh, Kiminori; Watanabe, Masatoshi; Yamaguchi, Tomohiko

    2017-10-01

    We report the first direct observation of glycolytic oscillations in HeLa cervical cancer cells, which we regard as primordial oscillations preserved in living cells. HeLa cells starved of glucose or both glucose and serum exhibited glycolytic oscillations in nicotinamide adenine dinucleotide (NADH), exhibiting asynchronous intercellular behaviors. Also found were spatially homogeneous and inhomogeneous intracellular NADH oscillations in the individual cells. Our results demonstrate that starved HeLa cells may be induced to exhibit glycolytic oscillations by either high-uptake of glucose or the enhancement of a glycolytic pathway (Crabtree effect or the Warburg effect), or both. Their asynchronous collective behaviors in the oscillations were probably due to a weak intercellular coupling. Elucidation of the relationship between the mechanism of glycolytic dynamics in cancer cells and their pathophysiological characteristics remains a challenge in future.

  15. Synchronization of glycolytic oscillations in a yeast cell population

    DEFF Research Database (Denmark)

    Dano, S.; Hynne, F.; De Monte, Silvia

    2001-01-01

    The mechanism of active phase synchronization in a suspension of oscillatory yeast cells has remained a puzzle for almost half a century. The difficulty of the problem stems from the fact that the synchronization phenomenon involves the entire metabolic network of glycolysis and fermentation......, and consequently it cannot be addressed at the level of a single enzyme or a single chemical species. In this paper it is shown how this system in a CSTR (continuous flow stirred tank reactor) can be modelled quantitatively as a population of Stuart-Landau oscillators interacting by exchange of metabolites through...

  16. Targeting ornithine decarboxylase reverses the LIN28/Let-7 axis and inhibits glycolytic metabolism in neuroblastoma.

    Science.gov (United States)

    Lozier, Ann M; Rich, Maria E; Grawe, Anissa Pedersen; Peck, Anderson S; Zhao, Ping; Chang, Anthony Ting-Tung; Bond, Jeffrey P; Sholler, Giselle Saulnier

    2015-01-01

    LIN28 has emerged as an oncogenic driver in a number of cancers, including neuroblastoma (NB). Overexpression of LIN28 correlates with poor outcome in NB, therefore drugs that impact the LIN28/Let-7 pathway could be beneficial in treating NB patients. The LIN28/Let-7 pathway affects many cellular processes including the regulation of cancer stem cells and glycolytic metabolism. Polyamines, regulated by ornithine decarboxylase (ODC) modulate eIF-5A which is a direct regulator of the LIN28/Let-7 axis. We propose that therapy inhibiting ODC will restore balance to the LIN28/Let-7 axis, suppress glycolytic metabolism, and decrease MYCN protein expression in NB. Difluoromethylornithine (DFMO) is an inhibitor of ODC in clinical trials for children with NB. In vitro experiments using NB cell lines, BE(2)-C, SMS-KCNR, and CHLA90 show that DFMO treatment reduced LIN28B and MYCN protein levels and increased Let-7 miRNA and decreased neurosphere formation. Glycolytic metabolic activity decreased with DFMO treatment in vivo. Additionally, sensitivity to DFMO treatment correlated with LIN28B overexpression (BE(2)-C>SMS-KCNR>CHLA90). This is the first study to demonstrate that DFMO treatment restores balance to the LIN28/Let-7 axis and inhibits glycolytic metabolism and neurosphere formation in NB and that PET scans may be a meaningful imaging tool to evaluate the therapeutic effects of DFMO treatment.

  17. Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast

    NARCIS (Netherlands)

    Zampar, Guillermo G; Kümmel, Anne; Ewald, Jennifer; Jol, Stefan; Niebel, Bastian; Picotti, Paola; Aebersold, Ruedi; Sauer, Uwe; Zamboni, Nicola; Heinemann, Matthias

    2013-01-01

    The diauxic shift in Saccharomyces cerevisiae is an ideal model to study how eukaryotic cells readjust their metabolism from glycolytic to gluconeogenic operation. In this work, we generated time-resolved physiological data, quantitative metabolome (69 intracellular metabolites) and proteome (72 enz

  18. Regulation of glycolytic oscillations by mitochondrial and plasma membrane H+-ATPases

    DEFF Research Database (Denmark)

    Olsen, Lars Folke; Andersen, Ann Zahle; Lunding, Anita

    2009-01-01

    We investigated the coupling between glycolytic and mitochondrial membrane potential oscillations in Saccharomyces cerevisiae under semianaerobic conditions. Glycolysis was measured as NADH autofluorescence, and mitochondrial membrane potential was measured using the fluorescent dye 3,3'-diethylo......We investigated the coupling between glycolytic and mitochondrial membrane potential oscillations in Saccharomyces cerevisiae under semianaerobic conditions. Glycolysis was measured as NADH autofluorescence, and mitochondrial membrane potential was measured using the fluorescent dye 3......,3'-diethyloxacarbocyanine iodide. The responses of glycolytic and membrane potential oscillations to a number of inhibitors of glycolysis, mitochondrial electron flow, and mitochondrial and plasma membrane H(+)-ATPase were investigated. Furthermore, the glycolytic flux was determined as the rate of production of ethanol...... in a number of different situations (changing pH or the presence and absence of inhibitors). Finally, the intracellular pH was determined and shown to oscillate. The results support earlier work suggesting that the coupling between glycolysis and mitochondrial membrane potential is mediated by the ADP...

  19. Tin-Containing Silicates: Identification of a Glycolytic Pathway via 3-Deoxyglucosone

    DEFF Research Database (Denmark)

    Tolborg, Søren; Meier, Sebastian; Sádaba, I.;

    2016-01-01

    Inorganic glycolytic systems, capable of transforming glucose through a cascade of catalytic steps, can lead to efficient chemical processes utilising carbohydrates as feedstock. Tin-containing silicates, such as Sn-Beta, are showing potential for the production of lactates from sugars through a ...

  20. Strong combined gene-environment effects in anti-cyclic citrullinated peptide-positive rheumatoid arthritis

    DEFF Research Database (Denmark)

    Pedersen, Line Merete Blak; Jacobsen, Søren; Garred, Peter;

    2007-01-01

    To study the role of shared epitope (SE) susceptibility genes, alone and in combination with tobacco smoking and other environmental risk factors, for risk of subtypes of rheumatoid arthritis (RA) defined by the presence or absence of serum antibodies against cyclic citrullinated peptides (CCPs)....

  1. Anti-cyclic citrullinated peptide (anti-CCP) antibodies with brucellosis.

    Science.gov (United States)

    Kisacik, Bunyamin; Dag, Muhammet Said; Pehlivan, Yavuz; Ugurlu, Kenan; Mercan, Ozge Kaya; Aydinli, Musa; Devay, Seda Duygulu; Sayarlioglu, Mehmet; Onat, Ahmet Mesut

    2014-06-01

    Anti-cyclic citrullinated peptide (anti-CCP) was positive in 11.5 % and rheumatoid factor was positive in 8.8 % of the patients with Brucella. After a comparative evaluation, we have found out that there was not a statistical significance concerning the anti-CCP levels between the patients with brucellosis and healthy control.

  2. Current Challenges and Limitations in Antibody-Based Detection of Citrullinated Histones

    Science.gov (United States)

    Neeli, Indira; Radic, Marko

    2016-01-01

    Studies on NETosis demand reliable and convenient markers to monitor the progress of this form of cell death. Because a determining step in the release of nuclear chromatin NETs requires the conversion of arginine residues to citrulline residues in histones by peptidylarginine deiminase, citrullinated histones can provide such a marker. Here, we evaluate antibody reagents for the detection of citrulline residues in histones and observe alarming differences between commercial antisera and mouse and rabbit monoclonal antibodies in their ability to detect their nominal target residues. Differences between antibodies that are currently used to detect citrulline residues in histones could jeopardize efforts to reach a scientific consensus and instead lead to inconsistent and even conflicting conclusions regarding the regulation of histone deimination. Our results will assist others in planning their initial or ongoing studies on peptidylarginine deiminase activity with the use of currently available antibodies. Furthermore, we argue that, along with the careful attention to experimental conditions and calcium concentrations, validated antibody reagents are urgently needed to avoid possible setbacks in the research on NETosis. PMID:27933065

  3. Current Challenges and Limitations in Antibody-Based Detection of Citrullinated Histones

    Directory of Open Access Journals (Sweden)

    Indira Neeli

    2016-11-01

    Full Text Available Studies on NETosis demand reliable and convenient markers to monitor the progress of this form of cell death. Because a determining step in the release of nuclear chromatin NETs requires the conversion of arginine residues to citrulline residues in histones by peptidylarginine deiminase, citrullinated histones can provide such a marker. Here, we evaluate antibody reagents for the detection of citrulline residues in histones and observe alarming differences between commercial antisera and mouse and rabbit monoclonal antibodies in their ability to detect their nominal target residues. Differences between antibodies that are currently used to detect citrulline residues in histones could jeopardize efforts to reach a scientific consensus and instead lead to inconsistent and even conflicting conclusions regarding the regulation of histone deimination. Our results will assist others in planning their initial or ongoing studies on peptidylarginine deiminase activity with the use of currently available antibodies. Further, we argue that, along with the careful attention to experimental conditions and calcium concentrations, validated antibody reagents are urgently needed to avoid possible setbacks in the research on NETosis.

  4. Circulating levels of citrullinated and MMP-degraded vimentin (VICM) in liver fibrosis related pathology

    DEFF Research Database (Denmark)

    Vassiliadis, E.; Oliveira, C. P.; Alvares-da-Silva, M. R.;

    2012-01-01

    -citrulline (VICM) was developed and evaluated in a carbon tetrachloride (CCl4) (n=52 + 28 controls) rat model of liver fibrosis and two clinical cohorts of adult patients with hepatitis C (HCV) (n=92) and non-alcoholic fatty liver disease (NAFLD) (n=62), and compared to healthy controls. Results: In CCl4-treated...

  5. Post-translational modifications in rheumatoid arthritis and atherosclerosis: Focus on citrullination and carbamylation.

    Science.gov (United States)

    Spinelli, Francesca Romana; Pecani, Arbi; Conti, Fabrizio; Mancini, Riccardo; Alessandri, Cristiano; Valesini, Guido

    2016-09-01

    Coronary heart disease is the main cause of mortality in patients with rheumatoid arthritis (RA), a disease known to be associated with accelerated atherosclerosis. The role of inflammation and immunity in atherosclerotic process offers possible explanations for the increased cardiovascular risk in patients with RA. The immune response to citrullinated peptides has been extensively studied in RA; antibodies directed to citrullinated peptides are now a cornerstone for RA diagnosis. However, few studies have investigated the response to citrullinated peptides and the development of atherosclerotic plaque. Antibodies to carbamylated proteins can be detected before the clinical onset of RA, suggesting a potential predictive role for these antibodies; on the other hand, carbamylation of lipoproteins has been described in patients with cardiovascular disease. This review examines the role of citrullination and carbamylation, two post-translational protein modifications that appear to be involved in the pathogenesis of both RA and atherosclerosis, expanding the similarities between these two diseases. Further investigation on the role of the immune response to modified proteins may contribute to a better comprehension of cardiovascular disease in patients with RA.

  6. Impaired nitric oxide production in children with MELAS syndrome and the effect of arginine and citrulline supplementation.

    Science.gov (United States)

    El-Hattab, Ayman W; Emrick, Lisa T; Hsu, Jean W; Chanprasert, Sirisak; Almannai, Mohammed; Craigen, William J; Jahoor, Farook; Scaglia, Fernando

    2016-04-01

    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most frequent maternally inherited mitochondrial disorders. The pathogenesis of this syndrome is not fully understood and believed to result from several interacting mechanisms including impaired mitochondrial energy production, microvasculature angiopathy, and nitric oxide (NO) deficiency. NO deficiency in MELAS syndrome is likely to be multifactorial in origin with the decreased availability of the NO precursors, arginine and citrulline, playing a major role. In this study we used stable isotope infusion techniques to assess NO production in children with MELAS syndrome and healthy pediatric controls. We also assessed the effect of oral arginine and citrulline supplementations on NO production in children with MELAS syndrome. When compared to control subjects, children with MELAS syndrome were found to have lower NO production, arginine flux, plasma arginine, and citrulline flux. In children with MELAS syndrome, arginine supplementation resulted in increased NO production, arginine flux, and arginine concentration. Citrulline supplementation resulted in a greater increase of these parameters. Additionally, citrulline supplementation was associated with a robust increase in citrulline concentration and flux and de novo arginine synthesis rate. The greater effect of citrulline in increasing NO production is due to its greater ability to increase arginine availability particularly in the intracellular compartment in which NO synthesis takes place. This study, which is the first one to assess NO metabolism in children with mitochondrial diseases, adds more evidence to the notion that NO deficiency occurs in MELAS syndrome, suggests a better effect for citrulline because of its greater role as NO precursor, and indicates that impaired NO production occurs in children as well as adults with MELAS syndrome. Thus, the initiation of treatment with NO precursors may be

  7. Nitric oxide production by peritoneal macrophages from aged rats: A short term and direct modulation by citrulline.

    Science.gov (United States)

    Breuillard, Charlotte; Curis, Emmanuel; Le Plénier, Servane; Cynober, Luc; Moinard, Christophe

    2017-02-01

    Citrulline has anti-inflammatory properties and exerts beneficial effects on various impaired functions in aging. However, there are few data on citrulline action on immune function in aged populations. The objective of the study was to evaluate citrulline ability, after in vivo and in vitro administration, to modulate macrophage functions in aged rats and the possible pathways involved. Twenty-one-month-old Sprague-Dawley rats (n = 27) received a citrulline supplementation at 5 g/kg/d for 5 days, or an isonitrogenous diet, and peritoneal macrophages were cultured with or without LPS. In the in vitro study, macrophages from 22-month-old rats (n = 16) were cultured with or without LPS, citrulline and inhibitors of different inflammatory pathways (n = 8/conditions). Nitric oxide (NO) and tumor necrosis factor α (TNFα) production were measured in both in vivo and in vitro studies. Citrulline decreased NO production variability by peritoneal macrophages after in vivo administration (p = 0.0034) and downregulated NO production by 22% after in vitro administration (95% CI: [6%; 35%]; p = 0.0394), without any direct effect on TNFα production. None of the transductional pathways explored seem to be involved. Citrulline slightly modulates NO production in vivo and in vitro, suggesting a possible action through modulation of arginine metabolism in macrophages rather than a direct transductional effect. The pleiotropic effects of citrulline in aging could be due, at least in part, to the anti-inflammatory effect of citrulline. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. Increased plasma citrulline in mice marks diet-induced obesity and may predict the development of the metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Manuela Sailer

    Full Text Available In humans, plasma amino acid concentrations of branched-chain amino acids (BCAA and aromatic amino acids (AAA increase in states of obesity, insulin resistance and diabetes. We here assessed whether these putative biomarkers can also be identified in two different obesity and diabetic mouse models. C57BL/6 mice with diet-induced obesity (DIO mimic the metabolic impairments of obesity in humans characterized by hyperglycemia, hyperinsulinemia and hepatic triglyceride accumulation. Mice treated with streptozotocin (STZ to induce insulin deficiency were used as a type 1 diabetes model. Plasma amino acid profiling of two high fat (HF feeding trials revealed that citrulline and ornithine concentrations are elevated in obese mice, while systemic arginine bioavailability (ratio of plasma arginine to ornithine + citrulline is reduced. In skeletal muscle, HF feeding induced a reduction of arginine levels while citrulline levels were elevated. However, arginine or citrulline remained unchanged in their key metabolic organs, intestine and kidney. Moreover, the intestinal conversion of labeled arginine to ornithine and citrulline in vitro remained unaffected by HF feeding excluding the intestine as prime site of these alterations. In liver, citrulline is mainly derived from ornithine in the urea cycle and DIO mice displayed reduced hepatic ornithine levels. Since both amino acids share an antiport mechanism for mitochondrial import and export, elevated plasma citrulline may indicate impaired hepatic amino acid handling in DIO mice. In the insulin deficient mice, plasma citrulline and ornithine levels also increased and additionally these animals displayed elevated BCAA and AAA levels like insulin resistant and diabetic patients. Therefore, type 1 diabetic mice but not DIO mice show the "diabetic fingerprint" of plasma amino acid changes observed in humans. Additionally, citrulline may serve as an early indicator of the obesity-dependent metabolic

  9. Increased plasma citrulline in mice marks diet-induced obesity and may predict the development of the metabolic syndrome.

    Science.gov (United States)

    Sailer, Manuela; Dahlhoff, Christoph; Giesbertz, Pieter; Eidens, Mena K; de Wit, Nicole; Rubio-Aliaga, Isabel; Boekschoten, Mark V; Müller, Michael; Daniel, Hannelore

    2013-01-01

    In humans, plasma amino acid concentrations of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) increase in states of obesity, insulin resistance and diabetes. We here assessed whether these putative biomarkers can also be identified in two different obesity and diabetic mouse models. C57BL/6 mice with diet-induced obesity (DIO) mimic the metabolic impairments of obesity in humans characterized by hyperglycemia, hyperinsulinemia and hepatic triglyceride accumulation. Mice treated with streptozotocin (STZ) to induce insulin deficiency were used as a type 1 diabetes model. Plasma amino acid profiling of two high fat (HF) feeding trials revealed that citrulline and ornithine concentrations are elevated in obese mice, while systemic arginine bioavailability (ratio of plasma arginine to ornithine + citrulline) is reduced. In skeletal muscle, HF feeding induced a reduction of arginine levels while citrulline levels were elevated. However, arginine or citrulline remained unchanged in their key metabolic organs, intestine and kidney. Moreover, the intestinal conversion of labeled arginine to ornithine and citrulline in vitro remained unaffected by HF feeding excluding the intestine as prime site of these alterations. In liver, citrulline is mainly derived from ornithine in the urea cycle and DIO mice displayed reduced hepatic ornithine levels. Since both amino acids share an antiport mechanism for mitochondrial import and export, elevated plasma citrulline may indicate impaired hepatic amino acid handling in DIO mice. In the insulin deficient mice, plasma citrulline and ornithine levels also increased and additionally these animals displayed elevated BCAA and AAA levels like insulin resistant and diabetic patients. Therefore, type 1 diabetic mice but not DIO mice show the "diabetic fingerprint" of plasma amino acid changes observed in humans. Additionally, citrulline may serve as an early indicator of the obesity-dependent metabolic impairments.

  10. Detection of autoantibodies to citrullinated BiP in rheumatoid arthritis patients and pro-inflammatory role of citrullinated BiP in collagen-induced arthritis

    Science.gov (United States)

    2011-01-01

    Introduction Anti-citrullinated protein/peptide antibodies (ACPAs) are highly specific to rheumatoid arthritis (RA) patients and are thought to have a close relationship with the pathogenesis of arthritis. Several proteins, including fibrinogen, vimentin, and alpha-enolase, were reported as ACPA-target antigens, and their importance in RA pathogenesis was widely proposed. We identified citrullinated immunoglobulin binding protein (citBiP) as another ACPA target in RA patients and examined its pro-inflammatory role in arthritis. Methods We measured the levels of anti-citBiP, anti-BiP, and anti-cyclic citrullinated peptide (CCP) antibodies in the serum of RA patients (n = 100), systemic lupus erythematosus (SLE) patients (n = 60), and healthy controls (n = 30) using ELISA and immunoblotting. Epitope mapping was performed using 27 citBiP-derived peptides. In the mouse study, after DBA/1J mice were immunized with BiP or citBiP, serum titers of ACPAs were measured by ELISA and immunohistochemistry. The development of collagen-induced arthritis (CIA) was observed in BiP- or citBiP-pre-immunized mice. Results The serum levels of anti-BiP and anti-citBiP antibodies were significantly increased in RA patients, although only anti-BiP antibodies were slightly increased in SLE patients. Interestingly, anti-citBiP antibody levels were higher than anti-BiP antibody levels in 72% of RA patients, whereas no significant increase in anti-citBiP antibody levels was detected in SLE patients and healthy controls. The serum levels of anti-CCP antibodies were correlated with those of anti-citBiP antibodies in RA patients (R2 = 0.41). Several citrulline residues of citBiP were determined to be major epitopes of anti-citBiP antibodies, one of which showed cross-reactivity with CCP. Immunization of DBA/1J mice with citBiP induced several kinds of ACPAs, including anti-CCP and anti-citrullinated fibrinogen antibodies. Pre-immunization with citBiP exacerbated CIA, and anti-CCP antibody levels

  11. Decreased serum L-arginine and L-citrulline levels in major depression.

    Science.gov (United States)

    Hess, S; Baker, G; Gyenes, G; Tsuyuki, R; Newman, S; Le Melledo, Jean-Michel

    2017-08-13

    It has been suggested that endothelial dysfunction caused by a decreased endothelial production of nitric oxide (NO) may contribute to the consistently observed increased risk of developing cardiovascular disease (CVD) in physically healthy patients suffering from major depression (MD). NO is a gas synthesized from Larginine (a conditionally essential amino acid) and oxygen by endothelial nitric oxide synthase (eNOS). The end products of NO production include both NO and L-citrulline. NO is rapidly reduced to the anions nitrite and nitrate, classically referred to as NO metabolites. Their measurement has been used as a surrogate measurement for endothelial NO production. We and others have shown decreased levels of NO metabolites in the serum of MD patients. The mechanism of this decreased production of NO by the endothelium has not yet been elucidated. The purpose of this study is to assess serum levels of L-arginine and L-citrulline in patients with MD. Levels of L-arginine and L-citrulline were measured in 35 unmedicated physically healthy MD patients and 36 healthy controls (HCs). L-arginine and L-citrulline concentrations were significantly lower in MD patients than in healthy controls (L-arginine, 73.54 + 21.53 μmol/L and 84.89 + 25.16, p = 0.04 μmol/L and L-citrulline 31.58 + 6.05 μmol/L and 35.19 + 6.85 μmol/L, p = 0.03, respectively). The decrease in L-arginine levels in MD patients is a possible explanation for the decrease in NO metabolites in MD patients and therefore may contribute, through endothelial dysfunction, to the increased CV risk associated with MD.

  12. Contribution of Peptide Backbone to Anti-Citrullinated Peptide Antibody Reactivity.

    Directory of Open Access Journals (Sweden)

    Nicole Hartwig Trier

    Full Text Available Rheumatoid arthritis (RA is one of the most common autoimmune diseases, affecting approximately 1-2% of the world population. One of the characteristic features of RA is the presence of autoantibodies. Especially the highly specific anti-citrullinated peptide antibodies (ACPAs, which have been found in up to 70% of RA patients' sera, have received much attention. Several citrullinated proteins are associated with RA, suggesting that ACPAs may react with different sequence patterns, separating them from traditional antibodies, whose reactivity usually is specific towards a single target. As ACPAs have been suggested to be involved in the development of RA, knowledge about these antibodies may be crucial. In this study, we examined the influence of peptide backbone for ACPA reactivity in immunoassays. The antibodies were found to be reactive with a central Cit-Gly motif being essential for ACPA reactivity and to be cross-reactive between the selected citrullinated peptides. The remaining amino acids within the citrullinated peptides were found to be of less importance for antibody reactivity. Moreover, these findings indicated that the Cit-Gly motif in combination with peptide backbone is essential for antibody reactivity. Based on these findings it was speculated that any amino acid sequence, which brings the peptide into a properly folded structure for antibody recognition is sufficient for antibody reactivity. These findings are in accordance with the current hypothesis that structural homology rather than sequence homology are favored between citrullinated epitopes. These findings are important in relation to clarifying the etiology of RA and to determine the nature of ACPAs, e.g., why some Cit-Gly-containing sequences are not targeted by ACPAs.

  13. Isotypes of Epstein-Barr Virus Antibodies in Rheumatoid Arthritis: Association with Rheumatoid Factors and Citrulline-Dependent Antibodies

    Directory of Open Access Journals (Sweden)

    Marie Wulff Westergaard

    2015-01-01

    Full Text Available In order to study the humoral immune response against Epstein-Barr virus (EBV in patients with rheumatoid arthritis (RA and to compare it with the two major autoantibody types in RA, plasma samples from 77 RA patients, 28 patients with systemic lupus erythematosus (SLE, and 28 healthy controls (HCs were investigated by enzyme-linked immunosorbent assays (ELISA. Increased percentages of positives and concentrations of IgG/IgA/IgM antibodies against the latent EBV nuclear antigen-1 (EBNA-1 were observed in RA patients compared to SLE patients and HCs. Increased concentrations and percentages of positives of IgG/IgA/IgM against the early lytic EBV antigen diffuse (EAD were also found in RA patients compared to HCs but were highest in SLE patients. Furthermore, associations between the elevated EBNA-1 IgA and EBNA-1 IgM levels and the presence of IgM and IgA rheumatoid factors (RFs and anti-citrullinated protein antibodies (ACPAs, IgG and between elevated IgA concentrations against EAD and the presence of RFs and ACPAs in RA patients were found. Thus, RA patients had elevated antibodies of all isotypes characteristic of latent EBV infection (whereas SLE patients had elevated antibodies characteristic of lytic EBV infection. Notably, for IgM and IgA (but not IgG, these were associated with the presence of characteristic RA autoantibodies.

  14. Positive association between serum thymic stromal lymphopoietin and anti-citrullinated peptide antibodies in patients with rheumatoid arthritis

    Science.gov (United States)

    Koyama, K; Ohba, T; Haro, H; Nakao, A

    2015-01-01

    Thymic stromal lymphopoietin (TSLP) has been suggested recently to play an important role in the pathophysiology of rheumatoid arthritis (RA). However, there is little information on serum TSLP concentrations in RA and its clinical significance. The present study investigated whether serum TSLP concentrations were affected in patients with RA. Using an enzyme-linked immunosorbent assay (ELISA), we measured TSLP concentrations in the serum obtained from 100 patients with RA, 60 patients with osteoarthritis (OA) and 34 healthy volunteers. We also investigated the correlation between serum TSLP concentrations and clinical parameters of disease activity in RA [disease activity score using 28 joint counts (DAS28)-C-reactive protein (CRP), DAS28-erythrocyte sedimentation rate (ESR), Clinical Disease Activity Index (CDAI]), patient’s/-physician’s Visual Analogue Scale (VAS), swollen joints count, tender joints count, CRP, ESR and matrix metalloproteinase-3 (MMP-3) concentrations]. In addition, we investigated the correlation between serum TSLP concentrations and anti-citrullinated peptide antibody (ACPA) and serum tumour necrosis factor (TNF)-α. Serum TSLP levels in patients with RA were significantly higher than those in patients with OA and in healthy volunteers. Interestingly, serum TSLP concentrations were correlated significantly with ACPA titres, but not with other clinical parameters. There was a significant increase in serum TSLP concentrations in patients with RA, which was correlated positively with serum ACPA titres. These findings suggest that in patients with RA, TSLP may play a role in ACPA production by B cells. PMID:25817699

  15. Extracellular expression of natural cytosolic arginine deiminase from Pseudomonas putida and its application in the production of L-citrulline.

    Science.gov (United States)

    Su, Lingqia; Ma, Yue; Wu, Jing

    2015-11-01

    The Pseudomonas putida arginine deiminase (ADI), a natural cytosolic enzyme, and Thermobifida fusca cutinase were co-expressed in Escherichia coli, and the optimized cutinase gene was used for increasing its expression level. 90.9% of the total ADI protein was released into culture medium probably through a nonspecific leaking mechanism caused by the co-expressed cutinase. The enzymatic properties of the extracellular ADI were found to be similar to those of ADI prepared by conventional cytosolic expression. Extracellular production of ADI was further scaled up in a 3-L fermentor. When the protein expression was induced by IPTG (25.0μM) and lactose (0.1gL(-1)h(-1)) at 30°C, the extracellular ADI activity reached 101.2UmL(-1), which represented the highest ADI production ever reported. In addition, the enzymatic synthesis of l-citrulline was performed using the extracellularly expressed ADI, and the conversion rate reached 100% with high substrate concentration at 650gL(-1).

  16. Performance characteristics of a new automated method for measurement of anti-cyclic citrullinated peptide.

    Science.gov (United States)

    Noordegraaf, Madelon; Wolthuis, Albert; Peters, Frans; de Groot, Monique; Hoedemakers, Rein

    2015-06-01

    Rheumatoid arthritis (RA) is a chronic inflammatory auto-immune disease affecting approximately 1%-2% of the population worldwide. RA is a potentially crippling disease since it results in malformation of the joints. RA is mostly diagnosed based on clinical manifestations but serological tests against autoantibodies, such as rheumatoid factor and anti-cyclic citrullinated peptides (aCCP), are available. The presence of aCCP antibodies is strongly associated with a more severe, destructive disease course. Recently, a new test for the measurement of aCCP antibodies on the IMMULITE 2000(XPi) platform was developed by Siemens Healthcare. In this study we investigated the performance characteristics of this new aCCP test in four different hospital laboratories and compared the new test with three different commercially available platforms. Samples were collected from patients presented to the hospital for aCCP measurement. Serum aCCP levels were determined by aCCP (Ig)G assay for IMMULITE 2000(XPi) systems (Siemens Healthcare), ImmunoScan RA enzyme-linked immunosorbent assay (ELISA) test (Eurodiagnostica), Immunocap 250 (Thermofisher) or aCCP IgG assay on the Modular system (Roche Diagnostics). The evaluation protocol consisted of within-run imprecision (20 sequential runs), between-run imprecision (16 workdays), comparison of serum and plasma measurement and method comparison. The within-run imprecision (n=20) for aCCP IgG assay on three different IMMULITE 2000(XPi) systems ranged from 3.0% to 6.9% at levels 3.2-171.2 U/mL. Between-run imprecision (n=16 days) ranged from 5.2% to 11% at levels of 3.2-106.9 U/mL. Method comparison showed good correlation when samples were measured on two different Immulite analyzers in two different hospital laboratories [0.21+0.96x (n=40)]. Method comparison of the IMMULITE 2000(XPi) aCCP test with aCCP on Immunoscan RA ELISA (n=112), Immunocap 250 (n=105) and the Modular system (n=289) resulted in a concordance of 90.2%, 93.3% and 94

  17. Ocular manifestations of rheumatoid arthritis and their correlation with anti-cyclic citrullinated peptide antibodies

    Directory of Open Access Journals (Sweden)

    Vignesh AP

    2015-02-01

    Full Text Available Ammapati Paul Pandian Vignesh, Renuka Srinivasan Department of Ophthalmology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India Purpose: To study the ocular manifestations of rheumatoid arthritis and to correlate the role of anti-cyclic citrullinated peptide antibody (anti-CCP antibody with the ocular manifestations.Methods: Three-hundred and ninety-two eyes of the 196 rheumatoid arthritis patients who attended the ophthalmology outpatient department underwent a detailed ocular examination using slit lamp biomicroscopy and ophthalmoscopy. The tear function of all the patients was assessed using Schirmer’s test, tear film break-up time and ocular surface staining. The anti-CCP antibody titers for all the rheumatoid arthritis patients were estimated using enzyme-linked immunosorbent assay tests.Results: Seventy-seven patients (135 eyes, 39% out of the 196 patients studied had ocular manifestations typical of rheumatoid arthritis. Dry eye was the most common manifestation (28%, 54 patients. Of the patients, 78% was females (60 patients. The mean duration of rheumatoid arthritis in patients with ocular manifestations was 5.4±2.7 years and without ocular manifestations was 2.1±1.6years. Three percent of the patients had episcleritis (six patients. Scleritis was present in 2% of the patients (four patients. Peripheral ulcerative keratitis and sclerosing keratitis was present in 1% of the population each (two patients each. Eighty-five percent (66 patients had bilateral manifestations 15% (eleven patients had unilateral manifestations. There was a strong association between the presence of anti-CCP antibodies and ocular manifestations of rheumatoid arthritis which was shown by the statistically significant P-value of <0.0001.Conclusion: Ocular manifestations are a significant part of the extra-articular manifestation of rheumatoid arthritis. Dry eye was the most common ocular manifestation. There was a

  18. Significance of Anti-cyclic Citrullinated Peptide Autoantibodies in Immune-mediated Inflammatory Skin Disorders with and without Arthritis.

    Science.gov (United States)

    Grover, Chander; Kashyap, Bineeta; Daulatabad, Deepashree; Dhawan, Amit; Kaur, Iqbal R

    2016-01-01

    Anti-cyclic citrullinated peptides (CCPs) are autoantibodies directed against citrullinated peptides. Rheumatoid factor (RF), an antibody against the Fc portion of IgG, is known to form immune complexes and contribute to the etiopathogenesis of various skin disorders. C-reactive protein (CRP), an acute-phase protein, increases following secretion of interleukin-6 from macrophages and T cells. Anti-CCP, RF, and CRP are well-established immune-markers, their diagnostic potential in immune-mediated skin disorders remains less widely studied. To determine the correlation between anti-CCP, RF, and CRP in immune-mediated inflammatory skin diseases. About 61 clinically diagnosed cases of various immune-mediated skin diseases (psoriasis [n = 38], connective tissue diseases such as systemic lupus erythematosus and systemic sclerosis [n = 14], and immunobullous disorders including pemphigus vulgaris and pemphigus foliaceus [n = 9]) were included in the study. These patients were subclassified on the basis of presence or absence of arthritis. Arthritis was present in nine cases of psoriasis and seven connective tissue disorder patients. Detection of serum anti-CCP was done using enzyme-linked immunosorbent assay, whereas CRP and RF levels were detected using latex agglutination technique. Of the 61 specimens, 14.75% had elevated serum anti-CCP levels. RF and CRP levels were elevated in 18.03% and 39.34% specimens, respectively. RF was elevated in 13.16% of inflammatory and 42.88% of connective tissue disorders, whereas anti-CCP was raised in 10.53% of inflammatory and 35.71% of connective tissue disorders. CRP positivity was highest in connective tissue disorders (50%), followed by 39.47% in inflammatory and 22.22% in immunobullous conditions. In none of the immunobullous patients, anti-CCP or RF levels were found to be elevated. Association of the presence of arthritis with elevated anti-CCP was found to be statistically significant. Although anti-CCP, RF, and CRP levels are

  19. Significance of anti-cyclic citrullinated peptide autoantibodies in immune-mediated inflammatory skin disorders with and without arthritis

    Directory of Open Access Journals (Sweden)

    Chander Grover

    2016-01-01

    Full Text Available Background: Anti-cyclic citrullinated peptides (CCPs are autoantibodies directed against citrullinated peptides. Rheumatoid factor (RF, an antibody against the Fc portion of IgG, is known to form immune complexes and contribute to the etiopathogenesis of various skin disorders. C-reactive protein (CRP, an acute-phase protein, increases following secretion of interleukin-6 from macrophages and T cells. Anti-CCP, RF, and CRP are well-established immune-markers, their diagnostic potential in immune-mediated skin disorders remains less widely studied. Aims and Objectives: To determine the correlation between anti-CCP, RF, and CRP in immune-mediated inflammatory skin diseases. Materials and Methods: About 61 clinically diagnosed cases of various immune-mediated skin diseases (psoriasis [n = 38], connective tissue diseases such as systemic lupus erythematosus and systemic sclerosis [n = 14], and immunobullous disorders including pemphigus vulgaris and pemphigus foliaceus [n = 9] were included in the study. These patients were subclassified on the basis of presence or absence of arthritis. Arthritis was present in nine cases of psoriasis and seven connective tissue disorder patients. Detection of serum anti-CCP was done using enzyme-linked immunosorbent assay, whereas CRP and RF levels were detected using latex agglutination technique. Results: Of the 61 specimens, 14.75% had elevated serum anti-CCP levels. RF and CRP levels were elevated in 18.03% and 39.34% specimens, respectively. RF was elevated in 13.16% of inflammatory and 42.88% of connective tissue disorders, whereas anti-CCP was raised in 10.53% of inflammatory and 35.71% of connective tissue disorders. CRP positivity was highest in connective tissue disorders (50%, followed by 39.47% in inflammatory and 22.22% in immunobullous conditions. In none of the immunobullous patients, anti-CCP or RF levels were found to be elevated. Association of the presence of arthritis with elevated anti-CCP was

  20. Significance of Anti-cyclic Citrullinated Peptide Autoantibodies in Immune-mediated Inflammatory Skin Disorders with and without Arthritis

    Science.gov (United States)

    Grover, Chander; Kashyap, Bineeta; Daulatabad, Deepashree; Dhawan, Amit; Kaur, Iqbal R

    2016-01-01

    Background: Anti-cyclic citrullinated peptides (CCPs) are autoantibodies directed against citrullinated peptides. Rheumatoid factor (RF), an antibody against the Fc portion of IgG, is known to form immune complexes and contribute to the etiopathogenesis of various skin disorders. C-reactive protein (CRP), an acute-phase protein, increases following secretion of interleukin-6 from macrophages and T cells. Anti-CCP, RF, and CRP are well-established immune-markers, their diagnostic potential in immune-mediated skin disorders remains less widely studied. Aims and Objectives: To determine the correlation between anti-CCP, RF, and CRP in immune-mediated inflammatory skin diseases. Materials and Methods: About 61 clinically diagnosed cases of various immune-mediated skin diseases (psoriasis [n = 38], connective tissue diseases such as systemic lupus erythematosus and systemic sclerosis [n = 14], and immunobullous disorders including pemphigus vulgaris and pemphigus foliaceus [n = 9]) were included in the study. These patients were subclassified on the basis of presence or absence of arthritis. Arthritis was present in nine cases of psoriasis and seven connective tissue disorder patients. Detection of serum anti-CCP was done using enzyme-linked immunosorbent assay, whereas CRP and RF levels were detected using latex agglutination technique. Results: Of the 61 specimens, 14.75% had elevated serum anti-CCP levels. RF and CRP levels were elevated in 18.03% and 39.34% specimens, respectively. RF was elevated in 13.16% of inflammatory and 42.88% of connective tissue disorders, whereas anti-CCP was raised in 10.53% of inflammatory and 35.71% of connective tissue disorders. CRP positivity was highest in connective tissue disorders (50%), followed by 39.47% in inflammatory and 22.22% in immunobullous conditions. In none of the immunobullous patients, anti-CCP or RF levels were found to be elevated. Association of the presence of arthritis with elevated anti-CCP was found to be

  1. Effect of major and minor surgery on plasma levels of arginine, citrulline, nitric oxide metabolites, and ornithine in humans.

    Science.gov (United States)

    Hol, Jaap W; van Lier, Felix; Valk, Madelous; Klimek, Markus; Stolker, Robert J; Fekkes, Durk

    2013-12-01

    To determine the effect of surgical invasiveness on plasma levels of arginine, citrulline, ornithine, and nitric oxide (NO) in humans. Surgical trauma may have a profound effect on the metabolism of NO. However, human studies reported both increased and decreased NO levels after hemorrhagic shock. Arginine, citrulline, and ornithine are key amino acids involved in NO metabolism, but studies evaluating these amino acids together with NO and during 2 types of surgery are lacking. This study tests the hypothesis that major surgery has a more profound effect on plasma levels of arginine, citrulline, NO, and ornithine than minor surgery. Fifteen patients undergoing minor surgery (vulvectomy) and 13 patients undergoing major surgery (laparotomy) were prospectively followed up for 4 days. Plasma was collected for evaluation of levels of arginine, citrulline, NO, and ornithine. Throughout the experiment, arginine levels did not significantly differ between experimental groups. Perioperative plasma citrulline levels were significantly lower in the laparotomy group than in the vulvectomy group, whereas both groups showed a decrease in citrulline levels at the end of the operation and 24 hours postoperatively. Roughly the same pattern was seen for plasma NO and ornithine levels. However, ornithine levels in the laparotomy group showed a more drastic decrease at the end of the operation and 24 hours postoperatively than citrulline and NO levels. The level of surgical invasiveness has the most profound effect on plasma levels of ornithine. In addition, heavier surgical trauma is paired with lower postoperative levels of citrulline and NO metabolites than lighter surgery. It is suggested that surgical trauma stimulates the laparotomy group to consume significantly more ornithine, possibly for use in wound healing.

  2. The 2007 ESPEN Sir David Cuthbertson Lecture: amino acids between and within organs. The glutamate-glutamine-citrulline-arginine pathway.

    Science.gov (United States)

    Deutz, Nicolaas E P

    2008-06-01

    In daily practice, the plasma concentration of amino acids is usually viewed as a parameter of production. However, both a high production and/or a reduced disposal capacity can result in an increased plasma concentration. In this presentation, I will discuss my research on interorgan relationships of the amino acids glutamate, glutamine, citrulline and arginine to explain the regulation of the plasma arginine level. The reduced glutamine disposal during liver failure is related to enhanced plasma glutamine level without any change in muscle and gut production or consumption rate. In contrast during sepsis, a small reduction in plasma glutamine is related to a substantially enhanced organ glutamate and glutamine production or consumption rate. These observations are a good example that plasma levels are directly related to production or consumption rates. Because glutamine breakdown in the gut produces citrulline, there is a good relation between the amount of metabolically active gut tissue and gut and whole body citrulline production. Arginine is produces from citrulline in the kidney and a reduced gut glutamine to citrulline conversion during sepsis explains the reduced de novo arginine production that is related to the reduced plasma arginine level. The interorgan route between muscle, gut, liver and kidney of the amino acids glutamate, glutamine, citrulline and arginine is a very good example of how complicated the regulation of plasma amino acid levels can be. However, in-depth research is necessary and will give us important clues to new nutritional strategies.

  3. Mitochondrial citrulline synthesis from ammonia and glutamine in the liver of ureogenic air-breathing catfish, Clarias batrachus (Linnaeus).

    Science.gov (United States)

    Kharbuli, Zaiba Y; Biswas, Kuheli; Saha, Nirmalendu

    2007-12-01

    The possible synthesis of citrulline, a rate limiting step for urea synthesis via the ornithine-urea cycle (OUC) in teleosts was tested both in the presence of ammonia and glutamine as nitrogen-donating substrates by the isolated liver mitochondria of ureogenic air-breathing walking catfish, C. batrachus. Both ammonia and glutamine could be used as nitrogen-donating substrates for the synthesis of citrulline by the isolated liver mitochondria, since the rate of citrulline synthesis was almost equal in presence of both the substrates. The citrulline synthesis by the isolated liver mitochondria requires succinate at a concentration of 0.1 mM as an energy source, and also requires the involvement of intramitochondrial carbonic anhydrase activity for supplying HCO3 as another substrate for citrulline synthesis. The rate of citrulline synthesis was further stimulated significantly by the isolated liver mitochondria of the fish after pre-exposure to 25 mM NH4Cl for 7 days. Due to possessing this biochemical adaptational strategy leading to the amelioration of ammonia toxicity mainly by channeling ammonia directly and/or via the formation of glutamine to the OUC, this air-breathing catfish could succeed in surviving in high external ammonia, which it faces in its natural habitat in certain seasons of the year.

  4. Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor α target gene activation.

    Science.gov (United States)

    Zhang, Xuesen; Bolt, Michael; Guertin, Michael J; Chen, Wei; Zhang, Sheng; Cherrington, Brian D; Slade, Daniel J; Dreyton, Christina J; Subramanian, Venkataraman; Bicker, Kevin L; Thompson, Paul R; Mancini, Michael A; Lis, John T; Coonrod, Scott A

    2012-08-14

    Cofactors for estrogen receptor α (ERα) can modulate gene activity by posttranslationally modifying histone tails at target promoters. Here, we found that stimulation of ERα-positive cells with 17β-estradiol (E2) promotes global citrullination of histone H3 arginine 26 (H3R26) on chromatin. Additionally, we found that the H3 citrulline 26 (H3Cit26) modification colocalizes with ERα at decondensed chromatin loci surrounding the estrogen-response elements of target promoters. Surprisingly, we also found that citrullination of H3R26 is catalyzed by peptidylarginine deiminase (PAD) 2 and not by PAD4 (which citrullinates H4R3). Further, we showed that PAD2 interacts with ERα after E2 stimulation and that inhibition of either PAD2 or ERα strongly suppresses E2-induced H3R26 citrullination and ERα recruitment at target gene promoters. Collectively, our data suggest that E2 stimulation induces the recruitment of PAD2 to target promoters by ERα, whereby PAD2 then citrullinates H3R26, which leads to local chromatin decondensation and transcriptional activation.

  5. [Enzyme activity in the subcellular fractions of the liver of rats following a flight on board the Kosmos-1129 biosatellite].

    Science.gov (United States)

    Tigranian, R A; Vetrova, E G; Abraham, S; Lin, C; Klein, H

    1983-01-01

    The activities of malate, isocitrate, and lactate dehydrogenases were measured in the liver mitochondrial and cytoplasmatic fractions of rats flown for 18.5 days onboard Cosmos-1129. The activities of the oxidative enzymes, malate and isocitrate dehydrogenases, in the mitochondrial fraction and those of the glycolytic enzyme, lactate dehydrogenase, in the cytoplasmatic fraction were found to decrease.

  6. Contribution of Glucose Transport to the Control of the Glycolytic Flux in Trypanosoma brucei

    Science.gov (United States)

    Bakker, Barbara M.; Walsh, Michael C.; Ter Kuile, Benno H.; Mensonides, Femke I. C.; Michels, Paul A. M.; Opperdoes, Fred R.; Westerhoff, Hans V.

    1999-08-01

    The rate of glucose transport across the plasma membrane of the bloodstream form of Trypanosoma brucei was modulated by titration of the hexose transporter with the inhibitor phloretin, and the effect on the glycolytic flux was measured. A rapid glucose uptake assay was developed to measure the transport activity independently of the glycolytic flux. Phloretin proved a competitive inhibitor. When the effect of the intracellular glucose concentration on the inhibition was taken into account, the flux control coefficient of the glucose transporter was between 0.3 and 0.5 at 5 mM glucose. Because the flux control coefficients of all steps in a metabolic pathway sum to 1, this result proves that glucose transport is not the rate-limiting step of trypanosome glycolysis. Under physiological conditions, transport shares the control with other steps. At glucose concentrations much lower than physiological, the glucose carrier assumed all control, in close agreement with model predictions.

  7. Glycolytic inhibitors 2-deoxyglucose and 3-bromopyruvate synergize with photodynamic therapy respectively to inhibit cell migration.

    Science.gov (United States)

    Feng, Xiaolan; Wang, Pan; Liu, Quanhong; Zhang, Ting; Mai, Bingjie; Wang, Xiaobing

    2015-06-01

    Most cancer cells have the specially increased glycolytic phenotype, which makes this pathway become an attractive therapeutic target. Although glycolytic inhibitor 2-deoxyglucose (2-DG) has been demonstrated to potentiate the cytotoxicity of photodynamic therapy (PDT), the impacts on cell migration after the combined treatment has never been reported yet. The present study aimed to analyze the influence of glycolytic inhibitors 2-DG and 3-bromopyruvate (3-BP) combined with Ce6-PDT on cell motility of Triple Negative Breast Cancer MDA-MB-231 cells. As determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium-bromide-Tetraz-olium (MTT) assay, more decreased cell viability was observed in 2-DG + PDT and 3-BP + PDT groups when compared with either monotherapy. Under optimal conditions, synergistic potentiation on cell membrane destruction and the decline of cell adhesion and cells migratory ability were observed in both 2-DG + PDT and 3-BP + PDT by electron microscope observation (SEM), wound healing and trans-well assays. Besides, serious microfilament network collapses as well as impairment of matrix metalloproteinases-9 (MMP-9) were notably improved after the combined treatments by immunofluorescent staining. These results suggest that 2-DG and 3-BP can both significantly potentiated Ce6-PDT efficacy of cell migration inhibition.

  8. Anti-cyclic citrullinated Peptide antibody: an early diagnostic and prognostic biomarker of rheumatoid arthritis.

    Science.gov (United States)

    Manivelavan, D; C K, Vijayasamundeeswari

    2012-10-01

    To evaluate the role of Anti-Cyclic Citrullinated Peptide (anti-CCP) antibody and Rheumatoid Factor (RF) in Rheumatoid Arthritis (RA) patients. The present study comprised of 60 clinically diagnosed rheumatoid arthritis patients and 30 apparently healthy subjects as controls. Among 60 RA patients, 30 were autoantibodies directed to citrullinated antigen-anti-CCP are superior to RF for the detection of RA. Anti-CCP antibodies have an independent role in predicting radiological damage and progression in RA patients. With their excellent specificity, anti-CCP antibodies can be used as serological marker in establishing the diagnosis of RA. Anti-CCP antibodies discriminated accurately between erosive and nonerosive RA making them a potentially good prognostic marker for the disease.

  9. Diagnostic and prognostic value of antibodies to cyclic citrullinated peptide (Anti-CCP in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    A. Carcassi

    2011-09-01

    Full Text Available There is strong evidence that the determination of autoantibodies against filaggrine is a very useful tool for the diagnosis of rheumatoid arthritis (RA. Anti-cyclic citrullinated peptide antibodies (Anti-CCP-ELISA appear to be the most efficient test among those available for the detection of antifilaggrine autoantibodies, as it has the best diagnostic accuracy for the diagnosis of RA. Furthermore, the anti-CCP-ELISA determination in early arthritis is a good predictor of disease persistence and radiographic joint damage. The positivity of Anti-CCP some years before the onset of the RA and the high concentration of autoantibodies in synovial fluid suggest a possible pathogenetic role of citrullination. Hower, at present, it is unclear whether anti-CCP antibodies have a better diagnostic performance than FR in recent onset synovitis and if they confer any additional value to the prognostic evaluation obtained with validated predictors of outcome (FR, joint count, duration of disease.

  10. Circulating levels of citrullinated and MMP-degraded vimentin (VICM) in liver fibrosis related pathology

    DEFF Research Database (Denmark)

    Vassiliadis, Efstathios; Oliveira, Claudia P; Alvares-da-Silva, Mario R;

    2012-01-01

    -citrulline (VICM) was developed and evaluated in a carbon tetrachloride (CCl(4)) (n=52 + 28 controls) rat model of liver fibrosis and two clinical cohorts of adult patients with hepatitis C (HCV) (n=92) and non-alcoholic fatty liver disease (NAFLD) (n=62), and compared to healthy controls. RESULTS: In CCl(4.......75, PNAFLD cohort, VICM levels were 20.6% higher in F0 (339...... ±12 ng/mL, PNAFLD patients. These data...

  11. The effects on plasma L-arginine levels of combined oral L-citrulline and L-arginine supplementation in healthy males.

    Science.gov (United States)

    Suzuki, Takashi; Morita, Masahiko; Hayashi, Toshio; Kamimura, Ayako

    2017-02-01

    We investigated the effects of combining 1 g of l-citrulline and 1 g of l-arginine as oral supplementation on plasma l-arginine levels in healthy males. Oral l-citrulline plus l-arginine supplementation more efficiently increased plasma l-arginine levels than 2 g of l-citrulline or l-arginine, suggesting that oral l-citrulline and l-arginine increase plasma l-arginine levels more effectively in humans when combined.

  12. Does Citrulline Have Protective Effects on Liver Injury in Septic Rats?

    Directory of Open Access Journals (Sweden)

    Bin Cai

    2016-01-01

    Full Text Available Citrulline (Cit supplementation was proposed to serve as a therapeutic intervention to restore arginine (Arg concentrations and improve related functions in sepsis. This study explored whether citrulline had positive effects on liver injury and cytokine release in the early stages of sepsis. The cecal ligation and puncture (CLP model was utilized in our study. Rats were divided into four groups: normal, Cit, CLP, and CLP+Cit. The CLP group and CLP+Cit group were separated into 6-, 12-, and 24-hour groups, according to the time points of sacrifice after surgery. Intragastric administration of L-citrulline was applied to rats in Cit and CLP+Cit groups before surgery. Serum AST and ALT levels and levels of MDA, SOD, NO, and iNOS in the liver tissues were evaluated. Plasma concentrations of Cit and Arg were assessed using HPLC-MS/MS. Serum concentrations of cytokines and chemokines were calculated by Luminex. Results showed SOD activities of CLP+Cit groups were significantly higher than that of CLP groups, contrasting with the MDA and NO levels which were significantly lower in CLP+Cit groups than in CLP groups. In addition, plasma concentrations of TNF-α, IL-6, and IL-1β were significantly lower in the CLP+Cit 6-hour group than in the CLP 6-hour group.

  13. Evaluation of Anti-Mutated Citrullinated Vimentin Antibodies, Anti-Cyclic Citrullinated Peptide Antibodies and Rheumatoid Factor in Omani Patients with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Shukaili

    2012-01-01

    Full Text Available Rheumatoid factor (RF is currently used in the diagnosis of rheumatoid arthritis (RA. The discovery of anticitrullinated protein autoantibodies has led to the development of various new tests, such as anti-cyclic citrullinated peptide (anti-CCP antibodies, and anti-mutated citrullinated vimentin (anti-MCV antibodies, to diagnose RA. The aims of this study were to determine the sensitivity and specificity of anti-MCV antibodies in comparison with anti-CCP antibodies and RF in Omani Arab patients with RA and compare our findings with published values from different ethnic groups. The sensitivity of anti-MCV antibodies was 72% with 87% specificity. For anti-CCP antibodies the sensitivity was 52% and the specificity was 97%. The sensitivity of RF was 57% with 94% specificity. Anti-CCP antibodies have higher diagnostic specificity and positive predictive value than RF and anti-MCV antibodies. Anti-MCV antibodies have the highest sensitivity when compared to anti-CCP antibodies and RF. Anti-MCV antibodies do not appear to be very useful in the diagnosis of RA. However, long-term study is required to find out whether anti-MCV antibodies can be used as predictive test for incidence of RA.

  14. Value of anti-modified citrullinated vimentin and third-generation anti-cyclic citrullinated peptide compared with second-generation anti-cyclic citrullinated peptide and rheumatoid factor in predicting disease outcome in undifferentiated arthritis and rheumatoid arthritis.

    Science.gov (United States)

    van der Linden, Michael P M; van der Woude, Diane; Ioan-Facsinay, Andreea; Levarht, E W Nivine; Stoeken-Rijsbergen, Gerrie; Huizinga, Tom W J; Toes, René E M; van der Helm-van Mil, Annette H M

    2009-08-01

    Autoantibodies such as rheumatoid factor (RF) and anti-citrullinated protein autoantibodies (ACPAs) determined by testing with second-generation anti-cyclic citrullinated peptide (anti-CCP-2) are frequently measured in clinical practice because of their association with disease outcome in undifferentiated arthritis (UA) and rheumatoid arthritis (RA). Recently, 2 new ACPA tests were developed: third-generation anti-CCP (anti-CCP-3) and anti-modified citrullinated vimentin (anti-MCV) autoantibody tests. To facilitate the decision on which autoantibody to test in daily practice, this study evaluated the capability of these autoantibodies and combinations of them to predict 3 outcome measures: progression from UA to RA, the rate of joint destruction in RA, and the chance of achieving sustained disease-modifying antirheumatic drug (DMARD)-free remission in RA. Patients with UA (n=625) were studied for whether UA progressed to RA after 1 year. Patients with RA (n=687) were studied for whether sustained DMARD-free remission was achieved and for the rate of joint destruction during a median followup of 5 years. Positive predictive values (PPVs) for RA development and for associations with the disease course in RA were compared between single tests (anti-CCP-2, anti-CCP-3, anti-MCV, and RF) and between combinations of these tests. Among the single tests performed in patients with UA, anti-CCP-2 tended to have the highest PPV for RA development (67.1%), but the 95% confidence intervals of the other tests overlapped. Among the single tests in patients with RA, all 4 tests showed comparable associations with the rate of joint destruction and with the achievement of remission. In both ACPA-positive and ACPA-negative RA, the presence of RF was not associated with more joint destruction. For all outcome measures, performing combinations of 2 or 3 autoantibody tests did not increase the predictive accuracy compared with performing a single test. For clinical practice, a single

  15. Synovial fluid mononuclear cells provide an environment for long-term survival of antibody-secreting cells and promote the spontaneous production of anti-citrullinated protein antibodies.

    Science.gov (United States)

    Kerkman, Priscilla F; Kempers, Ayla C; van der Voort, Ellen I H; van Oosterhout, Maikel; Huizinga, Tom W J; Toes, René E M; Scherer, Hans U

    2016-12-01

    In rheumatoid arthritis (RA), observations point to a crucial role for (autoreactive) B cells in disease pathogenesis. Here, we studied whether cells from the synovial environment impact on the longevity of autoreactive B cell responses against citrullinated antigens. Synovial fluid mononuclear cells and peripheral blood mononuclear cells (SFMC/PBMC) were obtained from patients with established RA and assessed for the presence of B cell subpopulations. Cells spontaneously secreting anti-citrullinated protein antibodies (ACPA-IgG) directly ex vivo were detected by antigen-specific Enzyme-Linked ImmunoSpot (ELISpot) assay. SFMC and PBMC were cultured to assess the degree of spontaneous ACPA-IgG secretion. Cells surviving for several weeks were characterised by carboxyfluorescein succinimidyl ester (CFSE) labelling and Ki-67 staining. Cells spontaneously secreting ACPA-IgG were readily detectable in peripheral blood and synovial fluid (SF) of patients with ACPA-positive RA. SFMC showed an up to 200-fold increase in ex vivo ACPA-IgG secretion compared with PBMC despite lower numbers of B cells in SFMC. ELISpot confirmed the presence of spontaneously ACPA-IgG-secreting cells, accounting for up to 50% (median 12%) of all IgG-secreting cells in SF. ACPA-IgG secretion was remarkably stable in SFMC cultures, maintained upon depletion of the CD20(+) B cell compartment and detectable for several months. CFSE labelling and Ki-67 staining confirmed the long-term survival of non-dividing plasma cells (PCs). This study demonstrates a high frequency of differentiated, spontaneously ACPA-IgG-secreting cells in SF. These cells are supported by SFMC for prolonged survival and autoantibody secretion, demonstrating that the synovial compartment is equipped to function as inflammatory niche for PC survival. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Are there autoantibodies reacting against citrullinated peptides derived from type I and type II collagens in patients with rheumatoid arthritis?

    Science.gov (United States)

    Koivula, M; Aman, S; Karjalainen, A; Hakala, M; Risteli, J

    2005-01-01

    Objectives: To assess the possible presence in patients with rheumatoid arthritis (RA) of autoantibodies recognising citrullinated peptides derived from type I and II collagens. Methods: Firstly, the binding of four pairs of synthetic peptides (arginine-containing and artificially citrullinated forms) related to different regions of human type II collagen were tested with sera from 120 patients with RA and 81 controls. Secondly, two similar pairs of peptides related to the carboxy terminal telopeptides of the α1 and α2 chains of human type I collagen were tested. Results: 42–53% of the RA sera showed increased binding of arginine peptides related to type II collagen. However, 12 RA sera bound the citrullinated form of the α1(II) telopeptide more strongly than the corresponding arginine peptide. 20 RA sera bound the citrullinated carboxytelopeptide from the α1 chain of type I collagen (α1(I) telopeptide) more strongly than the respective arginine peptide. The correlation between the autoantibodies to type I and II collagen telopeptides was rs = 0.576, pAnti-cyclic citrullinated peptide (anti-CCP) assay was positive in 71/120 (59%) patients with RA. An anti-CCP assay detects a different subgroup of antibodies than anti-telopeptide assays. However, both anti-telopeptide and anti-CCP antibodies were increased in patients with RA. Conclusion: Some patients with RA were identified whose sera contained antibodies that specifically bound citrullinated peptides related to the carboxy terminal telopeptides of the α1 and α2 chains of type I collagen and the α1 chains of type II collagen (sequences YYXA, FYXA, and YMXA, where X stands for citrulline). PMID:16162901

  17. Correlations of plasma citrulline levels with clinical and endoscopic score and blood markers according to small bowel involvement in pediatric Crohn disease.

    Science.gov (United States)

    Lee, Eun Hye; Ko, Jae Sung; Seo, Jeong Kee

    2013-11-01

    Several studies have indicated that plasma citrulline levels reflect the extent of mucosal injury of the small intestine. This study was performed to determine whether plasma citrulline levels correlate with the disease activity in pediatric patients with Crohn disease (CD). A total of 63 CD and 23 ulcerative colitis (UC) patients were included in this study. Disease severity was assessed by pediatric CD activity index (PCDAI), pediatric UC activity index, simplified endoscopic activity score for CD, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). The correlations among these variables and plasma citrulline levels were evaluated. We performed subgroup analysis whether correlations between plasma citrulline levels and disease activity depend on small bowel involvement in patients with CD. The plasma citrulline levels correlated negatively with CRP (r = -0.332, P = 0.008), ESR (r = -0.290, P = 0.022), and PCDAI (r = -0.424, P = 0.001) in patients with CD. The plasma citrulline levels were significantly lower in patients with jejunal involvement than in those without (P = 0.027). In subgroup analysis, patients with CD with jejunal involvement showed significantly negative correlations of plasma citrulline levels with CRP (r = -0.628, P = 0.016) and PCDAI (r = -0.632, P = 0.015); however, patients with CD without jejunal involvement revealed no correlations of plasma citrulline levels with CRP and PCDAI. There were no significant correlations between plasma citrulline levels and simplified endoscopic activity score for CD. There were no significant correlations of plasma citrulline levels with CRP, ESR, and pediatric UC activity index in patients with UC. Plasma citrulline levels correlated with disease severity as measured by PCDAI, CRP, and ESR in pediatric patients with CD with jejunal involvement.

  18. ENOblock, a unique small molecule inhibitor of the non-glycolytic functions of enolase, alleviates the symptoms of type 2 diabetes

    Science.gov (United States)

    Cho, Haaglim; Um, JungIn; Lee, Ji-Hyung; Kim, Woong-Hee; Kang, Wan Seok; Kim, So Hun; Ha, Hyung-Ho; Kim, Yong-Chul; Ahn, Young-Keun; Jung, Da-Woon; Williams, Darren R.

    2017-01-01

    Type 2 diabetes mellitus (T2DM) significantly impacts on human health and patient numbers are predicted to rise. Discovering novel drugs and targets for treating T2DM is a research priority. In this study, we investigated targeting of the glycolysis enzyme, enolase, using the small molecule ENOblock, which binds enolase and modulates its non-glycolytic ‘moonlighting’ functions. In insulin-responsive cells ENOblock induced enolase nuclear translocation, where this enzyme acts as a transcriptional repressor. In a mammalian model of T2DM, ENOblock treatment reduced hyperglycemia and hyperlipidemia. Liver and kidney tissue of ENOblock-treated mice showed down-regulation of known enolase target genes and reduced enolase enzyme activity. Indicators of secondary diabetic complications, such as tissue apoptosis, inflammatory markers and fibrosis were inhibited by ENOblock treatment. Compared to the well-characterized anti-diabetes drug, rosiglitazone, ENOblock produced greater beneficial effects on lipid homeostasis, fibrosis, inflammatory markers, nephrotoxicity and cardiac hypertrophy. ENOblock treatment was associated with the down-regulation of phosphoenolpyruvate carboxykinase and sterol regulatory element-binding protein-1, which are known to produce anti-diabetic effects. In summary, these findings indicate that ENOblock has potential for therapeutic development to treat T2DM. Previously considered as a ‘boring’ housekeeping gene, these results also implicate enolase as a novel drug target for T2DM. PMID:28272459

  19. Pyruvate Dehydrogenase Kinase-mediated Glycolytic Metabolic Shift in the Dorsal Root Ganglion Drives Painful Diabetic Neuropathy.

    Science.gov (United States)

    Rahman, Md Habibur; Jha, Mithilesh Kumar; Kim, Jong-Heon; Nam, Youngpyo; Lee, Maan Gee; Go, Younghoon; Harris, Robert A; Park, Dong Ho; Kook, Hyun; Lee, In-Kyu; Suk, Kyoungho

    2016-03-11

    The dorsal root ganglion (DRG) is a highly vulnerable site in diabetic neuropathy. Under diabetic conditions, the DRG is subjected to tissue ischemia or lower ambient oxygen tension that leads to aberrant metabolic functions. Metabolic dysfunctions have been documented to play a crucial role in the pathogenesis of diverse pain hypersensitivities. However, the contribution of diabetes-induced metabolic dysfunctions in the DRG to the pathogenesis of painful diabetic neuropathy remains ill-explored. In this study, we report that pyruvate dehydrogenase kinases (PDK2 and PDK4), key regulatory enzymes in glucose metabolism, mediate glycolytic metabolic shift in the DRG leading to painful diabetic neuropathy. Streptozotocin-induced diabetes substantially enhanced the expression and activity of the PDKs in the DRG, and the genetic ablation of Pdk2 and Pdk4 attenuated the hyperglycemia-induced pain hypersensitivity. Mechanistically, Pdk2/4 deficiency inhibited the diabetes-induced lactate surge, expression of pain-related ion channels, activation of satellite glial cells, and infiltration of macrophages in the DRG, in addition to reducing central sensitization and neuroinflammation hallmarks in the spinal cord, which probably accounts for the attenuated pain hypersensitivity. Pdk2/4-deficient mice were partly resistant to the diabetes-induced loss of peripheral nerve structure and function. Furthermore, in the experiments using DRG neuron cultures, lactic acid treatment enhanced the expression of the ion channels and compromised cell viability. Finally, the pharmacological inhibition of DRG PDKs or lactic acid production substantially attenuated diabetes-induced pain hypersensitivity. Taken together, PDK2/4 induction and the subsequent lactate surge induce the metabolic shift in the diabetic DRG, thereby contributing to the pathogenesis of painful diabetic neuropathy.

  20. Glycolytic enzymatic activities in developing seeds involved in the differences between standard and low oil content sunflowers (Helianthus annuus L.).

    Science.gov (United States)

    Troncoso-Ponce, M Adrián; Garcés, Rafael; Martínez-Force, Enrique

    2010-12-01

    As opposed to other oilseeds, developing sunflower seeds do not accumulate starch initially. They rely on the sucrose that comes from the mother plant to synthesise lipid precursors. Glycolysis is the principal source of carbon skeletons and reducing power for lipid biosynthesis. In this work, glycolytic initial metabolites and enzyme activities from developing seed of two different sunflower lines, of high and low oil content, were compared during storage lipid synthesis. These two lines showed different kinetic lipid accumulation in the developing embryos. Fatty acids levels during the initial and final stage of lipid synthesis were higher in CAS-6 than in ZEN-8. The analysis of the photosynthate and sugars content suggests that, although the hexoses levels were quite similar in both lines, the amount of sucrose produced by the mother plant and available for lipid synthesis was higher in CAS-6. Although, a smaller amount of sucrose is available in the ZEN-8 line, its seeds maintain the levels of intermediate sugars in the initial steps of glycolysis due to an increase in the levels of the invertase, hexokinase and phosphoglucose isomerase activities in ZEN-8, with respect to CAS-6. Also, a readjustment in the final part of this metabolic route took place, with the activities of phosphoglycerate kinase and enolase in CAS-6 being higher, allowing increased synthesis of phosphoenolpiruvate, the intermediate carbon donor for fatty acid synthesis. In addition, recently, it has been shown that Arabidopsis mutants with a lower fat content in their seeds have a higher amount of sucrose. These data together point to these last two enzymatic activities, phosphoglycerate kinase and enolase, as being responsible for the lower fat content in the ZEN-8 line.

  1. Absence of antibodies to cyclic citrullinated peptide in sera of patients with hepatitis C virus infection and cryoglobulinemia.

    Science.gov (United States)

    Wener, Mark H; Hutchinson, Kathleen; Morishima, Chihiro; Gretch, David R

    2004-07-01

    To determine if antibodies to cyclic citrullinated peptide (anti-CCP) are found in chronic hepatitis C virus (HCV) infection. Rheumatoid factor (RF) and anti-CCP were measured in sera from 50 patients with HCV infection but without cryoglobulinemia, sera from 29 patients with mixed cryoglobulinemia (including 13 with rheumatic symptoms and 5 with arthritis), and sera from 20 normal blood donors. Anti-CCP was measured by second-generation enzyme-linked immunosorbent assay (ELISA). No sera with elevated anti-CCP were found in patients with HCV infection without cryoglobulinemia, and in that population, the maximum anti-CCP was 10 units, well below the positive cutoff of 20 units. Positive findings on RF testing >13 IU/ml were present in 22 (44%) of the HCV patients, with RF >50 IU/ml in 8 (16%) and a maximum RF of 526 IU/ml. Of the cryoglobulinemia patients, 22 (76%) had positive results on tests for RF, including 18 (62%) with RF >50 IU/ml and a maximum RF of 5,540 IU/ml. Two (6.9%) of the cryoglobulinemia patients had borderline-positive findings on tests for anti-CCP (25 units and 37 units), which were false-positive results caused by nonspecific binding in the ELISA. No association between the RF and the anti-CCP concentrations was found. Whereas RF was frequent in patients with HCV infection with and without cryoglobulinemia, anti-CCP was not observed in patients with uncomplicated HCV infection. Borderline-positive anti-CCP results were observed infrequently in patients with mixed cryoglobulinemia and were caused by nonspecific binding to plastic. Measurement of anti-CCP may help in diagnosing RA in patients with chronic HCV infection.

  2. Serum anticyclic citrullinated protein antibody titers are correlated with the response to biological agents in patients with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Takahashi R

    2014-05-01

    Full Text Available Ryo Takahashi, Sakiko Isojima, Masayu Umemura, Yoko Miura, Nao Oguro, Syo Ishii, Shinya Seki, Takahiro Tokunaga, Hiroyuki Tsukamoto, Hidekazu Furuya, Ryo Yanai, Tsuyoshi KasamaDivision of Rheumatology, Department of Medicine, Showa University School of Medicine,Tokyo, Japan Abstract: Anticyclic citrullinated protein antibody (ACPA is known as an important indicator for diagnosis of rheumatoid arthritis (RA. Our aim was to examine the relationship between the serum ACPA titer at baseline and responsiveness to biological agents (antagonists of either tumor necrosis factor or interleukin 6 in patients with RA. ACPA was measured using second-generation chemiluminescent enzyme immunoassay. Disease activity was assessed using disease activity scores 28. Fifty-seven RA patients with biological agents were enrolled, and the median ACPA titer at baseline was 110.0 U/mL. The median ACPA titer was 23.3 U/mL and 183.0 U/mL in the good and moderate response groups, respectively, which were significantly lower than in the no response group (404.0 U/mL. In addition, 69.2% and 26.9% of patients with low (<100 U/mL and moderate (100–499 U/mL basal ACPA titers showed a moderate to good response. Of the patients with higher (≥500 U/mL basal ACPA titers, only 14.0% and 42.5% showed a good or moderate response, respectively. The remission rate was 77.8% in the ACPA-negative, which was significantly higher than the rate of 25% in the ACPA-positive patients. The results suggest that the ACPA titers are correlated with the efficacy of the biological agents used in patients with RA.Keywords: biological agents, remission

  3. Myocardial glucose transporters and glycolytic metabolism during ischemia in hyperglycemic diabetic swine.

    Science.gov (United States)

    Stanley, W C; Hall, J L; Smith, K R; Cartee, G D; Hacker, T A; Wisneski, J A

    1994-01-01

    We assessed the effects of 4 weeks of streptozocin-induced diabetes on regional myocardial glycolytic metabolism during ischemia in anesthetized open-chest domestic swine. Diabetic animals were hyperglycemic (12.0 +/- 2.1 v 6.6 +/- .5 mmol/L), and had lower fasting insulin levels (27 +/- 8 v 79 +/- 19 pmol/L). Myocardial glycolytic metabolism was studied with coronary flow controlled by an extracorporeal perfusion circuit. Left anterior descending coronary artery (LAD) flow was decreased by 50% for 45 minutes and left circumflex (CFX) flow was constant. Myocardial glucose uptake and extraction were measured with D-[6-3H]-2-deoxyglucose (DG) and myocardial blood flow was measured with microspheres. The rate of glucose conversion to lactate and lactate uptake and output were assessed with a continuous infusion of [6-14C]glucose and [U-13C]lactate into the coronary perfusion circuit. Both diabetic and nondiabetic animals had sharp decreases in subendocardial blood flow during ischemia (from 1.21 +/- .10 to 0.43 +/- .08 mL.g-1.min-1 in the nondiabetic group, and from 1.30 +/- .15 to 0.55 +/- .11 in the diabetic group). Diabetes had no significant effect on myocardial glucose uptake or glucose conversion to lactate under either well-perfused or ischemic conditions. Forty-five minutes of ischemia resulted in significant glycogen depletion in the subendocardium in both nondiabetic and diabetic animals, with no differences between the two groups. Glycolytic metabolism is not impaired in hyperglycemic diabetic swine after 1 month of the disease when compared with that in normoglycemic nondiabetic animals. The myocardial content of the insulin-regulatable glucose transporter (GLUT 4) was measured in left ventricular biopsies.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Reduced TCR-dependent activation through citrullination of a T-cell epitope enhances Th17 development by disruption of the STAT3/5 balance

    NARCIS (Netherlands)

    Tibbitt, Christopher; Falconer, Jane; Stoop, Jeroen; van Eden, Willem; Robinson, John H.; Hilkens, Catharien M U

    2016-01-01

    Citrullination is a post-translational modification of arginine that commonly occurs in inflammatory tissues. Because T-cell receptor (TCR) signal quantity and quality can regulate T-cell differentiation, citrullination within a T-cell epitope has potential implications for T-cell effector function.

  5. Quantitative analysis of 15N labeled positional isomers of glutamine and citrulline via electrospray ionization tandem mass spectrometry of their dansyl derivatives

    Science.gov (United States)

    The enteral metabolism of glutamine and citrulline are intertwined because, while glutamine is one of the main fuel sources for the enterocyte, citrulline is one of its products. It has been shown that the administration of 15N labeled glutamine results in the incorporation of the 15N label into cit...

  6. Role of the L-citrulline/L-arginine cycle in iNANC nerve-mediated nitric oxide production and airway smooth muscle relaxation in allergic asthma

    NARCIS (Netherlands)

    Maarsingh, Ham; Leusink, John; Zaagsma, Johan; Meurs, Herman

    2006-01-01

    Nitric oxide synthase (NOS) converts L-arginine into nitric oxide (NO) and L-Citrulline. In NO-producing cells, L-citrulline can be recycled to L-arginine in a two-step reaction involving argininosuccinate synthase (ASS) and -lyase (ASL). In guinea pig trachea, L-arginine is a limiting factor in

  7. Effect of denervation on the glycolytic metabolism of the main electric organ of Electrophorus electricus (L.).

    Science.gov (United States)

    Torres-da Matta, J; Silva, C B; da Matta, A N; Hassón-Voloch, A

    1985-01-01

    Biochemical modifications of the glycolytic metabolism of the electric organ of Electrophorus electricus (L.) have been studied as a function of denervation. The activities of LDH, MDH and the concentrations of ATP, lactic and pyruvic acids were measured at intervals of zero, 15, 30 and 60 days following denervation. In parallel, CPK activity was also measured. All of these biochemical characteristics were substantially altered by denervation. The results obtained point to a change, after 15 days of denervation, from the normal anaerobic to an aerobic metabolism which remains after 30 days and reverts to anaerobic at 60 days.

  8. Phosphoglycerate Mutase Is a Highly Efficient Enzyme without Flux Control in Lactococcus lactis

    DEFF Research Database (Denmark)

    Solem, Christian; Petranovic, D.; Købmann, Brian

    2010-01-01

    The glycolytic enzyme phosphoglycerate mutase (PGM), which catalyzes the conversion of 3-phosphoglycerate to 2-phosphoglycerate, was examined in Lactococcus lactis with respect to its function, kinetics and glycolytic flux control. A library of strains with PGM activities ranging between 15......-465% of the wild-type level was constructed by replacing the native promoter of pgm with synthetic promoters of varying strengths. The specific growth rate and glucose flux were found to be maximal at the wild-type level at which PGM had no flux control. Low flux control of PGM was found on mixed acid fluxes...

  9. Enzymatic syntheses of carbamyl phosphate, L-citrulline, and N-carbamyl L-aspartate labeled with either 13N or 11C.

    Science.gov (United States)

    Gelbard, A S; Kaseman, D S; Rosenspire, K C; Meister, A

    1985-01-01

    [13N]- and [11C]carbamyl phosphate, L-[omega-13N]citrulline, L-[ureido-11C]citrulline, [carbamyl-13N]- and [carbamyl-11C]carbamyl-L-aspartate were synthesized using carbamyl phosphate synthetase co-immobilized with either aspartate transcarbamylase or ornithine transcarbamylase. Carbamyl L-[13N]aspartate was enzymatically prepared from carbamyl phosphate and L-[13N]aspartate. The tissue distribution of radioactivity in mice after injection of radiolabeled ammonia, carbamyl phosphate or citrulline was studied. The tissue distribution of isotope derived from [13N]carbamyl phosphate and [13N]ammonia were similar, with the exception of liver, brain and pancreas, in which 13NH3 uptake was higher after retroorbital injection. The distribution of label derived from L-[omega-13N]- and L-[ureido-11C]citrulline was similar. Substantial tumor (Sarcoma-180) uptake of label from L-citrulline was observed.

  10. Anti-Cyclic Citrullinated Peptide (Anti-CCP and Anti-Mutated Citrullinated Vimentin (Anti-MCV Relation with Extra-Articular Manifestations in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Laura Gonzalez-Lopez

    2014-01-01

    Full Text Available We evaluated the association between anti-cyclic citrullinated peptide antibodies (anti-CCP and anti-mutated citrullinated vimentin antibodies (anti-MCV with the presence of extra-articular (ExRA manifestations in 225 patients with rheumatoid arthritis (RA. Ninety-five patients had ExRA and 130 had no ExRA. There was no association of anti-CCP and anti-MCV levels with the presence of ExRA as total group (P=0.40 and P=0.91, resp.. Making an analysis of individual manifestations, rheumatoid nodules were associated with positivity for rheumatoid factor (RF; (P=0.01, anti-CCP (P=0.048, and anti-MCV (P=0.02. Instead, RF, anti-CCP, or anti-MCV were not associated with SS, chronic anemia, or peripheral neuropathy. Levels of anti-CCP correlated with the score of the Health Assessment Questionnaire-Disability Index (HAQ-Di (r=0.154, P=0.03, erythrocyte sedimentation rate (ESR; (r=0.155, P=0.03, and RF (P=0.254, P<0.001, whereas anti-MCV titres only correlated with RF (r=0.169, P=0.02. On adjusted analysis, ExRA was associated with longer age (P=0.015, longer disease duration (P=0.007, higher DAS-28 score (P=0.002, and higher HAQ-DI score (P=0.007, but serum levels of anti-CCP and anti-MCV were not associated. These findings show the need to strengthen the evaluation of the pathogenic mechanisms implied in each specific ExRA manifestation.

  11. Anti-Cyclic Citrullinated Peptide (Anti-CCP) and Anti-Mutated Citrullinated Vimentin (Anti-MCV) Relation with Extra-Articular Manifestations in Rheumatoid Arthritis

    Science.gov (United States)

    Gonzalez-Lopez, Laura; Rocha-Muñoz, Alberto Daniel; Ponce-Guarneros, Manuel; Flores-Chavez, Alejandra; Salazar-Paramo, Mario; Cardona-Muñoz, Ernesto German; Fajardo-Robledo, Nicte Selene; Zavaleta-Muñiz, Soraya Amali; Garcia-Cobian, Teresa; Gamez-Nava, Jorge Ivan

    2014-01-01

    We evaluated the association between anti-cyclic citrullinated peptide antibodies (anti-CCP) and anti-mutated citrullinated vimentin antibodies (anti-MCV) with the presence of extra-articular (ExRA) manifestations in 225 patients with rheumatoid arthritis (RA). Ninety-five patients had ExRA and 130 had no ExRA. There was no association of anti-CCP and anti-MCV levels with the presence of ExRA as total group (P = 0.40 and P = 0.91, resp.). Making an analysis of individual manifestations, rheumatoid nodules were associated with positivity for rheumatoid factor (RF); (P = 0.01), anti-CCP (P = 0.048), and anti-MCV (P = 0.02). Instead, RF, anti-CCP, or anti-MCV were not associated with SS, chronic anemia, or peripheral neuropathy. Levels of anti-CCP correlated with the score of the Health Assessment Questionnaire-Disability Index (HAQ-Di) (r = 0.154, P = 0.03), erythrocyte sedimentation rate (ESR); (r = 0.155, P = 0.03), and RF (P = 0.254, P < 0.001), whereas anti-MCV titres only correlated with RF (r = 0.169, P = 0.02). On adjusted analysis, ExRA was associated with longer age (P = 0.015), longer disease duration (P = 0.007), higher DAS-28 score (P = 0.002), and higher HAQ-DI score (P = 0.007), but serum levels of anti-CCP and anti-MCV were not associated. These findings show the need to strengthen the evaluation of the pathogenic mechanisms implied in each specific ExRA manifestation. PMID:24804270

  12. Extracellular citrulline levels in the nucleus accumbens during the acquisition and extinction of a classical conditioned reflex with pain reinforcement.

    Science.gov (United States)

    Savel'ev, S A; Saul'skaya, N B

    2007-03-01

    Studies on Sprague-Dawley rats using in vivo microdialysis and HPLC showed that the acquisition and performance of a classical conditioned reflex with pain reinforcement was accompanied by increases in the concentrations of citrulline (a side product of nitric oxide formation) and arginine (the substrate of NO synthase) in the intercellular space of the nucleus accumbens. During extinction of the reflex, there was a decrease in the elevation of extracellular citrulline in this brain structure, which correlated with the extent of extinction of the reflex. Recovery of the reflex led to increases in arginine and citrulline levels in the nucleus accumbens. These data suggest that there is an increase in nitric oxide production in the nucleus accumbens during the acquisition and performance of a classical conditioned reflex with pain reinforcement, which decreases as the reflex is extinguished and recovers with recovery of the reflex.

  13. Periodontal treatment decreases levels of antibodies to Porphyromonas gingivalis and citrulline in patients with rheumatoid arthritis and periodontitis.

    Science.gov (United States)

    Okada, Moe; Kobayashi, Tetsuo; Ito, Satoshi; Yokoyama, Tomoko; Abe, Asami; Murasawa, Akira; Yoshie, Hiromasa

    2013-12-01

    Porphyromonas gingivalis has been implicated as an etiologic agent of rheumatoid arthritis (RA) because of the expression of peptidylarginine deiminase. The present study evaluates whether periodontal treatment may affect serum antibodies to P. gingivalis and citrulline levels in relation to disease activity of RA. Fifty-five patients with RA were randomly assigned to receive oral hygiene instruction and supragingival scaling (treatment group, n = 26) or no periodontal treatment (control group, n = 29). Periodontal and rheumatologic parameters and serum levels of cytokine and inflammatory markers citrulline and immunoglobulin (Ig)G to P. gingivalis were examined at baseline and 8 weeks later. Both groups did not differ statistically in any parameters except percentage of sites with probing depth and clinical attachment level ≥ 4 mm at baseline. The treatment group exhibited a significantly greater decrease in disease activity score including 28 joints using C-reactive protein (DAS28-CRP) (P = 0.02), serum levels of IgG to P. gingivalis hemin binding protein (HBP)35 (P = 0.04), and citrulline (P = 0.02) than the control group. Serum levels of IgG to P. gingivalis HBP35 were significantly correlated positively with those of anti-cyclic citrullinated peptide antibodies (P = 0.0002). The same correlation was obtained between serum levels of IgG to P. gingivalis-sonicated extracts and those of rheumatoid factor (P = 0.02). These results suggest that supragingival scaling decreases DAS28-CRP and serum levels of IgG to P. gingivalis HBP35 and citrulline in patients with RA. These observations may reflect a role of P. gingivalis in the protein citrullination, which is related to the pathogenesis of RA.

  14. From steady-state to synchronized yeast glycolytic oscillations II: model validation.

    Science.gov (United States)

    du Preez, Franco B; van Niekerk, David D; Snoep, Jacky L

    2012-08-01

    In an accompanying paper [du Preez et al., (2012) FEBS J279, 2810-2822], we adapt an existing kinetic model for steady-state yeast glycolysis to simulate limit-cycle oscillations. Here we validate the model by testing its capacity to simulate a wide range of experiments on dynamics of yeast glycolysis. In addition to its description of the oscillations of glycolytic intermediates in intact cells and the rapid synchronization observed when mixing out-of-phase oscillatory cell populations (see accompanying paper), the model was able to predict the Hopf bifurcation diagram with glucose as the bifurcation parameter (and one of the bifurcation points with cyanide as the bifurcation parameter), the glucose- and acetaldehyde-driven forced oscillations, glucose and acetaldehyde quenching, and cell-free extract oscillations (including complex oscillations and mixed-mode oscillations). Thus, the model was compliant, at least qualitatively, with the majority of available experimental data for glycolytic oscillations in yeast. To our knowledge, this is the first time that a model for yeast glycolysis has been tested against such a wide variety of independent data sets. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/dupreez/index.html. © 2012 The Authors Journal compilation © 2012 FEBS.

  15. The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition.

    Science.gov (United States)

    Goodwin, Justin; Neugent, Michael L; Lee, Shin Yup; Choe, Joshua H; Choi, Hyunsung; Jenkins, Dana M R; Ruthenborg, Robin J; Robinson, Maddox W; Jeong, Ji Yun; Wake, Masaki; Abe, Hajime; Takeda, Norihiko; Endo, Hiroko; Inoue, Masahiro; Xuan, Zhenyu; Yoo, Hyuntae; Chen, Min; Ahn, Jung-Mo; Minna, John D; Helke, Kristi L; Singh, Pankaj K; Shackelford, David B; Kim, Jung-Whan

    2017-05-26

    Adenocarcinoma (ADC) and squamous cell carcinoma (SqCC) are the two predominant subtypes of non-small cell lung cancer (NSCLC) and are distinct in their histological, molecular and clinical presentation. However, metabolic signatures specific to individual NSCLC subtypes remain unknown. Here, we perform an integrative analysis of human NSCLC tumour samples, patient-derived xenografts, murine model of NSCLC, NSCLC cell lines and The Cancer Genome Atlas (TCGA) and reveal a markedly elevated expression of the GLUT1 glucose transporter in lung SqCC, which augments glucose uptake and glycolytic flux. We show that a critical reliance on glycolysis renders lung SqCC vulnerable to glycolytic inhibition, while lung ADC exhibits significant glucose independence. Clinically, elevated GLUT1-mediated glycolysis in lung SqCC strongly correlates with high (18)F-FDG uptake and poor prognosis. This previously undescribed metabolic heterogeneity of NSCLC subtypes implicates significant potential for the development of diagnostic, prognostic and targeted therapeutic strategies for lung SqCC, a cancer for which existing therapeutic options are clinically insufficient.

  16. The proteomic signature of insulin-resistant human skeletal muscle reveals increased glycolytic and decreased mitochondrial enzymes

    DEFF Research Database (Denmark)

    Giebelstein, J; Poschmann, G; Højlund, K

    2012-01-01

    The molecular mechanisms underlying insulin resistance in skeletal muscle are incompletely understood. Here, we aimed to obtain a global picture of changes in protein abundance in skeletal muscle in obesity and type 2 diabetes, and those associated with whole-body measures of insulin action....

  17. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.

    2003-01-01

    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  18. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.

    2003-01-01

    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  19. Enzyme assays.

    Science.gov (United States)

    Reymond, Jean-Louis; Fluxà, Viviana S; Maillard, Noélie

    2009-01-07

    Enzyme assays are analytical tools to visualize enzyme activities. In recent years a large variety of enzyme assays have been developed to assist the discovery and optimization of industrial enzymes, in particular for "white biotechnology" where selective enzymes are used with great success for economically viable, mild and environmentally benign production processes. The present article highlights the aspects of fluorogenic and chromogenic substrates, sensors, and enzyme fingerprinting, which are our particular areas of interest.

  20. Co-production of hydrogen and ethanol from glucose by modification of glycolytic pathways in Escherichia coli - from Embden-Meyerhof-Parnas pathway to pentose phosphate pathway.

    Science.gov (United States)

    Seol, Eunhee; Sekar, Balaji Sundara; Raj, Subramanian Mohan; Park, Sunghoon

    2016-02-01

    Hydrogen (H2) production from glucose by dark fermentation suffers from the low yield. As a solution to this problem, co-production of H2 and ethanol, both of which are good biofuels, has been suggested. To this end, using Escherichia coli, activation of pentose phosphate (PP) pathway, which can generate more NADPH than the Embden-Meyhof-Parnas (EMP) pathway, was attempted. Overexpression of two key enzymes in the branch nodes of the glycolytic pathway, Zwf and Gnd, significantly improved the co-production of H2 and ethanol with concomitant reduction of pyruvate secretion. Gene expression analysis and metabolic flux analysis (MFA) showed that, upon overexpression of Zwf and Gnd, glucose assimilation through the PP pathway, compared with that of the EMP or Entner-Doudoroff (ED) pathway, was greatly enhanced. The maximum co-production yields were 1.32 mol H2 mol(-1) glucose and 1.38 mol ethanol mol(-1) glucose, respectively. It is noteworthy that the glycolysis and the amount of NAD(P)H formed under anaerobic conditions could be altered by modifying (the activity of) several key enzymes. Our strategy could be applied for the development of industrial strains for biological production of reduced chemicals and biofuels which suffers from lack of reduced co-factors.

  1. Profiling anti-cyclic citrullinated peptide antibodies in patients with juvenile idiopathic arthritis

    Directory of Open Access Journals (Sweden)

    Tebo Anne E

    2012-08-01

    Full Text Available Abstract Background Anti-citrullinated protein/peptide antibodies (ACPA, have high specificity for rheumatoid arthritis (RA. Some children with juvenile idiopathic arthritis (JIA, phenotypically resemble RA and test positive for rheumatoid factor (RF a characteristic biomarker of RA. We investigated the prevalence of ACPA and its relationship to other serologic markers associated with RA in a well-characterized JIA cohort. Methods Cases were 334 children with JIA, 30 of whom had RF + polyarticular JIA. Sera from all cases and 50 healthy pediatric controls were investigated by ELISA at a single time point for anti-cyclic citrullinated peptide (anti-CCP IgG, RF IgM, IgA and IgG, anti-RA33 IgG, and antinuclear antibodies (ANA. Comparisons between cases and controls were made using Chi-square or Fisher exact tests and T-tests. Results The prevalence of RF was 8% among controls, and 12% among cases (ns. The prevalence of ACPA was 2% in controls and 14.3% in cases (OR 8.2, p Conclusions ACPAs are detectable in 14% of children with JIA. Children with positive ACPA but negative RF are frequent, and may define a distinct subset of children with JIA. ACPA testing should be included in the classification of JIA.

  2. Anti-cyclic Citrullinated Peptide Antibody (Anti-CCP and Diagnostic Value for Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Mehmet Agilli

    2014-02-01

    Full Text Available Rheumatoid arthritis (RA is an inflammatory multisystem disease of unknown etiology characterized by chronic destructive synovitis. It and #8217;s prevalence is about 1% all over the world. Serologic markers are also important beside some clinical situations upon RA diagnosis. Today, the most commonly used laboratory test is rheumatoid factor (RF in patients with suspected RA. RF is sensitive but not a specific biomarker for diagnosing RA. Early diagnosis of RA is essential to prevent of progressive joint damage. In recent years, anticyclic citrullinated peptide/protein antibody (anti-CCP attracts the attention as a remarkable biomarker for early diagnosis. Anti-CCP which is a family of anti-citrullinated protein antibodies (ACPA family, showed quite satisfactory specificity in the diagnosis of RA. Due to the prescence of ACPA was included to 2010 RA diagnostic criteria, in a manner of speaking, importance of anti-CCP was registered. [TAF Prev Med Bull 2014; 13(1.000: 83-88

  3. Newborn screening for dihydrolipoamide dehydrogenase deficiency: Citrulline as a useful analyte

    Directory of Open Access Journals (Sweden)

    Shane C. Quinonez

    2014-01-01

    Full Text Available Dihydrolipoamide dehydrogenase deficiency, also known as maple syrup urine disease (MSUD type III, is caused by the deficiency of the E3 subunit of branched chain alpha-ketoacid dehydrogenase (BCKDH, α-ketoglutarate dehydrogenase (αKGDH, and pyruvate dehydrogenase (PDH. DLD deficiency variably presents with either a severe neonatal encephalopathic phenotype or a primarily hepatic phenotype. As a variant form of MSUD, it is considered a core condition recommended for newborn screening. The detection of variant MSUD forms has proven difficult in the past with no asymptomatic DLD deficiency patients identified by current newborn screening strategies. Citrulline has recently been identified as an elevated dried blood spot (DBS metabolite in symptomatic patients affected with DLD deficiency. Here we report the retrospective DBS analysis and second-tier allo-isoleucine testing of 2 DLD deficiency patients. We show that an elevated citrulline and an elevated allo-isoleucine on second-tier testing can be used to successfully detect DLD deficiency. We additionally recommend that DLD deficiency be included in the “citrullinemia/elevated citrulline” ACMG Act Sheet and Algorithm.

  4. Orthotopic Liver Transplantation for Urea Cycle Enzyme Deficiency

    Science.gov (United States)

    Todo, Satoru; Starzl, Thomas E.; Tzakis, Andreas; Benkov, Keith J.; Kalousek, Frantisek; Saheki, Takeyori; Tanikawa, Kyuichi; Fenton, Wayne A.

    2010-01-01

    Hyperammonemia, abnormalities in plasma amino acids and abnormalities of standard liver functions were corrected by orthotopic liver transplantation in a 14-day-old boy with carbamyl phosphate synthetase-I deficiency and in a 35-yr-old man with argininosuccinic acid synthetase deficiency. The first patient had high plasma glutamine levels and no measureable citrulline, whereas citrulline values were markedly increased in Patient 2. Enzyme analysis of the original livers showed undetectable activity of carbamyl phosphate synthetase-I in Patient 1 and arginosuccinic acid synthetase in Patient 2. Both patients were comatose before surgery. Intellectual recovery of patient 1 has been slightly retarded because of a brain abscess caused by Aspergillus infection after surgery. Both patients are well at 34 and 40 mo, respectively, after surgery. Our experience has shown that orthotopic liver transplantation corrects the life-threatening metabolic abnormalities caused by deficiencies in the urea cycle enzymes carbamyl phosphate synthetase-I and arginosuccinic acid synthetase. Seven other patients–six with ornithine transcarbamylase deficiency and another with carbamyl phosphate synthetase-I deficiency–are known to have been treated elsewhere with liver transplantation 1½ yr or longer ago. Four of these seven recipients also are well, with follow-ups of 1½ to 5 yr. Thus liver transplantation corrects the metabolic abnormalities of three of the six urea cycle enzyme deficiencies, and presumably would correct all. PMID:1544622

  5. l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway.

    Science.gov (United States)

    Kurauchi, Yuki; Mokudai, Koichi; Mori, Asami; Sakamoto, Kenji; Nakahara, Tsutomu; Morita, Masahiko; Kamimura, Ayako; Ishii, Kunio

    2017-02-17

    l-Citrulline is a potent precursor of l-arginine, and exerts beneficial effect on cardiovascular system via nitric oxide (NO) production. Migraine is one of the most popular neurovascular disorder, and imbalance of cerebral blood flow (CBF) observed in cortical spreading depression (CSD) contributes to the mechanism of migraine aura. Here, we investigated the effect of l-citrulline on cardiovascular changes to KCl-induced CSD. in rats. Intravenous injection of l-citrulline prevented the decrease in CBF, monitored by laser Doppler flowmetry, without affecting mean arterial pressure and heart rate during CSD. Moreover, l-citrulline attenuated propagation velocity of CSD induced by KCl. The effect of l-citrulline on CBF change was prevented by l-NAME, an inhibitor of NO synthase, but not by indomethacin, an inhibitor of cyclooxygenase. On the other hand, attenuation effect of l-citrulline on CSD propagation velocity was prevented not only by l-NAME but also by indomethacin. In addition, propagation velocity of CSD was attenuated by intravenous injection of NOR3, a NO donor, which was diminished by ODQ, an inhibitor of soluble guanylyl cyclase. These results suggest that NO/cyclic GMP- and prostanoids-mediated pathway differently contribute to the effect of l-citrulline on the maintenance of CBF.

  6. The prognostic value of anti-cyclic citrullinated peptide antibody in patients with recent-onset rheumatoid arthritis

    NARCIS (Netherlands)

    Kroot, EJJA; de Jong, BAW; van Leeuwen, MA; Swinkels, H; van den Hoogen, FHJ; van't Hof, M; van de Putte, LBA; van Rijswijk, MH; van Venrooij, WJ; van Riel, PLCM

    Objective. To study the predictive value of anti-cyclic citrullinated peptide antibody (anti-CCP) in patients with recent-onset rheumatoid arthritis (RA). Methods. Outcome in terms of physical disability (Health Assessment Questionnaire) and radiologic damage (modified Sharp method) over 3-year and

  7. The prognostic value of anti-cyclic citrullinated peptide antibody in patients with recent-onset rheumatoid arthritis

    NARCIS (Netherlands)

    Kroot, EJJA; de Jong, BAW; van Leeuwen, MA; Swinkels, H; van den Hoogen, FHJ; van't Hof, M; van de Putte, LBA; van Rijswijk, MH; van Venrooij, WJ; van Riel, PLCM

    2000-01-01

    Objective. To study the predictive value of anti-cyclic citrullinated peptide antibody (anti-CCP) in patients with recent-onset rheumatoid arthritis (RA). Methods. Outcome in terms of physical disability (Health Assessment Questionnaire) and radiologic damage (modified Sharp method) over 3-year and

  8. Plasma L-citrulline concentrations and its relationship with inflammation at the onset of septic shock: a pilot study.

    Science.gov (United States)

    Crenn, Pascal; Neveux, Nathalie; Chevret, Sylvie; Jaffray, Patrick; Cynober, Luc; Melchior, Jean-Claude; Annane, Djillali

    2014-04-01

    Hypocitrullinemia has been suggested to be a prognostic factor for patients in intensive care. The aim of this ancillary study of the Corticosteroids and Intensive Insulin Therapy for Septic Shock prospective study was to investigate plasma L-citrulline concentrations and its relationship with inflammation and digestive bacterial translocation in patients with septic shock multiorgan failure and without primary intestinal disease or chronic renal failure. Sixteen adult patients were selected. They were studied on day (D) 0 at hours (H) 0, 6, 12, 18, and 24 and on D4 (H96). Selected plasma amino acids and proteins, proinflammatory (tumor necrosis factor α [TNF-α]) and anti-inflammatory (interleukin [IL] 10) cytokine concentrations, and bacterial translocation were measured. Eight D14 survivors and 8 D14 nonsurvivors patients were studied. Citrulline was decreased on D0 (H0: 29 ± 10 vs nadir: 18 ± 6 μmol/L; P shock, plasma citrulline decreases and varies inversely with C-reactive protein and is lower when digestive bacterial translocation occurs. This finding could reflect an early acute intestinal dysfunction, but measurement of citrulline concentration does not appear to be able to predict the patients' mortality. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. l-Citrulline and l-arginine supplementation retards the progression of high-cholesterol-diet-induced atherosclerosis in rabbits.

    Science.gov (United States)

    Hayashi, Toshio; Juliet, Packiasamy A R; Matsui-Hirai, Hisako; Miyazaki, Asaka; Fukatsu, Akiko; Funami, Jun; Iguchi, Akihisa; Ignarro, Louis J

    2005-09-20

    The objective of this study was to evaluate the influence of ingested l-arginine, l-citrulline, and antioxidants (vitamins C and E) on the progression of atherosclerosis in rabbits fed a high-cholesterol diet. The fatty diet caused a marked impairment of endothelium-dependent vasorelaxation in isolated thoracic aorta and blood flow in rabbit ear artery in vivo, the development of atheromatous lesions and increased superoxide anion production in thoracic aorta, and increased oxidation-sensitive gene expression [Elk-1 and phosphorylated cAMP response element-binding protein]. Rabbits were treated orally for 12 weeks with l-arginine, l-citrulline, and/or antioxidants. l-arginine plus l-citrulline, either alone or in combination with antioxidants, caused a marked improvement in endothelium-dependent vasorelaxation and blood flow, dramatic regression in atheromatous lesions, and decrease in superoxide production and oxidation-sensitive gene expression. These therapeutic effects were associated with concomitant increases in aortic endothelial NO synthase expression and plasma NO(2)(-)+NO(3)(-) and cGMP levels. These observations indicate that ingestion of certain NO-boosting substances, including l-arginine, l-citrulline, and antioxidants, can abrogate the state of oxidative stress and reverse the progression of atherosclerosis. This approach may have clinical utility in the treatment of atherosclerosis in humans.

  10. Enzymatic production of l-citrulline by hydrolysis of the guanidinium group of l-arginine with recombinant arginine deiminase.

    Science.gov (United States)

    Song, Wei; Sun, Xia; Chen, Xiulai; Liu, Dongxu; Liu, Liming

    2015-08-20

    In this study, a simple, efficient enzymatic production process for the environmentally friendly synthesis of l-citrulline from l-arginine was developed using arginine deiminase (ADI) from Lactococcus lactis. Following overexpression of L. lactis ADI in Escherichia. coli BL21 (DE3) and experimental evolution using error-prone PCR, mutant FMME106 was obtained with a Km for l-arginine of 3.5mM and a specific activity of 195.7U/mg. This mutant exhibited a maximal conversion of 92.6% and achieved a final l-citrulline concentration of 176.9g/L under optimal conditions (190g/L l-arginine, 15g/L whole-cell biocatalyst treated with 2% isopropanol for 30min, 50°C, pH 7.2, 8h). The average l-citrulline synthesis rate of 22.1g/L/h is considerably higher than that reported for other similar biocatalytic approaches, therefore the process developed in the present work has great potential for large-scale production of l-citrulline.

  11. The comparison and characterisation of glycolytic mycoplasmas isolated from the respiratory tract of sheep.

    Science.gov (United States)

    Jones, G E; Foggie, A; Mould, D L; Livitt, S

    1976-02-01

    Nine strains of glycolytic mycoplasmas isolated from the respiratory tract of apparently healthy sheep, pneumonic sheep and sheep with pulmonary adenomatosis (SPA) were compared with a Queensland strain (Y98) of Mycoplasma ovipneumoniae. All strains were very similar in their reactions in 14 biochemical tests and in their sensitivities to optochin, digitonin, sodium polyanethol sulphonate, and 11 antibiotics. Polyacrylamide-gel electrophoresis and serological cross-reactions by the agar-gel double diffusion, metabolic inhibition (MI) and growht-inhibition (GI) tests also showed that all strains could be classified as M. ovipneumoniae. The MI and GI tests, however, showed considerable intraspecific differences among strains, with apparent polarisation of SPA strains and non-SPA strains at opposite ends of the antigenic spectrum. Two representative strains were tested by the MI test against antisera to 39 mycoplasma species or serogroups, with negative results.

  12. Local and global bifurcations at infinity in models of glycolytic oscillations

    DEFF Research Database (Denmark)

    Sturis, Jeppe; Brøns, Morten

    1997-01-01

    We investigate two models of glycolytic oscillations. Each model consists of two coupled nonlinear ordinary differential equations. Both models are found to have a saddle point at infinity and to exhibit a saddle-node bifurcation at infinity, giving rise to a second saddle and a stable node...... at infinity. Depending on model parameters, a stable limit cycle may blow up to infinite period and amplitude and disappear in the bifurcation, and after the bifurcation, the stable node at infinity then attracts all trajectories. Alternatively, the stable node at infinity may coexist with either a stable...... sink (not at infinity) or a stable limit cycle. This limit cycle may then disappear in a heteroclinic bifurcation at infinity in which the unstable manifold from one saddle at infinity joins the stable manifold of the other saddle at infinity. These results explain prior reports for one of the models...

  13. Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Paolo E Porporato

    2011-08-01

    Full Text Available Cancer is a metabolic disease and the solution of two metabolic equations: to produce energy with limited resources and to fulfill the biosynthetic needs of proliferating cells. Both equations are solved when glycolysis is uncoupled from oxidative phosphorylation in the tricarboxylic acid cycle, a process known as the glycolytic switch. This review addresses in a comprehensive manner the main molecular events accounting for high-rate glycolysis in cancer. It starts from modulation of the Pasteur Effect allowing short-term adaptation to hypoxia, highlights the key role exerted by the hypoxia-inducible transcription factor HIF-1 in long-term adaptation to hypoxia, and summarizes the current knowledge concerning the necessary involvement of aerobic glycolysis (the Warburg Effect in cancer cell proliferation. Based on the many observations positing glycolysis as a central player in malignancy, the most advanced anticancer treatments targeting tumor glycolysis are briefly reviewed.

  14. Apo AIV and Citrulline Plasma Concentrations in Short Bowel Syndrome Patients: The Influence of Short Bowel Anatomy

    Science.gov (United States)

    Targarona, Jordi; Ruiz, Jorge; García, Natalia; Oró, Denise; García-Villoria, Judit; Creus, Gloria; Pita, Ana M.

    2016-01-01

    Introduction Parenteral nutrition (PN) dependence in short bowel syndrome (SBS) patients is linked to the functionality of the remnant small bowel (RSB). Patients may wean off PN following a period of intestinal adaptation that restores this functionality. Currently, plasma citrulline is the standard biomarker for monitoring intestinal functionality and adaptation. However, available studies reveal that the relationship the biomarker with the length and function of the RSB is arguable. Thus, having additional biomarkers would improve pointing out PN weaning. Aim By measuring concomitant changes in citrulline and the novel biomarker apolipoprotein AIV (Apo AIV), as well as taking into account the anatomy of the RSB, this exploratory study aims to a better understanding of the intestinal adaptation process and characterization of the SBS patients under PN. Methods Thirty four adult SBS patients were selected and assigned to adapted (aSBS) and non-adapted (nSBS) groups after reconstructive surgeries. Remaining jejunum and ileum lengths were recorded. The aSBS patients were either on an oral diet (ORAL group), those with intestinal insufficiency, or on oral and home parenteral nutrition (HPN group), those with chronic intestinal failure. Apo AIV and citrulline were analyzed in plasma samples after overnight fasting. An exploratory ROC analysis using citrulline as gold standard was performed. Results Biomarkers, Apo AIV and citrulline showed a significant correlation with RSBL in aSBS patients. In jejuno-ileocolic patients, only Apo AIV correlated with RSBL (rb = 0.54) and with ileum length (rb = 0.84). In patients without ileum neither biomarker showed any correlation with RSBL. ROC analysis indicated the Apo AIV cut-off value to be 4.6 mg /100 mL for differentiating between the aSBS HPN and ORAL groups. Conclusions Therefore, in addition to citrulline, Apo AIV can be set as a biomarker to monitor intestinal adaptation in SBS patients. As short bowel anatomy is shown

  15. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy.

    Science.gov (United States)

    de Theije, C C; Langen, R C J; Lamers, W H; Gosker, H R; Schols, A M W J; Köhler, S E

    2015-01-15

    Hypoxia as a consequence of acute and chronic respiratory disease has been associated with muscle atrophy. This study investigated the sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. Male mice were exposed to 8% normobaric oxygen for up to 21 days. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were isolated, weighed, and assayed for expression profiles of the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and glucocorticoid receptor (GR) and hypoxia-inducible factor-1α (HIF1α) signaling. Fiber-type composition and the capillary network were investigated. Hypoxia-induced muscle atrophy was more prominent in the EDL than the soleus muscle. Although increased expression of HIF1α target genes showed that both muscle types sensed hypoxia, their adaptive responses differed. Atrophy consistently involved a hypoxia-specific effect (i.e., not attributable to a hypoxia-mediated reduction of food intake) in the EDL only. Hypoxia-specific activation of the UPS and ALP and increased expression of the glucocorticoid receptor (Gr) and its target genes were also mainly observed in the EDL. In the soleus, stimulation of gene expression of those pathways could be mimicked to a large extent by food restriction alone. Hypoxia increased the number of capillary contacts per fiber cross-sectional area in both muscles. In the EDL, this was due to type II fiber atrophy, whereas in the soleus the absolute number of capillary contacts increased. These responses represent two distinct modes to improve oxygen supply to muscle fibers, but may aggravate muscle atrophy in chronic obstructive pulmonary disease patients who have a predominance of type II fibers.

  16. The extent to which ATP demand controls the glycolytic flux depends strongly on the organism and conditions for growth

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Westerhoff, H.V.; Snoep, J.L.

    2002-01-01

    Using molecular genetics we have introduced uncoupled ATPase activity in two different bacterial species, Escherichia coli and Lactococcus lactis, and determined the elasticities of the growth rate and glycolytic flux towards the intracellular [ATP]/[ADP] ratio. During balanced growth in batch cu...

  17. Adenosine triphosphate levels during anaphylactic histamine release in rat mast cells in vitro. Effects of glycolytic and respiratory inhibitors

    DEFF Research Database (Denmark)

    Johansen, Torben

    1979-01-01

    The adenosine triphosphate (ATP) content of rat mast cells was studied during and after anaphylactic histamine release. The almost identical time course of ATP decrease from mast cells treated with either glycolytic or respiratory inhibitors supports the view that the ATP depletion was largely re...

  18. [Plasma citrulline concentration as a biomarker of intestinal function in short bowel syndrome and in intestinal transplant].

    Science.gov (United States)

    Vecino López, R; Andrés Moreno, A M; Ramos Boluda, E; Martinez-Ojinaga Nodal, E; Hernanz Macías, A; Prieto Bozano, G; Lopez Santamaria, M; Tovar Larrucea, J A

    2013-10-01

    Citrulline is a non-essential amino acid produced solely in the enterocyte. The aim of this study was to analyse the role of serum citrulline as a biomarker of enterocyte load in children with intestinal failure due to short bowel syndrome (SBS) and its relationship to enteral adaptation. Plasma citrulline concentration was determined by chromatography (normal value>15 μmol/L) in 57 patients (age 0.5-18 years) admitted to our Intestinal Rehabilitation Unit with intestinal failure. Those who were dehydrated, with renal insufficiency, or other conditions able to modify the results were excluded. Patients were divided into 4 groups: group i: SBS totally dependent on parenteral nutrition (PN); group ii: SBS under mixed enteral-parenteral nutrition; group iii: IF weaned from PN after a rehabilitation period; group iv: small bowel transplanted patients weaned from PN and taking a normal diet. The mean ± SD plasma citrulline values were: group i (n=15): 7.1 ± 4.1; group ii (n=11): 15.8 ± 8.9; group iii (n=13): 20.6 ± 7.5; group iv (n=25): 28.8 ± 10.1. Values were significantly lower in group i in comparison with groups ii-iii-iv (P50% in 3 patients who developed moderate-severe rejection, and in one patient who developed viral enteritis. 1. Plasma citrulline could be a sensitive and specific biomarker of the residual functional enterocyte load. 2. It is related to enteral feeding tolerance. 3. Its prognostic value in the process of intestinal adaptation and as a rejection marker in small bowel transplanted patients needs to be confirmed. Copyright © 2012 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  19. Activity and Stability of Arginine Deiminase for Producing L-citrulline%L-瓜氨酸酶法制备中精氨酸脱亚氨酸酶的活性与稳定性研究

    Institute of Scientific and Technical Information of China (English)

    李加友; 曹瑜; 刘毅; 钱绍松; 焦庆才

    2005-01-01

    A novel Enterococcus faecalis strain designated NJ402 was found with high activity of arginine deiminase (ADI). The optimum condition for catalytic activity was determined in terms of temperature (about 40℃),thermostability (available 37℃) and pH (6-7). The effects of substrate and product concentration were studied.The effects of various metal ions added in reaction mixtures on the biocatalyst were investigated and ADI of NJ402was found to exhibit Co2+ dependence, different from previous reports. Surfactant, cetyl trimethyl ammonium bromide, was one of the most important keys for producing L-citrulline. The enzyme in resting cells possessed the quality of high stability for reuse.

  20. 重组精氨酸脱亚胺酶制备L-瓜氨酸的工艺条件优化%Optimization of Preparing L-citrulline by Recombinant Arginine Deiminase

    Institute of Scientific and Technical Information of China (English)

    马越; 宿玲恰; 吴丹; 吴敬

    2015-01-01

    将来源于Pseudomonas putida ACCC 10185的ADI编码基因克隆到表达载体pET-24a(+)中,转化Escherichia coli BL21(DE3),通过超声波破碎得到粗酶液,酶活检测ADI酶活为26 U/mL发酵液。对酶转化L-精氨酸盐酸盐生成L-瓜氨酸的反应条件进行了优化,结果表明,当底物L-精氨酸盐酸盐浓度650 g/L,反应初始pH6.0,温度37℃,加酶量24 U/g底物,转速100-200 r/min,转化时间7 h,L-瓜氨酸转化率达到100%,是目前国内外报道的酶法制备L-瓜氨酸的最高水平。%ThearcAgene encoding ADI from Pseudomonas putida ACCC 10185 was cloned into the expression vector pET-24a (+). The vector was then transformed intoEscherichia coli BL21(DE3)for intracellular production of ADI. The crude enzyme was obtained by ultrasonic treatment, and activity in the fermentation broth of recombinantE. coli BL21(DE3)was 26 U/mL. Furthermore, the condition for enzymatic conversion of L-arginine monohydrochloride to L-citrulline by the recombinant ADI was optimized. At 650 g/L of L-arginine monohydrochloride, pH6.0, 37℃, 100-200 r/min, and 24 U ADI per gram substrate incubated for 7 hours, 100% of the L-arginine monohydrochloride was transformed into L-citrulline, which was the highest level of preparing L-citrulline by enzyme method in home and abroad presently.

  1. Prevalência de anticorpos contra peptídeos cíclicos citrulinados na artrite idiopática juvenil The prevalence of anti-cyclic citrullinated peptide antibodies in juvenile idiopathic arthritis

    Directory of Open Access Journals (Sweden)

    Sandra H. Machado

    2005-12-01

    Full Text Available OBJETIVOS: Avaliar a presença de anticorpos contra peptídeos cíclicos citrulinados em uma coorte de pacientes com artrite idiopática juvenil. MÉTODOS: A presença de anticorpos contra peptídeos cíclicos citrulinados foi avaliada por ensaio imunoenzimático (ELISA no soro de pacientes com artrite idiopática juvenil com idade inferior a 18 anos, acompanhados no ambulatório de reumatologia pediátrica do Hospital de Clínicas de Porto Alegre, com tempo de diagnóstico de doença de, no mínimo, 6 meses. Também foi estudada a presença do fator reumatóide IgM e do fator antinuclear em células Hep-2 RESULTADOS: Foram analisadas amostras séricas de 45 pacientes com artrite idiopática juvenil. A presença de títulos elevados de anticorpos contra peptídeos cíclicos citrulinados foi encontrada somente no soro de uma criança (2%, a qual apresentava quadro de poliartrite com fator reumatóide reagente. CONCLUSÕES: O anticorpo contra peptídeos cíclicos citrulinados pode ser detectado em crianças com artrite idiopática juvenil, mas em freqüência muito inferior aos adultos com artrite reumatóide. Torna-se importante avaliar se anticorpos contra peptídeos cíclicos citrulinados podem identificar os pacientes com artrite idiopática juvenil com potencial de evolução para artrite reumatóide do adulto.OBJECTIVES: To assess the presence of anti-cyclic citrullinated peptide antibodies in a cohort of patients with juvenile idiopathic arthritis. METHODS: Anti-cyclic citrullinated peptide antibodies was tested for with an enzyme linked immunoabsorbent assay (ELISA in serum samples of patients from the Hospital de Clínicas de Porto Alegre, all less than 18 years old and with previous diagnosis for at least 6 months. IgMRF (rheumatoid factor and antinuclear antibodies in Hep-2 cells were also assayed. RESULTS: Serum samples were analyzed from 45 patients. The presence of high levels of anti-cyclic citrullinated peptide antibodies was found

  2. Accuracy and standardization of diagnostic methods for the detection of antibodies to citrullinated peptides

    Directory of Open Access Journals (Sweden)

    M. Tampoia

    2011-06-01

    Full Text Available Anti-citrullinated peptide antibodies (ACPA have a very high specificity for rheumatoid arthritis, much more than that of the rheumatoid factor. In addition, ACPA can be found in sera in the pre-clinical phase, are associated with more severe joint destruction and with higher disease activity. In recent years, keeping pace with new knowledge and with progress made in the antigenic composition of tests and in the characterization of immunogenic epitopes, many immunoenzymatic (ELISA methods of second and third generation have been produced and marketed commercially, and their use has spread among clinical laboratories. Today, completely automated methods are also available, which are easy to use and with a higher throughput, rendering the diagnostic utility of testing ever faster and more effective. This review takes into consideration the more important characteristics of the new ACPA-ELISA tests now commercially available, and also considers recent progress in standardizing test results.

  3. Anti-Cyclic Citrullinated Peptide Antibody-Positive Meningoencephalitis in the Preclinical Period of Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Tomoya Shibahara

    2016-07-01

    Full Text Available Rheumatoid meningoencephalitis (RM is a rare complication of rheumatoid arthritis (RA. This report describes a 63-year-old man with complaints of high-grade fever, headache, and vomiting for several days before admission. Both his serum and cerebrospinal fluid were positive for anti-cyclic citrullinated peptide (CCP antibody and rheumatoid factor, and contrast-enhanced fluid-attenuated inversion recovery magnetic resonance imaging (MRI showed abnormal gadolinium enhancement of the meninges and high-intensity lesions in the subarachnoid spaces. The patient was diagnosed with RM despite lack of signs suggesting RA. His symptoms drastically improved with intravenous infusion of high-dose methylprednisolone. Two months later, he developed RA. The findings in this patient suggest that RM could develop prior to the onset of RA. Anti-CCP antibody and MRI findings may be useful for the diagnosis of RM, regardless of RA history.

  4. Independence of carbohydrate-deficient isoforms of transferrin and cyclic citrullinated peptides in rheumatoid arthritis.

    Science.gov (United States)

    Gudowska, Monika; Gindzienska-Sieskiewicz, Ewa; Gruszewska, Ewa; Cylwik, Bogdan; Sierakowski, Stanislaw; Szmitkowski, Maciej; Chrostek, Lech

    The aim of this study was to assess the relationship between the two types of posttranslational modifications of proteins in RA: glycosylation on the example of carbohydrate-deficient transferrin and citrullination by means of autoantibodies to cyclic citrullinated peptides. The study was carried out in 50 RA patients. CDT was measured using N Latex CDT immunonephelometric test, the results were presented in absolute and relative units. Anti-CCP were measured using the chemiluminescent method and rheumatoid factor by immunoturbidimetric method. 80% of RA patients were positive for anti-CCP, 70% for RF and 62% for both, anti-CCP and RF. The level of %CDT was significantly elevated, but absolute CDT level was not changed. The mean absolute CDT concentration was higher in anti-CCP positive patients than that in anti-CCP negative. CDT (absolute and relative concentration) did not correlate with anti-CCP and RF. However, serum RF significantly correlated with anti-CCP. %CDT did not correlate with anti-CCP, but absolute level correlated with anti-CCP only in anti-CCP negative and RF negative patients. CDT did not correlate with RF, but solely with anti-CCP in anti-CCP negative patients. Anti-CCP correlated with DAS 28 only in anti-CCP negative RA, but CDT (absolute and relative units) correlated with DAS 28 in all patients and in anti-CCP positive RA. These results suggest that the changes in CDT and anti-CCP concentrations are not associated with oneself and indicate on the independence of these posttranslational modifications in rheumatoid arthritis. Only the alterations in transferrin glycosylation reflected the activity of RA. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  5. Hearing impairment in patients with rheumatoid arthritis: association with anti-citrullinated protein antibodies.

    Science.gov (United States)

    Lobo, Fabrício Silva; Dossi, Mario Orlando; Batista, Lígia; Shinzato, Márcia Midori

    2016-09-01

    It has been suggested that hearing impairment (HI) is one of the extra-articular features of rheumatoid arthritis (RA). Nevertheless, the prevalence and nature of HI in RA is still uncertain. The objectives were to study hearing function in patients with RA using audiometric tests and to examine whether HI correlates with autoantibodies. Hearing functions were investigated in 43 consecutive RA patients and 23 control subjects (less than 60 years old). Their sera were evaluated for the presence of rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-CCP), and anti-mutated citrullinated vimentin (anti-MCV) antibodies. HI was observed in 46.5 % of RA patients and in 30.4 % of control subjects, p = 0.32. HI was characterized as sensorineural in 80 and 85.7 % of RA patients and control subjects with HI, respectively, p = 1.00. RA patients had a worse hearing threshold for air conduction at 6 kHz in the right ear (p = 0.019) and had a decreased amplitude of otoacoustic emissions (OAEs) at 2 kHz bilaterally (p = 0.04) compared with control subjects. In the RA group, patients with and without HI were 80 and 34.78 % anti-CCP positive, respectively, p = 0.008. RA patients with and without HI were 85 and 43.48 % anti-MCV positive, respectively, p = 0.013. HI in RA patients was mainly sensorineural and was associated with anti-CCP and anti-MCV antibodies.

  6. A putative transport protein is involved in citrulline excretion and re-uptake during arginine deiminase pathway activity by Lactobacillus sakei.

    Science.gov (United States)

    Rimaux, Tom; Rivière, Audrey; Hebert, Elvira María; Mozzi, Fernanda; Weckx, Stefan; De Vuyst, Luc; Leroy, Frédéric

    2013-04-01

    Arginine conversion through the arginine deiminase (ADI) pathway is a common metabolic trait of Lactobacillus sakei which is ascribed to an arc operon and which inquisitively involves citrulline excretion and re-uptake. The aim of this study was to verify whether a putative transport protein (encoded by the PTP gene) plays a role in citrulline-into-ornithine conversion by L. sakei strains. This was achieved through a combination of fermentation experiments, gene expression analysis via quantitative real-time reverse transcription PCR (RT-qPCR) and construction of a PTP knock-out mutant. Expression of the PTP gene was modulated by environmental pH and was highest in the end-exponential or mid-exponential growth phase for L. sakei strains CTC 494 and 23K, respectively. In contrast to known genes of the arc operon, the PTP gene showed low expression at pH 7.0, in agreement with the finding that citrulline-into-ornithine conversion is inhibited at this pH. The presence of additional energy sources also influenced ADI pathway activity, in particular by decreasing citrulline-into-ornithine conversion. Further insight into the functionality of the PTP gene was obtained with a knock-out mutant of L. sakei CTC 494 impaired in the PTP gene, which displayed inhibition in its ability to convert extracellular citrulline into ornithine. In conclusion, results indicated that the PTP gene may putatively encode a citrulline/ornithine antiporter.

  7. Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells.

    Science.gov (United States)

    Dovmark, T H; Saccomano, M; Hulikova, A; Alves, F; Swietach, P

    2017-08-10

    Glycolytic cancer cells produce large quantities of lactate that must be removed to sustain metabolism in the absence of oxidative phosphorylation. The only venting mechanism described to do this at an adequate rate is H(+)-coupled lactate efflux on monocarboxylate transporters (MCTs). Outward MCT activity is, however, thermodynamically inhibited by extracellular acidity, a hallmark of solid tumours. This inhibition would feedback unfavourably on metabolism and growth, raising the possibility that other venting mechanisms become important in under-perfused tumours. We investigated connexin-assembled gap junctions as an alternative route for discharging lactate from pancreatic ductal adenocarcinoma (PDAC) cells. Diffusive coupling (calcein transmission) in vitro was strong between Colo357 cells, weaker yet hypoxia-inducible between BxPC3 cells, and very low between MiaPaCa2 cells. Coupling correlated with levels of connexin-43 (Cx43), a protein previously linked to late-stage disease. Evoked lactate dynamics, imaged in Colo357 spheroids using cytoplasmic pH as a read-out, indicated that lactate anions permeate gap junctions faster than highly-buffered H(+) ions. At steady-state, junctional transmission of lactate (a chemical base) from the spheroid core had an alkalinizing effect on the rim, producing therein a milieu conducive for growth. Metabolite assays demonstrated that Cx43 knockdown increased cytoplasmic lactate retention in Colo357 spheroids (diameter ~150 μm). MiaPaCa2 cells, which are Cx43 negative in monolayer culture, showed markedly increased Cx43 immunoreactivity at areas of invasion in orthotopic xenograft mouse models. These tissue areas were associated with chronic extracellular acidosis (as indicated by the marker LAMP2 near/at the plasmalemma), which can explain the advantage of junctional transmission over MCT in vivo. We propose that Cx43 channels are important conduits for dissipating lactate anions from glycolytic PDAC cells. Furthermore

  8. Merkel Cell Polyomavirus Small T Antigen Promotes Pro-Glycolytic Metabolic Perturbations Required for Transformation.

    Directory of Open Access Journals (Sweden)

    Christian Berrios

    2016-11-01

    Full Text Available Merkel cell polyomavirus (MCPyV is an etiological agent of Merkel cell carcinoma (MCC, a highly aggressive skin cancer. The MCPyV small tumor antigen (ST is required for maintenance of MCC and can transform normal cells. To gain insight into cellular perturbations induced by MCPyV ST, we performed transcriptome analysis of normal human fibroblasts with inducible expression of ST. MCPyV ST dynamically alters the cellular transcriptome with increased levels of glycolytic genes, including the monocarboxylate lactate transporter SLC16A1 (MCT1. Extracellular flux analysis revealed increased lactate export reflecting elevated aerobic glycolysis in ST expressing cells. Inhibition of MCT1 activity suppressed the growth of MCC cell lines and impaired MCPyV-dependent transformation of IMR90 cells. Both NF-κB and MYC have been shown to regulate MCT1 expression. While MYC was required for MCT1 induction, MCPyV-induced MCT1 levels decreased following knockdown of the NF-κB subunit RelA, supporting a synergistic activity between MCPyV and MYC in regulating MCT1 levels. Several MCC lines had high levels of MYCL and MYCN but not MYC. Increased levels of MYCL was more effective than MYC or MYCN in increasing extracellular acidification in MCC cells. Our results demonstrate the effects of MCPyV ST on the cellular transcriptome and reveal that transformation is dependent, at least in part, on elevated aerobic glycolysis.

  9. GLYCOLYTIC AND ENERGETIC RESOURCES AS THE DETERMINANTS OF MEAT QUALITY OF DUROC FATTENERS

    Directory of Open Access Journals (Sweden)

    Andrzej Zybert

    2015-03-01

    Full Text Available The aim of this study was to determine the diagnostic value of glycolityc and energetical quantities on selected meat quality characteristics of Duroc fatteners. A total of 40 Duroc porkers were investigated. Among two analysed sets of determinants (R1 with glycogen and R1 with lactate measured in 45 min after slaughter, the best diagnostic value for meat quality characteristics exhibit a set involving R1 and glycogen that composed determination coefficient (RC2 was 0.66 for pH measured in 45 min up to 144 h post mortem. Also, with currently used meat diagnostic methods the most useful one that explains the glycolytic and energetic quantities in the highest degree is method that exploits 5 determinants, i.e. pH1, pH24, EC2, EC24 and L*24. Higher composed determination coefficient and canonical correlation (CR for this method was obtained for set involving R1 and lactate – 0.41 and 0.64** respectively.

  10. Allosteric regulation of phosphofructokinase controls the emergence of glycolytic oscillations in isolated yeast cells.

    Science.gov (United States)

    Gustavsson, Anna-Karin; van Niekerk, David D; Adiels, Caroline B; Kooi, Bob; Goksör, Mattias; Snoep, Jacky L

    2014-06-01

    Oscillations are widely distributed in nature and synchronization of oscillators has been described at the cellular level (e.g. heart cells) and at the population level (e.g. fireflies). Yeast glycolysis is the best known oscillatory system, although it has been studied almost exclusively at the population level (i.e. limited to observations of average behaviour in synchronized cultures). We studied individual yeast cells that were positioned with optical tweezers in a microfluidic chamber to determine the precise conditions for autonomous glycolytic oscillations. Hopf bifurcation points were determined experimentally in individual cells as a function of glucose and cyanide concentrations. The experiments were analyzed in a detailed mathematical model and could be interpreted in terms of an oscillatory manifold in a three-dimensional state-space; crossing the boundaries of the manifold coincides with the onset of oscillations and positioning along the longitudinal axis of the volume sets the period. The oscillatory manifold could be approximated by allosteric control values of phosphofructokinase for ATP and AMP. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.mib.ac.uk/webMathematica/UItester.jsp?modelName=gustavsson5. [Database section added 14 May 2014 after original online publication]. © 2014 FEBS.

  11. Plasma variables, meat quality, and glycolytic potential in broilers stunned with different carbon dioxide concentrations.

    Science.gov (United States)

    Xu, L; Ji, F; Yue, H Y; Wu, S G; Zhang, H J; Zhang, L; Qi, G H

    2011-08-01

    This study aimed to investigate the effects of different CO(2) concentrations on blood variables, glycolytic potential (GP), and meat quality of hot-boned muscles in broilers. Thirty broilers were exposed to one of the following 5 gas mixtures for 90 s: 40% CO(2) + 30% O(2) + N(2) (control), 30% CO(2) + 21% O(2) + N(2) (G30%), 40% CO(2) + 21% O(2) + N(2) (G40%), 50% CO(2) + 21% O(2) + N(2) (G50%), and 60% CO(2) + 21% O(2) + N(2) (G60%). Samples were taken from the pectoralis major (PM), musculus iliofibularis (MI), and tibialis anterior muscles 45 min postmortem. The ultimate pH in both the PM (vs. G30% and G40%) and MI (vs. G40%) was decreased with G60% (P 0.05). In conclusion, stunning broilers with low CO(2) levels (30 and 40%) improved meat quality but had no advantage in animal welfare compared with high CO(2) levels (50 and 60%).

  12. Pioglitazone increases the glycolytic efficiency of human Sertoli cells with possible implications for spermatogenesis.

    Science.gov (United States)

    Meneses, M J; Bernardino, R L; Sá, R; Silva, J; Barros, A; Sousa, M; Silva, B M; Oliveira, P F; Alves, M G

    2016-10-01

    Pioglitazone is a synthetic agonist for the nuclear receptor peroxisome proliferator-activated receptor γ used to treat type 2 diabetes mellitus. Recently we reported that antidiabetic drugs regulate the nutritional support of spermatogenesis by Sertoli cells. Herein, we investigate the effects of pioglitazone on human Sertoli cells metabolism. Human Sertoli cells were cultured in the presence of pioglitazone (1, 10, 100μM). Protein levels of phosphofructokinase 1, lactate dehydrogenase, hexokinase, glucose transporters (GLUT1, GLUT2, GLUT3), monocarboxylate transporter 4 and oxidative phosphorylation complexes were determined by Western blot. Lactate dehydrogenase and alanine aminotransferase activity were assessed and metabolite production and consumption determined by proton nuclear magnetic resonance. Mitochondrial membrane potential was also determined. Glucose consumption more than doubled in human Sertoli cells stimulated with pioglitazone 100μM. Mitochondrial complex II protein levels increased 50% with exposure to pioglitazone (100μM) in human Sertoli cells, though mitochondrial membrane potential was decreased by 32%. The pharmacological concentration of pioglitazone (10μM) almost doubled lactate production and established crucial correlations among key intervenient of glycolysis. Moreover, in the same concentration, alanine aminotransferase decreased more than 80%. Our results suggest that pioglitazone (10μM) increases the efficiency of the glycolytic flux and lactate production by human Sertoli cells, which is essential to sustain and preserve the spermatogenic event. Thus, pioglitazone may improve male fertility and thus, be considered a suitable antidiabetic drug for men in reproductive age.

  13. Hypoxia-driven glycolytic and fructolytic metabolic programs: Pivotal to hypertrophic heart disease.

    Science.gov (United States)

    Mirtschink, Peter; Krek, Wilhelm

    2016-07-01

    Pathologic cardiac growth is an adaptive response of the myocardium to various forms of systemic (e.g. pressure overload) or genetically-based (e. g. mutations in genes encoding sarcomeric proteins) stress. It represents a key aspect of different types of heart disease including aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM). While many of the pathophysiological and hemodynamical aspects of pathologic cardiac hypertrophy have been uncovered during the last decades, its underlying metabolic determinants are only beginning to come into focus. Here, we review the epidemiological evidence and pathological features of hypertrophic heart disease in AS and HCM and consider in this context the development of microenvironmental tissue hypoxia as a key component of the heart's growth response to pathologic stress. We particularly reflect on recent evidence illustrating how activation of hypoxia-inducible factor (HIF) drives glycolytic and fructolytic metabolic programs to maintain ATP generation and support anabolic growth of the pathologically-stressed heart. Finally we discuss how this metabolic programs, when protracted, deprive the heart of energy leading ultimately to heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  14. Studies on L-citrulline doped potassium dihydrogen phosphate- A non linear crystal with significant nonlinear properties

    Science.gov (United States)

    Sreevalsa, V. G.; Jayalekshmi, S.

    2014-01-01

    Potassium Dihydrogen Phosphate (KDP) single crystal is considered as one of the best representative of nonlinear optical crystals. Recently, amino acids having excellent nonlinear optical characteristics are being investigated as prospective dopants to improve the non linear optical characteristics of KDP. The present work is an attempt in this direction and L citrulline, one of the non essential amino acids showing good non linear optical characteristics is used as the dopant for KDP. Good quality crystals of L-citrulline doped KDP crystals were grown by slow evaporation technique. From the powder X-ray diffraction studies of doped KDP crystal, the structure of the doped crystals was determined by direct method and refined by Pawley method employing Topaz version program using the single crystal X-ray data for pure KDP. The lattice parameters for L citrulline doped KDP are a=7.467A0, b=7.467 A0, c=6.977 A0. The crystal falls into the tetragonal crystal system with space group I42 d. The presence of carbon and oxygen, which are primary components of amino acids, in the EDAX spectrum confirms the effectiveness of doping. The absorption spectra of the doped samples show that the crystals are transparent in the entire visible region. The second harmonic generation efficiency of the doped samples was determined by Kurtz powder technique using the Q-switched Nd:YAG laser beam and is found to be 2.2 times that of KDP. The nonlinear optical properties can be well studied by the open aperture Z scan technique. The open aperture curve exhibits a normalized transmittance valley. The nonlinear absorption coefficient β is obtained by theoretical fitting for two photon absorption. It is inferred that doping KDP with L citrulline has enhanced the nonlinearity considerably. This obviously suggests the potentiality of the crystal as an optical power limiter and also for various optical device applications.

  15. l-citrulline and l-arginine supplementation retards the progression of high-cholesterol-diet-induced atherosclerosis in rabbits

    OpenAIRE

    Hayashi, Toshio; Juliet, Packiasamy A.R.; Matsui-Hirai, Hisako; Miyazaki, Asaka; Fukatsu, Akiko; Funami, Jun; Iguchi, Akihisa; Ignarro, Louis J

    2005-01-01

    The objective of this study was to evaluate the influence of ingested l-arginine, l-citrulline, and antioxidants (vitamins C and E) on the progression of atherosclerosis in rabbits fed a high-cholesterol diet. The fatty diet caused a marked impairment of endothelium-dependent vasorelaxation in isolated thoracic aorta and blood flow in rabbit ear artery in vivo, the development of atheromatous lesions and increased superoxide anion production in thoracic aorta, and increased oxidation-sensitiv...

  16. The Supplementation of Branched-Chain Amino Acids, Arginine, and Citrulline Improves Endurance Exercise Performance in Two Consecutive Days

    Directory of Open Access Journals (Sweden)

    I-Shiung Cheng, Yi-Wen Wang, I-Fan Chen, Gi-Sheng Hsu, Chun-Fang Hsueh, Chen-Kang Chang

    2016-09-01

    Full Text Available The central nervous system plays a crucial role in fatigue during endurance exercise. Branched-chain amino acids (BCAA could reduce cerebral serotonin synthesis by competing with its precursor tryptophan for crossing the blood brain barrier. Arginine and citrulline could prevent excess hyperammonemia accompanied by BCAA supplementation. This study investigated the combination of BCAA, arginine, and citrulline on endurance performance in two consecutive days. Seven male and three female endurance runners ingested 0.17 g·kg-1 BCAA, 0.05 g·kg-1 arginine and 0.05 g·kg-1 citrulline (AA trial or placebo (PL trial in a randomized cross-over design. Each trial contained a 5000 m time trial on the first day, and a 10000 m time trial on the second day. The AA trial had significantly better performance in 5000 m (AA: 1065.7 ± 33.9 s; PL: 1100.5 ± 40.4 s and 10000 m (AA: 2292.0 ± 211.3 s; PL: 2375.6 ± 244.2 s. The two trials reported similar ratings of perceived exertion. After exercise, the AA trial had significantly lower tryptophan/BCAA ratio, similar NH3, and significantly higher urea concentrations. In conclusion, the supplementation could enhance time-trial performance in two consecutive days in endurance runners, possibly through the inhibition of cerebral serotonin synthesis by BCAA and the prevention of excess hyperammonemia by increased urea genesis.

  17. The value of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis: do they imply new risk factors?

    Science.gov (United States)

    López-Longo, Francisco Javier; Sánchez-Ramón, Silvia; Carreño, Luis

    2009-11-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease that causes chronic inflammation of the joints and several extra-articular manifestations that account for increased morbimortality of these patients. The involvement of B cells in RA pathophysiology was recognized early, with the discovery of rheumatoid factor antibody. Recently, a number of autoantibodies against citrullinated proteins have been described, of which anti-cyclic citrullinated peptide (anti-CCP) is the most specific for RA. A cohort of 937 patients with RA was studied to determine the clinical correlates of anti-CCP antibodies. The presence of anti-CCP antibodies correlated with worse joint involvement and several extra-articular manifestations, i.e., higher incidence of ischemic heart disease independent of classic cardiovascular factors and higher mortality rate. A multivariate logistic regression model showed that only anti-CCP antibodies were independently associated with the development of ischemic heart disease in patients with RA. The clinical value of anti-citrullinated protein antibodies and the relevance of anti-CCP antibodies in daily clinical practice are reviewed. Copyright 2009 Prous Science, S.A.U. or its licensors. All rights reserved.

  18. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine.

    Science.gov (United States)

    Jensen, Jaide V K; Eberhardt, Dorit; Wendisch, Volker F

    2015-11-20

    The glutamate-derived bioproducts ornithine, citrulline, proline, putrescine, and arginine have applications in the food and feed, cosmetic, pharmaceutical, and chemical industries. Corynebacterium glutamicum is not only an excellent producer of glutamate but also of glutamate-derived products. Here, engineering targets beneficial for ornithine production were identified and the advantage of rationally constructing a platform strain for the production of the amino acids citrulline, proline, and arginine, and the diamine putrescine was demonstrated. Feedback alleviation of N-acetylglutamate kinase, tuning of the promoter of glutamate dehydrogenase gene gdh, lowering expression of phosphoglucoisomerase gene pgi, along with the introduction of a second copy of the arginine biosynthesis operon argCJB(A49V,M54V)D into the chromosome resulted in a C. glutamicum strain producing ornithine with a yield of 0.52 g ornithine per g glucose, an increase of 71% as compared to the parental ΔargFRG strain. Strains capable of producing 0.41 g citrulline per g glucose, 0.29 g proline per g glucose, 0.30 g arginine per g glucose, and 0.17 g putrescine per g glucose were derived from the ornithine-producing platform strain by plasmid-based overexpression of appropriate pathway modules with one to three genes.

  19. Comparison of Two Assays to Determine Anti-Citrullinated Peptide Antibodies in Rheumatoid Arthritis in relation to Other Chronic Inflammatory Rheumatic Diseases: Assaying Anti-Modified Citrullinated Vimentin Antibodies Adds Value to Second-Generation Anti-Citrullinated Cyclic Peptides Testing

    Directory of Open Access Journals (Sweden)

    Miriam Lizette Díaz-Toscano

    2014-01-01

    Full Text Available Determination of anti-citrullinated peptide antibodies (ACPA plays a relevant role in the diagnosis of rheumatoid arthritis (RA. To date, it is still unclear if the use of several tests for these autoantibodies in the same patient offers additional value as compared to performing only one test. Therefore, we evaluated the performance of using two assays for ACPA: second-generation anti-citrullinated cyclic peptides antibodies (anti-CCP2 and anti-mutated citrullinated vimentin (anti-MCV antibodies for the diagnosis of RA. We compared three groups: RA (n=142, chronic inflammatory disease (CIRD, n=86, and clinically healthy subjects (CHS, n=56 to evaluate sensitivity, specificity, predictive values, and likelihood ratios (LR of these two assays for the presence of RA. A lower frequency of positivity for anti-CCP2 was found in RA (66.2% as compared with anti-MCV (81.0%. When comparing RA versus other CIRD, sensitivity increased when both assays were performed. This strategy of testing both assays had high specificity and LR+. We conclude that adding the assay of anti-MCV antibodies to the determination of anti-CCP2 increases the sensitivity for detecting seropositive RA. Therefore, we propose the use of both assays in the initial screening of RA in longitudinal studies, including early onset of undifferentiated arthritis.

  20. Comparison of Two Assays to Determine Anti-Citrullinated Peptide Antibodies in Rheumatoid Arthritis in relation to Other Chronic Inflammatory Rheumatic Diseases: Assaying Anti-Modified Citrullinated Vimentin Antibodies Adds Value to Second-Generation Anti-Citrullinated Cyclic Peptides Testing

    Science.gov (United States)

    Díaz-Toscano, Miriam Lizette; Olivas-Flores, Eva Maria; Zavaleta-Muñiz, Soraya Amali; Gamez-Nava, Jorge Ivan; Cardona-Muñoz, Ernesto German; Ponce-Guarneros, Manuel; Castro-Contreras, Uriel; Nava, Arnulfo; Salazar-Paramo, Mario; Celis, Alfredo; Fajardo-Robledo, Nicte Selene; Corona-Sanchez, Esther Guadalupe; Gonzalez-Lopez, Laura

    2014-01-01

    Determination of anti-citrullinated peptide antibodies (ACPA) plays a relevant role in the diagnosis of rheumatoid arthritis (RA). To date, it is still unclear if the use of several tests for these autoantibodies in the same patient offers additional value as compared to performing only one test. Therefore, we evaluated the performance of using two assays for ACPA: second-generation anti-citrullinated cyclic peptides antibodies (anti-CCP2) and anti-mutated citrullinated vimentin (anti-MCV) antibodies for the diagnosis of RA. We compared three groups: RA (n = 142), chronic inflammatory disease (CIRD, n = 86), and clinically healthy subjects (CHS, n = 56) to evaluate sensitivity, specificity, predictive values, and likelihood ratios (LR) of these two assays for the presence of RA. A lower frequency of positivity for anti-CCP2 was found in RA (66.2%) as compared with anti-MCV (81.0%). When comparing RA versus other CIRD, sensitivity increased when both assays were performed. This strategy of testing both assays had high specificity and LR+. We conclude that adding the assay of anti-MCV antibodies to the determination of anti-CCP2 increases the sensitivity for detecting seropositive RA. Therefore, we propose the use of both assays in the initial screening of RA in longitudinal studies, including early onset of undifferentiated arthritis. PMID:25025037

  1. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bosche, Bert, E-mail: bert.bosche@uk-essen.de [Department of Neurology, University of Duisburg-Essen (Germany); Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com [Institute of Physiology, Justus-Liebig-University Giessen (Germany); Graf, Rudolf, E-mail: rudolf.graf@nf.mpg.de [Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Härtel, Frauke V., E-mail: frauke.haertel@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany); Schäfer, Ute, E-mail: ute.schaefer@medunigraz.at [Research Unit for Experimental Neurotraumatology, Medical University of Graz (Austria); Noll, Thomas, E-mail: thomas.noll@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany)

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium

  2. The Glycolytic Versatility of Bacteroides uniformis CECT 7771 and Its Genome Response to Oligo and Polysaccharides

    Directory of Open Access Journals (Sweden)

    Alfonso Benítez-Páez

    2017-08-01

    Full Text Available Bacteroides spp. are dominant components of the phylum Bacteroidetes in the gut microbiota and prosper in glycan enriched environments. However, knowledge of the machinery of specific species isolated from humans (like Bacteroides uniformis contributing to the utilization of dietary and endogenous sources of glycans and their byproducts is limited. We have used the cutting-edge nanopore-based technology to sequence the genome of B. uniformis CECT 7771, a human symbiont with a proven pre-clinical efficacy on metabolic and immune dysfunctions in obesity animal models. We have also used massive sequencing approaches to distinguish the genome expression patterns in response to carbon sources of different complexity during growth. At genome-wide level, our analyses globally demonstrate that B. uniformis strains exhibit an expanded glycolytic capability when compared with other Bacteroides species. Moreover, by studying the growth and whole-genome expression of B. uniformis CECT 7771 in response to different carbon sources, we detected a differential growth fitness and expression patterns across the genome depending on the carbon source of the culture media. The dietary fibers used exerted different effects on B. uniformis CECT 7771 activating different molecular pathways and, therefore, allowing the production of different metabolite types with potential impact on gut health. The genome and transcriptome analysis of B. uniformis CECT 7771, in response to different carbon sources, shows its high versatility to utilize both dietary and endogenous glycans along with the production of potentially beneficial end products for both the bacterium and the host, pointing to a mechanistic basis of a mutualistic relationship.

  3. Insights to Clinical Use of Serial Determination in Titers of Cyclic Citrullinated Peptide Autoantibodies

    Directory of Open Access Journals (Sweden)

    Katsutoshi Terasawa

    2007-03-01

    Full Text Available Anti-cyclic citrullinated peptide (CCP antibody is a useful marker for the diagnosis and prognosis of rheumatoid arthritis (RA. Recently, clinical significance of follow-up in anti-CCP antibody titer has been pointed out. Thus, we investigated the serial determination in anti-CCP antibodies titer in RA patients. Six patients with RA, who were followed up for longer than 5 years, were assessed in anti-CCP antibodies and radiographs (Larsen score. Anti-CCP antibodies in frozen sera were measured using ELISA. As a result, 6 patients with RA were divided into two groups: one possessed high titers without variation, and the other was without high titers. Joint damage progressed during observation in 2 out of 3 patients with high anti-CCP titers in a retrospective assessment. In contrast, the RA patient, whose anti-CCP titer decreases although it had been high titer at baseline, did not show increase in the Larsen score. These findings suggest that it might be necessary to analyze changes in anti-CCP to predict the prognosis of joint destruction.

  4. Supplementation with Phycocyanobilin, Citrulline, Taurine, and Supranutritional Doses of Folic Acid and Biotin—Potential for Preventing or Slowing the Progression of Diabetic Complications

    Directory of Open Access Journals (Sweden)

    Mark F. McCarty

    2017-03-01

    diabetic complications, high dose biotin has the potential to “pinch hit” for diminished NO by direct activation of soluble guanylate cyclase (sGC. High-dose biotin also may aid glycemic control via modulatory effects on enzyme induction in hepatocytes and pancreatic beta cells. Taurine, which suppresses diabetic complications in rodents, has the potential to reverse the inactivating impact of oxidative stress on sGC by boosting synthesis of hydrogen sulfide. Hence, it is proposed that concurrent administration of PhyCB, citrulline, taurine, and supranutritional doses of folate and biotin may have considerable potential for prevention and control of diabetic complications. Such a regimen could also be complemented with antioxidants such as lipoic acid, N-acetylcysteine, and melatonin—that boost cellular expression of antioxidant enzymes and glutathione—as well as astaxanthin, zinc, and glycine. The development of appropriate functional foods might make it feasible for patients to use complex nutraceutical regimens of the sort suggested here.

  5. The antibodies cyclic citrullinated peptides (anti-CCP) positivity could be a promising marker in brucellosis patients presented with peripheric arthritis.

    Science.gov (United States)

    Gokhan, Azize; Turkeyler, Ibrahim Halil; Babacan, Taner; Pehlivan, Yavuz; Dag, Muhammet Said; Bosnak, Vuslat Kecik; Namiduru, Mustafa; Kisacik, Bunyamin; Onat, Ahmet Mesut

    2014-01-01

    The anti-cyclic citrullinated peptide (anti-CCP) enzyme-linked immunosorbent assay has a high sensitivity and specificity for rheumatoid arthritis (RA). It has been used in especially early diagnosis of RA, and used to discriminate from other forms of arthritis. Anti-CCP positivity is unknown in brucellosis presented with peripheric arthritis (BPA), like other rheumatic diseases. The objective of this study was to investigate the positivity of anti-CCP in patients with BPA in contrast to the patients with RA and healthy controls. Additionally, we have aimed to monitor changes of anti-CCP levels following the brucellosis treatment. The study group consisted of 137 subjects. 62 brucellosis patients presented with peripheric arthritis. Additionally, 33 RA patients and 42 healthy subjects selected as control groups. The anti-CCP, rheumatoid factor and anti-nuclear antibody levels of the subjects were measured. Concerning the 62 BPA, 20 % (13 patients) of them had elevated anti-CCP levels. On the other side, of the 33 RA patients, 78.78 % (26 patients) of them had increased anti-CCP levels. Only one healthy subject's anti-CCP level was positive. There was statistically significant difference among the groups. After brucellosis treatment, monitorisation of the 13 patients with BPA who have the positive anti-CCP levels, were challengingly interesting because none of the patients had positive anti-CCP levels. Anti-CCP may be positive marker in the diagnosis of BPA but clinicians need to be careful during the follow up period because it may turn into normal ranges. Additionally, patients presented with peripheric arthritis and anti-CCP positivity need to be evaluated also for the differential diagnosis of BPA.

  6. Hyperoxia decreases glycolytic capacity, glycolytic reserve and oxidative phosphorylation in MLE-12 cells and inhibits complex I and II function, but not complex IV in isolated mouse lung mitochondria.

    Directory of Open Access Journals (Sweden)

    Kumuda C Das

    Full Text Available High levels of oxygen (hyperoxia are frequently used in critical care units and in conditions of respiratory insufficiencies in adults, as well as in infants. However, hyperoxia has been implicated in a number of pulmonary disorders including bronchopulmonary dysplasia (BPD and adult respiratory distress syndrome (ARDS. Hyperoxia increases the generation of reactive oxygen species (ROS in the mitochondria that could impair the function of the mitochondrial electron transport chain. We analyzed lung mitochondrial function in hyperoxia using the XF24 analyzer (extracellular flux and optimized the assay for lung epithelial cells and mitochondria isolated from lungs of mice. Our data show that hyperoxia decreases basal oxygen consumption rate (OCR, spare respiratory capacity, maximal respiration and ATP turnover in MLE-12 cells. There was significant decrease in glycolytic capacity and glycolytic reserve in MLE-12 cells exposed to hyperoxia. Using mitochondria isolated from lungs of mice exposed to hyperoxia or normoxia we have shown that hyperoxia decreased the basal, state 3 and state3 μ (respiration in an uncoupled state respirations. Further, using substrate or inhibitor of a specific complex we show that the OCR via complex I and II, but not complex IV was decreased, demonstrating that complexes I and II are specific targets of hyperoxia. Further, the activities of complex I (NADH dehydrogenase, NADH-DH and complex II (succinate dehydrogenase, SDH were decreased in hyperoxia, but the activity of complex IV (cytochrome oxidase, COX remains unchanged. Taken together, our study show that hyperoxia impairs glycolytic and mitochondrial energy metabolism in in tact cells, as well as in lungs of mice by selectively inactivating components of electron transport system.

  7. Characteristics of the nitric oxide synthase-catalyzed conversion of arginine to N-hydroxyarginine, the first oxygenation step in the enzymic synthesis of nitric oxide.

    Science.gov (United States)

    Campos, K L; Giovanelli, J; Kaufman, S

    1995-01-27

    The nitric oxide synthase-catalyzed conversion of L-arginine to L-citrulline and nitric oxide is known to be the sum of two partial reactions: oxygenation of arginine to N-hydroxyarginine, followed by oxygenation of N-hydroxyarginine to citrulline and nitric oxide. Whereas the conversion of N-hydroxyarginine to citrulline and nitric oxide has been the subject of a number of studies, the oxygenation of arginine to N-hydroxyarginine has received little attention. Here we show that substrate amounts of rat cerebellar nitric oxide synthase, in the absence of added NADPH, catalyze the conversion of arginine to N-hydroxyarginine as the dominant product. The product appears not to be tightly bound to the enzyme. A maximum of 0.16 mol of N-hydroxyarginine/mol of nitric oxide synthase subunit was formed. The reaction requires oxygen and the addition of Ca2+/calmodulin and is stimulated 3-fold by tetrahydrobiopterin. Upon addition of NADPH, citrulline is formed exclusively. Conversion of N-hydroxyarginine to citrulline, like the first partial reaction, requires Ca2+/calmodulin and is stimulated by tetrahydrobiopterin but differs from the first partial reaction in being completely dependent upon addition of NADPH. These results indicate that brain nitric oxide synthase contains an endogenous reductant that can support oxygenation of arginine but not of N-hydroxyarginine. The reductant is not NADPH, since the amount of nitric oxide synthase-bound NADPH is appreciably less than the amount required for N-hydroxyarginine synthesis. Possible candidates for this role are discussed in relation to proposed mechanisms of action of nitric oxide synthase.

  8. Characteristics of L-citrulline transport through blood-brain barrier in the brain capillary endothelial cell line (TR-BBB cells).

    Science.gov (United States)

    Lee, Kyeong-Eun; Kang, Young-Sook

    2017-05-10

    L-Citrulline is a neutral amino acid and a major precursor of L-arginine in the nitric oxide (NO) cycle. Recently it has been reported that L-citrulline prevents neuronal cell death and protects cerebrovascular injury, therefore, L-citrulline may have a neuroprotective effect to improve cerebrovascular dysfunction. Therefore, we aimed to clarify the brain transport mechanism of L-citrulline through blood-brain barrier (BBB) using the conditionally immortalized rat brain capillary endothelial cell line (TR-BBB cells), as an in vitro model of the BBB. The uptake study of [(14)C] L-citrulline, quantitative real-time polymerase chain reaction (PCR) analysis, and rLAT1, system b(0,+), and CAT1 small interfering RNA study were performed in TR-BBB cells. The uptake of [(14)C] L-citrulline was a time-dependent, but ion-independent manner in TR-BBB cells. The transport process involved two saturable components with a Michaelis-Menten constant of 30.9 ± 1.0 μM (Km1) and 1.69 ± 0.43 mM (Km2). The uptake of [(14)C] L-citrulline in TR-BBB cells was significantly inhibited by neutral and cationic amino acids, but not by anionic amino acids. In addition, [(14)C]L-citrulline uptake in the cells was markedly inhibited by 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH), which is the inhibitor of the large neutral amino acid transporter 1 (LAT1), B(0), B(0,+) and harmaline, the inhibitor of system b(0,+). Gabapentin and L-dopa as the substrates of LAT1 competitively inhibited the uptake of [(14)C] L-citrulline. IC50 values for L-dopa, gabapentin, L-phenylalanine and L-arginine were 501 μM, 223 μM, 68.9 μM and 33.4 mM, respectively. The expression of mRNA for LAT1 was predominantly increased 187-fold in comparison with that of system b(0,+) in TR-BBB cells. In the studies of LAT1, system b(0,+) and CAT1 knockdown via siRNA transfection into TR-BBB cells, the transcript level of LAT1 and [(14)C] L-citrulline uptake by LAT1 siRNA were significantly reduced

  9. The futile cycling of hexose phosphates could account for the fact that hexokinase exerts a high control on glucose phosphorylation but not on glycolytic rate in transgenic potato (Solanum tuberosum) roots.

    Science.gov (United States)

    Claeyssen, Eric; Dorion, Sonia; Clendenning, Audrey; He, Jiang Zhou; Wally, Owen; Chen, Jingkui; Auslender, Evgenia L; Moisan, Marie-Claude; Jolicoeur, Mario; Rivoal, Jean

    2013-01-01

    The metabolism of potato (Solanum tuberosum) roots constitutively over- and underexpressing hexokinase (HK, EC 2.7.1.1) was examined. An 11-fold variation in HK activity resulted in altered root growth, with antisense roots growing better than sense roots. Quantification of sugars, organic acids and amino acids in transgenic roots demonstrated that the manipulation of HK activity had very little effect on the intracellular pools of these metabolites. However, adenylate and free Pi levels were negatively affected by an increase in HK activity. The flux control coefficient of HK over the phosphorylation of glucose was measured for the first time in plants. Its value varied with HK level. It reached 1.71 at or below normal HK activity value and was much lower (0.32) at very high HK levels. Measurements of glycolytic flux and O(2) uptake rates demonstrated that the differences in glucose phosphorylation did not affect significantly glycolytic and respiratory metabolism. We hypothesized that these results could be explained by the existence of a futile cycle between the pools of hexose-Ps and carbohydrates. This view is supported by several lines of evidence. Firstly, activities of enzymes capable of catalyzing these reactions were detected in roots, including a hexose-P phosphatase. Secondly, metabolic tracer experiments using (14)C-glucose as precursor showed the formation of (14)C-fructose and (14)C-sucrose. We conclude that futile cycling of hexose-P could be partially responsible for the differences in energetic status in roots with high and low HK activity and possibly cause the observed alterations in growth in transgenic roots. The involvement of HK and futile cycles in the control of glucose-6P metabolism is discussed.

  10. The futile cycling of hexose phosphates could account for the fact that hexokinase exerts a high control on glucose phosphorylation but not on glycolytic rate in transgenic potato (Solanum tuberosum roots.

    Directory of Open Access Journals (Sweden)

    Eric Claeyssen

    Full Text Available The metabolism of potato (Solanum tuberosum roots constitutively over- and underexpressing hexokinase (HK, EC 2.7.1.1 was examined. An 11-fold variation in HK activity resulted in altered root growth, with antisense roots growing better than sense roots. Quantification of sugars, organic acids and amino acids in transgenic roots demonstrated that the manipulation of HK activity had very little effect on the intracellular pools of these metabolites. However, adenylate and free Pi levels were negatively affected by an increase in HK activity. The flux control coefficient of HK over the phosphorylation of glucose was measured for the first time in plants. Its value varied with HK level. It reached 1.71 at or below normal HK activity value and was much lower (0.32 at very high HK levels. Measurements of glycolytic flux and O(2 uptake rates demonstrated that the differences in glucose phosphorylation did not affect significantly glycolytic and respiratory metabolism. We hypothesized that these results could be explained by the existence of a futile cycle between the pools of hexose-Ps and carbohydrates. This view is supported by several lines of evidence. Firstly, activities of enzymes capable of catalyzing these reactions were detected in roots, including a hexose-P phosphatase. Secondly, metabolic tracer experiments using (14C-glucose as precursor showed the formation of (14C-fructose and (14C-sucrose. We conclude that futile cycling of hexose-P could be partially responsible for the differences in energetic status in roots with high and low HK activity and possibly cause the observed alterations in growth in transgenic roots. The involvement of HK and futile cycles in the control of glucose-6P metabolism is discussed.

  11. The Futile Cycling of Hexose Phosphates Could Account for the Fact That Hexokinase Exerts a High Control on Glucose Phosphorylation but Not on Glycolytic Rate in Transgenic Potato (Solanum tuberosum) Roots

    Science.gov (United States)

    Clendenning, Audrey; He, Jiang Zhou; Wally, Owen; Chen, Jingkui; Auslender, Evgenia L.; Moisan, Marie-Claude; Jolicoeur, Mario; Rivoal, Jean

    2013-01-01

    The metabolism of potato (Solanum tuberosum) roots constitutively over- and underexpressing hexokinase (HK, EC 2.7.1.1) was examined. An 11-fold variation in HK activity resulted in altered root growth, with antisense roots growing better than sense roots. Quantification of sugars, organic acids and amino acids in transgenic roots demonstrated that the manipulation of HK activity had very little effect on the intracellular pools of these metabolites. However, adenylate and free Pi levels were negatively affected by an increase in HK activity. The flux control coefficient of HK over the phosphorylation of glucose was measured for the first time in plants. Its value varied with HK level. It reached 1.71 at or below normal HK activity value and was much lower (0.32) at very high HK levels. Measurements of glycolytic flux and O2 uptake rates demonstrated that the differences in glucose phosphorylation did not affect significantly glycolytic and respiratory metabolism. We hypothesized that these results could be explained by the existence of a futile cycle between the pools of hexose-Ps and carbohydrates. This view is supported by several lines of evidence. Firstly, activities of enzymes capable of catalyzing these reactions were detected in roots, including a hexose-P phosphatase. Secondly, metabolic tracer experiments using 14C-glucose as precursor showed the formation of 14C-fructose and 14C-sucrose. We conclude that futile cycling of hexose-P could be partially responsible for the differences in energetic status in roots with high and low HK activity and possibly cause the observed alterations in growth in transgenic roots. The involvement of HK and futile cycles in the control of glucose-6P metabolism is discussed. PMID:23382859

  12. Reduced TCR‐dependent activation through citrullination of a T‐cell epitope enhances Th17 development by disruption of the STAT3/5 balance

    Science.gov (United States)

    Tibbitt, Christopher; Falconer, Jane; Stoop, Jeroen; van Eden, Willem; Robinson, John H.

    2016-01-01

    Citrullination is a post‐translational modification of arginine that commonly occurs in inflammatory tissues. Because T‐cell receptor (TCR) signal quantity and quality can regulate T‐cell differentiation, citrullination within a T‐cell epitope has potential implications for T‐cell effector function. Here, we investigated how citrullination of an immunedominant T‐cell epitope affected Th17 development. Murine naïve CD4+ T cells with a transgenic TCR recognising p89‐103 of the G1 domain of aggrecan (agg) were co‐cultured with syngeneic bone marrow‐derived dendritic cells (BMDC) presenting the native or citrullinated peptides. In the presence of pro‐Th17 cytokines, the peptide citrullinated on residue 93 (R93Cit) significantly enhanced Th17 development whilst impairing the Th2 response, compared to the native peptide. T cells responding to R93Cit produced less IL‐2, expressed lower levels of the IL‐2 receptor subunit CD25, and showed reduced STAT5 phosphorylation, whilst STAT3 activation was unaltered. IL‐2 blockade in native p89‐103‐primed T cells enhanced the phosphorylated STAT3/STAT5 ratio, and concomitantly enhanced Th17 development. Our data illustrate how a post‐translational modification of a TCR contact point may promote Th17 development by altering the balance between STAT5 and STAT3 activation in responding T cells, and provide new insight into how protein citrullination may influence effector Th‐cell development in inflammatory disorders. PMID:27173727

  13. Anti-carbamylated Protein Antibody Levels Correlate with Anti-Sa (Citrullinated Vimentin) Antibody Levels in Rheumatoid Arthritis.

    Science.gov (United States)

    Challener, Gregory J; Jones, Jonathan D; Pelzek, Adam J; Hamilton, B JoNell; Boire, Gilles; de Brum-Fernandes, Artur José; Masetto, Ariel; Carrier, Nathalie; Ménard, Henri A; Silverman, Gregg J; Rigby, William F C

    2016-02-01

    The presence of anticitrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) indicates a breach in immune tolerance. Recent studies indicate that this breach extends to homocitrullination of lysines with the formation of anti-carbamylated protein (anti-CarP) antibodies. We analyzed the clinical and serologic relationships of anti-CarP in 2 RA cohorts. Circulating levels of immunoglobulin G anti-CarP antibodies were determined by ELISA in established (Dartmouth-Hitchcock Medical Center) and early (Sherbrooke University Hospital Center) cohorts and evaluated for anticyclic citrullinated peptide antibodies (anti-CCP), specific ACPA, and rheumatoid factor (RF) levels using the Student t test and correlation analysis. We identified elevated anti-CarP antibodies titers in 47.0% of seropositive patients (Dartmouth, n = 164), with relationships to anti-CCP (p elevated anti-CarP antibodies; titers correlated to anti-CCP (p = 0.01) but not IgM-RF (p = 0.09). A strong correlation with anti-Sa was observed: 47.9% anti-Sa+ patients were anti-CarP antibodies+ versus only 25.4% anti-Sa- in the Sherbrooke cohort (p = 0.0002), and 62.6% anti-Sa+ patients versus 26.9% anti-Sa- were anti-CarP antibodies+ in Dartmouth (p anti-CarP antibody positivity. We also describe a surprising and unexpected association of anti-CarP with anti-Sa antibodies that could not be explained by cross-reactivity. Further, considerable heterogeneity exists between anti-CarP reactivity and other citrullinated peptide reactivity, raising the question of how the pathogenesis of antibody responses for carbamylated proteins and citrullinated proteins may be linked in vivo.

  14. The clinical significance of antibody determination to cyclic citrullinated peptides in systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Stamenković Bojana

    2012-01-01

    Full Text Available Introduction. Anti-citrullinated peptides antibodies (ACPA are present in 80% of sera of rheumatoid arthritis (RA patients with high specificity for diagnosis and prediction for the development of early erosive arthritis. A few studies have reported a low frequency ACPA in systemic sclerosis (SSc patients with the presence of arthritis. Objective. The aim of our study was to determine the frequency of ACPA in systemic sclerosis (SSc patients, their correlation with clinical manifestations and radiographic features. Methods. The study included 82 patients with SSc, mean age 54.4 years, 59 with the limited (lSSc and 23 with the diffuse (dSSc form of the disease. The control group included 28 healthy age and sex matched subjects. ACPA and rheumatoid factor (RF were determined in all SSc patients and healthy subjects in whom standard radiography of hands and wrists was also done. Results. The presence of ACPA was detected in 11 (13.4% of SSc patients. Their level was not increased in any of the controls. Positive RF was found in 15.9% of SSc patients. Arthritis was present in 17.1%, as well as marginal bone erosions. There was a statistically significant association between positive ACPA and arthritis (p<0.0001 and positive ACPA and marginal bone erosions (p=0.0002. Conclusion. The research confirmed the correlation between ACPA with clinical signs of arthritis and radiographic damage of hand joints. ACPA is a useful diagnostic marker in the identification of SSc patients with arthritis and anatomic bone damage enabling the use of adequate therapy in order to prevent joint damage and poor quality of life.

  15. Genetic markers of rheumatoid arthritis susceptibility in anti-citrullinated peptide antibody negative patients

    Science.gov (United States)

    Viatte, Sebastien; Plant, Darren; Bowes, John; Lunt, Mark; Eyre, Stephen; Barton, Anne; Worthington, Jane

    2012-01-01

    Introduction There are now over 30 confirmed loci predisposing to rheumatoid arthritis (RA). Studies have been largely undertaken in patients with anticyclic citrullinated peptide (anti-CCP) positive RA, and some genetic associations appear stronger in this subgroup than in anti-CCP negative disease, although few studies have had adequate power to address the question. The authors therefore investigated confirmed RA susceptibility loci in a large cohort of anti-CCP negative RA subjects. Methods RA patients and controls, with serological and genetic data, were available from UK Caucasian patients (n=4068 anti-CCP positive, 2040 anti-CCP negative RA) and 13,009 healthy controls. HLA-DRB1 genotypes and 36 single nucleotide polymorphisms were tested for association between controls and anti-CCP positive or negative RA. Results The shared epitope (SE) showed a strong association with anti-CCP positive and negative RA, although the effect size was significantly lower in the latter (effect size ratio=3.18, p<1.0E-96). A non-intronic marker at TNFAIP3, GIN1/C5orf30, STAT4, ANKRD55/IL6ST, BLK and PTPN22 showed association with RA susceptibility, irrespective of the serological status, the latter three markers remaining significantly associated with anti-CCP negative RA, after correction for multiple testing. No significant association with anti-CCP negative RA was detected for other markers (eg, AFF3, CD28, intronic marker at TNFAIP3), though the study power for those markers was over 80%. Discussion In the largest sample size studied to date, the authors have shown that the strength of association, the effect size and the number of known RA susceptibility loci associated with disease is different in the two disease serotypes, confirming the hypothesis that they might be two genetically different subsets. PMID:22661644

  16. Anti-citrullinated peptide antibodies in lupus patients with or without deforming arthropathy.

    Science.gov (United States)

    Damián-Abrego, G N; Cabiedes, J; Cabral, A R

    2008-04-01

    The objective was to study the association of antibodies against cyclic citrullinated peptides (anti-CCP) in patients with lupus articular damage. We studied 34 systemic lupus erythematosus patients (30 women) with (n = 14) or without (n = 20) deforming arthropathy. Anti-DNA and arthritis were mandatory inclusion criteria for both groups. As controls, 34 patients with rheumatoid arthritis and nine patients with rheumatoid arthritis and systemic lupus erythematosus (rhupus) were included. Anti-CCP and rheumatoid factor were determined by ELISA and nephelometry respectively. All patients had recent x-ray films of the hands that were evaluated according to Sharp's method. Systemic lupus erythematosus patients had a mean 6.50 +/- 0.86 (SD, range 5-8) American College of Rheumatology (ACR) criteria, rheumatoid arthritis patients met 5.38 +/- 0.60 (range 4-6) ACR criteria for rheumatoid arthritis and rhupus patients had 5.78 +/- 0.44 (range 5-6) criteria for rheumatoid arthritis and 5.11 +/- 0.78 (range 4-6) for systemic lupus erythematosus. Systemic lupus erythematosus patients, with or without deforming arthropathy, had normal serum anti-CCP concentrations. In contrast, rheumatoid arthritis and rhupus patients had 30- and 23-fold higher than normal amounts of anti-CCP (p lupus deforming arthropathy were more frequently positive for rheumatoid factor (65%) than patients with non-deforming arthritis (15%) (p = 0.005). Patients with lupus deforming arthropathy had similar frequency of erosions and mean Sharp's score than rhupus patients. Anti-CCP antibodies do not associate with lupus arthropathy, whether deforming, non-deforming or erosive.

  17. Anti-Cyclic Citrullinated Peptide Antibodies and Severity of Interstitial Lung Disease in Women with Rheumatoid Arthritis

    OpenAIRE

    Alberto Daniel Rocha-Muñoz; Manuel Ponce-Guarneros; Jorge Ivan Gamez-Nava; Eva Maria Olivas-Flores; Mayra Mejía; Pablo Juárez-Contreras; Erika Aurora Martínez-García; Esther Guadalupe Corona-Sánchez; Tania Marlen Rodríguez-Hernández; Mónica Vázquez-del Mercado; Mario Salazar-Páramo; Arnulfo Hernan Nava-Zavala; Ernesto German Cardona-Muñoz; Alfredo Celis; Laura González-Lopez

    2015-01-01

    Objective. To evaluate whether serum titers of second-generation anticyclic citrullinated peptide antibodies (anti-CCP2) are associated with the severity and extent of interstitial lung disease in rheumatoid arthritis (RA-ILD). Methods. In across-sectional study, 39 RA-ILD patients confirmed by high-resolution computed tomography (HRCT) were compared with 42 RA without lung involvement (RA only). Characteristics related to RA-ILD were assessed in all of the patients and serum anti-CCP2 titers...

  18. A case of anti-cyclic citrullinated peptides antibody positive rheumatoid meningitis without arthritis at the onset of neurological symptoms.

    Science.gov (United States)

    Abe, Tetsuya; Mishima, Kazuhiko; Uchino, Akira; Sasaki, Atsushi; Tanahashi, Norio; Takao, Masaki

    2016-09-29

    We report an 84-year-old woman with rheumatoid meningitis. She developed weakness in her muscles and became cognitively impaired. However, physical examination revealed no evidence of rheumatoid arthritis. Levels of anti-cyclic citrullinated peptide antibodies were elevated. Brain magnetic resonance imaging (MRI) showed hyperintense lesions in the frontotemporoparietal subarachnoid space on fluid attenuated inversion recovery (FLAIR) images. Leptomeningeal enhancement was also evident on gadolinium-enhanced T1-weighted images. We suspected rheumatoid meningitis. A brain biopsy was performed and methylprednisolone pulse therapy was started. Subsequently, her symptoms and MRI findings rapidly improved.

  19. Glycolysis is governed by growth regime and simple enzyme regulation in adherent MDCK cells.

    Directory of Open Access Journals (Sweden)

    Markus Rehberg

    2014-10-01

    Full Text Available Due to its vital importance in the supply of cellular pathways with energy and precursors, glycolysis has been studied for several decades regarding its capacity and regulation. For a systems-level understanding of the Madin-Darby canine kidney (MDCK cell metabolism, we couple a segregated cell growth model published earlier with a structured model of glycolysis, which is based on relatively simple kinetics for enzymatic reactions of glycolysis, to explain the pathway dynamics under various cultivation conditions. The structured model takes into account in vitro enzyme activities, and links glycolysis with pentose phosphate pathway and glycogenesis. Using a single parameterization, metabolite pool dynamics during cell cultivation, glucose limitation and glucose pulse experiments can be consistently reproduced by considering the cultivation history of the cells. Growth phase-dependent glucose uptake together with cell-specific volume changes generate high intracellular metabolite pools and flux rates to satisfy the cellular demand during growth. Under glucose limitation, the coordinated control of glycolytic enzymes re-adjusts the glycolytic flux to prevent the depletion of glycolytic intermediates. Finally, the model's predictive power supports the design of more efficient bioprocesses.

  20. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells.

    Science.gov (United States)

    Janzer, Andreas; German, Natalie J; Gonzalez-Herrera, Karina N; Asara, John M; Haigis, Marcia C; Struhl, Kevin

    2014-07-22

    Metformin, a first-line diabetes drug linked to cancer prevention in retrospective clinical analyses, inhibits cellular transformation and selectively kills breast cancer stem cells (CSCs). Although a few metabolic effects of metformin and the related biguanide phenformin have been investigated in established cancer cell lines, the global metabolic impact of biguanides during the process of neoplastic transformation and in CSCs is unknown. Here, we use LC/MS/MS metabolomics (>200 metabolites) to assess metabolic changes induced by metformin and phenformin in an Src-inducible model of cellular transformation and in mammosphere-derived breast CSCs. Although phenformin is the more potent biguanide in both systems, the metabolic profiles of these drugs are remarkably similar, although not identical. During the process of cellular transformation, biguanide treatment prevents the boost in glycolytic intermediates at a specific stage of the pathway and coordinately decreases tricarboxylic acid (TCA) cycle intermediates. In contrast, in breast CSCs, biguanides have a modest effect on glycolytic and TCA cycle intermediates, but they strongly deplete nucleotide triphosphates and may impede nucleotide synthesis. These metabolic profiles are consistent with the idea that biguanides inhibit mitochondrial complex 1, but they indicate that their metabolic effects differ depending on the stage of cellular transformation.

  1. Food Enzymes

    Science.gov (United States)

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  2. Food Enzymes

    Science.gov (United States)

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  3. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M

    1985-01-01

    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  4. Multifaceted roles of metabolic enzymes of the Paracoccidioides species complex

    Directory of Open Access Journals (Sweden)

    Caroline Maria Marcos

    2014-12-01

    Full Text Available Paracoccidioides species are dimorphic fungi, and are the etiologic agents of paracoccidioidomycosis (PCM, a serious disease of multiple organs. The large number of tissues colonized by this fungus suggests the presence of a variety of surface molecules involved in adhesion. A surprising finding is that the majority of enzymes in the glycolytic pathway, tricarboxylic acid (TCA cycle and glyoxylate cycle in Paracoccidioides spp. has adhesive properties that aid in the interaction with the host extracellular matrix, and so act as ‘moonlighting’ proteins. Moonlighting proteins have multiple functions and add another dimension to cellular complexity, while benefiting cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play roles in bacterial pathogens, either by acting as proteins secreted in a conventional pathway or not and/or as cell surface component that facilitate adhesion or adherence . This review outlines the multifuncionality exposed by a variety of Paracoccidioides spp. enzymes including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitrate lyase, malate synthase, triose phosphate isomerase, fumarase and enolase. The roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host are discussed.

  5. Carbon partitioning in green algae (chlorophyta) and the enolase enzyme.

    Science.gov (United States)

    Polle, Jürgen E W; Neofotis, Peter; Huang, Andy; Chang, William; Sury, Kiran; Wiech, Eliza M

    2014-08-04

    The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae.

  6. An experimental study of the regulation of glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Schrøder, Tine Daa; Özalp, Veli Cengiz; Lunding, Anita

    2013-01-01

    We have studied oscillating glycolysis in the strain BY4743 and isogenic strains with deletions of genes encoding enzymes in glycolysis, mitochondrial electron transport and ATP synthesis. We found that deletion of the gene encoding the hexokinase 1 isoform does not affect the oscillations while...... to processes within glycolysis also processes outside this pathway contribute to the control of the oscillatory behaviour....

  7. Glycolytic Activities in the Larval Digestive Tract of Trypoxylus dichotomus (Coleoptera: Scarabaeidae

    Directory of Open Access Journals (Sweden)

    Noriko Wada

    2014-05-01

    Full Text Available The larvae of the Japanese horned beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae: Dynastinae, are an example of a saprophage insect. Generally, Scarabaeid larvae, such as T. dichotomus, eat dead plant matter that has been broken down by fungi, such as Basidiomycota. It is thought that β-1,3-glucan, a constituent polysaccharide in microbes, is abundant in decayed plant matter. Studies of the degradation mechanism of β-1,3-glucan under these circumstances are lacking. In the current study, we sought to clarify the relationship between the capacity to degrade polysaccharides and the food habits of the larvae. The total activities and optimum pH levels of several polysaccharide-degrading enzymes from the larvae were investigated. The foregut, midgut and hindgut of final instar larvae were used. Enzymatic activities were detected against five polysaccharides (soluble starch, β-1,4-xylan, β-1,3-glucan, pectin and carboxymethyl cellulose and four glycosides (p-nitrophenyl (PNP-β-N-acetylglucosaminide, PNP-β-mannoside, PNP-β-glucoside and PNP-β-xyloside. Our results indicate that the digestive tract of the larvae is equipped with a full enzymatic system for degrading β-1,3-glucan and β-1,4-xylan to monomers. This finding elucidates the role of the polysaccharide-digesting enzymes in the larvae, and it is suggested that the larvae use these enzymes to enact their decomposition ability in the forest environment.

  8. L-citrulline protects from kidney damage in type 1 diabetic mice.

    Directory of Open Access Journals (Sweden)

    Maritza J Romero

    2013-12-01

    Full Text Available Rationale. Diabetic nephropathy is a major cause of end-stage renal disease, associated with endothelial dysfunction. Chronic supplementation of L-arginine (L-arg, the substrate for endothelial nitric oxide synthase (eNOS, failed to improve vascular function. L-citrulline (L-cit supplementation not only increases L-arg synthesis, but also inhibits cytosolic arginase I (Arg I, a competitor of eNOS for the use of L-arg, in the vasculature. Aims. To investigate whether L-cit treatment reduces diabetic nephropathy in streptozotocin (STZ-induced type 1 diabetes in mice and rats and to study its effects on arginase II (ArgII function, the main renal isoform. Methods. STZ-C57BL6 mice received L-cit or vehicle supplemented in the drinking water. For comparative analysis, diabetic ArgII knock out mice and L-cit-treated STZ-rats were evaluated. Results. L-cit exerted protective effects in kidneys of STZ-rats, and markedly reduced urinary albumin excretion, tubulo-interstitial fibrosis and kidney hypertrophy, observed in untreated diabetic mice. Intriguingly, L-cit treatment was accompanied by a sustained elevation of tubular ArgII at 16 wks and significantly enhanced plasma levels of the anti-inflammatory cytokine IL-10. Diabetic ArgII knock out mice showed greater BUN levels, hypertrophy, and dilated tubules than diabetic wild type mice. Despite a marked reduction in collagen deposition in ArgII knock out mice, their albuminuria was not significantly different from diabetic wild type animals. L-cit also restored NO/ROS balance and barrier function in high glucose-treated monolayers of human glomerular endothelial cells. Moreover, L-cit also has the ability to establish an anti-inflammatory profile, characterized by increased IL-10 and reduced IL-1beta and IL-12(p70 generation in the human proximal tubular cells. Conclusions. L-cit supplementation established an anti-inflammatory profile and significantly preserved the nephron function during type 1

  9. Are plasma citrulline and glutamine biomarkers of intestinal absorptive function in patients with short bowel syndrome?

    Science.gov (United States)

    Luo, Menghua; Fernández-Estívariz, Concepción; Manatunga, Amita K; Bazargan, Niloofar; Gu, Li H; Jones, Dean P; Klapproth, Jan-Michael; Sitaraman, Shanthi V; Leader, Lorraine M; Galloway, John R; Ziegler, Thomas R

    2007-01-01

    Sensitive biomarkers for intestinal absorptive function would be clinically useful in short bowel syndrome (SBS). Citrulline (Cit) is a product of the metabolism of glutamine (Gln) and derived amino acids by enterocytes. Cit is produced almost exclusively by the gut, which is also a major site of Gln metabolism. The goals of this study were to examine whether plasma Cit and Gln concentrations are biomarkers of residual small intestinal length and nutrient absorptive functions in adult SBS patients followed prospectively. We studied 24 stable adults with severe SBS receiving chronic parenteral nutrition (PN) in a double-blind, randomized trial of individualized dietary modification +/- recombinant human growth hormone (GH). During a baseline week, intestinal absorption studies (% absorption of fluid, kcal, nitrogen, fat, carbohydrate, sodium, phosphorus, and magnesium) were performed and concomitant plasma Cit and Gln concentrations determined. Individualized dietary modification and treatment with subcutaneous injection of placebo (n = 9) or GH (0.1 mg/kg daily x 21 days, then 3 times/week; n = 15) were then begun. PN weaning was initiated after week 4 and continued as tolerated for 24 weeks. Repeat plasma amino acid determination and nutrient absorption studies were performed at weeks 4 and 12. Residual small bowel length at baseline was positively correlated with baseline plasma Cit (r = 0.467; p = .028). However, no significant correlations between absolute Cit or Gln concentrations and the percent absorption of nutrient substrates at any time point were observed. Similarly, no correlation between the change in Cit or GLN concentration and the change in % nutrient absorption was observed (baseline vs weeks 4 and 12, respectively). By weeks 12 and 24, 7 and 13 subjects were weaned completely from PN, respectively. However, baseline plasma Cit or Gln did not predict PN weaning at these time points. We concluded that plasma Cit (but not Gln) concentrations appeared

  10. RHEUMATOID FACTOR AND ANTI-CYCLIC CITRULLINATED PEPTIDE ANTIBODIES IN PATIENTS WITH PSORIATIC ARTHRITIS

    Directory of Open Access Journals (Sweden)

    V. V. Badokin

    2011-01-01

    Full Text Available Objective: to define the clinical value of rheumatoid factor (RF and anti-cyclic citrullinated peptide antibodies (anti-CCP in early psori- atic arthritis (PA. Subjects and methods. Fifty-six patients (32 females and 24 males with early PA with a mean duration of 12±6.7 months were studied. The examinees' age ranged from 18 to 76 years (mean age 44±15.5 years. Mean psoriasis duration was 12.5±2.2 years. RF IgM was determined using a high-sensitive nephelometric method on a BN Pro-Spec analyzer (Siemens, Germany and serum anti-CCP concentra- tions were measured by immunochemiluminescence on a COBAS e411 analyzer (Roche, Switzerland. Group 1 included 10 patients with anti-CCP and/or RF (a study group; Group 2 comprised 46 patients without anti-CCP and RF (a control group. Results. There was anti-CCP in 7 (12.5% of the patients with early PA, RF in 8 (14.3%, both of them in 5 (9%. The study group had a severer course of PA accompanied by polyarthritis, inflamed distal interphalangeal joints, axial arthritis, dactylitis, enthesitis, and, in some cases spondylitis and sacroiliitis. In groups 1 and 2, the number of tender joints was 17.6±4 and 10±1.5, respectively (p = 0.04; that of swollen ones, 12.6±1.5 and 7.0±1.1 (p = 0.02; DAS28 index, 5.9±1.7 and 4.5±1.5 (p = 0.02; ESR, 34.5±5.9 and 22±2.3 (p = 0.04, high-sensitive C reactive protein, 70±25.3 and 24.9±5.0 (p = 0.06; and Sharp ratio, 68.7±14.3 and 21.3±3.8 (p < 0.004. Conclusion. In patients with early PA, anti-CCP and RF were encountered with an approximately equal frequency; at the same time, they were associated with polyarthritis, high disease activity, and an erosive process. 

  11. A combination of autoantibodies to cyclic citrullinated peptide (CCP) and HLA-DRB1 locus antigens is strongly associated with future onset of rheumatoid arthritis

    NARCIS (Netherlands)

    Berglin, E.; Padyukov, L.; Sundin, U.; Hallmans, G.; Stenlund, H.; Venrooij, W.J.W. van; Klareskog, L.; Dahlqvist, S.R.

    2004-01-01

    Antibodies against cyclic citrullinated peptide (CCP) and rheumatoid factors (RFs) have been demonstrated to predate the onset of rheumatoid arthritis ( RA) by years. A nested case control study was performed within the Northern Sweden Health and Disease study cohort to analyse the presence of share

  12. Citrulline decreases hepatic endotoxin-induced injury in fructose-induced non-alcoholic liver disease: an ex vivo study in the isolated perfused rat liver.

    Science.gov (United States)

    Ouelaa, Wassila; Jegatheesan, Prasanthi; M'bouyou-Boungou, Japhète; Vicente, Christelle; Nakib, Samir; Nubret, Esther; De Bandt, Jean-Pascal

    2017-06-01

    Steatosis can sensitise the liver to various challenges and favour the development of non-alcoholic fatty liver disease (NAFLD). In this context, fructose feeding promotes endotoxin translocation from the gut, contributing to disease progression via an inflammatory process. Citrulline is protective against fructose-induced NAFLD; we hypothesised that this property might be related to its anti-inflammatory and antioxidative action against endotoxin-induced hepatic injuries. This hypothesis was evaluated in a model of perfused liver isolated from NAFLD rats. Male Sprague-Dawley rats (n 30) were fed either a standard rodent chow or a 60 % fructose diet alone, or supplemented with citrulline (1 g/kg per d) for 4 weeks. After an evaluation of their metabolic status, fasted rats received an intraperitoneal injection of lipopolysaccharide (LPS) (2·5 mg/kg). After 1 h, the livers were isolated and perfused for 1 h to study liver function and metabolism, inflammation and oxidative status. In vivo, citrulline significantly decreased dyslipidaemia induced by a high-fructose diet and insulin resistance. In the isolated perfused rat livers, endotoxaemia resulted in higher cytolysis (alanine aminotransferase release) and higher inflammation (Toll-like receptor 4) in livers of fructose-fed rats, and it was prevented by citrulline supplementation. Oxidative stress and antioxidative defences were similar in all three groups. Amino acid exchanges and metabolism (ammonia and urea release) were only slightly different between the three groups. In this context of mild steatosis, our results suggest that fructose-induced NAFLD leads to an increased hepatic sensitivity to LPS-induced inflammation. Citrulline-induced restriction of the inflammatory process may thus contribute to the prevention of NAFLD.

  13. Exposure to Glycolytic Carbon Sources Reveals a Novel Layer of Regulation for the MalT Regulon

    Directory of Open Access Journals (Sweden)

    Sylvia A. Reimann

    2011-01-01

    Full Text Available Bacteria adapt to changing environments by means of tightly coordinated regulatory circuits. The use of synthetic lethality, a genetic phenomenon in which the combination of two nonlethal mutations causes cell death, facilitates identification and study of such circuitry. In this study, we show that the E. coli ompR malTcon double mutant exhibits a synthetic lethal phenotype that is environmentally conditional. MalTcon, the constitutively active form of the maltose system regulator MalT, causes elevated expression of the outer membrane porin LamB, which leads to death in the absence of the osmoregulator OmpR. However, the presence and metabolism of glycolytic carbon sources, such as sorbitol, promotes viability and unveils a novel layer of regulation within the complex circuitry that controls maltose transport and metabolism.

  14. Effect of electrical stunning current and frequency on meat quality, plasma parameters, and glycolytic potential in broilers.

    Science.gov (United States)

    Xu, L; Zhang, L; Yue, H Y; Wu, S G; Zhang, H J; Ji, F; Qi, G H

    2011-08-01

    This study was designed to determine the effect of electrical stunning variables (low currents and high frequencies) on meat quality, glycolytic potential, and blood parameters in broilers. A total of 54 broilers were stunned with 9 electrical stunning methods for 18 s using sinusoidal alternating currents combining 3 current levels (35 V, 47 mA; 50 V, 67 mA; and 65 V, 86 mA) with 3 frequencies (160, 400, and 1,000 Hz). Samples for meat quality were obtained from the pectoralis major (PM) and musculus iliofibularis (MI), and samples for glycogen metabolism were taken from the PM and tibialis anterior muscle at 45 min postmortem. The use of high frequency reduced the shear value in PM (400 and 1,000 Hz vs. 160 Hz; P 50 V, 67 mA).

  15. High-intensity intermittent exercise training with chlorella intake accelerates exercise performance and muscle glycolytic and oxidative capacity in rats.

    Science.gov (United States)

    Horii, Naoki; Hasegawa, Natsuki; Fujie, Shumpei; Uchida, Masataka; Miyamoto-Mikami, Eri; Hashimoto, Takeshi; Tabata, Izumi; Iemitsu, Motoyuki

    2017-04-01

    The purpose of this study was to investigate the effect of chronic chlorella intake alone or in combination with high-intensity intermittent exercise (HIIE) training on exercise performance and muscle glycolytic and oxidative metabolism in rats. Forty male Sprague-Dawley rats were randomly assigned to the four groups: sedentary control, chlorella intake (0.5% chlorella powder in normal feed), HIIE training, and combination of HIIE training and chlorella intake for 6 wk (n = 10 each group). HIIE training comprised 14 repeats of a 20-s swimming session with a 10-s pause between sessions, while bearing a weight equivalent to 16% of body weight, 4 days/week. Exercise performance was tested after the interventions by measuring the maximal number of HIIE sessions that could be completed. Chlorella intake and HIIE training significantly increased the maximal number of HIIE sessions and enhanced the expression of monocarboxylate transporter (MCT)1, MCT4, and peroxisome proliferator-activated receptor γ coactivator-1α concomitantly with the activities of lactate dehydrogenase (LDH), phosphofructokinase, citrate synthase (CS), and cytochrome-c oxidase (COX) in the red region of the gastrocnemius muscle. Furthermore, the combination further augmented the increased exercise performance and the enhanced expressions and activities. By contrast, in the white region of the muscle, MCT1 expression and LDH, CS, and COX activities did not change. These results showed that compared with only chlorella intake and only HIIE training, chlorella intake combined with HIIE training has a more pronounced effect on exercise performance and muscle glycolytic and oxidative metabolism, in particular, lactate metabolism. Copyright © 2017 the American Physiological Society.

  16. Copper oxide nanoparticles stimulate glycolytic flux and increase the cellular contents of glutathione and metallothioneins in cultured astrocytes.

    Science.gov (United States)

    Bulcke, Felix; Dringen, Ralf

    2015-01-01

    Copper oxide nanoparticles (CuO-NPs) are frequently used for industrial or medical applications and are known for their high toxic potential. As little is known so far on the consequences of an exposure of brain cells to such particles, we applied CuO-NPs to cultured primary rat astrocytes and investigated whether such particles affect cell viability and alter their metabolic properties. Astrocytes efficiently accumulated CuO-NPs in a time- and concentration-dependent manner. The cells remained viable during a 24 h incubation with 100 µM copper in the form of CuO-NPs, while higher concentrations of CuO-NPs severely compromised the cell viability. Astrocytes that were exposed for 24 h to 100 µM CuO-NPs showed significantly enhanced extracellular lactate concentrations and increased cellular levels of glutathione and metallothioneins. The CuO-NP-induced increase in lactate release and metallothionein content were prevented by the presence of the membrane-permeable copper chelator tetrathiomolybdate, while this chelator increased already in the absence of CuO-NPs the cellular glutathione content. After removal of the CuO-NPs following a 24 h pre-incubation with 100 µM CuO-NPs, astrocytes maintained during a further 6 h incubation an elevated glycolytic lactate release and exported significantly more glutathione than control cells that had been pre-incubated without CuO-NPs. These data suggest that copper ions which are liberated from internalized CuO-NPs stimulate glycolytic flux as well as the synthesis of glutathione and metallothioneins in cultured viable astrocytes.

  17. Phosphatase control of 4E-BP1 phosphorylation state is central for glycolytic regulation of retinal protein synthesis.

    Science.gov (United States)

    Gardner, Thomas W; Abcouwer, Steven F; Losiewicz, Mandy K; Fort, Patrice E

    2015-09-15

    Control of protein synthesis in insulin-responsive tissues has been well characterized, but relatively little is known about how this process is regulated in nervous tissues. The retina exhibits a relatively high protein synthesis rate, coinciding with high basal Akt and metabolic activities, with the majority of retinal ATP being derived from aerobic glycolysis. We examined the dependency of retinal protein synthesis on the Akt-mTOR signaling and glycolysis using ex vivo rat retinas. Akt inhibitors significantly reduced retinal protein synthesis but did not affect glycolytic lactate production. Surprisingly, the glycolytic inhibitor 2-deoxyglucose (2-DG) markedly inhibited Akt1 and Akt3 activities, as well as protein synthesis. The effects of 2-DG, and 2-fluorodeoxyglucose (2-FDG) on retinal protein synthesis correlated with inhibition of lactate production and diminished ATP content, with all these effects reversed by provision of d-mannose. 2-DG treatment was not associated with increased AMPK, eEF2, or eIF2α phosphorylation; instead, it caused rapid dephosphorylation of 4E-BP1. 2-DG reduced total mTOR activity by 25%, but surprisingly, it did not reduce mTORC1 activity, as indicated by unaltered raptor-associated mTOR autophosphorylation and ribosomal protein S6 phosphorylation. Dephosphorylation of 4E-BP1 was largely prevented by inhibition of PP1/PP2A phosphatases with okadaic acid and calyculin A, and inhibition of PPM1 phosphatases with cadmium. Thus, inhibition of retinal glycolysis diminished Akt and protein synthesis coinciding with accelerated dephosphorylation of 4E-BP1 independently of mTORC1. These results demonstrate a novel mechanism regulating protein synthesis in the retina involving an mTORC1-independent and phosphatase-dependent regulation of 4E-BP1.

  18. An optical tweezers, epi-fluorescence/spinning disk confocal- and microfluidic-setup for synchronization studies of glycolytic oscillations in living yeast cells

    Science.gov (United States)

    Mojica-Benavides, Martin; Adiels, Caroline B.; Goksör, Mattias

    2016-09-01

    Due to the significant importance of glycolytic oscillations studies and the recent breakthroughs on single cell analysis, a further interest arrives with intracellular and intercellular responses. Understanding cell-cell communication can give insight to oscillatory behaviors in biological systems, such as insulin secretion from pancreatic β-cells. The aim of this work consists on the manipulation of living yeast cells to study propagation and synchronization of induced glycolytic oscillations. A setup, consisting of an optical tweezers system and microfluidic devices coupled with fluorescence imaging was designed to perform a time dependent observation during artificially induced glycolytic oscillations. Multi-channel flow devices and diffusion chambers were fabricated using soft lithography. Automatized pumps controlled specific flow rates of infused glucose and cyanide solutions, used to induce the oscillations. Flow and diffusion in the microfluidic devices were simulated to assure experimentally the desired coverage of the solutions across the yeast cells, a requirement for time dependent measurements. Using near infrared optical tweezers, yeast cells were trapped and positioned in array configurations, ranging from a single cell to clusters of various symmetries, in order to obtain information about cell-cell communications during the metabolic cycles. Confocal illumination of an entire focal plane using a spinning disk, will allow acquirement of NADH periodic fluorescence signals during glycolytic oscillations. This method permits an improvement of the 2D projection images obtained with wide field microscopy to a tomographic description of the subcellular propagation of the oscillations.

  19. Resveratrol augments ER stress and the cytotoxic effects of glycolytic inhibition in neuroblastoma by downregulating Akt in a mechanism independent of SIRT1

    NARCIS (Netherlands)

    Graham, Regina M.; Hernandez, Fiorela; Puerta, Nataly; De Angulo, Guillermo; Webster, Keith A.; Vanni, Steven

    Cancer cells typically display increased rates of aerobic glycolysis that are correlated with tumor aggressiveness and a poor prognosis. Targeting the glycolytic pathway has emerged as an attractive therapeutic route mainly because it should spare normal cells. Here, we evaluate the effects of

  20. Dose escalation to high-risk sub-volumes based on non-invasive imaging of hypoxia and glycolytic activity in canine solid tumors

    DEFF Research Database (Denmark)

    Clausen, Malene M.; Hansen, Anders Elias; af Rosenschold, Per Munck;

    2013-01-01

    Introduction: Glycolytic activity and hypoxia are associated with poor prognosis and radiation resistance. Including both the tumor uptake of 2-deoxy-2-[18 F]-fluorodeoxyglucose (FDG) and the proposed hypoxia tracer copper(II)diacetyl-bis(N4)-methylsemithio-carbazone (Cu-ATSM) in targeted therapy...

  1. 1α,25(OH) 2D3 Sensitive Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Ishikawa Cells.

    Science.gov (United States)

    Zeng, Ni; Zhou, Yuetao; Zhang, Shaqiu; Singh, Yogesh; Shi, Bing; Salker, Madhuri S; Lang, Florian

    2017-01-01

    Tumor cell proliferation is modified by 1,25-Dihydroxy-Vitamin D3 (1,25(OH)2D3), a steroid hormone predominantly known for its role in calcium and phosphorus metabolism. Key properties of tumor cells include enhanced glycolytic flux with excessive consumption of glucose and formation of lactate. As glycolysis is highly sensitive to cytosolic pH, maintenance of glycolysis requires export of H+ ions and lactate, which is in part accomplished by Na+/H+ exchangers, such as NHE1 and monocarboxylate transporters, such as MCT4. An effect of 1,25(OH)2D3 on those transport processes has, however, never been reported. As cytosolic pH impacts on apoptosis, the study further explored the effect of 1,25(OH)2D3 on apoptosis and on the apoptosis regulating kinase AKT, transcription factor Forkhead box O-3 (FOXO3A) and B-cell lymphoma protein BCL-2. In human endometrial adenocarcinoma (Ishikawa) cells, cytosolic pH (pHi) was determined utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na+/H+ exchanger activity from Na+ dependent realkalinization after an ammonium pulse, NHE1 and MCT4 transcript levels using qRT-PCR, NHE1, MCT4, total & phospho AKT, total & phospho-FOXO3A and BCL-2 protein abundance by Western blotting, lactate concentration in the supernatant utilizing a colorimetric enzyme assay and cell death quantification using CytoTox 96®, Annexin V and Propidium Iodide staining. A 24 hours treatment with 1,25(OH)2D3 (100 nM) significantly increased cytosolic pH (pHi), significantly decreased Na+/H+ exchanger activity, NHE1 and MCT4 transcript levels as well as protein abundance and significantly increased lactate concentration in the supernatant. Treatment of Ishikawa cells with 1,25(OH)2D3 (100 nM) further triggered apoptosis, an effect paralleled by decreased phosphorylation of AKT and FOXO3A as well as decreased abundance of BCL-2. In Ishikawa cells 1,25(OH)2D3 is a powerful stimulator of glycolysis, an effect presumably due to

  2. The PTPN22 1858C/T polymorphism is associated with anti-cyclic citrullinated peptide antibody-positive early rheumatoid arthritis in northern Sweden

    Science.gov (United States)

    Kokkonen, Heidi; Johansson, Martin; Innala, Lena; Jidell, Erik; Rantapää-Dahlqvist, Solbritt

    2007-01-01

    The PTPN22 1858C/T polymorphism has been associated with several autoimmune diseases including rheumatoid arthritis (RA). We have shown that carriage of the T variant (CT or TT) of PTPN22 in combination with anti-cyclic citrullinated peptide (anti-CCP) antibodies highly increases the odds ratio for developing RA. In the present study we analysed the association between the PTPN22 1858C/T polymorphism and early RA in patients from northern Sweden, related the polymorphism to autoantibodies and the HLA-DR shared epitope, and analysed their association with markers for disease activity and progression. The inception cohort includes individuals who also donated samples before disease onset. A case–control study was performed in patients (n = 505; 342 females and 163 males) with early RA (mean duration of symptoms = 6.3 months) and in population-based matched controls (n = 970) from northern Sweden. Genotyping of the PTPN22 1858C/T polymorphism was performed using a TaqMan instrument. HLA-shared epitope alleles were identified using PCR sequence-specific primers. Anti-CCP2 antibodies were determined using enzyme-linked immunoassays. Disease activity (that is, the number of swollen and tender joints, the global visual analogue scale, and the erythrocyte sedimentation rate) was followed on a regular basis (that is, at baseline and after 6, 12, 18 and 24 months). Both the 1858T allele and the carriage of T were associated with RA (χ2 = 23.84, P = 0.000001, odds ratio = 1.69, 95% confidence interval = 1.36–2.11; and χ2 = 22.68, P = 0.000002, odds ratio = 1.79, 95% confidence interval = 1.40–2.29, respectively). Association of the 1858T variant with RA was confined to seropositive disease. Carriage of 1858T and the presence of anti-CCP antibodies was independently associated with disease onset at an earlier age (P < 0.05 and P < 0.01, respectively), while the combination of both resulted in an even earlier age at onset. Smoking was identified as a risk factor

  3. Muscle bio-energetics in acute glycolytic block: in vivo phosphorus-nuclear magnetic resonance study of iodo-acetate injected rats.

    Science.gov (United States)

    Argov, Z; Nagle, D; Giger, U; Leigh, J S

    1989-01-01

    In vivo phosphorus nuclear magnetic resonance spectroscopy of muscle was performed at rest, during work and during postexercise recovery in rats injected with iodo-acetate (IA) (35-40 mg.kg-1, intra-arterially), in order to follow bio-energetic changes in muscle with acute glycolytic block. Three animals with contracture had very low ratios of phosphocreatine:inorganic phosphate (PCr:Pi) at rest (0.5-0.9). The PCr:Pi were normal at rest (6.9 +/- 2.0, +/- 2 SD) in all other rats. Exercise-induced continuous accumulation of phosphomonoesters (PME), the characteristic finding of glycolytic block, was observed. The end-exercise levels of PME correlated with the degree of block measured in vitro. During steady-state work, induced by nerve stimulation at four frequencies, PCr:Pi values were significantly lower (p less than 0.02) than the control values at 0.25, 1.0 and 2.0 Hz. The ATP levels fell during exercise to reach 75% +/- 7% of initial values. The recovery of PCr:Pi from exercise and the disappearance of PME were slow. Two animals which survived the IA injection demonstrated much lower PME accumulation 18 h later. It is concluded that in acute muscle glycolytic block: (1) energy metabolism is impaired during exercise and also at rest, (2) accumulating PME can serve as an indicator of the degree of glycolytic block, (3) ATP levels fall during work, and (4) postexercise recovery is slow. The findings are compared with 31P-NMR observations in chronic muscle glycolytic disorders.

  4. Therapeutic effect of Semecarpus anacardium Linn. nut milk extract on carbohydrate metabolizing and mitochondrial TCA cycle and respiratory chain enzymes in mammary carcinoma rats.

    Science.gov (United States)

    Arathi, G; Sachdanandam, P

    2003-09-01

    Semecarpus anacardium Linn. of the family Anacardiaceae has many applications in the Ayurvedic and Siddha systems of medicine. We have evaluated the effect of S. anacardium nut milk extract on carbohydrate metabolizing enzymes and mitochondrial tricarboxylic acid cycle and respiratory enzymes in liver and kidney mitochondria of dimethyl benzanthracene-induced mammary carcinoma in Sprague-Dawley rats. Mammary carcinoma-bearing rats showed a significant rise in glycolytic enzymes (hexokinase, phosphoglucoisomerase and aldolase) and a simultaneous fall in gluconeogenic enzymes (glucose-6-phosphatase and fructose 1,6-diphosphatase). The activities of mitochondrial enzymes isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADH-dehydrogenase and cytochrome C oxidase were significantly lowered in mammary carcinoma-bearing rats when compared with control rats. S. anacardium nut extract administration to tumour-induced animals significantly lowered the glycolytic enzyme activities (hexokinase, phosphoglucoisomerase and aldolase) and there was a rise in gluconeogenic enzymes (glucose-6-phosphatase and fructose 1,6-diphosphatase), which indicated an antitumour and anticancer effect. Comparison of normal control rats and rats administered S. anacardium only as drug control animals showed no significant variations in enzyme activities. S. anacardium nut extract administration to dimethyl benzanthracene-tumour-induced animals significantly increased the activities of mitochondrial enzymes, thereby suggesting its role in mitochondrial energy production.

  5. Regulation of dual glycolytic pathways for fructose metabolism in heterofermentative Lactobacillus panis PM1.

    Science.gov (United States)

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2013-12-01

    Lactobacillus panis PM1 belongs to the group III heterofermentative lactobacilli that use the 6-phosphogluconate/phosphoketolase (6-PG/PK) pathway as their central metabolic pathway and are reportedly unable to grow on fructose as a sole carbon source. We isolated a variant PM1 strain capable of sporadic growth on fructose medium and observed its distinctive characteristics of fructose metabolism. The end product pattern was different from what is expected in typical group III lactobacilli using the 6-PG/PK pathway (i.e., more lactate, less acetate, and no mannitol). In addition, in silico analysis revealed the presence of genes encoding most of critical enzymes in the Embden-Meyerhof (EM) pathway. These observations indicated that fructose was metabolized via two pathways. Fructose metabolism in the PM1 strain was influenced by the activities of two enzymes, triosephosphate isomerase (TPI) and glucose 6-phosphate isomerase (PGI). A lack of TPI resulted in the intracellular accumulation of dihydroxyacetone phosphate (DHAP) in PM1, the toxicity of which caused early growth cessation during fructose fermentation. The activity of PGI was enhanced by the presence of glyceraldehyde 3-phosphate (GAP), which allowed additional fructose to enter into the 6-PG/PK pathway to avoid toxicity by DHAP. Exogenous TPI gene expression shifted fructose metabolism from heterolactic to homolactic fermentation, indicating that TPI enabled the PM1 strain to mainly use the EM pathway for fructose fermentation. These findings clearly demonstrate that the balance in the accumulation of GAP and DHAP determines the fate of fructose metabolism and the activity of TPI plays a critical role during fructose fermentation via the EM pathway in L. panis PM1.

  6. A tale of two citrullines--structural and functional aspects of myelin basic protein deimination in health and disease.

    Science.gov (United States)

    Harauz, George; Musse, Abdiwahab A

    2007-02-01

    Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is responsible for adhesion of these surfaces in the multilayered myelin sheath. The pattern of extensive post-translational modifications of MBP is dynamic during normal central nervous system (CNS) development and during myelin degeneration in multiple sclerosis (MS), affecting its interactions with the myelin membranes and with other molecules. In particular, the degree of deimination (or citrullination) of MBP is correlated with the severity of MS, and may represent a primary defect that precedes neurodegeneration due to autoimmune attack. That the degree of MBP deimination is also high in early CNS development indicates that this modification plays major physiological roles in myelin assembly. In this review, we describe the structural and functional consequences of MBP deimination in healthy and diseased myelin.

  7. Determination of anti-cyclic citrullinated peptide antibodies in the sera of patients with juvenile idiopathic arthritis.

    Science.gov (United States)

    Low, Jason M; Chauhan, Anil K; Kietz, Daniel A; Daud, Umar; Pepmueller, Peri H; Moore, Terry L

    2004-09-01

    Anti-cyclic citrullinated peptide (anti-CCP) antibodies have been found in sera of 76% of patients with rheumatoid arthritis (RA), mainly in rheumatoid factor (RF) positive patients, with a specificity of 96%. We evaluated the presence of anti-CCP antibodies in patients with juvenile idiopathic arthritis (JIA) and assessed the possibility of synthetic citrullinated peptides as antigenic determinants in JIA. The presence of anti-CCP antibodies was determined using 3 synthetic citrullinated peptide variants and 2 commercial kits (Inova Diagnostics and Axis-Shield Diagnostics) optimized for detecting JIA-specific antibodies in serum by an ELISA based assay. We evaluated 66 patients with JIA (16 RF positive polyarthritis, 18 RF negative polyarthritis, 19 oligoarthritis, and 13 systemic arthritis). We also tested 9 adult RA patients, 34 patients with systemic lupus erythematosus (SLE), and 25 healthy persons as controls. Significant concentrations of anti-CCP antibodies were detected in the majority of RF positive JIA patients with polyarthritis. Using the 2 synthetic linear peptides, 12/16 (75%) were positive; 9/12 (75%) were positive with the Inova kit and 9/10 (90%) were positive with the Axis-Shield kit. However, utilizing the synthetic linear peptides, significant concentrations of anti-CCP antibodies were detected in 51/66 (77%) JIA patients, including 15/18 (83%) RF negative polyarthritis, 16/19 (84%) oligoarthritis, and 8/13 (62%) systemic arthritis patients. No healthy control showed elevated antibody levels. In contrast, 4/9 (44%) patients with adult RA and 2/6 (33%) with SLE had elevated anti-CCP levels. The synthetic cyclic variant cfc-1-cyc yielded significant anti-CCP levels for 13/14 (93%) patients with RF negative polyarthritis, 6/10 (60%) with oligoarthritis, and 3/7 (43%) with systemic arthritis, and 8/9 (88%) RF positive patients. No healthy control had increased anti-CCP levels. However, 4/9 (44%) adult RA and 9/34 (26%) SLE patients were found to

  8. Anti-Cyclic Citrullinated Peptide Assays Differ in Subjects at Elevated Risk for Rheumatoid Arthritis and Subjects with Established Disease

    Science.gov (United States)

    Demoruelle, M. Kristen; Parish, Mark C.; Derber, Lezlie A.; Kolfenbach, Jason R.; Hughes-Austin, Jan M.; Weisman, Michael H.; Gilliland, William; Edison, Jess D.; Buckner, Jane H.; Mikuls, Ted R.; O’Dell, James R.; Keating, Richard M.; Gregersen, Peter K.; Norris, Jill M.; Holers, V. Michael; Deane, Kevin D.

    2013-01-01

    Objective To compare commonly-available tests for antibodies to citrullinated protein antigens (ACPAs) for diagnostic accuracy and assay agreement in established rheumatoid arthritis (RA) and subjects at elevated risk for RA. Methods ELISA testing for anti-cyclic citrullinated peptide (anti-CCP) antibodies was performed using CCP2 (Axis-Shield) and CCP3.1 (IgA/IgG INOVA) in the following subjects: 1) probands with established RA (N=340) from the Studies of the Etiology of RA (SERA), 2) first degree relatives (FDRs) without RA (family members of SERA RA probands; N=681), 3) Department of Defense Serum Repository (DoDSR) RA cases with pre-diagnosis samples (N=83; 47/83 also had post-diagnosis samples), and 4) blood-donor and DoDSR controls (N=283). Results In established RA, CCP2 was more specific (99.2% vs. 93.1%, pCCP3.1, with specificity of CCP3.1 increasing to 97.2% if levels ≥3 times the standard cut-off level were considered. In all subjects, at standard cut-off levels, CCP3.1 positivity was more prevalent. In DoDSR cases, CCP2 was more specific than CCP3.1 for a future diagnosis of RA, and higher CCP levels trended towards greater specificity for disease onset within 2 years. At standard cut-off levels, assay agreement was good in established RA (kappa=0.76), but poor in FDRs without inflammatory arthritis (kappa=0.25). Conclusion Anti-CCP assays differ to an extent that may be meaningful in diagnosing RA in patients with inflammatory arthritis, and in evaluating the natural history of RA development in subjects at-risk for future RA. Mechanisms underlying these differences in test performance need further investigation. PMID:23686569

  9. The Relationship of Antibodies to Modified Citrullinated Vimentin and Markers of Bone and Cartilage Destruction in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    A. S. Avdeeva

    2014-01-01

    Full Text Available Objective. To make individualised decisions regarding treatment is one of the most important challenges in clinical practise, and identification of sensitive and specific markers of prognosis is an important research question. The main objective of this study was to evaluate relationships between the level of autoantibodies, radiographic changes and laboratory markers of bone, and cartilage destruction. Methods. A total of 114 RA patients were examined. The serum concentration of IgM RF, antibodies to cyclic citrullinated peptide (anti-CCP, modified citrullinated vimentin (anti-MCV, matrix metalloproteinase 3 (MMP-3, and cartilage oligomeric matrix protein (COMP, ng/mL were measured. The van der Heijde-modified Sharp Score was used to quantify the radiologic changes. Results. Among the patients who were high-positive for anti-MCV, the value of total modified Sharp score (mTSS (96.5; 66–120 was higher as well as the joint space narrowing (82; 60.5–105.5, and a higher level of MMP-3 was recorded more frequently (56% in comparison with negative/low-positive patients (57; 31–88, 50; 29–82, 31% resp., P<0.05. The level of COMP was also higher among patients high-positive for anti-MCV (9.7; 8.1–13.1 and 6.8; 5.4–10.7, resp., P=0.02. Conclusion. A high positive level of anti-MCV as contrasted with anti-CCP and IgM RF is associated with more pronounced destructive changes in the joints.

  10. Release of Active Peptidyl Arginine Deiminases by Neutrophils Can Explain Production of Extracellular Citrullinated Autoantigens in Rheumatoid Arthritis Synovial Fluid

    Science.gov (United States)

    Spengler, Julia; Lugonja, Božo; Jimmy Ytterberg, A.; Zubarev, Roman A.; Creese, Andrew J.; Pearson, Mark J.; Grant, Melissa M.; Milward, Michael; Lundberg, Karin; Buckley, Christopher D.; Filer, Andrew; Raza, Karim; Cooper, Paul R.; Chapple, Iain L.

    2015-01-01

    Objective In the majority of patients with rheumatoid arthritis (RA), antibodies specifically recognize citrullinated autoantigens that are generated by peptidylarginine deiminases (PADs). Neutrophils express high levels of PAD and accumulate in the synovial fluid (SF) of RA patients during disease flares. This study was undertaken to test the hypothesis that neutrophil cell death, induced by either NETosis (extrusion of genomic DNA–protein complexes known as neutrophil extracellular traps [NETs]) or necrosis, can contribute to production of autoantigens in the inflamed joint. Methods Extracellular DNA was quantified in the SF of patients with RA, patients with osteoarthritis (OA), and patients with psoriatic arthritis (PsA). Release of PAD from neutrophils was investigated by Western blotting, mass spectrometry, immunofluorescence staining, and PAD activity assays. PAD2 and PAD4 protein expression, as well as PAD enzymatic activity, were assessed in the SF of patients with RA and those with OA. Results Extracellular DNA was detected at significantly higher levels in RA SF than in OA SF (P < 0.001) or PsA SF (P < 0.05), and its expression levels correlated with neutrophil concentrations and PAD activity in RA SF. Necrotic neutrophils released less soluble extracellular DNA compared to NETotic cells in vitro (P < 0.05). Higher PAD activity was detected in RA SF than in OA SF (P < 0.05). The citrullinated proteins PAD2 and PAD4 were found attached to NETs and also freely diffused in the supernatant. PAD enzymatic activity was detected in supernatants of neutrophils undergoing either NETosis or necrosis. Conclusion Release of active PAD isoforms into the SF by neutrophil cell death is a plausible explanation for the generation of extracellular autoantigens in RA. PMID:26245941

  11. Periodontitis increases rheumatic factor serum levels and citrullinated proteins in gingival tissues and alter cytokine balance in arthritic rats

    Science.gov (United States)

    Corrêa, Mônica G.; Sacchetti, Silvana B.; Ribeiro, Fernanda Vieira; Pimentel, Suzana Peres; Casarin, Renato Corrêa Viana; Cirano, Fabiano Ribeiro; Casati, Marcio Z.

    2017-01-01

    This study investigated some immunological features by experimental periodontitis (EP) and rheumatoid arthritis (RA) disease interact in destructive processes in arthritic rats. Rats were assigned to the following groups: EP +RA; RA; EP; and Negative Control. RA was induced by immunizations with type-II collagen and a local immunization with Complete Freund’s adjuvant in the paw. Periodontitis was induced by ligating the right first molars. The serum level of rheumatoid factor (RF) and anti-citrullinated protein antibody (ACCPA) were measured before the induction of EP (T1) and at 28 days after (T2) by ELISA assay. ACCPA levels were also measured in the gingival tissue at T2. The specimens were processed for morphometric analysis of bone loss, and the gingival tissue surrounding the first molar was collected for the quantification of interleukin IL-1β, IL-4, IL-6, IL-17 and TNF-α using a Luminex/MAGpix assay. Paw edema was analyzed using a plethysmometer. Periodontitis increased the RF and ACCPA levels in the serum and in the gingival tissue, respectively. Besides, the level of paw swelling was increased by EP and remained in progress until the end of the experiment, when EP was associated with RA. Greater values of IL-17 were observed only when RA was present, in spite of PE. It can be concluded that periodontitis increases rheumatic factor serum levels and citrullinated proteins level in gingival tissues and alter cytokine balance in arthritic rats; at the same time, arthritis increases periodontal destruction, confirming the bidirectional interaction between diseases. PMID:28358812

  12. Effects of Supplemental Citrulline-Malate Ingestion on Blood Lactate, Cardiovascular Dynamics, and Resistance Exercise Performance in Trained Males.

    Science.gov (United States)

    Wax, Benjamin; Kavazis, Andreas N; Luckett, William

    2016-01-01

    Citrulline-malate (CM) has been proposed to provide an ergogenic effect during resistance exercise; however, there is a paucity of research investigating these claims. Therefore, we investigated the impact that CM supplementation would have on repeated bouts of resistance exercise. Fourteen resistance-trained males participated in a randomized, counterbalanced, double-blind study. Subjects were randomly assigned to placebo (PL) or CM (8 g) and performed three sets each of chin-ups, reverse chin-ups, and push-ups to failure. One week later, subjects ingested the other supplement and performed the same protocol. Blood lactate (BLa), heart rate (HR), and blood pressure (BP) were measured preexercise, with BLa measured a second time immediately following the last set, while HR and BP were measured 5 and 10 min postexercise. Citrulline-malate ingestion significantly increased the amount of repetitions performed for each exercise (chin-ups: PL = 28.4 ± 7.1, CM = 32.2 ± 5.6, p = .003; reverse chin-ups: PL = 26.6 ± 5.6, CM = 32.1 ± 7.1, p = .017; push-ups: PL = 89.1 ± 37.4, CM = 97.7 ± 36.1, p < .001). Blood lactate data indicated a time effect (p < .001), but no treatment differences (p = .935). Systolic BP data did not show differences for time (p = .078) or treatment (p = .119). Diastolic BP data did not show differences for time (p = .069), but indicated treatment differences (p = .014) for subjects ingesting CM. Collectively, these findings suggests that CM increased upper-body resistance performance in trained college-age males.

  13. Biochemical and histochemical changes in energy supply enzyme pattern of muscles of the rat during old age.

    Science.gov (United States)

    Bass, A; Gutmann, E; Hanzlíková, V

    1975-01-01

    Senile muscles of the rat (28-36 months) show loss of overall activity of glycolytic and aerobic enzymes. However, there is a differential loss and shift of enzyme activity pattern in the three types of muscles. The extensor digitorum longus (EDL) and diaphragm show a decrease of ratios of glycolytic to aerobic-oxidative enzymes. This shift to a more oxidative type of metabolism is not observed in the soleus muscle. Decrease of enzyme activities is least marked in the diaphragm muscle. Biochemical analysis shows a trend to levelling out of metabolic differences between the different muscle types. This trend of 'dedifferentiation' is most marked when comparing EDL and soleus, least marked when comparing EDL and diaphragm muscle. The histochemical analysis shows a shift from the original mixed to a more uniform pattern of muscle fibres in the EDL and soleus muscle; this levelling-out of differences between enzymatic activities of different muscle fibres is not observed in the diaphragm muscle. Preferential atrophy and loss of ATPase activity in II muscle fibres in the soleus muscle and the occurrence of 'type grouping' are further characteristic features of senile muscle change. The findings show general (i.e. loss of enzyme activities) and differential trends of biochemical and histochemical enzyme changes in different types of muscles.

  14. Effect of an hyperbaric nitrogen narcotic ambience on arginine and citrulline levels, the precursor and co-product of nitric oxide, in rat striatum.

    Science.gov (United States)

    Vallée, Nicolas; Rissoe, Jean-Jacques; Blatteau, Jean-Eric

    2011-07-05

    Previous studies performed in the laboratory have shown that nitrogen narcosis induces a decrease in striatal glutamate and dopamine levels. Although we stimulated the N-methyl-D-aspartate (NMDA) receptor, an important glutamate receptor required for motor and locomotor activity managed by the striatum, and demonstrated that the receptor was effective when exposed to nitrogen at 3MPa, it was not possible to return the striatal glutamate level to its base values. We conclude that it was the striatopetal neurons of the glutamatergic pathways that were mainly affected in this hyperbaric syndrome, without understanding the principal reasons. Hence we sought to establish what happens in the vicinity of the plasma membrane, downstream the NMDA-Receptor, and we used the hypothesis that there could be neuronal nitric oxide synthase (nNOS) disturbances. A microdialysis study was performed in rat striatum in order to analyse levels of citrulline, the NO co-product, and arginine, the NO precursor. Those both NO metabolites were detectable with an HPLC coupled to a fluorimetric detector. Exposure to pressurized nitrogen induced a reduction in citrulline (-18.9%) and arginine (-10.4%) levels. Under the control normobaric conditions, the striatal NMDA infusion enhanced the citrulline level (+85.6%), whereas under 3 MPa of nitrogen, the same NMDA infusion did not change the citrulline level which remains equivalent to that of the baseline. The level of arginine increased (+45.7%) under normobaric conditions but a decrease occurred in pressurized nitrogen (-51.6%). Retrodialysis with Saclofen and KCl in the prefrontal cortex under normobaric conditions led to an increase in striatal levels of citrulline (+30.5%) and a decrease in arginine levels (-67.4%). There was no significant difference when nitrogen at 3MPa was added. To conclude, the synthesis of citrulline/NO is reduced in nitrogen narcosis while it seems possible to activate it artificially by infusion. We have suggested

  15. Effect of an hyperbaric nitrogen narcotic ambience on arginine and citrulline levels, the precursor and co-product of nitric oxide, in rat striatum

    Directory of Open Access Journals (Sweden)

    Vallée Nicolas

    2011-07-01

    Full Text Available Abstract Previous studies performed in the laboratory have shown that nitrogen narcosis induces a decrease in striatal glutamate and dopamine levels. Although we stimulated the N-methyl-D-aspartate (NMDA receptor, an important glutamate receptor required for motor and locomotor activity managed by the striatum, and demonstrated that the receptor was effective when exposed to nitrogen at 3MPa, it was not possible to return the striatal glutamate level to its base values. We conclude that it was the striatopetal neurons of the glutamatergic pathways that were mainly affected in this hyperbaric syndrome, without understanding the principal reasons. Hence we sought to establish what happens in the vicinity of the plasma membrane, downstream the NMDA-Receptor, and we used the hypothesis that there could be neuronal nitric oxide synthase (nNOS disturbances. A microdialysis study was performed in rat striatum in order to analyse levels of citrulline, the NO co-product, and arginine, the NO precursor. Those both NO metabolites were detectable with an HPLC coupled to a fluorimetric detector. Exposure to pressurized nitrogen induced a reduction in citrulline (-18.9% and arginine (-10.4% levels. Under the control normobaric conditions, the striatal NMDA infusion enhanced the citrulline level (+85.6%, whereas under 3 MPa of nitrogen, the same NMDA infusion did not change the citrulline level which remains equivalent to that of the baseline. The level of arginine increased (+45.7% under normobaric conditions but a decrease occurred in pressurized nitrogen (-51.6%. Retrodialysis with Saclofen and KCl in the prefrontal cortex under normobaric conditions led to an increase in striatal levels of citrulline (+30.5% and a decrease in arginine levels (-67.4%. There was no significant difference when nitrogen at 3MPa was added. To conclude, the synthesis of citrulline/NO is reduced in nitrogen narcosis while it seems possible to activate it artificially by infusion

  16. [Enzyme levels and morphological picture of normal and cirrhotic rat livers following portal vein ligation and subcutaneous transposition of the spleen].

    Science.gov (United States)

    Zelder, O; Dorn, R; Bürcklein, H H; Bode, Ch; Bode, J C; Jerusalem, C R

    1975-01-01

    The effect of portal vein ligation after subcutaneous transposition of the spleen is investigated on enzyme-activities. and morphological pattern of the normal and cirrhotic rat-liver. The increase of glycolytic enzyme-activities and the decrease of enzyme-activities of oxidative metabolic pathways can be explained by adaptation on throttled blood supply of the liver. Significant decrease of arginase-activity (urea-cycle) can not be explained by reduced protein content of food (pair-fed-animals). Diminished substrate (ammonia)-level (NH3/t/hepatocytes) may be an explanation. Histological pattern of normal and cirrhotic rat liver is nearly unchanged after portal vein ligation.

  17. Caffeine Ingestion Increases Estimated Glycolytic Metabolism during Taekwondo Combat Simulation but Does Not Improve Performance or Parasympathetic Reactivation.

    Directory of Open Access Journals (Sweden)

    João Paulo Lopes-Silva

    Full Text Available The aim of this study was to evaluate the effect of caffeine ingestion on performance and estimated energy system contribution during simulated taekwondo combat and on post-exercise parasympathetic reactivation.Ten taekwondo athletes completed two experimental sessions separated by at least 48 hours. Athletes consumed a capsule containing either caffeine (5 mg∙kg-1 or placebo (cellulose one hour before the combat simulation (3 rounds of 2 min separated by 1 min passive recovery, in a double-blind, randomized, repeated-measures crossover design. All simulated combat was filmed to quantify the time spent fighting in each round. Lactate concentration and rating of perceived exertion were measured before and after each round, while heart rate (HR and the estimated contribution of the oxidative (WAER, ATP-PCr (WPCR, and glycolytic (W[La-] systems were calculated during the combat simulation. Furthermore, parasympathetic reactivation after the combat simulation was evaluated through 1 taking absolute difference between the final HR observed at the end of third round and the HR recorded 60-s after (HRR60s, 2 taking the time constant of HR decay obtained by fitting the 6-min post-exercise HRR into a first-order exponential decay curve (HRRτ, or by 3 analyzing the first 30-s via logarithmic regression analysis (T30.Caffeine ingestion increased estimated glycolytic energy contribution in relation to placebo (12.5 ± 1.7 kJ and 8.9 ± 1.2 kJ, P = 0.04. However, caffeine did not improve performance as measured by attack number (CAF: 26. 7 ± 1.9; PLA: 27.3 ± 2.1, P = 0.48 or attack time (CAF: 33.8 ± 1.9 s; PLA: 36.6 ± 4.5 s, P = 0.58. Similarly, RPE (CAF: 11.7 ± 0.4 a.u.; PLA: 11.5 ± 0.3 a.u., P = 0.62, HR (CAF: 170 ± 3.5 bpm; PLA: 174.2 bpm, P = 0.12, oxidative (CAF: 109.3 ± 4.5 kJ; PLA: 107.9 kJ, P = 0.61 and ATP-PCr energy contributions (CAF: 45.3 ± 3.4 kJ; PLA: 46.8 ± 3.6 kJ, P = 0.72 during the combat simulation were unaffected. Furthermore

  18. Caffeine Ingestion Increases Estimated Glycolytic Metabolism during Taekwondo Combat Simulation but Does Not Improve Performance or Parasympathetic Reactivation.

    Science.gov (United States)

    Lopes-Silva, João Paulo; Silva Santos, Jonatas Ferreira da; Branco, Braulio Henrique Magnani; Abad, César Cavinato Cal; Oliveira, Luana Farias de; Loturco, Irineu; Franchini, Emerson

    2015-01-01

    The aim of this study was to evaluate the effect of caffeine ingestion on performance and estimated energy system contribution during simulated taekwondo combat and on post-exercise parasympathetic reactivation. Ten taekwondo athletes completed two experimental sessions separated by at least 48 hours. Athletes consumed a capsule containing either caffeine (5 mg∙kg-1) or placebo (cellulose) one hour before the combat simulation (3 rounds of 2 min separated by 1 min passive recovery), in a double-blind, randomized, repeated-measures crossover design. All simulated combat was filmed to quantify the time spent fighting in each round. Lactate concentration and rating of perceived exertion were measured before and after each round, while heart rate (HR) and the estimated contribution of the oxidative (WAER), ATP-PCr (WPCR), and glycolytic (W[La-]) systems were calculated during the combat simulation. Furthermore, parasympathetic reactivation after the combat simulation was evaluated through 1) taking absolute difference between the final HR observed at the end of third round and the HR recorded 60-s after (HRR60s), 2) taking the time constant of HR decay obtained by fitting the 6-min post-exercise HRR into a first-order exponential decay curve (HRRτ), or by 3) analyzing the first 30-s via logarithmic regression analysis (T30). Caffeine ingestion increased estimated glycolytic energy contribution in relation to placebo (12.5 ± 1.7 kJ and 8.9 ± 1.2 kJ, P = 0.04). However, caffeine did not improve performance as measured by attack number (CAF: 26. 7 ± 1.9; PLA: 27.3 ± 2.1, P = 0.48) or attack time (CAF: 33.8 ± 1.9 s; PLA: 36.6 ± 4.5 s, P = 0.58). Similarly, RPE (CAF: 11.7 ± 0.4 a.u.; PLA: 11.5 ± 0.3 a.u., P = 0.62), HR (CAF: 170 ± 3.5 bpm; PLA: 174.2 bpm, P = 0.12), oxidative (CAF: 109.3 ± 4.5 kJ; PLA: 107.9 kJ, P = 0.61) and ATP-PCr energy contributions (CAF: 45.3 ± 3.4 kJ; PLA: 46.8 ± 3.6 kJ, P = 0.72) during the combat simulation were unaffected

  19. Antibodies to citrullinated peptides are not associated with the rate of joint destruction in patients with a well-established diagnosis of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    A.M. Nieto-Colonia

    2008-03-01

    Full Text Available Antibodies to citrullinated peptides are highly specific for rheumatoid arthritis (RA and represent a significant risk factor for undifferentiated polyarthritis. This prognostic ability may be related to the very diagnostic performance of these autoantibodies, since RA is a more erosive disease than other forms of arthritis. The present study evaluated an association of antibodies to citrullinated peptides and the rate of joint destruction in patients with a well-established diagnosis of RA. Seventy-one patients with RA were evaluated in 1994 and again in 2002 (functional class, joint count, Health Assessment Questionnaire score, hands X-ray. Autoantibodies (rheumatoid factor (RF, anti-perinuclear factor, anti-cyclic citrullinated peptide (CCP antibodies and Sharp's index were analyzed blindly. Delta Sharp was calculated as the difference in Sharp's index obtained in 1994 and 2002. During the follow-up the Health Assessment Questionnaire score increased from 0.91 ± 0.74 to 1.39 ± 0.72 (P < 0.001. Similarly, the number of swollen joints increased from 4.6 ± 5.71 to 6.4 ± 4.1 (P = 0.002. The frequency of autoantibodies and anti-CCP titer remained stable; however, serum RF concentration increased from 202.8 ± 357.6 to 416.6 ± 636.5 IU/mL (P = 0.003. Sharp's index increased from 56.7 ± 62.1 to 92.4 ± 80.9 (P < 0.001. No correlation was observed between Delta Sharp and the presence of RF, anti-perinuclear factor, and anti-CCP antibodies at baseline. Antibodies to citrullinated epitopes are specific and early markers for the diagnosis of RA but do not seem to be associated with the rate of joint destruction in patients with a well-established diagnosis of RA.

  20. Smoking, Porphyromonas gingivalis and the immune response to citrullinated autoantigens before the clinical onset of rheumatoid arthritis in a Southern European nested case–control study

    OpenAIRE

    Fisher, Benjamin A; Cartwright, Alison J; Quirke, Anne-Marie; de Pablo, Paola; Romaguera, Dora; Panico, Salvatore; Mattiello, Amalia; Gavrila, Diana; Navarro, Carmen; Sacerdote, Carlotta; Vineis, Paolo; Tumino, Rosario; Lappin, David F; Apazidou, Danae; Culshaw, Shauna

    2015-01-01

    Background: \\ud Antibodies to citrullinated proteins (ACPA) occur years before RA diagnosis. Porphyromonas gingivalis expresses its own peptidylarginine deiminase (PPAD), and is a proposed aetiological factor for the ACPA response. Smoking is a risk factor for both ACPA-positive RA and periodontitis. We aimed to study the relation of these factors to the risk of RA in a prospective cohort.\\ud \\ud Methods: \\ud We performed a nested case–control study by identifying pre-RA cases in four populat...

  1. Effects of type II collagen epitope carbamylation and citrullination in human leucocyte antigen (HLA)-DR4(+) monozygotic twins discordant for rheumatoid arthritis.

    Science.gov (United States)

    De Santis, M; Ceribelli, A; Cavaciocchi, F; Generali, E; Massarotti, M; Isailovic, N; Crotti, C; Scherer, H U; Montecucco, C; Selmi, C

    2016-09-01

    The aim of this study is to investigate the effect of the native, citrullinated or carbamylated type II human collagen T cell- and B cell-epitopes on the adaptive immune response in rheumatoid arthritis (RA). Peripheral blood T and B cells obtained from a human leucocyte D4-related (antigen DR4(-) HLA-DR4)(+) woman with early RA, her healthy monozygotic twin and an unrelated HLA-DR3(+) woman with early RA were analysed for activation (CD154/CD69), apoptosis (annexin/7-aminoactinomycin), cytokine production [interferon (IFN)γ/interleukin (IL)-17/IL-4/IL-10/IL-6] and functional phenotype (CD45Ra/CCR7) after stimulation with the collagen native T cell epitope (T261-273), the K264 carbamylated T cell epitope (carT261-273), the native B cell epitope (B359-369) or the R360 citrullinated B cell epitope (citB359-369), and the combinations of these. The T cell memory compartment was activated by T cell epitopes in both discordant DR4(+) twins, but not in the DR3(+) RA. The collagen-specific activation of CD4(+) T cells was induced with both the native and carbamylated T cell epitopes only in the RA twin. Both T cell epitopes also induced IL-17 production in the RA twin, but a greater IL-4 and IL-10 response in the healthy twin. The citrullinated B cell epitope, particularly when combined with the carbamylated T cell epitope, induced B cell activation and an increased IL-6/IL-10 ratio in the RA twin compared to a greater IL-10 production in the healthy twin. Our data suggest that circulating collagen-specific T and B cells are found in HLA-DR4(+) subjects, but only RA activated cells express co-stimulatory molecules and produce proinflammatory cytokines. Carbamylation and citrullination further modulate the activation and cytokine polarization of T and B cells.

  2. The regulation of phosphoenolpyruvate carboxykinase and the NADP-linked malic enzyme in Aspergillus nidulans.

    Science.gov (United States)

    Kelly, J M; Hynes, M J

    1981-04-01

    It has previously been suggested that the synthesis of phosphoenolpyruvate carboxykinase (EC 4.1.1.32) in Aspergillus nidulans is regulated by a repression-derepression mechanism involving a glycolytic intermediate, and not by induction. Results obtained using compounds that enter the tricarboxylic acid cycle via 2-oxoglutarate, and that can supply both a carbon and a nitrogen source for A. nidulans, suggest it is more likely that the synthesis of phosphoenolpyruvate carboxykinase is inducible, and only weakly regulated by carbon catabolite repression. a similar study of the regulation of the NADP-linked malic enzyme (EC 1.1.1.40) indicates that it too may be inducible.

  3. In ACPA-positive RA patients, antibodies to EBNA35-58Cit, a citrullinated peptide from the Epstein-Barr nuclear antigen-1, strongly cross-react with the peptide β60-74Cit which bears the immunodominant epitope of citrullinated fibrin.

    Science.gov (United States)

    Cornillet, M; Verrouil, E; Cantagrel, A; Serre, G; Nogueira, L

    2015-02-01

    Although several infectious agents and particularly Epstein-Barr virus (EBV) have been suspected to be involved in aetiology of rheumatoid arthritis (RA), their role still remains elusive. Almost 80% of RA sera contain antibodies to citrullinated proteins/peptides. Among them, the autoantibodies to citrullinated human fibrinogen (AhFibA) are composed of two non-cross-reactive subsets directed to immunodominant epitopes borne by the α36-50Cit and β60-74Cit fibrin peptides. RA sera also contain antibodies towards the citrullinated EBNA35-58Cit peptide derived from the EBNA-1 protein of EBV. Here, using a large cohort of RA patients and controls, we showed that for a diagnostic specificity of 98.5%, 47% of the AhFibA-positive patients were anti-EBNA35-58Cit-positive and that almost all (98.5%) the anti-EBNA35-58Cit-positive were AhFibA-positive, whereas 86% were anti-β60-74Cit-positive and only 43% anti-α36-50Cit-positive. AhFibA, anti-EBNA35-58Cit- and anti-β60-74Cit-antibody titres were significantly correlated. Competition assays showed that anti-EBNA35-58Cit antibodies are highly cross-reactive with the β60-74Cit peptide. The demonstration that a citrullinated peptide derived from the EBNA-1 protein of EBV presents a molecular mimicry with human citrullinated fibrin constitutes an additional argument for a possible role of EBV in RA aetiopathogeny.

  4. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Sheard, Michael A., E-mail: msheard@chla.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ghent, Matthew V., E-mail: mattghent@gmail.com [Department of Pathology, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA 90089 (United States); Cabral, Daniel J., E-mail: dcabral14@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Lee, Joanne C., E-mail: joannebarnhart@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Khankaldyyan, Vazgen, E-mail: khangaldian@yahoo.com [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ji, Lingyun, E-mail: lingyun.ji@med.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Wu, Samuel Q., E-mail: swu@chla.usc.edu [Medical Genetics, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Kang, Min H., E-mail: min.kang@ttuhsc.edu [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); and others

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.

  5. Wnt5a Increases the Glycolytic Rate and the Activity of the Pentose Phosphate Pathway in Cortical Neurons

    Science.gov (United States)

    Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L. Felipe

    2016-01-01

    In the last few years, several reports have proposed that Wnt signaling is a general metabolic regulator, suggesting a role for this pathway in the control of metabolic flux. Wnt signaling is critical for several neuronal functions, but little is known about the correlation between this pathway and energy metabolism. The brain has a high demand for glucose, which is mainly used for energy production. Neurons use energy for highly specific processes that require a high energy level, such as maintaining the electrical potential and synthesizing neurotransmitters. Moreover, an important metabolic impairment has been described in all neurodegenerative disorders. Despite the key role of glucose metabolism in the brain, little is known about the cellular pathways involved in regulating this process. We report here that Wnt5a induces an increase in glucose uptake and glycolytic rate and an increase in the activity of the pentose phosphate pathway; the effects of Wnt5a require the intracellular generation of nitric oxide. Our data suggest that Wnt signaling stimulates neuronal glucose metabolism, an effect that could be important for the reported neuroprotective role of Wnt signaling in neurodegenerative disorders. PMID:27688915

  6. [THE INDICATORS OF GROWTH AND MYOGENESIS IN THE GLYCOLYTIC AND OXIDATIVE MUSCLES OF THE RAT AFTER INDIRECT ELECTROSTIMULATION].

    Science.gov (United States)

    Borzykh, A A; Kuzmin, I V; Lysenko, E A; Sharova, A P; Tarasova, O S; Vinogradova, O L

    2015-11-01

    A comparative analysis of the signaling pathways activity and gene expression in the red (RG) and white (WG) parts of the gastrocnemius muscle of rat after a series of short (1 s) tetanic contractions induced by motor nerve stimulation at a frequency of 100 Hz and with an amplitude that provides activation of all motor units of the muscle. WG compared to RG demonstrated a marked increase in the phosphorylation level of ERK1/2, although the increase in the phosphorylation of AMPK was not different in two muscles 2 h after the stimulation. Along with that, content of MyoD and myogenin mRNA in WG increased much higher than in RG, whereas the effect of stimulation on IGF-1, MaFbx and MuRF genes expression was weak and comparable in WG and RG. There was an increase of myostatin mRNA in RG. Thus, glycolytic muscle fibers of WG exhibit more pronounced regulatory shifts of hypertrophic character than oxidative muscle fibers of RG.

  7. miR-592/WSB1/HIF-1α axis inhibits glycolytic metabolism to decrease hepatocellular carcinoma growth

    Science.gov (United States)

    Song, Ying; Liu, Mei-You; Yang, Xiao-Juan; Xue, Yan; Wen, Ai-Dong; Shi, Lei

    2016-01-01

    Hepatocellular carcinoma (HCC) cells rapidly switch their energy source from oxidative phosphorylation to glycolytic metabolism in order to efficiently proliferate. However, the molecular mechanisms responsible for this switch remain unclear. In this study, we found that miR-592 was frequently downregulated in human HCC tissues and cell lines, and its downregulation was closely correlated with aggressive clinicopathological features and poor prognosis of HCC patients. Overexpression of miR-592 inhibited aerobic glycolysis and proliferation in HCC cells in vitro. Conversely, knockdown of miR-592 promoted HCC growth in both subcutaneous injection and orthotopic liver tumor implantation models in vivo. Mechanistically, miR-592 downregulation in human HCCs was correlated with an upregulation of WD repeat and SOCS box containing 1 (WSB1). We further showed that miR-592 directly binds to the 3′-UTR of the WSB1 gene, thus disrupting hypoxia inducible factor-1α (HIF-1α) protein stabilization. In turn, overexpression of WSB1 in HCC cells rescued decreased HIF-1α expression, glucose uptake, and HCC growth induced by miR-592. Collectively, our clinical data and functional studies suggest that miR-592 is a new robust inhibitor of the Warburg effect and a promising therapeutic target for HCC treatment. PMID:27153552

  8. Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum.

    Science.gov (United States)

    Lubitz, Dorit; Jorge, João M P; Pérez-García, Fernando; Taniguchi, Hironori; Wendisch, Volker F

    2016-10-01

    L-arginine is a semi-essential amino acid with application in cosmetic, pharmaceutical, and food industries. Metabolic engineering strategies have been applied for overproduction of L-arginine by Corynebacterium glutamicum. LysE was the only known L-arginine exporter of this bacterium. However, an L-arginine-producing strain carrying a deletion of lysE still accumulated about 10 mM L-arginine in the growth medium. Overexpression of the putative putrescine and cadaverine export permease gene cgmA was shown to compensate for the lack of lysE with regard to L-arginine export. Moreover, plasmid-borne overexpression of cgmA rescued the toxic effect caused by feeding of the dipeptide Arg-Ala to lysE-deficient C. glutamicum and argO-deficient Escherichia coli strains. Deletion of the repressor gene cgmR improved L-arginine titers by 5 %. Production of L-lysine and L-citrulline was not affected by cgmA overexpression. Taken together, CgmA may function as an export system not only for the diamine putrescine and cadaverine but also for L-arginine. The major export system for L-lysine and L-arginine LysE may also play a role in L-citrulline export since production of L-citrulline was reduced when lysE was deleted and improved by 45 % when lysE was overproduced.

  9. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  10. Type-III interferons and rheumatoid arthritis: Correlation between interferon lambda 1 (interleukin 29) and antimutated citrullinated vimentin antibody levels.

    Science.gov (United States)

    Castillo-Martínez, Diana; Juarez, Maribel; Patlán, Mariana; Páez, Araceli; Massó, Felipe; Amezcua-Guerra, Luis M

    2017-03-01

    To assess serum type III or lambda (λ) interferons (IFN) levels and its clinical and laboratory associations in rheumatoid arthritis (RA). A cross-sectional study including 43 patients with RA (86% females; age 45.3 ± 10.3 years) and 43 healthy individuals was performed. Clinical data including disease activity, acute-phase reactants, rheumatoid factor and anticyclic citrullinated peptide (anti-CCP) antibodies were collected. Serum IFNλ1, IFNλ2, IFNλ3, CXCL8 and anti-mutated citrullinated vimentin (anti-MCV) antibody levels were measured. Patients with RA had higher IFNλ1 (113.5 ± 118.6 pg/mL versus 55.9 ± 122.3 pg/mL; p < 0.0001) and IFNλ2 (245.4 ± 327.7 pg/mL versus 5.1 ± 11.0 pg/mL; p = 0.009) levels than controls, but not IFNλ3 levels. Notably, IFNλ1 levels were found to be higher in both patients with active disease (124.9 ± 135.9 pg/mL; p < 0.001) and quiescent disease (99.0 ± 93.7 pg/mL; p < 0.01), while IFNλ2 levels were higher only in patients with active disease (264.0 ± 356.1 pg/mL; p = 0.02). A noteworthy association between serum IFNλ1 levels and anti-MCV antibody titers (Spearman's rho coefficient 0.36, 95% CI 0.36 to 0.61; p = 0.02) was observed. Serum IFNλ1 and IFNλ2 levels are abnormally elevated in patients with RA and the former are linearly associated with circulating anti-MCV antibody levels. These results may place type-III IFN as an attractive new therapeutic target in RA.

  11. Single cell cloning and recombinant monoclonal antibodies generation from RA synovial B cells reveal frequent targeting of citrullinated histones of NETs

    Science.gov (United States)

    Corsiero, Elisa; Bombardieri, Michele; Carlotti, Emanuela; Pratesi, Federico; Robinson, William; Migliorini, Paola; Pitzalis, Costantino

    2016-01-01

    Objectives Rheumatoid arthritis (RA) is characterised by breach of self-tolerance towards citrullinated antigens with generation of anti-citrullinated peptide/proteins antibodies (ACPA). Currently, the nature and source of citrullinated antigens driving the humoral autoimmune response within synovial ectopic lymphoid structures (ELS) is a crucial unknown aspect of RA pathogenesis. Here we characterised the autoreactive B-cell response of lesional B cells isolated from ELS+RA synovium. Methods Single synovial tissue CD19+cells were Fluorescence Activated Cell Sorting (FACS)-sorted and VH/VL Ig genes cloned to generate recombinant monoclonal antibodies (rmAbs) from patients with ELS+/ACPA+RA. Results RA-rmAbs immunoreactivity analysis provided the following key findings: (1) in a chIP-based array containing 300 autoantigens and in a ‘citrullinome’ multiplex assay, a strong reactivity against citrullinated histones H2A/H2B (citH2A/H2B) was observed in ∼40% of RA-rmAbs, followed by cit-fibrinogen and cit-vimentin; (2) anti-citH2A/H2B-reactive RA-rmAbs (but not anti-citH2A/H2B negative) selectively recognised neutrophil extracellular traps (NETs) from peripheral blood and/or RA joint neutrophils; (3) anti-citH2A/citH2B and anti-NET immunobinding was dependent on affinity maturation and was completely abrogated following reversion of hypermutated IgVH/VL genes to germline sequences; (4) ELS+ (not ELS−) RA synovial tissues engrafted into Severe Combined ImmunoDeficiency (SCID) mice released human anti-citH2A/citH2B and anti-NET antibodies in association with the intra-graft expression of CXCL13 and lymphotoxin (LT)-β, two master regulators of ELS. Conclusion We provided novel evidence that B cells differentiated within synovial ELS in the RA joints frequent target deiminated proteins which could be generated during NETosis of RA synovial neutrophils including histones. Thus, NETs could represent a source of citrullinated antigens fuelling the ACPA autoimmune

  12. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  13. Mitochondrial and glycolytic activity of UV-irradiated human keratinocytes and its stimulation by a Saccharomyces cerevisiae autolysate.

    Science.gov (United States)

    Schütz, Rolf; Kuratli, Karin; Richard, Nathalie; Stoll, Clarissa; Schwager, Joseph

    2016-06-01

    Cutaneous aging is correlated with mitochondrial dysfunction and a concomitant decline in energy metabolism that can be accelerated by extrinsic factors such as UV radiation (UVR). In this study we compared cellular bioenergetics of normal and UV-irradiated primary human epidermal keratinocytes. Moreover, we investigated the influence of a Saccharomyces cerevisiae autolysate (SCA) on stressed keratinocytes to regain cellular homeostasis. Cellular metabolism was assessed by extracellular flux analysis which measures oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) as well as by ATP quantification. The expression level of ten mitochondria related genes in normal and UVR-stimulated (60mJ/cm(2) UVB) keratinocytes was quantified by real-time PCR and the impact of SCA addition was determined. Sublethal UV stress increased mitochondrial dysfunction in keratinocytes which resulted in reduced viability, uncoupled oxidative phosphorylation, and down-regulated mitochondrial gene expression. Particularly, gene expression of SHDA, UPC2, BID, and ATP5A1 was reduced about twofold within 4h. Treatment of keratinocytes with SCA shifted cellular metabolism towards a more energetic status by increasing the respiratory rate and glycolysis. SCA also stimulated cellular ATP production after short (4h) and prolonged (22h) incubations and induced the expression of genes related to mitochondrial function towards normal expression levels upon UV irradiation. The decreased respiratory capacity of UV-irradiated keratinocytes was partially compensated by the addition of SCA which enhanced glycolytic activity and thereby increased cellular resistance to environmental stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A sperm-specific proteome-scale metabolic network model identifies non-glycolytic genes for energy deficiency in asthenozoospermia.

    Science.gov (United States)

    Asghari, Arvand; Marashi, Sayed-Amir; Ansari-Pour, Naser

    2017-04-01

    About 15% of couples experience difficulty in conceiving a child, of which half of the cases are thought to be male-related. Asthenozoospermia, or low sperm motility, is one of the frequent types of male infertility. Although energy metabolism is suggested to be central to the etiology of asthenozoospermia, very few attempts have been made to identify its underlying metabolic pathways. Here, we reconstructed SpermNet, the first proteome-scale model of the sperm cell by using whole-proteome data and the mCADRE algorithm. The reconstructed model was then analyzed using the COBRA toolbox. Genes were knocked-out in the model to investigate their effect on ATP production. A total of 78 genes elevated ATP production rate considerably of which most encode components of oxidative phosphorylation, fatty acid oxidation, the Krebs cycle, and members of the solute carrier 25 family. Among them, we identified 11 novel genes which have previously not been associated with sperm cell energy metabolism and may thus be implicated in asthenozoospermia. We further examined the reconstructed model by in silico knock out of currently known asthenozoospermia implicated-genes that were not predicted by our model. The pathways affected by knocking out these genes were also related to energy metabolism, confirming previous findings. Therefore, our model not only predicts the known pathways, it also identifies several non-glycolytic genes for deficient energy metabolism in asthenozoospermia. Finally, this model supports the notion that metabolic pathways besides glycolysis such as oxidative phosphorylation and fatty acid oxidation are essential for sperm energy metabolism and if validated, may form a basis for fertility recovery.

  15. Environmental risk factors differ between rheumatoid arthritis with and without auto-antibodies against cyclic citrullinated peptides

    DEFF Research Database (Denmark)

    Pedersen, Line Merete Blak; Jacobsen, Søren; Klarlund, Mette

    2006-01-01

    -years) was selectively associated with risk of anti-CCP-positive RA, whereas alcohol consumption exhibited an inverse dose-response association with this RA subtype (OR = 1.98, 1.22-3.19, for 0 versus > 0-5 drinks per week). Furthermore, coffee consumption (OR = 2.18; 1.07-4.42, for > 10 versus 0 cups per day), ever use......The aim of this study was to evaluate new and previously hypothesised non-genetic risk factors for serologic subtypes of rheumatoid arthritis (RA) defined by the presence or absence of auto-antibodies to cyclic citrullinated peptides (CCP). In a national case-control study, we included 515 patients......-CCP-antibodies. Associations between exposure variables and risk of anti-CCP-positive and anti-CCP-negative RA were evaluated using logistic regression. A series of RA subtype-specific risk factors were identified. Tobacco smoking (odds ratio [OR] = 1.65; 95% confidence interval: 1.03-2.64, for > 20 versus 0 pack...

  16. Circulating anti-cyclic citrullinated peptide antibody in patients with rheumatoid arthritis and chronic obstructive pulmonary disease.

    Science.gov (United States)

    Yang, Deng-Ho; Tu, Chuan-Chou; Wang, Shou-Cheng; Wei, Cheng-Chung; Cheng, Ya-Wen

    2014-07-01

    Anti-cyclic citrullinated peptide (anti-CCP) antibody is highly specific for diagnosing rheumatoid arthritis (RA). Cigarette smoking is a lifestyle and environmental factor associated with anti-CCP production and is strongly associated with chronic obstructive pulmonary disease (COPD). This study assessed levels of anti-CCP antibodies and rheumatoid factor (RF) among patients with RA and COPD. The study sample comprised 63 patients with RA and 70 patients with COPD, all of whom underwent assessment of anti-CCP antibody and RF levels. Testing revealed that 54.2% of RA patients and 0% of COPD patients were positive for anti-CCP antibodies. Additionally, 82.5% of RA patients and 42% of COPD patients were positive for RF. Among RA patients, levels of anti-CCP antibodies were higher among smokers than among nonsmokers (242.7 ± 128.3 vs. 68.1 ± 112.1, P < 0.001). COPD patients had low titers of RF but were negative for anti-CCP antibodies. The presence of anti-CCP antibodies was a reliable serologic marker in RA diagnosis and was associated with cigarette smoking.

  17. Significant association of periodontal disease with anti-citrullinated peptide antibody in a Japanese healthy population - The Nagahama study.

    Science.gov (United States)

    Terao, Chikashi; Asai, Keita; Hashimoto, Motomu; Yamazaki, Toru; Ohmura, Koichiro; Yamaguchi, Akihiko; Takahashi, Katsu; Takei, Noriko; Ishii, Takanori; Kawaguchi, Takahisa; Tabara, Yasuharu; Takahashi, Meiko; Nakayama, Takeo; Kosugi, Shinji; Sekine, Akihiro; Fujii, Takao; Yamada, Ryo; Mimori, Tsuneyo; Matsuda, Fumihiko; Bessho, Kazuhisa

    2015-05-01

    Anti-citrullinated peptide antibody (ACPA) is a highly specific autoantibody to rheumatoid arthritis (RA). Recent studies have revealed that periodontal disease (PD) is closely associated with RA and production of ACPA in RA. Analyses of associations between PD and ACPA production in a healthy population may deepen our understandings. Here, we analyzed a total of 9554 adult healthy subjects. ACPA and IgM-rheumatoid factor (RF) was quantified and PD status was evaluated using the number of missing teeth (MT), the Community Periodontal Index (CPI) and Loss of Attachment (LA) for these subjects. PD status was analyzed for its association with the positivity and categorical levels of ACPA and RF conditioned for covariates which were shown to be associated with PD, ACPA or RF. As a result, all of MT, CPI and LA showed suggestive or significant associations with positivity (p = 0.024, 0.0042 and 0.037, respectively) and levels of ACPA (p ≤ 0.00031), but none of the PD parameters were associated with those of RF. These association patterns were also observed when we analyzed 6206 non-smokers of the participants. The significant associations between PD parameters and positivity and levels of ACPA in healthy population support the fundamental involvement of PD with ACPA production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. PTPN22 -1123G>C polymorphism and anti-cyclic citrullinated protein antibodies in rheumatoid arthritis.

    Science.gov (United States)

    Muñoz-Valle, José Francisco; Padilla-Gutiérrez, Jorge Ramón; Hernández-Bello, Jorge; Ruiz-Noa, Yeniley; Valle, Yeminia; Palafox-Sánchez, Claudia Azucena; Parra-Rojas, Isela; Gutiérrez-Ureña, Sergio Ramón; Rangel-Villalobos, Hector

    2017-08-10

    The protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene encodes an important negative regulator of T-cell activation, lymphoid-specific phosphatase -Lyp- and has been associated with different autoimmune disorders. The PTPN22 -1123G>C polymorphism appears to affect the transcriptional control of this gene, but to date, the biological significance of this polymorphisms on rheumatoid arthritis (RA) risk remains unknown. We evaluate the association of PTPN22 -1123G>C polymorphism with anti-cyclic citrullinated protein antibodies (anti-CCP) and risk for RA in population from Western Mexico. A transversal analytic study, which enrolled 300 RA patients classified according to ACR-EULAR criteria and 300 control subjects (CS) was conducted. The -1123 G>C polymorphism was genotyped by PCR-RFLP. The anti-CCP antibodies levels were quantified by ELISA kit. We found a higher prevalence of homozygous PTPN22 -1123CC genotype in CS than in RA patients (OR 0.41; 95% confidence interval 0.24-0.71; P=.001), suggesting a potential protective effect against RA. Concerning anti-CCP levels, the CC genotype carriers showed the lowest median levels in RA (P<.05). The PTPN22 -1123CC genotype is a protector factor to RA in a Mexican-mestizo population and is associated with low anti-CCP antibodies. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  19. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    Science.gov (United States)

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively.

  20. The feeding route (enteral or parenteral) affects the plasma response of the dipetide Ala-Gln and the amino acids glutamine, citrulline and arginine, with the administration of Ala-Gln in preoperative patients.

    Science.gov (United States)

    Melis, Gerdien C; Boelens, Petra G; van der Sijp, Joost R M; Popovici, Theodora; De Bandt, Jean-Pascal; Cynober, Luc; van Leeuwen, Paul A M

    2005-07-01

    Enhancement of depressed plasma concentrations of glutamine and arginine is associated with better clinical outcome. Supplementation of glutamine might be a way to provide the patient with glutamine, and also arginine, because glutamine provides the kidney with citrulline, from which the kidney produces arginine when plasma levels of arginine are low. The aim of the present study was to investigate the parenteral and enteral response of the administered dipeptide Ala-Gln, glutamine, citrulline and arginine. Therefore, seven patients received 20 g Ala-Gln, administered over 4 h, parenterally or enterally, on two separate occasions. Arterial blood samples were taken before and during the administration of Ala-Gln. ANOVA and a paired t test were used to test differences (Pglutamine was observed with parenteral infusion of the dipeptide, although enteral infusion also significantly increased plasma levels of glutamine. The highest plasma response of citrulline was observed with the enteral administration of the dipeptide, although parenteral administration also increased plasma levels of citrulline. Plasma arginine increased significantly with parenteral infusion, but not with enteral administration of Ala-Gln. In conclusion, administrations of Ala-Gln, parenteral or enteral, resulted in an increased plasma glutamine response, as compared with baseline. Interestingly, in spite of the high availability of citrulline with enteral administration of the dipeptide, only parenteral infusion of Ala-Gln increased plasma arginine concentration.

  1. NaCl stress impact on the key enzymes in glycolysis from Lactobacillus bulgaricus during freeze-drying

    Science.gov (United States)

    Li, Chun; Sun, Jinwei; Qi, Xiaoxi; Liu, Libo

    2015-01-01

    Abstract The viability of Lactobacillus bulgaricus in freeze-drying is of significant commercial interest to dairy industries. In the study, L.bulgaricus demonstrated a significantly improved (p < 0.05) survival rate during freeze-drying when subjected to a pre-stressed period under the conditions of 2% (w/v) NaCl for 2 h in the late growth phase. The main energy source for the life activity of lactic acid bacteria is related to the glycolytic pathway. To investigate the phenomenon of this stress-related viability improvement in L. bulgaricus, the activities and corresponding genes of key enzymes in glycolysis during 2% NaCl stress were studied. NaCl stress significantly enhanced (p < 0.05) glucose utilization. The activities of glycolytic enzymes (phosphofructokinase, pyruvate kinase, and lactate dehydrogenase) decreased during freeze-drying, and NaCl stress were found to improve activities of these enzymes before and after freeze-drying. However, a transcriptional analysis of the corresponding genes suggested that the effect of NaCl stress on the expression of the pfk2 gene was not obvious. The increased survival of freeze-dried cells of L. bulgaricus under NaCl stress might be due to changes in only the activity or translation level of these enzymes in different environmental conditions but have no relation to their mRNA transcription level. PMID:26691481

  2. The diagnostic utility of anti-cyclic citrullinated peptide antibodies, matrix metalloproteinase-3, rheumatoid factor, erythrocyte sedimentation rate, and C-reactive protein in patients with erosive and non-erosive rheumatoid arthritis.

    Science.gov (United States)

    Shovman, O; Gilburd, B; Zandman-Goddard, G; Sherer, Y; Orbach, H; Gerli, R; Shoenfeld, Y

    2005-09-01

    To compare the diagnostic utility of laboratory variables, including matrix metalloproteinase-3 (MMP-3), anticyclic citrullinated peptide (CCP) antibodies, rheumatoid factor (RF), erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) in patients with erosive and non-erosive rheumatoid arthritis (RA). We assembled a training set, consisting of 60 patients with RA, all fulfilling the revised criteria of the American College of Rheumatology. A commercial enzyme linked immunosorbent assay (ELISA) was used both to test for anti-CCP antibodies (second generation ELISA kit) and MMP; RF were detected by latex-enhanced immunonephelometric assay. CRP was measured by latex turbidimetric immunoassay. The levels of anti-CCP antibody titers and ESR were significantly higher in patients with erosive disease than those in non-erosive RA patients (p elevated titers of anti-CCP antibodies was found in RA patients with erosions compared to patients with non-erosive RA (78.3% vs. 43.2% respectively). The ROC curves of anti-CCP passed closer to the upper left corner than those other markers and area under the curve (AUC) of anti-CCP was significantly larger than AUC of other markers (0.755 for anti-CCP, 0.660 for ESR, 0.611 for CRP, 0.577 for RF, and 0.484 for MMP-3 female). A positive predictive value was higher for anti-CCP antibodies in comparison to other markers. We did not find significant statistical correlation between anti-CCP antibody titers and inflammatory markers such as ESR or CRP. However, we confirmed the correlation of elevated titers of anti-CCP antibodies and RF in both groups of patients whereas the degree of correlation was more significant in non-erosive patients. The results of our study suggest that the presence of elevated anti-CCP antibody titers have better diagnostic performance than MMP-3, RF, CRP and ESR in patients with erosive RA.

  3. Shemamruthaa, herbal formulation modulates xenobiotic metabolizing enzymes and energy metabolism in 7,12-Dimethylbenz[a]anthracene-induced breast cancer in rats

    Directory of Open Access Journals (Sweden)

    Purushothaman Ayyakkannu

    2014-12-01

    Full Text Available There is an increasing interest in identifying naturally occurring potent preventive and therapeutic agents for cancer. Shemamruthaa, a phytochemical formulation was evaluated for the first time with a view to potentiate more intense anticancer property. Adult female Sprague-Dawley rats (8-week-old were used for the study and were divided into 4 Groups. Group I control animals received standard pellet diet and water ad libitum. Group II animals were induced for mammary carcinoma with a single oral dose of 25 mg of DMBA, whereas another set of DMBA-induced rats were treated with SM (400 mg/kg body weight/day orally by gastric intubation for 14 days after 3 months of induction period (Group III. Group IV animals served as SM-control. The status xenobiotic metabolizing enzymes, glycolytic and gluconeogenic enzymes were analysed in control and experimental rats. Our findings revealed that the SM formulation has potential to induce Phase-II enzyme activities, associated mainly with carcinogen detoxification and inhibit the Phase I enzyme activities. The activities of glycolytic and gluconeogenic enzymes were significantly brought back to near normal levels in SM treated animals. The results demonstrated unequivocally the effect of SM on inhibition of tumor progression by altering xenobiotic metabolizing enzymes and restoring energy metabolism. 

  4. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...

  5. Comparisons of different muscle metabolic enzymes and muscle fiber types in Jinhua and Landrace pigs.

    Science.gov (United States)

    Guo, J; Shan, T; Wu, T; Zhu, L N; Ren, Y; An, S; Wang, Y

    2011-01-01

    Western and indigenous Chinese pig breeds show obvious differences in muscle growth and meat quality, however, the underlying molecular mechanism remains unclear. The main objective of this study was to evaluate the breed-specific mechanisms controlling meat quality and postmortem muscle metabolism. The specific purpose was to investigate the variations in meat quality, muscle fiber type, and enzyme activity between local Jinhua and exotic Landrace pigs at the same age (180 d of age), as well as the same BW of 64 kg, respectively. We compared differentially expressed muscle fiber types such as types I and IIa (oxidative), type IIb (glycolytic), as well as type IIx (intermediate) fibers in LM and soleus muscles of Jinhua and Landrace pigs using real-time reverse-transcription PCR. Furthermore, the metabolic enzyme activities of lactate dehydrogenase, as well as succinic dehydrogenase and malate dehydrogenase, were used as markers of glycolytic and oxidative capacities, respectively. Results showed that Jinhua pigs exhibited greater intramuscular fat content and less drip loss compared with the Landrace (P Landrace (P Landrace (P Landrace pigs. These results may provide valuable information for understanding the molecular mechanism responsible for breed specific differences in growth performance and meat quality.

  6. The multifaceted roles of metabolic enzymes in the Paracoccidioides species complex

    Science.gov (United States)

    Marcos, Caroline M.; de Oliveira, Haroldo C.; da Silva, Julhiany de F.; Assato, Patrícia A.; Fusco-Almeida, Ana M.; Mendes-Giannini, Maria J. S.

    2014-01-01

    Paracoccidioides species are dimorphic fungi and are the etiologic agents of paracoccidioidomycosis, which is a serious disease that involves multiple organs. The many tissues colonized by this fungus suggest a variety of surface molecules involved in adhesion. A surprising finding is that most enzymes in the glycolytic pathway, tricarboxylic acid (TCA) cycle and glyoxylate cycle in Paracoccidioides spp. have adhesive properties that aid in interacting with the host extracellular matrix and thus act as ‘moonlighting’ proteins. Moonlighting proteins have multiple functions, which adds a dimension to cellular complexity and benefit cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play a role in bacterial pathogenesis by either acting as proteins secreted in a conventional pathway and/or as cell surface components that facilitate adhesion or adherence. This review outlines the multifunctionality exhibited by many Paracoccidioides spp. enzymes, including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitrate lyase, malate synthase, triose phosphate isomerase, fumarase, and enolase. We discuss the roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host. PMID:25566229

  7. Modulating carbonyl cytotoxicity in intact rat hepatocytes by inhibiting carbonyl-metabolizing enzymes. I. Aliphatic alkenals.

    Science.gov (United States)

    Niknahad, Hossein; Siraki, Arno G; Shuhendler, Adam; Khan, Sumsullah; Teng, Shirley; Galati, Giuseppe; Easson, Elaine; Poon, Raymond; O'Brien, Peter J

    2003-02-01

    The cytotoxicity of alkenals towards hepatocytes was related to their electrophilicity not their hydrophobicity as cytotoxicity decreased as the chain length increased from acrolein to hexenal and then cytotoxicity increased from hexenal to nonenal. The sequence of events found was rapid glutathione depletion, lipid peroxidation, and inhibition of respiration before cell lysis occurred. Cytotoxicity markedly increased if glutathione was depleted beforehand. Although acrolein-induced cytotoxicity was only delayed by antioxidants or glycolytic substrates (e.g. fructose), it was prevented by NADH generators (e.g. xylitol and sorbitol) due to increased metabolism by ADH1. Cytotoxicity induced by trans,trans-2,4-decadienal (decadienal), on the other hand, was prevented by antioxidants and/or glycolytic substrates but was not prevented by NADH generators. Decadienal-induced cytotoxicity was also more increased by mitochondrial ALDH2 inhibitors than acrolein and was more increased by decreasing mitochondrial NAD+ with rotenone or decreased by increasing mitochondrial NAD+ with oxaloacetate. This suggests that the high electrophilicity of acrolein makes acrolein a more promiscuous inhibitor than decadienal. This results in the inactivation of more enzymes required for cell viability including the cytosolic and mitochondrial ALDHs as well as other enzymes (e.g. mitochondrial) making the reductive detoxication of acrolein by ADH1 more important than the oxidative detoxification by ALDHs. Decadienal is detoxified by all cytosolic and mitochondrial ALDHs and is less dependent on ADH1 for detoxication. There was also marked cytotoxic synergism between acrolein and decadienal presumably because of ALDH inactivation by acrolein.

  8. Therapeutic effect of tamoxifen and energy-modulating vitamins on carbohydrate-metabolizing enzymes in breast cancer.

    Science.gov (United States)

    Perumal, Selvanathan Saravana; Shanthi, Palanivelu; Sachdanandam, Panchanadham

    2005-07-01

    Cancer cells have an abnormal energetic metabolism. One of the earliest discovered hallmarks of cancer had its roots in bioenergetics, as many tumours were found in the 1920s to exhibit a high glycolytic phenotype. An animal with cancer shows significant and progressive energy loss from the host (i.e. noncancerous) tissues, which could occur by the establishment of a systemic energy-depriving cycle involving the interaction of tumour glycolysis and host gluconeogenesis. Tamoxifen (TAM) is a nonsteroidal antioestrogen that is widely used in adjuvant therapy for all stages of breast carcinoma. To improve the therapeutic efficacy of TAM and to expand its usage in the treatment of breast cancer, it is necessary to establish an energy-enhancing programme. In order to provide sufficient energy and to prevent cancer cachexia, TAM can be supplemented with energy-modulating vitamins (EMV). In this investigation the augmentation of the efficacy of TAM by the effects of EMV supplementation on carbohydrate-metabolizing enzymes, the mitochondrial Krebs cycle and respiratory enzymes was evaluated in the mammary gland of carcinoma-bearing rats. Female albino Sprague-Dawley rats were selected for the investigation. The experimental set-up included one control and four experimental groups. Mammary carcinoma was induced with 7,12- dimethyl benz(a)anthracene (25 mg), and TAM was administered orally (10 mg/kg body weight per day) along with EMV which comprised riboflavin (45 mg/kg per day), niacin (100 mg/kg per day) and coenzyme Q(10) (40 mg/kg per day). Measurements were made on tumour tissue and surrounding normal tissue in all experimental groups. Tumour tissue showed significant (P<0.05) increases in the glycolytic enzymes hexokinase, phosphoglucoisomerase and aldolase, and significant decreases in the gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-biphosphatase. In contrast, the surrounding tissue showed significant decreases in glycolytic enzymes and significant

  9. Anticorpos antiproteínas citrulinadas e a artrite reumatóide Auto-antibodies to citrullinated proteins and rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Renata Trigueirinho Alarcon

    2007-06-01

    Full Text Available Pacientes com artrite reumatóide (AR possuem uma variedade de auto-anticorpos no soro e no líquido sinovial. Entre esses auto-anticorpos, destacam-se aqueles direcionados a proteínas citrulinadas, que são específicos para AR, aparecem precocemente durante a evolução da enfermidade e são bastante úteis para auxiliar no diag-nóstico da doença. Entre os antígenos citrulinados reconhecidos por auto-anticorpos na AR, encontram-se a profilagrina, a filagrina e a vimentina. Células e tecidos ricos nessas proteínas serviram de substrato para os primeiros ensaios laboratoriais para detecção dessa classe de auto-anticorpos. A descoberta de que os epitopos reconhecidos por esses auto-anticorpos eram peptídeos contendo citrulina permitiu o desenvolvimento de uma plataforma baseada em ELISA. O formato de ELISA possibilitou maior padronização e reprodutibilidade dos ensaios, resultando em ampla aceitação mundial como os auto-anticorpos mais específicos e precoces para o diagnóstico da AR. Há controvérsia quanto à capacidade dos anticorpos contra proteínas citrulinadas predizerem a gravidade da doença. O papel dos antígenos citrulinados na fisiopatologia da artrite reumatóide é sugerido pela forte especificidade desses auto-anticorpos para a doença, pelo achado de proteínas citrulinadas na sinóvia inflamada, pela produção intra-articular desses auto-anticorpos e pela extrema afinidade de peptídeos citrulinados por moléculas de HLA-DRB1 que contêm o epitopo compartilhado. Esses achados acenam com a possibilidade de novas e fascinantes descobertas rumo à melhor compreensão da fisiopatologia da AR.Rheumatoid arthritis (RA patients have a variety of auto-antibodies in the serum and synovial fluid. Among these auto-antibodies, those directed against citrullinated proteins are distinguished because that are specific for RA, appear early during the evolution of the disease and they are important to assist in the diagnosis of

  10. LeftyA sensitive cytosolic pH regulation and glycolytic flux in Ishikawa human endometrial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Salker, Madhuri S.; Zhou, Yuetao; Singh, Yogesh [Department of Physiology, University of Tuebingen, 72076 Tuebingen (Germany); Brosens, Jan [Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry CV2 2DX (United Kingdom); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tuebingen, 72076 Tuebingen (Germany)

    2015-05-08

    Objective: LeftyA, a powerful regulator of stemness, embryonic differentiation, and reprogramming of cancer cells, counteracts cell proliferation and tumor growth. Key properties of tumor cells include enhanced glycolytic flux, which is highly sensitive to cytosolic pH and thus requires export of H{sup +} and lactate. H{sup +} extrusion is in part accomplished by Na{sup +}/H{sup +} exchangers, such as NHE1. An effect of LeftyA on transport processes has, however, never been reported. The present study thus explored whether LeftyA modifies regulation of cytosolic pH (pHi) in Ishikawa cells, a well differentiated endometrial carcinoma cell model. Methods: NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance quantified by Western blotting, pH{sub i} estimated utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na{sup +}/H{sup +} exchanger activity from Na{sup +} dependent realkalinization after an ammonium pulse, and lactate concentration in the supernatant utilizing an enzymatic assay and subsequent colorimetry. Results: A 2 h treatment with LeftyA (8 ng/ml) significantly decreased NHE1 transcript levels (by 99.6%), NHE1 protein abundance (by 71%), Na{sup +}/H{sup +} exchanger activity (by 55%), pHi (from 7.22 ± 0.02 to 7.05 ± 0.02), and lactate release (by 41%). Conclusions: LeftyA markedly down-regulates NHE1 expression, Na{sup +}/H{sup +} exchanger activity, pHi, and lactate release in Ishikawa cells. Those effects presumably contribute to cellular reprogramming and growth inhibition. - Highlights: • LeftyA, an inhibitor of tumor growth, reduces Na{sup +}/H{sup +}-exchanger activity by 55%. • LeftyA decreases NHE1 transcripts by 99.6% and NHE1 protein by 71%. • LeftyA decreases cytosolic pH from 7.22 ± 0.02 to 7.05 ± 0.02. • Cytosolic acidification by Lefty A decreases glycolysis by 41%. • Cytosolic acidification by Lefty A compromises energy production of tumor cells.

  11. Retinoblastoma treatment: impact of the glycolytic inhibitor 2-deoxy-d-glucose on molecular genomics expression in LHBETATAG retinal tumors

    Directory of Open Access Journals (Sweden)

    Piña Y

    2012-05-01

    involved in its in vitro and in vivo activity in inhibiting tumor cell growth.Keywords: retinoblastoma, hypoxia, genetic expression, glycolytic inhibitor, 2-DG

  12. IgG1 and IgG4 are the predominant subclasses among auto-antibodies against two citrullinated antigens in RA.

    Science.gov (United States)

    Engelmann, R; Brandt, J; Eggert, M; Karberg, K; Krause, A; Neeck, G; Mueller-Hilke, B

    2008-10-01

    Antibody subclasses reflect specific immunological processes and may be indicative of the underlying pathological pattern in an autoimmune disease like RA. We therefore quantified anti-cyclic citrullinated peptides (CCP) and anti- citrullinated vimentin (MCV) IgG subclass titres in RA patients and compared them with the respective titres of antibodies directed against the varicella zoster virus (VZV) and to total serum titres. Sera of 77 patients fulfilling the ACR criteria for RA were collected. An IgG subclass-specific ELISA system was then established and combined with commercially available MCV, CCP and VZV pre-coated microtitre plates. Even though IgG1 is the predominant subclass among antibodies against CCP and MCV in RA patients, IgG4 is second with respect to titres and frequencies. This increase in IgG4 among RA-specific antibodies is independent of disease duration and does not reflect a general skewing of the immune response in these patients as overall serum titres and antibodies directed against VZV show a normal distribution of IgG1, IgG2, IgG3 and IgG4. Elevated IgG4 titres are specific for auto-antibodies against citrullinated antigens in RA and are indicative of a Th2-biased environment during the generation of auto-reactive plasma cells. We discuss here an indirect role for IgG4 auto-antibodies in hindering the elimination of auto-reactive B and plasma cells and thus driving the autoimmune process.

  13. Branched-chain amino acids, arginine, citrulline alleviate central fatigue after 3 simulated matches in taekwondo athletes: a randomized controlled trial.

    Science.gov (United States)

    Chen, I-Fan; Wu, Huey-June; Chen, Chung-Yu; Chou, Kuei-Ming; Chang, Chen-Kang

    2016-01-01

    The decline in cognitive performance has been shown after fatiguing exercise. Branched-chain amino acids (BCAA) have been suggested to alleviate exercise-induced central fatigue. Arginine and citrulline could remove the excess NH3 accumulation accompanied with BCAA supplementation by increasing nitric oxide biosynthesis and/or urea cycle. The purpose of this study is to investigate the effect of the combined supplementation of BCAA, arginine, and citrulline on central fatigue after three simulated matches in well-trained taekwondo athletes. In a double-blind randomized cross-over design, 12 male taekwondo athletes performed two trials containing three simulated matches each. Each match contained three 2-min rounds of high-intensity intermittent exercise. At the end of the second match, two different supplementations were consumed. In the AA trial, the subjects ingested 0.17 g/kg BCAA, 0.05 g/kg arginine and 0.05 g/kg citrulline, while placebo was consumed in the PL trial. A validated taekwondo-specific reaction test battery was used to measure the cognitive performance after each match. The premotor reaction time in the three single-task tests and the reaction time in the secondary task in the dual-task test were maintained in the AA trial after three matches, while they were impaired in the PL trial, resulting in significantly better performance in the AA trial. These improvements in the AA trial coincided with significantly lower plasma free tryptophan/BCAA ratio, increased NOx concentrations, and similar NH3 concentrations. This study suggested that the combined supplementation could alleviate the exercise-induced central fatigue in elite athletes.

  14. Androgens enhance the glycolytic metabolism and lactate export in prostate cancer cells by modulating the expression of GLUT1, GLUT3, PFK, LDH and MCT4 genes.

    Science.gov (United States)

    Vaz, Cátia V; Marques, Ricardo; Alves, Marco G; Oliveira, Pedro F; Cavaco, José E; Maia, Cláudio J; Socorro, Sílvia

    2016-01-01

    The present study aims to investigate the role of androgens in controlling the glycolytic metabolism and lactate efflux in prostate cancer (PCa) cells. Androgen-responsive LNCaP cells were treated with 5α-dihydrotestosterone (DHT, 10 nM) for 12-48 h, and their glycolytic metabolism, lactate production and viability were analyzed. Intracellular and extracellular levels of glucose and lactate were determined spectrophotometrically, and the expression of glucose transporters (GLUT1/GLUT3), phosphofructokinase 1, lactate dehydrogenase (LDH) and monocarboxylate transporter (MCT4) was analyzed by real-time PCR and Western blot. The enzymatic activity of LDH was determined by means of a colorimetric assay. Experiments were reproduced in androgen-non-responsive DU145 and PC3 cells. Androgens stimulated glucose consumption in LNCaP cells by increasing the expression of GLUT3, GLUT1 and PFK, which was underpinned by increased cell viability. Accordingly, lactate production by LNCaP cells was enhanced upon DHT stimulation as evidenced by the increased levels of lactate found in cell culture medium. Although LDH enzymatic activity decreased in LNCaP cells treated with DHT, the expression of MCT4 was significantly increased with androgenic treatment, which sustains the increase on lactate export. Glucose consumption and the expression of GLUTs and PFK remained unchanged in DHT-treated DU145 and PC3 cells. The results obtained establish androgens as modulators of glycolytic metabolism in PCa cells by stimulating glucose consumption, as well as the production and export of lactate, which may represent a crucial issue-driven prostate tumor development. These findings also highlight the importance of PCa therapies targeting AR and metabolism-related proteins.

  15. Primary clear cell renal carcinoma cells display minimal mitochondrial respiratory capacity resulting in pronounced sensitivity to glycolytic inhibition by 3-Bromopyruvate.

    Science.gov (United States)

    Nilsson, H; Lindgren, D; Mandahl Forsberg, A; Mulder, H; Axelson, H; Johansson, M E

    2015-01-08

    Changes of cellular metabolism are an integral property of the malignant potential of most cancer cells. Already in the 1930s, Otto Warburg observed that tumor cells preferably utilize glycolysis and lactate fermentation for energy production, rather than the mitochondrial oxidative phosphorylation dominating in normal cells, a phenomenon today known as the Warburg effect. Even though many tumor types display a high degree of aerobic glycolysis, they still retain the activity of other energy-producing metabolic pathways. One exception seems to be the clear cell variant of renal cell carcinoma, ccRCC, where the activity of most other pathways than that of glycolysis has been shown to be reduced. This makes ccRCC a promising candidate for the use of glycolytic inhibitors in treatment of the disease. However, few studies have so far addressed this issue. In this report, we show a strikingly reduced mitochondrial respiratory capacity of primary human ccRCC cells, resulting in enhanced sensitivity to glycolytic inhibition by 3-Bromopyruvate (3BrPA). This effect was largely absent in established ccRCC cell lines, a finding that highlights the importance of using biologically relevant models in the search for new candidate cancer therapies. 3BrPA markedly reduced ATP production in primary ccRCC cells, followed by cell death. Our data suggest that glycolytic inhibitors such as 3BrPA, that has been shown to be well tolerated in vivo, should be further analyzed for the possible development of selective treatment strategies for patients with ccRCC.

  16. Antibodies to mutated citrullinated vimentin in patients with chronic hepatitis C virus genotype IV infection-related arthropathy.

    Science.gov (United States)

    Zehairy, M; Soliman, E; Daghaidy, A

    2012-11-01

    One of the extra-hepatic manifestations of hepatitis C virus (HCV) infection is polyarthritis that mimics rheumatoid arthritis (RA). Anti-mutated citrullinated vimentin (MCV) was recently introduced in the diagnostic workup of RA, but its exact role in HCV infection and its related arthropathy is still unclear. The aim of the study is to determine the prevalence of anti-MCV antibodies in HCV-infected patients with or without articular involvement, and to investigate whether anti-MCV antibodies have an additional role to anticyclic citrullinated peptide (CCP) antibodies and rheumatoid factor (RF) in differentiating patients with RA from patients with HCV-related arthropathy. Fifty-five HCV-infected patients (HCV RNA positive) and 30 RA patients (fulfilling the American College of Rheumatology classification criteria for RA and negative for HCV) were included. Anti-MCV antibodies, anti-CCP antibodies, RF and cryoglobulins were measured. Articular involvement in hepatitis C patients was evaluated. Articular involvement was detected in 30/55 (54.5%) of HCV-infected patients. The most frequent pattern was symmetric polyarthralgias and the most frequent joints to be involved were the wrists, metacarpophalangeal joints, shoulders and knees. In HCV arthropathy, anti-MCV was positive in 9/30 (30%), anti-CCP in 0% and RF in 22/30 (73.3%). Whereas, in chronic HCV without arthropathy, anti-MCV was positive in 8 patients (32%), anti-CCP in one patient (4%) and RF in 23/25 (92.0%). There was no significant difference between the two HCV groups as regards the frequencies of anti-MCV (P = 0.89), anti-CCP (P = 0.93) and RF (P = 0.15). In RA, anti-MCV was positive in 93.3% anti-CCP in 96.7% and RF in 86.7%. There was no significant difference in RF between RA and HCV arthropathy (P = 0.33). Meanwhile, there was a highly significant difference between both groups regarding anti-MCV and anti-CCP (P < 0.0001 for each). The sensitivity of anti-MCV, anti-CCP and RF for RA was 93.3, 96

  17. Novel retinoblastoma treatment avoids chemotherapy: the effect of optimally timed combination therapy with angiogenic and glycolytic inhibitors on LHBETATAG retinoblastoma tumors

    Directory of Open Access Journals (Sweden)

    Samuel K Houston

    2011-01-01

    Full Text Available Samuel K Houston1, Yolanda Piña1, Timothy G Murray1, Hinda Boutrid1, Colleen Cebulla2, Amy C Schefler1, Wei Shi1, Magda Celdran1, William Feuer1, Jaime Merchan3, Ted J Lampidis41Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; 2Department of Ophthalmology, The Ohio State University, Columbus, OH, USA; 3Division of Hematology/Oncology, Department of Medicine, 4Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL, USAPurpose: The purpose of this study was to evaluate the effect of optimally timed combination treatment with angiogenic and glycolytic inhibitors on tumor burden, hypoxia, and angiogenesis in advanced retinoblastoma tumors.Methods: LHBETATAG mice (n = 30 were evaluated. Mice were divided into 5 groups (n = 6 and received injections at 16 weeks of age (advanced tumors with a saline, b anecortave acetate (AA, c 2-deoxyglucose (2-DG, d AA + 2-DG (1 day post-AA treatment, or e AA + 2-DG (1 week post-AA treatment. Eyes were enucleated at 21 weeks and tumor sections were analyzed for hypoxia, angiogenesis, and tumor burden.Results: Eyes treated with 2-DG 1 day post-AA injection showed a 23% (P = 0.03 reduction in tumor burden compared with 2-DG alone and a 61% (P < 0.001 reduction compared with saline-treated eyes. Eyes treated with 2-DG 1 week post-AA injection showed no significant decrease in tumor burden compared with 2-DG alone (P = 0.21 and a 56% (P < 0.001 decrease in comparison with saline-treated eyes. 2-DG significantly reduced the total density of new blood vessels in tumors by 44% compared to saline controls (P < 0.001, but did not affect the density of mature vasculature.Conclusions: Combination therapy with angiogenic and glycolytic inhibitors significantly enhanced tumor control. Synergistic effects were shown to be dependent on the temporal course of treatment

  18. A distinct multicytokine profile is associated with anti-cyclical citrullinated peptide antibodies in patients with early untreated inflammatory arthritis.

    Science.gov (United States)

    Hitchon, Carol A; Alex, Philip; Erdile, Lawrence B; Frank, Mark B; Dozmorov, Igor; Tang, Yuhong; Wong, Keng; Centola, Michael; El-Gabalawy, Hani S

    2004-12-01

    Early inflammatory arthritis is clinically heterogenous and biologically-based indicators are needed to distinguish severe from self-limited disease. Anti-cyclical citrullinated peptides (CCP) have been identified as potential prognostic markers in early arthritis cohorts. Since cytokine networks are known to play a critical role in the pathogenesis of rheumatoid arthritis (RA) and other forms of inflammatory arthritis, a panel of pro- and antiinflammatory cytokines was measured to identify biologically-based subsets of early arthritis, relating cytokine profiles to clinical measures and to the presence of RA-associated autoantibodies. Plasma concentrations of cytokines [interleukin 1beta (IL-1beta), IL-2, IL-4, IL-5, IL-6, IL-7, CXCL8 (IL-8), IL-10, IL-12p70, IL-13, IL-17, granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage-colony stimulating factor (GM-CSF), interferon-g (IFN-g), CCL2 (monocyte chemoattractant protein-1, MCP-1), CCL4 (MIP-1beta), and tumor necrosis factor-a (TNF-a)] were measured in patients with early, untreated inflammatory arthritis [symptom duration or = 1 swollen joint; RA, n = 41; undifferentiated arthritis (UA), n = 23]. Cytokine expression patterns were determined using cluster analysis. Both pro- and antiinflammatory cytokines were elevated in patients over controls (n = 21). RA clustered into subgroups based solely on cytokine profiles. The "mild" RA subgroup (n = 23) had higher CCL4 (MIP-1beta), CXCL8 (IL-8), IL-2, IL-12, IL-17, IL-5, and IL-10 levels, lower IL-6, IFN-g, GM-CSF, and IL-4 levels, less CCP positivity (52% vs 82%; p CCP titers [71 (78) vs 153 (94); p CCP-positive (24% vs 66%; p CCP and RF autoantibodies. Integration of cytokine profiles with autoantibody status may assist prognostication and treatment decisions in these patients.

  19. Anti-cyclic citrullinated peptide-2 (CCP2) autoantibodies and extra-articular manifestations in Greek patients with rheumatoid arthritis.

    Science.gov (United States)

    Alexiou, Ioannis; Germenis, Anastasios; Koutroumpas, Athanasios; Kontogianni, Anastasia; Theodoridou, Katerina; Sakkas, Lazaros I

    2008-04-01

    The objective of our study was to establish whether there is an association between rheumatoid arthritis with extra-articular manifestations (exRA) and anti-cyclic citrullinated peptide 2 (anti-CCP2) antibodies in Greeks. A retrospective study of 220 Greek patients with RA, 95 with exRA and 125 without extra-articular manifestations (cRA). Serum anti-CCP2 antibodies and IgM rheumatoid factor (RF) were measured. CCP2(+) were 65.3% of exRA and 58.4% of cRA patients. RF(+) were 69.5% of exRA and 60.0% of cRA patients. Among exRA patients, 37.9% had high serum anti-CCP2 antibody levels (>100 IU/ml) compared to 21.6% cRA patients (p = 0.008). Serositis and pulmonary fibrosis were found to be associated with high levels of anti-CCP2 antibodies (52.9 vs 26.6%, p = 0.02 and 63.6 vs 26.8%, p = 0.008, respectively). Serum RF levels were 265.0 +/- 52.0 IU/ml (mean +/- SEM) in exRA and 205.1 +/- 40.6 (mean +/- SEM) in cRA (NS). High serum RF levels (>268 IU/ml) were more likely to have sicca syndrome. In Greek patients with rheumatoid arthritis (RA), high serum anti-CCP2 antibodies are associated with serositis and pulmonary fibrosis. Therefore, anti-CCP2 antibodies have prognostic significance in patients with RA.

  20. Enhanced neutrophil phagocytic capacity in rheumatoid arthritis related to the autoantibodies rheumatoid factor and anti-cyclic citrullinated peptides.

    Science.gov (United States)

    de Siqueira, Marcelo Bogliolo Piancastelli; da Mota, Licia Maria Henrique; Couto, Shirley Claudino Pereira; Muniz-Junqueira, Maria Imaculada

    2015-06-30

    There is no consensus on the mechanisms by which anti-cyclic citrullinated peptide antibodies (anti-CCP) and rheumatoid factor (RF) influence the pathogenesis of rheumatoid arthritis (RA). The current study verified if the presence of RF or anti-CCP is associated with phagocytic capacity and reactive oxygen species (ROS) production by phagocytes in RA patients to better clarify the role played by these antibodies in pathogenesis of the disease. A cohort of 30 RA patients followed from early stages of the disease were characterized by positivity for RF or anti-CCP, disease activity score (DAS-28), health assessment questionnaire (HAQ), use of synthetic or biologic therapy, lifestyle, comorbidities and radiographic erosions. Phagocytic capacity against Saccharomyces cerevisiae and superoxide anion production were assessed in RA patients and compared with 20 healthy controls. Phagocytic capacity and superoxide anion production were also compared between RF- and anti-CCP-positive and -negative RA patients. Anti-CCP- and RF-positive RA patients had higher neutrophil phagocytic capacity than anti-CCP- (p = 0.005) and RF (p = 0.005)-negative individuals through pattern-recognition receptors. As assessed via pattern recognition or opsonin receptors, neutrophils and monocytes from RA patients presented overall higher phagocytic capacity than neutrophils and monocytes from healthy controls (p autoantibodies. Furthermore, there was an overall hyperactivation of the phagocytes in RA patients. Our data suggest that anti-CCP and RF may indirectly enhance the inflammation cascade involving neutrophils and may indirectly sustain tissue damage in RA. Targeting the production of these autoantibodies may be a promising strategy in the management of RA.

  1. Association of human leukocyte antigen DRB1 with anti-cyclic citrullinated peptide autoantibodies in Saudi patients with rheumatoid arthritis.

    Science.gov (United States)

    Alrogy, Abdullah; Dirar, Abduallah; Alrogy, Waleed; Fakhoury, Hana; Hajeer, Ali

    2017-01-01

    The genetic association between human leukocyte antigen (HLA)-DRB1 alleles and the risk of development of autoantibodies has been investigated, but there are few studies from the Gulf region. To investigate the association between the HLA-DRB1 shared epitope and the risk for development of autoantibodies in rheumatoid arthritis (RA) patients in a Saudi population. Analytical cross-sectional study. Tertiary care hospital in Riyadh, Saudi Arabia. We enrolled consecutive Saudi RA patients attending the rheumatology clinic between January and April 2015. Previously published data on HLA typing on unmatched healthy controls were used for comparison. HLA typing was performed using sequence-specific oligonucleotide probes (SSOP). Rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-CCP) antibodies, and antinuclear antibodies (ANA) were also measured. Logistic regression analysis was used to study the autoantibodies as possible explanatory variables for the presence of the HLA-DRB1 shared epitope. The association between the presence of the shared epitope and the risk of developing anti-CCP antibodies, ANA, and RF. In 76 patients with RA, carrying the shared epitope was associated with a significantly higher risk of having RA [OR=2.65, 95% CI (1.42-4.94), P=.0009]. However, only HLA-DRB1*04:05 was significantly as.sociated with RA [OR=3.73, 95% CI (1.61-8.96), Pc=.016]. In the logistic regression analysis, only anti-CCP was significantly associated with the shared epitope [OR=14.51, 95% CI (1.53-137.49), P=.02]. Our analysis indicates that the presence of the HLA-DRB1 shared epitope is strongly associated with the development of anti-CCP antibodies in Saudi patients with RA. A larger sample size is needed to confirm our finding.

  2. Anti-Cyclic Citrullinated Peptide Antibodies and Severity of Interstitial Lung Disease in Women with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Alberto Daniel Rocha-Muñoz

    2015-01-01

    Full Text Available Objective. To evaluate whether serum titers of second-generation anticyclic citrullinated peptide antibodies (anti-CCP2 are associated with the severity and extent of interstitial lung disease in rheumatoid arthritis (RA-ILD. Methods. In across-sectional study, 39 RA-ILD patients confirmed by high-resolution computed tomography (HRCT were compared with 42 RA without lung involvement (RA only. Characteristics related to RA-ILD were assessed in all of the patients and serum anti-CCP2 titers quantified. Results. Higher anti-CCP2 titers were found in RA-ILD compared with RA only (medians 77.9 versus 30.2 U/mL, P<0.001. In the logistic regression analysis after adjustment for age, disease duration (DD, smoke exposure, disease activity, functioning, erythrocyte sedimentation rate, and methotrexate (MTX treatment duration, the characteristics associated with RA-ILD were higher anti-CCP2 titers (P=0.003 and + RF (P=0.002. In multivariate linear regression, the variables associated with severity of ground-glass score were anti-CCP2 titers (P=0.02 and with fibrosis score DD (P=0.01, anti-CCP2 titers (P<0.001, and MTX treatment duration (P<0.001. Conclusions. Anti-CCP2 antibodies are markers of severity and extent of RA-ILD in HRCT. Further longitudinal studies are required to identify if higher anti-CCP2 titers are associated with worst prognosis in RA-ILD.

  3. Anti-Cyclic Citrullinated Peptide Antibodies and Severity of Interstitial Lung Disease in Women with Rheumatoid Arthritis

    Science.gov (United States)

    Ponce-Guarneros, Manuel; Mejía, Mayra; Juárez-Contreras, Pablo; Corona-Sánchez, Esther Guadalupe; Rodríguez-Hernández, Tania Marlen; Salazar-Páramo, Mario; Cardona-Muñoz, Ernesto German; Celis, Alfredo; González-Lopez, Laura

    2015-01-01

    Objective. To evaluate whether serum titers of second-generation anticyclic citrullinated peptide antibodies (anti-CCP2) are associated with the severity and extent of interstitial lung disease in rheumatoid arthritis (RA-ILD). Methods. In across-sectional study, 39 RA-ILD patients confirmed by high-resolution computed tomography (HRCT) were compared with 42 RA without lung involvement (RA only). Characteristics related to RA-ILD were assessed in all of the patients and serum anti-CCP2 titers quantified. Results. Higher anti-CCP2 titers were found in RA-ILD compared with RA only (medians 77.9 versus 30.2 U/mL, P < 0.001). In the logistic regression analysis after adjustment for age, disease duration (DD), smoke exposure, disease activity, functioning, erythrocyte sedimentation rate, and methotrexate (MTX) treatment duration, the characteristics associated with RA-ILD were higher anti-CCP2 titers (P = 0.003) and + RF (P = 0.002). In multivariate linear regression, the variables associated with severity of ground-glass score were anti-CCP2 titers (P = 0.02) and with fibrosis score DD (P = 0.01), anti-CCP2 titers (P < 0.001), and MTX treatment duration (P < 0.001). Conclusions. Anti-CCP2 antibodies are markers of severity and extent of RA-ILD in HRCT. Further longitudinal studies are required to identify if higher anti-CCP2 titers are associated with worst prognosis in RA-ILD. PMID:26090479

  4. Quantitative Metabolomic Analysis of Urinary Citrulline and Calcitroic Acid in Mice after Exposure to Various Types of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Maryam Goudarzi

    2016-05-01

    Full Text Available With the safety of existing nuclear power plants being brought into question after the Fukushima disaster and the increased level of concern over terrorism-sponsored use of improvised nuclear devices, it is more crucial to develop well-defined radiation injury markers in easily accessible biofluids to help emergency-responders with injury assessment during patient triage. Here, we focused on utilizing ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS to identify and quantitate the unique changes in the urinary excretion of two metabolite markers, calcitroic acid and citrulline, in mice induced by different forms of irradiation; X-ray irradiation at a low dose rate (LDR of 3.0 mGy/min and a high dose rate (HDR of 1.1 Gy/min, and internal exposure to Cesium-137 (137Cs and Strontium-90 (90Sr. The multiple reaction monitoring analysis showed that, while exposure to 137Cs and 90Sr induced a statistically significant and persistent decrease, similar doses of X-ray beam at the HDR had the opposite effect, and the LDR had no effect on the urinary levels of these two metabolites. This suggests that the source of exposure and the dose rate strongly modulate the in vivo metabolomic injury responses, which may have utility in clinical biodosimetry assays for the assessment of exposure in an affected population. This study complements our previous investigations into the metabolomic profile of urine from mice internally exposed to 90Sr and 137Cs and to X-ray beam radiation.

  5. Usefulness of anti-cyclic citrullinate peptide antibody determination in synovial fluid analysis of patients with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    G. Valesini

    2011-09-01

    Full Text Available Objective: To assess the role of anti-cyclic citrullinated peptide (CCP antibody detection in synovial fluid (SF of RA patients compared to OA patients. Methods: We evaluated in 25 RA subjects and 14 OA patients, presenting a knee-joint effusion, the main clinical and laboratory parameters including the number of painful and/or swollen joints, Ritchie index, morning stiffness, ESR, CRP and analysis of SF obtained by therapeutic arthrocentesis. IgG anti-CCP (ELISA, rheumatoid factor (RF and total IgG (nephelometry method were measured in SF and paired serum samples. Results: We found anti-CCP antibodies and RF in 64% (16/25 and 60% (15/25 of RA sera, respectively; 72% (18/25 of RA patients were positive for anti-CCP antibodies or RF. We found a higher SF/serum ratio for anti-CCP (p<0.004 compared to that for total IgG. The calculation of anti-CCP concentration as IgG anti-CCP (units/total IgG (g L-1 revealed higher values in SF than in serum (p<0.046 in RA patients. Among these, correlation analysis showed that anti-CCP/total IgG values in SF correlated with the relative concentration of serum anti-CCP/total IgG (rs=0.842; p<0.00001 and serum anti-CCP antibody levels (rs=0.799; p<0.0001. We did not find any correlation between SF anti-CCP levels and the main characteristics of SF as well as the clinical or laboratory parameters. Conclusion: Our study give evidence for a preferential production of anti-CCP antibodies at RA joint level, confirming the pathogenetic role of these autoantibodies. Moreover, SF determination of anti-CCP, corrected for the total amount of the corresponding immunoglobulin, may be helpful as diagnostic tool in selected cases.

  6. Anti-cyclic citrullinated peptide antibodies – a role in rheumatoid arthritis and the possibility of seroconversion: A focus on abatacept

    Directory of Open Access Journals (Sweden)

    N. V. Chichasova

    2017-01-01

    Full Text Available The detection of anti-cyclic citrullinated peptide (anti-CCP antibodies plays a diagnostic and statistical predictive role in rheumatoid arthritis (RA. The decreased concentration of anti-CCP antibodies or their seroconversion is observed for not all groups of anti-inflammatory drugs. Seropositivity for anti-CCP antibodies is a predictor of the higher efficacy of abatacept (ABC. The possibility of seroconversion of anti-CCP antibodies, like rheumatoid factor, during treatment with ABC is associated with the more pronounced suppression of clinical symptoms of RA activity and progressive joint destruction, with remission achievement in a large proportion of patients.

  7. Acute ingestion of citrulline stimulates nitric oxide synthesis but does not increase blood flow in healthy young and older adults with heart failure.

    Science.gov (United States)

    Kim, Il-Young; Schutzler, Scott E; Schrader, Amy; Spencer, Horace J; Azhar, Gohar; Deutz, Nicolaas E P; Wolfe, Robert R

    2015-12-01

    To determine if age-associated vascular dysfunction in older adults with heart failure (HF) is due to insufficient synthesis of nitric oxide (NO), we performed two separate studies: 1) a kinetic study with a stable isotope tracer method to determine in vivo kinetics of NO metabolism, and 2) a vascular function study using a plethysmography method to determine reactive hyperemic forearm blood flow (RH-FBF) in older and young adults in the fasted state and in response to citrulline ingestion. In the fasted state, NO synthesis (per kg body wt) was ∼ 50% lower in older vs. young adults and was related to a decreased rate of appearance of the NO precursor arginine. Citrulline ingestion (3 g) stimulated de novo arginine synthesis in both older [6.88 ± 0.83 to 35.40 ± 4.90 μmol · kg body wt(-1) · h(-1)] and to a greater extent in young adults (12.02 ± 1.01 to 66.26 ± 4.79 μmol · kg body wt(-1) · h(-1)). NO synthesis rate increased correspondingly in older (0.17 ± 0.01 to 2.12 ± 0.36 μmol · kg body wt(-1) · h(-1)) and to a greater extent in young adults (0.36 ± 0.04 to 3.57 ± 0.47 μmol · kg body wt(-1) · h(-1)). Consistent with the kinetic data, RH-FBF in the fasted state was ∼ 40% reduced in older vs. young adults. However, citrulline ingestion (10 g) failed to increase RH-FBF in either older or young adults. In conclusion, citrulline ingestion improved impaired NO synthesis in older HF adults but not RH-FBF, suggesting that factors other than NO synthesis play a role in the impaired RH-FBF in older HF adults, and/or it may require a longer duration of supplementation to be effective in improving RH-FBF.

  8. Onset of polyarticular juvenile idiopathic arthritis with both anti-cyclic citrullinated peptide antibodies and rheumatoid factor in a 3-year-old girl

    Directory of Open Access Journals (Sweden)

    Yasui Kozo

    2012-12-01

    Full Text Available Abstract This report describes 3 year old girl with the unusual presentation of polyarticular juvenile idiopathic arthritis (JIA with anti-cyclic citrullinated peptide (anti-CCP antibodies and a positive rheumatoid factor (RF. She was initially treated with a nonsteroidal anti-inflammatory drug (NSAID; ibuprofen followed by methotrexate (MTX, 10 mg/m2/week and prednisolone (0.25 mg/kg/day, but these treatments were ineffective. Administration of tocilizumab, a humanized antihuman interleukin-6 receptor monoclonal antibody, promptly improved her clinical manifestations, and she has been in complete remission (DAS28

  9. Mayaro virus infection alters glucose metabolism in cultured cells through activation of the enzyme 6-phosphofructo 1-kinase.

    Science.gov (United States)

    El-Bacha, Tatiana; Menezes, Maíra M T; Azevedo e Silva, Melissa C; Sola-Penna, Mauro; Da Poian, Andrea T

    2004-11-01

    Although it is well established that cellular transformation with tumor virus leads to changes on glucose metabolism, the effects of cell infection by non-transforming virus are far to be completely elucidated. In this study, we report the first evidence that cultured Vero cells infected with the alphavirus Mayaro show several alterations on glucose metabolism. Infected cells presented a two fold increase on glucose consumption, accompanied by an increment in lactate production. This increase in glycolytic flux was also demonstrated by a significant increase on the activity of 6-phosphofructo 1-kinase, one of the regulatory enzymes of glycolysis. Analysis of the kinetic parameters revealed that the regulation of 6-phosphofructo 1-kinase is altered in infected cells, presenting an increase in Vmax along with a decrease in Km for fructose-6-phosphate. Another fact contributing to an increase in enzyme activity was the decrease in ATP levels observed in infected cells. Additionally, the levels of fructose 2,6-bisphosphate, a potent activator of this enzyme, was significantly reduced in infected cells. These observations suggest that the increase in PFK activity may be a compensatory cellular response to the viral-induced metabolic alterations that could lead to an impairment of the glycolytic flux and energy production.

  10. Protein kinase B (PKB/AKT1) formed signaling complexes with mitochondrial proteins and prevented glycolytic energy dysfunction in cultured cardiomyocytes during ischemia-reperfusion injury.

    Science.gov (United States)

    Deng, Wu; Leu, Hsin-Bang; Chen, Yumay; Chen, Yu-Han; Epperson, Christine M; Juang, Charity; Wang, Ping H

    2014-05-01

    Our previous studies showed that insulin stimulated AKT1 translocation into mitochondria and modulated oxidative phosphorylation complex V in cardiac muscle. This raised the possibility that mitochondrial AKT1 may regulate glycolytic oxidative phosphorylation and mitochondrial function in cardiac muscle cells. The aims of this project were to study the effects of mitochondrial AKT1 signaling on cell survival in stressed cardiomyocytes, to define the effect of mitochondrial AKT1 signaling on glycolytic bioenergetics, and to identify mitochondrial targets of AKT1 signaling in cardiomyocytes. Mitochondrial AKT1 signaling played a protective role against apoptosis and necrosis during ischemia-reperfusion stress, suppressed mitochondrial calcium overload, and alleviated mitochondrial membrane depolarization. Activation of AKT1 signaling in mitochondria increased glucose uptake, enhanced respiration efficiency, reduced superoxide generation, and increased ATP production in the cardiomyocytes. Inhibition of mitochondrial AKT attenuated insulin response, indicating that insulin regulation of ATP production required mitochondrial AKT1 signaling. A proteomic approach was used to reveal 15 novel targets of AKT1 signaling in mitochondria, including pyruvate dehydrogenase complex (PDC). We have confirmed and characterized the association of AKT1 and PDC subunits and verified a stimulatory effect of mitochondrial AKT1 on the enzymatic activity of PDC. These findings suggested that AKT1 formed protein complexes with multiple mitochondrial proteins and improved mitochondrial function in stressed cardiomyocytes. The novel AKT1 signaling targets in mitochondria may become a resource for future metabolism research.

  11. Muscle tissue as an endocrine organ: comparative secretome profiling of slow-oxidative and fast-glycolytic rat muscle explants and its variation with exercise.

    Science.gov (United States)

    Roca-Rivada, Arturo; Al-Massadi, Omar; Castelao, Cecilia; Senín, Lucía L; Alonso, Jana; Seoane, Luisa María; García-Caballero, Tomás; Casanueva, Felipe F; Pardo, María

    2012-09-18

    The notion that skeletal muscle is a secretory organ capable to release proteins that can act locally in an autocrine/paracrine manner or even in an endocrine manner to communicate with distant tissues has now been recognized. Under this context, a new paradigm has arisen implicating the muscle in metabolism regulation. Considering the evidences that give exercise a protective role against illnesses associated to physical inactivity, it becomes of especial relevance to characterize muscle secreted proteins. In the present study we show for the first time the secretome characterization and the comparative 2-DE secretome analysis among fast-glycolytic (gastrocnemius) and slow-oxidative (soleus) rat muscle explants and its variation after exercise intervention. We have identified 19 differently secreted proteins when comparing soleus and gastrocnemius secretomes, and 10 in gastrocnemius and 17 in soleus distinctive secreted proteins after 1 week of endurance exercise training. Among identified proteins, DJ-1 was found to be more abundant in fast-glycolytic fiber secretomes. On the contrary, FABP-3 was elevated in slow-oxidative fiber secretomes, although its secretion from gastrocnemius muscle increased in exercised animals. These and other secreted proteins identified in this work may be considered as potential myokines. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Glycolytic-to-oxidative fiber-type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high-fat diet.

    Science.gov (United States)

    Rocchi, Anna; Milioto, Carmelo; Parodi, Sara; Armirotti, Andrea; Borgia, Doriana; Pellegrini, Matteo; Urciuolo, Anna; Molon, Sibilla; Morbidoni, Valeria; Marabita, Manuela; Romanello, Vanina; Gatto, Pamela; Blaauw, Bert; Bonaldo, Paolo; Sambataro, Fabio; Robins, Diane M; Lieberman, Andrew P; Sorarù, Gianni; Vergani, Lodovica; Sandri, Marco; Pennuto, Maria

    2016-07-01

    Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The mechanism by which expansion of polyglutamine in AR causes muscle atrophy is unknown. Here, we investigated pathological pathways underlying muscle atrophy in SBMA knock-in mice and patients. We show that glycolytic muscles were more severely affected than oxidative muscles in SBMA knock-in mice. Muscle atrophy was associated with early-onset, progressive glycolytic-to-oxidative fiber-type switch. Whole genome microarray and untargeted lipidomic analyses revealed enhanced lipid metabolism and impaired glycolysis selectively in muscle. These metabolic changes occurred before denervation and were associated with a concurrent enhancement of mechanistic target of rapamycin (mTOR) signaling, which induced peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC1α) expression. At later stages of disease, we detected mitochondrial membrane depolarization, enhanced transcription factor EB (TFEB) expression and autophagy, and mTOR-induced protein synthesis. Several of these abnormalities were detected in the muscle of SBMA patients. Feeding knock-in mice a high-fat diet (HFD) restored mTOR activation, decreased the expression of PGC1α, TFEB, and genes involved in oxidative metabolism, reduced mitochondrial abnormalities, ameliorated muscle pathology, and extended survival. These findings show early-onset and intrinsic metabolic alterations in SBMA muscle and link lipid/glucose metabolism to pathogenesis. Moreover, our results highlight an HFD regime as a promising approach to support SBMA patients.

  13. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  14. Antibodies to Mutated Citrullinated Vimentin in Rheumatoid Arthritis: Diagnostic Value, Association with Radiological Damage and Axial Skeleton Affection

    Directory of Open Access Journals (Sweden)

    Howaida E. Mansour

    2010-05-01

    Full Text Available Abstract Background: Early definitive diagnosis and effective treatment are mandatory in rheumatoid arthritis (RA as it can halt the disease progression and subsequent joints destruction. Objective: To investigate the diagnostic and prognostic value of anti-mutated citrullinated vimentin (anti-MCV and its correlation with disease activity, peripheral and axial skeleton affection in RA patients. Patients and methods: A total of 123 patients with different rheumatic diseases were enrolled in a prospective-two year study at Ain Shams University hospital: 64 patients with RA and 59 patients with other rheumatic diseases as controls. RA patients were fulfilling the traditional and the new ACR/EULAR diagnostic criteria for RA. They have been followed up for two years. At baseline, all RA patients were subjected to: Clinical assessment of disease activity by taking full histories, general and local examination, measurement of 28 joint count of tender and swollen joints with calculation of disease activity score (DAS-28 for each patient. Complete blood count, erythrocytes sedimentation rate, C-reactive protein and rheumatoid factor titers were performed. Anti-MCV IgG immunoglobulins’ assay was performed at the study endpoint by ELISA. RA patients were then classified into; anti-MCV positive and anti-MCV negative groups for statistical comparison. Plain X-ray was performed on the peripheral joints and scored by the Simple Erosion Narrowing score (SEN-score. Magnetic Resonance Imaging (MRI scans were carried out to 22 RA patients on cervical and lumbosacral regions. Results: Anti-MCV antibodies were found to be of high sensitivity (79.6% and specificity (96.6% in diagnosing RA. The area under the curve was 0.893 at 95% confidence interval (CI, confers an odds ratio of 23.5. Anti-MCV positive RA patients had significantly higher DAS-28 and SEN-scores than anti-MCV negative patients; who were found to have more benign disease with lower incidence of

  15. The role of citrullinated proteins in the pathogenesis of rheumatoid arthritis%蛋白质瓜氨酸化及其在类风湿关节炎中的意义

    Institute of Scientific and Technical Information of China (English)

    钟兵; 方勇飞

    2015-01-01

    类风湿关节炎(rheumatoid arthritis,RA)的发病机制至今尚未阐明。 RA 患者体内发现越来越多的抗瓜氨酸化蛋白抗体(ACPA)提示瓜氨酸化可能参与其发病过程。本文从蛋白质的瓜氨酸化过程、生理功能,ACPA 在 RA 的诊断、预后及发病机制中的作用进行综述,试图更全面地了解蛋白质的瓜氨酸化在 RA 发病各环节中的作用。%The mechanism of rheumatoid arthritis(RA)has not been clarified.More and more anti-citrullinated protein antibod-ies(ACPA)have been found in RA patients ,suggesting that citrullinated proteins may be involved in the pathogenesis of RA .This paper reviews the process of protein citrullination ,physiological function and the role of ACPA in the diagnosis ,prognosis and pathogenesis of RA in order to get a more comprehensive understanding of the role of citrullinated proteins in the pathogenesis of RA .

  16. The Diagnostic Utility of Anti-cyclic Citrullinated Peptide Antibodies, Matrix Metalloproteinase-3, Rheumatoid Factor, Erythrocyte Sedimentation Rate, and C-reactive Protein in Patients with Erosive and Non-erosive Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    O. Shovman

    2005-01-01

    Full Text Available Objective: To compare the diagnostic utility of laboratory variables, including matrix metalloproteinase-3 (MMP-3, anti-cyclic citrullinated peptide (CCP antibodies, rheumatoid factor (RF, erythrocyte sedimentation rate (ESR, and C-reactive protein (CRP in patients with erosive and non-erosive rheumatoid arthritis (RA.

  17. Enzyme kinetics of conjugating enzymes: PAPS sulfotransferase.

    Science.gov (United States)

    James, Margaret O

    2014-01-01

    The sulfotransferase (SULT) enzymes catalyze the formation of sulfate esters or sulfamates from substrates that contain hydroxy or amine groups, utilizing 3'-phosphoadenosyl-5'-phosphosulfate (PAPS) as the donor of the sulfonic group. The rate of product formation depends on the concentrations of PAPS and substrate as well as the sulfotransferase enzyme; thus, if PAPS is held constant while varying substrate concentration (or vice versa), the kinetic constants derived are apparent constants. When studied over a narrow range of substrate concentrations, classic Michaelis-Menten kinetics can be observed with many SULT enzymes and most substrates. Some SULT enzymes exhibit positive or negative cooperativity during conversion of substrate to product, and the kinetics fit the Hill plot. A characteristic feature of most sulfotransferase-catalyzed reactions is that, when studied over a wide range of substrate concentrations, the rate of product formation initially increases as substrate concentration increases, then decreases at high substrate concentrations, i.e., they exhibit substrate inhibition or partial substrate inhibition. This chapter gives an introduction to sulfotransferases, including a historical note, the nomenclature, a description of the function of SULTs with different types of substrates, presentation of examples of enzyme kinetics with SULTs, and a discussion of what is known about mechanisms of substrate inhibition in the sulfotransferases.

  18. Role of glycolytically generated ATP for CaMKII-mediated regulation of intracellular Ca2+ signaling in bovine vascular endothelial cells.

    Science.gov (United States)

    Aromolaran, Ademuyiwa S; Zima, Aleksey V; Blatter, Lothar A

    2007-07-01

    The role of glycolytically generated ATP in Ca(2+)/calmodulin-dependent kinase II (CaMKII)-mediated regulation of intracellular Ca(2+) signaling was examined in cultured calf pulmonary artery endothelial (CPAE) cells. Exposure of cells (extracellular Ca(2+) concentration = 2 mM) to glycolytic inhibitors 2-deoxy-D-glucose (2-DG), pyruvate (pyr) + beta-hydroxybutyrate (beta-HB), or iodoacetic acid (IAA) caused an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)). CaMKII inhibitors (KN-93, W-7) triggered a similar increase of [Ca(2+)](i). The rise of [Ca(2+)](i) was characterized by a transient spike followed by a small sustained plateau of elevated [Ca(2+)](i). In the absence of extracellular Ca(2+) 2-DG caused an increase in [Ca(2+)](i), suggesting that inhibition of glycolysis directly triggered release of Ca(2+) from intracellular endoplasmic reticulum (ER) Ca(2+) stores. The inositol-1,4,5-trisphosphate receptor (IP(3)R) inhibitor 2-aminoethoxydiphenyl borate abolished the KN-93- and 2-DG-induced Ca(2+) response. Ca(2+) release was initiated in peripheral cytoplasmic processes from which activation propagated as a [Ca(2+)](i) wave toward the central region of the cell. Focal application of 2-DG resulted in spatially confined elevations of [Ca(2+)](i). Propagating [Ca(2+)](i) waves were preceded by [Ca(2+)](i) oscillations and small, highly localized elevations of [Ca(2+)](i) (Ca(2+) puffs). Inhibition of glycolysis with 2-DG reduced the KN-93-induced Ca(2+) response, and vice versa during inhibition of CaMKII 2-DG-induced Ca(2+) release was attenuated. Similar results were obtained with pyr + beta-HB and W-7. Furthermore, 2-DG and IAA caused a rapid increase of intracellular Mg(2+) concentration, indicating a concomitant drop of cellular ATP levels. In conclusion, CaMKII exerts a profound inhibition of ER Ca(2+) release in CPAE cells, which is mediated by glycolytically generated ATP, possibly through ATP-dependent phosphorylation of the IP(3)R.

  19. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  20. Enzymes for improved biomass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  1. Incorporation of enzyme concentrations into FBA and identification of optimal metabolic pathways

    Directory of Open Access Journals (Sweden)

    Mukhopadhyay Subhasis

    2008-07-01

    Full Text Available Abstract Background In the present article, we propose a method for determining optimal metabolic pathways in terms of the level of concentration of the enzymes catalyzing various reactions in the entire metabolic network. The method, first of all, generates data on reaction fluxes in a pathway based on steady state condition. A set of constraints is formulated incorporating weighting coefficients corresponding to concentration of enzymes catalyzing reactions in the pathway. Finally, the rate of yield of the target metabolite, starting with a given substrate, is maximized in order to identify an optimal pathway through these weighting coefficients. Results The effectiveness of the present method is demonstrated on two synthetic systems existing in the literature, two pentose phosphate, two glycolytic pathways, core carbon metabolism and a large network of carotenoid biosynthesis pathway of various organisms belonging to different phylogeny. A comparative study with the existing extreme pathway analysis also forms a part of this investigation. Biological relevance and validation of the results are provided. Finally, the impact of the method on metabolic engineering is explained with a few examples. Conclusions The method may be viewed as determining an optimal set of enzymes that is required to get an optimal metabolic pathway. Although it is a simple one, it has been able to identify a carotenoid biosynthesis pathway and the optimal pathway of core carbon metabolic network that is closer to some earlier investigations than that obtained by the extreme pathway analysis. Moreover, the present method has identified correctly optimal pathways for pentose phosphate and glycolytic pathways. It has been mentioned using some examples how the method can suitably be used in the context of metabolic engineering.

  2. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  3. Unhairing with enzymes

    OpenAIRE

    Crispim, A.; Mota, M.

    2003-01-01

    The use of enzymes in the leather industry is increasing and their application is being widened to include operations such as de-greasing, unhairing and other wet-end operations. Enzymes can also be used to assist with recycling leather wastes as well as to avoid pollution. The present work is devoted to illustrate the potential application of enzymes in unhairing without hair destruction. Enzymatic unhairing is based upon the weakening of the epidermis basal layer to which the hair is at...

  4. Smoking, Porphyromonas gingivalis and the immune response to citrullinated autoantigens before the clinical onset of rheumatoid arthritis in a Southern European nested case-control study.

    Science.gov (United States)

    Fisher, Benjamin A; Cartwright, Alison J; Quirke, Anne-Marie; de Pablo, Paola; Romaguera, Dora; Panico, Salvatore; Mattiello, Amalia; Gavrila, Diana; Navarro, Carmen; Sacerdote, Carlotta; Vineis, Paolo; Tumino, Rosario; Lappin, David F; Apatzidou, Danae; Apazidou, Danae; Culshaw, Shauna; Potempa, Jan; Michaud, Dominique S; Riboli, Elio; Venables, Patrick J

    2015-11-04

    Antibodies to citrullinated proteins (ACPA) occur years before RA diagnosis. Porphyromonas gingivalis expresses its own peptidylarginine deiminase (PPAD), and is a proposed aetiological factor for the ACPA response. Smoking is a risk factor for both ACPA-positive RA and periodontitis. We aimed to study the relation of these factors to the risk of RA in a prospective cohort. We performed a nested case-control study by identifying pre-RA cases in four populations from the European Prospective Investigation into Cancer and nutrition, matched with three controls. Data on smoking and other covariates were obtained from baseline questionnaires. Antibodies to CCP2 and citrullinated peptides from α-enolase, fibrinogen, vimentin and PPAD were measured. Antibodies to arginine gingipain (RgpB) were used as a marker for P.gingivalis infection and validated in a separate cohort of healthy controls and subjects with periodontitis. We studied 103 pre-RA cases. RA development was associated with several ACPA specificities, but not with antibodies to citrullinated PPAD peptides. Antibody levels to RgpB and PPAD peptides were higher in smokers but were not associated with risk of RA or with pre-RA autoimmunity. Former but not current smoking was associated with antibodies to α-enolase (OR 4.06; 95 % CI 1.02, 16.2 versus 0.54; 0.09-3.73) and fibrinogen peptides (OR 4.24; 95 % CI 1.2-14.96 versus 0.58; 0.13-2.70), and later development of RA (OR 2.48; 95 % CI 1.27-4.84 versus 1.57; 0.85-2.93), independent of smoking intensity. Smoking remains a risk factor for RA well before the clinical onset of disease. In this cohort, P.gingivalis is not associated with pre-RA autoimmunity or risk of RA in an early phase before disease-onset. Antibodies to PPAD peptides are not an early feature of ACPA ontogeny.

  5. Adenylate-forming enzymes

    Science.gov (United States)

    Schmelz, Stefan; Naismith, James H.

    2012-01-01

    Thioesters, amides and esters are common chemical building blocks in a wide array of natural products. The formation of these bonds can be catalyzed in a variety of ways. For chemists, the use of an activating group is a common strategy and adenylate enzymes are exemplars of this approach. Adenylating enzymes activate the otherwise unreactive carboxylic acid by transforming the normal hydroxyl leaving group into adenosine monophosphate. Recently there have been a number of studies of such enzymes and in this review we suggest a new classification scheme. The review highlights the diversity in enzyme fold, active site architecture and metal coordination that has evolved to catalyze this particular reaction. PMID:19836944

  6. Food and feed enzymes.

    Science.gov (United States)

    Fraatz, Marco Alexander; Rühl, Martin; Zorn, Holger

    2014-01-01

    Humans have benefited from the unique catalytic properties of enzymes, in particular for food production, for thousands of years. Prominent examples include the production of fermented alcoholic beverages, such as beer and wine, as well as bakery and dairy products. The chapter reviews the historic background of the development of modern enzyme technology and provides an overview of the industrial food and feed enzymes currently available on the world market. The chapter highlights enzyme applications for the improvement of resource efficiency, the biopreservation of food, and the treatment of food intolerances. Further topics address the improvement of food safety and food quality.

  7. Microbial amylolytic enzymes.

    Science.gov (United States)

    Vihinen, M; Mäntsälä, P

    1989-01-01

    Starch-degrading, amylolytic enzymes are widely distributed among microbes. Several activities are required to hydrolyze starch to its glucose units. These enzymes include alpha-amylase, beta-amylase, glucoamylase, alpha-glucosidase, pullulan-degrading enzymes, exoacting enzymes yielding alpha-type endproducts, and cyclodextrin glycosyltransferase. Properties of these enzymes vary and are somewhat linked to the environmental circumstances of the producing organisms. Features of the enzymes, their action patterns, physicochemical properties, occurrence, genetics, and results obtained from cloning of the genes are described. Among all the amylolytic enzymes, the genetics of alpha-amylase in Bacillus subtilis are best known. Alpha-Amylase production in B. subtilis is regulated by several genetic elements, many of which have synergistic effects. Genes encoding enzymes from all the amylolytic enzyme groups dealt with here have been cloned, and the sequences have been found to contain some highly conserved regions thought to be essential for their action and/or structure. Glucoamylase appears usually in several forms, which seem to be the results of a variety of mechanisms, including heterogeneous glycosylation, limited proteolysis, multiple modes of mRNA splicing, and the presence of several structural genes.

  8. Pyruvate Oxidoreductases Involved in Glycolytic Anaerobic Metabolism of Polychaetes from the Continental Shelf off Central-South Chile

    Science.gov (United States)

    González, R. R.; Quiñones, R. A.

    2000-10-01

    The presence of low oxygen conditions in extensive areas of the continental shelf off central-south Chile has important effects on the biochemical adaptations of the organisms living in this ecosystem. Polychaetes assemblages cohabit on the shelf with an extensively distributed prokaryotic community made up of giant filamentous sulfur bacteria (mainly Thioploca sp.). The aim of this research was to characterize the pyruvate oxidoreductases enzymes involved in the biochemical adaptation of these benthic polychaetes. Nine polychaete species ( Paraprionospio pinnata, Nephtys ferruginea, Glycera americana, Haploscoloplos sp., Lumbrineris composita, Sigambra bassi, Aricidea pigmentata , Cossura chilensis, and Pectinaria chilensis) were assayed for lactic dehydrogenase (LDH), octopine dehydrogenase (OPDH), strombine dehydrogenase (STRDH) and alanopine dehydrogenase (ALPDH). Each species had a characteristic number of the pyruvate oxidoreductases assayed ranging from 4 in Paraprionospio pinnata to 1 in Pectinaria chilensis . The pyruvate saturation curves obtained for the enzymes from all species analysed, except L. composita, suggest that NADH can be oxidized at different rates depending on the amino acid used in the reaction with pyruvate. Our results indicate that organisms having more that one pyruvate oxidoreductase present a greater metabolic capacity to cope with functional and environmental hypoxia because these enzymes would better regulate the pyruvate consumption rate during the transition period. Thus, the dominance of Paraprionospio pinnata in the study area and its worldwide distribution is consistent with its higher number of pyruvate oxidoreductases with different pyruvate consumption rates involved in anaerobic metabolism. Finally, a positive allometric relationship was found between body size and the specific activity of ALPDH, STRDH, and maximum pyruvate oxidoreductase specific activity. This latter result suggests a positive scaling of the specific

  9. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity.

    Science.gov (United States)

    Hopperton, Kathryn E; Duncan, Robin E; Bazinet, Richard P; Archer, Michael C

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from (14)C-labeled acetate to those supplied exogenously as (14)C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2-3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells.

  10. CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors

    Science.gov (United States)

    Le Floch, Renaud; Chiche, Johanna; Marchiq, Ibtissam; Naiken, Tanesha; Ilc, Karine; Murray, Clare M.; Critchlow, Susan E.; Roux, Danièle; Simon, Marie-Pierre; Pouysségur, Jacques

    2011-01-01

    Malignant tumors exhibit increased dependence on glycolysis, resulting in abundant export of lactic acid, a hypothesized key step in tumorigenesis. Lactic acid is mainly transported by two H+/lactate symporters, MCT1/MCT4, that require the ancillary protein CD147/Basigin for their functionality. First, we showed that blocking MCT1/2 in Ras-transformed fibroblasts with AR-C155858 suppressed lactate export, glycolysis, and tumor growth, whereas ectopic expression of MCT4 in these cells conferred resistance to MCT1/2 inhibition and reestablished tumorigenicty. A mutant-derivative, deficient in respiration (res−) and exclusively relying on glycolysis for energy, displayed low tumorigenicity. These res− cells could develop resistance to MCT1/2 inhibition and became highly tumorigenic by reactivating their endogenous mct4 gene, highlighting that MCT4, the hypoxia-inducible and tumor-associated lactate/H+ symporter, drives tumorigenicity. Second, in the human colon adenocarcinoma cell line (LS174T), we showed that combined silencing of MCT1/MCT4 via inducible shRNA, or silencing of CD147/Basigin alone, significantly reduced glycolytic flux and tumor growth. However, both silencing approaches, which reduced tumor growth, displayed a low level of CD147/Basigin, a multifunctional protumoral protein. To gain insight into CD147/Basigin function, we designed experiments, via zinc finger nuclease-mediated mct4 and basigin knockouts, to uncouple MCTs from Basigin expression. Inhibition of MCT1 in MCT4-null, Basiginhigh cells suppressed tumor growth. Conversely, in Basigin-null cells, in which MCT activity had been maintained, tumorigenicity was not affected. Collectively, these findings highlight that the major protumoral action of CD147/Basigin is to control the energetics of glycolytic tumors via MCT1/MCT4 activity and that blocking lactic acid export provides an efficient anticancer strategy. PMID:21930917

  11. Increased fat mass, decreased myofiber size, and a shift to glycolytic muscle metabolism in adolescent male transgenic mice overexpressing IGFBP-2.

    Science.gov (United States)

    Rehfeldt, Charlotte; Renne, Ulla; Sawitzky, Mandy; Binder, Gerhard; Hoeflich, Andreas

    2010-08-01

    To elucidate the functional role of insulin-like growth factor (IGF)-binding protein-2 (IGFBP-2) for in vivo skeletal muscle growth and function, skeletal muscle cellularity and metabolism, expression of signal molecules, and body growth and composition were studied in a transgenic mouse model overexpressing IGFBP-2. Postnatal growth rate of transgenic mice was reduced from day 21 of age by 6-8% compared with nontransgenic controls. At 10 wk of age body lean protein and moisture percentages were lower, whereas fat percentage was higher in IGFBP-2 transgenic mice. Muscle weights were reduced (-13% on day 30 of age, -14% on day 72), which resulted from slower growth of myofibers in size but not from decreases in myofiber number. The reduction in muscle mass was associated with lower total DNA, RNA, and protein contents as well as greater DNA/RNA and protein/RNA ratios. The percentage of proliferating (Ki-67-positive) nuclei within myofibers was reduced (3.4 vs. 5.8%) in 30-day-old transgenic mice. These changes were accompanied by slight reductions in specific p44/42 MAPK activity (-18% on day 72) and, surprisingly, by increased levels of phosphorylated Akt (Ser(473)) (+25% on day 30, +66% on day 72). The proportion of white glycolytic fibers (55.9 vs. 53.5%) and the activity of lactate dehydrogenase (+8%) were elevated in 72-day-old transgenic mice. Most of the differences observed between transgenic and nontransgenic mice were more pronounced in males. The results suggest that IGFBP-2 significantly inhibits postnatal skeletal myofiber growth by decreasing myogenic proliferation and protein accretion and enhances glycolytic muscle metabolism.

  12. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  13. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  14. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  15. Levels of l-arginine and l-citrulline in patients with erectile dysfunction of different etiology.

    Science.gov (United States)

    Barassi, A; Corsi Romanelli, M M; Pezzilli, R; Damele, C A L; Vaccalluzzo, L; Goi, G; Papini, N; Colpi, G M; Massaccesi, L; Melzi d'Eril, G V

    2017-03-01

    Nitric oxide is a physiologic signal essential to penile erection. l-citrulline (l-Cit) is converted into l-arginine (l-Arg), the precursor from which nitric oxide is generated. The level of l-Arg and l-Cit in the field of male sexual function remains relatively underexplored. The aim of the study was to evaluate the level of serum l-Arg and of l-Cit in a group of patients with erectile dysfunction. Diagnosis and severity of erectile dysfunction was based on the IIEF-5 and its etiology was classified as arteriogenic (A-ED), borderline (BL-ED), and non-arteriogenic (NA-ED) with penile echo-color-Doppler in basal condition and after intracaversous injection of prostaglandin E1. Serum l-Arg and l-Cit concentrations were measured by a cation-exchange chromatography system. l-Arg and l-Cit levels of men with A-ED were compared with those of male with BL-ED and NA-ED. Median level of l-Arg and l-Cit in 122 erectile dysfunction patients (41 A-ED, 23 ED-BL, 58 NA-ED) was 82.7 and 35.4 μmol/L, respectively. l-Arg and l-Cit levels in control patients were not significantly different (p = 0.233 and p = 0.561, respectively) than in total erectile dysfunction patients. l-Arg and l-Cit levels in control patients were significantly higher (p  0.50) was observed in controls and in both BL-ED and NA-ED patients. Patients with severe/complete-erectile dysfunction (IIEF-5 l-Arg or l-Cit level significantly lower (-17%, p L) than those with mild-erectile dysfunction (IIEF-5 = 16-20). l-Arg and l-Cit levels in A-ED were significantly lower (p l-Arg under 82.7 μmol/L or l-Cit under 35.4 μmol/L and in the same population, the median peak systolic velocity values were lower in l-Arg deficient (29 vs. 35; p l-Cit deficient (31 vs. 33, p > 0.3) but without reaching the statistical significance. Our study shows that a significant proportion of erectile dysfunction patients have low l-Arg or l-Cit level and that this condition is more frequent in patients with arteriogenic

  16. Uncoupling of collagen II metabolism in newly diagnosed, untreated rheumatoid arthritis is linked to inflammation and antibodies against cyclic citrullinated peptides

    DEFF Research Database (Denmark)

    Christensen, Anne Friesgaard; Hørslev-Petersen, Kim; Christgau, Stephan;

    2010-01-01

    Objective. To investigate the relationship between markers of collagen 11 synthesis and degradation with disease activity measures, autoantibodies, and radiographic outcomes in a 4-year protocol on patients with early rheumatoid arthritis (RA) who are naive to disease-modifying antirheumatic drugs....... Methods. One hundred sixty patients with newly diagnosed, untreated RA entered the Cyclosporine, Methotrexate, Steroid in RA (CIMESTRA) trial. Disease activity and radiograph status were measured at baseline and 4 years. The N-terminal propeptide of collagen IIA (PIIANP) and the crosslinked C......-telopeptide of collagen II (CTX-II) were quantified at baseline by ELISA. PIIANP was also assayed at 2 and 4 years. Anticyclic citrullinated peptide (anti-CCP) was recorded at baseline. An uncoupling index for cartilage collagen metabolism was calculated from PHANP and CTX-II measurements. Results. PIIANP was low...

  17. Low-field magnetic resonance imaging or combined ultrasonography and anti-cyclic citrullinated peptide antibody improve correct classification of individuals as established rheumatoid arthritis

    DEFF Research Database (Denmark)

    Pedersen, Jens K; Lorenzen, Tove; Ejbjerg, Bo

    2014-01-01

    BACKGROUND: The aim of the present study was to evaluate the accuracy of two approaches using magnetic resonance imaging (MRI) or combined ultrasonography (US) and anti-cyclic citrullinated peptide antibody (ACPA) for diagnosis and classification of individuals with established rheumatoid arthritis...... under Curve for Receiver Operating Characteristics curves (ROC-area: (sensitivity + specificity)/2) were calculated for "current fulfilment of the ACR 1987 criteria" (list format), "adapted ACR 1987 criteria" (list format, substituting IgM rheumatoid factor with ACPA and clinical joint swelling...... and erosions on radiography with synovitis and erosions detected by US on a semi-quantitative scale), and RA MRI scoring System (RAMRIS) scores on low-field MRI in the unilateral hand. RESULTS: For the ACR 1987 criteria the ROC-area was 75% (sensitivity/specificity = 50%/100%) (with "classification...

  18. High levels of anti-cyclic citrullinated peptide autoantibodies are associated with co-occurrence of pulmonary diseases with rheumatoid arthritis.

    Science.gov (United States)

    Aubart, Fleur; Crestani, Bruno; Nicaise-Roland, Pascale; Tubach, Florence; Bollet, Caroline; Dawidowicz, Karen; Quintin, Emilie; Hayem, Gilles; Palazzo, Elisabeth; Meyer, Olivier; Chollet-Martin, Sylvie; Dieudé, Philippe

    2011-06-01

    To investigate whether levels of anti-cyclic citrullinated peptide antibodies (anti-CCP2) in patients with rheumatoid arthritis (RA) are associated with the co-occurrence of lung diseases. A total of 252 RA patients were included in a cross-sectional study. Pulmonary disease was confirmed by high-resolution chest computed tomography scan. Circulating anti-CCP2 were quantified using ELISA. Multivariate logistic regression was conducted to identify independent risk factors for lung disease. Male sex (OR 3.29, 95% CI 1.59-6.80) and high anti-CCP2 levels (OR 1.49, 95% CI 1.25-1.78) were identified as independent risk factors for lung disease in the RA population. High anti-CCP2 levels are associated with lung disease in the RA population.

  19. EPR investigation of gamma-irradiated L-citrulline, α-methyl-DL-serine, 3-fluoro-DL-valine and N-acetyl-L-cysteine

    Science.gov (United States)

    Osmanoğlu, Y. Emre; Sütçü, Kerem; Başkan, M. Halim

    2017-02-01

    The spectroscopic parameters of the paramagnetic species produced in gamma-irradiated L-citrulline, α-methyl-DL-serine, 3-fluoro-DL-valine and N-acetyl-L-cysteine were investigated at room temperature at a dose of 20 kGy by using EPR technique. The paramagnetic species were attributed to NH2CONH(CH2)3ĊNH2COOH, HOCH2ĊCH3COOH and HOĊHCCH3NH2COOH, CH3CH3ĊCHNH2COOH and SHCH2ĊNHCOCH3COOH radicals, respectively. EPR data of the unpaired electron with the environmental protons and 14N nucleus were used to characterize the contributing radicals produced in gamma irradiated compounds. In this paper, the stability of these compounds at room temperature after irradiation was also studied.

  20. Anti-cyclic citrullinated peptide (CCP) antibody in patients with wood-smoke-induced chronic obstructive pulmonary disease (COPD) without rheumatoid arthritis.

    Science.gov (United States)

    Sigari, Naseh; Moghimi, Nasrin; Shahraki, Farhad Saber; Mohammadi, Shilan; Roshani, Daem

    2015-01-01

    Citrullination, a post-translational modification of proteins, is increased in inflammatory processes and is known to occur in smokers. It can induce anti-cyclic citrullinated peptide (CCP) antibodies, the most specific serologic marker for rheumatoid arthritis. Thus far, the incidence of autoimmunity in patients with wood-smoke-induced chronic obstructive pulmonary disease (COPD) resulting in anti-CCP production has not been examined. We hypothesise that anti-CCP antibody level in these patients should be higher than that in healthy subjects. A total of 112 non-rheumatoid arthritis patients, including 56 patients with wood-smoke-induced COPD and 56 patients with tobacco-induced COPD, and 56 healthy non-smoker controls were included. The serum anti-CCP antibody levels were measured and compared between the groups and against smoke exposure and clinical characteristics. The mean anti-CCP antibody levels in wood-smoke-induced COPD group were significantly higher than those in tobacco-induced COPD group (p = 0.03) and controls (p = 0.004). Furthermore, 8 (14.2 %) patients with wood-smoke-induced COPD, 4 (7.14 %) with tobacco-induced COPD and 2 (3.57 %) controls exceeded the conventional cut-off of anti-CCP antibody positivity. No relationship was found between the anti-CCP antibody level and age, gender, duration of disease, Pack-years of smoking, and duration of exposure to wood smoke. Moreover, correlations between anti-CCP antibodies and severity of airflow limitation, CAT scores, mMRC scores of dyspnoea, and GOLD staging of COPD severity were not significant. Wood-smoke-induced COPD could significantly increase the anti-CCP antibody level in non-rheumatoid arthritis patients when compared with that in patients with tobacco-induced COPD and healthy controls.

  1. Greater prevalence of seropositivity for anti-cyclic citrullinated peptide antibody in unaffected first-degree relatives in multicase rheumatoid arthritis-affected families.

    Science.gov (United States)

    Kim, Seong-Kyu; Bae, Jisuk; Lee, Hwajeong; Kim, Ji Hun; Park, Sung-Hoon; Choe, Jung-Yoon

    2013-01-01

    This study determined the prevalence and determinants of seropositivity for rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-CCP) antibody, and anti-mutated citrullinated vimentin (anti-MCV) antibody in unaffected first-degree relatives (FDRs) of rheumatoid arthritis (RA) patients. A total of 337 subjects (135 with RA and 202 FDRs) were enrolled in this case-control study. Serum RF, anti-CCP antibody, and anti-MCV antibody were assayed. Subjects in multicase families (≥ 2 affected FDRs within the same family) were identified. Multivariate logistic regression analysis was used to identify risk factors associated with RA-related autoantibodies. Seropositivity for RF, anti-CCP antibody, or anti-MCV antibody was detected in 14.4%, 5.0%, or 13.4% of unaffected FDRs, respectively. Anti-CCP antibody seropositivity was more prevalent in FDRs in multicase families (17.8%) than in those not in multicase families (1.3%, p autoantibodies were detected in the FDR group (between RF and anti-CCP antibody: r = 0.366, p < 0.0001; between RF and anti-MCV antibody: r = 0.343, p < 0.0001; and between anti-CCP antibody and anti-MCV antibody: r = 0.849, p < 0.0001). After adjustment for age and sex, anti-CCP antibody seropositivity in FDRs was significantly associated with being in a multicase family (odds ratio, 49.8; 95% confidence interval, 5.6 to 441.6). The association between anti-CCP antibody seropositivity in unaffected FDRs and being in a multicase family suggests that genetic and/or environmental factors may increase the risk for RA development in unaffected FDRs.

  2. Arginine methylation and citrullination of splicing factor proline- and glutamine-rich (SFPQ/PSF) regulates its association with mRNA.

    Science.gov (United States)

    Snijders, Ambrosius P; Hautbergue, Guillaume M; Bloom, Alex; Williamson, James C; Minshull, Thomas C; Phillips, Helen L; Mihaylov, Simeon R; Gjerde, Douglas T; Hornby, David P; Wilson, Stuart A; Hurd, Paul J; Dickman, Mark J

    2015-03-01

    Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-binding protein-associated-splicing factor (PSF) and its binding partner non-POU domain-containing octamer-binding protein (NONO/p54nrb), are highly abundant, multifunctional nuclear proteins. However, the exact role of this complex is yet to be determined. Following purification of the endogeneous SFPQ/NONO complex, mass spectrometry analysis identified a wide range of interacting proteins, including those involved in RNA processing, RNA splicing, and transcriptional regulation, consistent with a multifunctional role for SFPQ/NONO. In addition, we have identified several sites of arginine methylation in SFPQ/PSF using mass spectrometry and found that several arginines in the N-terminal domain of SFPQ/PSF are asymmetrically dimethylated. Furthermore, we find that the protein arginine N-methyltransferase, PRMT1, catalyzes this methylation in vitro and that this is antagonized by citrullination of SFPQ. Arginine methylation and citrullination of SFPQ/PSF does not affect complex formation with NONO. However, arginine methylation was shown to increase the association with mRNA in mRNP complexes in mammalian cells. Finally we show that the biochemical properties of the endogenous complex from cell lysates are significantly influenced by the ionic strength during purification. At low ionic strength, the SFPQ/NONO complex forms large heterogeneous protein assemblies or aggregates, preventing the purification of the SFPQ/NONO complex. The ability of the SFPQ/NONO complex to form varying protein assemblies, in conjunction with the effect of post-translational modifications of SFPQ modulating mRNA binding, suggests key roles affecting mRNP dynamics within the cell.

  3. Long-term effects of maternal citrulline supplementation on renal transcriptome prevention of nitric oxide depletion-related programmed hypertension: the impact of gene-nutrient interactions.

    Science.gov (United States)

    Tain, You-Lin; Lee, Chien-Te; Huang, Li-Tung

    2014-12-15

    Maternal malnutrition can elicit gene expression leading to fetal programming. L-citrulline (CIT) can be converted to L-arginine to generate nitric oxide (NO). We examined whether maternal CIT supplementation can prevent N(G)-nitro-L-arginine-methyl ester (L-NAME, NO synthase inhibitor)-induced programmed hypertension and examined their effects on the renal transcriptome in male offspring using next generation RNA sequencing (RNA-Seq) technology. Pregnant Sprague-Dawley rats received L-NAME administration at 60mg/kg/day subcutaneously via osmotic minipump during pregnancy alone or with additional 0.25% L-citrulline solution in drinking water during the whole period of pregnancy and lactation. Male offspring were assigned to three groups: control, L-NAME, and L-NAME + CIT. L-NAME exposure induced hypertension in the 12-week-old offspring, which CIT therapy prevented. Identified differentially expressed genes in L-NAME and CIT-treated offspring kidneys, including Guca2b, Hmox1, Hba2, Hba-a2, Dusp1, and Serpine1 are related to regulation of blood pressure (BP) and oxidative stress. In conclusion, our data suggests that the beneficial effects of CIT supplementation are attributed to alterations in expression levels of genes related to BP control and oxidative stress. Our results suggest that early nutritional intervention by CIT has long-term impact on the renal transcriptome to prevent NO depletion-related programmed hypertension. However, our RNA-Seq results might be a secondary phenomenon. The implications of epigenetic regulation at an early stage of programming deserve further clarification.

  4. Cotton cellulose: enzyme adsorption and enzymic hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Beltrame, P.L.; Carniti, P.; Focher, B.; Marzetti, A.; Cattaneo, M.

    1982-01-01

    The adsorption of a crude cellulase complex from Trichoderma viride on variously pretreated cotton cellulose samples was studied in the framework of the Langmuir approach at 2-8 degrees. The saturation amount of adsorbed enzyme was related to the susceptibility of the substrates to hydrolysis. In every case the adsorption process was faster by 2-3 orders of magnitude than the hydrolysis step to give end products. For ZnCl/sub 2/-treated cotton cellulose the Langmuir parameters correlated fairly well with the value of the Michaelis constant, measured for its enzymic hydrolysis, and the adsorptive complex was indistinguishable from the complex of the Michaelis-Menten model for the hydrolysis.

  5. The EBI enzyme portal.

    Science.gov (United States)

    Alcántara, Rafael; Onwubiko, Joseph; Cao, Hong; Matos, Paula de; Cham, Jennifer A; Jacobsen, Jules; Holliday, Gemma L; Fischer, Julia D; Rahman, Syed Asad; Jassal, Bijay; Goujon, Mikael; Rowland, Francis; Velankar, Sameer; López, Rodrigo; Overington, John P; Kleywegt, Gerard J; Hermjakob, Henning; O'Donovan, Claire; Martín, María Jesús; Thornton, Janet M; Steinbeck, Christoph

    2013-01-01

    The availability of comprehensive information about enzymes plays an important role in answering questions relevant to interdisciplinary fields such as biochemistry, enzymology, biofuels, bioengineering and drug discovery. At the EMBL European Bioinformatics Institute, we have developed an enzyme portal (http://www.ebi.ac.uk/enzymeportal) to provide this wealth of information on enzymes from multiple in-house resources addressing particular data classes: protein sequence and structure, reactions, pathways and small molecules. The fact that these data reside in separate databases makes information discovery cumbersome. The main goal of the portal is to simplify this process for end users.

  6. Enzyme molecules as nanomotors.

    Science.gov (United States)

    Sengupta, Samudra; Dey, Krishna K; Muddana, Hari S; Tabouillot, Tristan; Ibele, Michael E; Butler, Peter J; Sen, Ayusman

    2013-01-30

    Using fluorescence correlation spectroscopy, we show that the diffusive movements of catalase enzyme molecules increase in the presence of the substrate, hydrogen peroxide, in a concentration-dependent manner. Employing a microfluidic device to generate a substrate concentration gradient, we show that both catalase and urease enzyme molecules spread toward areas of higher substrate concentration, a form of chemotaxis at the molecular scale. Using glucose oxidase and glucose to generate a hydrogen peroxide gradient, we induce the migration of catalase toward glucose oxidase, thereby showing that chemically interconnected enzymes can be drawn together.

  7. Testing biochemistry revisited: how in vivo metabolism can be understood from in vitro enzyme kinetics.

    Directory of Open Access Journals (Sweden)

    Karen van Eunen

    Full Text Available A decade ago, a team of biochemists including two of us, modeled yeast glycolysis and showed that one of the most studied biochemical pathways could not be quite understood in terms of the kinetic properties of the constituent enzymes as measured in cell extract. Moreover, when the same model was later applied to different experimental steady-state conditions, it often exhibited unrestrained metabolite accumulation.Here we resolve this issue by showing that the results of such ab initio modeling are improved substantially by (i including appropriate allosteric regulation and (ii measuring the enzyme kinetic parameters under conditions that resemble the intracellular environment. The following modifications proved crucial: (i implementation of allosteric regulation of hexokinase and pyruvate kinase, (ii implementation of V(max values measured under conditions that resembled the yeast cytosol, and (iii redetermination of the kinetic parameters of glyceraldehyde-3-phosphate dehydrogenase under physiological conditions.Model predictions and experiments were compared under five different conditions of yeast growth and starvation. When either the original model was used (which lacked important allosteric regulation, or the enzyme parameters were measured under conditions that were, as usual, optimal for high enzyme activity, fructose 1,6-bisphosphate and some other glycolytic intermediates tended to accumulate to unrealistically high concentrations. Combining all adjustments yielded an accurate correspondence between model and experiments for all five steady-state and dynamic conditions. This enhances our understanding of in vivo metabolism in terms of in vitro biochemistry.

  8. Quantitative Site-Specific Phosphoproteomics of Trichoderma reesei Signaling Pathways upon Induction of Hydrolytic Enzyme Production.

    Science.gov (United States)

    Nguyen, Elizabeth V; Imanishi, Susumu Y; Haapaniemi, Pekka; Yadav, Avinash; Saloheimo, Markku; Corthals, Garry L; Pakula, Tiina M

    2016-02-01

    The filamentous fungus Trichoderma reesei is used for industrial production of secreted enzymes including carbohydrate active enzymes, such as cellulases and hemicellulases. The production of many of these enzymes by T. reesei is influenced by the carbon source it grows on, where the regulation system controlling hydrolase genes involves various signaling pathways. T. reesei was cultivated in the presence of sorbitol, a carbon source that does not induce the production of cellulases and hemicellulases, and then exposed to either sophorose or spent-grain extract, which are efficient inducers of the enzyme production. Specific changes at phosphorylation sites were investigated in relation to the production of cellulases and hemicellulases using an MS-based framework. Proteome-wide phosphorylation following carbon source exchange was investigated in the early stages of induction: 0, 2, 5, and 10 min. The workflow involved sequential trypsin digestion, TiO2 enrichment, and MS analysis using a Q Exactive mass spectrometer. We report on the identification and quantitation of 1721 phosphorylation sites. Investigation of the data revealed a complex signaling network activated upon induction involving components related to light-mediated cellulase induction, osmoregulation, and carbon sensing. Changes in protein phosphorylation were detected in the glycolytic pathway, suggesting an inhibition of glucose catabolism at 10 min after the addition of sophorose and as early as 2 min after the addition of spent-grain extract. Differential phosphorylation of factors related to carbon storage, intracellular trafficking, cytoskeleton, and cellulase gene regulation were also observed.

  9. Antibacterial enzymes from the functional screening of metagenomic libraries hosted in Ralstonia metallidurans.

    Science.gov (United States)

    Iqbal, Hala A; Craig, Jeffrey W; Brady, Sean F

    2014-05-01

    Phenotype-based screening of bacterial metagenomic libraries provides an avenue for the discovery of novel genes, enzymes, and metabolites that have a variety of potential clinical and industrial uses. Here, we report the identification of a functionally diverse collection of antibacterially active enzymes from the phenotypic screening of 700 000 cosmid clones prepared from Arizona soil DNA and hosted in Ralstonia metallidurans. Environmental DNA clones surrounded by zones of growth inhibition in a bacterial overlay assay were found, through bioinformatics and functional analyses, to encode enzymes with predicted peptidase, lipase, and glycolytic activities conferring antibiosis. The antibacterial activities observed in our R. metallidurans-based assay could not be replicated with the same clones in screens using Escherichia coli as a heterologous host, suggesting that the large-scale screening of metagenomic libraries for antibiosis using phylogenetically diverse hosts should be a productive strategy for identifying enzymes with functionally diverse antibacterial activities. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Enzymes in Analytical Chemistry.

    Science.gov (United States)

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  11. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.J.; Brand, J.C.

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  12. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    . In this thesis, separations using crossflow elecro-membrane filtration (EMF) of amino acids, bovine serum albumin (BSA) and industrial enzymes from Novozymes were performed. The main objective of this study was to investigate the technological feasibility of EMF in the application of industrial enzyme...... fractionation, such as removal of a side activity from the main enzyme activity. As a proof-of-concept, amino acids were used as model solution to test the feasibility of EMF in the application of amphoteric molecule separation. A single amino acid was used to illustrate the effect of an electric field...... on the separation performance were very small in the investigated range. The mass transport of each enzyme can be well explained by the Extended-Nernst-Planck equation. Better separation was observed at lower feed concentration, higher solution pH in the investigated range and with a polysulfone (PS) MF membrane...

  13. Indicators: Sediment Enzymes

    Science.gov (United States)

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  14. Starch Biorefinery Enzymes.

    Science.gov (United States)

    Läufer, Albrecht

    2017-03-07

    Nature uses enzymes to build and convert biomass; mankind uses the same enzymes and produces them on a large scale to make optimum use of biomass in biorefineries. Bacterial α-amylases and fungal glucoamylases have been the workhorses of starch biorefineries for many decades. Pullulanases were introduced in the 1980s. Proteases, cellulases, hemicellulases, and phytases have been on the market for a few years as process aids, improving yields, performance, and costs. Detailed studies of the complex chemical structures of biomass and of the physicochemical limitations of industrial biorefineries have led enzyme developers to produce novel tailor-made solutions for improving yield and profitability in the industry. This chapter reviews the development of enzyme applications in the major starch biorefining processes.

  15. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    . In this thesis, separations using crossflow elecro-membrane filtration (EMF) of amino acids, bovine serum albumin (BSA) and industrial enzymes from Novozymes were performed. The main objective of this study was to investigate the technological feasibility of EMF in the application of industrial enzyme...... fractionation, such as removal of a side activity from the main enzyme activity. As a proof-of-concept, amino acids were used as model solution to test the feasibility of EMF in the application of amphoteric molecule separation. A single amino acid was used to illustrate the effect of an electric field...... on the separation performance were very small in the investigated range. The mass transport of each enzyme can be well explained by the Extended-Nernst-Planck equation. Better separation was observed at lower feed concentration, higher solution pH in the investigated range and with a polysulfone (PS) MF membrane...

  16. RNA-modifying enzymes.

    Science.gov (United States)

    Ferré-D'Amaré, Adrian R

    2003-02-01

    A bewildering number of post-transcriptional modifications are introduced into cellular RNAs by enzymes that are often conserved among archaea, bacteria and eukaryotes. The modifications range from those with well-understood functions, such as tRNA aminoacylation, to widespread but more mysterious ones, such as pseudouridylation. Recent structure determinations have included two types of RNA nucleobase modifying enzyme: pseudouridine synthases and tRNA guanine transglycosylases.

  17. Overproduction of ligninolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  18. Diagnosis and epidemiology of red blood cell enzyme disorders

    Directory of Open Access Journals (Sweden)

    Richard Van Wijk

    2013-03-01

    Full Text Available The red blood cell possess an active metabolic machinery that provides the cell with energy to pump ions against electrochemical gradients, to maintain its shape, to keep hemoglobin iron in the reduced (ferrous form, and to maintain enzyme and hemoglobin sulfhydryl groups. The main source of metabolic energy comes from glucose. Glucose is metabolized through the glycolytic pathway and through the hexose monophosphate shunt. Glycolysis catabolizes glucose to pyruvate and lactate, which represent the end products of glucose metabolism in the erythrocyte. Adenosine diphosphate (ADP is phosphorylated to adenosine triphosphate (ATP, and nicotinamide adenine dinucleotide (NAD+ is reduced to NADH in glycolysis. 2,3- Bisphosphoglycerate, an important regulator of the oxygen affinity of hemoglobin, is generated during glycolysis by the Rapoport-Luebering shunt. The hexose monophosphate shunt oxidizes glucose-6-phosphate, reducing NADP+ to reduced nicotinamide adenine dinucleotide phosphate (NADPH. The red cell lacks the capacity for de novo purine synthesis but has a salvage pathway that permits synthesis of purine nucleotides from purine bases...

  19. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hopperton, Kathryn E., E-mail: kathryn.hopperton@mail.utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Duncan, Robin E., E-mail: robin.duncan@uwaterloo.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Bazinet, Richard P., E-mail: richard.bazinet@utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Archer, Michael C., E-mail: m.archer@utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada)

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from {sup 14}C-labeled acetate to those supplied exogenously as {sup 14}C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare

  20. Detection of anti-cyclic citrullinated peptide antibodies in patients with rheumatoid arthritis: the clinical significance%抗环瓜氨酸抗体检测在类风湿关节炎中的临床意义

    Institute of Scientific and Technical Information of China (English)

    殷健; 李婷; 包军; 徐沪济

    2011-01-01

    类风湿关节炎( rheumatoid arthritis,RA)是一种主要累及全身多关节的自身免疫性疾病.目前RA仍具有很高的关节致残率和病死率.早期诊断并进行积极治疗可有效减少关节畸形的可能.近年发现的抗瓜氨酸抗体( anti-citrullinated peptide antibodies,ACPA)可在关节破坏发生前即表现出阳性,该抗体与经典的类风湿因子(rheumatoid factor,RF)相比,在RA的诊断中具有相似的敏感性,但具有更高的特异性.研究发现抗环瓜氨酸抗体(anti-cyclic citrullinated peptide antibodies)在RA的早期诊断、预后判断等方面都有重要意义,并有流行病学证据显示其可能在RA的发病中扮演重要角色.%Rheumatoid arthritis (RA) is an autoimmune disease involving multiple joints, and currently it still leads to high disability rate of the joints and high mortality. Early diagnosis and treatment can effectively reduce joint deformities. The recently discovered anti-citrullinated peptide antibodiesC ACPA) can be detected before damage to the joints occurs. Compared with classical rheumatoid factor (RF) ACPA has higher specificity and similar sensitivity in diagnosing RA. Some studies have showned that anti-cyclic citrullinated peptide antibodies play an important role in the early diagnosis of RA and prediction of prognosis; epidemiological evidences also show that ACPA plays an important role on the pathogenesis of RA.

  1. Random-walk enzymes.

    Science.gov (United States)

    Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  2. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  3. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-01-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  4. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...... for efficient hydrolysis, enzyme stability, and the detrimental interaction between enzyme and lignin. This review provides a comprehensive overview of the various methods for enzyme recovery and recycling, for example recycling of free enzymes, readsorption to fresh material, recycling of solids, membrane...

  5. Antioxidant α-tocopherol checks lymphoma promotion via regulation of expression of protein kinase C-α and c-Myc genes and glycolytic metabolism.

    Science.gov (United States)

    Sharma, Renu; Vinayak, Manjula

    2012-06-01

    Overproduction of reactive oxygen species (ROS) due to environmental challenge or metabolic imbalance leads to oxidative stress, causing overactivation of a number of oncogenes that promote cancer development. Therefore, antioxidants should be able to check cancer growth by modulating oncogene activity. The requirement of high energy during unlimited cell proliferation is fulfilled by the switching of cancerous cells to a fast glycolytic pathway bypassing the oxygen dependent respiratory pathway. Almost all cancers exhibit a high expression of lactate dehydrogenase A (LDH-A) to ensure a high energy supply. The present study focused on modulating redox-sensitive oncogenes such as protein kinase C (PKC) and c-Myc by treatment of lymphoma bearing mice with the antioxidant α-tocopherol, the most active component of vitamin E. Further, the impact of α-tocopherol on LDH activity was tested. The results showed down-regulation of expression of stress-activated genes PKC-α, c-Myc and LDH-A by α-tocopherol in cancerous mice. α-Tocopherol contributes to the check of cell proliferation by decreasing the activity of LDH-A.

  6. Entropy and Enzyme Catalysis.

    Science.gov (United States)

    Åqvist, Johan; Kazemi, Masoud; Isaksen, Geir Villy; Brandsdal, Bjørn Olav

    2017-02-21

    The role played by entropy for the enormous rate enhancement achieved by enzymes has been debated for many decades. There are, for example, several confirmed cases where the activation free energy is reduced by around 10 kcal/mol due to entropic effects, corresponding to a rate enhancement of ∼10(7) compared to the uncatalyzed reaction. However, despite substantial efforts from both the experimental and theoretical side, no real consensus has been reached regarding the origin of such large entropic contributions to enzyme catalysis. Another remarkable instance of entropic effects is found in enzymes that are adapted by evolution to work at low temperatures, near the freezing point of water. These cold-adapted enzymes invariably show a more negative entropy and a lower enthalpy of activation than their mesophilic orthologs, which counteracts the exponential damping of reaction rates at lower temperature. The structural origin of this universal phenomenon has, however, remained elusive. The basic problem with connecting macroscopic thermodynamic quantities, such as activation entropy and enthalpy derived from Arrhenius plots, to the 3D protein structure is that the underlying detailed (microscopic) energetics is essentially inaccessible to experiment. Moreover, attempts to calculate entropy contributions by computer simulations have mostly focused only on substrate entropies, which do not provide the full picture. We have recently devised a new approach for accessing thermodynamic activation parameters of both enzyme and solution reactions from computer simulations, which turns out to be very successful. This method is analogous to the experimental Arrhenius plots and directly evaluates the temperature dependence of calculated reaction free energy profiles. Hence, by extensive molecular dynamics simulations and calculations of up to thousands of independent free energy profiles, we are able to extract activation parameters with sufficient precision for making

  7. Angiotensin-converting enzyme

    DEFF Research Database (Denmark)

    Sørensen, P G; Rømer, F K; Cortes, D

    1984-01-01

    In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical or radiolog......In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical...

  8. Increased biomass yield of Lactococcus lactis by reduced overconsumption of amino acids and increased catalytic activities of enzymes.

    Directory of Open Access Journals (Sweden)

    Kaarel Adamberg

    Full Text Available Steady state cultivation and multidimensional data analysis (metabolic fluxes, absolute proteome, and transcriptome are used to identify parameters that control the increase in biomass yield of Lactococcus lactis from 0.10 to 0.12 C-mol C-mol(-1 with an increase in specific growth rate by 5 times from 0.1 to 0.5 h(-1. Reorganization of amino acid consumption was expressed by the inactivation of the arginine deiminase pathway at a specific growth rate of 0.35 h(-1 followed by reduced over-consumption of pyruvate directed amino acids (asparagine, serine, threonine, alanine and cysteine until almost all consumed amino acids were used only for protein synthesis at maximal specific growth rate. This balanced growth was characterized by a high glycolytic flux carrying up to 87% of the carbon flow and only amino acids that relate to nucleotide synthesis (glutamine, serine and asparagine were consumed in higher amounts than required for cellular protein synthesis. Changes in the proteome were minor (mainly increase in the translation apparatus. Instead, the apparent catalytic activities of enzymes and ribosomes increased by 3.5 times (0.1 vs 0.5 h(-1. The apparent catalytic activities of glycolytic enzymes and ribosomal proteins were seen to follow this regulation pattern while those of enzymes involved in nucleotide metabolism increased more than the specific growth rate (over 5.5 times. Nucleotide synthesis formed the most abundant biomonomer synthetic pathway in the cells with an expenditure of 6% from the total ATP required for biosynthesis. Due to the increase in apparent catalytic activity, ribosome translation was more efficient at higher growth rates as evidenced by a decrease of protein to mRNA ratios. All these effects resulted in a 30% decrease of calculated ATP spilling (0.1 vs 0.5 h(-1. Our results show that bioprocesses can be made more efficient (using a balanced metabolism by varying the growth conditions.

  9. Novel ketone body therapy for managing Alzheimer's disease: An Editorial Highlight for Effects of a dietary ketone ester on hippocampal glycolytic and tricarboxylic acid cycle intermediates and amino acids in a 3xTgAD mouse model of Alzheimer's disease.

    Science.gov (United States)

    Puchowicz, Michelle A; Seyfried, Thomas N

    2017-03-15

    Read the highlighted article 'Effects of a dietary ketone ester on hippocampal glycolytic and tricarboxylic acid cycle intermediates and amino acids in a 3xTgAD mouse model of Alzheimer's disease' on doi: 10.1111/jnc.13958.

  10. Valor crítico da citrulina para as complicações do enxerto no transplante de intestino Critical value of citrulline for complications of intestinal transplant graft

    Directory of Open Access Journals (Sweden)

    André Ibrahim David

    2008-10-01

    Full Text Available OBJETIVO: Analisar, numa ampla amostra, o valor crítico da citrulina que confirma a presença das principais complicações do enxerto: rejeição e infecção. MÉTODOS: Foram coletadas 2135 amostras de citrulina sérica, na forma de gota de sangue seca, de 57 doentes submetidos a transplante de intestino/multivisceral no Jackson Memorial Hospital na Universidade de Miami, de março de 2004 a abril de 2006. Todas as amostras são do pós-operatório três meses em diante, passada a conhecida curva de elevação da citrulina após a recuperação das lesões causadas pela isquemia e reperfusão do pós-transplante. RESULTADOS: Utilizando um valor limite menor que 13 µmoles/L, a sensibilidade da citrulina foi de 96,4% para detectar rejeicão celular aguda (RCA moderada ou grave. A especificidade para as complicações mais freqüentes, rejeição e infecção foi de 54%-74% nas crianças e 83%-88% nos adultos, e o valor preditivo negativo (VPN foi > 99%. CONCLUSÃO: A citrulina pode ser utilizada como método não-invasivo para avaliar a evolução do enxerto intestinal após três me