WorldWideScience

Sample records for citrobacter rodentium genome

  1. Citrobacter rodentium is an unstable pathogen showing evidence of significant genomic flux.

    Directory of Open Access Journals (Sweden)

    Nicola K Petty

    2011-04-01

    Full Text Available Citrobacter rodentium is a natural mouse pathogen that causes attaching and effacing (A/E lesions. It shares a common virulence strategy with the clinically significant human A/E pathogens enteropathogenic E. coli (EPEC and enterohaemorrhagic E. coli (EHEC and is widely used to model this route of pathogenesis. We previously reported the complete genome sequence of C. rodentium ICC168, where we found that the genome displayed many characteristics of a newly evolved pathogen. In this study, through PFGE, sequencing of isolates showing variation, whole genome transcriptome analysis and examination of the mobile genetic elements, we found that, consistent with our previous hypothesis, the genome of C. rodentium is unstable as a result of repeat-mediated, large-scale genome recombination and because of active transposition of mobile genetic elements such as the prophages. We sequenced an additional C. rodentium strain, EX-33, to reveal that the reference strain ICC168 is representative of the species and that most of the inactivating mutations were common to both isolates and likely to have occurred early on in the evolution of this pathogen. We draw parallels with the evolution of other bacterial pathogens and conclude that C. rodentium is a recently evolved pathogen that may have emerged alongside the development of inbred mice as a model for human disease.

  2. In Vivo Bioluminescence Imaging of the Murine Pathogen Citrobacter rodentium

    OpenAIRE

    Wiles, Siouxsie; Pickard, Karen M.; Peng, Katian; MacDonald, Thomas T.; Frankel, Gad

    2006-01-01

    Citrobacter rodentium is a natural mouse pathogen related to enteropathogenic and enterohemorrhagic Escherichia coli. We have previously utilized bioluminescence imaging (BLI) to determine the in vivo colonization dynamics of C. rodentium. However, due to the oxygen requirement of the bioluminescence system and the colonic localization of C. rodentium, in vivo localization studies were performed using harvested organs. Here, we report the detection of bioluminescent C. rodentium and commensal...

  3. 4D Multimodality Imaging of Citrobacter rodentium Infections in Mice

    OpenAIRE

    Collins, James William; Meganck, Jeffrey A.; Kuo, Chaincy; Francis, Kevin P.; Frankel, Gad

    2013-01-01

    This protocol outlines the steps required to longitudinally monitor a bioluminescent bacterial infection using composite 3D diffuse light imaging tomography with integrated μCT (DLIT-μCT) and the subsequent use of this data to generate a four dimensional (4D) movie of the infection cycle. To develop the 4D infection movies and to validate the DLIT-μCT imaging for bacterial infection studies using an IVIS Spectrum CT, we used infection with bioluminescent C. rodentium, which causes self-limiti...

  4. Rac2-deficiency leads to exacerbated and protracted colitis in response to Citrobacter rodentium infection.

    Science.gov (United States)

    Fattouh, Ramzi; Guo, Cong-Hui; Lam, Grace Y; Gareau, Melanie G; Ngan, Bo-Yee; Glogauer, Michael; Muise, Aleixo M; Brumell, John H

    2013-01-01

    Recent genetic-based studies have implicated a number of immune-related genes in the pathogenesis of inflammatory bowel disease (IBD). Our recent genetic studies showed that RAC2 is associated with human IBD; however, its role in disease pathogenesis is unclear. Given Rac2's importance in various fundamental immune cell processes, we investigated whether a defect in Rac2 may impair host immune responses in the intestine and promote disease in the context of an infection-based (Citrobacter rodentium) model of colitis. In response to infection, Rac2(-/-) mice showed i) worsened clinical symptoms (days 13-18), ii) increased crypt hyperplasia at days 11 and 22 (a time when crypt hyperplasia was largely resolved in wild-type mice; WT), and iii) marked mononuclear cell infiltration characterized by higher numbers of T (CD3(+)) cells (day 22), compared to WT-infected mice. Moreover, splenocytes harvested from infected Rac2(-/-) mice and stimulated in vitro with C. rodentium lysate produced considerably higher levels of interferon-γ and interleukin-17A. The augmented responses observed in Rac2(-/-) mice did not appear to stem from Rac2's role in NADPH oxidase-driven reactive oxygen species production as no differences in crypt hyperplasia, nor inflammation, were observed in infected NOX2(-/-) mice compared to WT. Collectively, our findings demonstrate that Rac2(-/-) mice develop more severe disease when subjected to a C. rodentium-induced model of infectious colitis, and suggest that impaired Rac2 function may promote the development of IBD in humans. PMID:23613889

  5. Rac2-deficiency leads to exacerbated and protracted colitis in response to Citrobacter rodentium infection.

    Directory of Open Access Journals (Sweden)

    Ramzi Fattouh

    Full Text Available Recent genetic-based studies have implicated a number of immune-related genes in the pathogenesis of inflammatory bowel disease (IBD. Our recent genetic studies showed that RAC2 is associated with human IBD; however, its role in disease pathogenesis is unclear. Given Rac2's importance in various fundamental immune cell processes, we investigated whether a defect in Rac2 may impair host immune responses in the intestine and promote disease in the context of an infection-based (Citrobacter rodentium model of colitis. In response to infection, Rac2(-/- mice showed i worsened clinical symptoms (days 13-18, ii increased crypt hyperplasia at days 11 and 22 (a time when crypt hyperplasia was largely resolved in wild-type mice; WT, and iii marked mononuclear cell infiltration characterized by higher numbers of T (CD3(+ cells (day 22, compared to WT-infected mice. Moreover, splenocytes harvested from infected Rac2(-/- mice and stimulated in vitro with C. rodentium lysate produced considerably higher levels of interferon-γ and interleukin-17A. The augmented responses observed in Rac2(-/- mice did not appear to stem from Rac2's role in NADPH oxidase-driven reactive oxygen species production as no differences in crypt hyperplasia, nor inflammation, were observed in infected NOX2(-/- mice compared to WT. Collectively, our findings demonstrate that Rac2(-/- mice develop more severe disease when subjected to a C. rodentium-induced model of infectious colitis, and suggest that impaired Rac2 function may promote the development of IBD in humans.

  6. Dynamic changes in mucus thickness and ion secretion during Citrobacter rodentium infection and clearance.

    Directory of Open Access Journals (Sweden)

    Jenny K Gustafsson

    Full Text Available Citrobacter rodentium is an attaching and effacing pathogen used as a murine model for enteropathogenic Escherichia coli. The mucus layers are a complex matrix of molecules, and mucus swelling, hydration and permeability are affected by many factors, including ion composition. Here, we used the C. rodentium model to investigate mucus dynamics during infection. By measuring the mucus layer thickness in tissue explants during infection, we demonstrated that the thickness changes dynamically during the course of infection and that its thickest stage coincides with the start of a decrease of bacterial density at day 14 after infection. Although quantitative PCR analysis demonstrated that mucin mRNA increases during early infection, the increased mucus layer thickness late in infection was not explained by increased mRNA levels. Proteomic analysis of mucus did not demonstrate the appearance of additional mucins, but revealed an increased number of proteins involved in defense responses. Ussing chamber-based electrical measurements demonstrated that ion secretion was dynamically altered during the infection phases. Furthermore, the bicarbonate ion channel Bestrophin-2 mRNA nominally increased, whereas the Cftr mRNA decreased during the late infection clearance phase. Microscopy of Muc2 immunostained tissues suggested that the inner striated mucus layer present in the healthy colon was scarce during the time point of most severe infection (10 days post infection, but then expanded, albeit with a less structured appearance, during the expulsion phase. Together with previously published literature, the data implies a model for clearance where a change in secretion allows reformation of the mucus layer, displacing the pathogen to the outer mucus layer, where it is then outcompeted by the returning commensal flora. In conclusion, mucus and ion secretion are dynamically altered during the C. rodentium infection cycle.

  7. A balanced IL-1β activity is required for host response to Citrobacter rodentium infection.

    Directory of Open Access Journals (Sweden)

    Misagh Alipour

    Full Text Available Microbial sensing plays essential roles in the innate immune response to pathogens. In particular, NLRP3 forms a multiprotein inflammasome complex responsible for the maturation of interleukin (IL-1β. Our aim was to delineate the role of the NLRP3 inflammasome in macrophages, and the contribution of IL-1β to the host defense against Citrobacter rodentium acute infection in mice. Nlrp3(-/- and background C57BL/6 (WT mice were infected by orogastric gavage, received IL-1β (0.5 µg/mouse; ip on 0, 2, and 4 days post-infection (DPI, and assessed on 6 and 10 DPI. Infected Nlrp3(-/- mice developed severe colitis; IL-1β treatments reduced colonization, abrogated dissemination of bacteria to mesenteric lymph nodes, and protected epithelial integrity of infected Nlrp3(-/- mice. In contrast, IL-1β treatments of WT mice had an opposite effect with increased penetration of bacteria and barrier disruption. Microscopy showed reduced damage in Nlrp3(-/- mice, and increased severity of disease in WT mice with IL-1β treatments, in particular on 10 DPI. Secretion of some pro-inflammatory plasma cytokines was dissipated in Nlrp3(-/- compared to WT mice. IL-1β treatments elevated macrophage infiltration into infected crypts in Nlrp3(-/- mice, suggesting that IL-1β may improve macrophage function, as exogenous administration of IL-1β increased phagocytosis of C. rodentium by peritoneal Nlrp3(-/- macrophages in vitro. As well, the exogenous administration of IL-1β to WT peritoneal macrophages damaged the epithelial barrier of C. rodentium-infected polarized CMT-93 cells. Treatment of Nlrp3(-/- mice with IL-1β seems to confer protection against C. rodentium infection by reducing colonization, protecting epithelial integrity, and improving macrophage activity, while extraneous IL-1β appeared to be detrimental to WT mice. Together, these findings highlight the importance of balanced cytokine responses as IL-1β improved bacterial clearance in Nlrp3(-/- mice

  8. Effect of probiotics Lactobacillus acidophilus on Citrobacter rodentium colitis: the role of dendritic cells.

    Science.gov (United States)

    Chen, Chien-Chang; Chiu, Cheng-Hsun; Lin, Tzou-Yien; Shi, Hai Ning; Walker, W Allan

    2009-02-01

    Modulation of the intestinal immune response early in life by administration of probiotic bacteria may be an effective strategy for preventing or attenuating infectious diarrhea. We preinoculated the mice early in life with the probiotic bacteria Lactobacillus acidophilus NCFM (La) at age 2 wk. Dendritic cells (DCs) were collected and purified from mesenteric lymph nodes (MLN) and spleens of the BalbC/ByJ mice. DC isolation and adoptive transfer was used to examine the function of probiotics. We demonstrated that when mice were adoptively transferred with La-primed DCs (t-LaDC) instead of oral consumption with La, there was a similar effect on fecal bacteria counts, IgA levels, and colonic histopathology, as well as cytokine levels in MLN when there was intestinal bacterial infection. The above findings suggest that DCs play a key role in probiotics attenuating Citrobacter rodentium (Cr) colitis. Moreover, the location of La-primed DC hints that there is interaction of DCs and T cells in the digestive system of the host. Up-regulated expression of a surface marker on DCs indicated that inoculation with probiotics will stimulate the function of DCs, thereby further increasing immune response triggered by DC. PMID:19262293

  9. Immunological mechanisms involved in probiotic-mediated protection against Citrobacter rodentium-induced colitis.

    Science.gov (United States)

    Jiang, Y; Yang, G; Meng, F; Yang, W; Hu, J; Ye, L; Shi, C; Wang, C

    2016-06-01

    Inflammatory bowel disease is a group of chronic, incurable inflammatory disorders of the gastrointestinal tract that cause severe diarrhoea, intestinal inflammation, pain, fatigue and weight loss. In this study, we first developed a model of Citrobacter rodentium-induced colitis and then evaluated the protective effects of selected probiotics on inflammation. The results showed that administration of a combination of probiotics including Lactobacillus rhamnosus ATCC 53103, Lactobacillus acidophilus ATCC 4356 and Lactobacillus plantarum A significantly increased the production of CD11c(+) dendritic cells in the spleen (3.62% vs phosphate buffered saline (PBS)-treated control, Pprobiotics significantly up-regulated the development of CD4(+)/CD25(+)/Foxp3(+) regulatory T cells in MLNs by approximately 2.07% compared to the effect observed in the PBS-treated control (P<0.01) and down-regulated the expression of inflammatory cytokines, including interleukin-17, tumour necrosis factor-α and interferon-γ, by 0.11, 0.11 and 0.15%, respectively, compared to the effect observed in the PBS-treated control (P<0.01).These effects conferred protection against colitis, as shown by histopathological analyses. PMID:26925601

  10. Modulation of Inducible Nitric Oxide Synthase Expression by the Attaching and Effacing Bacterial Pathogen Citrobacter rodentium in Infected Mice

    Science.gov (United States)

    Vallance, Bruce A.; Deng, Wanyin; De Grado, Myriam; Chan, Crystal; Jacobson, Kevan; Finlay, B. Brett

    2002-01-01

    Citrobacter rodentium belongs to the attaching and effacing family of enteric bacterial pathogens that includes both enteropathogenic and enterohemorrhagic Escherichia coli. These bacteria infect their hosts by colonizing the intestinal mucosal surface and intimately attaching to underlying epithelial cells. The abilities of these pathogens to exploit the cytoskeleton and signaling pathways of host cells are well documented, but their interactions with the host's antimicrobial defenses, such as inducible nitric oxide synthase (iNOS), are poorly understood. To address this issue, we infected mice with C. rodentium and found that iNOS mRNA expression in the colon significantly increased during infection. Immunostaining identified epithelial cells as the major source for immunoreactive iNOS. Finding that nitric oxide (NO) donors were bacteriostatic for C. rodentium in vitro, we examined whether iNOS expression contributed to host defense by infecting iNOS-deficient mice. Loss of iNOS expression caused a small but significant delay in bacterial clearance without affecting tissue pathology. Finally, immunofluorescence staining was used to determine if iNOS expression was localized to infected cells by staining for the C. rodentium virulence factor, translocated intimin receptor (Tir), as well as iNOS. Interestingly, while more than 85% of uninfected epithelial cells expressed iNOS, fewer than 15% of infected (Tir-positive) cells expressed detectable iNOS. These results demonstrate that both iNOS and intestinal epithelial cells play an active role in host defense during C. rodentium infection. However, the selective expression of iNOS by uninfected but not infected cells suggests that this pathogen has developed mechanisms to locally limit its exposure to host-derived NO. PMID:12379723

  11. Dysbiosis caused by vitamin D receptor deficiency confers colonization resistance to Citrobacter rodentium through modulation of innate lymphoid cells

    OpenAIRE

    Chen, Jing; Waddell, Amanda; Lin, Yang-Ding; Cantorna, Margherita T.

    2014-01-01

    Vitamin D receptor (VDR) knockout (KO) mice had fewer Citrobacter rodentium in the feces than wild-type (WT) mice and the kinetics of clearance was faster in VDR KO than WT mice. VDR KO mice had more IL-22 producing innate lymphoid cells (ILC), and more anti-bacterial peptides than WT mice. The increased ILC in the VDR KO mice was a cell autonomous effect of VDR deficiency on ILC frequencies. BM transplantation from VDR KO mice into WT resulted in higher ILC and colonization resistance of the...

  12. RegA, an AraC-like protein, is a global transcriptional regulator that controls virulence gene expression in Citrobacter rodentium.

    Science.gov (United States)

    Hart, Emily; Yang, Ji; Tauschek, Marija; Kelly, Michelle; Wakefield, Matthew J; Frankel, Gad; Hartland, Elizabeth L; Robins-Browne, Roy M

    2008-11-01

    Citrobacter rodentium is an attaching and effacing pathogen which causes transmissible colonic hyperplasia in mice. Infection with C. rodentium serves as a model for infection of humans with enteropathogenic and enterohemorrhagic Escherichia coli. To identify novel colonization factors of C. rodentium, we screened a signature-tagged mutant library of C. rodentium in mice. One noncolonizing mutant had a single transposon insertion in an open reading frame (ORF) which we designated regA because of its homology to genes encoding members of the AraC family of transcriptional regulators. Deletion of regA in C. rodentium resulted in markedly reduced colonization of the mouse intestine. Examination of lacZ transcriptional fusions using promoter regions of known and putative virulence-associated genes of C. rodentium revealed that RegA strongly stimulated transcription of two newly identified genes located close to regA, which we designated adcA and kfcC. The cloned adcA gene conferred autoaggregation and adherence to mammalian cells to E. coli strain DH5alpha, and a kfc mutation led to a reduction in the duration of intestinal colonization, but the kfc mutant was far less attenuated than the regA mutant. These results indicated that other genes of C. rodentium whose expression required activation by RegA were required for colonization. Microarray analysis revealed a number of RegA-regulated ORFs encoding proteins homologous to known colonization factors. Transcription of these putative virulence determinants was activated by RegA only in the presence of sodium bicarbonate. Taken together, these results show that RegA is a global regulator of virulence in C. rodentium which activates factors that are required for intestinal colonization. PMID:18765720

  13. Bicarbonate-mediated transcriptional activation of divergent operons by the virulence regulatory protein, RegA, from Citrobacter rodentium.

    Science.gov (United States)

    Yang, Ji; Hart, Emily; Tauschek, Marija; Price, G Dean; Hartland, Elizabeth L; Strugnell, Richard A; Robins-Browne, Roy M

    2008-04-01

    Regulation of virulence gene expression plays a central role in the pathogenesis of enteric bacteria as they encounter diverse environmental conditions in the gastrointestinal tract of their hosts. In this study, we investigated environmental regulation of two putative virulence determinants adcA and kfc by RegA, an AraC/XylS-like regulator, from Citrobacter rodentium, and identified bicarbonate as the environmental signal which induced transcription of adcA and kfc through RegA. Primer extension experiments showed that adcA and kfc were divergently transcribed from sigma(70) promoters. In vivo and in vitro experiments demonstrated that bicarbonate facilitated and stabilized the binding of RegA to an operator located between the two promoters. The interaction of RegA with its DNA target resulted in the formation of a nucleosome-like structure, which evidently displaced the histone-like proteins, H-NS and StpA, from the adcA and kfc promoter regions, leading to transcriptional derepression. In addition, our results indicated that RegA also behaved as a Class I activator by directly stimulating transcription initiation by RNA polymerase. This is the first report to describe the molecular mechanism by which an environmental chemical stimulates transcription of virulence-associated genes of an enteric pathogen through an AraC/XlyS-like activator. PMID:18284589

  14. Rac2-Deficiency Leads to Exacerbated and Protracted Colitis in Response to Citrobacter rodentium Infection

    OpenAIRE

    Ramzi Fattouh; Cong-Hui Guo; Lam, Grace Y; Gareau, Melanie G.; Bo-Yee Ngan; Michael Glogauer; Aleixo M Muise; Brumell, John H.

    2013-01-01

    Recent genetic-based studies have implicated a number of immune-related genes in the pathogenesis of inflammatory bowel disease (IBD). Our recent genetic studies showed that RAC2 is associated with human IBD; however, its role in disease pathogenesis is unclear. Given Rac2's importance in various fundamental immune cell processes, we investigated whether a defect in Rac2 may impair host immune responses in the intestine and promote disease in the context of an infection-based (Citrobacter rod...

  15. The in vitro and in vivo effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen Citrobacter rodentium

    Science.gov (United States)

    Read, Hannah M.; Mills, Grant; Johnson, Sarah; Tsai, Peter; Dalton, James; Barquist, Lars; Print, Cristin G.; Patrick, Wayne M.

    2016-01-01

    Bioluminescent reporter genes, such as those from fireflies and bacteria, let researchers use light production as a non-invasive and non-destructive surrogate measure of microbial numbers in a wide variety of environments. As bioluminescence needs microbial metabolites, tagging microorganisms with luciferases means only live metabolically active cells are detected. Despite the wide use of bioluminescent reporter genes, very little is known about the impact of continuous (also called constitutive) light expression on tagged bacteria. We have previously made a bioluminescent strain of Citrobacter rodentium, a bacterium which infects laboratory mice in a similar way to how enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) infect humans. In this study, we compared the growth of the bioluminescent C. rodentium strain ICC180 with its non-bioluminescent parent (strain ICC169) in a wide variety of environments. To understand more about the metabolic burden of expressing light, we also compared the growth profiles of the two strains under approximately 2,000 different conditions. We found that constitutive light expression in ICC180 was near-neutral in almost every non-toxic environment tested. However, we also found that the non-bioluminescent parent strain has a competitive advantage over ICC180 during infection of adult mice, although this was not enough for ICC180 to be completely outcompeted. In conclusion, our data suggest that constitutive light expression is not metabolically costly to C. rodentium and supports the view that bioluminescent versions of microbes can be used as a substitute for their non-bioluminescent parents to study bacterial behaviour in a wide variety of environments. PMID:27366640

  16. The in vitro and in vivo effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen Citrobacter rodentium.

    Science.gov (United States)

    Read, Hannah M; Mills, Grant; Johnson, Sarah; Tsai, Peter; Dalton, James; Barquist, Lars; Print, Cristin G; Patrick, Wayne M; Wiles, Siouxsie

    2016-01-01

    Bioluminescent reporter genes, such as those from fireflies and bacteria, let researchers use light production as a non-invasive and non-destructive surrogate measure of microbial numbers in a wide variety of environments. As bioluminescence needs microbial metabolites, tagging microorganisms with luciferases means only live metabolically active cells are detected. Despite the wide use of bioluminescent reporter genes, very little is known about the impact of continuous (also called constitutive) light expression on tagged bacteria. We have previously made a bioluminescent strain of Citrobacter rodentium, a bacterium which infects laboratory mice in a similar way to how enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) infect humans. In this study, we compared the growth of the bioluminescent C. rodentium strain ICC180 with its non-bioluminescent parent (strain ICC169) in a wide variety of environments. To understand more about the metabolic burden of expressing light, we also compared the growth profiles of the two strains under approximately 2,000 different conditions. We found that constitutive light expression in ICC180 was near-neutral in almost every non-toxic environment tested. However, we also found that the non-bioluminescent parent strain has a competitive advantage over ICC180 during infection of adult mice, although this was not enough for ICC180 to be completely outcompeted. In conclusion, our data suggest that constitutive light expression is not metabolically costly to C. rodentium and supports the view that bioluminescent versions of microbes can be used as a substitute for their non-bioluminescent parents to study bacterial behaviour in a wide variety of environments. PMID:27366640

  17. Social stress-enhanced severity of Citrobacter rodentium-induced colitis is CCL2-dependent and attenuated by probiotic Lactobacillus reuteri.

    Science.gov (United States)

    Mackos, A R; Galley, J D; Eubank, T D; Easterling, R S; Parry, N M; Fox, J G; Lyte, M; Bailey, M T

    2016-03-01

    Psychological stressors are known to affect colonic diseases but the mechanisms by which this occurs, and whether probiotics can prevent stressor effects, are not understood. Because inflammatory monocytes that traffic into the colon can exacerbate colitis, we tested whether CCL2, a chemokine involved in monocyte recruitment, was necessary for stressor-induced exacerbation of infectious colitis. Mice were exposed to a social disruption stressor that entails repeated social defeat. During stressor exposure, mice were orally challenged with Citrobacter rodentium to induce a colonic inflammatory response. Exposure to the stressor during challenge resulted in significantly higher colonic pathogen levels, translocation to the spleen, increases in colonic macrophages, and increases in inflammatory cytokines and chemokines. The stressor-enhanced severity of C. rodentium-induced colitis was not evident in CCL2(-/-) mice, indicating the effects of the stressor are CCL2-dependent. In addition, we tested whether probiotic intervention could attenuate stressor-enhanced infectious colitis by reducing monocyte/macrophage accumulation. Treating mice with probiotic Lactobacillus reuteri reduced CCL2 mRNA levels in the colon and attenuated stressor-enhanced infectious colitis. These data demonstrate that probiotic L. reuteri can prevent the exacerbating effects of stressor exposure on pathogen-induced colitis, and suggest that one mechanism by which this occurs is through downregulation of the chemokine CCL2. PMID:26422754

  18. Enteric infection with Citrobacter rodentium induces coagulative liver necrosis and hepatic inflammation prior to peak infection and colonic disease.

    Directory of Open Access Journals (Sweden)

    Arkadiusz R Raczynski

    Full Text Available Acute and chronic forms of inflammation are known to affect liver responses and susceptibility to disease and injury. Furthermore, intestinal microbiota has been shown critical in mediating inflammatory host responses in various animal models. Using C. rodentium, a known enteric bacterial pathogen, we examined liver responses to gastrointestinal infection at various stages of disease pathogenesis. For the first time, to our knowledge, we show distinct liver pathology associated with enteric infection with C. rodentium in C57BL/6 mice, characterized by increased inflammation and hepatitis index scores as well as prominent periportal hepatocellular coagulative necrosis indicative of thrombotic ischemic injury in a subset of animals during the early course of C. rodentium pathogenesis. Histologic changes in the liver correlated with serum elevation of liver transaminases, systemic and liver resident cytokines, as well as signal transduction changes prior to peak bacterial colonization and colonic disease. C. rodentium infection in C57BL/6 mice provides a potentially useful model to study acute liver injury and inflammatory stress under conditions of gastrointestinal infection analogous to enteropathogenic E. coli infection in humans.

  19. Activation of Plasmacytoid Dendritic Cells in Colon-Draining Lymph Nodes during Citrobacter rodentium Infection Involves Pathogen-Sensing and Inflammatory Pathways Distinct from Conventional Dendritic Cells.

    Science.gov (United States)

    Toivonen, Raine; Kong, Lingjia; Rasool, Omid; Lund, Riikka J; Lahesmaa, Riitta; Hänninen, Arno

    2016-06-01

    Dendritic cells (DCs) bear the main responsibility for initiation of adaptive immune responses necessary for antimicrobial immunity. In the small intestine, afferent lymphatics convey Ags and microbial signals to mesenteric lymph nodes (LNs) to induce adaptive immune responses against microbes and food Ags derived from the small intestine. Whether the large intestine is covered by the same lymphatic system or represents its own lymphoid compartment has not been studied until very recently. We identified three small mesenteric LNs, distinct from small intestinal LNs, which drain lymph specifically from the colon, and studied DC responses to the attaching and effacing pathogen Citrobacter rodentium in these. Transcriptional profiling of conventional (CD11c(high)CD103(high)) DC and plasmacytoid (plasmacytoid DC Ag-1(high)B220(+)CD11c(int)) DC (pDC) populations during steady-state conditions revealed activity of distinct sets of genes in these two DC subsets, both in small intestinal and colon-draining LNs. C. rodentium activated DC especially in colon-draining LNs, and gene expression changed in pDC more profoundly than in conventional DC. Among the genes most upregulated in pDC were C-type lectin receptor CLEC4E, IL-1Rs (IL-1R1 and -2), proinflammatory cytokines (IL-1a and IL-6), and TLR6. Our results indicate that colon immune surveillance is distinct from that of the small intestine in terms of draining LNs, and identify pDC as active sentinels of colonic inflammation and/or microbial dysbiosis. PMID:27183629

  20. Genome sequencing, annotation of Citrobacter freundii strain GTC 09479

    Directory of Open Access Journals (Sweden)

    Kazuyuki Kimura

    2014-12-01

    Full Text Available We report the 4.9-Mb genome sequence of Citrobacter freundii strain GTC 09479, isolated from urine sample collected during the year 1983 at Gifu University Graduate School of Medicine, Japan. This draft genome consist of 4,899,578 bp with 51.62% G + C, 4,574 predicted CDSs, 72 tRNAs and 10 rRNAs.

  1. RegA, an AraC-Like Protein, Is a Global Transcriptional Regulator That Controls Virulence Gene Expression in Citrobacter rodentium▿

    OpenAIRE

    Hart, Emily; Yang, Ji; Tauschek, Marija; Kelly, Michelle; Wakefield, Matthew J.; Frankel, Gad; Hartland, Elizabeth L.; Robins-Browne, Roy M.

    2008-01-01

    Citrobacter rodentium is an attaching and effacing pathogen which causes transmissible colonic hyperplasia in mice. Infection with C. rodentium serves as a model for infection of humans with enteropathogenic and enterohemorrhagic Escherichia coli. To identify novel colonization factors of C. rodentium, we screened a signature-tagged mutant library of C. rodentium in mice. One noncolonizing mutant had a single transposon insertion in an open reading frame (ORF) which we designated regA because...

  2. Genome Sequence of Citrobacter sp. CtB7.12, Isolated from the Gut of the Desert Subterranean Termite Heterotermes aureus

    Science.gov (United States)

    Fontes-Perez, Héctor; Olvera-García, Myrna; Chávez-Martínez, America; Rodriguez-Almeida, Felipe A.; Arzola-Alvarez, Claudio A.

    2015-01-01

    The draft genome of Citrobacter sp. CtB7.12, isolated from termite gut, is presented here. This organism has been reported as a cellulolytic bacterium, which is biotechnologically important because it can be used as a gene donor for the ethanol and biofuel industries. PMID:26543121

  3. Genomic Insights into a New Citrobacter koseri Strain Revealed Gene Exchanges with the Virulence-Associated Yersinia pestis pPCP1 Plasmid.

    Science.gov (United States)

    Armougom, Fabrice; Bitam, Idir; Croce, Olivier; Merhej, Vicky; Barassi, Lina; Nguyen, Ti-Thien; La Scola, Bernard; Raoult, Didier

    2016-01-01

    The history of infectious diseases raised the plague as one of the most devastating for human beings. Far too often considered an ancient disease, the frequent resurgence of the plague has led to consider it as a reemerging disease in Madagascar, Algeria, Libya, and Congo. The genetic factors associated with the pathogenicity of Yersinia pestis, the causative agent of the plague, involve the acquisition of the pPCP1 plasmid that promotes host invasion through the expression of the virulence factor Pla. The surveillance of plague foci after the 2003 outbreak in Algeria resulted in a positive detection of the specific pla gene of Y. pestis in rodents. However, the phenotypic characterization of the isolate identified a Citrobacter koseri. The comparative genomics of our sequenced C. koseri URMITE genome revealed a mosaic gene structure resulting from the lifestyle of our isolate and provided evidence for gene exchanges with different enteric bacteria. The most striking was the acquisition of a continuous 2 kb genomic fragment containing the virulence factor Pla of the Y. pestis pPCP1 plasmid; however, the subcutaneous injection of the CKU strain in mice did not produce any pathogenic effect. Our findings demonstrate that fast molecular detection of plague using solely the pla gene is unsuitable and should rather require Y. pestis gene marker combinations. We also suggest that the evolutionary force that might govern the expression of pathogenicity can occur through the acquisition of virulence genes but could also require the loss or the inactivation of resident genes such as antivirulence genes. PMID:27014253

  4. Citrobacter koseri meningitis: another freediving risk?

    Science.gov (United States)

    Pollara, Gabriele; Savy, Lloyd; Cropley, Ian; Hopkins, Susan

    2011-01-01

    We present a rare case of meningitis caused by Citrobacter koseri in an immunocompetent adult who had recently been freediving. Middle ear pressure changes from this recreational activity, and the subsequent inflammatory response, are likely to have provided this environmental organism access to the central nervous system, and thus the ability to cause clinically significant infection. PMID:20933000

  5. Lactobacillus rodentium sp nov., from the digestive tract of wild rodents

    Czech Academy of Sciences Publication Activity Database

    Killer, Jiří; Havlík, J.; Vlková, E.; Rada, V.; Pechar, R.; Benada, Oldřich; Kopečný, Jan; Kofroňová, Olga; Sechovcová, Hana

    2014-01-01

    Roč. 64, č. 5 (2014), 1526-1533. ISSN 1466-5026 R&D Projects: GA ČR(CZ) GAP304/11/1252; GA ČR GA13-08803S Institutional support: RVO:67985904 ; RVO:61388971 Keywords : Lactobacillus rodentium Subject RIV: EE - Microbiology, Virology Impact factor: 2.511, year: 2014

  6. Citrobacter freundii as a cause of disease in fish

    Directory of Open Access Journals (Sweden)

    Jeremić Svetlana

    2003-01-01

    Full Text Available The paper describes an illness of one-year rainbow trout fry that was characterized by gastroenteritis and progressively high mortality, but which did not indicate a typical bacterial infection; and a clinical illness of cyprinids that indicated typical acute bacterial septicemia caused by Gram-negative bacteria. These diseases of rainbow trout and cyprinids were caused by the Gram-negative motile bacterium Citrobacter freundii. Cultures of Citrobacter freundii were isolated and identified on the basis of key phenotypic characters and with the aid of the Api 20 E system. Pathohistological examination confirmed inflammatory changes in the intestine of rainbow trout; and inflammatory and necrotic changes in the internal organs of cyprinids. We were able to reproduce the illness by means of artificial infection with a pure culture of Citrobacter freundii. This is the first published report confirming Citrobacter freundii as a cause of fish disease in Serbia.

  7. Modelling of Infection by Enteropathogenic Escherichia coli Strains in Lineages 2 and 4 Ex Vivo and In Vivo by Using Citrobacter rodentium Expressing TccP▿

    OpenAIRE

    Girard, Francis; Crepin, Valérie F.; Frankel, Gad

    2009-01-01

    Enteropathogenic Escherichia coli (EPEC) strains colonize the human gut mucosa via attaching-and-effacing (A/E) lesion formation, while in vitro they employ diverse strategies to trigger actin polymerization. Strains belonging to the EPEC-1 lineage trigger strong actin polymerization via tyrosine phosphorylation of the type III secretion system (T3SS) effector Tir, recruitment of Nck, and activation of N-WASP. Strains belonging to EPEC-2 and EPEC-4 can trigger strong actin polymerization by d...

  8. Community-Acquired Pneumonia and Empyema Caused by Citrobacter koseri in an Immunocompetent Patient

    Directory of Open Access Journals (Sweden)

    Miguel Angel Ariza-Prota

    2015-01-01

    Full Text Available Citrobacter species, belonging to the family Enterobacteriaceae, are environmental organisms commonly found in soil, water, and the intestinal tracts of animals and humans. Citrobacter koseri is known to be an uncommon but serious cause of both sporadic and epidemic septicemia and meningitis in neonates and young infants. Most cases reported have occurred in immunocompromised hosts. The infections caused by Citrobacter are difficult to treat with usual broad spectrum antibiotics owing to rapid generation of mutants and have been associated with high death rates in the past. We believe this is the first case described in the literature of a community-acquired pneumonia and empyema caused by Citrobacter koseri in an immunocompetent adult patient.

  9. Fulminant citrobacter meningitis with multiple periventricular abscesses in a three-month-old infant

    Directory of Open Access Journals (Sweden)

    P. Anoop

    2003-12-01

    Full Text Available Citrobacter, a Gram-negative enteric bacillus, is a rare cause of septicemia and meningitis, seldom reported beyond the neonatal period. It is characterized by a fulminant clinical course and a high incidence of complications, including brain abscesses. We studied a three-month-old infant with Citrobacter meningitis, who developed acute communicating hydrocephalus and multiple periventricular brain abscesses while on treatment. The patient died, despite intensive antibiotic treatment directed towards the causative organism, C. diversus.

  10. Brain abscess by citrobacter diversus in infancy: case report Abscesso cerebral por Citrobacter diversus na infância: relato de caso

    OpenAIRE

    RUBENS FEFERBAUM; EDNA M. A. DINIZ; MARCELO VALENTE; CLÁUDIA R. GIOLO; RENATA A. VIEIRA; ANA L. S. GALVANI; MARIA E. J. CECCON; MARIA C. K. ARAUJO; Vera L. J. Krebs; Flávio A. C. Vaz

    2000-01-01

    Citrobacter diversus is closely related to brain abscess in newborn infants. We describe a case of brain abscess by this bacteria in a newborn infant and his clinical and cranial computed tomographic evaluation until the fourth month of life and discuss therapeutic management of this patient.Citrobacter diversus é a bactéria mais associada a abscessos cerebrais durante o período neonatal. Descrevemos um caso de abscesso cerebral por esta bactéria em um recém-nascido e sua evolução clínica e t...

  11. Production and properties of alpha-amylase from Citrobacter species

    Directory of Open Access Journals (Sweden)

    Ebuta N. Etim-Osowo

    2009-04-01

    Full Text Available Amylase production by Citrobacter sp. isolated from potato was optimized in batch culture studies under shake flask conditions. Effects and interactions of best sources and levels of carbon and nitrogen estimated by 4 x 5 and 4 x 4 factorial experimental arrangements were significant (P < 0.01 on amylase production. Optimal alpha-amylase yield was obtained in a medium containing sorghum flour (2.0 % w/v and a mixture of (NH42SO4 + soybean meal (1.5% w/v with an initial medium pH of 8.0. Under optimum conditions, amylase yield was maximal (0.499 U/ml after 60h incubation at room temperature (28oC ± 2oC. Characterization studies showed that the enzyme had maximum activity at 60oC, retained 100% of its original activities at 60oC for 2h, was maximally active at pH 7.0 and retained 100% of original activities at pH 9.0 for 2h. Enzyme activity was stimulated by urea, Mg2+, Ca2+ and Zn2+ but inhibited by Hg2+.

  12. Proteomic Analysis on Acetate Metabolism in Citrobacter sp. BL-4

    Directory of Open Access Journals (Sweden)

    Young-Man Kim, Sung-Eun Lee, Byeoung-Soo Park, Mi-Kyung Son, Young-Mi Jung, Seung-Ok Yang, Hyung-Kyoon Choi, Sung-Ho Hur, Jong Hwa Yum

    2012-01-01

    Full Text Available Mass production of glucosamine (GlcN using microbial cells is a worthy approach to increase added values and keep safety problems in GlcN production process. Prior to set up a microbial cellular platform, this study was to assess acetate metabolism in Citrobacter sp. BL-4 (BL-4 which has produced a polyglucosamine PGB-2. The LC-MS analysis was conducted after protein separation on the 1D-PAGE to accomplish the purpose of this study. 280 proteins were totally identified and 188 proteins were separated as acetate-related proteins in BL-4. Acetate was converted to acetyl-CoA by acetyl-CoA synthetase up-regulated in the acetate medium. The glyoxylate bypass in the acetate medium was up-regulated with over-expression of isocitrate lyases and 2D-PAGE confirmed this differential expression. Using 1H-NMR analysis, the product of isocitrate lyases, succinate, increased about 15 times in the acetate medium. During acetate metabolism proteins involved in the lipid metabolism and hexosamine biosynthesis were over-expressed in the acetate medium, while proteins involved in TCA cycle, pentose phosphate cycle and purine metabolism were down-regulated. Taken together, the results from the proteomic analysis can be applied to improve GlcN production and to develop metabolic engineering in BL-4.

  13. Brain abscess by citrobacter diversus in infancy: case report Abscesso cerebral por Citrobacter diversus na infância: relato de caso

    Directory of Open Access Journals (Sweden)

    RUBENS FEFERBAUM

    2000-09-01

    Full Text Available Citrobacter diversus is closely related to brain abscess in newborn infants. We describe a case of brain abscess by this bacteria in a newborn infant and his clinical and cranial computed tomographic evaluation until the fourth month of life and discuss therapeutic management of this patient.Citrobacter diversus é a bactéria mais associada a abscessos cerebrais durante o período neonatal. Descrevemos um caso de abscesso cerebral por esta bactéria em um recém-nascido e sua evolução clínica e tomográfica até o quarto mês de vida. São discutidos aspectos diagnósticos e terapêuticos desta grave infecção do recém-nascido.

  14. Favorable outcome in cerebral abscesses caused by Citrobacter koseri in a newborn infant

    Directory of Open Access Journals (Sweden)

    Sarah Algubaisi

    2015-01-01

    Full Text Available The treatment of brain abscesses in newborn infants is controversial. We report on a 6-week-old infant with multiple brain abscesses caused by Citrobacter koseri that resolved after treatment with combined surgical drainage and intravenous therapy with meropenem and fosfomycin.

  15. Regulatory components in Citrobacter freundii ampC beta-lactamase induction.

    OpenAIRE

    Lindberg, F; Westman, L; Normark, S

    1985-01-01

    Citrobacter freundii encodes an inducible chromosomal beta-lactamase similar to the constitutively expressed ampC beta-lactamase of Escherichia coli. In the latter species the ampC gene is located next to the fumarate reductase (frd) operon, whereas in C. freundii the ampC gene is known to be separated from frd by 1100 base pairs. This intervening DNA segment carries a gene, ampR, coding for a 31-kilodalton polypeptide. The cloned C. freundii OS60 ampC gene is inducible by beta-lactam antibio...

  16. Clonal origin of aminoglycoside-resistant Citrobacter freundii isolates in a Danish county

    DEFF Research Database (Denmark)

    Norskov-Lauritsen, N.; Sandvang, Dorthe; Hedegaard, J.; Fussing, V.; Mortensen, K.K.; Sperling-Petersen, H.U.; Schonheyder, H.C.

    2001-01-01

    During 1997, attention was drawn to an increased frequency of aminoglycoside-resistant Citrobacter freundii in a Danish county, when a total of 24 resistant C. freundii isolates was detected. In this study, 15 such isolates were typed by pulsed-field gel electrophoresis, riboprinting and partial ...... dihydrofolate reductase gene in a class I integron. The source of the strain remains unresolved. Representative isolates were obtained from various specimens from hospitals and general practice throughout the county, with no evidence of patient-to-patient transmission....

  17. [Intraparenchymal hepatic haematoma after endoscopic retrograde cholangiopancreotography overinfected by Citrobacter freundii and Klebsiella pneumoniae BLEE].

    Science.gov (United States)

    Carrica, Sebastián A; Belloni, Rodrigo; Baldoni, Fernando; Yantorno, Martín; Correa, Gustavo; Bologna, Adrián; Barbero, Rodolfo; Villaverde, Augusto; Chopita, Néstor

    2014-06-01

    This case report describes a 37-year-old woman who develops an intraparenchymal hepatic haematoma after an endoscopic retrograde cholangiopancreatography with papillotomy and stone extraction. The procedure requires the passage of a guidewire. The patient develops acute abdominal pain 72 hours later and a magnetic resonance shows a hematoma of 124 x 93 mm. She remains under observation. Twenty one days later she complains of upper right abdominal pain and fever. Consequently, a percutaneous drainage is performed isolating Citrobacter freundii and Klebsiella pneumoniae BLEE. The patient has a good evolution. PMID:25199307

  18. Antigenic scheme for Citrobacter koseri (syn. C. diversus, Levinea malonatica); three new antigens recognized in strains from Israel.

    OpenAIRE

    Gross, R. J.; Rowe, B; Sechter, I; Cahan, D.; Altman, G.

    1981-01-01

    An antigenic scheme for Citrobacter koseri was described previously and consisted of 14 'O' antigens. Three additional antigens are now added to the scheme and type strains for these antigens are designated. Their origins and their biochemical and serological reactions are described.

  19. Effect of nutrient limitation on biofilm formation and phosphatase activity of a Citrobacter sp.

    Science.gov (United States)

    Allan, Victoria J M; Callow, Maureen E; Macaskie, Lynne E; Paterson-Beedle, Marion

    2002-01-01

    A phosphatase-overproducing Citrobacter sp. (NCIMB 40259) was grown in an air-lift reactor in steady-state continuous culture under limitation of carbon, phosphorus or nitrogen. Substantial biofilm formation, and the highest phosphatase activity, were observed under lactose limitation. However, the total amount of biofilm wet biomass and the phosphatase specific activity were reduced in phosphorus- or nitrogen-limited cultures or when glucose was substituted for lactose as the limiting carbon source. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) showed differences in cell and biofilm morphology in relation to medium composition. Electron microscopy suggested that the differences in biofilm formation may relate to differential expression of fimbriae on the cell surface. PMID:11782520

  20. Isolation,Identification and Antibiotics Susceptibility Test of Citrobacter freundii from Procambarus clarkia

    Institute of Scientific and Technical Information of China (English)

    Chen; Honglian; Song; Guangtong; He; Jixiang; Hou; Guanjun; Wang; Yongjie

    2014-01-01

    This experiment was conducted to clarify species and drug resistance of pathogen from the diseased Procambarus clarkia. Pathogenic bacteria from hepatopancreas of the diseased P. clarkia were examined using conventional methods,and then were isolated. The further tests and analysis of the isolated strain were developed,including the regression experiment to P. clarkia,the morphology,physiological and biochemical characteristics,sequence analysis of their 16 S rRNA and gyr B genes,and the susceptibility test to antibiotics. Large colonies with similar morphology and color were obtained. Strain X120523 was identified as Citrobacter freundii,proved to have strong pathogenicity,and was susceptible to quinolones and aminoglycosides.

  1. Citrobacter freundii infection after acute necrotizing pancreatitis in a patient with a pancreatic pseudocyst: a case report

    OpenAIRE

    Larino-Noia Jose; Iglesias-Garcia Julio; Iglesias-Canle Jose; Lozano-Leon Antonio; Dominguez-Muñoz Enrique

    2011-01-01

    Abstract Introduction Infections are the most frequent and severe complications of acute necrotizing pancreatitis with a mortality rate of up to 80 percent. Although experimental and clinical studies suggest that the microbiologic source of pancreatic infection could be enteric, information in this regard is controversial. Case presentation We describe a Citrobacter freundii isolation by endoscopy ultrasound fine needle aspiration in a 80-year-old Caucasian man with pancreatic pseudocyst afte...

  2. Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii

    International Nuclear Information System (INIS)

    Biosorption has been developed as an effective and economic method to treat wastewater containing low concentrations of metal pollutants. In this study, a bacterium, Citrobacter freudii, was used as a biosorbent to adsorb uranium ions. The thermodynamics and kinetics of this adsorption, as well as its mechanism, were investigated. The results indicated that the biosorption rate could be better described by a pseudo 2nd-order model than a pseudo 1st-order model. The adsorption of U (VI) proceeded very rapidly in the first 30 min and subsequently slowed down continuously for a long period. The biosorption isotherm of uranium by C. freudii could be described well by the Langmuir or Freundlich isotherm, and the latter was better. The thermodynamics parameters, ΔHo, ΔGo, and ΔSo were calculated according to the results of the experiment, which showed this biosorption as being endothermic and spontaneous. The authors investigated the active sites of bacteria for biosorption and the results proved that carboxyl in the cell wall played an important role in biosorption

  3. Studies of polypropylene membrane fouling during microfiltration of broth with Citrobacter freundii bacteria

    Directory of Open Access Journals (Sweden)

    Gryta Marek

    2015-12-01

    Full Text Available In this work a fouling study of polypropylene membranes used for microfiltration of glycerol solutions fermented by Citrobacter freundii bacteria was presented. The permeate free of C. freundii bacteria and having a turbidity in the range of 0.72–1.46 NTU was obtained. However, the initial permeate flux (100–110 L/m2h at 30 kPa of transmembrane pressure was decreased 3–5 fold during 2–3 h of process duration. The performed scanning electron microscope observations confirmed that the filtered bacteria and suspensions present in the broth formed a cake layer on the membrane surface. A method of periodical module rinsing was used for restriction of the fouling influence on a flux decline. Rinsing with water removed most of the bacteria from the membrane surface, but did not permit to restore the initial permeate flux. It was confirmed that the irreversible fouling was dominated during broth filtration. The formed deposit was removed using a 1 wt% solution of sodium hydroxide as a rinsing solution.

  4. Reduction of azo dyes by flavin reductase from Citrobacter freundii A1

    Directory of Open Access Journals (Sweden)

    Mohd Firdaus Abdul-Wahab

    2012-12-01

    Full Text Available Citrobacter freundii A1 isolated from a sewage treatment facility was demonstrated to be able to effectively decolorize azo dyes as pure and mixed culture. This study reports on the investigation on the enzymatic systems involved. An assay performed suggested the possible involvement of flavin reductase (Fre as an azo reductase. A heterologouslyexpressed recombinant Fre from C. freundii A1 was used to investigate its involvement in the azo reduction process. Three model dyes were used, namely Acid Red 27 (AR27, Direct Blue 15 (DB15 and Reactive Black 5 (RB5. AR27 was found to be reduced the fastest by Fre, followed by RB5, and lastly DB15. Redox mediators nicotinamide adenine dinucleotide (NADH and riboflavin enhance the reduction, suggesting the redox activity of the enzyme. The rate and extent of reduction of the model dyes correlate well with the reduction potentials (Ep. The data presented here strongly suggest that Fre is one of the enzymes responsible for azo reduction in C. freundii A1, acting via an oxidation-reduction reaction.

  5. Purification and characterization of selenocysteine beta-lyase from Citrobacter freundii

    International Nuclear Information System (INIS)

    The purification and characterization of bacterial selenocysteine beta-lyase, an enzyme which specifically catalyzes the cleavage of L-selenocysteine to L-alanine and Se0, are presented. The enzyme, purified to near homogeneity from Citrobacter freundii, is monomeric with a molecular weight of ca. 64,000 and contains 1 mol of pyridoxal 5'-phosphate as a cofactor per mol of enzyme. L-Selenocysteine is the sole substrate. L-Cysteine is a competitive inhibitor of the enzyme. The enzyme also catalyzes the alpha, beta elimination of beta-chloro-L-alanine to form NH3, pyruvate, and Cl- and is irreversibly inactivated during the reaction. The physicochemical properties, e.g., amino acid composition and subunit structure, of the bacterial enzyme are fairly different from those of the pig liver enzyme. However, the catalytic properties of both enzymes, e.g., substrate specificity and inactivation by the substrate or a mechanism-based inactivator, beta-chloro-L-alanine, are very similar

  6. Purification and characterization of selenocysteine beta-lyase from Citrobacter freundii

    Energy Technology Data Exchange (ETDEWEB)

    Chocat, P.; Esaki, N.; Tanizawa, K.; Nakamura, K.; Tanaka, H.; Soda, K.

    1985-08-01

    The purification and characterization of bacterial selenocysteine beta-lyase, an enzyme which specifically catalyzes the cleavage of L-selenocysteine to L-alanine and Se0, are presented. The enzyme, purified to near homogeneity from Citrobacter freundii, is monomeric with a molecular weight of ca. 64,000 and contains 1 mol of pyridoxal 5'-phosphate as a cofactor per mol of enzyme. L-Selenocysteine is the sole substrate. L-Cysteine is a competitive inhibitor of the enzyme. The enzyme also catalyzes the alpha, beta elimination of beta-chloro-L-alanine to form NH3, pyruvate, and Cl- and is irreversibly inactivated during the reaction. The physicochemical properties, e.g., amino acid composition and subunit structure, of the bacterial enzyme are fairly different from those of the pig liver enzyme. However, the catalytic properties of both enzymes, e.g., substrate specificity and inactivation by the substrate or a mechanism-based inactivator, beta-chloro-L-alanine, are very similar.

  7. Impact of cold plasma on Citrobacter freundii in apple juice: inactivation kinetics and mechanisms.

    Science.gov (United States)

    Surowsky, Björn; Fröhling, Antje; Gottschalk, Nathalie; Schlüter, Oliver; Knorr, Dietrich

    2014-03-17

    Various studies have shown that cold plasma is capable of inactivating microorganisms located on a variety of food surfaces, food packaging materials and process equipment under atmospheric pressure conditions; however, less attention has been paid to the impact of cold plasma on microorganisms in liquid foodstuffs. The present study investigates cold plasma's ability to inactivate Citrobacter freundii in apple juice. Optical emission spectroscopy (OES) and temperature measurements were performed to characterise the plasma source. The plasma-related impact on microbial loads was evaluated by traditional plate count methods, while morphological changes were determined using scanning electron microscopy (SEM). Physiological property changes were obtained through flow cytometric measurements (membrane integrity, esterase activity and membrane potential). In addition, mathematical modelling was performed in order to achieve a reliable prediction of microbial inactivation and to establish the basis for possible industrial implementation. C. freundii loads in apple juice were reduced by about 5 log cycles after a plasma exposure of 480s using argon and 0.1% oxygen plus a subsequent storage time of 24h. The results indicate that a direct contact between bacterial cells and plasma is not necessary for achieving successful inactivation. The plasma-generated compounds in the liquid, such as H2O2 and most likely hydroperoxy radicals, are particularly responsible for microbial inactivation. PMID:24462703

  8. Characterization of a bioflocculant produced by Citrobacter sp. TKF04 from acetic and propionic acids.

    Science.gov (United States)

    Fujita, M; Ike, M; Tachibana, S; Kitada, G; Kim, S M; Inoue, Z

    2000-01-01

    A bacterial strain, TKF04, capable of producing a bioflocculant from acetic and/or propionic acids was isolated from a biofilm formed in inside a kitchen drain. It was identified as a Citrobacter based on its morphological and physiological characteristics and the partial sequences of its 16S rRNA. TKF04 produced the bioflocculant during the logarithmic phase of growth, and the optimum temperature and pH for the bioflocculant production were 30 degrees C and 7.2-10.0, respectively. It could utilize some organic acids and sugars for its growth as the sole carbon sources when yeast extract was supplemented; however, only acetate and propionate were found to be good substrates for the bioflocculant production. The crude bioflocculant could be recovered from the supernatant of the culture broth by ethanol precipitation and dialysis against deionized water. It was found to be effective for flocculation of a kaolin suspension, when added at a final concentration of 1-10 mg/l, over a wide range of pHs (2-8) and temperatures (approximately 3-95 degrees C), while the co-presence of cations (Na+, K+, Ca2+, Mg2+, Fe2+, Al3+ or Fe3+) did not enhance the flocculating activity. It could efficiently flocculate a variety of inorganic and organic suspended particles, including kaolin, diatomite, bentonite, activated carbon, soil and activated sludge. It contained glucosamine as the major component, and the molecular weight was estimated to be between 232 and 440 kDa by gel filtration. The observation that the flocculating activity was completely lost following chitinase treatment and its analysis with a Fourier transform infrared spectrometer suggested that the bioflocculant is a biopolymer structurally-similar to chitin or chitosan. PMID:16232696

  9. Cloning, sequencing, and overexpression of the genes encoding coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii.

    OpenAIRE

    Seyfried, M.; Daniel, R.; Gottschalk, G

    1996-01-01

    The genes encoding coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii were cloned and overexpressed in Escherichia coli. The B12-free enzyme was purified to homogeneity. It consists of three types of subunits whose N-terminal sequences are in accordance with those deduced from the open reading frames dhaB, dhaC, and dhaE, coding for subunits of 60,433 (alpha), 21,487 (beta), and 16,121 (gamma) Da, respectively. The enzyme complex has the composition alpha2beta2gamma2. Amino a...

  10. Use of immobilized biofilm of Citrobacter sp. for the removal of uranium and lead from aqueous flows

    International Nuclear Information System (INIS)

    Under appropriate growth conditions with suitable support a Citrobacter sp. formed a cohesive biofilm. When subsequently challenged with soluble lead or uranium much of the metal was accumulated, comparable to that of polyacrylamide immobilized cells, with metal deposition visually apparent. Metal uptake occurs via phosphatase mediated cleavage of organic phosphate to precipitate liberated HPO42- as insoluble metal phosphate. Both types of immobilized cell liberated comparable amounts of HPO42- from metal-free flows, but uranium accumulation was less than that observed for lead. Full potential to accumulate U was attained only after storage of the cells prior to U exposure, while maximum Pb accumulation and HPO42- liberation occurred with freshly harvested and stored cells. These findings are discussed. (author)

  11. Citrobacter freundii infection after acute necrotizing pancreatitis in a patient with a pancreatic pseudocyst: a case report

    Directory of Open Access Journals (Sweden)

    Larino-Noia Jose

    2011-02-01

    Full Text Available Abstract Introduction Infections are the most frequent and severe complications of acute necrotizing pancreatitis with a mortality rate of up to 80 percent. Although experimental and clinical studies suggest that the microbiologic source of pancreatic infection could be enteric, information in this regard is controversial. Case presentation We describe a Citrobacter freundii isolation by endoscopy ultrasound fine needle aspiration in a 80-year-old Caucasian man with pancreatic pseudocyst after acute necrotizing pancreatitis. Conclusion Our case report confirms that this organism can be recovered in patients with a pancreatic pseudocyst. On-site cytology feedback was crucial to the successful outcome of this case as immediate interpretation of the fine needle aspiration sample directed the appropriate cultures and, ultimately, the curative therapy. To the best of our knowledge, this is the first reported case of isolated pancreatic C. freundii diagnosed by endoscopy ultrasound fine needle aspiration.

  12. Aminoglycoside 6′-N-Acetyltransferase Variants of the Ib Type with Altered Substrate Profile in Clinical Isolates of Enterobacter cloacae and Citrobacter freundii

    OpenAIRE

    Casin, Isabelle; Bordon, Florence; Bertin, Philippe; Coutrot, Anne; Podglajen, Isabelle; Brasseur, Robert; Collatz, Ekkehard

    1998-01-01

    Three clinical isolates, Enterobacter cloacae EC1562 and EC1563 and Citrobacter freundii CFr564, displayed an aminoglycoside resistance profile evocative of low-level 6′-N acetyltransferase type II [AAC(6′)-II] production, which conferred reduced susceptibility to gentamicin but not to amikacin or isepamicin. Aminoglycoside acetyltransferase assays suggested the synthesis in the three strains of an AAC(6′) which acetylated amikacin practically as well as it acetylated gentamicin in vitro. Bot...

  13. Community-Onset Disease Caused by Citrobacter freundii Producing a Novel CTX-M β-Lactamase, CTX-M-30, in Canada

    OpenAIRE

    Abdalhamid, Baha; Pitout, Johann D. D.; Moland, Ellen S.; Hanson, Nancy D.

    2004-01-01

    Strains of Citrobacter freundii intermediate to cefotaxime but sensitive to ceftazidime were isolated from four different patients in Canada. Sequencing of PCR products by use of CTX-M-specific primers revealed a new combination of four amino acid substitutions. This new gene was designated blaCTX-M-30 and was encoded on a 3-kb plasmid. The pI of CTX-M-30 was 8.0.

  14. Diarrhea-associated biofilm formed by enteroaggregative Escherichia coli and aggregative Citrobacter freundii: a consortium mediated by putative F pili

    Directory of Open Access Journals (Sweden)

    Araújo Ana CG

    2010-02-01

    Full Text Available Abstract Background Enteroaggregative Escherichia coli (EAEC are enteropathogenic strains identified by the aggregative adhesion (AA pattern that share the capability to form biofilms. Citrobacter freundii is classically considered as an indigenous intestinal species that is sporadically associated with diarrhea. Results During an epidemiologic study focusing on infantile diarrhea, aggregative C. freundii (EACF and EAEC strains were concomitantly recovered from a severe case of mucous diarrhea. Thereby, the occurrence of synergic events involving these strains was investigated. Coinfection of HeLa cells with EACF and EAEC strains showed an 8-fold increase in the overall bacterial adhesion compared with single infections (P traA were capable of forming bacterial aggregates only in the presence of EACF. Scanning electronic microscopy analyses revealed that bacterial aggregates as well as enhanced biofilms formed by EACF and traA-positive EAEC were mediated by non-bundle forming, flexible pili. Moreover, mixed biofilms formed by EACF and traA-positive EAEC strains were significantly reduced using nonlethal concentration of zinc, a specific inhibitor of F pili. In addition, EAEC strains isolated from diarrheic children frequently produced single biofilms sensitive to zinc. Conclusions Putative F pili expressed by EAEC strains boosted mixed biofilm formation when in the presence of aggregative C. freundii.

  15. Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77.

    Science.gov (United States)

    Tsuji, Kohsei; Yoon, Ki-Seok; Ogo, Seiji

    2016-03-01

    Acetaldehyde-alcohol dehydrogenase (ADHE) is a bifunctional enzyme consisting of two domains of an N-terminal acetaldehyde dehydrogenase (ALDH) and a C-terminal alcohol dehydrogenase (ADH). The enzyme is known to be important in the cellular alcohol metabolism. However, the role of coenzyme A-acylating ADHE responsible for ethanol production from acetyl-CoA remains uncertain. Here, we present the purification and biochemical characterization of an ADHE from Citrobacter sp. S-77 (ADHES77). Interestingly, the ADHES77 was unable to be solubilized from membrane with detergents either 1% Triton X-100 or 1% Sulfobetaine 3-12. However, the enzyme was easily dissociated from membrane by high-salt buffers containing either 1.0 M NaCl or (NH4)2SO4 without detergents. The molecular weight of a native protein was estimated as approximately 400 kDa, consisting of four identical subunits of 96.3 kDa. Based on the specific activity and kinetic analysis, the ADHES77 tended to have catalytic reaction towards acetaldehyde elimination rather than acetaldehyde formation. Our experimental observation suggests that the ADHES77 may play a pivotal role in modulating intracellular acetaldehyde concentration. PMID:26216639

  16. CELULITIS FACIAL ODONTOGÉNICA SEVERA INFRECUENTE CAUSADA POR CITROBACTER FREUNDII PRODUCTORA DE AMPC EN UN PACIENTE CON DIABETES MELLITUS 2. REPORTE DE CASO CELULITE FACIAL ODONTOGÊNICA SEVERA INFREQUENTE CAUSADA POR CITROBACTER FREUNDII PRODUTORA DE AMPC EM UM PACIENTE COM DIABETES MELLITUS 2. RELATÓRIO DE CASO UNCOMMON SEVERE ODONTOGENIC FACIAL CELLULITIS CAUSED BY AMPCPRODUCING CITROBACTER FREUNDII IN A PATIENT WITH TYPE 2 DIABETES MELLITUS. CASE REPORT

    Directory of Open Access Journals (Sweden)

    CAMILO ESLAVA

    2012-06-01

    Full Text Available El manejo de la celulitis facial odontogénica no deja de ser un tema controversial en el campo de la cirugía oral y maxilofacial; los principios quirúrgicos y terapéuticos han sido sometidos a modificacio nes basadas en los hallazgos clínicos, imagenológicos y microbiológicos a través del tiempo. En pacientes con diabetes mellitus 2 se incrementa el riesgo a sufrir infecciones bacterianas oportunistas con tiempos de hospitalización más prolongados que la población no diabética. La literatura es clara estableciendo las diferencias clínicas y microbiológicas de la celulitis facial odontogénica en este grupo de pacientes, sin embargo, no existe un protocolo médico quirúrgico destinado a ellos. El microorganismo comúnmente aislado es Klebsiella pneumoniae, mientras Citrobacter freundii es inusual en las infecciones odontogénicas, su capacidad para producir betalactamasas de amplio espectro (AmpC le permite bloquear la acción de los antibióticos de uso empírico en Cirugía Oral y Maxilofacial. A continuación, presentamos el caso de una paciente de 61 años con diabetes Mellitus tipo 2 y celulitis facial odontogénica por Citrobacter freundii productora de AmpC.O tratamento da celulite facial odontogênica não deixa de ser um tema controverso no campo da Cirurgia Oral e Maxilofacial; os princípios cirúrgicos e terapêuticos foram submetidos a modificações baseadas nos descobrimentos clínicos, imagenológicos e microbiológicos através do tempo. Em pacientes com Diabetes Mellitus 2 aumenta o risco de sofrer infecções bacterianas oportunistas com tempos de hospitalização mais prolongados que na população não diabética. A literatura é clara estabelecendo as diferenças clínicas e microbiológicas da Celulite Facial Odontogênica neste grupo de pacientes; porém, não existe um protocolo médico cirúrgico destinado a eles. O microrganismo comunmente isolado é o Klebsiella pneumoniae, enquanto que o Citrobacter

  17. Fermentative hydrogen production by Clostridium butyricum CWBI1009 and Citrobacter freundii CWBI952 in pure and mixed cultures

    Directory of Open Access Journals (Sweden)

    Beckers, L.

    2010-01-01

    Full Text Available This paper investigates the biohydrogen production by two mesophilic strains, a strict anaerobe (Clostridium butyricum CWBI1009 and a facultative anaerobe (Citrobacter freundii CWBI952. They were cultured in pure and mixed cultures in serum bottles with five different carbon sources. The hydrogen yields of pure C. freundii cultures ranged from 0.09 molH2.molhexose-1 (with sucrose to 0.24 molH2.molhexose-1 (with glucose. Higher yields were obtained by the pure cultures of Cl. butyricum ranging from 0.44 molH2.molhexose-1 (with sucrose to 0.69 molH2.molhexose-1 (with lactose. This strain also fermented starch whereas C. freundii did not. However, it consumed the other substrates faster and produced hydrogen earlier than Cl. butyricum. This ability has been used to promote the growth conditions of Cl. butyricum in co-culture with C. freundii, since Cl. butyricum is extremely sensitive to the presence of oxygen which strongly inhibits H2 production. This approach could avoid the addition of any expensive reducing agents in the culture media such as L-cysteine since C. freundii consumes the residual oxygen. Thereafter, co-cultures with glucose and starch were investigated: hydrogen yields decreased from 0.53 molH2.molhexose-1 for pure Cl. butyricum cultures to 0.38 molH2.molhexose-1 for mixed culture with glucose but slightly increased with starch (respectively 0.69 and 0.73 molH2.molhexose-1. After 48 h of fermentation, metabolites analysis confirmed with microbial observation, revealed that the cell concentration of C. freundii dramatically decreased or was strongly inhibited by the development of Cl. butyricum.

  18. First Detection of the Ambler Class C 1 AmpC β-Lactamase in Citrobacter freundii by a New, Simple Double-Disk Synergy Test▿

    OpenAIRE

    Ruppé, Etienne; Bidet, Philippe; Verdet, Charlotte; Arlet, Guillaume; Bingen, Edouard

    2006-01-01

    We report on the first detection of an AmpC-type Ambler class C 1 (ACC-1) β-lactamase in Citrobacter freundi isolated from a patient also harboring ACC-1-producing Escherichia coli and Klebsiella pneumoniae. We propose a simple cefoxitin-based double-disk synergy test (DDST) for the specific detection of ACC-1 in members of the family Enterobacteriaceae, including natural AmpC producers, in association with a cloxacillin-based DDST as a first-line AmpC-type β-lactamase screening test.

  19. Actinide and lanthanum accumulation by immobilized cells of a citrobacter sp. and application to the decontamination of solutions containing americium and plutonium

    International Nuclear Information System (INIS)

    Phosphatase-mediated metal bioaccumulation by a Citrobacter sp. underlies a bioprocess for the removal of heavy metals from solution, as cell-bound metal phosphate. Deposition of uranyl ion indicated a role in the biotechnological removal of americium and plutonium from wastes generated from the nuclear fuel cycle. Preliminary studies suggested a recalcitrance of tetravalent species of U(IV), Th(IV) and Zr(IV) and, by implication, Pu(IV), probably attributable to the stability of metal-ligand complexes in solution. Trials with the trivalent model, La(III), indicated probable bioaccumulation of Pu(III) and Am(III), which was confirmed by the removal of 241Am by cells immobilized in a cartridge incorporated into a flow supplemented with Am. Pu(V) and Pu(IV) wastes may be treatable via prior reduction to Pu(III), with simultaneous removal of the latter with the co-contaminant Am(III). An oxidative route, to Pu(VI), with desolubilization as HPuO2PO4 was also considered, but experiments using the analogous U(VI) (uranyl ion) demonstrated a greater efficiency of M(III) removal. Initial experiments utilized polyacrylamide gel-immobilized cells. 241Am removal also occurred with Citrobacter sp. immobilized as biofilm on reticulated foam supports, more amenable to large-scale processes

  20. Hematoma intraparenquimatoso hepático post- colangiopancreatografía retrógrada endoscópica sobreinfectado por Citrobacter freundii y Klebsiella pneumoniae BLEE

    Directory of Open Access Journals (Sweden)

    Sebastián Carrica

    2014-01-01

    Full Text Available El siguiente es un caso de una mujer de 37 años de edad que desarrolla un hematoma hepático intraparenquimatoso después de una colangiopancreatografía retrógrada endoscópica con papilotomía y extracción de litiasis. El procedimiento requiere el paso de un alambre de guía. El paciente presenta dolor abdominal agudo 72 horas después y una resonancia magnética muestra un hematoma de 124 x 93 mm, por lo que se mantiene en observación. Veintiún días después presenta dolor abdominal en cuadrante superior derecho y fiebre. En consecuencia se realiza un drenaje percutáneo con el aislamiento de Citrobacter freundii y Klebsiella pneumoniae BLEE. El paciente tiene una buena evolución.

  1. Isolation and Screening of a native Citrobacter sp. with high nicotine-tolerant and its application as a biocatalyst for biodegradation of nicotine

    Directory of Open Access Journals (Sweden)

    Morahem Ashengroph

    2015-12-01

    Full Text Available Introduction: Nicotine is a toxic plant alkaloid and it has been designated as hazardous by the United States Environmental Protection Agency (USEPA since 1994. The present work was directed to screen nicotine resistant bacteria, that is used as biocatalyst in the biodegradation of nicotine from contaminated sites. Materials and methods: Collected soil samples from 12 tobacco farms were selected as target sites for sampling. Enrichment nicotine-degrading bacteria were performed in minimal salt media containing nicotine as the sole carbon and nitrogen sources. Agar dilution plate method was performed for determining intrinsic tolerance of bacterial isolates to nicotine. Phenotypic characterization and phylogenetic analysis were used to identify the selected bacterial isolate able to degrade nicotine. To determine the optimal conditions for the bio-removal of nicotine, the effects of initial nicotine concentration, incubation time and the addition of carbon and nitrogen sources in the selected strain were tested. The quantification of residual nicotine in the culture media was measured by high performance liquid chromatography (HPLC. Results: Among 20 bacterial isolates for degradation of nicotine, the strain TPS2 showed a high level of resistance and degradation efficiency. Results of phenotypic identification and phylogenetic analysis showed the native strain TPS2 belongs to the Citrobacter sp. strain TPS2 (GeneBank accession no. KM110046. According to the results of de-nicotination experiment, the native strain TPS2 is able to remove 100% of nicotine with an initial concentration 2.5 g/l in the presence of 2.5 g/l fructose. Discussion and conclusion: The results showed that the screened Citrobacter sp. was suitable candidate for degradation of nicotine from wastewater and sites that contaminated with nicotine. It is seemed by using of the microbial biocatalyst the ecosystem contamination of toxic nicotine can be decreased. The present work is

  2. Kinetic Parameters and Cytotoxic Activity of Recombinant Methionine γ-Lyase from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii.

    Science.gov (United States)

    Morozova, E A; Kulikova, V V; Yashin, D V; Anufrieva, N V; Anisimova, N Y; Revtovich, S V; Kotlov, M I; Belyi, Y F; Pokrovsky, V S; Demidkina, T V

    2013-07-01

    The steady-state kinetic parameters of pyridoxal 5'-phosphate-dependent recombinant methionine γ -lyase from three pathogenic bacteria, Clostridium tetani, Clostridium sporogenes, and Porphyromonas gingivalis, were determined in β- and γ-elimination reactions. The enzyme from C. sporogenes is characterized by the highest catalytic efficiency in the γ-elimination reaction of L-methionine. It was demonstrated that the enzyme from these three sources exists as a tetramer. The N-terminal poly-histidine fragment of three recombinant enzymes influences their catalytic activity and facilitates the aggregation of monomers to yield dimeric forms under denaturing conditions. The cytotoxicity of methionine γ-lyase from C. sporogenes and C. tetani in comparison with Citrobacter freundii was evaluated using K562, PC-3, LnCap, MCF7, SKOV-3, and L5178y tumor cell lines. K562 (IC50=0.4-1.3 U/ml), PC-3 (IC50=0.1-0.4 U/ml), and MCF7 (IC50=0.04-3.2 U/ml) turned out to be the most sensitive cell lines. PMID:24303205

  3. Mechanistic deductions from kinetic isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Erwinia herbicola and Citrobacter freundii tyrosine phenol-lyase

    International Nuclear Information System (INIS)

    The pH dependence of the kinetic parameters and primary deuterium isotope effects have been determined for tyrosine phenol-lyase from both Erwinia herbicola and Citrobacter freundii. The primary deuterium isotope effects indicate that proton abstraction from the 2-position of the substrate is partially rate-limiting for both enzymes. The C. freundii enzyme primary deuterium isotope effects [DV = 3.5 and D(V/Ktyr) = 2.5] are pH independent, indicating that tyrosine is not sticky (i.e., does not dissociate slower than it reacts to give products). Since Vmax for both tyrosine and the alternate substrate S-methyl-L-cysteine is also pH independent, substrate binds only to the correctly protonated form of the enzyme. For the E. herbicola enzyme, both Vmax and V/K for tyrosine or S-methyl-L-cysteine are pH dependent, as well as both DV and D(V/Ktyr). Thus, while both the protonated and unprotonated enzyme can bind substrate, and may be interconverted directly, only the unprotonated Michaelis complex is catalytically competent. At pH 9.5, DV = 2.5 and D(V/Ktyr) = 1.5. However, at pH 6.4 the isotope effect on both parameters is equal to 4.1. From these data, the forward commitment factor (cf = 5.2) and catalytic ratio (cvf = 1.1) for tyrosine and S-methyl-L-cysteine (cf = 2.2, cvf = 24) are calculated. Also, the Michaelis complex partition ratio (cf/cvf) for substrate and products is calculated to be 4.7 for tyrosine and 0.1 for S-methyl-L-cysteine

  4. Mechanistic deductions from kinetic isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Erwinia herbicola and Citrobacter freundii tyrosine phenol-lyase

    Energy Technology Data Exchange (ETDEWEB)

    Kiick, D.M.; Phillips, R.S.

    1988-09-20

    The pH dependence of the kinetic parameters and primary deuterium isotope effects have been determined for tyrosine phenol-lyase from both Erwinia herbicola and Citrobacter freundii. The primary deuterium isotope effects indicate that proton abstraction from the 2-position of the substrate is partially rate-limiting for both enzymes. The C. freundii enzyme primary deuterium isotope effects (DV = 3.5 and D(V/Ktyr) = 2.5) are pH independent, indicating that tyrosine is not sticky (i.e., does not dissociate slower than it reacts to give products). Since Vmax for both tyrosine and the alternate substrate S-methyl-L-cysteine is also pH independent, substrate binds only to the correctly protonated form of the enzyme. For the E. herbicola enzyme, both Vmax and V/K for tyrosine or S-methyl-L-cysteine are pH dependent, as well as both DV and D(V/Ktyr). Thus, while both the protonated and unprotonated enzyme can bind substrate, and may be interconverted directly, only the unprotonated Michaelis complex is catalytically competent. At pH 9.5, DV = 2.5 and D(V/Ktyr) = 1.5. However, at pH 6.4 the isotope effect on both parameters is equal to 4.1. From these data, the forward commitment factor (cf = 5.2) and catalytic ratio (cvf = 1.1) for tyrosine and S-methyl-L-cysteine (cf = 2.2, cvf = 24) are calculated. Also, the Michaelis complex partition ratio (cf/cvf) for substrate and products is calculated to be 4.7 for tyrosine and 0.1 for S-methyl-L-cysteine.

  5. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  6. Box counting method in recording, processing and evaluation of genomic signals

    Directory of Open Access Journals (Sweden)

    Martin Valla*

    2010-12-01

    Full Text Available Fractals are geometrical shapes with noninteger dimension andinvariance against change of scale factor. For each geometricalshape, a single parameter - dimension - can be calculated. Forcalculation, Box Counting Method (BCM was chosen.Determination of dimension on one level of resolution is notsufficient, it is necessary to subsequently process it and determine multifractal coefficient. Aim of our interest consists in analysis of images obtained from a linear sequence of DNA code. For analysis itself, sequences of Homo sapiens and Citrobacter youngae were chosen. Results of calculation are fractal coefficients derived from dimensions of generated structures. This result enables to introduce criterion for sequences determination. Graphical outputs may bealso represented as multidimensional alternative transformation of linearly recorded genomic signal. Algorithms were developed in computational environment MATLAB. Data were downloaded from a public database EMBL (ESI and GenBank (NCBI.

  7. Investigation of a foodborne disease outbreak caused by Citrobacter freundii%一起弗氏柠檬酸杆菌所致食源性疾病调查

    Institute of Scientific and Technical Information of China (English)

    闫革彬; 隋吉林; 芦丹; 刘重程; 王涛

    2013-01-01

    本文用描述性流行病学分析方法,对一起集体聚餐所致食源性疾病进行分析,根据流行病学调查资料、病例临床特点和实验室检验结果,证实该起食源性疾病由食用受弗氏柠檬酸杆菌污染的食品所致.%Descriptive epidemiological analysis was conducted on a food borne disease outbreak after a mass dinner, and laboratory detection was performed to understand the etiology of the disease. According to the epidemiological survey and laboratory detection results, the outbreak was identified to be caused by the food contaminated with Citrobacter freundii.

  8. Herbarium genomics

    DEFF Research Database (Denmark)

    Bakker, Freek T.; Lei, Di; Yu, Jiaying;

    2016-01-01

    Herbarium genomics is proving promising as next-generation sequencing approaches are well suited to deal with the usually fragmented nature of archival DNA. We show that routine assembly of partial plastome sequences from herbarium specimens is feasible, from total DNA extracts and with specimens...... up to 146 years old. We use genome skimming and an automated assembly pipeline, Iterative Organelle Genome Assembly, that assembles paired-end reads into a series of candidate assemblies, the best one of which is selected based on likelihood estimation. We used 93 specimens from 12 different...... correlation between plastome coverage and nuclear genome size (C value) in our samples, but the range of C values included is limited. Finally, we conclude that routine plastome sequencing from herbarium specimens is feasible and cost-effective (compared with Sanger sequencing or plastome...

  9. Ancient genomics

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Allentoft, Morten Erik; Avila Arcos, Maria del Carmen;

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence...... increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans......, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when...

  10. Cephalopod genomics

    DEFF Research Database (Denmark)

    Albertin, Caroline B.; Bonnaud, Laure; Brown, C. Titus;

    2012-01-01

    The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, ``Paths to Cephalopod Genomics-Strategies, Choices, Organization,'' held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria......, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers...... active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described in...

  11. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  12. Isolation and Identification of Citrobacter freundii and Its PCR-SSCP Analysis%弗氏柠檬酸杆菌的分离鉴定与PCR-SSCP分析

    Institute of Scientific and Technical Information of China (English)

    胡秀彩; 王艺; 吕爱军

    2011-01-01

    摘要利用营养琼脂、MaC培养基从草鱼肠道中分离到3株细菌,暂时编号为TC-1、TC-2和TC-3,通过形态学观察、生理生化特征、药敏试验、动物试验、构建系统发育进化树及PCR-SSCP分析等系统鉴定,结果表明3株菌株均为弗氏柠檬酸杆菌(Citrobacter freundii),其中TC-2菌株对小鼠、斑马鱼有致病性;3株菌均对头孢噻肟、头孢曲松、洛美沙星、诺氟沙星等多种药物敏感;系统发育分析表明,3株弗氏柠檬酸杆菌16S rDNA序列与DSM 30039模式株同源性分别为99.59%、99.47%和99.53%,且位于系统发育树的同一分支;进一步采用V3区PCR-SSCP分析结果显示弗氏柠檬酸杆菌SSCP图谱中菌株间带型存在差异.%The bacteria were isolated from intestine in grass carp ( Ctenopharyngodon idellus ) using nutrient agar and MaC medium, designated temporarily as TC-1, TC-2 and TC-3, and identified with morphological observation, physiological and biochemical characteristics, drug sensitive test, animal test, established phylogcnctic tree, as well as PCR-SSCP analysis. The results showed that all 3 strains were Citrobacter freundii (Cf). Animal tests showed that TC-2 strain was lethal to mice and zebrafish, respectively. Drug sensitivity test analysis revealed that 3 strains were sensitivity to cefotaxime, ceftriaxone, lomefloxacin, norfloxacin, and many others. The phylogenetic analysis showed that 16S rDNA sequence of the 3 strains had homoiogy to the typical strain DSM 30039 at 99. 59% , 99. 47% and 99.53% respectively, and they located on the same branch of the phylogenelic tree. Further analysis results adopting V3 region of PCR-SSCP showed there were differences among SSCP atlases of Cf strains.

  13. The function genomics study

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Genomics is a biology term appeared ten years ago, used to describe the researches of genomic mapping, sequencing, and structure analysis, etc. Genomics, the first journal for publishing papers on genomics research was born in 1986. In the past decade, the concept of genomics has been widely accepted by scientists who are engaging in biology research. Meanwhile, the research scope of genomics has been extended continuously, from simple gene mapping and sequencing to function genomics study. To reflect the change, genomics is divided into two parts now, the structure genomics and the function genomics.

  14. Citrus Genomics

    OpenAIRE

    Talon, Manuel; Gmitter, Fred G.Jr.

    2008-01-01

    Citrus is one of the most widespread fruit crops globally, with great economic and health value. It is among the most difficult plants to improve through traditional breeding approaches. Currently, there is risk of devastation by diseases threatening to limit production and future availability to the human population. As technologies rapidly advance in genomic science, they are quickly adapted to address the biological challenges of the citrus plant system and the world's industries. The hist...

  15. 乌翅真鲨弗氏柠檬酸杆菌的分离与鉴定%Isolation and Identification of Pathogenic Bacterium Citrobacter Freundii from Blacktip Reef Shark Carcharhinus melanopterus

    Institute of Scientific and Technical Information of China (English)

    卢君辉; 孙佳佳; 董世龙; 任硕

    2015-01-01

    为确定引起乌翅真鲨(Carcharhinus melanopterus)患病的病原种类及耐药情况,用常规方法从患病乌翅真鲨内脏取样分离得到的1株优势菌,通过回归感染试验确定该菌株的致病性,通过经典生理生化分析、API 20E细菌快速鉴定系统、16S rDNA序列分析对其进行鉴定,确定该株致病菌为弗氏柠檬酸杆菌(Citrobacter freundii).药敏试验结果表明:该菌株对左氧氟沙星、头孢曲松钠、四环素、链霉素和庆大霉素等敏感.

  16. Isolation and algicidal characteristics of Citrobacter sp.strain N10%柠檬酸杆菌 N10的分离及其溶藻特性

    Institute of Scientific and Technical Information of China (English)

    孙朋飞; 卢丽玲; 王冠; 赵宇华

    2013-01-01

    Summary In recent decades,harmful algal blooms(HABs),which are natural phenomena that occur across all the world, have posed threats to decrease dissolved oxygen and have had a negative effect on fisheries, aquaculture,drinking water,tourism and human health.It is increasingly urgent to develop useful strategies for predicting and reducing the negative impacts of HABs.Actually,many methods have been devoted to controlling HABs,including copper sulfate,hydrogen peroxide,ozonization,ultrasonication,collection of algae from water surface using nets,iron powder and magnets,centrifugal separation,or ultraviolet radiation.As an effective and environment friendly strategy to control harmful algal bloom outbreaks,biologic control methods such as using algicidal bacteria against M.aeruginosa have been more and more attractive.It has been demonstrated that algicidal bacteria could serve as potential ways in reducing the impacts of HABs. In this study,a Citrobacter sp.N10 with algicidal activity against the toxic algae M.aeruginosa was isolated and identified from a lake of Zhejiang University using liquid infection technology and 1 6S rDNA sequence analysis.The growth and algicidal characters of Citrobacter sp.N10 were then studied in order to offer some useful information for HABs controlling. The results showed that the bacterium was gram-negative and its colonies were smooth, convex, low moisture,translucent or opaque and gray,and its colony surfaces were glossy.Sequence analysis of 1 6S rDNA demonstrated that strain N10 belonged to Citrobacter sp.When inoculation time was 2 to 12 h,N10 grew in logarithmic-growth period,and when inoculation time was beyond 12 h,N10 was in stationary phase.Strain N10 showed a high lysis of M.aeruginosa with an algicidal rate of 86.55% within 24 h.The algicidal rate of N10 increased with increasing incubation time and reached 97.08% within 72 h.pH value had the most significant effect on the growth of strain N10,followed by Na

  17. Whole Genome Sequencing

    Science.gov (United States)

    ... you want to learn. Search form Search Whole Genome Sequencing You are here Home Testing & Services Testing ... the full story, click here . What is whole genome sequencing? Whole genome sequencing is the mapping out ...

  18. Genomes on ice.

    Science.gov (United States)

    Parkhill, Julian

    2016-03-01

    This month's Genome Watch discusses the analysis of a Helicobacter pylori genome from the preserved Copper-Age mummy known as the Iceman and how ancient genomes shed light on the history of bacterial pathogens. PMID:26853114

  19. Screening of Lipase-Producing Bacteria and Conditions Optimization of Lipase Production by Citrobacter sp.%产脂肪酶菌株筛选及柠檬酸杆菌产酶条件优化

    Institute of Scientific and Technical Information of China (English)

    张晶晶; 刘金峰; 牟伯中; 杨世忠

    2015-01-01

    Lipase can catalyze hydrolysis of triglyceride into fatty acids and glycerol,and has been widely applied in industries,and to obtain lipase-producing microorganisms is the basis of the study. A novel lipase-producing microbe was isolated from lipid-contaminated soil samples using plate-screening method. It was purified and identified as Citrobacter sp. through 16S rRNA sequence analysis. The enzyme production condition was optimized by single factor experiment. The optimum culture condition in a liter medium was 2. 0(g/ L,the same below)of soluble starch,1. 0 KH2 PO4 ,2. 2 K2 HPO4 ·3H2 O,1. 0(NH4 )2 SO4 ,0. 1 MgSO4 ·7H2 O,2. 0 beef extract,olive oil 10. 0 mL,pH 7. 5 and 15 mL of inoculum,culture for 43 h at 37 °C in shaker. The obtained enzymatic activity was 384 U/ mL at the highest,and it was 13-fold of that before the optimization. This strain could be used to produce lipase.%脂肪酶可以催化甘油三酯水解成脂肪酸和甘油,已广泛应用在工业领域,而获得产酶微生物是研究的基础。采用油脂平板法筛选出1株脂肪酶产生菌。经16S rRNA 序列分析可知,该菌株属于柠檬酸杆菌(Citrobacter werkman and Gillen)。单因素试验对其进行产酶条件优化,优化后产酶条件(g/ L):淀粉2.0,KH2 PO41.0,K2 HPO4·3H2 O 2.2,(NH4)2 SO41.0,MgSO4·7H2 O 0.1,牛肉膏2.0,橄榄油10.0 mL,pH 7.5,每升接种量为15 mL,37℃培养43 h。获得最大酶活为384 U/ mL,是优化前的13倍。可以利用该菌制备脂肪酶。

  20. Screening of Lipase-Producing Bacteria and Conditions Optimization of Lipase Production by Citrobacter sp.%产脂肪酶菌株筛选及柠檬酸杆菌产酶条件优化

    Institute of Scientific and Technical Information of China (English)

    张晶晶; 刘金峰; 牟伯中; 杨世忠

    2015-01-01

    脂肪酶可以催化甘油三酯水解成脂肪酸和甘油,已广泛应用在工业领域,而获得产酶微生物是研究的基础。采用油脂平板法筛选出1株脂肪酶产生菌。经16S rRNA 序列分析可知,该菌株属于柠檬酸杆菌(Citrobacter werkman and Gillen)。单因素试验对其进行产酶条件优化,优化后产酶条件(g/ L):淀粉2.0,KH2 PO41.0,K2 HPO4·3H2 O 2.2,(NH4)2 SO41.0,MgSO4·7H2 O 0.1,牛肉膏2.0,橄榄油10.0 mL,pH 7.5,每升接种量为15 mL,37℃培养43 h。获得最大酶活为384 U/ mL,是优化前的13倍。可以利用该菌制备脂肪酶。%Lipase can catalyze hydrolysis of triglyceride into fatty acids and glycerol,and has been widely applied in industries,and to obtain lipase-producing microorganisms is the basis of the study. A novel lipase-producing microbe was isolated from lipid-contaminated soil samples using plate-screening method. It was purified and identified as Citrobacter sp. through 16S rRNA sequence analysis. The enzyme production condition was optimized by single factor experiment. The optimum culture condition in a liter medium was 2. 0(g/ L,the same below)of soluble starch,1. 0 KH2 PO4 ,2. 2 K2 HPO4 ·3H2 O,1. 0(NH4 )2 SO4 ,0. 1 MgSO4 ·7H2 O,2. 0 beef extract,olive oil 10. 0 mL,pH 7. 5 and 15 mL of inoculum,culture for 43 h at 37 °C in shaker. The obtained enzymatic activity was 384 U/ mL at the highest,and it was 13-fold of that before the optimization. This strain could be used to produce lipase.

  1. Use of microdilution panels with and without beta-lactamase inhibitors as a phenotypic test for beta-lactamase production among Escherichia coli, Klebsiella spp., Enterobacter spp., Citrobacter freundii, and Serratia marcescens.

    Science.gov (United States)

    Thomson, K S; Sanders, C C; Moland, E S

    1999-06-01

    Over the past decade, a number of new beta-lactamases have appeared in clinical isolates of Enterobacteriaceae that, unlike their predecessors, do not confer beta-lactam resistance that is readily detected in routine antibiotic susceptibility tests. Because optimal methodologies are needed to detect these important new beta-lactamases, a study was designed to evaluate the ability of a panel of various beta-lactam antibiotics tested alone and in combination with beta-lactamase inhibitors to discriminate between the production of extended-spectrum beta-lactamases, AmpC beta-lactamases, high levels of K1 beta-lactamase, and other beta-lactamases in 141 isolates of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii, and Serratia marcescens possessing well-characterized beta-lactamases. The microdilution panels studied contained aztreonam, cefpodoxime, ceftazidime, cefotaxime, and ceftriaxone, with and without 1, 2, and 4 microg of clavulanate per ml or 8 microg of sulbactam per ml and cefoxitin and cefotetan with and without 8 microg of sulbactam per ml. The results indicated that a minimum panel of five tests would provide maximum separation of extended-spectrum beta-lactamase high AmpC, high K1, and other beta-lactamase production in Enterobacteriaceae. These included cefpodoxime, cefpodoxime plus 4 microg of clavulanate per ml, ceftazidime, ceftriaxone, and ceftriaxone plus 8 microg of sulbactam per ml. Ceftriaxone plus 2 microg of clavulanate per ml could be substituted for cefpodoxime plus 4 microg of clavulanate per ml without altering the accuracy of the tests. This study indicated that tests with key beta-lactam drugs, alone and in combination with beta-lactamase inhibitors, could provide a convenient approach to the detection of a variety of beta-lactamases in members of the family Enterobacteriaceae. PMID:10348759

  2. Secondary metabolites extracted from marine sponge associated Comamonas testosteroni and Citrobacter freundii as potential antimicrobials against MDR pathogens and hypothetical leads for VP40 matrix protein of Ebola virus: an in vitro and in silico investigation.

    Science.gov (United States)

    Skariyachan, Sinosh; Acharya, Archana B; Subramaniyan, Saumya; Babu, Sumangala; Kulkarni, Shruthi; Narayanappa, Rajeswari

    2016-09-01

    The current study explores therapeutic potential of metabolites extracted from marine sponge (Cliona sp.)-associated bacteria against MDR pathogens and predicts the binding prospective of probable lead molecules against VP40 target of Ebola virus. The metabolite-producing bacteria were characterized by agar overlay assay and as per the protocols in Bergey's manual of determinative bacteriology. The antibacterial activities of extracted metabolites were tested against clinical pathogens by well-diffusion assay. The selected metabolite producers were characterized by 16S rDNA sequencing. Chemical screening and Fourier Transform Infrared (FTIR) analysis for selected compounds were performed. The probable lead molecules present in the metabolites were hypothesized based on proximate analysis, FTIR data, and literature survey. The drug-like properties and binding potential of lead molecules against VP40 target of Ebola virus were hypothesized by computational virtual screening and molecular docking. The current study demonstrated that clear zones around bacterial colonies in agar overlay assay. Antibiotic sensitivity profiling demonstrated that the clinical isolates were multi-drug resistant, however; most of them showed sensitivity to secondary metabolites (MIC-15 μl/well). The proximate and FTIR analysis suggested that probable metabolites belonged to alkaloids with O-H, C-H, C=O, and N-H groups. 16S rDNA characterization of selected metabolite producers demonstrated that 96% and 99% sequence identity to Comamonas testosteroni and Citrobacter freundii, respectively. The docking studies suggested that molecules such as Gymnastatin, Sorbicillactone, Marizomib, and Daryamide can designed as probable lead candidates against VP40 target of Ebola virus. PMID:26577929

  3. Funding Opportunity: Genomic Data Centers

    Science.gov (United States)

    Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,

  4. CD4+ lymphoid tissue inducer cells promote innate immunity in the gut

    OpenAIRE

    Sonnenberg, Gregory F.; Monticelli, Laurel A.; Elloso, M. Merle; Fouser, Lynette A.; Artis, David

    2010-01-01

    Fetal CD4+ lymphoid tissue inducer (LTi) cells play a critical role in the development of lymphoid-tissues. Recent studies identified that LTi cells persist in adults and are related to a heterogeneous population of innate lymphoid cells that have been implicated in inflammatory responses. However, whether LTi cells contribute to protective immunity remains poorly defined. We demonstrate that following infection with Citrobacter rodentium, CD4+ LTi cells were a dominant source of interleukin-...

  5. Early administration of probiotic Lactobacillus acidophilus and/or prebiotic inulin attenuates pathogen-mediated intestinal inflammation and Smad 7 cell signaling

    OpenAIRE

    Foye, Ondulla T.; Huang, I-Fei; Chiou, Christine C.; Walker, W. Allan; Shi, Hai Ning

    2012-01-01

    Immaturity of gut-associated immunity may contribute to pediatric mortality associated with enteric infections. A murine model to parallel infantile enteric disease was used to determine the effects of probiotic, Lactobacillus acidophilus (La), prebiotic, inulin, or both (synbiotic, syn) on pathogen-induced inflammatory responses, NF-κB, and Smad 7 signaling. Newborn mice were inoculated bi-weekly for 4 weeks with La, inulin, or syn and challenged with Citrobacter rodentium (Cr) at 5 weeks. M...

  6. Genomics With Cloud Computing

    OpenAIRE

    Sukhamrit Kaur; Sandeep Kaur

    2015-01-01

    Abstract Genomics is study of genome which provides large amount of data for which large storage and computation power is needed. These issues are solved by cloud computing that provides various cloud platforms for genomics. These platforms provides many services to user like easy access to data easy sharing and transfer providing storage in hundreds of terabytes more computational power. Some cloud platforms are Google genomics DNAnexus and Globus genomics. Various features of cloud computin...

  7. Microbial genomic taxonomy

    OpenAIRE

    Cristiane C Thompson; Chimetto, Luciane; Edwards, Robert A.; Swings, Jean; Stackebrandt, Erko; Thompson, Fabiano L

    2013-01-01

    A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes,  70% in silico Genome-to-Genome Hybridization similarity (G...

  8. Ebolavirus comparative genomics

    OpenAIRE

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S; Pedersen, Thomas Dybdal; Wassenaar, Trudy M.; Ussery, David W.

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequen...

  9. Genomes and evolutionary genomics of animals

    Institute of Scientific and Technical Information of China (English)

    Luting SONG; Wen WANG

    2013-01-01

    Alongside recent advances and booming applications of DNA sequencing technologies,a great number of complete genome sequences for animal species are available to researchers.Hundreds of animals have been involved in whole genome sequencing,and at least 87 non-human animal species' complete or draft genome sequences have been published since 1998.Based on these technological advances and the subsequent accumulation of large quantity of genomic data,evolutionary genomics has become one of the most rapidly advancing disciplines in biology.Scientists now can perform a number of comparative and evolutionary genomic studies for animals,to identify conserved genes or other functional elements among species,genomic elements that confer animals their own specific characteristics and new phenotypes for adaptation.This review deals with the current genomic and evolutionary research on non-human animals,and displays a comprehensive landscape of genomes and the evolutionary genomics of non-human animals.It is very helpful to a better understanding of the biology and evolution of the myriad forms within the animal kingdom [Current Zoology 59 (1):87-98,2013].

  10. Genome Maps, a new generation genome browser.

    Science.gov (United States)

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  11. Genome Maps, a new generation genome browser

    Science.gov (United States)

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-01-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  12. GENOMIC MEDICINE

    Directory of Open Access Journals (Sweden)

    Ignacio Briceño Balcázar

    2011-03-01

    Full Text Available Until the twilight of the 20th century, genetics was a branch of medicine applied to diseases of rare occurrence. The advent of the human genome sequence and the possibility of studying it at affordable costs for patients and healthcare institutions, has permitted its application in high-priority diseases like cancer, cardiovascular disease, diabetes, and Alzheimer’s, among others.There is great potential in predictive and preventive medicine, through studying polymorphic genetic variants associated to risks for different diseases. Currently, clinical laboratories offer studies of over 30,000 variants associated with susceptibilities, to which individuals can access without much difficulty because a medical prescription is not required. These exams permit conducting a specific plan of preventive medicine. For example, upon the possibility of finding a deleterious mutation in the BRCA1 and BRCA2 genes, the patient can prevent the breast cancer by mastectomy or chemoprophylaxis and in the presence of polymorphisms associated to cardiovascular risk preventive action may be undertaken through changes in life style (diet, exercise, etc..Legal aspects are also present in this new conception of medicine. For example, currently there is legislation for medications to indicate on their labels the different responses such medication can offer regarding the genetic variants of the patients, given that similar doses may provoke adverse reactions in an individual, while for another such dosage may be insufficient. This scenario would allow verifying the polymorphisms of drug response prior to administering medications like anticoagulants, hyperlipidemia treatments, or chemotherapy, among others.We must specially mention recessive diseases, produced by the presence of two alleles of a mutated gene, which are inherited from the mother, as well as the father. By studying the mutations, we may learn if a couple is at risk of bearing children with the disease

  13. Genomic Medicine

    Directory of Open Access Journals (Sweden)

    Ignacio Briceño Balcázar

    2011-04-01

    Full Text Available Until the twilight of the 20th century, genetics was a branch of medicine applied to diseases of rare occurrence.  The advent of the human genome sequence and the possibility of studying it at affordable costs for patients and healthcare institutions, has permitted its application in high-priority diseases like cancer, cardiovascular disease, diabetes, and Alzheimer’s, among others. There is great potential in predictive and preventive medicine, through studying polymorphic genetic variants associated to risks for different diseases. Currently, clinical laboratories offer studies of over 30,000 variants associated with susceptibilities, to which individuals can access without much difficulty because a medical prescription is not required. These exams permit conducting a specific plan of preventive medicine.  For example, upon the possibility of finding a deleterious mutation in the BRCA1 and BRCA2 genes, the patient can prevent the breast cancer by mastectomy or chemoprophylaxis and in the presence of polymorphisms associated to cardiovascular risk preventive action may be undertaken through changes in life style (diet, exercise, etc.. Legal aspects are also present in this new conception of medicine.  For example, currently there is legislation for medications to indicate on their labels the different responses such medication can offer regarding the genetic variants of the patients, given that similar doses may provoke adverse reactions in an individual, while for another such dosage may be insufficient. This scenario would allow verifying the polymorphisms of drug response prior to administering medications like anticoagulants, hyperlipidemia treatments, or chemotherapy, among others. We must specially mention recessive diseases, produced by the presence of two alleles of a mutated gene, which are inherited from the mother, as well as the father. By studying the mutations, we may learn if a couple is at risk of bearing children with the

  14. Study on corrosion mechanism of Citrobacter freundii to HSn70-1AB copper alloy in reclaimed water%再生水中柠檬酸杆菌对铜合金腐蚀机理研究

    Institute of Scientific and Technical Information of China (English)

    张静

    2013-01-01

    With Citrobacter freundii in reclaimed water as the research object,the structure features of the biofilm on the surface of HSn70-1AB copper alloy was studied from aspects of micro-morphology characteristics,thermal analysis and so on using atomic force microscopy(AFM),contact angle measurement,scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS) and some other methods; meanwhile,the effect of hydrophobicity of the biofilm on its structure and the corrosion mechanism of HSn70-1AB copper alloy were also analyzed.The study results showed that,the uniformity of the said alloy gradually deteriorated along with the soaking time; benefited from the strong hydrophilicity,the whole structure of the biofilm was integrated at later stage; the corrosion of Citrobacterfreundii to HSn70-1AB was mainly represented as localized corrosion,especially pitting corrosion.%以再生水中弗氏柠檬酸杆菌为研究对象,采用原子力显微镜(AFM)、接触角测量仪、扫描电子显微镜(SEM)和能谱仪(EDS)等试验方法,从微观形貌表征、热力学分析等方面,研究了HSn70-1AB铜合金表面生物膜的结构特性,并分析了生物膜疏水性能对生物膜结构的影响以及生物膜下HSn70-1AB铜合金的腐蚀机理.研究结果显示,HSn70-1AB合金表面生物膜的均匀性随浸泡对间的延长而逐渐变差;较强的亲本性使得后期生物膜的整体结构比较完整;弗氏柠檬酸杆菌对HSn70-1AB主要以局部腐蚀为主,尤其是点蚀.

  15. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  16. Genomic Encyclopedia of Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  17. Activation of intestinal epithelial Stat3 orchestrates tissue defense during gastrointestinal infection.

    Directory of Open Access Journals (Sweden)

    Nadine Wittkopf

    Full Text Available Gastrointestinal infections with EHEC and EPEC are responsible for outbreaks of diarrheal diseases and represent a global health problem. Innate first-line-defense mechanisms such as production of mucus and antimicrobial peptides by intestinal epithelial cells are of utmost importance for host control of gastrointestinal infections. For the first time, we directly demonstrate a critical role for Stat3 activation in intestinal epithelial cells upon infection of mice with Citrobacter rodentium - a murine pathogen that mimics human infections with attaching and effacing Escherichia coli. C. rodentium induced transcription of IL-6 and IL-22 in gut samples of mice and was associated with activation of the transcription factor Stat3 in intestinal epithelial cells. C. rodentium infection induced expression of several antimicrobial peptides such as RegIIIγ and Pla2g2a in the intestine which was critically dependent on Stat3 activation. Consequently, mice with specific deletion of Stat3 in intestinal epithelial cells showed increased susceptibility to C. rodentium infection as indicated by high bacterial load, severe gut inflammation, pronounced intestinal epithelial cell death and dissemination of bacteria to distant organs. Together, our data implicate an essential role for Stat3 activation in intestinal epithelial cells during C. rodentium infection. Stat3 concerts the host response to bacterial infection by controlling bacterial growth and suppression of apoptosis to maintain intestinal epithelial barrier function.

  18. The coffee genome hub : a resource for coffee genomes

    OpenAIRE

    Dereeper, Alexis; Bocs, Stéphanie; Rouard, Mathieu; Guignon, Valentin; Ravel, Sébastien; Tranchant-Dubreuil, Christine; Poncet, Valérie; Garsmeur, Olivier; Lashermes, Philippe; Droc, Gaëtan

    2015-01-01

    The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub ( ext-link-type="uri" xlink:href="http://coffee-genome.org/" xlink:type="simple">http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilit...

  19. Phytophthora genomics: the plant destroyers' genome decoded

    NARCIS (Netherlands)

    Govers, F.; Gijzen, M.

    2006-01-01

    The year 2004 was an exciting one for the Phytophthora research community. The United States Department of Energy Joint Genome Institute (JGI) completed the draft genome sequence of two Phytophthora species, Phytophthora sojae and Phytophthora ramorum. In August of that year over 50 people gathered

  20. Comparative Genome Analysis and Genome Evolution

    NARCIS (Netherlands)

    Snel, Berend

    2003-01-01

    This thesis described a collection of bioinformatic analyses on complete genome sequence data. We have studied the evolution of gene content and find that vertical inheritance dominates over horizontal gene trasnfer, even to the extent that we can use the gene content to make genome phylogenies. Usi

  1. Genomic Data Commons | Office of Cancer Genomics

    Science.gov (United States)

    The NCI’s Center for Cancer Genomics launches the Genomic Data Commons (GDC), a unified data sharing platform for the cancer research community. The mission of the GDC is to enable data sharing across the entire cancer research community, to ultimately support precision medicine in oncology.

  2. Rat Genome Database (RGD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Rat Genome Database (RGD) is a collaborative effort between leading research institutions involved in rat genetic and genomic research to collect, consolidate,...

  3. Exploiting the genome

    Energy Technology Data Exchange (ETDEWEB)

    Block, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Koonin, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Lewis, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1998-09-11

    In 1997, JASON conducted a DOE-sponsored study of the human genome project with special emphasis on the areas of technology, quality assurance and quality control, and informatics. The present study has two aims: first, to update the 1997 Report in light of recent developments in genome sequencing technology, and second, to consider possible roles for the DOE in the ''post-genomic" era, following acquisition of the complete human genome sequence.

  4. Genomics of Sorghum

    OpenAIRE

    Paterson, Andrew H.

    2008-01-01

    Sorghum (Sorghum bicolor (L.) Moench) is a subject of plant genomics research based on its importance as one of the world's leading cereal crops, a biofuels crop of high and growing importance, a progenitor of one of the world's most noxious weeds, and a botanical model for many tropical grasses with complex genomes. A rich history of genome analysis, culminating in the recent complete sequencing of the genome of a leading inbred, provides a foundation for invigorating progress toward relatin...

  5. Whole Genome Selection

    Science.gov (United States)

    Whole genome selection (WGS) is an approach to using DNA markers that are distributed throughout the entire genome. Genes affecting most economically-important traits are distributed throughout the genome and there are relatively few that have large effects with many more genes with progressively sm...

  6. Public Health Genomics

    OpenAIRE

    Lavinha, João

    2012-01-01

    Professional genomic and molecular medicine and consumer genetics. The health field concept and the public health wheel. The enterprise of Public Health Genomics (PHGEN). Genetic exceptionalism. Ethical benchmarks. Introduction and use of genome-based knowledge in the health services. Stakeholder involvement.

  7. A genome blogger manifesto

    Directory of Open Access Journals (Sweden)

    Corpas Manuel

    2012-10-01

    Full Text Available Abstract Cheap prices for genomic testing have revolutionized consumers’ access to personal genomics. Exploration of personal genomes poses significant challenges for customers wishing to learn beyond provider customer reports. A vibrant community has spontaneously appeared blogging experiences and data as a way to learn about their personal genomes. No set of values has publicly been described to date encapsulating ideals and code of conduct for this community. Here I present a first attempt to address this vacuum based on my own personal experiences as genome blogger.

  8. Statistics of genome architecture

    International Nuclear Information System (INIS)

    The main statistical distributions applicable to the analysis of genome architecture and genome tracks are briefly discussed and critically assessed. Although the observed features in distributions of element lengths can be equally well fitted by the different statistical approximations, the interpretation of observed regularities may strongly depend on the chosen scheme. We discuss the possible evolution scenarios and describe the main characteristics obtained with different distributions. The expression for the assessment of levels in hierarchical chromatin folding is derived and the quantitative measure of genome architecture inhomogeneity is suggested. This theory provides the ground for the regular statistical study of genome architecture and genome tracks.

  9. Genomic taxonomy of vibrios

    DEFF Research Database (Denmark)

    Thompson, Cristiane C.; Vicente, Ana Carolina P.; Souza, Rangel C.;

    2009-01-01

    BACKGROUND: Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety of...... tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA), supertrees, Average Amino Acid Identity (AAI), genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios....... RESULTS: We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a...

  10. Causes of genome instability

    DEFF Research Database (Denmark)

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel;

    2015-01-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus......, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other...... chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling...

  11. Development in Rice Genome Research Based on Accurate Genome Sequence

    OpenAIRE

    2008-01-01

    Rice is one of the most important crops in the world. Although genetic improvement is a key technology for the acceleration of rice breeding, a lack of genome information had restricted efforts in molecular-based breeding until the completion of the high-quality rice genome sequence, which opened new opportunities for research in various areas of genomics. The syntenic relationship of the rice genome to other cereal genomes makes the rice genome invaluable for understanding how cereal genomes...

  12. Microbial genomic taxonomy.

    Science.gov (United States)

    Thompson, Cristiane C; Chimetto, Luciane; Edwards, Robert A; Swings, Jean; Stackebrandt, Erko; Thompson, Fabiano L

    2013-01-01

    A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes,  70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups. PMID:24365132

  13. Ebolavirus comparative genomics

    DEFF Research Database (Denmark)

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat;

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a...... distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae....... Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could...

  14. Bioinformatics decoding the genome

    CERN Document Server

    CERN. Geneva; Deutsch, Sam; Michielin, Olivier; Thomas, Arthur; Descombes, Patrick

    2006-01-01

    Extracting the fundamental genomic sequence from the DNA From Genome to Sequence : Biology in the early 21st century has been radically transformed by the availability of the full genome sequences of an ever increasing number of life forms, from bacteria to major crop plants and to humans. The lecture will concentrate on the computational challenges associated with the production, storage and analysis of genome sequence data, with an emphasis on mammalian genomes. The quality and usability of genome sequences is increasingly conditioned by the careful integration of strategies for data collection and computational analysis, from the construction of maps and libraries to the assembly of raw data into sequence contigs and chromosome-sized scaffolds. Once the sequence is assembled, a major challenge is the mapping of biologically relevant information onto this sequence: promoters, introns and exons of protein-encoding genes, regulatory elements, functional RNAs, pseudogenes, transposons, etc. The methodological ...

  15. Clinical Genomic Database

    OpenAIRE

    Solomon, Benjamin D.; Nguyen, Anh-Dao; Bear, Kelly A.; Wolfsberg, Tyra G.

    2013-01-01

    Technological advances have greatly increased the availability of human genomic sequencing. However, the capacity to analyze genomic data in a clinically meaningful way lags behind the ability to generate such data. To help address this obstacle, we reviewed all conditions with genetic causes and constructed the Clinical Genomic Database (CGD) (http://research.nhgri.nih.gov/CGD/), a searchable, freely Web-accessible database of conditions based on the clinical utility of genetic diagnosis and...

  16. Physician Assistant Genomic Competencies.

    Science.gov (United States)

    Goldgar, Constance; Michaud, Ed; Park, Nguyen; Jenkins, Jean

    2016-09-01

    Genomic discoveries are increasingly being applied to the clinical care of patients. All physician assistants (PAs) need to acquire competency in genomics to provide the best possible care for patients within the scope of their practice. In this article, we present an updated version of PA genomic competencies and learning outcomes in a framework that is consistent with the current medical education guidelines and the collaborative nature of PAs in interprofessional health care teams. PMID:27490287

  17. Integrative Genomics Viewer

    OpenAIRE

    James T Robinson; Thorvaldsdóttir, Helga; Winckler, Wendy; Guttman, Mitchell; Lander, Eric S; Getz, Gad; Mesirov, Jill P.

    2011-01-01

    To the Editor: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Exper...

  18. Chromium and Genomic Stability

    OpenAIRE

    Wise, Sandra S.; Wise, John Pierce

    2011-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as high...

  19. Expectations from structural genomics.

    OpenAIRE

    Brenner, S. E.; Levitt, M.

    2000-01-01

    Structural genomics projects aim to provide an experimental structure or a good model for every protein in all completed genomes. Most of the experimental work for these projects will be directed toward proteins whose fold cannot be readily recognized by simple sequence comparison with proteins of known structure. Based on the history of proteins classified in the SCOP structure database, we expect that only about a quarter of the early structural genomics targets will have a new fold. Among ...

  20. Evolutionary genomics of Entamoeba

    OpenAIRE

    Weedall, Gareth D.; Hall, Neil

    2011-01-01

    Entamoeba histolytica is a human pathogen that causes amoebic dysentery and leads to significant morbidity and mortality worldwide. Understanding the genome and evolution of the parasite will help explain how, when and why it causes disease. Here we review current knowledge about the evolutionary genomics of Entamoeba: how differences between the genomes of different species may help explain different phenotypes, and how variation among E. histolytica parasites reveals patterns of population ...

  1. The Genome Atlas Resource

    OpenAIRE

    Azam Qureshi, Matloob; Rotenberg, Eva; Stærfeldt, Hans Henrik; Hansson, Lena; Ussery, David

    2010-01-01

    Abstract. The Genome Atlas is a resource for addressing the challenges of synchronising prokaryotic genomic sequence data from multiple public repositories. This resource can integrate bioinformatic analyses in various data format and quality. Existing open source tools have been used together with scripts and algorithms developed in a variety of programming languages at the Centre for Biological Sequence Analysis in order to create a three-tier software application for genome analysis. The r...

  2. Comparative genomics of Bifidobacteria

    OpenAIRE

    Bottacini, Francesca

    2013-01-01

    Chapter 2 of this thesis describes the sequence analysis of 14 bifidobacterial genomes from various species of the genus Bifidobacterium, and the determination of their open pan-genome trend. This analysis first determined the total number of genes to be considered as the reservoir of functions available to representatives of this genus. Many identified genes are still uncharacterized, but may be involved in the adaptation to the gut environment. This comparative genomic analysis also determi...

  3. Between two fern genomes.

    Science.gov (United States)

    Sessa, Emily B; Banks, Jo Ann; Barker, Michael S; Der, Joshua P; Duffy, Aaron M; Graham, Sean W; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D Blaine; Pryer, Kathleen M; Rothfels, Carl J; Roux, Stanley J; Salmi, Mari L; Sigel, Erin M; Soltis, Douglas E; Soltis, Pamela S; Stevenson, Dennis W; Wolf, Paul G

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves. PMID:25324969

  4. Genomics of Clostridium tetani.

    Science.gov (United States)

    Brüggemann, Holger; Brzuszkiewicz, Elzbieta; Chapeton-Montes, Diana; Plourde, Lucile; Speck, Denis; Popoff, Michel R

    2015-05-01

    Genomic information about Clostridium tetani, the causative agent of the tetanus disease, is scarce. The genome of strain E88, a strain used in vaccine production, was sequenced about 10 years ago. One additional genome (strain 12124569) has recently been released. Here we report three new genomes of C. tetani and describe major differences among all five C. tetani genomes. They all harbor tetanus-toxin-encoding plasmids that contain highly conserved genes for TeNT (tetanus toxin), TetR (transcriptional regulator of TeNT) and ColT (collagenase), but substantially differ in other plasmid regions. The chromosomes share a large core genome that contains about 85% of all genes of a given chromosome. The non-core chromosome comprises mainly prophage-like genomic regions and genes encoding environmental interaction and defense functions (e.g. surface proteins, restriction-modification systems, toxin-antitoxin systems, CRISPR/Cas systems) and other fitness functions (e.g. transport systems, metabolic activities). This new genome information will help to assess the level of genome plasticity of the species C. tetani and provide the basis for detailed comparative studies. PMID:25638019

  5. Genome of Crocodilepox Virus

    OpenAIRE

    Afonso, C. L.; Tulman, E. R.; Delhon, G.; Lu, Z.; Viljoen, G. J.; Wallace, D. B.; Kutish, G. F.; Rock, D. L.

    2006-01-01

    Here, we present the genome sequence, with analysis, of a poxvirus infecting Nile crocodiles (Crocodylus niloticus) (crocodilepox virus; CRV). The genome is 190,054 bp (62% G+C) and predicted to contain 173 genes encoding proteins of 53 to 1,941 amino acids. The central genomic region contains genes conserved and generally colinear with those of other chordopoxviruses (ChPVs). CRV is distinct, as the terminal 33-kbp (left) and 13-kbp (right) genomic regions are largely CRV specific, containin...

  6. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  7. Genome position specific priors for genomic prediction

    DEFF Research Database (Denmark)

    Brøndum, Rasmus Froberg; Su, Guosheng; Lund, Mogens Sandø;

    2012-01-01

    Background The accuracy of genomic prediction is highly dependent on the size of the reference population. For small populations, including information from other populations could improve this accuracy. The usual strategy is to pool data from different populations; however, this has not proven...... as successful as hoped for with distantly related breeds. BayesRS is a novel approach to share information across populations for genomic predictions. The approach allows information to be captured even where the phase of SNP alleles and casual mutation alleles are reversed across populations, or the actual...... casual mutation is different between the populations but affects the same gene. Proportions of a four-distribution mixture for SNP effects in segments of fixed size along the genome are derived from one population and set as location specific prior proportions of distributions of SNP effects...

  8. Genome-Scale Models

    DEFF Research Database (Denmark)

    Bergdahl, Basti; Sonnenschein, Nikolaus; Machado, Daniel;

    2016-01-01

    An introduction to genome-scale models, how to build and use them, will be given in this chapter. Genome-scale models have become an important part of systems biology and metabolic engineering, and are increasingly used in research, both in academica and in industry, both for modeling chemical...

  9. Human genome I

    International Nuclear Information System (INIS)

    An international conference, Human Genome I, was held Oct. 2-4, 1989 in San Diego, Calif. Selected speakers discussed: Current Status of the Genome Project; Technique Innovations; Interesting regions; Applications; and Organization - Different Views of Current and Future Science and Procedures. Posters, consisting of 119 presentations, were displayed during the sessions. 119 were indexed for inclusion to the Energy Data Base

  10. Genomics for Weed Science

    Science.gov (United States)

    Numerous genomic-based studies have provided insight to the physiological and evolutionary processes involved in developmental and environmental processes of model plants such as arabidopsis and rice. However, far fewer efforts have been attempted to use genomic resources to study physiological and ...

  11. Genetics and Genomics

    Science.gov (United States)

    Good progress is being made on genetics and genomics of sugar beet, however it is in process and the tools are now being generated and some results are being analyzed. The GABI BeetSeq project released a first draft of the sugar beet genome of KWS2320, a dihaploid (see http://bvseq.molgen.mpg.de/Gen...

  12. Estimation of genome length

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The genome length is a fundamental feature of a species. This note outlined the general concept and estimation method of the physical and genetic length. Some formulae for estimating the genetic length were derived in detail. As examples, the genome genetic length of Pinus pinaster Ait. and the genetic length of chromosome Ⅵ of Oryza sativa L. were estimated from partial linkage data.

  13. Safeguarding genome integrity

    DEFF Research Database (Denmark)

    Sørensen, Claus Storgaard; Syljuåsen, Randi G

    2012-01-01

    Mechanisms that preserve genome integrity are highly important during the normal life cycle of human cells. Loss of genome protective mechanisms can lead to the development of diseases such as cancer. Checkpoint kinases function in the cellular surveillance pathways that help cells to cope with DNA...

  14. Unlocking the bovine genome

    Science.gov (United States)

    The draft genome sequence of cattle (Bos taurus) has now been analyzed by the Bovine Genome Sequencing and Analysis Consortium and the Bovine HapMap Consortium, which together represent an extensive collaboration involving more than 300 scientists from 25 different countries. ...

  15. Genomic Prediction in Barley

    DEFF Research Database (Denmark)

    Edriss, Vahid; Cericola, Fabio; Jensen, Jens D;

    Genomic prediction uses markers (SNPs) across the whole genome to predict individual breeding values at an early growth stage potentially before large scale phenotyping. One of the applications of genomic prediction in plant breeding is to identify the best individual candidate lines to contribute...... to next generation. The main goal of this study was to see the potential of using genomic prediction in a commercial Barley breeding program. The data used in this study was from Nordic Seed company which is located in Denmark. Around 350 advanced lines were genotyped with 9K Barely chip from...... Illumina. Traits used in this study were grain yield, plant height and heading date. Heading date is number days it takes after 1st June for plant to head. Heritabilities were 0.33, 0.44 and 0.48 for yield, height and heading, respectively for the average of nine plots. The GBLUP model was used for genomic...

  16. Genomic Feature Models

    DEFF Research Database (Denmark)

    Sørensen, Peter; Edwards, Stefan McKinnon; Rohde, Palle Duun

    Whole-genome sequences and multiple trait phenotypes from large numbers of individuals will soon be available in many populations. Well established statistical modeling approaches enable the genetic analyses of complex trait phenotypes while accounting for a variety of additive and non-additive g......Whole-genome sequences and multiple trait phenotypes from large numbers of individuals will soon be available in many populations. Well established statistical modeling approaches enable the genetic analyses of complex trait phenotypes while accounting for a variety of additive and non...... sets of genetic variants. We have applied these approaches to whole genome sequences and a complex trait phenotype resistance to starvation collected on inbred lines from the Drosophila Genome Reference Panel population. We identified a number of genomic features classification schemes (e.g. prior QTL...

  17. Genomic Prediction in Barley

    DEFF Research Database (Denmark)

    Edriss, Vahid; Cericola, Fabio; Jensen, Jens D;

    2015-01-01

    Genomic prediction uses markers (SNPs) across the whole genome to predict individual breeding values at an early growth stage potentially before large scale phenotyping. One of the applications of genomic prediction in plant breeding is to identify the best individual candidate lines to contribute...... to next generation. The main goal of this study was to see the potential of using genomic prediction in a commercial Barley breeding program. The data used in this study was from Nordic Seed company which is located in Denmark. Around 350 advanced lines were genotyped with 9K Barely chip from...... Illumina. Traits used in this study were grain yield, plant height and heading date. Heading date is number days it takes after 1st June for plant to head. Heritabilities were 0.33, 0.44 and 0.48 for yield, height and heading, respectively for the average of nine plots. The GBLUP model was used for genomic...

  18. Phytozome Comparative Plant Genomics Portal

    Energy Technology Data Exchange (ETDEWEB)

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  19. Evolution of genome architecture.

    Science.gov (United States)

    Koonin, Eugene V

    2009-02-01

    Charles Darwin believed that all traits of organisms have been honed to near perfection by natural selection. The empirical basis underlying Darwin's conclusions consisted of numerous observations made by him and other naturalists on the exquisite adaptations of animals and plants to their natural habitats and on the impressive results of artificial selection. Darwin fully appreciated the importance of heredity but was unaware of the nature and, in fact, the very existence of genomes. A century and a half after the publication of the "Origin", we have the opportunity to draw conclusions from the comparisons of hundreds of genome sequences from all walks of life. These comparisons suggest that the dominant mode of genome evolution is quite different from that of the phenotypic evolution. The genomes of vertebrates, those purported paragons of biological perfection, turned out to be veritable junkyards of selfish genetic elements where only a small fraction of the genetic material is dedicated to encoding biologically relevant information. In sharp contrast, genomes of microbes and viruses are incomparably more compact, with most of the genetic material assigned to distinct biological functions. However, even in these genomes, the specific genome organization (gene order) is poorly conserved. The results of comparative genomics lead to the conclusion that the genome architecture is not a straightforward result of continuous adaptation but rather is determined by the balance between the selection pressure, that is itself dependent on the effective population size and mutation rate, the level of recombination, and the activity of selfish elements. Although genes and, in many cases, multigene regions of genomes possess elaborate architectures that ensure regulation of expression, these arrangements are evolutionarily volatile and typically change substantially even on short evolutionary scales when gene sequences diverge minimally. Thus, the observed genome

  20. Genomic instability following irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hacker-Klom, U.B.; Goehde, W. [Inst. fuer Strahlenbiologie, Muenster Univ. (Germany)

    2001-07-01

    Ionising irradiation may induce genomic instability. The broad spectrum of stress reactions in eukaryontic cells to irradiation complicates the discovery of cellular targets and pathways inducing genomic instability. Irradiation may initiate genomic instability by deletion of genes controlling stability, by induction of genes stimulating instability and/or by activating endogeneous cellular viruses. Alternatively or additionally it is discussed that the initiation of genomic instability may be a consequence of radiation or other agents independently of DNA damage implying non nuclear targets, e.g. signal cascades. As a further mechanism possibly involved our own results may suggest radiation-induced changes in chromatin structure. Once initiated the process of genomic instability probably is perpetuated by endogeneous processes necessary for proliferation. Genomic instability may be a cause or a consequence of the neoplastic phenotype. As a conclusion from the data available up to now a new interpretation of low level radiation effects for radiation protection and in radiotherapy appears useful. The detection of the molecular mechanisms of genomic instability will be important in this context and may contribute to a better understanding of phenomenons occurring at low doses <10 cSv which are not well understood up to now. (orig.)

  1. Genomic instability following irradiation

    International Nuclear Information System (INIS)

    Ionising irradiation may induce genomic instability. The broad spectrum of stress reactions in eukaryontic cells to irradiation complicates the discovery of cellular targets and pathways inducing genomic instability. Irradiation may initiate genomic instability by deletion of genes controlling stability, by induction of genes stimulating instability and/or by activating endogeneous cellular viruses. Alternatively or additionally it is discussed that the initiation of genomic instability may be a consequence of radiation or other agents independently of DNA damage implying non nuclear targets, e.g. signal cascades. As a further mechanism possibly involved our own results may suggest radiation-induced changes in chromatin structure. Once initiated the process of genomic instability probably is perpetuated by endogeneous processes necessary for proliferation. Genomic instability may be a cause or a consequence of the neoplastic phenotype. As a conclusion from the data available up to now a new interpretation of low level radiation effects for radiation protection and in radiotherapy appears useful. The detection of the molecular mechanisms of genomic instability will be important in this context and may contribute to a better understanding of phenomenons occurring at low doses <10 cSv which are not well understood up to now. (orig.)

  2. Genome instability and aging.

    Science.gov (United States)

    Vijg, Jan; Suh, Yousin

    2013-01-01

    Genome instability has long been implicated as the main causal factor in aging. Somatic cells are continuously exposed to various sources of DNA damage, from reactive oxygen species to UV radiation to environmental mutagens. To cope with the tens of thousands of chemical lesions introduced into the genome of a typical cell each day, a complex network of genome maintenance systems acts to remove damage and restore the correct base pair sequence. Occasionally, however, repair is erroneous, and such errors, as well as the occasional failure to correctly replicate the genome during cell division, are the basis for mutations and epimutations. There is now ample evidence that mutations accumulate in various organs and tissues of higher animals, including humans, mice, and flies. What is not known, however, is whether the frequency of these random changes is sufficient to cause the phenotypic effects generally associated with aging. The exception is cancer, an age-related disease caused by the accumulation of mutations and epimutations. Here, we first review current concepts regarding the relationship between DNA damage, repair, and mutation, as well as the data regarding genome alterations as a function of age. We then describe a model for how randomly induced DNA sequence and epigenomic variants in the somatic genomes of animals can result in functional decline and disease in old age. Finally, we discuss the genetics of genome instability in relation to longevity to address the importance of alterations in the somatic genome as a causal factor in aging and to underscore the opportunities provided by genetic approaches to develop interventions that attenuate genome instability, reduce disease risk, and increase life span. PMID:23398157

  3. Center for Cancer Genomics | Office of Cancer Genomics

    Science.gov (United States)

    The Center for Cancer Genomics (CCG) was established to unify the National Cancer Institute's activities in cancer genomics, with the goal of advancing genomics research and translating findings into the clinic to improve the precise diagnosis and treatment of cancers. In addition to promoting genomic sequencing approach

  4. Genomic taxonomy of vibrios

    Directory of Open Access Journals (Sweden)

    Iida Tetsuya

    2009-10-01

    Full Text Available Abstract Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA, supertrees, Average Amino Acid Identity (AAI, genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.. A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in

  5. Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Block, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Fortson, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Joyce, G. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Kimble, H. J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Lewis, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Max, C. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Prince, T. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, P. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Woodin, W. H. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  6. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  7. The Genome Atlas Resource

    DEFF Research Database (Denmark)

    Azam Qureshi, Matloob; Rotenberg, Eva; Stærfeldt, Hans Henrik;

    2010-01-01

    Abstract. The Genome Atlas is a resource for addressing the challenges of synchronising prokaryotic genomic sequence data from multiple public repositories. This resource can integrate bioinformatic analyses in various data format and quality. Existing open source tools have been used together...... with scripts and algorithms developed in a variety of programming languages at the Centre for Biological Sequence Analysis in order to create a three-tier software application for genome analysis. The results are made available via a web interface developed in Java, PHP and Perl CGI. User...

  8. Genomic signal processing

    CERN Document Server

    Shmulevich, Ilya

    2014-01-01

    Genomic signal processing (GSP) can be defined as the analysis, processing, and use of genomic signals to gain biological knowledge, and the translation of that knowledge into systems-based applications that can be used to diagnose and treat genetic diseases. Situated at the crossroads of engineering, biology, mathematics, statistics, and computer science, GSP requires the development of both nonlinear dynamical models that adequately represent genomic regulation, and diagnostic and therapeutic tools based on these models. This book facilitates these developments by providing rigorous mathema

  9. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine.

    Science.gov (United States)

    Elsik, Christine G; Tayal, Aditi; Diesh, Colin M; Unni, Deepak R; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564

  10. Genome-specificity of triplet periodicity of prokaryotic genomes

    International Nuclear Information System (INIS)

    Authors have found that triplet periodicity (TP) is more similar inside genome than between genomes and that TP distribution inside genome corresponds to hypothesis which imply common TP pattern for majority of sequences inside a genome. To test the specificity of TP, the classification of the gene has been carried out to detect the belonging to one genome of the pair. For most pairs, the classification accuracy was more than 85%

  11. Mucin dynamics in intestinal bacterial infection.

    Directory of Open Access Journals (Sweden)

    Sara K Lindén

    Full Text Available BACKGROUND: Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract. METHODOLOGY/PRINCIPAL FINDINGS: Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17 in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05. Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon. CONCLUSION: Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.

  12. The genomics of adaptation.

    Science.gov (United States)

    Radwan, Jacek; Babik, Wiesław

    2012-12-22

    The amount and nature of genetic variation available to natural selection affect the rate, course and outcome of evolution. Consequently, the study of the genetic basis of adaptive evolutionary change has occupied biologists for decades, but progress has been hampered by the lack of resolution and the absence of a genome-level perspective. Technological advances in recent years should now allow us to answer many long-standing questions about the nature of adaptation. The data gathered so far are beginning to challenge some widespread views of the way in which natural selection operates at the genomic level. Papers in this Special Feature of Proceedings of the Royal Society B illustrate various aspects of the broad field of adaptation genomics. This introductory article sets up a context and, on the basis of a few selected examples, discusses how genomic data can advance our understanding of the process of adaptation. PMID:23097510

  13. Genomic definition of species

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Drmanac, R.

    1991-07-01

    The subject of this paper is the definition of species based on the assumption that genome is the fundamental level for the origin and maintenance of biological diversity. For this view to be logically consistent it is necessary to assume the existence and operation of the new law which we call genome law. For this reason the genome law is included in the explanation of species phenomenon presented here even if its precise formulation and elaboration are left for the future. The intellectual underpinnings of this definition can be traced to Goldschmidt. We wish to explore some philosophical aspects of the definition of species in terms of the genome. The point of proposing the definition on these grounds is that any real advance in evolutionary theory has to be correct in both its philosophy and its science.

  14. Lophotrochozoan mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  15. Epidemiology & Genomics Research Program

    Science.gov (United States)

    The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.

  16. The Lotus japonicus genome

    DEFF Research Database (Denmark)

    This book provides insights into some of the key achievements made in the study of Lotus japonicus (birdsfoot trefoil), as well as a timely overview of topics that are pertinent for future developments in legume genomics. Key topics covered include endosymbiosis, development, hormone regulation......, carbon/nitrogen and secondary metabolism, as well as advances made in high-throughput genomic and genetic approaches. Research focusing on model plants has underpinned the recent growth in plant genomics and genetics and provided a basis for investigations of major crop species. In the legume family...... Fabaceae, groundbreaking genetic and genomic research has established a significant body of knowledge on Lotus japonicus, which was adopted as a model species more than 20 years ago. The diverse nature of legumes means that such research has a wide potential and agricultural impact, for example...

  17. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  18. Mouse Genome Informatics (MGI)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human...

  19. The Genomic Standards Consortium

    DEFF Research Database (Denmark)

    Field, Dawn; Amaral-Zettler, Linda; Cochrane, Guy;

    2011-01-01

    A vast and rich body of information has grown up as a result of the world's enthusiasm for 'omics technologies. Finding ways to describe and make available this information that maximise its usefulness has become a major effort across the 'omics world. At the heart of this effort is the Genomic...... quantity of contextual information about our public collections of genomes, metagenomes, and marker gene sequences....

  20. Das personalisierte Genom

    OpenAIRE

    Streubel B

    2012-01-01

    Im Jahr 2001 gelang nach langjährigen, multinationalen Bemühungen die erfolgreiche Entschlüsselung des menschlichen Genoms. Das Jahr 2008 gilt als Startpunkt der personalisierten Genomanalysen, da hier erstmals das Genom einer Person, nämlich des Entdeckers der chemischen DNA-Struktur, James Watson, vollständig sequenziert wurde. Ein wesentlicher Unterschied zur Genomsequenzierung im Jahr 2001 war hierbei, dass im Gegensatz zu der konventionellen Sangersequenzierung eine neue Sequenziert...

  1. Decoding the human genome

    CERN Document Server

    CERN. Geneva. Audiovisual Unit; Antonerakis, S E

    2002-01-01

    Decoding the Human genome is a very up-to-date topic, raising several questions besides purely scientific, in view of the two competing teams (public and private), the ethics of using the results, and the fact that the project went apparently faster and easier than expected. The lecture series will address the following chapters: Scientific basis and challenges. Ethical and social aspects of genomics.

  2. Molluscan Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  3. The human genome project

    International Nuclear Information System (INIS)

    The Human Genome Project is a massive international research project, costing 3 to 5 billion dollars and expected to take 15 years, which will identify the all the genes in the human genome - i.e. the complete sequence of bases in human DNA. The prize will be the ability to identify genes causing or predisposing to disease, and in some cases the development of gene therapy, but this new knowledge will raise important ethical issues

  4. Filarial and Wolbachia genomics

    OpenAIRE

    Scott, A.L.; Ghedin, E.; Nutman, T B; McReynolds, L A; C. B. Poole; Slatko, B E; Foster, J. M.

    2012-01-01

    Filarial nematode parasites, the causative agents for a spectrum of acute and chronic diseases including lymphatic filariasis and river blindness, threaten the well-being and livelihood of hundreds of millions of people in the developing regions of the world. The 2007 publication on a draft assembly of the 95-Mb genome of the human filarial parasite Brugia malayi – representing the first helminth parasite genome to be sequenced – has been followed in rapid succession by projects that have res...

  5. RadGenomics project

    International Nuclear Information System (INIS)

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  6. Human social genomics.

    Directory of Open Access Journals (Sweden)

    Steven W Cole

    2014-08-01

    Full Text Available A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural "social signal transduction" pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving.

  7. Comparative Genome Viewer

    International Nuclear Information System (INIS)

    The amount of information about genomes, both in the form of complete sequences and annotations, has been exponentially increasing in the last few years. As a result there is the need for tools providing a graphical representation of such information that should be comprehensive and intuitive. Visual representation is especially important in the comparative genomics field since it should provide a combined view of data belonging to different genomes. We believe that existing tools are limited in this respect as they focus on a single genome at a time (conservation histograms) or compress alignment representation to a single dimension. We have therefore developed a web-based tool called Comparative Genome Viewer (Cgv): it integrates a bidimensional representation of alignments between two regions, both at small and big scales, with the richness of annotations present in other genome browsers. We give access to our system through a web-based interface that provides the user with an interactive representation that can be updated in real time using the mouse to move from region to region and to zoom in on interesting details.

  8. The genome editing revolution

    DEFF Research Database (Denmark)

    Stella, Stefano; Montoya, Guillermo

    2016-01-01

    In the last 10 years, we have witnessed a blooming of targeted genome editing systems and applications. The area was revolutionized by the discovery and characterization of the transcription activator-like effector proteins, which are easier to engineer to target new DNA sequences than the previo......In the last 10 years, we have witnessed a blooming of targeted genome editing systems and applications. The area was revolutionized by the discovery and characterization of the transcription activator-like effector proteins, which are easier to engineer to target new DNA sequences than...... sequence). This ribonucleoprotein complex protects bacteria from invading DNAs, and it was adapted to be used in genome editing. The CRISPR ribonucleic acid (RNA) molecule guides to the specific DNA site the Cas9 nuclease to cleave the DNA target. Two years and more than 1000 publications later, the CRISPR......-Cas system has become the main tool for genome editing in many laboratories. Currently the targeted genome editing technology has been used in many fields and may be a possible approach for human gene therapy. Furthermore, it can also be used to modifying the genomes of model organisms for studying human...

  9. WheatGenome.info: A Resource for Wheat Genomics Resource.

    Science.gov (United States)

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ . PMID:26519407

  10. Rumen microbial genomics

    International Nuclear Information System (INIS)

    Full text: Improving plant cell wall (fiber) degradation remains one of the highest priority goals for all livestock enterprises, whether it is the intensively managed dairy herds in the United States, or the nomadic cattle herds in sub-Saharan Africa. The North American Consortium for Genomics of Fibrolytic Ruminal Bacteria was created in 2000 to promote the sequencing and comparative analysis of rumen microbial genomes. High throughput genome sequencing offers the potential to obtain a complete blueprint for the lifestyle of a specific microbe, and to assess its genetic potential in a functional and comparative fashion. So far, a combination of funds from U.S. Department of Agriculture's (USDA's) Initiative for Future Agriculture and Food Systems and the National Science Foundation (USDA-NSF) Microbe Sequencing Program has supported the sequencing of three rumen bacterial genomes to closure. Genome closure and annotation is complete for Fibrobacter succinogenes, and the Ruminococcus albus and Prevotella ruminicola genomes should be completed during 2004. In addition to these sequencing projects, Consortium members have used subtractive hybridization methods to characterize the genomic differences among the sequenced genomes and the genomes of additional strains and species of ruminal bacteria. A database has also been developed by bioinformaticians at The Institute for Genomic Research (www.tigr.org), which will contain the sequence information arising from this project, as well as in silico tools for genome examination. Accordingly, our Consortium will have provided a comprehensive suite of resources and tools useful to microbiologists and animal scientists throughout the world, especially those interested in the conversion of cellulose-rich materials into useful commodities, such as meat, milk and draught animal power. The inherent value associated with whole genome sequencing is already apparent for the F. succinogenes project. The genome sequence has revealed

  11. Genomes to Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grigoriev, Igor [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Daly, Don S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webb-Robertson, Bobbie-Jo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  12. Genome position specific priors for genomic prediction

    Directory of Open Access Journals (Sweden)

    Brøndum Rasmus

    2012-10-01

    Full Text Available Abstract Background The accuracy of genomic prediction is highly dependent on the size of the reference population. For small populations, including information from other populations could improve this accuracy. The usual strategy is to pool data from different populations; however, this has not proven as successful as hoped for with distantly related breeds. BayesRS is a novel approach to share information across populations for genomic predictions. The approach allows information to be captured even where the phase of SNP alleles and casuative mutation alleles are reversed across populations, or the actual casuative mutation is different between the populations but affects the same gene. Proportions of a four-distribution mixture for SNP effects in segments of fixed size along the genome are derived from one population and set as location specific prior proportions of distributions of SNP effects for the target population. The model was tested using dairy cattle populations of different breeds: 540 Australian Jersey bulls, 2297 Australian Holstein bulls and 5214 Nordic Holstein bulls. The traits studied were protein-, fat- and milk yield. Genotypic data was Illumina 777K SNPs, real or imputed. Results Results showed an increase in accuracy of up to 3.5% for the Jersey population when using BayesRS with a prior derived from Australian Holstein compared to a model without location specific priors. The increase in accuracy was however lower than was achieved when reference populations were combined to estimate SNP effects, except in the case of fat yield. The small size of the Jersey validation set meant that these improvements in accuracy were not significant using a Hotelling-Williams t-test at the 5% level. An increase in accuracy of 1-2% for all traits was observed in the Australian Holstein population when using a prior derived from the Nordic Holstein population compared to using no prior information. These improvements were significant (P

  13. Genome Halving with an Outgroup

    Directory of Open Access Journals (Sweden)

    David Sankoff

    2006-01-01

    Full Text Available Some genomes are known to have incurred a genome doubling (tetraploidization event in their evolutionary history, and this is reflected today in patterns of duplicated segments scattered throughout their chromosomes. These duplications may be used as data to “halve” the genome, i.e. to reconstruct the an cestral genome at the moment of tetraploidization, but the solution is often highly non- unique. To resolve this problem, we adapt the genome halving algorithm of El-Mabrouk and Sankoff to take account of an external reference genome. We apply this to reconstruct the tetraploid ancestor of maize, using either rice or sorghum as the reference.

  14. Genomic dairy cattle breeding

    DEFF Research Database (Denmark)

    Mark, Thomas; Sandøe, Peter

    2010-01-01

    The aim of this paper is to discuss the potential consequences of modern dairy cattle breeding for the welfare of dairy cows. The paper focuses on so-called genomic selection, which deploys thousands of genetic markers to estimate breeding values. The discussion should help to structure the...... thoughts of breeders and other stakeholders on how to best make use of genomic breeding in the future. Intensive breeding has played a major role in securing dramatic increases in milk yield since the Second World War. Until recently, the main focus in dairy cattle breeding was on production traits, but......, unfavourable genetic trends for metabolic, reproductive, claw and leg diseases indicate that these attempts have been insufficient. Today, novel genome-wide sequencing techniques are revolutionising dairy cattle breeding; these enable genetic changes to occur at least twice as rapidly as previously. While...

  15. Brief Guide to Genomics: DNA, Genes and Genomes

    Science.gov (United States)

    ... de genómica A Brief Guide to Genomics DNA, Genes and Genomes Deoxyribonucleic acid (DNA) is the chemical ... needed to build the entire human body. A gene traditionally refers to the unit of DNA that ...

  16. Differential expression of immune-related genes from skin of zebrafish induced by the infection of Citrobacter freundii%弗氏柠檬酸杆菌感染诱导斑马鱼皮肤免疫相关基因的差异表达

    Institute of Scientific and Technical Information of China (English)

    吕爱军; 胡秀彩; 朱静榕; 薛军; 王艺; 程超

    2012-01-01

    With water pollution aggravated and intensive aquaculture spread, the occurrence of opportunistic infections has become a significant health problem in farmed fish, Citrobacter freundii is an enterobacterium commonly isolated from diseased and healthy animals, including human, mammals and fish, which is considered to be an opportunistic pathogen. Skin is an essential protective barrier for fish and functions as a first line of defense against invading pathogens,but its molecular mechanism remains unclear. The objective of this study is to screen the differential gene expression in response to pathogen infection in skin of fish,and provide a basis for understanding the fish skin immune mechanism to the pathogen at the molecular level. Here,a strain of bacteria was isolated from intestine in Ctenopharyngodon idellus, which was identified by using the morphological observation, physiological and biochemical characteristics, and 16S rDNA sequence analysis. The results showed that the isolated strain was identified species levels as Citrobacter freundii ,and animal tests showed that the strain was lethal to zebrafish. Immune response in skin of fish analyzed by using Citrobacter freundii induced zebrafish as a model, which applied the Affymetrix zebrafish cDNA microarray hybridized to the skin tissues. Total RNAs were isolated from the skin tissues of the zebrafish and labeled with biotin,and hybridized to zebrafish cDNA gene chips. The expression profiles from the hybridization to 15617 genes in zebrafish cDNA array were analyzed by the GeneChip Operating Software( GCOS 1.4). Out of 15617 genes in zebrafish cDNA chips,total of 88 immune-related genes were identified to be significantly expressed in the skin tissues,of which 74 genes are up-regulated and 14 are down-regulated in the zebrafish skin tissues. Furthermore, the differential expression genes could be categorized into eight functional groups by using the Gene Ontology (GO) method,including complement

  17. Ebolavirus comparative genomics.

    Science.gov (United States)

    Jun, Se-Ran; Leuze, Michael R; Nookaew, Intawat; Uberbacher, Edward C; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S; Pedersen, Thomas D; Wassenaar, Trudy M; Ussery, David W

    2015-09-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). PMID:26175035

  18. The kangaroo genome: Leaps and bounds in comparative genomics

    OpenAIRE

    Wakefield, Matthew J.; Graves, Jennifer A. Marshall.

    2003-01-01

    The kangaroo genome is a rich and unique resource for comparative genomics. Marsupial genetics and cytology have made significant contributions to the understanding of gene function and evolution, and increasing the availability of kangaroo DNA sequence information would provide these benefits on a genomic scale. Here we summarize the contributions from cytogenetic and genetic studies of marsupials, describe the genomic resources currently available and those being developed, and explore the ...

  19. Genomics in Cardiovascular Disease

    OpenAIRE

    Roberts, Robert; Marian, A.J.; Dandona, Sonny; Alexandre F R Stewart

    2013-01-01

    A paradigm shift towards biology occurred in the 1990’s subsequently catalyzed by the sequencing of the human genome in 2000. The cost of DNA sequencing has gone from millions to thousands of dollars with sequencing of one’s entire genome costing only $1,000. Rapid DNA sequencing is being embraced for single gene disorders, particularly for sporadic cases and those from small families. Transmission of lethal genes such as associated with Huntington’s disease can, through in-vitro fertilizatio...

  20. Precision genome editing

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric P; Schjoldager, Katrine Ter-Borch Gram;

    2014-01-01

    of glycobiology, primarily due to their low efficiencies, with resultant failure to impose substantial phenotypic consequences upon the final glycosylation products. Here, we review novel nuclease-based precision genome editing techniques enabling efficient and stable gene editing, including gene disruption...... by introducing single or double-stranded breaks at a defined genomic sequence. We here compare and contrast the different techniques and summarize their current applications, highlighting cases from the field of glycobiology as well as pointing to future opportunities. The emerging potential of precision gene...

  1. Tick Genomics: The Ixodes genome project and beyond

    Science.gov (United States)

    Ticks and mites (subphylum Chelicerata; subclass Acari) are important pests of animals and plants worldwide. The Ixodes scapularis (black-legged tick) genome sequencing project marks the beginning of the genomics era for the field of acarology. This project is the first to sequence the genome of a...

  2. Company profile: Complete Genomics Inc.

    Science.gov (United States)

    Reid, Clifford

    2011-02-01

    Complete Genomics Inc. is a life sciences company that focuses on complete human genome sequencing. It is taking a completely different approach to DNA sequencing than other companies in the industry. Rather than building a general-purpose platform for sequencing all organisms and all applications, it has focused on a single application - complete human genome sequencing. The company's Complete Genomics Analysis Platform (CGA™ Platform) comprises an integrated package of biochemistry, instrumentation and software that sequences human genomes at the highest quality, lowest cost and largest scale available. Complete Genomics offers a turnkey service that enables customers to outsource their human genome sequencing to the company's genome sequencing center in Mountain View, CA, USA. Customers send in their DNA samples, the company does all the library preparation, DNA sequencing, assembly and variant analysis, and customers receive research-ready data that they can use for biological discovery. PMID:21345140

  3. Genomics and Health Impact Update

    Science.gov (United States)

    ... CDC Blog Post Prostate Cancer: Family History & Genetics Microbiome: Public Health Implications Colorectal Cancer: Screening & Genomics About ... 23) Birth Defects and Child Health Cancer Cardiovascular Disease Chronic Diseases Ethics/ Policy/ Law Genomics in Practice ...

  4. Genome Statute and Legislation Database

    Science.gov (United States)

    ... Database Welcome to the Genome Statute and Legislation Database The Genome Statute and Legislation Database is comprised ... the National Society of Genetic Counselors . Search the Database Search Tips You may select one or more ...

  5. Illuminating the Druggable Genome (IDG)

    Data.gov (United States)

    Federal Laboratory Consortium — Results from the Human Genome Project revealed that the human genome contains 20,000 to 25,000 genes. A gene contains (encodes) the information that each cell uses...

  6. National Human Genome Research Institute

    Science.gov (United States)

    ... for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for Teachers ... Education Kit Online Genetics Education Resources Smithsonian NHGRI Genome Exhibition Talking Glossary: English Talking Glossary: Español Issues ...

  7. The UCSC Ebola Genome Portal

    OpenAIRE

    Haeussler, Maximilian; Karolchik, Donna; Clawson, Hiram; Raney, Brian J.; Rosenbloom, Kate R.; Fujita, Pauline A.; Hinrichs, Angie S.; Speir, Matthew L; Eisenhart, Chris; Zweig, Ann S.; Haussler, David; Kent, W. James

    2014-01-01

    Background: With the Ebola epidemic raging out of control in West Africa, there has been a flurry of research into the Ebola virus, resulting in the generation of much genomic data. Methods: In response to the clear need for tools that integrate multiple strands of research around molecular sequences, we have created the University of California Santa Cruz (UCSC) Ebola Genome Browser, an adaptation of our popular UCSC Genome Browser web tool, which can be used to view the Ebola virus genome s...

  8. Challenges in global genomics education

    Directory of Open Access Journals (Sweden)

    Ashwini de Abrew

    2014-12-01

    Full Text Available In spite of high expectations for the integration of genomics into medicine, it is not clear that health providers are competent to appropriately use new genomic approaches. The issue is further complicated by differences across the globe in terms of educational systems, access to genomic technologies, and priorities in health care. In this commentary we will review some of the major challenges in educating the health provider workforce about genomic medicine.

  9. Statistical Challenges in Functional Genomics

    OpenAIRE

    Sebastiani, Paola; Gussoni, Emanuela; Kohane, Isaac S.; Ramoni, Marco F

    2003-01-01

    On February 12, 2001 the Human Genome Project announced the completion of a draft physical map of the human genome---the genetic blueprint for a human being. Now the challenge is to annotate this map by understanding the functions of genes and their interplay with proteins and the environment to create complex, dynamic living systems. This is the goal of functional genomics. Recent technological advances enable biomedical investigators to observe the genome of entire orga...

  10. Better chocolate through genomics

    Science.gov (United States)

    Theobroma cacao, the cacao or chocolate tree, is a tropical understory tree whose seeds are used to make chocolate. And like any important crop, cacao is the subject of much research. On September 15, 2010, scientists publicly released a preliminary sequence of the cacao genome--which contains all o...

  11. The Rhodobacter capsulatus genome

    Czech Academy of Sciences Publication Activity Database

    Haselkorn, R.; Lapidus, A.; Kogan, Y.; Vlček, Čestmír; Pačes, Jan; Pačes, Václav; Ulbrich, P.; Pečenková, Tamara; Rebrekov, D.; Milgram, A.; Mazur, M.; Cox, R.; Kyrpides, N.; Ivanova, N.; Kapatral, V.; Los, T.; Lykidis, A.; Mikhailova, N.; Reznik, G.; Vasieva, O.; Fonstein, M.

    2001-01-01

    Roč. 70, č. 1 (2001), s. 43-52. ISSN 0166-8595 R&D Projects: GA MŠk LN00A079 Institutional research plan: CEZ:AV0Z5052915 Keywords : genome * expression * gene Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.739, year: 2001

  12. Genetics, genomics and fertility

    Science.gov (United States)

    In order to enhance the sustainability of dairy businesses, new management tools are needed to increase the fertility of dairy cattle. Genomic selection has been successfully used by AI studs to screen potential sires and significantly decrease the generation interval of bulls. Buoyed by the success...

  13. Searching for genomic constraints

    International Nuclear Information System (INIS)

    The authors have analyzed general properties of very long DNA sequences belonging to simple and complex organisms, by using different correlation methods. They have distinguished those base compositional rules that concern the entire genome which they call 'genomic constraints' from the rules that depend on the 'external natural selection' acting on single genes, i. e. protein-centered constraints. They show that G + C content, purine / pyrimidine distributions and biological complexity of the organism are the most important factors which determine base compositional rules and genome complexity. Three main facts are here reported: bacteria with high G + C content have more restrictions on base composition than those with low G + C content; at constant G + C content more complex organisms, ranging from prokaryotes to higher eukaryotes (e.g. human) display an increase of repeats 10-20 nucleotides long, which are also partly responsible for long-range correlations; work selection of length 3 to 10 is stronger in human and in bacteria for two distinct reasons. With respect to previous studies, they have also compared the genomic sequence of the archeon Methanococcus jannaschii with those of bacteria and eukaryotes: it shows sometimes an intermediate statistical behaviour

  14. Genome size of Mycoplasma genitalium.

    OpenAIRE

    Su, C J; Baseman, J B

    1990-01-01

    The genome size of Mycoplasma genitalium was determined by using restriction enzymes that infrequently cut its DNA. The calculated value of 577 to 590 kilobases is one-fourth smaller than the genome of Mycoplasma pneumoniae, which is considered among the smallest genomes of self-replicating organisms.

  15. Rice: The First Crop Genome.

    Science.gov (United States)

    Jackson, Scott A

    2016-12-01

    Rice was the first sequenced crop genome, paving the way for the sequencing of additional and more complicated crop genomes. The impact that the genome sequence made on rice genetics and breeding research was immediate, as evidence by citations and DNA marker use. The impact on other crop genomes was evident too, particularly for those within the grass family. As we celebrate 10 years since the completion of the rice genome sequence, we look forward to new empowering tool sets that will further revolutionize research in rice genetics and breeding and result in varieties that will continue to feed a growing population. PMID:27003180

  16. Professional medical education and genomics.

    Science.gov (United States)

    Demmer, Laurie A; Waggoner, Darrel J

    2014-01-01

    Genomic medicine is a relatively new concept that involves using individual patients' genomic results in their clinical care. Genetic technology has advanced swiftly over the past decade, and most providers have been left behind without an understanding of this complex field. To realize its full potential, genomic medicine must be both understood and accepted by the greater medical community. The current state of professional medical education in genomics and genomic medicine is reviewed, including ongoing plans to expand educational efforts for medical students, clinical geneticists, and nongeneticist physicians. PMID:24635717

  17. Microbial Genomics Research in China

    Institute of Scientific and Technical Information of China (English)

    ZHAOGuo-ping

    2004-01-01

    Microorganisms, including phage/virus, were initial targets and tools for developing DNA sequencing technology. Microbial genomic study was started as a model system for the Human Genome Project (HGP) and it did successfully supported the HGP, particularly with respect to BAC contig construction and large-scale shotgun sequencing and assembly. Microbial genomics study has become the fastest developed genomics discipline along with HGP, taking the advantage of the organisms' highly diversified physiology, extremely long history of evolution, close relationship with human/environment,as well as relatively small genome sizes and simple systems for functional analysis.

  18. Nongenetic functions of the genome.

    Science.gov (United States)

    Bustin, Michael; Misteli, Tom

    2016-05-01

    The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome. PMID:27151873

  19. Genomic Databases for Crop Improvement

    Directory of Open Access Journals (Sweden)

    David Edwards

    2012-03-01

    Full Text Available Genomics is playing an increasing role in plant breeding and this is accelerating with the rapid advances in genome technology. Translating the vast abundance of data being produced by genome technologies requires the development of custom bioinformatics tools and advanced databases. These range from large generic databases which hold specific data types for a broad range of species, to carefully integrated and curated databases which act as a resource for the improvement of specific crops. In this review, we outline some of the features of plant genome databases, identify specific resources for the improvement of individual crops and comment on the potential future direction of crop genome databases.

  20. Evolution of plant genome architecture.

    Science.gov (United States)

    Wendel, Jonathan F; Jackson, Scott A; Meyers, Blake C; Wing, Rod A

    2016-01-01

    We have witnessed an explosion in our understanding of the evolution and structure of plant genomes in recent years. Here, we highlight three important emergent realizations: (1) that the evolutionary history of all plant genomes contains multiple, cyclical episodes of whole-genome doubling that were followed by myriad fractionation processes; (2) that the vast majority of the variation in genome size reflects the dynamics of proliferation and loss of lineage-specific transposable elements; and (3) that various classes of small RNAs help shape genomic architecture and function. We illustrate ways in which understanding these organism-level and molecular genetic processes can be used for crop plant improvement. PMID:26926526

  1. Microbial Genomics Research in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-ping

    2004-01-01

    @@ Microorganisms, including phage/virus, were initial targets and tools for developing DNA sequencing technology. Microbial genomic study was started as a model system for the Human Genome Project (HGP) and it did successfully supported the HGP, particularly with respect to BAC contig construction and large-scale shotgun sequencing and assembly. Microbial genomics study has become the fastest developed genomics discipline along with HGP, taking the advantage of the organisms' highly diversified physiology, extremely long history of evolution, close relationship with human/environment,as well as relatively small genome sizes and simple systems for functional analysis.

  2. Genome of crocodilepox virus.

    Science.gov (United States)

    Afonso, C L; Tulman, E R; Delhon, G; Lu, Z; Viljoen, G J; Wallace, D B; Kutish, G F; Rock, D L

    2006-05-01

    Here, we present the genome sequence, with analysis, of a poxvirus infecting Nile crocodiles (Crocodylus niloticus) (crocodilepox virus; CRV). The genome is 190,054 bp (62% G+C) and predicted to contain 173 genes encoding proteins of 53 to 1,941 amino acids. The central genomic region contains genes conserved and generally colinear with those of other chordopoxviruses (ChPVs). CRV is distinct, as the terminal 33-kbp (left) and 13-kbp (right) genomic regions are largely CRV specific, containing 48 unique genes which lack similarity to other poxvirus genes. Notably, CRV also contains 14 unique genes which disrupt ChPV gene colinearity within the central genomic region, including 7 genes encoding GyrB-like ATPase domains similar to those in cellular type IIA DNA topoisomerases, suggestive of novel ATP-dependent functions. The presence of 10 CRV proteins with similarity to components of cellular multisubunit E3 ubiquitin-protein ligase complexes, including 9 proteins containing F-box motifs and F-box-associated regions and a homologue of cellular anaphase-promoting complex subunit 11 (Apc11), suggests that modification of host ubiquitination pathways may be significant for CRV-host cell interaction. CRV encodes a novel complement of proteins potentially involved in DNA replication, including a NAD(+)-dependent DNA ligase and a protein with similarity to both vaccinia virus F16L and prokaryotic serine site-specific resolvase-invertases. CRV lacks genes encoding proteins for nucleotide metabolism. CRV shares notable genomic similarities with molluscum contagiosum virus, including genes found only in these two viruses. Phylogenetic analysis indicates that CRV is quite distinct from other ChPVs, representing a new genus within the subfamily Chordopoxvirinae, and it lacks recognizable homologues of most ChPV genes involved in virulence and host range, including those involving interferon response, intracellular signaling, and host immune response modulation. These data

  3. Informational laws of genome structures

    Science.gov (United States)

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-01-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined. PMID:27354155

  4. Evolution of small prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    David José Martínez-Cano

    2015-01-01

    Full Text Available As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ~800 genes as well as endosymbiotic bacteria with as few as ~140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent role. However, new experimental data suggest that selective processes may be at operation as well for endosymbiotic prokaryotes at least during the first stages of genome reduction. Endosymbiotic prokaryotes have evolved diverse strategies for living with reduced gene sets inside a host-defined medium. These include utilization of host-encoded functions (some of them coded by genes acquired by gene transfer from the endosymbiont and/or other bacteria; metabolic complementation between co-symbionts; and forming consortiums with other bacteria within the host. Recent genome sequencing projects of intracellular mutualistic bacteria showed that previously believed universal evolutionary trends like reduced G+C content and conservation of genome synteny are not always present in highly reduced genomes. Finally, the simplified molecular machinery of some of these organisms with small genomes may be used to aid in the design of artificial minimal cells. Here we review recent genomic discoveries of the biology of prokaryotes endowed with small gene sets and discuss the evolutionary mechanisms that have been proposed to explain their peculiar nature.

  5. Informational laws of genome structures

    Science.gov (United States)

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-06-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined.

  6. Genome size analyses of Pucciniales reveal the largest fungal genomes

    Directory of Open Access Journals (Sweden)

    Silvia eTavares

    2014-08-01

    Full Text Available Rust fungi (Basidiomycota, Pucciniales are biotrophic plant pathogens which exhibit diverse complexities in their life cycles and host ranges. The completion of genome sequencing of a few rust fungi has revealed the occurrence of large genomes. Sequencing efforts for other rust fungi have been hampered by uncertainty concerning their genome sizes. Flow cytometry was recently applied to estimate the genome size of a few rust fungi, and confirmed the occurrence of large genomes in this order (averaging 151.5 Mbp, while the average for Basidiomycota was 49.9 Mbp and was 37.7 Mbp for all fungi. In this work, we have used an innovative and simple approach to simultaneously isolate nuclei from the rust and its host plant in order to estimate the genome size of 30 rust species by flow cytometry. Genome sizes varied over 10-fold, from 70 to 893 Mbp, with an average genome size value of 380.2 Mbp. Compared to the genome sizes of over 1,800 fungi, Gymnosporangium confusum possesses the largest fungal genome ever reported (893.2 Mbp. Moreover, even the smallest rust genome determined in this study is larger than the vast majority of fungal genomes (94 %. The average genome size of the Pucciniales is now of 305.5 Mbp, while the average Basidiomycota genome size has shifted to 70.4 Mbp and the average for all fungi reached 44.2 Mbp. Despite the fact that no correlation could be drawn between the genome sizes, the phylogenomics or the life cycle of rust fungi, it is interesting to note that rusts with Fabaceae hosts present genomes clearly larger than those with Poaceae hosts. Although this study comprises only a small fraction of the more than 7,000 rust species described, it seems already evident that the Pucciniales represent a group where genome size expansion could be a common characteristic. This is in sharp contrast to sister taxa, placing this order in a relevant position in fungal genomics research.

  7. Matrix metalloproteinase 9 contributes to gut microbe homeostasis in a model of infectious colitis

    Directory of Open Access Journals (Sweden)

    Rodrigues David M

    2012-06-01

    Full Text Available Abstract Background Inflammatory bowel diseases are associated with increased expression of zinc-dependent Matrix Metalloproteinase 9 (MMP-9. A stark dysregulation of intestinal mucosal homeostasis has been observed in patients with chronic inflammatory bowel diseases. We therefore sought to determine the contribution of MMP-9 to the pathogenesis of Citrobacter rodentium-induced colitis and its effects on gut microbiome homeostasis. Results Wild-type and MMP-9−/− mice aged 5–6 weeks were challenged with C. rodentium by orogastric gavage and sacrificed either 10 or 30 days post-infection. Disease severity was assessed by histological analysis of colonic epithelial hyperplasia and by using an in vivo intestinal permeability assay. Changes in the inflammatory responses were measured by using qPCR, and the composition of the fecal microbiome evaluated with both qPCR and terminal restriction fragment length polymorphism. Activation and localization of MMP-9 to the apical surface of the colonic epithelium in response to C. rodentium infection was demonstrated by both zymography and immunocytochemistry. The pro-inflammatory response to infection, including colonic epithelial cell hyperplasia and barrier dysfunction, was similar, irrespective of genotype. Nonmetric multidimensional scaling of terminal restriction fragments revealed a different fecal microbiome composition and C. rodentium colonization pattern between genotypes, with MMP-9−/− having elevated levels of protective segmented filamentous bacteria and interleukin-17, and lower levels of C. rodentium. MMP-9−/− but not wild-type mice were also protected from reductions in fecal microbial diversity in response to the bacterial enteric infection. Conclusions These results demonstrate that MMP-9 expression in the colon causes alterations in the fecal microbiome and has an impact on the pathogenesis of bacterial-induced colitis in mice.

  8. Genomic research perspectives in Kazakhstan

    Directory of Open Access Journals (Sweden)

    Ainur Akilzhanova

    2014-01-01

    Full Text Available Introduction: Technological advancements rapidly propel the field of genome research. Advances in genetics and genomics such as the sequence of the human genome, the human haplotype map, open access databases, cheaper genotyping and chemical genomics, have transformed basic and translational biomedical research. Several projects in the field of genomic and personalized medicine have been conducted at the Center for Life Sciences in Nazarbayev University. The prioritized areas of research include: genomics of multifactorial diseases, cancer genomics, bioinformatics, genetics of infectious diseases and population genomics. At present, DNA-based risk assessment for common complex diseases, application of molecular signatures for cancer diagnosis and prognosis, genome-guided therapy, and dose selection of therapeutic drugs are the important issues in personalized medicine. Results: To further develop genomic and biomedical projects at Center for Life Sciences, the development of bioinformatics research and infrastructure and the establishment of new collaborations in the field are essential. Widespread use of genetic tools will allow the identification of diseases before the onset of clinical symptoms, the individualization of drug treatment, and could induce individual behavioral changes on the basis of calculated disease risk. However, many challenges remain for the successful translation of genomic knowledge and technologies into health advances, such as medicines and diagnostics. It is important to integrate research and education in the fields of genomics, personalized medicine, and bioinformatics, which will be possible with opening of the new Medical Faculty at Nazarbayev University. People in practice and training need to be educated about the key concepts of genomics and engaged so they can effectively apply their knowledge in a matter that will bring the era of genomic medicine to patient care. This requires the development of well

  9. eGenomics: Cataloguing Our Complete Genome Collection III

    Directory of Open Access Journals (Sweden)

    Dawn Field

    2007-01-01

    Full Text Available This meeting report summarizes the proceedings of the “eGenomics: Cataloguing our Complete Genome Collection III” workshop held September 11–13, 2006, at the National Institute for Environmental eScience (NIEeS, Cambridge, United Kingdom. This 3rd workshop of the Genomic Standards Consortium was divided into two parts. The first half of the three-day workshop was dedicated to reviewing the genomic diversity of our current and future genome and metagenome collection, and exploring linkages to a series of existing projects through formal presentations. The second half was dedicated to strategic discussions. Outcomes of the workshop include a revised “Minimum Information about a Genome Sequence” (MIGS specification (v1.1, consensus on a variety of features to be added to the Genome Catalogue (GCat, agreement by several researchers to adopt MIGS for imminent genome publications, and an agreement by the EBI and NCBI to input their genome collections into GCat for the purpose of quantifying the amount of optional data already available (e.g., for geographic location coordinates and working towards a single, global list of all public genomes and metagenomes.

  10. Genomics Portals: integrative web-platform for mining genomics data

    Directory of Open Access Journals (Sweden)

    Ghosh Krishnendu

    2010-01-01

    Full Text Available Abstract Background A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Results Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc, and the integration with an extensive knowledge base that can be used in such analysis. Conclusion The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.

  11. Role of bacterial infection in the epigenetic regulation of Wnt antagonist WIF1 by PRC2 protein EZH2

    OpenAIRE

    Roy, Badal C.; Subramaniam, Dharmalingam; Ahmed, Ishfaq; Jala, Venkatakrishna R.; Hester, Christina; Greiner, K. Allen; Haribabu, Bodduluri; Anant, Shrikant; Umar, Shahid

    2014-01-01

    The Enhancer of Zeste Homolog-2 (EZH2) represses gene transcription through histone H3 lysine-27-trimethylation (H3K27me3). Citrobacter rodentium (CR) promotes crypt hyperplasia and tumorigenesis by aberrantly regulating Wnt/β-catenin signaling. We aimed at investigating EZH2’s role in epigenetically regulating Wnt/β-catenin signaling following bacterial infection. NIH:Swiss outbred and Apc Min/+ mice were infected with CR (108cfu); BLT1−/−ApcMin/+ mice, AOM/DSS-treated mice and de-identified...

  12. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation

    OpenAIRE

    Mills, Kingston; Raverdeau, Mathilde

    2013-01-01

    PUBLISHED Retinoic acid (RA), a vitamin A metabolite, modulates mucosal T helper cell responses. Here we examined the role of RA in regulating IL-22 production by γδ T cells and innate lymphoid cells in intestinal inflammation. RA significantly enhanced IL-22 production by γδ T cells stimulated in vitro with IL-1β or IL-18 and IL-23. In vivo RA attenuated colon inflammation induced by dextran sodium sulfate treatment or Citrobacter rodentium infection. This was associated with a significan...

  13. Activation of p38α in T cells regulates the intestinal host defense against attaching and effacing bacterial infections

    OpenAIRE

    Shim, Eun-Jin; Bang, Bo Ram; Kang, Seung-Goo; Ma, Jianhui; Otsuka, Motoyuki; Kang, Jiman; Stahl, Martin; Han, Jiahuai; Xiao, Changchun; Vallance, Bruce A.; Kang, Young Jun

    2013-01-01

    Intestinal infections by attaching and effacing (A/E) bacterial pathogens cause severe colitis and bloody diarrhea. Although p38α in intestine epithelial cells (IEC) plays an important role in promoting protection against A/E bacteria by regulating T cell recruitment, its impact on immune responses remains unclear. In this study, we show that activation of p38α in T cells is critical for the clearance of the A/E pathogen Citrobacter rodentium. Mice deficient of p38α in T cells, but not in mac...

  14. Genomics Research Group Session

    OpenAIRE

    Baldwin, D.; Chittur, S.V.; Raghavachari, N.; N Jafari; Aquino, C.; Perera, A; Reyero, N.G.

    2014-01-01

    The Genomics Research Group (GRG) presentation is intended to describe the current activities of the group in applying the latest tools and technologies for transcriptome analysis to determine the advantages and disadvantages of each of the platforms. We will present three ongoing projects. In the first project, we specifically evaluated microarrays, QPCR and Next Generation Sequencing (NGS) platforms for examining the sensitivity and specificity of microRNA detection using synthetic miRNA st...

  15. The genomics of adaptation

    OpenAIRE

    Radwan, Jacek; Babik, Wiesław

    2012-01-01

    The amount and nature of genetic variation available to natural selection affect the rate, course and outcome of evolution. Consequently, the study of the genetic basis of adaptive evolutionary change has occupied biologists for decades, but progress has been hampered by the lack of resolution and the absence of a genome-level perspective. Technological advances in recent years should now allow us to answer many long-standing questions about the nature of adaptation. The data gathered so far ...

  16. Human Social Genomics

    OpenAIRE

    Cole, Steven W.

    2014-01-01

    A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conse...

  17. Das personalisierte Genom

    Directory of Open Access Journals (Sweden)

    Streubel B

    2012-01-01

    Full Text Available Im Jahr 2001 gelang nach langjährigen, multinationalen Bemühungen die erfolgreiche Entschlüsselung des menschlichen Genoms. Das Jahr 2008 gilt als Startpunkt der personalisierten Genomanalysen, da hier erstmals das Genom einer Person, nämlich des Entdeckers der chemischen DNA-Struktur, James Watson, vollständig sequenziert wurde. Ein wesentlicher Unterschied zur Genomsequenzierung im Jahr 2001 war hierbei, dass im Gegensatz zu der konventionellen Sangersequenzierung eine neue Sequenziertechnologie, die so genannte massive Parallelsequenzierung, zur Verfügung stand, die diese personalisierte Genomanalyse erst ermöglichte. Während die Entschlüsselung des menschlichen Genoms in den Jahren 1990–2001 mehrere Milliarden Dollar kostete, sind die Kosten für Genomuntersuchungen mittlerweile dermaßen gefallen, dass die neuen Technologien bereits in die Routinelabordiagnostik Einzug gehalten und dabei neue Möglichkeiten, z. B. bei der non-invasiven Pränataltestung, eröffnet haben.

  18. Bioinformatics and genomic medicine.

    Science.gov (United States)

    Kim, Ju Han

    2002-01-01

    Bioinformatics is a rapidly emerging field of biomedical research. A flood of large-scale genomic and postgenomic data means that many of the challenges in biomedical research are now challenges in computational science. Clinical informatics has long developed methodologies to improve biomedical research and clinical care by integrating experimental and clinical information systems. The informatics revolution in both bioinformatics and clinical informatics will eventually change the current practice of medicine, including diagnostics, therapeutics, and prognostics. Postgenome informatics, powered by high-throughput technologies and genomic-scale databases, is likely to transform our biomedical understanding forever, in much the same way that biochemistry did a generation ago. This paper describes how these technologies will impact biomedical research and clinical care, emphasizing recent advances in biochip-based functional genomics and proteomics. Basic data preprocessing with normalization and filtering, primary pattern analysis, and machine-learning algorithms are discussed. Use of integrative biochip informatics technologies, including multivariate data projection, gene-metabolic pathway mapping, automated biomolecular annotation, text mining of factual and literature databases, and the integrated management of biomolecular databases, are also discussed. PMID:12544491

  19. Exploring genomes for glycosyltransferases.

    Science.gov (United States)

    Hansen, Sara Fasmer; Bettler, Emmanuel; Rinnan, Asmund; Engelsen, Søren B; Breton, Christelle

    2010-10-01

    Glycosyltransferases are one of the largest and most diverse enzyme groups in Nature. They catalyse the synthesis of glycosidic linkages by the transfer of a sugar residue from a donor to an acceptor substrate. These enzymes have been classified into families on the basis of amino acid sequence similarity that are kept updated in the Carbohydrate Active enZyme database (CAZy, ). The repertoire of glycosyltransferases in genomes is believed to determine the diversity of cellular glycan structures, and current estimates suggest that for most genomes about 1% of the coding regions are glycosyltransferases. However, plants tend to have far more glycosyltransferase genes than any other organism sequenced to date, and this can be explained by the highly complex polysaccharide network that form the cell wall and also by the numerous glycosylated secondary metabolites. In recent years, various bioinformatics strategies have been used to search bacterial and plant genomes for new glycosyltransferase genes. These are based on the use of remote homology detection methods that act at the 1D, 2D, and 3D level. The combined use of methods such as profile Hidden Markov Model (HMM) and fold recognition appears to be appropriate for this class of enzyme. Chemometric tools are also particularly well suited for obtaining an overview of multivariate data and revealing hidden latent information when dealing with large and highly complex datasets. PMID:20556308

  20. Genomic Prediction from Whole Genome Sequence in Livestock: The 1000 Bull Genomes Project

    DEFF Research Database (Denmark)

    Hayes, Benjamin J; MacLeod, Iona M; Daetwyler, Hans D;

    Advantages of using whole genome sequence data to predict genomic estimated breeding values (GEBV) include better persistence of accuracy of GEBV across generations and more accurate GEBV across breeds. The 1000 Bull Genomes Project provides a database of whole genome sequenced key ancestor bulls......, for imputing sequence variant genotypes into reference sets for genomic prediction. Run 3.0 included 429 sequences, with 31.8 million variants detected. BayesRC, a new method for genomic prediction, addresses some challenges associated with using the sequence data, and takes advantage of biological...... information. In a dairy data set, predictions using BayesRC and imputed sequence data from 1000 Bull Genomes were 2% more accurate than with 800k data. We could demonstrate the method identified causal mutations in some cases. Further improvements will come from more accurate imputation of sequence variant...

  1. Genome update: the 1000th genome - a cautionary tale

    DEFF Research Database (Denmark)

    Lagesen, Karin; Ussery, David; Wassenaar, Gertrude Maria

    2010-01-01

    There are now more than 1000 sequenced prokaryotic genomes deposited in public databases and available for analysis. Currently, although the sequence databases GenBank, DNA Database of Japan and EMBL are synchronized continually, there are slight differences in content at the genomes level...... for a variety of logistical reasons, including differences in format and loading errors, such as those caused by file transfer protocol interruptions. This means that the 1000th genome will be different in the various databases. Some of the data on the highly accessed web pages are inaccurate, leading to false...... conclusions for example about the largest bacterial genome sequenced. Biological diversity is far greater than many have thought. For example, analysis of multiple Escherichia coli genomes has led to an estimate of around 45 000 gene families more genes than are recognized in the human genome. Moreover...

  2. Genome Update: alignment of bacterial chromosomes

    DEFF Research Database (Denmark)

    Ussery, David; Jensen, Mette; Poulsen, Tine Rugh;

    2004-01-01

    There are four new microbial genomes listed in this month's Genome Update, three belonging to Gram-positive bacteria and one belonging to an archaeon that lives at pH 0; all of these genomes are listed in Table 1⇓. The method of genome comparison this month is that of genome alignment and......, as an example, an alignment of seven Staphylococcus aureus genomes and one Staphylococcus epidermidis genome is presented....

  3. Genomic prediction using QTL derived from whole genome sequence data

    DEFF Research Database (Denmark)

    Brøndum, Rasmus Froberg; Su, Guosheng; Janss, Luc;

    This study investigated the gain in accuracy of genomic prediction when a small number of significant variants from single marker analysis based on whole genome sequence data were added to the regular 54k SNP data. Analyses were performed for Nordic Holstein and Danish Jersey animals, using either...... a genomic BLUP or a Bayesian variable selection model. When using the genomic BLUP model, results showed increases in accuracy of up to two percentage points for production traits in both Holstein and Jersey animals by including the extra variants in the analysis, and an extra 1.5 percentage points...

  4. Flexible genomic islands as drivers of genome evolution.

    Science.gov (United States)

    Rodriguez-Valera, Francisco; Martin-Cuadrado, Ana-Belen; López-Pérez, Mario

    2016-06-01

    Natural prokaryotic populations are composed of multiple clonal lineages that are different in their core genomes in a range that varies typically between 95 and 100% nucleotide identity. Each clonal lineage also carries a complement of not shared flexible genes that can be very large. The compounded flexible genome provides polyclonal populations with enormous gene diversity that can be used to efficiently exploit resources. This has fundamental repercussions for interpreting individual bacterial genomes. They are better understood as parts rather than the whole. Multiple genomes are required to understand how the population interacts with its biotic and abiotic environment. PMID:27085300

  5. The Anolis Lizard Genome: An Amniote Genome without Isochores?

    Science.gov (United States)

    Costantini, Maria; Greif, Gonzalo; Alvarez-Valin, Fernando; Bernardi, Giorgio

    2016-01-01

    Two articles published 5 years ago concluded that the genome of the lizard Anolis carolinensis is an amniote genome without isochores. This claim was apparently contradicting previous results on the general presence of an isochore organization in all vertebrate genomes tested (including Anolis). In this investigation, we demonstrate that the Anolis genome is indeed heterogeneous in base composition, since its macrochromosomes comprise isochores mainly from the L2 and H1 families (a moderately GC-poor and a moderately GC-rich family, respectively), and since the majority of the sequenced microchromosomes consists of H1 isochores. These families are associated with different features of genome structure, including gene density and compositional correlations (e.g., GC3 vs flanking sequence GC and intron GC), as in the case of mammalian and avian genomes. Moreover, the assembled Anolis chromosomes have an enormous number of gaps, which could be due to sequencing problems in GC-rich regions of the genome. In conclusion, the Anolis genome is no exception to the general rule of an isochore organization in the genomes of vertebrates (and other eukaryotes). PMID:26992416

  6. The Saccharomyces Genome Database: Exploring Genome Features and Their Annotations.

    Science.gov (United States)

    Cherry, J Michael

    2015-12-01

    Genomic-scale assays result in data that provide information over the entire genome. Such base pair resolution data cannot be summarized easily except via a graphical viewer. A genome browser is a tool that displays genomic data and experimental results as horizontal tracks. Genome browsers allow searches for a chromosomal coordinate or a feature, such as a gene name, but they do not allow searches by function or upstream binding site. Entry into a genome browser requires that you identify the gene name or chromosomal coordinates for a region of interest. A track provides a representation for genomic results and is displayed as a row of data shown as line segments to indicate regions of the chromosome with a feature. Another type of track presents a graph or wiggle plot that indicates the processed signal intensity computed for a particular experiment or set of experiments. Wiggle plots are typical for genomic assays such as the various next-generation sequencing methods (e.g., chromatin immunoprecipitation [ChIP]-seq or RNA-seq), where it represents a peak of DNA binding, histone modification, or the mapping of an RNA sequence. Here we explore the browser that has been built into the Saccharomyces Genome Database (SGD). PMID:26631126

  7. Genomic Data Commons and Genomic Cloud Pilots - Google Hangout

    Science.gov (United States)

    Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.

  8. Genome engineering in Vibrio cholerae

    DEFF Research Database (Denmark)

    Val, Marie-Eve; Skovgaard, Ole; Ducos-Galand, Magaly;

    2012-01-01

    Although bacteria with multipartite genomes are prevalent, our knowledge of the mechanisms maintaining their genome is very limited, and much remains to be learned about the structural and functional interrelationships of multiple chromosomes. Owing to its bi-chromosomal genome architecture and its...... importance in public health, Vibrio cholerae, the causative agent of cholera, has become a preferred model to study bacteria with multipartite genomes. However, most in vivo studies in V. cholerae have been hampered by its genome architecture, as it is difficult to give phenotypes to a specific chromosome....... This difficulty was surmounted using a unique and powerful strategy based on massive rearrangement of prokaryotic genomes. We developed a site-specific recombination-based engineering tool, which allows targeted, oriented, and reciprocal DNA exchanges. Using this genetic tool, we obtained a panel of V...

  9. Allele coding in genomic evaluation

    DEFF Research Database (Denmark)

    Standen, Ismo; Christensen, Ole Fredslund

    2011-01-01

    Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker...... effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous...... estimates and estimated marker effects in marker-based models are the same irrespective of the allele coding, provided that the model has a fixed general mean. For the equivalent models, the same results hold, even though different allele coding methods lead to different genomic relationship matrices...

  10. Big Data: Astronomical or Genomical?

    Science.gov (United States)

    Stephens, Zachary D; Lee, Skylar Y; Faghri, Faraz; Campbell, Roy H; Zhai, Chengxiang; Efron, Miles J; Iyer, Ravishankar; Schatz, Michael C; Sinha, Saurabh; Robinson, Gene E

    2015-07-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"--it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade. PMID:26151137

  11. Big Data: Astronomical or Genomical?

    Directory of Open Access Journals (Sweden)

    Zachary D Stephens

    2015-07-01

    Full Text Available Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"--it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade.

  12. The UCSC genome browser database

    DEFF Research Database (Denmark)

    Kuhn, R M; Karolchik, D; Zweig, A S;

    2007-01-01

    The University of California, Santa Cruz Genome Browser Database contains, as of September 2006, sequence and annotation data for the genomes of 13 vertebrate and 19 invertebrate species. The Genome Browser displays a wide variety of annotations at all scales from the single nucleotide level up...... to a full chromosome and includes assembly data, genes and gene predictions, mRNA and EST alignments, and comparative genomics, regulation, expression and variation data. The database is optimized for fast interactive performance with web tools that provide powerful visualization and querying capabilities......; an expanded SNP annotation track; and many new display options. The Genome Browser, other tools, downloadable data files and links to documentation and other information can be found at http://genome.ucsc.edu/....

  13. Genome engineering in Vibrio cholerae

    DEFF Research Database (Denmark)

    Val, Marie-Eve; Skovgaard, Ole; Ducos-Galand, Magaly;

    2012-01-01

    Although bacteria with multipartite genomes are prevalent, our knowledge of the mechanisms maintaining their genome is very limited, and much remains to be learned about the structural and functional interrelationships of multiple chromosomes. Owing to its bi-chromosomal genome architecture and its...... importance in public health, Vibrio cholerae, the causative agent of cholera, has become a preferred model to study bacteria with multipartite genomes. However, most in vivo studies in V. cholerae have been hampered by its genome architecture, as it is difficult to give phenotypes to a specific chromosome....... This difficulty was surmounted using a unique and powerful strategy based on massive rearrangement of prokaryotic genomes. We developed a site-specific recombination-based engineering tool, which allows targeted, oriented, and reciprocal DNA exchanges. Using this genetic tool, we obtained a panel of V. cholerae...

  14. TIGER: tiled iterative genome assembler

    OpenAIRE

    Wu Xiao-Long; Heo Yun; El Hajj Izzat; Hwu Wen-Mei; Chen Deming; Ma Jian

    2012-01-01

    Abstract Background With the cost reduction of the next-generation sequencing (NGS) technologies, genomics has provided us with an unprecedented opportunity to understand fundamental questions in biology and elucidate human diseases. De novo genome assembly is one of the most important steps to reconstruct the sequenced genome. However, most de novo assemblers require enormous amount of computational resource, which is not accessible for most research groups and medical personnel. Results We ...

  15. Evolution of the cancer genome

    OpenAIRE

    Yates, Lucy R.; Campbell, Peter J

    2012-01-01

    The advent of massively parallel sequencing technologies has allowed the characterization of cancer genomes at an unprecedented resolution. Investigation of the mutational landscape of tumours is providing new insights into cancer genome evolution, laying bare the interplay of somatic mutation, adaptation of clones to their environment and natural selection. These studies have demonstrated the extent of the heterogeneity of cancer genomes, have allowed inferences to be made about the forces t...

  16. Cactus Graphs for Genome Comparisons

    Science.gov (United States)

    Paten, Benedict; Diekhans, Mark; Earl, Dent; St. John, John; Ma, Jian; Suh, Bernard; Haussler, David

    We introduce a data structure, analysis and visualization scheme called a cactus graph for comparing sets of related genomes. Cactus graphs capture some of the advantages of de Bruijn and breakpoint graphs in one unified framework. They naturally decompose the common substructures in a set of related genomes into a hierarchy of chains that can be visualized as multiple alignments and nets that can be visualized in circular genome plots.

  17. Genome mapping of the horse

    OpenAIRE

    Lindgren, Gabriella

    2001-01-01

    Our ability to map and sequence whole genomes is one of the most important developments in biological science. It will provide us with an unprecedented insight into the genetic background of phenotypic traits, such as disease resistance, reproduction and growth and also makes it feasible to study the processes of genome evolution. The main focus of this thesis has been to develop a linkage map of the horse (Equus caballus) genome. A secondary aim was to expand the number of physically mapped ...

  18. Comparative genomic hybridization: an overview.

    OpenAIRE

    Houldsworth, J; Chaganti, R S

    1994-01-01

    Comparative genomic hybridization (CGH) is a newly described molecular-cytogenetic assay that globally assays for chromosomal gains and losses in a genomic complement. In this assay, normal human metaphase chromosomes are competitively hybridized with two differentially labeled genomic DNAs (test and reference), which upon fluorescence microscopy, reveal the chromosomal locations of copy number changes in DNA sequences between the two complements. Application of CGH to DNAs extracted from fre...

  19. Programs | Office of Cancer Genomics

    Science.gov (United States)

    OCG facilitates cancer genomics research through a series of highly-focused programs. These programs generate and disseminate genomic data for use by the cancer research community. OCG programs also promote advances in technology-based infrastructure and create valuable experimental reagents and tools. OCG programs encourage collaboration by interconnecting with other genomics and cancer projects in order to accelerate translation of findings into the clinic. Below are OCG’s current, completed, and initiated programs:

  20. Flere genomer under samme tag

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2011-01-01

    Symbiogenese. Opgør med teorien om, at der til ét individ hører ét genom.Mange insekter og bløddyr er i virkeligheden tæt samlevende væsener med hver sit genom. Selv hos hvirveldyrene vakler teorien.......Symbiogenese. Opgør med teorien om, at der til ét individ hører ét genom.Mange insekter og bløddyr er i virkeligheden tæt samlevende væsener med hver sit genom. Selv hos hvirveldyrene vakler teorien....

  1. Methods for Analyzing Genomes

    OpenAIRE

    Ståhl, Patrik L.

    2010-01-01

    The human genome reference sequence has given us a two‐dimensional blueprint of our inherited code of life, but we need to employ modern‐day technology to expand our knowledge into a third dimension. Inter‐individual and intra‐individual variation has been shown to be larger than anticipated, and the mode of genetic regulation more complex. Therefore, the methods that were once used to explain our fundamental constitution are now used to decipher our differences. Over the past four years, thr...

  2. Genomics of Bacillus Species

    Science.gov (United States)

    Økstad, Ole Andreas; Kolstø, Anne-Brit

    Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis was defined as the type species (Soule, 1932). Several Bacilli may be linked to opportunistic infections. However, pathogenicity among Bacillus spp. is mainly a feature of bacteria belonging to the Bacillus cereus group, including B. cereus, Bacillus anthracis, and Bacillus thuringiensis. Here we review the genomics of B. cereus group bacteria in relation to their roles as etiological agents of two food poisoning syndromes (emetic and diarrhoeal).

  3. The human genome project

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-06-01

    The Human Genome Project will obtain high-resolution genetic and physical maps of each human chromosome and, somewhat later, of the complete nucleotide sequence of the deoxyribonucleic acid (DNA) in a human cell. The talk will begin with an extended introduction to explain the Project to nonbiologists and to show that map construction and sequence determination require extensive computation in order to determine the correct order of the mapped entities and to provide estimates of uncertainty. Computational analysis of the sequence data will become an increasingly important part of the project, and some computational challenges are described. 5 refs.

  4. Parasite Genome Projects and the Trypanosoma cruzi Genome Initiative

    Directory of Open Access Journals (Sweden)

    Wim Degrave

    1997-11-01

    Full Text Available Since the start of the human genome project, a great number of genome projects on other "model" organism have been initiated, some of them already completed. Several initiatives have also been started on parasite genomes, mainly through support from WHO/TDR, involving North-South and South-South collaborations, and great hopes are vested in that these initiatives will lead to new tools for disease control and prevention, as well as to the establishment of genomic research technology in developing countries. The Trypanosoma cruzi genome project, using the clone CL-Brener as starting point, has made considerable progress through the concerted action of more than 20 laboratories, most of them in the South. A brief overview of the current state of the project is given

  5. A Taste of Algal Genomes from the Joint Genome Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2012-06-17

    Algae play profound roles in aquatic food chains and the carbon cycle, can impose health and economic costs through toxic blooms, provide models for the study of symbiosis, photosynthesis, and eukaryotic evolution, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE's Joint Genome Institute (JGI). To date JGI has sequenced, assembled, annotated, and released to the public the genomes of 18 species and strains of algae, sampling almost all of the major clades of photosynthetic eukaryotes. With more algal genomes currently undergoing analysis, JGI continues its commitment to driving forward basic and applied algal science. Among these ongoing projects are the pan-genome of the dominant coccolithophore Emiliania huxleyi, the interrelationships between the 4 genomes in the nucleomorph-containing Bigelowiella natans and Guillardia theta, and the search for symbiosis genes of lichens.

  6. Parsing of genomic graffiti

    Energy Technology Data Exchange (ETDEWEB)

    Tibbetts, C.; Golden, J. III; Torgersen, D. [Vanderbilt Univ. School of Engineering, Nashville, TN (United States)

    1996-12-31

    A focal point of modern biology is investigation of wide varieties of phenomena at the level of molecular genetics. The nucleotide sequences of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) define the ultimate resolution of this reductionist approach to understand the determinants of heritable traits. The structure and function of genes, their composite genomic organization, and their regulated expression have been studied in systems representing every class of organism. Many human diseases or pathogenic syndromes can be directly attributed to inherited defects in either the regulated expression, or the quality of the products of specific genes. Genetic determinants of susceptibility to infectious agents or environmental hazards are amply documented. Mapping and sequencing of the DNA molecules encoding human genes have provided powerful technology for pharmaceutical bioengineering and forensic investigations. From an alternative perspective, we may anticipate that voluminous archives of singular DNA sequences alone will not suffice to define and understand the functional determinants of genome organization, allelic diversity and evolutionary plasticity of living organisms. New insights will accumulate pertaining to human evolutionary origins and relationships of human biology to models based on other mammals. Investigators of population genetics and epidemiology now exploit the technology of molecular genetics to more powerfully probe variation within the human gene pool at the level of DNA sequences. 40 refs., 7 figs., 2 tabs.

  7. The Perennial Ryegrass GenomeZipper – Targeted Use of Genome Resources for Comparative Grass Genomics

    DEFF Research Database (Denmark)

    Pfeiffer, Matthias; Martis, Mihaela; Asp, Torben;

    2013-01-01

    (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to...... assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The...

  8. GenomeD3Plot: a library for rich, interactive visualizations of genomic data in web applications

    OpenAIRE

    Laird, Matthew R.; Langille, Morgan G I; Brinkman, Fiona S. L.

    2015-01-01

    Motivation: A simple static image of genomes and associated metadata is very limiting, as researchers expect rich, interactive tools similar to the web applications found in the post-Web 2.0 world. GenomeD3Plot is a light weight visualization library written in javascript using the D3 library. GenomeD3Plot provides a rich API to allow the rapid visualization of complex genomic data using a convenient standards based JSON configuration file. When integrated into existing web services GenomeD3P...

  9. Comparative genomics of Lactobacillus and other LAB

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M.; Lukjancenko, Oksana

    2014-01-01

    The genomes of 66 LABs, belonging to five different genera, were compared for genome size and gene content. The analyzed genomes included 37 Lactobacillus genomes of 17 species, six Lactococcus lactis genomes, four Leuconostoc genomes of three species, six Streptococcus genomes of two species...... that of the others, with the two Streptococcus species having the shortest genomes. The widest distribution in genome content was observed for Lactobacillus. The number of tRNA and rRNA gene copies varied considerably, with exceptional high numbers observed for Lb. delbrueckii, while these numbers were relatively...... high for Lb. sanfransiscensis and Lb. salivarius, with respect to their moderate gene size. The phylogenetic relationship of the 16S ribosomal RNA genes of these genomes was established and pan- and core genomes were defined for each genus. In addition, core genome analysis was performed on all food...

  10. The promise of insect genomics

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, Cornelis J P; Cazzamali, Giuseppe; Williamson, Michael;

    2007-01-01

    Insects are the largest animal group in the world and are ecologically and economically extremely important. This importance of insects is reflected by the existence of currently 24 insect genome projects. Our perspective discusses the state-of-the-art of these genome projects and the impacts that...

  11. Structural genomics of membrane proteins

    OpenAIRE

    Walian, Peter; Cross, Timothy A.; Jap, Bing K.

    2004-01-01

    Improvements in the fields of membrane-protein molecular biology and biochemistry, technical advances in structural data collection and processing, and the availability of numerous sequenced genomes have paved the way for membrane-protein structural genomics efforts. There has been significant recent progress, but various issues essential for high-throughput membrane-protein structure determination remain to be resolved.

  12. Cloud computing for comparative genomics

    Directory of Open Access Journals (Sweden)

    Pivovarov Rimma

    2010-05-01

    Full Text Available Abstract Background Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD, to run within Amazon's Elastic Computing Cloud (EC2. We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. Results We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. Conclusions The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems.

  13. Fueling Future with Algal Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  14. Quantitative Genomics of Male Reproduction

    Science.gov (United States)

    The objective of the review was to establish the current status of quantitative genomics for male reproduction. Genetic variation exists for male reproduction traits. These traits are expensive and time consuming traits to evaluate through conventional breeding schemes. Genomics is an alternative to...

  15. Cocoa/Cotton Comparative Genomics

    Science.gov (United States)

    With genome sequence from two members of the Malvaceae family recently made available, we are exploring syntenic relationships, gene content, and evolutionary trajectories between the cacao and cotton genomes. An assembly of cacao (Theobroma cacao) using Illumina and 454 sequence technology yielded ...

  16. How Can Genomics Inform Education?

    Science.gov (United States)

    Grigorenko, Elena L.

    2007-01-01

    This article offers some thoughts on possible connections between genomics and education. Genomics is already revolutionizing the way medical care is delivered and distributed; it will inevitably affect children's developmental trajectories by introducing more pharmacological and behavioral therapies. Educators should be prepared to understand the…

  17. Genome instability in Alzheimer disease

    DEFF Research Database (Denmark)

    Hou, Yujun; Song, Hyundong; Croteau, Deborah L;

    2016-01-01

    to the development of noninvasive treatment strategies. Further investigations into the molecular mechanisms connecting DNA damage to AD pathology may help to develop novel treatment strategies for this debilitating disease. Here we provide an overview of the role of genome instability and DNA repair deficiency...... in AD pathology and discuss research strategies that include genome instability as a component....

  18. The UCSC Genome Browser database: 2015 update

    OpenAIRE

    Rosenbloom, Kate R.; Armstrong, Joel; Barber, Galt P.; Casper, Jonathan; Clawson, Hiram; Diekhans, Mark; Dreszer, Timothy R.; Fujita, Pauline A.; Guruvadoo, Luvina; Haeussler, Maximilian; Harte, Rachel A.; Heitner, Steve; Hickey, Glenn; Hinrichs, Angie S.; Hubley, Robert

    2014-01-01

    Launched in 2001 to showcase the draft human genome assembly, the UCSC Genome Browser database (http://genome.ucsc.edu) and associated tools continue to grow, providing a comprehensive resource of genome assemblies and annotations to scientists and students worldwide. Highlights of the past year include the release of a browser for the first new human genome reference assembly in 4 years in December 2013 (GRCh38, UCSC hg38), a watershed comparative genomics annotation (100-species multiple al...

  19. The UCSC Genome Browser Database

    DEFF Research Database (Denmark)

    Karolchik, D; Kuhn, R M; Baertsch, R;

    2008-01-01

    The University of California, Santa Cruz, Genome Browser Database (GBD) provides integrated sequence and annotation data for a large collection of vertebrate and model organism genomes. Seventeen new assemblies have been added to the database in the past year, for a total coverage of 19 vertebrate...... and 21 invertebrate species as of September 2007. For each assembly, the GBD contains a collection of annotation data aligned to the genomic sequence. Highlights of this year's additions include a 28-species human-based vertebrate conservation annotation, an enhanced UCSC Genes set, and more human...... variation, MGC, and ENCODE data. The database is optimized for fast interactive performance with a set of web-based tools that may be used to view, manipulate, filter and download the annotation data. New toolset features include the Genome Graphs tool for displaying genome-wide data sets, session saving...

  20. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  1. RECORD: Reference-Assisted Genome Assembly for Closely Related Genomes.

    Science.gov (United States)

    Buza, Krisztian; Wilczynski, Bartek; Dojer, Norbert

    2015-01-01

    Background. Next-generation sequencing technologies are now producing multiple times the genome size in total reads from a single experiment. This is enough information to reconstruct at least some of the differences between the individual genome studied in the experiment and the reference genome of the species. However, in most typical protocols, this information is disregarded and the reference genome is used. Results. We provide a new approach that allows researchers to reconstruct genomes very closely related to the reference genome (e.g., mutants of the same species) directly from the reads used in the experiment. Our approach applies de novo assembly software to experimental reads and so-called pseudoreads and uses the resulting contigs to generate a modified reference sequence. In this way, it can very quickly, and at no additional sequencing cost, generate new, modified reference sequence that is closer to the actual sequenced genome and has a full coverage. In this paper, we describe our approach and test its implementation called RECORD. We evaluate RECORD on both simulated and real data. We made our software publicly available on sourceforge. Conclusion. Our tests show that on closely related sequences RECORD outperforms more general assisted-assembly software. PMID:26558255

  2. A Genome-Wide Landscape of Retrocopies in Primate Genomes.

    Science.gov (United States)

    Navarro, Fábio C P; Galante, Pedro A F

    2015-08-01

    Gene duplication is a key factor contributing to phenotype diversity across and within species. Although the availability of complete genomes has led to the extensive study of genomic duplications, the dynamics and variability of gene duplications mediated by retrotransposition are not well understood. Here, we predict mRNA retrotransposition and use comparative genomics to investigate their origin and variability across primates. Analyzing seven anthropoid primate genomes, we found a similar number of mRNA retrotranspositions (∼7,500 retrocopies) in Catarrhini (Old Word Monkeys, including humans), but a surprising large number of retrocopies (∼10,000) in Platyrrhini (New World Monkeys), which may be a by-product of higher long interspersed nuclear element 1 activity in these genomes. By inferring retrocopy orthology, we dated most of the primate retrocopy origins, and estimated a decrease in the fixation rate in recent primate history, implying a smaller number of species-specific retrocopies. Moreover, using RNA-Seq data, we identified approximately 3,600 expressed retrocopies. As expected, most of these retrocopies are located near or within known genes, present tissue-specific and even species-specific expression patterns, and no expression correlation to their parental genes. Taken together, our results provide further evidence that mRNA retrotransposition is an active mechanism in primate evolution and suggest that retrocopies may not only introduce great genetic variability between lineages but also create a large reservoir of potentially functional new genomic loci in primate genomes. PMID:26224704

  3. The Video Genome

    CERN Document Server

    Bronstein, Alexander M; Kimmel, Ron

    2010-01-01

    Fast evolution of Internet technologies has led to an explosive growth of video data available in the public domain and created unprecedented challenges in the analysis, organization, management, and control of such content. The problems encountered in video analysis such as identifying a video in a large database (e.g. detecting pirated content in YouTube), putting together video fragments, finding similarities and common ancestry between different versions of a video, have analogous counterpart problems in genetic research and analysis of DNA and protein sequences. In this paper, we exploit the analogy between genetic sequences and videos and propose an approach to video analysis motivated by genomic research. Representing video information as video DNA sequences and applying bioinformatic algorithms allows to search, match, and compare videos in large-scale databases. We show an application for content-based metadata mapping between versions of annotated video.

  4. The South Asian genome.

    Directory of Open Access Journals (Sweden)

    John C Chambers

    Full Text Available The genetic sequence variation of people from the Indian subcontinent who comprise one-quarter of the world's population, is not well described. We carried out whole genome sequencing of 168 South Asians, along with whole-exome sequencing of 147 South Asians to provide deeper characterisation of coding regions. We identify 12,962,155 autosomal sequence variants, including 2,946,861 new SNPs and 312,738 novel indels. This catalogue of SNPs and indels amongst South Asians provides the first comprehensive map of genetic variation in this major human population, and reveals evidence for selective pressures on genes involved in skin biology, metabolism, infection and immunity. Our results will accelerate the search for the genetic variants underlying susceptibility to disorders such as type-2 diabetes and cardiovascular disease which are highly prevalent amongst South Asians.

  5. Genomics in Neurological Disorders

    Institute of Scientific and Technical Information of China (English)

    Guangchun Han; Jiya Sun; Jiajia Wang; Zhouxian Bai; Fuhai Song; Hongxing Lei

    2014-01-01

    Neurological disorders comprise a variety of complex diseases in the central nervous system, which can be roughly classified as neurodegenerative diseases and psychiatric disorders. The basic and translational research of neurological disorders has been hindered by the difficulty in accessing the pathological center (i.e., the brain) in live patients. The rapid advancement of sequencing and array technologies has made it possible to investigate the disease mechanism and biomarkers from a systems perspective. In this review, recent progresses in the discovery of novel risk genes, treatment targets and peripheral biomarkers employing genomic technologies will be dis-cussed. Our major focus will be on two of the most heavily investigated neurological disorders, namely Alzheimer’s disease and autism spectrum disorder.

  6. Plantagora: modeling whole genome sequencing and assembly of plant genomes.

    Directory of Open Access Journals (Sweden)

    Roger Barthelson

    Full Text Available BACKGROUND: Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. METHODOLOGY/PRINCIPAL FINDINGS: For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. CONCLUSIONS/SIGNIFICANCE: Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly

  7. Human myoblast genome therapy

    Institute of Scientific and Technical Information of China (English)

    Peter K Law; Leo A Bockeria; Choong-Chin Liew; Danlin M Law; Ping Lu; Eugene KW Sim; Khawja H Haider; Lei Ye; Xun Li; Margarita N Vakhromeeva; Ilia I Berishvili

    2006-01-01

    Human Myoblast Genome Therapy (HMGT) is a platform technology of cell transplantation, nuclear transfer, and tissue engineering. Unlike stem cells, myoblasts are differentiated, immature cells destined to become muscles. Myoblasts cultured from satellite cells of adult muscle biopsies survive, develop, and function to revitalize degenerative muscles upon transplantation. Injection injury activates regeneration of host myofibers that fuse with the engrafted myoblasts, sharing their nuclei in a common gene pool of the syncytium. Thus, through nuclear transfer and complementation, the normal human genome can be transferred into muscles of patients with genetic disorders to achieve phenotype repair or disease prevention. Myoblasts are safe and efficient gene transfer vehicles endogenous to muscles that constitute 50% of body weight. Results of over 280 HMGT procedures on Duchenne Muscular Dystrophy (DMD) subjects in the past 15 years demonstrated absolute safety. Myoblast-injected DMD muscles showed improved histology.Strength increase at 18 months post-operatively averaged 123%. In another application of HMGT on ischemic cardiomyopathy, the first human myoblast transfer into porcine myocardium revealed that it was safe and effective. Clinical trials on approximately 220 severe cardiomyopathy patients in 15 countries showed a <10% mortality. Most subjects received autologous cells implanted on the epicardial surface during coronory artery bypass graft, or injected on the endomyocardial surface percutaneously through guiding catheters. Significant increases in left ventricular ejection fraction, wall thickness, and wall motion have been reported, with reduction in perfusion defective areas, angina, and shortness of breath. As a new modality of treatment for disease in the skeletal muscle or myocardium, HMGT emerged as safe and effective. Large randomized multi-center trials are under way to confirm these preliminary results. The future of HMGT is bright and exciting

  8. Genomic composition factors affect codon usage in porcine genome

    DEFF Research Database (Denmark)

    Khobondo, J O; Okeno, Tobias O; Kahi, A K

    2015-01-01

    The objective of the study was to determine the codon usage bias in the porcine genome and decipher its determinants. To investigate the underlying mechanisms of codon bias, the coding sequence (CDS) from the swine reference sequence (ssc10.2) was extracted using Biomart. An in house built Perl...... script was used to derive various genomic traits and codon indices. Analysis was done using R statistical package, and correlations and multivariate regressions were performed. We report the existence of codon usage bias that might suggest existence of weak translational selection. The codon bias is...... genomic sequences thus maximizing the effectiveness of genetic manipulations in synthetic biology...

  9. The genome of Eucalyptus grandis

    Energy Technology Data Exchange (ETDEWEB)

    Myburg, Alexander A.; Grattapaglia, Dario; Tuskan, Gerald A.; Hellsten, Uffe; Hayes, Richard D.; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M.; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R. K.; Hussey, Steven G.; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B.; Togawa, Roberto C.; Pappas, Marilia R.; Faria, Danielle A.; Sansaloni, Carolina P.; Petroli, Cesar D.; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J.; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A.; Bornberg-Bauer, Erich; Kersting, Anna R.; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E.; Liston, Aaron; Spatafora, Joseph W.; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H.; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C.; Steane, Dorothy A.; Vaillancourt, René E.; Potts, Brad M.; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J.; Strauss, Steven H.; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S.; Schmutz, Jeremy

    2014-06-11

    Eucalypts are the world s most widely planted hardwood trees. Their broad adaptability, rich species diversity, fast growth and superior multipurpose wood, have made them a global renewable resource of fiber and energy that mitigates human pressures on natural forests. We sequenced and assembled >94% of the 640 Mbp genome of Eucalyptus grandis into its 11 chromosomes. A set of 36,376 protein coding genes were predicted revealing that 34% occur in tandem duplications, the largest proportion found thus far in any plant genome. Eucalypts also show the highest diversity of genes for plant specialized metabolism that act as chemical defence against biotic agents and provide unique pharmaceutical oils. Resequencing of a set of inbred tree genomes revealed regions of strongly conserved heterozygosity, likely hotspots of inbreeding depression. The resequenced genome of the sister species E. globulus underscored the high inter-specific genome colinearity despite substantial genome size variation in the genus. The genome of E. grandis is the first reference for the early diverging Rosid order Myrtales and is placed here basal to the Eurosids. This resource expands knowledge on the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

  10. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye;

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size......, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this...... pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits....

  11. Human genome. 1993 Program report

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  12. Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA)

    OpenAIRE

    Güell, Marc; Yang, Luhan; Church, George M.

    2014-01-01

    Summary: Clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies have revolutionized human genome engineering and opened countless possibilities to basic science, synthetic biology and gene therapy. Albeit the enormous potential of these tools, their performance is far from perfect. It is essential to perform a posterior careful analysis of the gene editing experiment. However, there are no computational tools for genome editing assessment yet, and current experi...

  13. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  14. Constitutive induction of intestinal Tc17 cells in the absence of hematopoietic cell-specific MHC class II expression.

    Science.gov (United States)

    Rubino, Stephen J; Geddes, Kaoru; Magalhaes, Joao G; Streutker, Catherine; Philpott, Dana J; Girardin, Stephen E

    2013-11-01

    The enteric pathogen Citrobacter rodentium induces a mucosal IL-17 response in CD4(+) T helper (Th17) cells that is dependent on the Nod-like receptors Nod1 and Nod2. Here, we sought to determine whether this early Th17 response required antigen presentation by major histocompatibility complex class II (MHCII) for full induction. At early phases of C. rodentium infection, we observed that the intestinal mucosal Th17 response was fully blunted in irradiated mice reconstituted with MHCII-deficient (MHCII(-/-) →WT) hematopoietic cells. Surprisingly, we also observed a substantial increase in the relative frequency of IL-17(+) CD8(+) CD4(-) TCR-β(+) cells (Tc17 cells) and FOXP3(+) CD8(+) CD4(-) TCR-β(+) cells in the lamina propria and intraepithelial lymphocyte compartment of MHCII(-/-) →WT mice compared with that in WT→WT counterparts. Moreover, MHCII(-/-) →WT mice displayed increased susceptibility, increased bacterial translocation to deeper organs, and more severe colonic histopathology after infection with C. rodentium. Finally, a similar phenotype was observed in mice deficient for CIITA, a transcriptional regulator of MHCII expression. Together, these results indicate that MHCII is required to mount early mucosal Th17 responses to an enteric pathogen, and that MHCII regulates the induction of atypical CD8(+) T-cell subsets, such as Tc17 cells and FOXP3(+) CD8(+) cells, in vivo. PMID:23881368

  15. The Materials Genome Project

    Science.gov (United States)

    Aourag, H.

    2008-09-01

    In the past, the search for new and improved materials was characterized mostly by the use of empirical, trial- and-error methods. This picture of materials science has been changing as the knowledge and understanding of fundamental processes governing a material's properties and performance (namely, composition, structure, history, and environment) have increased. In a number of cases, it is now possible to predict a material's properties before it has even been manufactured thus greatly reducing the time spent on testing and development. The objective of modern materials science is to tailor a material (starting with its chemical composition, constituent phases, and microstructure) in order to obtain a desired set of properties suitable for a given application. In the short term, the traditional "empirical" methods for developing new materials will be complemented to a greater degree by theoretical predictions. In some areas, computer simulation is already used by industry to weed out costly or improbable synthesis routes. Can novel materials with optimized properties be designed by computers? Advances in modelling methods at the atomic level coupled with rapid increases in computer capabilities over the last decade have led scientists to answer this question with a resounding "yes'. The ability to design new materials from quantum mechanical principles with computers is currently one of the fastest growing and most exciting areas of theoretical research in the world. The methods allow scientists to evaluate and prescreen new materials "in silico" (in vitro), rather than through time consuming experimentation. The Materials Genome Project is to pursue the theory of large scale modeling as well as powerful methods to construct new materials, with optimized properties. Indeed, it is the intimate synergy between our ability to predict accurately from quantum theory how atoms can be assembled to form new materials and our capacity to synthesize novel materials atom

  16. International network of cancer genome projects

    NARCIS (Netherlands)

    Hudson, Thomas J.; Anderson, Warwick; Aretz, Axel; Barker, Anna D.; Bell, Cindy; Bernabe, Rosa R.; Bhan, M. K.; Calvo, Fabien; Eerola, Iiro; Gerhard, Daniela S.; Guttmacher, Alan; Guyer, Mark; Hemsley, Fiona M.; Jennings, Jennifer L.; Kerr, David; Klatt, Peter; Kolar, Patrik; Kusuda, Jun; Lane, David P.; Laplace, Frank; Lu, Youyong; Nettekoven, Gerd; Ozenberger, Brad; Peterson, Jane; Rao, T. S.; Remacle, Jacques; Schafer, Alan J.; Shibata, Tatsuhiro; Stratton, Michael R.; Vockley, Joseph G.; Watanabe, Koichi; Yang, Huanming; Yuen, Matthew M. F.; Knoppers, M.; Bobrow, Martin; Cambon-Thomsen, Anne; Dressler, Lynn G.; Dyke, Stephanie O. M.; Joly, Yann; Kato, Kazuto; Kennedy, Karen L.; Nicolas, Pilar; Parker, Michael J.; Rial-Sebbag, Emmanuelle; Romeo-Casabona, Carlos M.; Shaw, Kenna M.; Wallace, Susan; Wiesner, Georgia L.; Zeps, Nikolajs; Lichter, Peter; Biankin, Andrew V.; Chabannon, Christian; Chin, Lynda; Clement, Bruno; de Alava, Enrique; Degos, Francoise; Ferguson, Martin L.; Geary, Peter; Hayes, D. Neil; Johns, Amber L.; Nakagawa, Hidewaki; Penny, Robert; Piris, Miguel A.; Sarin, Rajiv; Scarpa, Aldo; Shibata, Tatsuhiro; van de Vijver, Marc; Futreal, P. Andrew; Aburatani, Hiroyuki; Bayes, Monica; Bowtell, David D. L.; Campbell, Peter J.; Estivill, Xavier; Grimmond, Sean M.; Gut, Ivo; Hirst, Martin; Lopez-Otin, Carlos; Majumder, Partha; Marra, Marco; Nakagawa, Hidewaki; Ning, Zemin; Puente, Xose S.; Ruan, Yijun; Shibata, Tatsuhiro; Stratton, Michael R.; Stunnenberg, Hendrik G.; Swerdlow, Harold; Velculescu, Victor E.; Wilson, Richard K.; Xue, Hong H.; Yang, Liu; Spellman, Paul T.; Bader, Gary D.; Boutros, Paul C.; Campbell, Peter J.; Flicek, Paul; Getz, Gad; Guigo, Roderic; Guo, Guangwu; Haussler, David; Heath, Simon; Hubbard, Tim J.; Jiang, Tao; Jones, Steven M.; Li, Qibin; Lopez-Bigas, Nuria; Luo, Ruibang; Pearson, John V.; Puente, Xose S.; Quesada, Victor; Raphael, Benjamin J.; Sander, Chris; Shibata, Tatsuhiro; Speed, Terence P.; Stuart, Joshua M.; Teague, Jon W.; Totoki, Yasushi; Tsunoda, Tatsuhiko; Valencia, Alfonso; Wheeler, David A.; Wu, Honglong; Zhao, Shancen; Zhou, Guangyu; Stein, Lincoln D.; Guigo, Roderic; Hubbard, Tim J.; Joly, Yann; Jones, Steven M.; Lathrop, Mark; Lopez-Bigas, Nuria; Ouellette, B. F. Francis; Spellman, Paul T.; Teague, Jon W.; Thomas, Gilles; Valencia, Alfonso; Yoshida, Teruhiko; Kennedy, Karen L.; Axton, Myles; Dyke, Stephanie O. M.; Futreal, P. Andrew; Gunter, Chris; Guyer, Mark; McPherson, John D.; Miller, Linda J.; Ozenberger, Brad; Kasprzyk, Arek; Zhang, Junjun; Haider, Syed A.; Wang, Jianxin; Yung, Christina K.; Cross, Anthony; Liang, Yong; Gnaneshan, Saravanamuttu; Guberman, Jonathan; Hsu, Jack; Bobrow, Martin; Chalmers, Don R. C.; Hasel, Karl W.; Joly, Yann; Kaan, Terry S. H.; Kennedy, Karen L.; Knoppers, Bartha M.; Lowrance, William W.; Masui, Tohru; Nicolas, Pilar; Rial-Sebbag, Emmanuelle; Rodriguez, Laura Lyman; Vergely, Catherine; Yoshida, Teruhiko; Grimmond, Sean M.; Biankin, Andrew V.; Bowtell, David D. L.; Cloonan, Nicole; Defazio, Anna; Eshleman, James R.; Etemadmoghadam, Dariush; Gardiner, Brooke A.; Kench, James G.; Scarpa, Aldo; Sutherland, Robert L.; Tempero, Margaret A.; Waddell, Nicola J.; Wilson, Peter J.; Gallinger, Steve; Tsao, Ming-Sound; Shaw, Patricia A.; Petersen, Gloria M.; Mukhopadhyay, Debabrata; Chin, Lynda; DePinho, Ronald A.; Thayer, Sarah; Muthuswamy, Lakshmi; Shazand, Kamran; Beck, Timothy; Sam, Michelle; Timms, Lee; Ballin, Vanessa; Lu, Youyong; Ji, Jiafu; Zhang, Xiuqing; Chen, Feng; Hu, Xueda; Zhou, Guangyu; Yang, Qi; Tian, Geng; Zhang, Lianhai; Xing, Xiaofang; Li, Xianghong; Zhu, Zhenggang; Yu, Yingyan; Yu, Jun; Yang, Huanming; Lathrop, Mark; Tost, Joerg; Brennan, Paul; Holcatova, Ivana; Zaridze, David; Brazma, Alvis; Egevad, Lars; Prokhortchouk, Egor; Banks, Rosamonde Elizabeth; Uhlen, Mathias; Cambon-Thomsen, Anne; Viksna, Juris; Ponten, Fredrik; Skryabin, Konstantin; Stratton, Michael R.; Futreal, P. Andrew; Birney, Ewan; Borg, Ake; Borresen-Dale, Anne-Lise; Caldas, Carlos; Foekens, John A.; Martin, Sancha; Reis-Filho, Jorge S.; Richardson, Andrea L.; Sotiriou, Christos; Stunnenberg, Hendrik G.; Thomas, Gilles; van de Vijver, Marc; van't Veer, Laura; Birnbaum, Daniel; Blanche, Helene; Boucher, Pascal; Boyault, Sandrine; Chabannon, Christian; Gut, Ivo; Masson-Jacquemier, Jocelyne D.; Lathrop, Mark; Pauporte, Iris; Pivot, Xavier; Vincent-Salomon, Anne; Tabone, Eric; Theillet, Charles; Thomas, Gilles; Tost, Joerg; Treilleux, Isabelle; Bioulac-Sage, Paulette; Clement, Bruno; Decaens, Thomas; Degos, Francoise; Franco, Dominique; Gut, Ivo; Gut, Marta; Heath, Simon; Lathrop, Mark; Samuel, Didier; Thomas, Gilles; Zucman-Rossi, Jessica; Lichter, Peter; Eils, Roland; Brors, Benedikt; Korbel, Jan O.; Korshunov, Andrey; Landgraf, Pablo; Lehrach, Hans; Pfister, Stefan; Radlwimmer, Bernhard; Reifenberger, Guido; Taylor, Michael D.; von Kalle, Christof; Majumder, Partha P.; Sarin, Rajiv; Scarpa, Aldo; Pederzoli, Paolo; Lawlor, Rita T.; Delledonne, Massimo; Bardelli, Alberto; Biankin, Andrew V.; Grimmond, Sean M.; Gress, Thomas; Klimstra, David; Zamboni, Giuseppe; Shibata, Tatsuhiro; Nakamura, Yusuke; Nakagawa, Hidewaki; Kusuda, Jun; Tsunoda, Tatsuhiko; Miyano, Satoru; Aburatani, Hiroyuki; Kato, Kazuto; Fujimoto, Akihiro; Yoshida, Teruhiko; Campo, Elias; Lopez-Otin, Carlos; Estivill, Xavier; Guigo, Roderic; de Sanjose, Silvia; Piris, Miguel A.; Montserrat, Emili; Gonzalez-Diaz, Marcos; Puente, Xose S.; Jares, Pedro; Valencia, Alfonso; Himmelbaue, Heinz; Quesada, Victor; Bea, Silvia; Stratton, Michael R.; Futreal, P. Andrew; Campbell, Peter J.; Vincent-Salomon, Anne; Richardson, Andrea L.; Reis-Filho, Jorge S.; van de Vijver, Marc; Thomas, Gilles; Masson-Jacquemier, Jocelyne D.; Aparicio, Samuel; Borg, Ake; Borresen-Dale, Anne-Lise; Caldas, Carlos; Foekens, John A.; Stunnenberg, Hendrik G.; van't Veer, Laura; Easton, Douglas F.; Spellman, Paul T.; Martin, Sancha; Chin, Lynda; Collins, Francis S.; Compton, Carolyn C.; Ferguson, Martin L.; Getz, Gad; Gunter, Chris; Guyer, Mark; Hayes, D. Neil; Lander, Eric S.; Ozenberger, Brad; Penny, Robert; Peterson, Jane; Sander, Chris; Speed, Terence P.; Spellman, Paul T.; Wheeler, David A.; Wilson, Richard K.; Chin, Lynda; Knoppers, Bartha M.; Lander, Eric S.; Lichter, Peter; Stratton, Michael R.; Bobrow, Martin; Burke, Wylie; Collins, Francis S.; DePinho, Ronald A.; Easton, Douglas F.; Futreal, P. Andrew; Green, Anthony R.; Guyer, Mark; Hamilton, Stanley R.; Hubbard, Tim J.; Kallioniemi, Olli P.; Kennedy, Karen L.; Ley, Timothy J.; Liu, Edison T.; Lu, Youyong; Majumder, Partha; Marra, Marco; Ozenberger, Brad; Peterson, Jane; Schafer, Alan J.; Spellman, Paul T.; Stunnenberg, Hendrik G.; Wainwright, Brandon J.; Wilson, Richard K.; Yang, Huanming

    2010-01-01

    The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic

  17. 2004 Structural, Function and Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  18. Draft Genome Sequence of Lactobacillus rhamnosus 2166.

    OpenAIRE

    Karlyshev, Andrey V.; Melnikov, Vyacheslav G.; Kosarev, Igor V.; Abramov, Vyacheslav M.

    2014-01-01

    In this report, we present a draft sequence of the genome of Lactobacillus rhamnosus strain 2166, a potential novel probiotic. Genome annotation and read mapping onto a reference genome of L. rhamnosus strain GG allowed for the identification of the differences and similarities in the genomic contents and gene arrangements of these strains.

  19. Genomic Aspects of Research Involving Polyploid Plants

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Tuskan, Gerald A [ORNL

    2011-01-01

    Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

  20. Genomic Resources for Cancer Epidemiology

    Science.gov (United States)

    This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.

  1. Collaborators | Office of Cancer Genomics

    Science.gov (United States)

    The TARGET initiative is jointly managed within the National Cancer Institute (NCI) by the Office of Cancer Genomics (OCG)Opens in a New Tab and the Cancer Therapy Evaluation Program (CTEP)Opens in a New Tab.

  2. Crenarchaeal Viruses: Morphotypes and Genomes,

    DEFF Research Database (Denmark)

    Prangishvili, P.; Basta, P.; Garrett, Roger Antony

    2008-01-01

    not been observed among viruses from the other two domains of life, the Bacteria and the Eukarya. Also the sequences of circular and linear genomes of crenarchaeal viruses are remarkable because the vast majority of predicted genes have no homologs in the public sequence databases. Viruses of the...... demonstrated a simple transcriptional pattern with minimal temporal control. The replication of viral genomes has not been studied experimentally. Nevertheless, some plausible predictions about possible replication strategies could be made based on specific features of several viral genomes. The comparative...... genomics studies revealed that crenarchaeal viruses form a distinctive group, unrelated to any other viruses, with a small pool of shared genes and a unique origin, or more likely, multiple origins....

  3. The circadian clock goes genomic

    OpenAIRE

    Staiger, D; Shin, J; Johansson, M; Davis, S

    2013-01-01

    Large-scale biology among plant species, as well as comparative genomics of circadian clock architecture and clock-regulated output processes, have greatly advanced our understanding of the endogenous timing system in plants.

  4. Genomic Datasets for Cancer Research

    Science.gov (United States)

    A variety of datasets from genome-wide association studies of cancer and other genotype-phenotype studies, including sequencing and molecular diagnostic assays, are available to approved investigators through the Extramural National Cancer Institute Data Access Committee.

  5. Gene finding in novel genomes

    Directory of Open Access Journals (Sweden)

    Korf Ian

    2004-05-01

    Full Text Available Abstract Background Computational gene prediction continues to be an important problem, especially for genomes with little experimental data. Results I introduce the SNAP gene finder which has been designed to be easily adaptable to a variety of genomes. In novel genomes without an appropriate gene finder, I demonstrate that employing a foreign gene finder can produce highly inaccurate results, and that the most compatible parameters may not come from the nearest phylogenetic neighbor. I find that foreign gene finders are more usefully employed to bootstrap parameter estimation and that the resulting parameters can be highly accurate. Conclusion Since gene prediction is sensitive to species-specific parameters, every genome needs a dedicated gene finder.

  6. Empowering marine science through genomics

    NARCIS (Netherlands)

    Volckaert, F.A M J; Barbier, M.; Canario, A; Olsen, J.L.; Wesnigk, J; Clark, M; Boyen, C

    2008-01-01

    Marine scientists in Europe summarize their successes with genome technologies in the marine sciences and make a plea for a concerted international effort to raise greater public education for support. (C) 2008 Elsevier B.V. All rights reserved.

  7. Genomics: Drugs, diabetes and cancer

    OpenAIRE

    Birnbaum, Morris J.; Shaw, Reuben J

    2011-01-01

    Variation in a genomic region that contains the cancer-a ssociated gene ATM affects a patient’s response to the diabetes drug metformin. Two experts discuss the implications for understanding diabetes and the link to cancer.

  8. Genome size variation in the genus Avena.

    Science.gov (United States)

    Yan, Honghai; Martin, Sara L; Bekele, Wubishet A; Latta, Robert G; Diederichsen, Axel; Peng, Yuanying; Tinker, Nicholas A

    2016-03-01

    Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology. PMID:26881940

  9. The fishes of Genome 10K

    KAUST Repository

    Bernardi, Giacomo

    2012-09-01

    The Genome 10K project aims to sequence the genomes of 10,000 vertebrates, representing approximately one genome for each vertebrate genus. Since fishes (cartilaginous fishes, ray-finned fishes and lobe-finned fishes) represent more than 50% of extant vertebrates, it is planned to target 4,000 fish genomes. At present, nearly 60 fish genomes are being sequenced at various public funded labs, and under a Genome 10K and BGI pilot project. An additional 100 fishes have been identified for sequencing in the next phase of Genome 10K project. © 2012 Elsevier B.V.

  10. Contact | Office of Cancer Genomics

    Science.gov (United States)

    For more information about the Office of Cancer Genomics, please contact: Office of Cancer Genomics National Cancer Institute 31 Center Drive, 10A07 Bethesda, Maryland 20892-2580 Phone: (301) 451-8027 Fax: (301) 480-4368 Email: ocg@mail.nih.gov *Please note that this site will not function properly in Internet Explorer unless you completely turn off the Compatibility View*

  11. Reconstructing ancient genomes and epigenomes

    DEFF Research Database (Denmark)

    Orlando, Ludovic Antoine Alexandre; Gilbert, M. Thomas P.; Willerslev, Eske

    2015-01-01

    DNA studies have now progressed to whole-genome sequencing for an increasing number of ancient individuals and extinct species, as well as to epigenomic characterization. Such advances have enabled the sequencing of specimens of up to 1 million years old, which, owing to their extensive DNA damage and...... contamination, were previously not amenable to genetic analyses. In this Review, we discuss these varied technical challenges and solutions for sequencing ancient genomes and epigenomes....

  12. Genomic toolboxes for conservation biologists

    OpenAIRE

    Angeloni, F.; Wagemaker, N.; Vergeer, P.; Ouborg, N.J.

    2011-01-01

    Conservation genetics is expanding its research horizon with a genomic approach, by incorporating the modern techniques of next-generation sequencing (NGS). Application of NGS overcomes many limitations of conservation genetics. First, NGS allows for genome-wide screening of markers, which may lead to a more representative estimation of genetic variation within and between populations. Second, NGS allows for distinction between neutral and non-neutral markers. By screening populations on thou...

  13. Gender And The Human Genome

    Directory of Open Access Journals (Sweden)

    Chadwick Ruth

    2009-01-01

    Full Text Available Gender issues arise in relation to the human genome across a number of dimensions: the level of attention given to the nuclear genome as opposed to the mitochondrial; the level of basic scientific research; decision-making in the clinic related to both reproductive decision-making on the one hand, and diagnostic and predictive testing on the other; and wider societal implications. Feminist bioethics offers a useful perspective for addressing these issues.

  14. The Genome of Swinepox Virus

    OpenAIRE

    Afonso, C. L.; Tulman, E. R.; Lu, Z.; Zsak, L.; Osorio, F. A.; Balinsky, C.; Kutish, G. F.; Rock, D. L.

    2002-01-01

    Swinepox virus (SWPV), the sole member of the Suipoxvirus genus of the Poxviridae, is the etiologic agent of a worldwide disease specific for swine. Here we report the genomic sequence of SWPV. The 146-kbp SWPV genome consists of a central coding region bounded by identical 3.7-kbp inverted terminal repeats and contains 150 putative genes. Comparison of SWPV with chordopoxviruses reveals 146 conserved genes encoding proteins involved in basic replicative functions, viral virulence, host range...

  15. IS4 family goes genomic

    Directory of Open Access Journals (Sweden)

    Mahillon Jacques

    2008-01-01

    Full Text Available Abstract Background Insertion sequences (ISs are small, mobile DNA entities able to expand in prokaryotic genomes and trigger important rearrangements. To understand their role in evolution, accurate IS taxonomy is essential. The IS4 family is composed of ~70 elements and, like some other families, displays extremely elevated levels of internal divergence impeding its classification. The increasing availability of complete genome sequences provides a valuable source for the discovery of additional IS4 elements. In this study, this genomic database was used to update the structural and functional definition of the IS4 family. Results A total of 227 IS4-related sequences were collected among more than 500 sequenced bacterial and archaeal genomes, representing more than a three fold increase of the initial inventory. A clear division into seven coherent subgroups was discovered as well as three emerging families, which displayed distinct structural and functional properties. The IS4 family was sporadically present in 17 % of analyzed genomes, with most of them displaying single or a small number of IS4 elements. Significant expansions were detected only in some pathogens as well as among certain extremophiles, suggesting the probable involvement of some elements in bacterial and archaeal adaptation and/or evolution. Finally, it should be noted that some IS4 subgroups and two emerging families occurred preferentially in specific phyla or exclusively inside a specific genus. Conclusion The present taxonomic update of IS4 and emerging families will facilitate the classification of future elements as they arise from ongoing genome sequencing. Their narrow genomic impact and the existence of both IS-poor and IS-rich thriving prokaryotes suggested that these families, and probably ISs in general, are occasionally used as a tool for genome flexibility and evolution, rather than just representing self sustaining DNA entities.

  16. Genomics screens for metastasis genes

    OpenAIRE

    Yan, Jinchun; Huang, Qihong

    2012-01-01

    Metastasis is responsible for most cancer mortality. The process of metastasis is complex, requiring the coordinated expression and fine regulation of many genes in multiple pathways in both the tumor and host tissues. Identification and characterization of the genetic programs that regulate metastasis is critical to understanding the metastatic process and discovering molecular targets for the prevention and treatment of metastasis. Genomic approaches and functional genomic analyses can syst...

  17. Expanding Genomics of Mycorrhizal Symbiosis

    Directory of Open Access Journals (Sweden)

    Alan eKuo

    2014-11-01

    Full Text Available The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant and soil health, and carbon and nutrient cycles. The symbiosis evolved repeatedly and independently as multiple morphological types (e.g. arbuscular [AM], ectomycorrhizal [ECM] in multiple fungal clades (e.g. phyla Glomeromycota, Ascomycota, Basidiomycota. The accessibility and culturability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first 3 mycorrhizal fungal genomes, representing 3 fungal phyla and 2 mycorrhizal types. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant-degrading enzymes (PDEs and expansion of lineage-specific gene families, including short secreted protein (SSP effectors and other symbiosis genes. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of gene families in contrast to Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other 2 fungi, the symbiosis can involve similar solutions as loss of PDEs and mycorrhiza-induced SSPs. The mycorrhizal community is building on these studies with 3 large-scale initiatives. The Mycorrhizal Genomics Initiative (MGI is sequencing 35 genomes of multiple fungal clades and mycorrhizal types for phylogenomic and population analyses. 17 MGI species whose symbiosis is reconstitutable in vitro are targeted for comprehensive transcriptomics of mycorrhiza formation. MGI genomes are seeding a set of 50+ reference fungal genomes for annotating metatranscriptomes sampled from 7 diverse well-described soil sites. These 3 projects address fundamental questions about the nature and role of a

  18. Deafness in the Genomics Era

    OpenAIRE

    Shearer, A Eliot; Hildebrand, Michael S.; Sloan, Christina M; Smith, Richard J. H.

    2011-01-01

    Our understanding of hereditary hearing loss has greatly improved since the discovery of the first human deafness gene. These discoveries have only accelerated due to the great strides in DNA sequencing technology since the completion of the human genome project. Here, we review the immense impact that these developments have had in both deafness research and clinical arenas. We review commonly used genomic technologies as well as the application of these technologies to the genetic diagnosis...

  19. EPIGENETIC MODIFICATIONS OF SWINE GENOME

    OpenAIRE

    Kristina Budimir; Gordana Kralik; Vladimir Margeta

    2013-01-01

    Epigenetics is represents a new way of genome analysis, respectively gene expression that occurs without DNA sequence change. Changes that occur are epigenetic modifications and they include post-translational histone modification and DNA methylation. Chemical groups that are added on DNA molecule cause changes in DNA and create epigenome. The consequence of that is appearance of imprinted genes in genome. Genetic imprinting is epigenetic modification in which one of inherited alleles inactiv...

  20. Genom-undersøgelser

    DEFF Research Database (Denmark)

    Mark, Edith

    2012-01-01

    Genom-undersøgelser bør anvendes varsomt, da de kan kompromittere den undersøgtes ret til ikke-viden, til selvbestemmelse og til privatliv. Myndighederne bør ikke forhindre borgere i at købe genom-undersøgelser hos private udbydere, uanset at testens sundhedsmæssige værdi kan være tvivlsom, men...... bør derudover sikre tilstrækkelig regulering • Såfremt genom-undersøgelser anvendes i forskning, bør forsøgspersoner ikke tilbydes tilbagemelding om fund af genetiske risikofaktorer • Såfremt genom-undersøgelser anvendes i diagnostik bør patienters ønsker om tilbagemelding af tilfældighedsfund aftales......, før undersøgelse igangsættes. Omfanget af tilbagemelding bør aftales i fællesskab mellem patient og læge • Genom-undersøgelser bør i både offentlig og privat regi være ledsaget af fyldestgørende og uvildig rådgivning og information • Information, rådgivning, henvisning og opfølgning på genom...

  1. The dynamic genome of Hydra

    Science.gov (United States)

    Chapman, Jarrod A.; Kirkness, Ewen F.; Simakov, Oleg; Hampson, Steven E.; Mitros, Therese; Weinmaier, Therese; Rattei, Thomas; Balasubramanian, Prakash G.; Borman, Jon; Busam, Dana; Disbennett, Kathryn; Pfannkoch, Cynthia; Sumin, Nadezhda; Sutton, Granger G.; Viswanathan, Lakshmi Devi; Walenz, Brian; Goodstein, David M.; Hellsten, Uffe; Kawashima, Takeshi; Prochnik, Simon E.; Putnam, Nicholas H.; Shu, Shengquiang; Blumberg, Bruce; Dana, Catherine E.; Gee, Lydia; Kibler, Dennis F.; Law, Lee; Lindgens, Dirk; Martinez, Daniel E.; Peng, Jisong; Wigge, Philip A.; Bertulat, Bianca; Guder, Corina; Nakamura, Yukio; Ozbek, Suat; Watanabe, Hiroshi; Khalturin, Konstantin; Hemmrich, Georg; Franke, André; Augustin, René; Fraune, Sebastian; Hayakawa, Eisuke; Hayakawa, Shiho; Hirose, Mamiko; Hwang, Jung Shan; Ikeo, Kazuho; Nishimiya-Fujisawa, Chiemi; Ogura, Atshushi; Takahashi, Toshio; Steinmetz, Patrick R. H.; Zhang, Xiaoming; Aufschnaiter, Roland; Eder, Marie-Kristin; Gorny, Anne-Kathrin; Salvenmoser, Willi; Heimberg, Alysha M.; Wheeler, Benjamin M.; Peterson, Kevin J.; Böttger, Angelika; Tischler, Patrick; Wolf, Alexander; Gojobori, Takashi; Remington, Karin A.; Strausberg, Robert L.; Venter, J. Craig; Technau, Ulrich; Hobmayer, Bert; Bosch, Thomas C. G.; Holstein, Thomas W.; Fujisawa, Toshitaka; Bode, Hans R.; David, Charles N.; Rokhsar, Daniel S.; Steele, Robert E.

    2015-01-01

    The freshwater cnidarian Hydra was first described in 17021 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals2. Today, Hydra is an important model for studies of axial patterning3, stem cell biology4 and regeneration5. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis6 and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann–Mangold organizer, pluripotency genes and the neuromuscular junction. PMID:20228792

  2. Genome diversity of Shigella boydii.

    Science.gov (United States)

    Kania, Dane A; Hazen, Tracy H; Hossain, Anowar; Nataro, James P; Rasko, David A

    2016-06-01

    ITALIC! Shigella boydiiis one of the four ITALIC! Shigellaspecies that causes disease worldwide; however, there are few published studies that examine the genomic variation of this species. This study compares genomes of 72 total isolates; 28 ITALIC! S. boydiifrom Bangladesh and The Gambia that were recently isolated as part of the Global Enteric Multicenter Study (GEMS), 14 historical ITALIC! S. boydiigenomes in the public domain and 30 ITALIC! Escherichia coliand ITALIC! Shigellareference genomes that represent the genomic diversity of these pathogens. This comparative analysis of these 72 genomes identified that the ITALIC! S. boydiiisolates separate into three phylogenomic clades, each with specific gene content. Each of the clades contains ITALIC! S. boydiiisolates from geographic and temporally distant sources, indicating that the ITALIC! S. boydiiisolates from the GEMS are representative of ITALIC! S. boydii.This study describes the genome sequences of a collection of novel ITALIC! S. boydiiisolates and provides insight into the diversity of this species in comparison to the ITALIC! E. coliand other ITALIC! Shigellaspecies. PMID:27056949

  3. Comparative genomic analyses in Asparagus.

    Science.gov (United States)

    Kuhl, Joseph C; Havey, Michael J; Martin, William J; Cheung, Foo; Yuan, Qiaoping; Landherr, Lena; Hu, Yi; Leebens-Mack, James; Town, Christopher D; Sink, Kenneth C

    2005-12-01

    Garden asparagus (Asparagus officinalis L.) belongs to the monocot family Asparagaceae in the order Asparagales. Onion (Allium cepa L.) and Asparagus officinalis are 2 of the most economically important plants of the core Asparagales, a well supported monophyletic group within the Asparagales. Coding regions in onion have lower GC contents than the grasses. We compared the GC content of 3374 unique expressed sequence tags (ESTs) from A. officinalis with Lycoris longituba and onion (both members of the core Asparagales), Acorus americanus (sister to all other monocots), the grasses, and Arabidopsis. Although ESTs in A. officinalis and Acorus had a higher average GC content than Arabidopsis, Lycoris, and onion, all were clearly lower than the grasses. The Asparagaceae have the smallest nuclear genomes among all plants in the core Asparagales, which typically have huge genomes. Within the Asparagaceae, European Asparagus species have approximately twice the nuclear DNA of that of southern African Asparagus species. We cloned and sequenced 20 genomic amplicons from European A. officinalis and the southern African species Asparagus plumosus and observed no clear evidence for a recent genome doubling in A. officinalis relative to A. plumosus. These results indicate that members of the genus Asparagus with smaller genomes may be useful genomic models for plants in the core Asparagales. PMID:16391674

  4. Comparative genomics of Helicobacter pylori

    Institute of Scientific and Technical Information of China (English)

    Quan-Jiang Dong; Qing Wang; Ying-Nin Xin; Ni Li; Shi-Ying Xuan

    2009-01-01

    Genomic sequences have been determined for a number of strains of Helicobacter pylori (H pylori) and related bacteria.With the development of microarray analysis and the wide use of subtractive hybridization techniques,comparative studies have been carried out with respect to the interstrain differences between H pylori and inter-species differences in the genome of related bacteria.It was found that the core genome of H pylori constitutes 1111 genes that are determinants of the species properties.A great pool of auxillary genes are mainly from the categories of cag pathogenicity islands,outer membrane proteins,restriction-modification system and hypothetical proteins of unknown function.Persistence of H pylori in the human stomach leads to the diversification of the genome.Comparative genomics suggest that a host jump has occurs from humans to felines.Candidate genes specific for the development of the gastric diseases were identified.With the aid of proteomics,population genetics and other molecular methods,future comparative genomic studies would dramatically promote our understanding of the evolution,pathogenesis and microbiology of H pylori.

  5. Sequence resources at the Candida Genome Database

    OpenAIRE

    Arnaud, Martha B.; Costanzo, Maria C.; Skrzypek, Marek S.; Shah, Prachi; Binkley, Gail; Lane, Christopher; Miyasato, Stuart R.; SHERLOCK, Gavin

    2006-01-01

    The Candida Genome Database (CGD, ) contains a curated collection of genomic information and community resources for researchers who are interested in the molecular biology of the opportunistic pathogen Candida albicans. With the recent release of a new assembly of the C.albicans genome, Assembly 20, C.albicans genomics has entered a new era. Although the C.albicans genome assembly continues to undergo refinement, multiple assemblies and gene nomenclatures will remain in widespread use by the...

  6. Genomic Approaches in Marine Biodiversity and Aquaculture

    OpenAIRE

    Jorge A. Huete-Pérez; Fernando Quezada

    2013-01-01

    Recent advances in genomic and post-genomic technologies have now established the new standard in medical and biotechnological research. The introduction of next-generation sequencing, NGS,has resulted in the generation of thousands of genomes from all domains of life, including the genomes of complex uncultured microbial communities revealed through metagenomics. Although the application of genomics to marine biodiversity remains poorly developed overall, some noteworthy progress has been ma...

  7. The UCSC Genome Browser database: 2016 update

    OpenAIRE

    Speir, Matthew L; Zweig, Ann S.; Rosenbloom, Kate R.; Raney, Brian J.; Paten, Benedict; Nejad, Parisa; Rowe, Laurence D.; Learned, Katrina; Karolchik, Donna; Hinrichs, Angie S.; Heitner, Steve; Harte, Rachel A.; Haeussler, Maximilian; Guruvadoo, Luvina; Fujita, Pauline A.

    2015-01-01

    For the past 15 years, the UCSC Genome Browser (http://genome.ucsc.edu/) has served the international research community by offering an integrated platform for viewing and analyzing information from a large database of genome assemblies and their associated annotations. The UCSC Genome Browser has been under continuous development since its inception with new data sets and software features added frequently. Some release highlights of this year include new and updated genome browsers for vari...

  8. REEF: searching REgionally Enriched Features in genomes

    OpenAIRE

    Danieli Gian Antonio; Coppe Alessandro; Bortoluzzi Stefania

    2006-01-01

    Abstract Background In Eukaryotic genomes, different features including genes are not uniformly distributed. The integration of annotation information and genomic position of functional DNA elements in the Eukaryotic genomes opened the way to test novel hypotheses of higher order genome organization and regulation of expression. Results REEF is a new tool, aimed at identifying genomic regions enriched in specific features, such as a class or group of genes homogeneous for expression and/or fu...

  9. The diploid genome sequence of Candida albicans

    OpenAIRE

    Jones, Ted; Federspiel, Nancy A.; Chibana, Hiroji; Dungan, Jan; Kalman, Sue; Magee, B. B.; Newport, George; Thorstenson, Yvonne R.; Agabian, Nina; Magee, P T; Davis, Ronald W.; Scherer, Stewart

    2004-01-01

    We present the diploid genome sequence of the fungal pathogen Candida albicans. Because C. albicans has no known haploid or homozygous form, sequencing was performed as a whole-genome shotgun of the heterozygous diploid genome in strain SC5314, a clinical isolate that is the parent of strains widely used for molecular analysis. We developed computational methods to assemble a diploid genome sequence in good agreement with available physical mapping data. We provide a whole-genome description ...

  10. Rice functional genomics research in China

    OpenAIRE

    Han, Bin; Xue, Yongbiao; Li, Jiayang; Deng, Xing-Wang; Zhang, Qifa

    2007-01-01

    Rice functional genomics is a scientific approach that seeks to identify and define the function of rice genes, and uncover when and how genes work together to produce phenotypic traits. Rapid progress in rice genome sequencing has facilitated research in rice functional genomics in China. The Ministry of Science and Technology of China has funded two major rice functional genomics research programmes for building up the infrastructures of the functional genomics study such as developing rice...

  11. The Genomic Code: Genome Evolution and Potential Applications

    KAUST Repository

    Bernardi, Giorgio

    2016-01-25

    The genome of metazoans is organized according to a genomic code which comprises three laws: 1) Compositional correlations hold between contiguous coding and non-coding sequences, as well as among the three codon positions of protein-coding genes; these correlations are the consequence of the fact that the genomes under consideration consist of fairly homogeneous, long (≥200Kb) sequences, the isochores; 2) Although isochores are defined on the basis of purely compositional properties, GC levels of isochores are correlated with all tested structural and functional properties of the genome; 3) GC levels of isochores are correlated with chromosome architecture from interphase to metaphase; in the case of interphase the correlation concerns isochores and the three-dimensional “topological associated domains” (TADs); in the case of mitotic chromosomes, the correlation concerns isochores and chromosomal bands. Finally, the genomic code is the fourth and last pillar of molecular biology, the first three pillars being 1) the double helix structure of DNA; 2) the regulation of gene expression in prokaryotes; and 3) the genetic code.

  12. Mapping whole genome shotgun sequence and variant calling in mammalian species without their reference genomes

    Science.gov (United States)

    Genomics research in mammals has produced reference genome sequences that are essential for identifying variation associated with disease. High quality reference genome sequences are now available for humans, model species, and economically important agricultural animals. Comparisons between these s...

  13. Value of a newly sequenced bacterial genome

    DEFF Research Database (Denmark)

    Barbosa, Eudes; Aburjaile, Flavia F; Ramos, Rommel Tj;

    2014-01-01

    Next-generation sequencing (NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also...... heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting...... in an exponential increase in draft (partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome...

  14. Allele coding in genomic evaluation

    Directory of Open Access Journals (Sweden)

    Christensen Ole F

    2011-06-01

    Full Text Available Abstract Background Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous genotype of the first allele, one for the heterozygote, and two for the homozygous genotype for the other allele. Another common allele coding changes these regression coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within each marker. We call this centered allele coding. This study considered effects of different allele coding methods on inference. Both marker-based and equivalent models were considered, and restricted maximum likelihood and Bayesian methods were used in inference. Results Theoretical derivations showed that parameter estimates and estimated marker effects in marker-based models are the same irrespective of the allele coding, provided that the model has a fixed general mean. For the equivalent models, the same results hold, even though different allele coding methods lead to different genomic relationship matrices. Calculated genomic breeding values are independent of allele coding when the estimate of the general mean is included into the values. Reliabilities of estimated genomic breeding values calculated using elements of the inverse of the coefficient matrix depend on the allele coding because different allele coding methods imply different models. Finally, allele coding affects the mixing of Markov chain Monte Carlo algorithms, with the centered coding being

  15. Advances in Genome Biology & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas J. Albert, Jon R. Armstrong, Raymond K. Auerback, W. Brad Barbazuk, et al.

    2007-12-01

    This year's meeting focused on the latest advances in new DNA sequencing technologies and the applications of genomics to disease areas in biology and biomedicine. Daytime plenary sessions highlighted cutting-edge research in areas such as complex genetic diseases, comparative genomics, medical sequencing, massively parallel DNA sequencing, and synthetic biology. Technical approaches being developed and utilized in contemporary genomics research were presented during evening concurrent sessions. Also, as in previous years, poster sessions bridged the morning and afternoon plenary sessions. In addition, for the third year in a row, the Advances in Genome Biology and Technology (AGBT) meeting was preceded by a pre-meeting workshop that aimed to provide an introductory overview for trainees and other meeting attendees. This year, speakers at the workshop focused on next-generation sequencing technologies, including their experiences, findings, and helpful advise for others contemplating using these platforms in their research. Speakers from genome centers and core sequencing facilities were featured and the workshop ended with a roundtable discussion, during which speakers fielded questions from the audience.

  16. The genome of Prunus mume

    Science.gov (United States)

    Zhang, Qixiang; Chen, Wenbin; Sun, Lidan; Zhao, Fangying; Huang, Bangqing; Yang, Weiru; Tao, Ye; Wang, Jia; Yuan, Zhiqiong; Fan, Guangyi; Xing, Zhen; Han, Changlei; Pan, Huitang; Zhong, Xiao; Shi, Wenfang; Liang, Xinming; Du, Dongliang; Sun, Fengming; Xu, Zongda; Hao, Ruijie; Lv, Tian; Lv, Yingmin; Zheng, Zequn; Sun, Ming; Luo, Le; Cai, Ming; Gao, Yike; Wang, Junyi; Yin, Ye; Xu, Xun; Cheng, Tangren; Wang, Jun

    2012-01-01

    Prunus mume (mei), which was domesticated in China more than 3,000 years ago as ornamental plant and fruit, is one of the first genomes among Prunus subfamilies of Rosaceae been sequenced. Here, we assemble a 280M genome by combining 101-fold next-generation sequencing and optical mapping data. We further anchor 83.9% of scaffolds to eight chromosomes with genetic map constructed by restriction-site-associated DNA sequencing. Combining P. mume genome with available data, we succeed in reconstructing nine ancestral chromosomes of Rosaceae family, as well as depicting chromosome fusion, fission and duplication history in three major subfamilies. We sequence the transcriptome of various tissues and perform genome-wide analysis to reveal the characteristics of P. mume, including its regulation of early blooming in endodormancy, immune response against bacterial infection and biosynthesis of flower scent. The P. mume genome sequence adds to our understanding of Rosaceae evolution and provides important data for improvement of fruit trees. PMID:23271652

  17. The Fitness of Genomic Order

    Science.gov (United States)

    Zhang, Qiucen; Vyawahare, Saurabh; Austin, Robert

    2012-02-01

    Most bacteria have a single circular chromosome that can range in size from 160,000 to 12,200,000 base pairs. Considering the typical gene density, i.e. 1 gene per 1,000 base pairs, both the number of genes and the ways to arrange are huge. Intuitively, the arrangement of genes on the circle is not important if all of them can be replicated. However, there is typically one origin of replication, and when bacteria is attacked by genotoxic stress during replication, the whole replication process can not be finished. As a result, which gene is replicated first, which is second, ..., becomes very important. Experimentally, we found a broad increase of DNA copy number near the origin of replication (OriC) of bacteria E.coli (˜3200 genes) under genotoxic stress. Since the genes near OriC are mostly efflux pump genes, we propose that there is fitness advantage for those rapid stress response genes got replicated first, because they can facilitate the replication of the rest of genome. Similar to bacterial evolution to present genomic order, in the somatic evolution of cancer, genomic shuffling was also frequently observed, especially under genotoxic chemotherapy. Such re-arrangement of genome can be viewed as a journey to optimal point in the rugged fitness landscape of genomic order.

  18. NCBI prokaryotic genome annotation pipeline.

    Science.gov (United States)

    Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James

    2016-08-19

    Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/. PMID:27342282

  19. CD40 Ligand Deficient C57BL/6 Mouse Is a Potential Surrogate Model of Human X-Linked Hyper IgM (X-HIGM Syndrome for Characterizing Immune Responses against Pathogens

    Directory of Open Access Journals (Sweden)

    Catalina Lopez-Saucedo

    2015-01-01

    Full Text Available Individuals with X-HIGM syndrome fail to express functional CD40 ligand; consequently they cannot mount effective protective antibody responses against pathogenic bacteria. We evaluated, compared, and characterized the humoral immune response of wild type (WT and C57-CD40L deficient (C57-CD40L−/− mice infected with Citrobacter rodentium. Basal serum isotype levels were similar for IgM and IgG3 among mice, while total IgG and IgG2b concentrations were significantly lower in C57-CD40L−/− mice compared with WT. Essentially IgG1 and IgG2c levels were detectable only in WT mice. C57-CD40L−/− animals, orally inoculated with 2×109 CFU, presented several clinical manifestations since the second week of infection and eventually died. In contrast at this time point no clinical manifestations were observed among C57-CD40L−/− mice infected with 1×107 CFU. Infection was subclinical in WT mice inoculated with either bacterial dose. The serum samples from infected mice (1×107 CFU, collected at day 14 after infection, had similar C. rodentium-specific IgM titres. Although C57-CD40L−/− animals had lower IgG and IgG2b titres than WT mice, C57-CD40L−/− mice sera displayed complement-mediated bactericidal activity against C. rodentium. C. rodentium-infected C57-CD40L−/− mice are capable of producing antibodies that are protective. C57-CD40L−/− mouse is a useful surrogate model of X-HIGM syndrome for studying immune responses elicited against pathogens.

  20. Genomics of Escherichia and Shigella

    Science.gov (United States)

    Perna, Nicole T.

    The laboratory workhorse Escherichia coli K-12 is among the most intensively studied living organisms on earth, and this single strain serves as the model system behind much of our understanding of prokaryotic molecular biology. Dense genome sequencing and recent insightful comparative analyses are making the species E. coli, as a whole, an emerging system for studying prokaryotic population genetics and the relationship between system-scale, or genome-scale, molecular evolution and complex traits like host range and pathogenic potential. Genomic perspective has revealed a coherent but dynamic species united by intraspecific gene flow via homologous lateral or horizontal transfer and differentiated by content flux mediated by acquisition of DNA segments from interspecies transfers.

  1. How good is our genome?

    Science.gov (United States)

    Weill, Jean-Claude; Radman, Miroslav

    2004-01-29

    Our genome has evolved to perpetuate itself through the maintenance of the species via an uninterrupted chain of reproductive somas. Accordingly, evolution is not concerned with diseases occurring after the soma's reproductive stage. Following Richard Dawkins, we would like to reassert that we indeed live as disposable somas, slaves of our germline genome, but could soon start rebelling against such slavery. Cancer and its relation to the TP53 gene may offer a paradigmatic example. The observation that the latency period in cancer can be prolonged in mice by increasing the number of TP53 genes in their genome, suggests that sooner or later we will have to address the question of heritable disease avoidance via the manipulation of the human germline. PMID:15065661

  2. Enhancer Identification through Comparative Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Bristow, James; Pennacchio, Len A.

    2006-10-01

    With the availability of genomic sequence from numerousvertebrates, a paradigm shift has occurred in the identification ofdistant-acting gene regulatory elements. In contrast to traditionalgene-centric studies in which investigators randomly scanned genomicfragments that flank genes of interest in functional assays, the modernapproach begins electronically with publicly available comparativesequence datasets that provide investigators with prioritized lists ofputative functional sequences based on their evolutionary conservation.However, although a large number of tools and resources are nowavailable, application of comparative genomic approaches remains far fromtrivial. In particular, it requires users to dynamically consider thespecies and methods for comparison depending on the specific biologicalquestion under investigation. While there is currently no single generalrule to this end, it is clear that when applied appropriately,comparative genomic approaches exponentially increase our power ingenerating biological hypotheses for subsequent experimentaltesting.

  3. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research. PMID:25721271

  4. Genome Size Dynamics and Evolution in Monocots

    Directory of Open Access Journals (Sweden)

    Ilia J. Leitch

    2010-01-01

    Full Text Available Monocot genomic diversity includes striking variation at many levels. This paper compares various genomic characters (e.g., range of chromosome numbers and ploidy levels, occurrence of endopolyploidy, GC content, chromosome packaging and organization, genome size between monocots and the remaining angiosperms to discern just how distinctive monocot genomes are. One of the most notable features of monocots is their wide range and diversity of genome sizes, including the species with the largest genome so far reported in plants. This genomic character is analysed in greater detail, within a phylogenetic context. By surveying available genome size and chromosome data it is apparent that different monocot orders follow distinctive modes of genome size and chromosome evolution. Further insights into genome size-evolution and dynamics were obtained using statistical modelling approaches to reconstruct the ancestral genome size at key nodes across the monocot phylogenetic tree. Such approaches reveal that while the ancestral genome size of all monocots was small (1C=1.9 pg, there have been several major increases and decreases during monocot evolution. In addition, notable increases in the rates of genome size-evolution were found in Asparagales and Poales compared with other monocot lineages.

  5. Genomic Signals of Reoriented ORFs

    Directory of Open Access Journals (Sweden)

    Paul Dan Cristea

    2004-01-01

    Full Text Available Complex representation of nucleotides is used to convert DNA sequences into complex digital genomic signals. The analysis of the cumulated phase and unwrapped phase of DNA genomic signals reveals large-scale features of eukaryote and prokaryote chromosomes that result from statistical regularities of base and base-pair distributions along DNA strands. By reorienting the chromosome coding regions, a “hidden” linear variation of the cumulated phase has been revealed, along with the conspicuous almost linear variation of the unwrapped phase. A model of chromosome longitudinal structure is inferred on these bases.

  6. Fungal genomics beyond Saccharomyces cerevisiae?

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Mcintyre, Mhairi; Nielsen, Jens

    2003-01-01

    Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious that the...... application of the existing methods of genome, transcriptome, proteome and metabolome analysis to other fungi has enormous potential, especially for the production of food and food ingredients. The developments in the past year demonstrate that we have only just started to exploit this potential....

  7. Genome editing comes of age.

    Science.gov (United States)

    Kim, Jin-Soo

    2016-09-01

    Genome editing harnesses programmable nucleases to cut and paste genetic information in a targeted manner in living cells and organisms. Here, I review the development of programmable nucleases, including zinc finger nucleases (ZFNs), TAL (transcription-activator-like) effector nucleases (TALENs) and CRISPR (cluster of regularly interspaced palindromic repeats)-Cas9 (CRISPR-associated protein 9) RNA-guided endonucleases (RGENs). I specifically highlight the key advances that set the foundation for the rapid and widespread implementation of CRISPR-Cas9 genome editing approaches that has revolutionized the field. PMID:27490630

  8. EPIGENETIC MODIFICATIONS OF SWINE GENOME

    Directory of Open Access Journals (Sweden)

    Kristina Budimir

    2013-06-01

    Full Text Available Epigenetics is represents a new way of genome analysis, respectively gene expression that occurs without DNA sequence change. Changes that occur are epigenetic modifications and they include post-translational histone modification and DNA methylation. Chemical groups that are added on DNA molecule cause changes in DNA and create epigenome. The consequence of that is appearance of imprinted genes in genome. Genetic imprinting is epigenetic modification in which one of inherited alleles inactivates. Its influence can be seen on productive and reproductive traits. Discovering new imprinted genes is important because of their conservation and understanding their function.

  9. Genomic and non-genomic actions of glucocorticoids in asthma

    Directory of Open Access Journals (Sweden)

    Alangari Abdullah

    2010-01-01

    Full Text Available Glucocorticoids are the mainstay of asthma therapy. They are primarily used to suppress airway inflammation, which is the central pathological change in asthmatic patients′ airways. This is achieved by many different mechanisms. The classical mechanism is by suppression of the genetic transcription of many inflammatory cytokines that are key in asthma pathophysiology (transrepression. On the other hand, the transcription of certain inhibitory cytokines is activated by glucocorticoids (transactivation, a mechanism that also mediates many of the adverse effects of glucocorticoids. The onset of action through these mechanisms is often delayed (4-24 hours. Other mechanisms mediated through non-genomic pathways are increasingly appreciated. These are delivered in part by binding of glucocorticoids to nonclassical membrane-bound glucocorticoid receptors or by potentiating the a1-adrenergic action on the bronchial arterial smooth muscles, in addition to other mechanisms. These effects are characterized by their rapid onset and short duration of action. Understanding these different mechanisms will help in the development of new and better drugs to treat this common disease and to develop new improved strategies in our approach to its management. Here, the genomic and non-genomic mechanisms of actions of glucocorticoids in asthma are briefly reviewed, with special emphasis on the current updates of the non-genomic mechanisms.

  10. Cancer Genome Anatomy Project | Office of Cancer Genomics

    Science.gov (United States)

    The National Cancer Institute (NCI) Cancer Genome Anatomy Project (CGAP) is an online resource designed to provide the research community access to biological tissue characterization data. Request a free copy of the CGAP Website Virtual Tour CD from ocg@mail.nih.gov.

  11. The Phaeodactylum genome reveals the evolutionary history of diatom genomes

    Czech Academy of Sciences Publication Activity Database

    Bowler, Ch.; Allen, A. E.; Badger, J. H.; Grimwood, J.; Jabbari, K.; Kuo, A.; Maheswari, U.; Martens, C.; Maumus, F.; Otillar, R. P.; Rayko, E.; Salamov, A.; Vandepoele, K.; Beszteri, B.; Gruber, A.; Heijde, M.; Katinka, M.; Mock, T.; Valentin, K.; Verret, F.; Berges, J. A.; Brownlee, C.; Cadoret, J.-P.; Chiovitti, A.; Choi, Ch. J.; Coesel, S.; De Martino, A.; Detter, J. Ch.; Durkin, C.; Falciatore, A.; Fournet, J.; Haruta, M.; Huysman, M. J. J.; Jenkins, B. D.; Jiroutová, Kateřina; Jorgensen, R. E.; Joubert, Y.; Kaplan, A.; Kröger, N.; Kroth, P. G.; La Roche, J.; Lindquist, E.; Lommer, M.; Martin–Jézéquel, V.; Lopez, P. J.; Lucas, S.; Mangogna, M.; McGinnis, K.; Medlin, L. K.; Montsant, A.; Oudot–Le Secq, M.-P.; Napoli, C.; Oborník, Miroslav; Schnitzler Parker, M.; Petit, J.-L.; Porcel, B. M.; Poulsen, N.; Robison, M.; Rychlewski, L.; Rynearson, T. A.; Schmutz, J.; Shapiro, H.; Siaut, M.; Stanley, M.; Sussman, M. R.; Taylor, A. R.; Vardi, A.; von Dassow, P.; Vyverman, W.; Willis, A.; Wyrwicz, L. S.; Rokhsar, D. S.; Weissenbach, J.; Armbrust, E. V.; Green, B. R.; Van de Peer, Y.; Grigoriev, I. V.

    2008-01-01

    Roč. 456, 13-11-2008 (2008), s. 239-244. ISSN 0028-0836 Institutional research plan: CEZ:AV0Z60220518 Keywords : Phaeodactylum * genome * evolution * diatom Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 31.434, year: 2008

  12. Translational Genomics of Onion: Challenges of an Enormous Nuclear Genome

    Science.gov (United States)

    The use of high throughput DNA sequencing to address important production constraints has been termed “translational genomics”. Classical breeding of onion (Allium cepa) is expensive and slow due to a long generation time and the high costs of crossing with insects. Translational genomics should r...

  13. Cancer Genome Anatomy Project (CGAP) | Office of Cancer Genomics

    Science.gov (United States)

    CGAP generated a wide range of genomics data on cancerous cells that are accessible through easy-to-use online tools. Researchers, educators, and students can find "in silico" answers to biological questions through the CGAP website. Request a free copy of the CGAP Website Virtual Tour CD from ocg@mail.nih.gov to learn how to navigate the website.

  14. Advancing Eucalyptus Genomics: Cytogenomics Reveals Conservation of Eucalyptus Genomes

    Science.gov (United States)

    Ribeiro, Teresa; Barrela, Ricardo M.; Bergès, Hélène; Marques, Cristina; Loureiro, João; Morais-Cecílio, Leonor; Paiva, Jorge A. P.

    2016-01-01

    The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus, and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta, and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH, and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S rDNA locus while the AT-rich heterochromatin pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich heterochromatin, along with genome sizes estimations, support the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich heterochromatin was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1) previously assessed to linkage group 10 (LG10) was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus.

  15. Advancing Eucalyptus genomics: cytogenomics reveals conservation of Eucalyptus genomes

    Directory of Open Access Journals (Sweden)

    Teresa Mousinho Resina Ribeiro

    2016-04-01

    Full Text Available The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S locus while the AT-rich het pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich het, along with genome sizes estimations, supports the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich het was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1 previously assessed to linkage group 10 (LG10 was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus.

  16. Strategies and tools for whole genome alignments

    Energy Technology Data Exchange (ETDEWEB)

    Couronne, Olivier; Poliakov, Alexander; Bray, Nicolas; Ishkhanov,Tigran; Ryaboy, Dmitriy; Rubin, Edward; Pachter, Lior; Dubchak, Inna

    2002-11-25

    The availability of the assembled mouse genome makespossible, for the first time, an alignment and comparison of two largevertebrate genomes. We have investigated different strategies ofalignment for the subsequent analysis of conservation of genomes that areeffective for different quality assemblies. These strategies were appliedto the comparison of the working draft of the human genome with the MouseGenome Sequencing Consortium assembly, as well as other intermediatemouse assemblies. Our methods are fast and the resulting alignmentsexhibit a high degree of sensitivity, covering more than 90 percent ofknown coding exons in the human genome. We have obtained such coveragewhile preserving specificity. With a view towards the end user, we havedeveloped a suite of tools and websites for automatically aligning, andsubsequently browsing and working with whole genome comparisons. Wedescribe the use of these tools to identify conserved non-coding regionsbetween the human and mouse genomes, some of which have not beenidentified by other methods.

  17. V-GAP: Viral genome assembly pipeline

    KAUST Repository

    Nakamura, Yoji

    2015-10-22

    Next-generation sequencing technologies have allowed the rapid determination of the complete genomes of many organisms. Although shotgun sequences from large genome organisms are still difficult to reconstruct perfect contigs each of which represents a full chromosome, those from small genomes have been assembled successfully into a very small number of contigs. In this study, we show that shotgun reads from phage genomes can be reconstructed into a single contig by controlling the number of read sequences used in de novo assembly. We have developed a pipeline to assemble small viral genomes with good reliability using a resampling method from shotgun data. This pipeline, named V-GAP (Viral Genome Assembly Pipeline), will contribute to the rapid genome typing of viruses, which are highly divergent, and thus will meet the increasing need for viral genome comparisons in metagenomic studies.

  18. Unleashing the Genome of Brassica Rapa

    OpenAIRE

    Tang, Haibao; Lyons, Eric

    2012-01-01

    The completion and release of the Brassica rapa genome is of great benefit to researchers of the Brassicas, Arabidopsis, and genome evolution. While its lineage is closely related to the model organism Arabidopsis thaliana, the Brassicas experienced a whole genome triplication subsequent to their divergence. This event contemporaneously created three copies of its ancestral genome, which had diploidized through the process of homeologous gene loss known as fractionation. By the fractionation ...

  19. RNA virus genomics: a world of possibilities

    OpenAIRE

    Edward C Holmes

    2009-01-01

    The increasing availability of complete genome sequences of RNA viruses has the potential to shed new light on fundamental aspects of their biology. Here, I use case studies of 3 RNA viruses to explore the impact of genomic sequence data, with particular emphasis on influenza A virus. Notably, the studies of RNA virus genomics undertaken to date largely focused on issues of evolution and epidemiology, and they have given these disciplines new impetus. However, genomic data have so far made fe...

  20. HaloWeb: the haloarchaeal genomes database

    OpenAIRE

    DasSarma, Satyajit L; Capes, Melinda D; DasSarma, Priya; DasSarma, Shiladitya

    2010-01-01

    Background Complete genome sequencing together with post-genomic studies provide the opportunity for a comprehensive 'systems biology' understanding of model organisms. For maximum effectiveness, an integrated database containing genomic, transcriptomic, and proteomic data is necessary. Description To improve data access and facilitate functional genomic studies on haloarchaea in our laboratory, a dedicated database and website, named HaloWeb, was developed. It incorporates all finished and p...

  1. Minimal model for genome evolution and growth

    OpenAIRE

    Hsieh, L. C.; Luo, L. F.; Ji, F. M.; Lee, H C

    2002-01-01

    Textual analysis of typical microbial genomes reveals that they have the statistical characteristics of a DNA sequence of a much shorter length. This peculiar property supports an evolutionary model in which a genome evolves by random mutation but primarily grows by random segmental self-copying. That genomes grew mostly by self-copying is consistent with the observation that repeat sequences in all genomes are widespread and intragenomic and intergenomic homologous genes are preponderance ac...

  2. Searching and Indexing Genomic Databases via Kernelization

    Directory of Open Access Journals (Sweden)

    Travis eGagie

    2015-02-01

    Full Text Available The rapid advance of DNA sequencing technologies has yielded databases of thousands of genomes. To search and index these databases effectively, it is important that we take advantage of the similarity between those genomes. Several authors have recently suggested searching or indexing only one reference genome and the parts of the other genomes where they differ. In this paper we survey the twenty-year history of this idea and discuss its relation to kernelization in parameterized complexity.

  3. WGE: a CRISPR database for genome engineering

    OpenAIRE

    Hodgkins, Alex; Farne, Anna; Perera, Sajith; Grego, Tiago; Parry-Smith, David J; Skarnes, William C.; Iyer, Vivek

    2015-01-01

    Summary: The rapid development of CRISPR-Cas9 mediated genome editing techniques has given rise to a number of online and stand-alone tools to find and score CRISPR sites for whole genomes. Here we describe the Wellcome Trust Sanger Institute Genome Editing database (WGE), which uses novel methods to compute, visualize and select optimal CRISPR sites in a genome browser environment. The WGE database currently stores single and paired CRISPR sites and pre-calculated off-target information for ...

  4. PigGIS: Pig Genomic Informatics System

    OpenAIRE

    Ruan, Jue; Guo, Yiran; Heng LI; Hu, Yafeng; Song, Fei; Huang, Xin; Kristiensen, Karsten; Bolund, Lars; Wang, Jun

    2006-01-01

    Pig Genomic Information System (PigGIS) is a web-based depository of pig (Sus scrofa) genomic learning mainly engineered for biomedical research to locate pig genes from their human homologs and position single nucleotide polymorphisms (SNPs) in different pig populations. It utilizes a variety of sequence data, including whole genome shotgun (WGS) reads and expressed sequence tags (ESTs), and achieves a successful mapping solution to the low-coverage genome problem. With the data presently av...

  5. Genomics for Disease Treatment and Prevention

    OpenAIRE

    Bloss, Cinnamon S.; Jeste, Dilip V.; Schork, Nicholas J.

    2010-01-01

    The enormous advances in genetics and genomics of the past decade have the potential to revolutionize health care, including mental health care, and bring about a system predominantly characterized by the practice of genomic and personalized medicine. We briefly review the history of genetics and genomics and present heritability estimates for major chronic diseases of aging and neuropsychiatric disorders. We then assess the extent to which the results of genetic and genomic studies are curre...

  6. The Human Genome Browser at UCSC

    OpenAIRE

    Kent, W James; Sugnet, Charles W.; Furey, Terrence S.; Roskin, Krishna M; Pringle, Tom H.; Zahler, Alan M.; Haussler, and David

    2002-01-01

    As vertebrate genome sequences near completion and research refocuses to their analysis, the issue of effective genome annotation display becomes critical. A mature web tool for rapid and reliable display of any requested portion of the genome at any scale, together with several dozen aligned annotation tracks, is provided at http://genome.ucsc.edu. This browser displays assembly contigs and gaps, mRNA and expressed sequence tag alignments, multiple gene predictions, cross-species homologies,...

  7. Clinical Implications of the Cancer Genome

    OpenAIRE

    MacConaill, Laura E; Garraway, Levi A

    2010-01-01

    Cancer is a disease of the genome. Most tumors harbor a constellation of structural genomic alterations that may dictate their clinical behavior and treatment response. Whereas elucidating the nature and importance of these genomic alterations has been the goal of cancer biologists for several decades, ongoing global genome characterization efforts are revolutionizing both tumor biology and the optimal paradigm for cancer treatment at an unprecedented scope. The pace of advance has been empow...

  8. Interpreting Mammalian Evolution using Fugu Genome Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, L; Ovcharenko, I; Loots, G G

    2004-04-02

    Comparative sequence analysis of the human and the pufferfish Fugu rubripes (fugu) genomes has revealed several novel functional coding and noncoding regions in the human genome. In particular, the fugu genome has been extremely valuable for identifying transcriptional regulatory elements in human loci harboring unusually high levels of evolutionary conservation to rodent genomes. In such regions, the large evolutionary distance between human and fishes provides an additional filter through which functional noncoding elements can be detected with high efficiency.

  9. Searching and Indexing Genomic Databases via Kernelization

    Science.gov (United States)

    Gagie, Travis; Puglisi, Simon J.

    2015-01-01

    The rapid advance of DNA sequencing technologies has yielded databases of thousands of genomes. To search and index these databases effectively, it is important that we take advantage of the similarity between those genomes. Several authors have recently suggested searching or indexing only one reference genome and the parts of the other genomes where they differ. In this paper, we survey the 20-year history of this idea and discuss its relation to kernelization in parameterized complexity. PMID:25710001

  10. International network of cancer genome projects.

    OpenAIRE

    Aretz, Axel; Bernabé, Rosa R.; Eerola, Iiro; Hemsley, Fiona M.; Jennings, Jennifer L.; Kerr, David; Klatt, Peter; Kolar, Patrik; Lane, David P; Laplace, Frank; Nettekoven, Gerd; Remacle, Jacques; WATANABE, Koichi; Yuen, Matthew M. F.; Knoppers, Bartha M.

    2010-01-01

    The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeut...

  11. Small-Sized Circular Genomes Similar to Genome of Porcine Circovirus 2

    OpenAIRE

    Luo, Wei; Zhao, Dun; Yu, Xing-Long; Ge, Meng; Li, Run-Cheng; Jiang, Da-Liang

    2013-01-01

    Circular genomes smaller than and similar to the genome of porcine circovirus 2 were obtained from pig tissues along with the full-length genome of porcine circovirus 2. The 922-, 839-, and 617-nucleotide-long genomes exhibit high homology to the rep gene plus the origin of replication sequence of porcine circovirus 2.

  12. Rosaceae: Taxonomy, Economic Importance, Genomics

    Science.gov (United States)

    This chapter presents an introduction for the book Genetics and Genomics of the Rosaceae. It reviews the origins of the Rose family, Rosaceae. Theories of the origin of this plant family are given. The first descriptions by Michel Adanson and Antoine Laurent de Jussieu in the 1700s, controversial t...

  13. Fungal genome resources at NCBI.

    Science.gov (United States)

    Robbertse, B; Tatusova, T

    2011-09-01

    The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/ is the quickest way to find resources of interest with fungal entries. Some tools though are resources specific and can be indirectly accessed from a particular database in the Entrez system. These include graphical viewers and comparative analysis tools such as TaxPlot, TaxMap and UniGene DDD (found via UniGene Homepage). Gene and BioProject pages also serve as portals to external data such as community annotation websites, BioGrid and UniProt. There are many different ways of accessing genomic data at NCBI. Depending on the focus and goal of research projects or the level of interest, a user would select a particular route for accessing genomic databases and resources. This review article describes methods of accessing fungal genome data and provides examples that illustrate the use of analysis tools. PMID:22737589

  14. Genome position and gene amplification

    Czech Academy of Sciences Publication Activity Database

    Jirsová, Pavla; Snijders, A.M.; Kwek, S.; Roydasgupta, R.; Fridlyand, J.; Tokuyasu, T.; Pinkel, D.; Albertson, D. G.

    2007-01-01

    Roč. 8, č. 6 (2007), r120. ISSN 1474-760X Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : gene amplification * array comparative genomic hybridization * oncogene Subject RIV: BO - Biophysics Impact factor: 6.589, year: 2007

  15. The potato psyllid genome project

    Science.gov (United States)

    The potato psyllid (Bactericera cockerelli) is a Hemipteran pest of solanaceous plants and limits potato and tomato production by the transmission of Candidatus Liberibacter solanacearum. Genomic information on the potato psyllid is limited but is vital in developing appropriate management strategi...

  16. The 1000 bull genome project

    Science.gov (United States)

    To meet growing global demands for high value protein from milk and meat, rates of genetic gain in domestic cattle must be accelerated. At the same time, animal health and welfare must be considered. The 1000 bull genomes project supports these goals by providing annotated sequence variants and ge...

  17. Evolutionary genomics of animal personality.

    Science.gov (United States)

    van Oers, Kees; Mueller, Jakob C

    2010-12-27

    Research on animal personality can be approached from both a phenotypic and a genetic perspective. While using a phenotypic approach one can measure present selection on personality traits and their combinations. However, this approach cannot reconstruct the historical trajectory that was taken by evolution. Therefore, it is essential for our understanding of the causes and consequences of personality diversity to link phenotypic variation in personality traits with polymorphisms in genomic regions that code for this trait variation. Identifying genes or genome regions that underlie personality traits will open exciting possibilities to study natural selection at the molecular level, gene-gene and gene-environment interactions, pleiotropic effects and how gene expression shapes personality phenotypes. In this paper, we will discuss how genome information revealed by already established approaches and some more recent techniques such as high-throughput sequencing of genomic regions in a large number of individuals can be used to infer micro-evolutionary processes, historical selection and finally the maintenance of personality trait variation. We will do this by reviewing recent advances in molecular genetics of animal personality, but will also use advanced human personality studies as case studies of how molecular information may be used in animal personality research in the near future. PMID:21078651

  18. Mating programs including genomic relationships

    Science.gov (United States)

    Computer mating programs have helped breeders minimize pedigree inbreeding and avoid recessive defects by mating animals with parents that have fewer common ancestors. With genomic selection, breed associations, AI organizations, and on-farm software providers could use new programs to minimize geno...

  19. Causal Factors in Genome Control

    NARCIS (Netherlands)

    O'Duibhir, E.

    2015-01-01

    The aim of this thesis is to study how genes are switched on and off in a coordinated way across an entire genome. In order to do this yeast is used as a model organism. The mechanisms that control gene expression in yeast are very similar to those of human cells. Chapter 1 provides a general introd

  20. A genome befitting a monarch.

    Science.gov (United States)

    Stensmyr, Marcus C; Hansson, Bill S

    2011-11-23

    The monarch butterfly is famous for its annual fall migration from eastern North America to central Mexico, but it has also been an important model for studies in long-distance migration. Now, Zhan et al. present the genome of the monarch, opening up the detailed characterization of the butterfly's navigational system and unique social life. PMID:22118454

  1. Recent advance in carrot genomics

    Science.gov (United States)

    In recent years there has been an effort towards the development of genomic resources in carrot. The number of available sequences for carrot in public databases has increased recently. This has allowed the design of SSRs markers, COS markers and a high-throughput SNP assay for genotyping. Additiona...

  2. Genomic profile of ovarian carcinomas

    OpenAIRE

    Micci, Francesca; Haugom, Lisbeth; Vera M. Abeler; Davidson, Ben; Tropé, Claes G; Heim, Sverre

    2014-01-01

    Background It is known that all tumors studied in sufficient number to draw conclusions show characteristic/specific chromosomal rearrangements, and the identification of these chromosomes and the genes rearranged behind the aberrations may ultimately lead to a tailor-made therapy for each cancer patient. Knowledge about the acquired genomic aberrations of ovarian carcinomas is still unsatisfactory. Methods ...

  3. Repetitive DNA in eukaryotic genomes.

    Science.gov (United States)

    Biscotti, Maria Assunta; Olmo, Ettore; Heslop-Harrison, J S Pat

    2015-09-01

    Repetitive DNA--sequence motifs repeated hundreds or thousands of times in the genome--makes up the major proportion of all the nuclear DNA in most eukaryotic genomes. However, the significance of repetitive DNA in the genome is not completely understood, and it has been considered to have both structural and functional roles, or perhaps even no essential role. High-throughput DNA sequencing reveals huge numbers of repetitive sequences. Most bioinformatic studies focus on low-copy DNA including genes, and hence, the analyses collapse repeats in assemblies presenting only one or a few copies, often masking out and ignoring them in both DNA and RNA read data. Chromosomal studies are proving vital to examine the distribution and evolution of sequences because of the challenges of analysis of sequence data. Many questions are open about the origin, evolutionary mode and functions that repetitive sequences might have in the genome. Some, the satellite DNAs, are present in long arrays of similar motifs at a small number of sites, while others, particularly the transposable elements (DNA transposons and retrotranposons), are dispersed over regions of the genome; in both cases, sequence motifs may be located at relatively specific chromosome domains such as centromeres or subtelomeric regions. Here, we overview a range of works involving detailed characterization of the nature of all types of repetitive sequences, in particular their organization, abundance, chromosome localization, variation in sequence within and between chromosomes, and, importantly, the investigation of their transcription or expression activity. Comparison of the nature and locations of sequences between more, and less, related species is providing extensive information about their evolution and amplification. Some repetitive sequences are extremely well conserved between species, while others are among the most variable, defining differences between even closely relative species. These data suggest

  4. Value of a newly sequenced bacterial genome.

    Science.gov (United States)

    Barbosa, Eudes Gv; Aburjaile, Flavia F; Ramos, Rommel Tj; Carneiro, Adriana R; Le Loir, Yves; Baumbach, Jan; Miyoshi, Anderson; Silva, Artur; Azevedo, Vasco

    2014-05-26

    Next-generation sequencing (NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft (partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information. PMID:24921006

  5. All about the Human Genome Project (HGP)

    Science.gov (United States)

    ... the full human sequence All About The Human Genome Project (HGP) The Human Genome Project (HGP) was one of the great feats of ... Model Organisms A Quarter Century after the Human Genome Project's Launch: Lessons Beyond the Base Pairs October 1, ...

  6. The Latest Buzz in Comparative Genomics

    OpenAIRE

    Kulathinal, Rob J.; Hartl, Daniel L.

    2005-01-01

    A second species of fruit fly has just been added to the growing list of organisms with complete and annotated genome sequences. The publication of the Drosophila pseudoobscura sequence provides a snapshot of how genomes have changed over tens of millions of years and sets the stage for the analysis of more fly genomes.

  7. Genomic instability and cancer: an introduction

    Institute of Scientific and Technical Information of China (English)

    Zhiyuan Shen

    2011-01-01

    @@ Genomic instability as a major driving force of tumorigenesis.The ultimate goal of cell division for most non-cancerous somatic cells is to accurately duplicate the genome and then evenly divide the duplicated genome into the two daughter cells.This ensures that the daughter cells will have exactly the same genetic material as their parent cell.

  8. THE PHYLOGENY AND GENOME OF TRICHINELLA SPECIES

    Science.gov (United States)

    In 2004, funding was received by Washington University’s Genome Sequencing Center through NHGRI, to completely sequence several nematode genomes as part of a holistic effort to advance our understanding of the human genome. Trichinella spiralis was among this group because of its strategic ...

  9. Accounting for discovery bias in genomic EPD

    Science.gov (United States)

    Genomics has contributed substantially to genetic improvement of beef cattle. The implementation is through computation of genomically enhanced expected progeny differences (GE-EPD), which are predictions of genetic merit of individual animals based on genomic information, pedigree, and data on the ...

  10. Genome re-annotation: a wiki solution?

    OpenAIRE

    Salzberg, Steven L.

    2007-01-01

    The annotation of most genomes becomes outdated over time, owing in part to our ever-improving knowledge of genomes and in part to improvements in bioinformatics software. Unfortunately, annotation is rarely if ever updated and resources to support routine reannotation are scarce. Wiki software, which would allow many scientists to edit each genome's annotation, offers one possible solution.

  11. Leaner and meaner genomes in Escherichia coli

    DEFF Research Database (Denmark)

    Ussery, David

    2006-01-01

    A 'better' Escherichia coli K-12 genome has recently been engineered in which about 15% of the genome has been removed by planned deletions. Comparison with related bacterial genomes that have undergone a natural reduction in size suggests that there is plenty of scope for yet more deletions....

  12. Value of a newly sequenced bacterial genome

    Institute of Scientific and Technical Information of China (English)

    Eudes; GV; Barbosa; Flavia; F; Aburjaile; Rommel; TJ; Ramos; Adriana; R; Carneiro; Yves; Le; Loir; Jan; Baumbach; Anderson; Miyoshi; Artur; Silva; Vasco; Azevedo

    2014-01-01

    Next-generation sequencing(NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft(partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information.

  13. Genomic Organization of Leishmania Species

    Directory of Open Access Journals (Sweden)

    B Kazemi

    2011-09-01

    Full Text Available Leishmania is a protozoan parasite belonging to the family Trypanosomatidae, which is found among 88 different countries. The parasite lives as an amastigote in vertebrate macro­phages and as a promastigote in the digestive tract of sand fly. It can be cultured in the laboratory us­ing appropriate culture media. Although the sexual cycle of Leishmania has not been observed during the promastigote and amastigote stages, it has been reported by some researchers. Leishma­nia has eukaryotic cell organization. Cell culture is convenient and cost effective, and because posttranslational modifications are common processes in the cultured cells, the cells are used as hosts for preparing eukaryotic recombinant proteins for research. Several transcripts of rDNA in the Leishmania genome are suitable regions for conducting gene transfer. Old World Leishmania spp. has 36 chromosomes, while New World Leishmania spp. has 34 or 35 chromo­somes. The genomic organization and parasitic characteristics have been investigated. Leishmania spp. has a unique genomic organization among eukaryotes; the genes do not have introns, and the chromosomes are smaller with larger numbers of genes confined to a smaller space within the nucleus. Leishmania spp. genes are organized on one or both DNA strands and are transcribed as polycistronic (prokaryotic-like transcripts from undefined promoters. Regulation of gene expres­sion in the members of Trypanosomatidae differs from that in other eukaryotes. The trans-splic­ing phenomenon is a necessary step for mRNA processing in lower eukaryotes and is observed in Leishmania spp. Another particular feature of RNA editing in Leishmania spp. is that mitochon­drial genes encoding respiratory enzymes are edited and transcribed. This review will discuss the chromosomal and mitochondrial (kinetoplast genomes of Leishmania spp. as well as the phenome­non of RNA editing in the kinetoplast genome.

  14. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects

    OpenAIRE

    Alexie Papanicolaou

    2016-01-01

    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called “genome projects”. The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key...

  15. Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum

    OpenAIRE

    Grativol, Clícia; Regulski, Michael; Bertalan, Marcelo; McCombie, W Richard; da Silva, Felipe Rodrigues; Neto, Adhemar Zerlotini; Vicentini, Renato; Farinelli, Laurent; Hemerly, Adriana Silva; Martienssen, Robert A; Ferreira, Paulo Cavalcanti Gomes

    2014-01-01

    Many economically important crops have large and complex genomes, which hampers sequencing of their genome by standard methods such as WGS. Large tracts of methylated repeats occur at plant genomes interspersed by hypomethylated gene-rich regions. Gene enrichment strategies based on methylation profile offer an alternative to sequencing repetitive genomes. Here, we have applied methyl filtration (MF) with McrBC digestion to enrich for euchromatic regions of sugarcane genome. To verify the eff...

  16. Public health genomics: origins and basic concepts

    Directory of Open Access Journals (Sweden)

    Ron Zimmern

    2006-12-01

    Full Text Available Knowledge and technologies arising from the Human Genome Project promise in time to offer new opportunities for the treatment and prevention of disease. The enterprise of public health genomics aims to bridge the gap between advances in basic research and their responsible and effective implementation in clinical services and public health programmes. Public health genomics stresses the importance of understanding how genes and environment act together to influence health; avoiding genetic exceptionalism; appreciating the social and political context of genomic advances; and encouraging critical evaluation of proposed new tests and interventions. New international networks and collaborations are being established to develop public health genomics and further its aims.

  17. [Research proceedings on primate comparative genomics].

    Science.gov (United States)

    Liao, Cheng-Hong; Su, Bing

    2012-02-01

    With the accomplishment of genome sequencing of human, chimpanzee and other primates, there has been a great amount of primate genome information accumulated. Primate comparative genomics has become a new research field at current genome era. In this article, we reviewed recent progress in phylogeny, genome structure and gene expression of human and nonhuman primates, and we elaborated the major biological differences among human, chimpanzee and other non-human primate species, which is informative in revealing the mechanism of human evolution. PMID:22345018

  18. Complete mitochondrial genome of Drosophila albomicans.

    Science.gov (United States)

    Kang, Xiongbin; Luo, Xiao; Zhang, Zhi; Zhang, Zhen; Yang, Junqing; Bi, Guiqi

    2016-09-01

    Drosophila albomicans has been widely used as an important animal model for chromosome evolution. In this study, the mitochondrial genome sequence of this species is determined and described for the first time. The mitochondrial genome (15 849 bp) encompasses two rRNA, 22 tRNA, and 13 protein-coding genes. Genome content and structure are similar to those reported from other Drosophila mitochondrial genomes. Phylogeny analysis indicates that D. albomicans have a closer genetic relationship with Drosophil aincompta and Drosophil alittoralis. This mitochondrial genome is potentially important for studying molecular evolution and conservation genetics in Drosophila genus. PMID:26358579

  19. The ecoresponsive genome of Daphnia pulex

    Energy Technology Data Exchange (ETDEWEB)

    Colbourne, John K.; Pfrender, Michael E.; Gilbert, Donald; Thomas, W. Kelley; Tucker, Abraham; Oakley, Todd H.; Tokishita, Shinichi; Aerts, Andrea; Arnold, Georg J.; Basu, Malay Kumar; Bauer, Darren J.; Caceres, Carla E.; Carmel, Liran; Casola, Claudio; Choi, Jeong-Hyeon; Detter, John C.; Dong, Qunfeng; Dusheyko, Serge; Eads, Brian D.; Frohlich, Thomas; Geiler-Samerotte, Kerry A.; Gerlach, Daniel; Hatcher, Phil; Jogdeo, Sanjuro; Krijgsveld, Jeroen; Kriventseva, Evgenia V; Kültz, Dietmar; Laforsch, Christian; Lindquist, Erika; Lopez, Jacqueline; Manak, Robert; Muller, Jean; Pangilinan, Jasmyn; Patwardhan, Rupali P.; Pitluck, Samuel; Pritham, Ellen J.; Rechtsteiner, Andreas; Rho, Mina; Rogozin, Igor B.; Sakarya, Onur; Salamov, Asaf; Schaack, Sarah; Shapiro, Harris; Shiga, Yasuhiro; Skalitzky, Courtney; Smith, Zachary; Souvorov, Alexander; Sung, Way; Tang, Zuojian; Tsuchiya, Dai; Tu, Hank; Vos, Harmjan; Wang, Mei; Wolf, Yuri I.; Yamagata, Hideo; Yamada, Takuji; Ye, Yuzhen; Shaw, Joseph R.; Andrews, Justen; Crease, Teresa J.; Tang, Haixu; Lucas, Susan M.; Robertson, Hugh M.; Bork, Peer; Koonin, Eugene V.; Zdobnov, Evgeny M.; Grigoriev, Igor V.; Lynch, Michael; Boore, Jeffrey L.

    2011-02-04

    This document provides supporting material related to the sequencing of the ecoresponsive genome of Daphnia pulex. This material includes information on materials and methods and supporting text, as well as supplemental figures, tables, and references. The coverage of materials and methods addresses genome sequence, assembly, and mapping to chromosomes, gene inventory, attributes of a compact genome, the origin and preservation of Daphnia pulex genes, implications of Daphnia's genome structure, evolutionary diversification of duplicated genes, functional significance of expanded gene families, and ecoresponsive genes. Supporting text covers chromosome studies, gene homology among Daphnia genomes, micro-RNA and transposable elements and the 46 Daphnia pulex opsins. 36 figures, 50 tables, 183 references.

  20. Software for computing and annotating genomic ranges.

    Directory of Open Access Journals (Sweden)

    Michael Lawrence

    Full Text Available We describe Bioconductor infrastructure for representing and computing on annotated genomic ranges and integrating genomic data with the statistical computing features of R and its extensions. At the core of the infrastructure are three packages: IRanges, GenomicRanges, and GenomicFeatures. These packages provide scalable data structures for representing annotated ranges on the genome, with special support for transcript structures, read alignments and coverage vectors. Computational facilities include efficient algorithms for overlap and nearest neighbor detection, coverage calculation and other range operations. This infrastructure directly supports more than 80 other Bioconductor packages, including those for sequence analysis, differential expression analysis and visualization.

  1. Prospects for Genomic Research in Forestry

    Directory of Open Access Journals (Sweden)

    K. V. Krutovsky

    2014-08-01

    Full Text Available Conifers are keystone species of boreal forests. Their whole genome sequencing, assembly and annotation will allow us to understand the evolution of the complex ancient giant conifer genomes that are 4 times larger in larch and 7–9 times larger in pines than the human genome. Genomic studies will allow also to obtain important whole genome sequence data and develop highly polymorphic and informative genetic markers, such as microsatellites and single nucleotide polymorphisms (SNPs that can be efficiently used in timber origin identification, for genetic variation monitoring, to study local and climate change adaptation and in tree improvement and conservation programs.

  2. Comparison of 61 Sequenced Escherichia coli Genomes

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Wassenaar, T. M.; Ussery, David

    2010-01-01

    Escherichia coli is an important component of the biosphere and is an ideal model for studies of processes involved in bacterial genome evolution. Sixty-one publically available E. coli and Shigella spp. sequenced genomes are compared, using basic methods to produce phylogenetic and proteomics...... the pan-genome and about 80% of a typical genome; some of these variable genes tend to be co-localized on genomic islands. The diversity within the species E. coli, and the overlap in gene content between this and related species, suggests a continuum rather than sharp species borders in this group of...

  3. The Human Genome Project, and recent advances in personalized genomics

    Directory of Open Access Journals (Sweden)

    Wilson BJ

    2015-02-01

    Full Text Available Brenda J Wilson, Stuart G Nicholls Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada Abstract: The language of “personalized medicine” and “personal genomics” has now entered the common lexicon. The idea of personalized medicine is the integration of genomic risk assessment alongside other clinical investigations. Consistent with this approach, testing is delivered by health care professionals who are not medical geneticists, and where results represent risks, as opposed to clinical diagnosis of disease, to be interpreted alongside the entirety of a patient's health and medical data. In this review we consider the evidence concerning the application of such personalized genomics within the context of population screening, and potential implications that arise from this. We highlight two general approaches which illustrate potential uses of genomic information in screening. The first is a narrowly targeted approach in which genetic profiling is linked with standard population-based screening for diseases; the second is a broader targeting of variants associated with multiple single gene disorders, performed opportunistically on patients being investigated for unrelated conditions. In doing so we consider the organization and evaluation of tests and services, the challenge of interpretation with less targeted testing, professional confidence, barriers in practice, and education needs. We conclude by discussing several issues pertinent to health policy, namely: avoiding the conflation of genetics with biological determinism, resisting the “technological imperative”, due consideration of the organization of screening services, the need for professional education, as well as informed decision making and public understanding. Keywords: genomics, personalized medicine, ethics, population health, evidence, education

  4. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA

    OpenAIRE

    Barrett, Michael T; Scheffer, Alicia; Ben-Dor, Amir; Sampas, Nick; Lipson, Doron; Kincaid, Robert; Tsang, Peter; Curry, Bo; Baird, Kristin; Meltzer, Paul S.; Yakhini, Zohar; Bruhn, Laurakay; Laderman, Stephen

    2004-01-01

    Array-based comparative genomic hybridization (CGH) measures copy-number variations at multiple loci simultaneously, providing an important tool for studying cancer and developmental disorders and for developing diagnostic and therapeutic targets. Arrays for CGH based on PCR products representing assemblies of BAC or cDNA clones typically require maintenance, propagation, replication, and verification of large clone sets. Furthermore, it is difficult to control the specificity of the hybridiz...

  5. Genomic alterations detected by comparative genomic hybridization in ovarian endometriomas

    Directory of Open Access Journals (Sweden)

    L.C. Veiga-Castelli

    2010-08-01

    Full Text Available Endometriosis is a complex and multifactorial disease. Chromosomal imbalance screening in endometriotic tissue can be used to detect hot-spot regions in the search for a possible genetic marker for endometriosis. The objective of the present study was to detect chromosomal imbalances by comparative genomic hybridization (CGH in ectopic tissue samples from ovarian endometriomas and eutopic tissue from the same patients. We evaluated 10 ovarian endometriotic tissues and 10 eutopic endometrial tissues by metaphase CGH. CGH was prepared with normal and test DNA enzymatically digested, ligated to adaptors and amplified by PCR. A second PCR was performed for DNA labeling. Equal amounts of both normal and test-labeled DNA were hybridized in human normal metaphases. The Isis FISH Imaging System V 5.0 software was used for chromosome analysis. In both eutopic and ectopic groups, 4/10 samples presented chromosomal alterations, mainly chromosomal gains. CGH identified 11q12.3-q13.1, 17p11.1-p12, 17q25.3-qter, and 19p as critical regions. Genomic imbalances in 11q, 17p, 17q, and 19p were detected in normal eutopic and/or ectopic endometrium from women with ovarian endometriosis. These regions contain genes such as POLR2G, MXRA7 and UBA52 involved in biological processes that may lead to the establishment and maintenance of endometriotic implants. This genomic imbalance may affect genes in which dysregulation impacts both eutopic and ectopic endometrium.

  6. Functional Genomics of Wood Quality and Properties

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Xiaoyan Luo; Aaron Nelson; Hilary Collver; Katherine Kinken

    2003-01-01

    Genomics promises to enrich the investigations of biology and biochemistry. Current advancements in genomics have major implications for genetic improvement in animals, plants, and microorganisms, and for our understanding of cell growth, development, differentiation, and communication. Significant progress has been made in the understanding of plant genomics in recent years, and the area continues to progress rapidly. Functional genomics offers enormous potential to tree improvement and the understanding of gene expression in this area of science worldwide.In this review we focus on functional genomics of wood quality and properties in trees, mainly based on progresses made in genomics study of Pinus and Populus.The aims of this review are to summarize the current status of functional genomics including: (1) Gene discovery; (2) EST and genomic sequencing; (3) From EST to functional genomics; (4) Approaches to functional analysis; (5) Engineering lignin biosynthesis; (6) Modification of cell wall biogenesis; and (7) Molecular modelling.Functional genomics has been greatly invested worldwide and will be important in identifying candidate genes whose function is critical to all aspects of plant growth, development, differentiation, and defense. Forest biotechnology industry will significantly benefit from the advent of functional genomics of wood quality and properties.

  7. Fungal Genomics for Energy and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  8. Genome Improvement at JGI-HAGSC

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, Jane; Schmutz, Jeremy J.; Myers, Richard M.

    2012-03-03

    Since the completion of the sequencing of the human genome, the Joint Genome Institute (JGI) has rapidly expanded its scientific goals in several DOE mission-relevant areas. At the JGI-HAGSC, we have kept pace with this rapid expansion of projects with our focus on assessing, assembling, improving and finishing eukaryotic whole genome shotgun (WGS) projects for which the shotgun sequence is generated at the Production Genomic Facility (JGI-PGF). We follow this by combining the draft WGS with genomic resources generated at JGI-HAGSC or in collaborator laboratories (including BAC end sequences, genetic maps and FLcDNA sequences) to produce an improved draft sequence. For eukaryotic genomes important to the DOE mission, we then add further information from directed experiments to produce reference genomic sequences that are publicly available for any scientific researcher. Also, we have continued our program for producing BAC-based finished sequence, both for adding information to JGI genome projects and for small BAC-based sequencing projects proposed through any of the JGI sequencing programs. We have now built our computational expertise in WGS assembly and analysis and have moved eukaryotic genome assembly from the JGI-PGF to JGI-HAGSC. We have concentrated our assembly development work on large plant genomes and complex fungal and algal genomes.

  9. REEF: searching REgionally Enriched Features in genomes

    Directory of Open Access Journals (Sweden)

    Danieli Gian Antonio

    2006-10-01

    Full Text Available Abstract Background In Eukaryotic genomes, different features including genes are not uniformly distributed. The integration of annotation information and genomic position of functional DNA elements in the Eukaryotic genomes opened the way to test novel hypotheses of higher order genome organization and regulation of expression. Results REEF is a new tool, aimed at identifying genomic regions enriched in specific features, such as a class or group of genes homogeneous for expression and/or functional characteristics. The method for the calculation of local feature enrichment uses test statistic based on the Hypergeometric Distribution applied genome-wide by using a sliding window approach and adopting the False Discovery Rate for controlling multiplicity. REEF software, source code and documentation are freely available at http://telethon.bio.unipd.it/bioinfo/reef/. Conclusion REEF can aid to shed light on the role of organization of specific genomic regions in the determination of their functional role.

  10. The UCSC Genome Browser database: 2016 update.

    Science.gov (United States)

    Speir, Matthew L; Zweig, Ann S; Rosenbloom, Kate R; Raney, Brian J; Paten, Benedict; Nejad, Parisa; Lee, Brian T; Learned, Katrina; Karolchik, Donna; Hinrichs, Angie S; Heitner, Steve; Harte, Rachel A; Haeussler, Maximilian; Guruvadoo, Luvina; Fujita, Pauline A; Eisenhart, Christopher; Diekhans, Mark; Clawson, Hiram; Casper, Jonathan; Barber, Galt P; Haussler, David; Kuhn, Robert M; Kent, W James

    2016-01-01

    For the past 15 years, the UCSC Genome Browser (http://genome.ucsc.edu/) has served the international research community by offering an integrated platform for viewing and analyzing information from a large database of genome assemblies and their associated annotations. The UCSC Genome Browser has been under continuous development since its inception with new data sets and software features added frequently. Some release highlights of this year include new and updated genome browsers for various assemblies, including bonobo and zebrafish; new gene annotation sets; improvements to track and assembly hub support; and a new interactive tool, the "Data Integrator", for intersecting data from multiple tracks. We have greatly expanded the data sets available on the most recent human assembly, hg38/GRCh38, to include updated gene prediction sets from GENCODE, more phenotype- and disease-associated variants from ClinVar and ClinGen, more genomic regulatory data, and a new multiple genome alignment. PMID:26590259

  11. Insights from Human/Mouse genome comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  12. REEF: searching REgionally Enriched Features in genomes

    Science.gov (United States)

    Coppe, Alessandro; Danieli, Gian Antonio; Bortoluzzi, Stefania

    2006-01-01

    Background In Eukaryotic genomes, different features including genes are not uniformly distributed. The integration of annotation information and genomic position of functional DNA elements in the Eukaryotic genomes opened the way to test novel hypotheses of higher order genome organization and regulation of expression. Results REEF is a new tool, aimed at identifying genomic regions enriched in specific features, such as a class or group of genes homogeneous for expression and/or functional characteristics. The method for the calculation of local feature enrichment uses test statistic based on the Hypergeometric Distribution applied genome-wide by using a sliding window approach and adopting the False Discovery Rate for controlling multiplicity. REEF software, source code and documentation are freely available at . Conclusion REEF can aid to shed light on the role of organization of specific genomic regions in the determination of their functional role. PMID:17042935

  13. Sequencing intractable DNA to close microbial genomes.

    Directory of Open Access Journals (Sweden)

    Richard A Hurt

    Full Text Available Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps and the Desulfovibrio africanus genome (1 intractable gap. The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  14. Whole Genome Epidemiological Typing of Escherichia coli

    DEFF Research Database (Denmark)

    Kaas, Rolf Sommer

    is in general expensive and to some extent unreliable. Next generation sequencing has quickly become a tool widely available and has enabled even smaller laboratories to do whole genome sequencing (WGS). Having the entire genome available provides the opportunity to create the ultimate typing method. This Ph......D thesis attempts to take the first steps toward such a method. In Kaas I all publicly available E. coli genomes sequenced (186) are analyzed. 1,702 core genes were found in all genomes. 3,051 genes were found in 95% of the genomes. The pan genome was found to consist of 16,373 genes. The overall phylogeny...... was inferred from the core genome and also set into context of the Escherichia genus. The variance within each gene cluster was calculated in order to compare the variance between genes and possibly identify typing targets for further study. The variance scores calculated was also used to compare the three...

  15. One Bacterial Cell, One Complete Genome

    Energy Technology Data Exchange (ETDEWEB)

    Woyke, Tanja; Tighe, Damon; Mavrommatis, Konstantinos; Clum, Alicia; Copeland, Alex; Schackwitz, Wendy; Lapidus, Alla; Wu, Dongying; McCutcheon, John P.; McDonald, Bradon R.; Moran, Nancy A.; Bristow, James; Cheng, Jan-Fang

    2010-04-26

    While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200?900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.

  16. One bacterial cell, one complete genome.

    Directory of Open Access Journals (Sweden)

    Tanja Woyke

    Full Text Available While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200-900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA. Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs, indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.

  17. Current development and application of soybean genomics

    Institute of Scientific and Technical Information of China (English)

    Lingli HE; Jing ZHAO; Man ZHAO; Chaoying HE

    2011-01-01

    Soybean (Glycine max),an important domesticated species originated in China,constitutes a major source of edible oils and high-quality plant proteins worldwide.In spite of its complex genome as a consequence of an ancient tetraploidilization,platforms for map-based genomics,sequence-based genomics,comparative genomics and functional genomics have been well developed in the last decade,thus rich repertoires of genomic tools and resources are available,which have been influencing the soybean genetic improvement.Here we mainly review the progresses of soybean (including its wild relative Glycine soja) genomics and its impetus for soybean breeding,and raise the major biological questions needing to be addressed.Genetic maps,physical maps,QTL and EST mapping have been so well achieved that the marker assisted selection and positional cloning in soybean is feasible and even routine.Whole genome sequencing and transcriptomic analyses provide a large collection of molecular markers and predicted genes,which are instrumental to comparative genomics and functional genomics.Comparative genomics has started to reveal the evolution of soybean genome and the molecular basis of soybean domestication process.Microarrays resources,mutagenesis and efficient transformation systems become essential components of soybean functional genomics.Furthermore,phenotypic functional genomics via both forward and reverse genetic approaches has inferred functions of many genes involved in plant and seed development,in response to abiotic stresses,functioning in plant-pathogenic microbe interactions,and controlling the oil and protein content of seed.These achievements have paved the way for generation of transgenic or genetically modified (GM) soybean crops.

  18. 10. international mouse genome conference

    Energy Technology Data Exchange (ETDEWEB)

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  19. Genomic Heritability: What Is It?

    DEFF Research Database (Denmark)

    de los Campos, Gustavo; Sorensen, Daniel; Gianola, Daniel

    2015-01-01

    phenotypic variance that can be explained by regression on molecular markers. This is so even though some of the assumptions commonly adopted for data analysis are at odds with important quantitative genetic concepts. In this article we develop theory that leads to a precise definition of parameters arising...... in high dimensional genomic regressions; we focus on the so-called genomic heritability: the proportion of variance of a trait that can be explained (in the population) by a linear regression on a set of markers. We propose a definition of this parameter that is framed within the classical...... models commonly used for inferences, and indicate potential inferential problems that are assessed further using simulations. When a large proportion of the markers used in the analysis are in LE with QTL the likelihood function can be misspecified. This can induce a sizable finite-sample bias and...

  20. Structural Genomics of Protein Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  1. How retrotransposons shape genome regulation.

    Science.gov (United States)

    Mita, Paolo; Boeke, Jef D

    2016-04-01

    Retrotransposons are mutagenic units able to move within the genome. Despite many defenses deployed by the host to suppress potentially harmful activities of retrotransposons, these genetic units have found ways to meld with normal cellular functions through processes of exaptation and domestication. The same host mechanisms targeting transposon mobility allow for expansion and rewiring of gene regulatory networks on an evolutionary time scale. Recent works demonstrating retrotransposon activity during development, cell differentiation and neurogenesis shed new light on unexpected activities of transposable elements. Moreover, new technological advances illuminated subtler nuances of the complex relationship between retrotransposons and the host genome, clarifying the role of retroelements in evolution, development and impact on human disease. PMID:26855260

  2. Mathematical Analysis of Genomic Evolution

    Directory of Open Access Journals (Sweden)

    Cedric Green

    2011-01-01

    Full Text Available Changes in nucleotide sequences, or mutations, accumulate from generation to generation in the genomes of all living organisms. The mutations can be advantageous, deleterious, or neutral. The goal of this project is to determine the amount of advantageous mutations it takes to get human (Homo sapiens DNA from the DNA of genetically distinct organisms. We do this by collecting the genomic data of such organisms, and estimating the amount of mutations it takes to transform yeast (Saccharomyces cerevisiae DNA to the DNA of a human. We calculate the typical number of mutations occurring annually through the organism's average life span and the average mutation rate. This allows us to determine the total number of mutations as well as the probability of advantageous mutations. Not surprisingly, this probability proves to be fairly small. A more precise estimate can be determined by accounting for the differences in the chromosomal structure and phenomena like horizontal gene transfer.

  3. Fungal genome resources at NCBI

    OpenAIRE

    Robbertse, B.; Tatusova, T.

    2011-01-01

    The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/...

  4. Biclustering Sparse Binary Genomic Data

    OpenAIRE

    Van Uitert, M.; Meuleman, W.; Wessels, L. F. A.

    2008-01-01

    Genomic datasets often consist of large, binary, sparse data matrices. In such a dataset, one is often interested in finding contiguous blocks that (mostly) contain ones. This is a biclustering problem, and while many algorithms have been proposed to deal with gene expression data, only two algorithms have been proposed that specifically deal with binary matrices. None of the gene expression biclustering algorithms can handle the large number of zeros in sparse binary matrices. The two propos...

  5. Evolutionary genomics of animal personality

    OpenAIRE

    Oers, Kees van; Mueller, Jakob C

    2010-01-01

    Research on animal personality can be approached from both a phenotypic and a genetic perspective. While using a phenotypic approach one can measure present selection on personality traits and their combinations. However, this approach cannot reconstruct the historical trajectory that was taken by evolution. Therefore, it is essential for our understanding of the causes and consequences of personality diversity to link phenotypic variation in personality traits with polymorphisms in genomic r...

  6. Data integration for clinical genomics

    OpenAIRE

    Calabria,, C.

    2011-01-01

    Genetics and Molecular Biology are keys for the understanding the mechanisms of many of the human diseases that have strong harmful effects. The empirical mission of Genetics is to translate these mechanisms into Clinical benefits, thus bridging in-silico findings to patient bed side: approaching this goal means achieving what is commonly referred as clinical genomics or personalized medicine. In this process, technologies are assuming an increasing role. With the introduction of new expe...

  7. Recent genomic heritage in Scotland

    OpenAIRE

    Amador, Carmen; Huffman, Jennifer; Trochet, Holly; Campbell, Archie; Porteous, David; Wilson, James F; Hastie, Nick; Vitart, Veronique; Hayward, Caroline; Navarro, Pau; Haley, Chris S.; Generation Scotland

    2015-01-01

    Background The Generation Scotland Scottish Family Health Study (GS:SFHS) includes 23,960 participants from across Scotland with records for many health-related traits and environmental covariates. Genotypes at ~700 K SNPs are currently available for 10,000 participants. The cohort was designed as a resource for genetic and health related research and the study of complex traits. In this study we developed a suite of analyses to disentangle the genomic differentiation within GS:SFHS individua...

  8. Glossary | Office of Cancer Genomics

    Science.gov (United States)

    A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z     B Bioinformatics The use of computing tools to manage and analyze genomic and molecular biological data.

  9. Microbial genomes: Blueprints for life

    Energy Technology Data Exchange (ETDEWEB)

    Relman, David A.; Strauss, Evelyn

    2000-12-31

    Complete microbial genome sequences hold the promise of profound new insights into microbial pathogenesis, evolution, diagnostics, and therapeutics. From these insights will come a new foundation for understanding the evolution of single-celled life, as well as the evolution of more complex life forms. This report is an in-depth analysis of scientific issues that provides recommendations and will be widely disseminated to the scientific community, federal agencies, industry and the public.

  10. Genomic profile of ovarian carcinomas

    OpenAIRE

    Micci, Francesca; Haugom, Lisbeth; Vera M. Abeler; Davidson, Ben; Tropé, Claes G; Heim, Sverre

    2014-01-01

    Background It is known that all tumors studied in sufficient number to draw conclusions show characteristic/specific chromosomal rearrangements, and the identification of these chromosomes and the genes rearranged behind the aberrations may ultimately lead to a tailor-made therapy for each cancer patient. Knowledge about the acquired genomic aberrations of ovarian carcinomas is still unsatisfactory. Methods We cytogenetically analyzed 110 new cases of ovarian carcinoma of different histologic...

  11. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.

    Science.gov (United States)

    Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S

    2016-01-01

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. PMID:27189987

  12. Multiple models for Rosaceae genomics.

    Science.gov (United States)

    Shulaev, Vladimir; Korban, Schuyler S; Sosinski, Bryon; Abbott, Albert G; Aldwinckle, Herb S; Folta, Kevin M; Iezzoni, Amy; Main, Dorrie; Arús, Pere; Dandekar, Abhaya M; Lewers, Kim; Brown, Susan K; Davis, Thomas M; Gardiner, Susan E; Potter, Daniel; Veilleux, Richard E

    2008-07-01

    The plant family Rosaceae consists of over 100 genera and 3,000 species that include many important fruit, nut, ornamental, and wood crops. Members of this family provide high-value nutritional foods and contribute desirable aesthetic and industrial products. Most rosaceous crops have been enhanced by human intervention through sexual hybridization, asexual propagation, and genetic improvement since ancient times, 4,000 to 5,000 B.C. Modern breeding programs have contributed to the selection and release of numerous cultivars having significant economic impact on the U.S. and world markets. In recent years, the Rosaceae community, both in the United States and internationally, has benefited from newfound organization and collaboration that have hastened progress in developing genetic and genomic resources for representative crops such as apple (Malus spp.), peach (Prunus spp.), and strawberry (Fragaria spp.). These resources, including expressed sequence tags, bacterial artificial chromosome libraries, physical and genetic maps, and molecular markers, combined with genetic transformation protocols and bioinformatics tools, have rendered various rosaceous crops highly amenable to comparative and functional genomics studies. This report serves as a synopsis of the resources and initiatives of the Rosaceae community, recent developments in Rosaceae genomics, and plans to apply newly accumulated knowledge and resources toward breeding and crop improvement. PMID:18487361

  13. Life in our hands? Some ethical perspectives on the human genome and human genome diversity projects

    Directory of Open Access Journals (Sweden)

    Cornelius W. du Toit

    2014-01-01

    Full Text Available The article dealt with implications of the human genome and the human genome diversity project. It examined some theological implications, such as: humans as the image of God, God as the creator of life, the changed role of miracles and healings in religion, the sacredness of nature, life and the genome. Ethical issues that were addressed include eugenics, germline intervention, determinism and the human genome diversity project. Economic and legal factors that play a role were also discussed. Whilst positive aspects of genome research were considered, a critical stance was adopted towards patenting the human genome and some concluding guidelines were proposed.

  14. 3D Genome Tuner: Compare Multiple Circular Genomes in a 3D Context

    Institute of Scientific and Technical Information of China (English)

    Qi Wang; Qun Liang; Xiuqing Zhang

    2009-01-01

    Circular genomes, being the largest proportion of sequenced genomes, play an important role in genome analysis. However, traditional 2D circular map only provides an overview and annotations of genome but does not offer feature-based comparison. For remedying these shortcomings, we developed 3D Genome Tuner, a hybrid of circular map and comparative map tools. Its capability of viewing comparisons between multiple circular maps in a 3D space offers great benefits to the study of comparative genomics. The program is freely available(under an LGPL licence)at http://sourceforge.net/projects/dgenometuner.

  15. Comparative genome research between maize and rice using genomic in situ hybridization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using the genomic DNAs of maize and rice as probes respectively,the homology of maize and rice genomes was assessed by genomic in situ hybridization. When rice genomic DNAs were hybridized to maize, all chromosomes displayed many multiple discrete regions, while each rice chromosome delineated a single consecutive chromosomal region after they were hybridized with maize genomic DNAs. The results indicate that the genomes of maize and rice share high homology, and confirm the proposal that maize and rice are diverged from a common ancestor.

  16. Unleashing the genome of Brassica rapa

    Directory of Open Access Journals (Sweden)

    Haibao eTang

    2012-07-01

    Full Text Available The completion and release of the Brassica rapa genome is of great benefit to researchers of the Brassicas, Arabidopsis, and genome evolution. While its lineage is closely related to the model organism Arabidopsis thaliana, the Brassicas experienced a whole genome triplication subsequent to their divergence. This event contemporaneously created three copies of its ancestral genome, which had diploidized through the process of homeologous gene loss known as fractionation. By the fractionation of homeologous gene content and genetic regulatory binding sites, Brassica’s genome is well placed to use comparative genomic techniques to identify syntenic regions, homeologous gene duplications, and putative regulatory sequences. Here, we use the comparative genomics platform CoGe to perform several different genomic analyses with which to study structural changes of its genome and dynamics of various genetic elements. Starting with whole genome comparisons, the Brassica paleohexaploidy is characterized, syntenic regions with Arabidopsis thaliana are identified, and the TOC1 gene in the circadian rhythm pathway from Arabidopsis thaliana is used to find duplicated orthologs in Brassica rapa. These TOC1 genes are further analyzed to identify conserved noncoding sequences that contain cis-acting regulatory elements and promoter sequences previously implicated in circadian rhythmicity. Each 'cookbook style' analysis includes a step-by-step walkthrough with links to CoGe to quickly reproduce each step of the analytical process.

  17. Comparative Reannotation of 21 Aspergillus Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Salamov, Asaf; Riley, Robert; Kuo, Alan; Grigoriev, Igor

    2013-03-08

    We used comparative gene modeling to reannotate 21 Aspergillus genomes. Initial automatic annotation of individual genomes may contain some errors of different nature, e.g. missing genes, incorrect exon-intron structures, 'chimeras', which fuse 2 or more real genes or alternatively splitting some real genes into 2 or more models. The main premise behind the comparative modeling approach is that for closely related genomes most orthologous families have the same conserved gene structure. The algorithm maps all gene models predicted in each individual Aspergillus genome to the other genomes and, for each locus, selects from potentially many competing models, the one which most closely resembles the orthologous genes from other genomes. This procedure is iterated until no further change in gene models is observed. For Aspergillus genomes we predicted in total 4503 new gene models ( ~;;2percent per genome), supported by comparative analysis, additionally correcting ~;;18percent of old gene models. This resulted in a total of 4065 more genes with annotated PFAM domains (~;;3percent increase per genome). Analysis of a few genomes with EST/transcriptomics data shows that the new annotation sets also have a higher number of EST-supported splice sites at exon-intron boundaries.

  18. Fueling the Future with Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.

  19. Genomics in the light of evolutionary transitions.

    Science.gov (United States)

    Durand, Pierre M; Michod, Richard E

    2010-06-01

    Molecular biology has entrenched the gene as the basic hereditary unit and genomes are often considered little more than collections of genes. However, new concepts and genomic data have emerged, which suggest that the genome has a unique place in the hierarchy of life. Despite this, a framework for the genome as a major evolutionary transition has not been fully developed. Instead, genome origin and evolution are frequently considered as a series of neutral or nonadaptive events. In this article, we argue for a Darwinian multilevel selection interpretation for the origin of the genome. We base our arguments on the multilevel selection theory of hypercycles of cooperative interacting genes and predictions that gene-level trade-offs in viability and reproduction can help drive evolutionary transitions. We consider genomic data involving mobile genetic elements as a test case of our view. A new concept of the genome as a discrete evolutionary unit emerges and the gene-genome juncture is positioned as a major evolutionary transition in individuality. This framework offers a fresh perspective on the origin of macromolecular life and sets the scene for a new, emerging line of inquiry--the evolutionary ecology of the genome. PMID:19930450

  20. Genome-wide identification of significant aberrations in cancer genome

    Directory of Open Access Journals (Sweden)

    Yuan Xiguo

    2012-07-01

    Full Text Available Abstract Background Somatic Copy Number Alterations (CNAs in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC, a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1 exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2 performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3 iteratively detecting Significant Copy Number Aberrations (SCAs and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma. When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC or tumor suppressor genes (e.g., CDKN2A/B. Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes

  1. Genome digging: insight into the mitochondrial genome of Homo.

    Directory of Open Access Journals (Sweden)

    Igor V Ovchinnikov

    Full Text Available BACKGROUND: A fraction of the Neanderthal mitochondrial genome sequence has a similarity with a 5,839-bp nuclear DNA sequence of mitochondrial origin (numt on the human chromosome 1. This fact has never been interpreted. Although this phenomenon may be attributed to contamination and mosaic assembly of Neanderthal mtDNA from short sequencing reads, we explain the mysterious similarity by integration of this numt (mtAncestor-1 into the nuclear genome of the common ancestor of Neanderthals and modern humans not long before their reproductive split. PRINCIPAL FINDINGS: Exploiting bioinformatics, we uncovered an additional numt (mtAncestor-2 with a high similarity to the Neanderthal mtDNA and indicated that both numts represent almost identical replicas of the mtDNA sequences ancestral to the mitochondrial genomes of Neanderthals and modern humans. In the proteins, encoded by mtDNA, the majority of amino acids distinguishing chimpanzees from humans and Neanderthals were acquired by the ancestral hominins. The overall rate of nonsynonymous evolution in Neanderthal mitochondrial protein-coding genes is not higher than in other lineages. The model incorporating the ancestral hominin mtDNA sequences estimates the average divergence age of the mtDNAs of Neanderthals and modern humans to be 450,000-485,000 years. The mtAncestor-1 and mtAncestor-2 sequences were incorporated into the nuclear genome approximately 620,000 years and 2,885,000 years ago, respectively. CONCLUSIONS: This study provides the first insight into the evolution of the mitochondrial DNA in hominins ancestral to Neanderthals and humans. We hypothesize that mtAncestor-1 and mtAncestor-2 are likely to be molecular fossils of the mtDNAs of Homo heidelbergensis and a stem Homo lineage. The d(N/d(S dynamics suggests that the effective population size of extinct hominins was low. However, the hominin lineage ancestral to humans, Neanderthals and H. heidelbergensis, had a larger effective

  2. Targeted identification of genomic regions using TAGdb

    Directory of Open Access Journals (Sweden)

    Marshall Daniel J

    2010-08-01

    Full Text Available Abstract Background The introduction of second generation sequencing technology has enabled the cost effective sequencing of genomes and the identification of large numbers of genes and gene promoters. However, the assembly of DNA sequences to create a representation of the complete genome sequence remains costly, especially for the larger and more complex plant genomes. Results We have developed an online database, TAGdb, that enables researchers to identify paired read sequences that share identity with a submitted query sequence. These tags can be used to design oligonucleotide primers for the PCR amplification of the region in the target genome. Conclusions The ability to produce large numbers of paired read genome tags using second generation sequencing provides a cost effective method for the identification of genes and promoters in large, complex or orphan species without the need for whole genome assembly.

  3. Draft genome of the kiwifruit Actinidia chinensis

    Science.gov (United States)

    Huang, Shengxiong; Ding, Jian; Deng, Dejing; Tang, Wei; Sun, Honghe; Liu, Dongyuan; Zhang, Lei; Niu, Xiangli; Zhang, Xia; Meng, Meng; Yu, Jinde; Liu, Jia; Han, Yi; Shi, Wei; Zhang, Danfeng; Cao, Shuqing; Wei, Zhaojun; Cui, Yongliang; Xia, Yanhua; Zeng, Huaping; Bao, Kan; Lin, Lin; Min, Ya; Zhang, Hua; Miao, Min; Tang, Xiaofeng; Zhu, Yunye; Sui, Yuan; Li, Guangwei; Sun, Hanju; Yue, Junyang; Sun, Jiaqi; Liu, Fangfang; Zhou, Liangqiang; Lei, Lin; Zheng, Xiaoqin; Liu, Ming; Huang, Long; Song, Jun; Xu, Chunhua; Li, Jiewei; Ye, Kaiyu; Zhong, Silin; Lu, Bao-Rong; He, Guanghua; Xiao, Fangming; Wang, Hui-Li; Zheng, Hongkun; Fei, Zhangjun; Liu, Yongsheng

    2013-01-01

    The kiwifruit (Actinidia chinensis) is an economically and nutritionally important fruit crop with remarkably high vitamin C content. Here we report the draft genome sequence of a heterozygous kiwifruit, assembled from ~140-fold next-generation sequencing data. The assembled genome has a total length of 616.1 Mb and contains 39,040 genes. Comparative genomic analysis reveals that the kiwifruit has undergone an ancient hexaploidization event (γ) shared by core eudicots and two more recent whole-genome duplication events. Both recent duplication events occurred after the divergence of kiwifruit from tomato and potato and have contributed to the neofunctionalization of genes involved in regulating important kiwifruit characteristics, such as fruit vitamin C, flavonoid and carotenoid metabolism. As the first sequenced species in the Ericales, the kiwifruit genome sequence provides a valuable resource not only for biological discovery and crop improvement but also for evolutionary and comparative genomics analysis, particularly in the asterid lineage. PMID:24136039

  4. Open Access Data Sharing in Genomic Research

    Directory of Open Access Journals (Sweden)

    Stacey Pereira

    2014-08-01

    Full Text Available The current emphasis on broad sharing of human genomic data generated in research in order to maximize utility and public benefit is a significant legacy of the Human Genome Project. Concerns about privacy and discrimination have led to policy responses that restrict access to genomic data as the means for protecting research participants. Our research and experience show, however, that a considerable number of research participants agree to open access sharing of their genomic data when given the choice. General policies that limit access to all genomic data fail to respect the autonomy of these participants and, at the same time, unnecessarily limit the utility of the data. We advocate instead a more balanced approach that allows for individual choice and encourages informed decision making, while protecting against the misuse of genomic data through enhanced legislation.

  5. The Saccharomyces Genome Database Variant Viewer.

    Science.gov (United States)

    Sheppard, Travis K; Hitz, Benjamin C; Engel, Stacia R; Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C; Dalusag, Kyla S; Demeter, Janos; Hellerstedt, Sage T; Karra, Kalpana; Nash, Robert S; Paskov, Kelley M; Skrzypek, Marek S; Weng, Shuai; Wong, Edith D; Cherry, J Michael

    2016-01-01

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer. PMID:26578556

  6. Human Contamination in Public Genome Assemblies.

    Science.gov (United States)

    Kryukov, Kirill; Imanishi, Tadashi

    2016-01-01

    Contamination in genome assembly can lead to wrong or confusing results when using such genome as reference in sequence comparison. Although bacterial contamination is well known, the problem of human-originated contamination received little attention. In this study we surveyed 45,735 available genome assemblies for evidence of human contamination. We used lineage specificity to distinguish between contamination and conservation. We found that 154 genome assemblies contain fragments that with high confidence originate as contamination from human DNA. Majority of contaminating human sequences were present in the reference human genome assembly for over a decade. We recommend that existing contaminated genomes should be revised to remove contaminated sequence, and that new assemblies should be thoroughly checked for presence of human DNA before submitting them to public databases. PMID:27611326

  7. The characterization of twenty sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Kimberly Pelak

    2010-09-01

    Full Text Available We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.

  8. Multiscale modeling of three-dimensional genome

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  9. [Infectious diseases in the genomic era].

    Science.gov (United States)

    Moreno Switt, Andrea I; Toledo, Viviana

    2015-10-01

    Next generation sequencing (NGS) technologies have arrived, changing research and infectious disease research into a new era, the "genomic era". Currently, the developed world is introducing NGS in a number of applications, including clinical diagnostics, epidemiology, and microbiology. In developing countries NGS is being progressively introduced. Technologies currently available allow to sequence the whole genome of bacterial and viral strains for an approximate cost of $100 USD, which is highly cost savings compared to old-technologies for genome sequencing. Here we review recent publication of whole genome sequencing used for, (i) tracking of foodborne outbreaks, with emphasis in Salmonella and Listeria monocytogenes, (ii) building genomic databases for Governments, (iii) investigating nosocomial infections, and (iv) clinical diagnosis. The genomic era is here to stay and researchers should use these "massive databases" generated by this technology to decrease infectious diseases and thus improve health of humans and animals. PMID:26633116

  10. BrucellaBase: Genome information resource.

    Science.gov (United States)

    Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Khader, L K M Abdul; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2016-09-01

    Brucella sp. causes a major zoonotic disease, brucellosis. Brucella belongs to the family Brucellaceae under the order Rhizobiales of Alphaproteobacteria. We present BrucellaBase, a web-based platform, providing features of a genome database together with unique analysis tools. We have developed a web version of the multilocus sequence typing (MLST) (Whatmore et al., 2007) and phylogenetic analysis of Brucella spp. BrucellaBase currently contains genome data of 510 Brucella strains along with the user interfaces for BLAST, VFDB, CARD, pairwise genome alignment and MLST typing. Availability of these tools will enable the researchers interested in Brucella to get meaningful information from Brucella genome sequences. BrucellaBase will regularly be updated with new genome sequences, new features along with improvements in genome annotations. BrucellaBase is available online at http://www.dbtbrucellosis.in/brucellabase.html or http://59.99.226.203/brucellabase/homepage.html. PMID:27164438

  11. Integration of genomics in cancer care

    DEFF Research Database (Denmark)

    Santos, Erika Maria Monteiro; Edwards, Quannetta T; Floria-Santos, Milena;

    2013-01-01

    PURPOSE: The article aims to introduce nurses to how genetics-genomics is currently integrated into cancer care from prevention to treatment and influencing oncology nursing practice. ORGANIZING CONSTRUCT: An overview of genetics-genomics is described as it relates to cancer etiology, hereditary...... cancer syndromes, epigenetics factors, and management of care considerations. METHODS: Peer-reviewed literature and expert professional guidelines were reviewed to address concepts of genetics-genomics in cancer care. FINDINGS: Cancer is now known to be heterogeneous at the molecular level, with genetic......: Rapidly developing advances in genetics-genomics are changing all aspects of cancer care, with implications for nursing practice. CLINICAL RELEVANCE: Nurses can educate cancer patients and their families about genetic-genomic advances and advocate for use of evidence-based genetic-genomic practice...

  12. The UCSC Genome Browser Database: update 2006

    DEFF Research Database (Denmark)

    Hinrichs, A S; Karolchik, D; Baertsch, R;

    2006-01-01

    The University of California Santa Cruz Genome Browser Database (GBD) contains sequence and annotation data for the genomes of about a dozen vertebrate species and several major model organisms. Genome annotations typically include assembly data, sequence composition, genes and gene predictions, m......RNA and expressed sequence tag evidence, comparative genomics, regulation, expression and variation data. The database is optimized to support fast interactive performance with web tools that provide powerful visualization and querying capabilities for mining the data. The Genome Browser displays a wide variety...... of annotations at all scales from single nucleotide level up to a full chromosome. The Table Browser provides direct access to the database tables and sequence data, enabling complex queries on genome-wide datasets. The Proteome Browser graphically displays protein properties. The Gene Sorter allows filtering...

  13. Patient Privacy in the Genomic Era

    OpenAIRE

    Raisaro, Jean Louis; Ayday, Erman; Hubaux, Jean-Pierre

    2014-01-01

    According to many scientists and clinicians, genomics is taking on a key role in the field of medicine. Impressive advances in genome sequencing have opened the way to a variety of revolutionary applications in modern healthcare. In particular, the increasing understanding of the human genome, and of its relation to diseases and response to treatments brings promise of improvements in better preventive and personalized medicine. However, this progress raises important privacy and ethical conc...

  14. Genomic Adaptation of the Lactobacillus casei Group

    OpenAIRE

    Toh, Hidehiro; Oshima, Kenshiro; Nakano, Akiyo; Takahata, Muneaki; Murakami, Masaru; Takaki, Takashi; Nishiyama, Hidetoshi; Igimi, Shizunobu; Hattori, Masahira; Morita, Hidetoshi

    2013-01-01

    Lactobacillus casei, L. paracasei, and L. rhamnosus form a closely related taxonomic group (Lactobacillus casei group) within the facultatively heterofermentative lactobacilli. Here, we report the complete genome sequences of L. paracasei JCM 8130 and L. casei ATCC 393, and the draft genome sequence of L. paracasei COM0101, all of which were isolated from daily products. Furthermore, we re-annotated the genome of L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG), which we have previousl...

  15. Population Genomics and the Bacterial Species Concept

    OpenAIRE

    Riley, Margaret A.; Lizotte-Waniewski, Michelle

    2009-01-01

    In recent years, the importance of horizontal gene transfer (HGT) in bacterial evolution has been elevated to such a degree that many bacteriologists now question the very existence of bacterial species. If gene transfer is as rampant as comparative genomic studies have suggested, how could bacterial species survive such genomic fluidity? And yet, most bacteriologists recognize, and name, as species, clusters of bacterial isolates that share complex phenotypic properties. The Core Genome Hypo...

  16. Accurate and comprehensive sequencing of personal genomes

    OpenAIRE

    Ajay, Subramanian S.; Parker, Stephen C.J.; Ozel Abaan, Hatice; Fuentes Fajardo, Karin V.; Margulies, Elliott H.

    2011-01-01

    As whole-genome sequencing becomes commoditized and we begin to sequence and analyze personal genomes for clinical and diagnostic purposes, it is necessary to understand what constitutes a complete sequencing experiment for determining genotypes and detecting single-nucleotide variants. Here, we show that the current recommendation of ∼30× coverage is not adequate to produce genotype calls across a large fraction of the genome with acceptably low error rates. Our results are based on analyses...

  17. The Saccharomyces Genome Database Variant Viewer

    OpenAIRE

    Sheppard, Travis K.; Gabdank, Idan; Engel, Stacia R.; Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C.; Dalusag, Kyla S.; Demeter, Janos; Hellerstedt, Sage T.; Karra, Kalpana; Nash, Robert S.; Paskov, Kelley M.; Skrzypek, Marek S.; Weng, Shuai

    2015-01-01

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source...

  18. Single cell genomics: advances and future perspectives.

    OpenAIRE

    Macaulay, Iain C.; Thierry Voet

    2014-01-01

    Advances in whole-genome and whole-transcriptome amplification have permitted the sequencing of the minute amounts of DNA and RNA present in a single cell, offering a window into the extent and nature of genomic and transcriptomic heterogeneity which occurs in both normal development and disease. Single-cell approaches stand poised to revolutionise our capacity to understand the scale of genomic, epigenomic, and transcriptomic diversity that occurs during the lifetime of an individual organis...

  19. Improving gene annotation of complete viral genomes

    OpenAIRE

    Mills, Ryan; Rozanov, Michael; Lomsadze, Alexandre; Tatusova, Tatiana; Borodovsky, Mark

    2003-01-01

    Gene annotation in viruses often relies upon similarity search methods. These methods possess high specificity but some genes may be missed, either those unique to a particular genome or those highly divergent from known homologs. To identify potentially missing viral genes we have analyzed all complete viral genomes currently available in GenBank with a specialized and augmented version of the gene finding program GeneMarkS. In particular, by implementing genome-specific self-training protoc...

  20. Genome-based peptide fingerprint scanning

    OpenAIRE

    Giddings, Michael C.; Shah, Atul A.; Gesteland, Ray; Moore, Barry

    2002-01-01

    We have implemented a method that identifies the genomic origins of sample proteins by scanning their peptide-mass fingerprint against the theoretical translation and proteolytic digest of an entire genome. Unlike previously reported techniques, this method requires no predefined ORF or protein annotations. Fixed-size windows along the genome sequence are scored by an equation accounting for the number of matching peptides, the number of missed enzymatic cleavages in each peptide, the number ...

  1. Population genomics of domestic and wild yeasts

    OpenAIRE

    Liti, Gianni; Carter, David M.; Moses, Alan M.; Warringer, Jonas; Parts, Leopold; James, Stephen A.; Davey, Robert P.; Roberts, Ian N.; Burt, Austin; Koufopanou, Vassiliki; Tsai, Isheng J.; Bergman, Casey M.; Bensasson, Douda; O'Kelly, Michael J.T.; van Oudenaarden, Alexander

    2009-01-01

    Since the completion of the genome sequence of Saccharomyces cerevisiae in 19961,2, there has been an exponential increase in complete genome sequences accompanied by great advances in our understanding of genome evolution. Although little is known about the natural and life histories of yeasts in the wild, there are an increasing number of studies looking at ecological and geographic distributions3,4, population structure5-8, and sexual versus asexual reproduction9,10. Less well understood a...

  2. Structural flexibility in the Burkholderia mallei genome

    OpenAIRE

    Nierman, William C.; DeShazer, David; Kim, H Stanley; Tettelin, Herve; Karen E Nelson; Feldblyum, Tamara; Ulrich, Ricky L.; Ronning, Catherine M.; Brinkac, Lauren M; Daugherty, Sean C.; Davidsen, Tanja D.; DeBoy, Robert T.; Dimitrov, George; Robert J Dodson; Durkin, A. Scott

    2004-01-01

    The complete genome sequence of Burkholderia mallei ATCC 23344 provides insight into this highly infectious bacterium's pathogenicity and evolutionary history. B. mallei, the etiologic agent of glanders, has come under renewed scientific investigation as a result of recent concerns about its past and potential future use as a biological weapon. Genome analysis identified a number of putative virulence factors whose function was supported by comparative genome hybridization and expression prof...

  3. Genomic characterization of the Taylorella genus

    OpenAIRE

    Hebert, Laurent; Moumen, Bouziane; Pons, Nicolas; Duquesne, Fabien; Breuil, Marie-France; Goux, Didier; Batto, Jean-Michel; Laugier, Claire; Renault, Pierre; Petry, Sandrine

    2012-01-01

    The Taylorella genus comprises two species: Taylorella equigenitalis, which causes contagious equine metritis, and Taylorella asinigenitalis, a closely-related species mainly found in donkeys. We herein report on the first genome sequence of T. asinigenitalis, analyzing and comparing it with the recently-sequenced T. equigenitalis genome. The T. asinigenitalis genome contains a single circular chromosome of 1,638,559 bp with a 38.3% GC content and 1,534 coding sequences (CDS). While 212 CDSs ...

  4. Automated correction of genome sequence errors

    OpenAIRE

    Gajer, Pawel; Schatz, Michael; Salzberg, Steven L

    2004-01-01

    By using information from an assembly of a genome, a new program called AutoEditor significantly improves base calling accuracy over that achieved by previous algorithms. This in turn improves the overall accuracy of genome sequences and facilitates the use of these sequences for polymorphism discovery. We describe the algorithm and its application in a large set of recent genome sequencing projects. The number of erroneous base calls in these projects was reduced by 80%. In an analysis of ov...

  5. BGD: A Database of Bat Genomes

    OpenAIRE

    Jianfei Fang; Xuan Wang; Shuo Mu; Shuyi Zhang; Dong Dong

    2015-01-01

    Bats account for ~20% of mammalian species, and are the only mammals with true powered flight. For the sake of their specialized phenotypic traits, many researches have been devoted to examine the evolution of bats. Until now, some whole genome sequences of bats have been assembled and annotated, however, a uniform resource for the annotated bat genomes is still unavailable. To make the extensive data associated with the bat genomes accessible to the general biological communities, we establi...

  6. Simple sequence repeats in mycobacterial genomes

    Indian Academy of Sciences (India)

    Vattipally B Sreenu; Pankaj Kumar; Javaregowda Nagaraju; Hampapathalu A Nagarajaram

    2007-01-01

    Simple sequence repeats (SSRs) or microsatellites are the repetitive nucleotide sequences of motifs of length 1–6 bp. They are scattered throughout the genomes of all the known organisms ranging from viruses to eukaryotes. Microsatellites undergo mutations in the form of insertions and deletions (INDELS) of their repeat units with some bias towards insertions that lead to microsatellite tract expansion. Although prokaryotic genomes derive some plasticity due to microsatellite mutations they have in-built mechanisms to arrest undue expansions of microsatellites and one such mechanism is constituted by post-replicative DNA repair enzymes MutL, MutH and MutS. The mycobacterial genomes lack these enzymes and as a null hypothesis one could expect these genomes to harbour many long tracts. It is therefore interesting to analyse the mycobacterial genomes for distribution and abundance of microsatellites tracts and to look for potentially polymorphic microsatellites. Available mycobacterial genomes, Mycobacterium avium, M. leprae, M. bovis and the two strains of M. tuberculosis (CDC1551 and H37Rv) were analysed for frequencies and abundance of SSRs. Our analysis revealed that the SSRs are distributed throughout the mycobacterial genomes at an average of 220–230 SSR tracts per kb. All the mycobacterial genomes contain few regions that are conspicuously denser or poorer in microsatellites compared to their expected genome averages. The genomes distinctly show scarcity of long microsatellites despite the absence of a post-replicative DNA repair system. Such severe scarcity of long microsatellites could arise as a result of strong selection pressures operating against long and unstable sequences although influence of GC-content and role of point mutations in arresting microsatellite expansions can not be ruled out. Nonetheless, the long tracts occasionally found in coding as well as non-coding regions may account for limited genome plasticity in these genomes.

  7. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects.

    Science.gov (United States)

    Papanicolaou, Alexie

    2016-01-01

    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called "genome projects". The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure. PMID:27006757

  8. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Henrik; Cantor, Michael; Dushekyo, Serge; Hua, Susan; Poliakov, Alexander; Shabalov, Igor; Smirnova, Tatyana; Grigoriev, Igor V.; Dubchak, Inna

    2013-10-10

    The U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a national user facility, serves the diverse scientific community by providing integrated high-throughput sequencing and computational analysis to enable system-based scientific approaches in support of DOE missions related to clean energy generation and environmental characterization. The JGI Genome Portal (http://genome.jgi.doe.gov) provides unified access to all JGI genomic databases and analytical tools. The JGI maintains extensive data management systems and specialized analytical capabilities to manage and interpret complex genomic data. A user can search, download and explore multiple data sets available for all DOE JGI sequencing projects including their status, assemblies and annotations of sequenced genomes. Here we describe major updates of the Genome Portal in the past 2 years with a specific emphasis on efficient handling of the rapidly growing amount of diverse genomic data accumulated in JGI.

  9. Genomic Biomarkers for Breast Cancer Risk.

    Science.gov (United States)

    Walsh, Michael F; Nathanson, Katherine L; Couch, Fergus J; Offit, Kenneth

    2016-01-01

    Clinical risk assessment for cancer predisposition includes a three-generation pedigree and physical examination to identify inherited syndromes. Additionally genetic and genomic biomarkers may identify individuals with a constitutional basis for their disease that may not be evident clinically. Genomic biomarker testing may detect molecular variations in single genes, panels of genes, or entire genomes. The strength of evidence for the association of a genomic biomarker with disease risk may be weak or strong. The factors contributing to clinical validity and utility of genomic biomarkers include functional laboratory analyses and genetic epidemiologic evidence. Genomic biomarkers may be further classified as low, moderate or highly penetrant based on the likelihood of disease. Genomic biomarkers for breast cancer are comprised of rare highly penetrant mutations of genes such as BRCA1 or BRCA2, moderately penetrant mutations of genes such as CHEK2, as well as more common genomic variants, including single nucleotide polymorphisms, associated with modest effect sizes. When applied in the context of appropriate counseling and interpretation, identification of genomic biomarkers of inherited risk for breast cancer may decrease morbidity and mortality, allow for definitive prevention through assisted reproduction, and serve as a guide to targeted therapy . PMID:26987529

  10. Whole genome analysis of a Vietnamese trio

    Indian Academy of Sciences (India)

    Dang Thanh Hai; Nguyen Dai Thanh; Pham Thi Minh Trang; Le Si Quang; Phan Thi Thu Hang; Dang Cao Cuong; Hoang Kim Phuc; Nguyen Huu Duc; Do Duc Dong; Bui Quang Minh; Pham Bao Son; Le Sy Vinh

    2015-03-01

    We here present the first whole genome analysis of an anonymous Kinh Vietnamese (KHV) trio whose genomes were deeply sequenced to 30-fold average coverage. The resulting short reads covered 99.91% of the human reference genome (GRCh37d5). We identified 4,719,412 SNPs and 827,385 short indels that satisfied the Mendelian inheritance law. Among them, 109,914 (2.3%) SNPs and 59,119 (7.1%) short indels were novel. We also detected 30,171 structural variants of which 27,604 (91.5%) were large indels. There were 6,681 large indels in the range 0.1–100 kbp occurring in the child genome that were also confirmed in either the father or mother genome.We compared these large indels against the DGV database and found that 1,499 (22.44%) were KHV specific. De novo assembly of high-quality unmapped reads yielded 789 contigs with the length ≥ 300 bp. There were 235 contigs from the child genome of which 199 (84.7%) were significantly matched with at least one contig from the father or mother genome. Blasting these 199 contigs against other alternative human genomes revealed 4 novel contigs. The novel variants identified from our study demonstrated the necessity of conducting more genome-wide studies not only for Kinh but also for other ethnic groups in Vietnam.

  11. Minimal model for genome evolution and growth

    CERN Document Server

    Hsieh, L C; Ji, F M; Lee, H C

    2002-01-01

    Textual analysis of typical microbial genomes reveals that they have the statistical characteristics of a DNA sequence of a much shorter length. This peculiar property supports an evolutionary model in which a genome evolves by random mutation but primarily grows by random segmental self-copying. That genomes grew mostly by self-copying is consistent with the observation that repeat sequences in all genomes are widespread and intragenomic and intergenomic homologous genes are preponderance across all life forms. The model predicates the coexistence of the two competing modes of evolution: the gradual changes of classical Darwinism and the stochastic spurts envisioned in ``punctuated equilibrium''.

  12. Recent Developments of Genomic Research in Soybean

    Institute of Scientific and Technical Information of China (English)

    Ching Chan; Xinpeng Qi; Man-Wah Li; Fuk-Ling Wong; Hon-Ming Lam

    2012-01-01

    Soybean is an important cash crop with unique and important traits such as the high seed protein and oil contents,and the ability to perform symbiotic nitrogen fixation.A reference genome of cultivated soybeans was established in 2010,followed by whole-genome re-sequencing of wild and cultivated soybean accessions.These efforts revealed unique features of the soybean genome and helped to understand its evolution.Mapping of variations between wild and cultivated soybean genomes were performed.These genomic variations may be related to the process of domestication and human selection.Wild soybean germplasms exhibited high genomic diversity and hence may be an important source of novel genes/alleles.Accumulation of genomic data will help to refine genetic maps and expedite the identification of functional genes.In this review,we summarize the major findings from the whole-genome sequencing projects and discuss the possible impacts on soybean researches and breeding programs.Some emerging areas such as transcriptomic and epigenomic studies will be introduced.In addition,we also tabulated some useful bioinformatics tools that will help the mining of the soybean genomic data.

  13. Structural and functional analysis of rice genome

    Indian Academy of Sciences (India)

    Akhilesh K. Tyagi; Jitendra P. Khurana; Paramjit Khurana; Saurabh Raghuvanshi; Anupama Gaur; Anita Kapur; Vikrant Gupta; Dibyendu Kumar; V. Ravi; Shubha Vij; Parul Khurana; Sulabha Sharma

    2004-04-01

    Rice is an excellent system for plant genomics as it represents a modest size genome of 430 Mb. It feeds more than half the population of the world. Draft sequences of the rice genome, derived by whole-genome shotgun approach at relatively low coverage (4–6 X), were published and the International Rice Genome Sequencing Project (IRGSP) declared high quality (>10 X), genetically anchored, phase 2 level sequence in 2002. In addition, phase 3 level finished sequence of chromosomes 1, 4 and 10 (out of 12 chromosomes of rice) has already been reported by scientists from IRGSP consortium. Various estimates of genes in rice place the number at > 50,000. Already, over 28,000 full-length cDNAs have been sequenced, most of which map to genetically anchored genome sequence. Such information is very useful in revealing novel features of macro- and micro-level synteny of rice genome with other cereals. Microarray analysis is unraveling the identity of rice genes expressing in temporal and spatial manner and should help target candidate genes useful for improving traits of agronomic importance. Simultaneously, functional analysis of rice genome has been initiated by marker-based characterization of useful genes and employing functional knock-outs created by mutation or gene tagging. Integration of this enormous information is expected to catalyze tremendous activity on basic and applied aspects of rice genomics.

  14. Scaffolder - software for manual genome scaffolding

    Directory of Open Access Journals (Sweden)

    Barton Michael D

    2012-05-01

    Full Text Available Abstract Background The assembly of next-generation short-read sequencing data can result in a fragmented non-contiguous set of genomic sequences. Therefore a common step in a genome project is to join neighbouring sequence regions together and fill gaps. This scaffolding step is non-trivial and requires manually editing large blocks of nucleotide sequence. Joining these sequences together also hides the source of each region in the final genome sequence. Taken together these considerations may make reproducing or editing an existing genome scaffold difficult. Methods The software outlined here, “Scaffolder,” is implemented in the Ruby programming language and can be installed via the RubyGems software management system. Genome scaffolds are defined using YAML - a data format which is both human and machine-readable. Command line binaries and extensive documentation are available. Results This software allows a genome build to be defined in terms of the constituent sequences using a relatively simple syntax. This syntax further allows unknown regions to be specified and additional sequence to be used to fill known gaps in the scaffold. Defining the genome construction in a file makes the scaffolding process reproducible and easier to edit compared with large FASTA nucleotide sequences. Conclusions Scaffolder is easy-to-use genome scaffolding software which promotes reproducibility and continuous development in a genome project. Scaffolder can be found at http://next.gs.

  15. Bioinformatics Approach in Plant Genomic Research.

    Science.gov (United States)

    Ong, Quang; Nguyen, Phuc; Thao, Nguyen Phuong; Le, Ly

    2016-08-01

    The advance in genomics technology leads to the dramatic change in plant biology research. Plant biologists now easily access to enormous genomic data to deeply study plant high-density genetic variation at molecular level. Therefore, fully understanding and well manipulating bioinformatics tools to manage and analyze these data are essential in current plant genome research. Many plant genome databases have been established and continued expanding recently. Meanwhile, analytical methods based on bioinformatics are also well developed in many aspects of plant genomic research including comparative genomic analysis, phylogenomics and evolutionary analysis, and genome-wide association study. However, constantly upgrading in computational infrastructures, such as high capacity data storage and high performing analysis software, is the real challenge for plant genome research. This review paper focuses on challenges and opportunities which knowledge and skills in bioinformatics can bring to plant scientists in present plant genomics era as well as future aspects in critical need for effective tools to facilitate the translation of knowledge from new sequencing data to enhancement of plant productivity. PMID:27499685

  16. The UCSC Genome Browser database: 2015 update.

    Science.gov (United States)

    Rosenbloom, Kate R; Armstrong, Joel; Barber, Galt P; Casper, Jonathan; Clawson, Hiram; Diekhans, Mark; Dreszer, Timothy R; Fujita, Pauline A; Guruvadoo, Luvina; Haeussler, Maximilian; Harte, Rachel A; Heitner, Steve; Hickey, Glenn; Hinrichs, Angie S; Hubley, Robert; Karolchik, Donna; Learned, Katrina; Lee, Brian T; Li, Chin H; Miga, Karen H; Nguyen, Ngan; Paten, Benedict; Raney, Brian J; Smit, Arian F A; Speir, Matthew L; Zweig, Ann S; Haussler, David; Kuhn, Robert M; Kent, W James

    2015-01-01

    Launched in 2001 to showcase the draft human genome assembly, the UCSC Genome Browser database (http://genome.ucsc.edu) and associated tools continue to grow, providing a comprehensive resource of genome assemblies and annotations to scientists and students worldwide. Highlights of the past year include the release of a browser for the first new human genome reference assembly in 4 years in December 2013 (GRCh38, UCSC hg38), a watershed comparative genomics annotation (100-species multiple alignment and conservation) and a novel distribution mechanism for the browser (GBiB: Genome Browser in a Box). We created browsers for new species (Chinese hamster, elephant shark, minke whale), 'mined the web' for DNA sequences and expanded the browser display with stacked color graphs and region highlighting. As our user community increasingly adopts the UCSC track hub and assembly hub representations for sharing large-scale genomic annotation data sets and genome sequencing projects, our menu of public data hubs has tripled. PMID:25428374

  17. The repetitive component of the sunflower genome

    Directory of Open Access Journals (Sweden)

    T. Giordani

    2014-08-01

    Full Text Available The sunflower (Helianthus annuus and species belonging to the genus Helianthus are emerging as a model species and genus for a number of studies on genome evolution. In this review, we report on the repetitive component of the H. annuus genome at the biochemical, molecular, cytological, and genomic levels. Recent work on sunflower genome composition is described, with emphasis on different types of repeat sequences, especially LTR-retrotransposons, of which we report on isolation, characterisation, cytological localisation, transcription, dynamics of proliferation, and comparative analyses within the genus Helianthus.

  18. Genome sequence and analysis of Lactobacillus helveticus

    Directory of Open Access Journals (Sweden)

    PaolaCremonesi

    2013-01-01

    Full Text Available The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of L. helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract. As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones.

  19. Coronavirus Genomics and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Kwok-Yung Yuen

    2010-08-01

    Full Text Available The drastic increase in the number of coronaviruses discovered and coronavirus genomes being sequenced have given us an unprecedented opportunity to perform genomics and bioinformatics analysis on this family of viruses. Coronaviruses possess the largest genomes (26.4 to 31.7 kb among all known RNA viruses, with G + C contents varying from 32% to 43%. Variable numbers of small ORFs are present between the various conserved genes (ORF1ab, spike, envelope, membrane and nucleocapsid and downstream to nucleocapsid gene in different coronavirus lineages. Phylogenetically, three genera, Alphacoronavirus, Betacoronavirus and Gammacoronavirus, with Betacoronavirus consisting of subgroups A, B, C and D, exist. A fourth genus, Deltacoronavirus, which includes bulbul coronavirus HKU11, thrush coronavirus HKU12 and munia coronavirus HKU13, is emerging. Molecular clock analysis using various gene loci revealed that the time of most recent common ancestor of human/civet SARS related coronavirus to be 1999-2002, with estimated substitution rate of 4´10-4 to 2´10-2 substitutions per site per year. Recombination in coronaviruses was most notable between different strains of murine hepatitis virus (MHV, between different strains of infectious bronchitis virus, between MHV and bovine coronavirus, between feline coronavirus (FCoV type I and canine coronavirus generating FCoV type II, and between the three genotypes of human coronavirus HKU1 (HCoV-HKU1. Codon usage bias in coronaviruses were observed, with HCoV-HKU1 showing the most extreme bias, and cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape such codon usage bias in coronaviruses.

  20. Genetics and Genomics of PBC

    Science.gov (United States)

    Juran, Brian D.; Lazaridis, Konstantinos N.

    2009-01-01

    The etiological and pathogenic factors contributing to PBC development, progression, response to treatment, and ultimately, outcome remain a mystery. This lack of knowledge can be attributed to the complexity of PBC, wherein a number of environmental triggers may be culpable, but require coexisting genetic susceptibility to exert their effect. Recognition of the genomic regions harboring these heritable risk factors has been hindered by the rarity and late onset of PBC, which has rendered the collection of adequate numbers of patients and family members for genetic analyses a difficult task. Recent advancements in the discipline of genomics holds promise to fundamentally change our understanding, prevention, and therapy of PBC. This chance arises from the development of new high-throughput approaches to genotyping, providing the means to rapidly uncover many of the genetic polymorphisms that are relevant to disease. In order to move ahead, large registries and biospecimen repositories of patients with PBC, their family members, and well-matched controls need to be established, maintained, and continually expanded. At the same time, sizeable, comprehensive haplotype mapping based association studies of functionally plausible candidate gene groups (e.g. immune function genes) as well as more far reaching genome-wide association studies will be necessary to form the basis upon which the genetic predisposition to PBC can be defined. This first set of experimental data will provide the means for future fine mapping studies, re-sequencing efforts, functional experimentation, and elucidation of gene-environment and gene-gene interaction; perhaps paving new paths in PBC research. PMID:18456185

  1. The Mouse Genome Database (MGD): expanding genetic and genomic resources for the laboratory mouse

    OpenAIRE

    Blake, Judith A.; Eppig, Janan T.; Richardson, Joel E.; Davisson, Muriel T.; the Mouse Genome Database Group,

    2000-01-01

    The Mouse Genome Database (MGD) is a comprehensive public database of mouse genomic, genetic and phenotypic information (http://www.informatics.jax.org ). This community database provides information about genes, serves as a mapping resource of the mouse genome, details mammalian orthologs, integrates experimental data, represents standardized mouse nomenclature for genes and alleles, incorporates links to other genomic resources such as sequence data, and includes a variety of additional inf...

  2. Tolerance whole of genome doubling propagates chromosomal instability and accelerates cancer genome evolution

    OpenAIRE

    Dewhurst, Sally M; McGranahan, Nicholas; Burrell, Rebecca A.; Rowan, Andrew J.; Grönroos, Eva; Endesfelder, David; Joshi, Tejal; Mouradov, Dmitri; Gibbs, Peter; Ward, Robyn L.; Hawkins, Nicholas J.; Szallasi, Zoltan; Sieber, Oliver M.; Swanton, Charles

    2014-01-01

    The contribution of whole genome doubling to chromosomal instability (CIN) and tumour evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells that survive genome doubling demonstrate increased tolerance to chromosome aberrations. Tetraploid cells do not exhibit increased frequencies of structural or numerical CIN per chromosome. However, t...

  3. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae

    OpenAIRE

    Tettelin, Hervé; Masignani, Vega; Cieslewicz, Michael J.; Eisen, Jonathan A.; Peterson, Scott; Wessels, Michael R.; Paulsen, Ian T.; Nelson, Karen E.; Margarit, Immaculada; Read, Timothy D.; Madoff, Lawrence C.; Wolf, Alex M.; Beanan, Maureen J; Brinkac, Lauren M.; Sean C Daugherty

    2002-01-01

    The 2,160,267 bp genome sequence of Streptococcus agalactiae, the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe, is predicted to encode 2,175 genes. Genome comparisons among S. agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and the other completely sequenced genomes identified genes specific to the streptococci and to S. agalactiae. These in silico analyses, combined with comparative genome hybridization experiments between the ...

  4. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes.

    Directory of Open Access Journals (Sweden)

    Estienne C Swart

    Full Text Available The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5% of its precursor "silent" germline micronuclear genome by a process of "unscrambling" and fragmentation. The tiny macronuclear "nanochromosomes" typically encode single, protein-coding genes (a small portion, 10%, encode 2-8 genes, have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size that vary from 469 bp to 66 kb long (mean ∼3.2 kb and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%, suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing

  5. The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics

    OpenAIRE

    Blake, J. A.; Bult, C. J.; J.A. Kadin; J.E. Richardson; Eppig, J T

    2010-01-01

    The Mouse Genome Database (MGD) is the community model organism database for the laboratory mouse and the authoritative source for phenotype and functional annotations of mouse genes. MGD includes a complete catalog of mouse genes and genome features with integrated access to genetic, genomic and phenotypic information, all serving to further the use of the mouse as a model system for studying human biology and disease. MGD is a major component of the Mouse Genome Informatics (MGI, http://www...

  6. Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis

    OpenAIRE

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D'Souza, Mark; Larsen, Niels; Pusch, Gordon; Liolios, Konstantinos; Grechkin, Yuri

    2005-01-01

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-...

  7. Potential contribution of genomics and biotechnology in animal production

    Science.gov (United States)

    The overall objective of the book chapter is to define the potential contribution of genomics in livestock production in Latin American countries. A brief description on what is genomics, genome-wide association studies (GWAS), and genomic selection (GS) is provided. Genomics has been rapidly adopte...

  8. De novo assembly of the carrot mitochondrial genome

    Science.gov (United States)

    Organelle genome sequence data are a valuable tool to study phylogenetic relationships and genome evolution. Low coverage whole genome shot gun sequencing provides good coverage of organelle genomes making genome-sequencing projects possible for any plant species. Despite its power, features of mito...

  9. Accessing complexity from genome information

    Science.gov (United States)

    Tenreiro Machado, J. A.

    2012-06-01

    This paper studies the information content of the chromosomes of 24 species. In a first phase, a scheme inspired in dynamical system state space representation is developed. For each chromosome the state space dynamical evolution is shed into a two dimensional chart. The plots are then analyzed and characterized in the perspective of fractal dimension. This information is integrated in two measures of the species' complexity addressing its average and variability. The results are in close accordance with phylogenetics pointing quantitative aspects of the species' genomic complexity.

  10. The Tarenaya hassleriana Genome Provides Insight into Reproductive Trait and Genome Evolution of Crucifers

    NARCIS (Netherlands)

    Cheng, S.; Bergh, van den E.; Zeng, P.; Zong, X.; Hofberger, J.; Bruijn, de S.A.; Bhide, A.S.; Kuelahoglu, C.; Bian, C.; Chen, J.; Fan, G.; Kaufmann, K.; Hall, J.C.; Becker, A.; Brautigam, A.; Weber, A.P.M.; Shi, C.; Zheng, Z.; Li, W.; Lv, M.; Tao, Y.; Wang, M.; Zou, H.; Quan, Z.; Hibberd, J.M.; Zhang, G.; Zhu, X.; Schranz, M.E.

    2013-01-01

    The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is e

  11. Tolerance of Whole-Genome Doubling Propagates Chromosomal Instability and Accelerates Cancer Genome Evolution

    DEFF Research Database (Denmark)

    Dewhurst, Sally M.; McGranahan, Nicholas; Burrell, Rebecca A.; Rowan, Andrew J.; Grönroos, Eva; Endesfelder, David; Joshi, Tejal; Mouradov, Dmitri; Gibbs, Peter; Ward, Robyn L.; Hawkins, Nicholas J.; Szallasi, Zoltan Imre; Sieber, Oliver M.; Swanton, Charles

    2014-01-01

    The contribution of whole-genome doubling to chromosomal instability (CIN) and tumor evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells ...

  12. Analysis of the allohexaploid bread wheat genome (Triticum aestivum) using comparative whole genome shotgun sequencing

    Science.gov (United States)

    The large 17 Gb allopolyploid genome of bread wheat is a major challenge for genome analysis because it is composed of three closely- related and independently maintained genomes, with genes dispersed as small “islands” separated by vast tracts of repetitive DNA. We used a novel comparative genomi...

  13. Rhipicephalus (Boophilus) microplus strain Deutsch, whole genome shotgun sequencing project first submission of genome sequence

    Science.gov (United States)

    The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...

  14. Spaces of genomics : exploring the innovation journey of genomics in research on common disease

    NARCIS (Netherlands)

    Bitsch, L.

    2013-01-01

    Genomics was introduced with big promises and expectations of its future contribution to our society. Medical genomics was introduced as that which would lay the foundation for a revolution in our management of common diseases. Genomics would lead the way towards a future of personalised medicine. D

  15. Whole genome comparative studies between chicken and turkey and their implications for avian genome evolution

    NARCIS (Netherlands)

    Griffin, D.K.; Robertson, L.B.; Tempest, H.G.; Vignal, A.; Fillon, V.; Crooijmans, R.P.M.A.; Groenen, M.A.M.; Deryusheva, S.; Gaginskaya, E.; Carre, W.; Waddington, D.; Talbot, R.; Völker, M.; Masabanda, J.S.; Burt, D.W.

    2008-01-01

    Background Comparative genomics is a powerful means of establishing inter-specific relationships between gene function/location and allows insight into genomic rearrangements, conservation and evolutionary phylogeny. The availability of the complete sequence of the chicken genome has initiated the d

  16. Genomics on a phylogeny: Evolution of genes and genomes in the genus Drosophila

    Science.gov (United States)

    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of inferences in evolutionary genomics. The genomes of 12 Drosophila species, nine of which are presented here for the first time (sechellia, yakuba, erecta, ananassae, persimili...

  17. Observing copepods through a genomic lens

    Directory of Open Access Journals (Sweden)

    Johnson Stewart C

    2011-09-01

    Full Text Available Abstract Background Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to

  18. Genomic analysis of Fusarium verticillioides.

    Science.gov (United States)

    Brown, D W; Butchko, R A E; Proctor, R H

    2008-09-01

    Fusarium verticillioides (teleomorph Gibberella moniliformis) can be either an endophyte of maize, causing no visible disease, or a pathogen-causing disease of ears, stalks, roots and seedlings. At any stage, this fungus can synthesize fumonisins, a family of mycotoxins structurally similar to the sphingolipid sphinganine. Ingestion of fumonisin-contaminated maize has been associated with a number of animal diseases, including cancer in rodents, and exposure has been correlated with human oesophageal cancer in some regions of the world, and some evidence suggests that fumonisins are a risk factor for neural tube defects. A primary goal of the authors' laboratory is to eliminate fumonisin contamination of maize and maize products. Understanding how and why these toxins are made and the F. verticillioides-maize disease process will allow one to develop novel strategies to limit tissue destruction (rot) and fumonisin production. To meet this goal, genomic sequence data, expressed sequence tags (ESTs) and microarrays are being used to identify F. verticillioides genes involved in the biosynthesis of toxins and plant pathogenesis. This paper describes the current status of F. verticillioides genomic resources and three approaches being used to mine microarray data from a wild-type strain cultured in liquid fumonisin production medium for 12, 24, 48, 72, 96 and 120h. Taken together, these approaches demonstrate the power of microarray technology to provide information on different biological processes. PMID:19238625

  19. Cow Adjustments for Genomic Predictions of Holstein and Jersey Bulls

    Science.gov (United States)

    Genomic evaluations are calculated by using values that have been deregressed from traditional PTAs estimating single nucleotide polymorphism (SNP) effects. Previous research indicates that including cow genomic data to calculate SNP effects does not increase reliabilities of genomic evaluations of ...

  20. Integration of new alternative reference strain genome sequences into the Saccharomyces genome database.

    Science.gov (United States)

    Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C; Dalusag, Kyla; Demeter, Janos; Engel, Stacia; Hellerstedt, Sage T; Karra, Kalpana; Hitz, Benjamin C; Nash, Robert S; Paskov, Kelley; Sheppard, Travis; Skrzypek, Marek; Weng, Shuai; Wong, Edith; Michael Cherry, J

    2016-01-01

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. To provide a wider scope of genetic and phenotypic variation in yeast, the genome sequences and their corresponding annotations from 11 alternative S. cerevisiae reference strains have been integrated into SGD. Genomic and protein sequence information for genes from these strains are now available on the Sequence and Protein tab of the corresponding Locus Summary pages. We illustrate how these genome sequences can be utilized to aid our understanding of strain-specific functional and phenotypic differences.Database URL: www.yeastgenome.org. PMID:27252399

  1. Development of genome viewer (Web Omics Viewer) for managing databases of cucumber genome

    Science.gov (United States)

    Wojcieszek, M.; RóŻ, P.; Pawełkowicz, M.; Nowak, R.; Przybecki, Z.

    Cucumber is an important plant in horticulture and science world. Sequencing projects of C. sativus genome enable new methodological aproaches in further investigation of this species. Accessibility is crucial to fully exploit obtained information about detail structure of genes, markers and other characteristic features such contigs, scaffolds and chromosomes. Genome viewer is one of tools providing plain and easy way for presenting genome data for users and for databases administration. Gbrowse - the main viewer has several very useful features but lacks in managing simplicity. Our group developed new genome browser Web Omics Viewer (WOV), keeping functionality but improving utilization and accessibility to cucumber genome data.

  2. GENOME ANALYSIS OF BURKHOLDERIA CEPACIA AC1100

    Science.gov (United States)

    Burkholderia cepacia is an important organism in bioremediation of environmental pollutants and it is also of increasing interest as a human pathogen. The genomic organization of B. cepacia is being studied in order to better understand its unusual adaptive capacity and genome pl...

  3. Comparative genomics of vertebrate Fox cluster loci

    Directory of Open Access Journals (Sweden)

    Shimeld Sebastian M

    2006-10-01

    Full Text Available Abstract Background Vertebrate genomes contain numerous duplicate genes, many of which are organised into paralagous regions indicating duplication of linked groups of genes. Comparison of genomic organisation in different lineages can often allow the evolutionary history of such regions to be traced. A classic example of this is the Hox genes, where the presence of a single continuous Hox cluster in amphioxus and four vertebrate clusters has allowed the genomic evolution of this region to be established. Fox transcription factors of the C, F, L1 and Q1 classes are also organised in clusters in both amphioxus and humans. However in contrast to the Hox genes, only two clusters of paralogous Fox genes have so far been identified in the Human genome and the organisation in other vertebrates is unknown. Results To uncover the evolutionary history of the Fox clusters, we report on the comparative genomics of these loci. We demonstrate two further paralogous regions in the Human genome, and identify orthologous regions in mammalian, chicken, frog and teleost genomes, timing the duplications to before the separation of the actinopterygian and sarcopterygian lineages. An additional Fox class, FoxS, was also found to reside in this duplicated genomic region. Conclusion Comparison of loci identifies the pattern of gene duplication, loss and cluster break up through multiple lineages, and suggests FoxS1 is a likely remnant of Fox cluster duplication.

  4. Recombinase technology for precise genome engineering

    Science.gov (United States)

    The use of recombinases for genomic engineering is no longer a new technology. In fact this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems. The random insertion of a transgene into a plant genome by traditional methods generates...

  5. Genomic tumor evolution of breast cancer.

    Science.gov (United States)

    Sato, Fumiaki; Saji, Shigehira; Toi, Masakazu

    2016-01-01

    Owing to recent technical development of comprehensive genome-wide analysis such as next generation sequencing, deep biological insights of breast cancer have been revealed. Information of genomic mutations and rearrangements in patients' tumors is indispensable to understand the mechanism in carcinogenesis, progression, metastasis, and resistance to systemic treatment of breast cancer. To date, comprehensive genomic analyses illustrate not only base substitution patterns and lists of driver mutations and key rearrangements, but also a manner of tumor evolution. Breast cancer genome is dynamically changing and evolving during cancer development course from non-invasive disease via invasive primary tumor to metastatic tumor, and during treatment exposure. The accumulation pattern of base substitution and genomic rearrangement looks gradual and punctuated, respectively, in analogy with contrasting theories for evolution manner of species, Darwin's phyletic gradualism, and Eldredge and Gould's "punctuated equilibrium". Liquid biopsy is a non-invasive method to detect the genomic evolution of breast cancer. Genomic mutation patterns in circulating tumor cells and circulating cell-free tumor DNA represent those of tumors existing in patient body. Liquid biopsy methods are now under development for future application to clinical practice of cancer treatment. In this article, latest knowledge regarding breast cancer genome, especially in terms of 'tumor evolution', is summarized. PMID:25998191

  6. lincRNAs: Genomics, Evolution, and Mechanisms

    OpenAIRE

    Ulitsky, Igor; Bartel, David P.

    2013-01-01

    Long intervening noncoding RNAs (lincRNAs) are transcribed from thousands of loci in mammalian genomes and might play widespread roles in gene regulation and other cellular processes. This Review outlines the emerging understanding of lincRNAs in vertebrate animals, with emphases on how they are being identified and current conclusions and questions regarding their genomics, evolution and mechanisms of action.

  7. Towards a reference pecan genome sequence

    Science.gov (United States)

    The cost of generating DNA sequence data has declined dramatically over the previous 15 years as a result of the Human Genome Project and the potential applications of genome sequencing for human medicine. This cost reduction has generated renewed interest among crop breeding scientists in applying...

  8. Fungal biology: compiling genomes and exploiting them

    Energy Technology Data Exchange (ETDEWEB)

    Labbe, Jessy L [ORNL; Uehling, Jessie K [ORNL; Payen, Thibaut [INRA; Plett, Jonathan [University of Western Sydney, Australia

    2014-01-01

    The last 10 years have seen the cost of sequencing complete genomes decrease at an incredible speed. This has led to an increase in the number of genomes sequenced in all the fungal tree of life as well as a wide variety of plant genomes. The increase in sequencing has permitted us to study the evolution of organisms on a genomic scale. A number of talks during the conference discussed the importance of transposable elements (TEs) that are present in almost all species of fungi. These TEs represent an especially large percentage of genomic space in fungi that interact with plants. Thierry Rouxel (INRA, Nancy, France) showed the link between speciation in the Leptosphaeria complex and the expansion of TE families. For example in the Leptosphaeria complex, one species associated with oilseed rape has experienced a recent and massive burst of movement by a few TE families. The alterations caused by these TEs took place in discrete regions of the genome leading to shuffling of the genomic landscape and the appearance of genes specific to the species, such as effectors useful for the interactions with a particular plant (Rouxel et al., 2011). Other presentations showed the importance of TEs in affecting genome organization. For example, in Amanita different species appear to have been invaded by different TE families (Veneault-Fourrey & Martin, 2011).

  9. A physical map of the bovine genome

    Science.gov (United States)

    Background Cattle are important agriculturally and relevant as a model organism. Previously described genetic and radiation hybrid (RH) maps of the bovine genome have been used to identify genomic regions and genes affecting specific traits. Application of these maps to identify influential geneti...

  10. Impact of the Toxoplasma gondii genome project

    Science.gov (United States)

    The purpose of this review is to provide some assessment of the extent to which the promise of Toxoplasma gondii genomics yet been realized. To do so, I will first describe the available genomic resources. I then provide an overview of those aspects of toxoplasmosis research that have grown most (...

  11. Genomic evaluations: Past, present, and future

    Science.gov (United States)

    The implementation of genomic evaluations for dairy cattle has caused profound changes in dairy cattle breeding. All young bulls purchased by major artificial insemination (AI) organizations are selected based on genomic evaluations. The reliability of those evaluations can reach around 75 % for yie...

  12. Pathway and network analysis of cancer genomes

    DEFF Research Database (Denmark)

    Creixell, Pau; Reimand, Jueri; Haider, Syed;

    2015-01-01

    Genomic information on tumors from 50 cancer types cataloged by the International Cancer Genome Consortium (ICGC) shows that only a few well-studied driver genes are frequently mutated, in contrast to many infrequently mutated genes that may also contribute to tumor biology. Hence there has been ...

  13. (Post-)genomics approaches in fungal research

    NARCIS (Netherlands)

    Aguilar-Pontes, María Victoria; de Vries, Ronald P; Zhou, M.; van den Brink, J.

    2014-01-01

    To date, hundreds of fungal genomes have been sequenced and many more are in progress. This wealth of genomic information has provided new directions to study fungal biodiversity. However, to further dissect and understand the complicated biological mechanisms involved in fungal life styles, functio

  14. The Apis mellifera filamentous virus genome

    Science.gov (United States)

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double strand DNA molecule of approximately 498’500 nucleotides with a GC content of 50.8%. It encompasses 251 non overlapping open reading frames (ORFs), e...

  15. The isochore patterns of invertebrate genomes

    Directory of Open Access Journals (Sweden)

    Costantini Maria

    2009-11-01

    Full Text Available Abstract Background Previous investigations from our laboratory were largely focused on the genome organization of vertebrates. We showed that these genomes are mosaics of isochores, megabase-size DNA sequences that are fairly homogeneous in base composition yet belong to a small number of families that cover a wide compositional spectrum. A question raised by these results concerned how far back in evolution an isochore organization of the eukaryotic genome arose. Results The present investigation deals with the compositional patterns of the invertebrates for which full genome sequences, or at least scaffolds, are available. We found that (i a mosaic of isochores is the long-range organization of all the genomes that we investigated; (ii the isochore families from the invertebrate genomes matched the corresponding families of vertebrates in GC levels; (iii the relative amounts of isochore families were remarkably different for different genomes, except for those from phylogenetically close species, such as the Drosophilids. Conclusion This work demonstrates not only that an isochore organization is present in all metazoan genomes analyzed that included Nematodes, Arthropods among Protostomia, Echinoderms and Chordates among Deuterostomia, but also that the isochore families of invertebrates share GC levels with the corresponding families of vertebrates.

  16. PigGIS: Pig Genomic Informatics System

    DEFF Research Database (Denmark)

    Ruan, Jue; Guo, Yiran; Li, Heng;

    2007-01-01

    Pig Genomic Information System (PigGIS) is a web-based depository of pig (Sus scrofa) genomic learning mainly engineered for biomedical research to locate pig genes from their human homologs and position single nucleotide polymorphisms (SNPs) in different pig populations. It utilizes a variety of...

  17. BGD: a database of bat genomes.

    Directory of Open Access Journals (Sweden)

    Jianfei Fang

    Full Text Available Bats account for ~20% of mammalian species, and are the only mammals with true powered flight. For the sake of their specialized phenotypic traits, many researches have been devoted to examine the evolution of bats. Until now, some whole genome sequences of bats have been assembled and annotated, however, a uniform resource for the annotated bat genomes is still unavailable. To make the extensive data associated with the bat genomes accessible to the general biological communities, we established a Bat Genome Database (BGD. BGD is an open-access, web-available portal that integrates available data of bat genomes and genes. It hosts data from six bat species, including two megabats and four microbats. Users can query the gene annotations using efficient searching engine, and it offers browsable tracks of bat genomes. Furthermore, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of genes. To the best of our knowledge, BGD is the first database of bat genomes. It will extend our understanding of the bat evolution and be advantageous to the bat sequences analysis. BGD is freely available at: http://donglab.ecnu.edu.cn/databases/BatGenome/.

  18. The Cancer Genome Atlas ovarian cancer analysis

    Science.gov (United States)

    An analysis of genomic changes in ovarian cancer has provided the most comprehensive and integrated view of cancer genes for any cancer type to date. Ovarian serous adenocarcinoma tumors from 500 patients were examined by The Cancer Genome Atlas (TCGA) Re

  19. Genome bioinformatics of tomato and potato

    NARCIS (Netherlands)

    Datema, E.

    2011-01-01

    In the past two decades genome sequencing has developed from a laborious and costly technology employed by large international consortia to a widely used, automated and affordable tool used worldwide by many individual research groups. Genome sequences of many food animals and crop plants have been

  20. Genomic Approaches in Marine Biodiversity and Aquaculture

    Directory of Open Access Journals (Sweden)

    Jorge A Huete-Pérez

    2013-01-01

    Full Text Available Recent advances in genomic and post-genomic technologies have now established the new standard in medical and biotechnological research. The introduction of next-generation sequencing, NGS,has resulted in the generation of thousands of genomes from all domains of life, including the genomes of complex uncultured microbial communities revealed through metagenomics. Although the application of genomics to marine biodiversity remains poorly developed overall, some noteworthy progress has been made in recent years. The genomes of various model marine organisms have been published and a few more are underway. In addition, the recent large-scale analysis of marine microbes, along with transcriptomic and proteomic approaches to the study of teleost fishes, mollusks and crustaceans, to mention a few, has provided a better understanding of phenotypic variability and functional genomics. The past few years have also seen advances in applications relevant to marine aquaculture and fisheries. In this review we introduce several examples of recent discoveries and progress made towards engendering genomic resources aimed at enhancing our understanding of marine biodiversity and promoting the development of aquaculture. Finally, we discuss the need for auspicious science policies to address challenges confronting smaller nations in the appropriate oversight of this growing domain as they strive to guarantee food security and conservation of their natural resources.