WorldWideScience

Sample records for citrate synthase activity

  1. Effect of hydrogen peroxide on rabbit urinary bladder citrate synthase activity in the presence and absence of a grape suspension

    Directory of Open Access Journals (Sweden)

    Vijay Venugopal

    2010-12-01

    Full Text Available PURPOSE: The etiology of obstructive bladder dysfunction includes free radical damage to mitochondria. Feeding rabbits a standardized grape suspension protects the ability of the bladder to contract and empty in part by preventing mitochondrial damage, thus maintaining smooth muscle and mucosal metabolism. The objective of the current study is to determine the direct effect of this grape suspension on the response of mitochondria to the oxidative effects of hydrogen peroxide. MATERIALS AND METHODS: Six male rabbits were anesthetized with sodium pentobarbital and the bladders excised. Four full thickness strips were obtained for contractile studies and the balance separated into smooth muscle and mucosa compartments by blunt dissection. The effect of hydrogen peroxide on the contractile response to field stimulation was quantitated. Each tissue was homogenized and the effects of increasing concentrations of hydrogen peroxide in the presence and absence of grape suspension on citrate synthase activity was determined. RESULTS: Citrate synthase activity was significantly higher in the mucosa than in the muscle. The grape suspension had no effect on control citrate synthase activity. However, the grape suspension provided significant protection of both smooth muscle and mucosal citrate synthase activity. CONCLUSIONS: These studies support the conclusion that the grape suspension provides direct protection of mitochondrial function.

  2. Exploring geometric properties of gold nanoparticles using TEM images to explain their chaperone like activity for citrate synthase

    OpenAIRE

    Kaushik, Vikas; Lahiri, Tapobrata; Singha, Shantiswaroop; Dasgupta, Anjan Kumar; Mishra, Hrishikesh; Kumar, Upendra; Kumar, Rajeev

    2011-01-01

    Study on geometric properties of nanoparticles and their relation with biomolecular activities, especially protein is quite a new field to explore. This work was carried out towards this direction where images of gold nanoparticles obtained from transmission electron microscopy were processed to extract their size and area profile at different experimental conditions including and excluding a protein, citrate synthase. Since the images were ill-posed, texture of a context-window for each pixe...

  3. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis).

    Science.gov (United States)

    Zak, Megan A; Regish, Amy M; McCormick, Stephen D; Manzon, Richard G

    2017-02-14

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19 °C) or below (8 °C) the thermal optimum (13 °C) and exposure to exogenous thyroid hormone (60 µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.

  4. Properties of peroxisomal and mitochondrial citrate synthase from Agave americana.

    Science.gov (United States)

    Segovia, J L; Zafra, M F; Alejandre, M J; García-Peregrín, E

    1982-09-01

    Adenine nucleotides were tested as effectors of peroxisomal and mitochondrial citrate synthase from Agave americana leaves in the presence of different concentrations of acetyl-CoA and oxalacetate substrates. ATP inhibited both enzyme activities but with a different inhibition profile. 1.0-7.5 mM ADP did not inhibit the peroxisomal citrate synthase in the presence of high substrate concentrations, while the mitochondrial enzyme was strongly inhibited by 1.0 mM ADP in the same conditions. Likewise, a different pattern was obtained with AMP on both peroxisomal and mitochondrial activities. The rate of citrate formation as function of acetyl-CoA and oxalacetate concentration was also studied in both fractions. Maximal velocity was highest in the peroxisomal fraction, whether acetyl-CoA or oxalacetate were the variable substrates. These differences indicate that peroxisomal and mitochondrial citrate synthases seem to be two different isoenzymes.

  5. Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Mogensen, Martin; Petersen, Ingrid;

    2005-01-01

    responded to high levels of insulin and/or palmitate. These results provide evidence for an intrinsic defect in CS activity, which may play a role in the pathogenesis of T2D. Moreover, the data suggest that insulin resistance at the CS level can be induced by exposure to high free fatty acid levels.......In myotubes established from patients with type 2 diabetes (T2D), lipid oxidation and insulin-mediated glucose oxidation are reduced, whereas in myotubes from obese non-diabetic subjects, exposure to palmitate impairs insulin-mediated glucose oxidation. To determine the underlying mechanisms...... of these metabolic malfunctions, we studied mitochondrial respiration, uncoupled respiration and oxidative enzyme activities (citrate synthase (CS), 3-hydroxy-acyl-CoA-dehydrogenase activity (HAD)) before and after acute exposure to insulin and/or palmitate in myotubes established from healthy lean and obese...

  6. Exploring geometric properties of gold nanoparticles using TEM images to explain their chaperone like activity for citrate synthase

    Science.gov (United States)

    Kaushik, Vikas; Lahiri, Tapobrata; Singha, Shantiswaroop; Dasgupta, Anjan Kumar; Mishra, Hrishikesh; Kumar, Upendra; Kumar, Rajeev

    2011-01-01

    Study on geometric properties of nanoparticles and their relation with biomolecular activities, especially protein is quite a new field to explore. This work was carried out towards this direction where images of gold nanoparticles obtained from transmission electron microscopy were processed to extract their size and area profile at different experimental conditions including and excluding a protein, citrate synthase. Since the images were ill-posed, texture of a context-window for each pixel was used as input to a back-propagation network architecture to obtain decision on its membership as nanoparticle. The segmented images were further analysed by k-means clustering to derive geometric properties of individual nanoparticles even from their assembled form. The extracted geometric information was found to be crucial to give a model featuring porous cage like configuration of nanoparticle assembly using which the chaperone like activity of gold nanoparticles can be explained. PMID:22355230

  7. In vitro evidence that D-serine disturbs the citric acid cycle through inhibition of citrate synthase activity in rat cerebral cortex.

    Science.gov (United States)

    Zanatta, Angela; Schuck, Patrícia Fernanda; Viegas, Carolina Maso; Knebel, Lisiane Aurélio; Busanello, Estela Natacha Brandt; Moura, Alana Pimentel; Wajner, Moacir

    2009-11-17

    The present work investigated the in vitro effects of D-serine (D-Ser) on important parameters of energy metabolism in cerebral cortex of young rats. The parameters analyzed were CO(2) generation from glucose and acetate, glucose uptake and the activities of the respiratory chain complexes I-IV, of the citric acid cycle enzymes citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, fumarase and malate dehydrogenase and of creatine kinase and Na(+),K(+)-ATPase. Our results show that D-Ser significantly reduced CO(2) production from acetate, but not from glucose, reflecting an impairment of the citric acid cycle function. Furthermore, D-Ser did not affect glucose uptake. We also observed that the activity of the mitochondrial enzyme citrate synthase from mitochondrial preparations and purified citrate synthase was significantly inhibited by D-Ser, whereas the other activities of the citric acid cycle as well as the activities of complexes I-III, II-III, II and IV of the respiratory chain, creatine kinase and Na(+),K(+)-ATPase were not affected by this D-amino acid. We also found that L-serine did not affect citrate synthase activity from mitochondrial preparations and purified enzyme. The data indicate that D-Ser impairs the citric acid cycle activity via citrate synthase inhibition, therefore compromising energy metabolism production in cerebral cortex of young rats. Therefore, it is presumed that this mechanism may be involved at least in part in the neurological damage found in patients affected by disorders in which D-Ser metabolism is impaired, with altered cerebral concentrations of this D-amino acid.

  8. Peroxisomal and mitochondrial citrate synthase in CAM plants.

    Science.gov (United States)

    Zafra, M F; Segovia, J L; Alejandre, M J; García-Peregrín, E

    1981-12-01

    Citrate synthase wa studied for the first time in peroxisomes and mitochondria of crassulacean acid metabolism plants. Cellular organelles were isolated from Agave americana leaves by sucrose density gradient centrifugation and characterized by the use of catalase and cytochrome oxidase as marker enzymes, respectively. 48,000 X g centrifugation caused the breakdown of the cellular organelles. The presence of a glyoxylate cycle enzyme (citrate synthase) and a glycollate pathway enzyme (catalase) in the same organelles, besides the absence of another glyoxalate cycle enzyme (malate synthase) is reported for the first time, suggesting that peroxisomal and glyoxysomal proteins are synthesized at the same time and housed in he same organelle.

  9. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Andersen, Nynne Bjerre; Dela, Flemming

    2014-01-01

    and changes in CS activity is often assumed. However, this relationship and absolute values of CS and maximal oxygen uptake (V.O2max) has never been assessed across different studies. A systematic PubMed search on literature published from 1983 to 2013 was performed. The search profile included: citrate.......4). Training induced changes in whole body oxidative capacity is matched by changes in muscle CS activity in a nearly 1:1 relationship. Absolute values of CS across different studies cannot be compared unless a standardized analytical method is used by all laboratories...... and CS activity. 70 publications with 97 intervention groups were included. There was a positive (r = 0.45) correlation (P values of CS and V.O2max did not correlate (r =- 0.07, n = 148, P = 0...

  10. Development of a biomarker for Geobacter activity and strain composition; proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI).

    Science.gov (United States)

    Wilkins, Michael J; Callister, Stephen J; Miletto, Marzia; Williams, Kenneth H; Nicora, Carrie D; Lovley, Derek R; Long, Philip E; Lipton, Mary S

    2011-01-01

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  11. Development of a biomarker for Geobacter activity and strain composition: Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, M.J.; Callister, S.J.; Miletto, M.; Williams, K.H.; Nicora, C.D.; Lovley, D.R.; Long, P.E.; Lipton, M.S.

    2010-02-15

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  12. Development of a biomarker for Geobacter activity and strain composition; Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI).

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, Michael J.; Callister, Stephen J.; Miletto, Marzia; Williams, Kenneth H.; Nicora, Carrie D.; Lovely, Derek R.; Long, Philip E.; Lipton, Mary S.

    2011-01-01

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the U.S. Department of Energy’s Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  13. Structures of citrate synthase and malate dehydrogenase of Mycobacterium tuberculosis.

    Science.gov (United States)

    Ferraris, Davide M; Spallek, Ralf; Oehlmann, Wulf; Singh, Mahavir; Rizzi, Menico

    2015-02-01

    The tricarboxylic acid (TCA) cycle is a central metabolic pathway of all aerobic organisms and is responsible for the synthesis of many important precursors and molecules. TCA cycle plays a key role in the metabolism of Mycobacterium tuberculosis and is involved in the adaptation process of the bacteria to the host immune response. We present here the first crystal structures of M. tuberculosis malate dehydrogenase and citrate synthase, two consecutive enzymes of the TCA, at 2.6 Å and 1.5 Å resolution, respectively. General analogies and local differences with the previously reported homologous protein structures are described.

  14. Overexpression of Citrus junos mitochondrial citrate synthase gene in Nicotiana benthamiana confers aluminum tolerance.

    Science.gov (United States)

    Deng, Wei; Luo, Keming; Li, Zhengguo; Yang, Yingwu; Hu, Nan; Wu, Yu

    2009-07-01

    Aluminum (Al) toxicity is one of the major factors that limit plant growth in acid soils. Al-induced release of organic acids into rhizosphere from the root apex has been identified as a major Al-tolerance mechanism in many plant species. In this study, Al tolerance of Yuzu (Citrus Junos Sieb. ex Tanaka) was tested on the basis of root elongation and the results demonstrated that Yuzu was Al tolerant compared with other plant species. Exposure to Al triggered the exudation of citrate from the Yuzu root. Thus, the mechanism of Al tolerance in Yuzu involved an Al-inducible increase in citrate release. Aluminum also elicited an increase of citrate content and increased the expression level of mitochondrial citrate synthase (CjCS) gene and enzyme activity in Yuzu. The CjCS gene was cloned from Yuzu and overexpressed in Nicotiana benthamiana using Agrobacterium tumefaciens-mediated methods. Increased expression level of the CjCS gene and enhanced enzyme activity were observed in transgenic plants compared with the wild-type plants. Root growth experiments showed that transgenic plants have enhanced levels of Al tolerance. The transgenic Nicotiana plants showed increased levels of citrate in roots compared to wild-type plants. The exudation of citrate from roots of the transgenic plants significantly increased when exposed to Al. The results with transgenic plants suggest that overexpression of mitochondrial CS can be a useful tool to achieve Al tolerance.

  15. Adaptive responses of GLUT-4 and citrate synthase in fast-twitch muscle of voluntary running rats

    Science.gov (United States)

    Henriksen, E. J.; Halseth, A. E.

    1995-01-01

    Glucose transporter (GLUT-4) protein, hexokinase, and citrate synthase (proteins involved in oxidative energy production from blood glucose catabolism) increase in response to chronically elevated neuromuscular activity. It is currently unclear whether these proteins increase in a coordinated manner in response to this stimulus. Therefore, voluntary wheel running (WR) was used to chronically overload the fast-twitch rat plantaris muscle and the myocardium, and the early time courses of adaptative responses of GLUT-4 protein and the activities of hexokinase and citrate synthase were characterized and compared. Plantaris hexokinase activity increased 51% after just 1 wk of WR, whereas GLUT-4 and citrate synthase were increased by 51 and 40%, respectively, only after 2 wk of WR. All three variables remained comparably elevated (+50-64%) through 4 wk of WR. Despite the overload of the myocardium with this protocol, no substantial elevations in these variables were observed. These findings are consistent with a coordinated upregulation of GLUT-4 and citrate synthase in the fast-twitch plantaris, but not in the myocardium, in response to this increased neuromuscular activity. Regulation of hexokinase in fast-twitch muscle appears to be uncoupled from regulation of GLUT-4 and citrate synthase, as increases in the former are detectable well before increases in the latter.

  16. Enhancement of Aminoacylase Activity by Sodium Citrate

    Institute of Scientific and Technical Information of China (English)

    于范利; 曹志方; 李森; 周海梦

    2001-01-01

    Kidney and other tissues of animals and humans have a high concentration of citrate which is an important intermediate substance in the citrate cycle. Citrate may play an important physiological role in metabolism. In this paper, we studied the interaction of the sodium salt of citrate with aminoacylase which is an important enzyme in metabolism and found sodium citrate can enhance the activity of aminoacylase. The maximum enzyme activity induced by sodium citrate increased approximately 3 folds over the enzyme activity without sodium citrate. The initial reaction rates (Ⅴ) for different concentrations of sodium citrate were obtained, showing that sodium citrate is a non-competitive activator. The result of the ANS binding fluorescence measurements for aminoacylase indicated that increasing sodium citrate concentrations markedly increased the ANS binding fluorescence with a blue shift of the emission spectra peak. This suggests the formation of more hydrophobic regions. Aggregates formed quickly when aminoacylase was incubated with sodium citrate (0.3 mol/L) and guanidinium chloride (0- 3. 5 mol/L). Aminoacylase lost enzyme activity in the guanidinium chloride more quickly in the presence of sodium citrate than in the absence of sodium citrate. The intrinsic fluorescence emission intensity decreased more quickly and the red shift of the emission spectra peak was larger than that without sodium citrate.

  17. Inibição da atividade da citrato sintase cerebral em um modelo animal de sepse Inhibition of brain citrate synthase activity in an animal model of sepsis

    Directory of Open Access Journals (Sweden)

    Giselli Scaini

    2011-06-01

    fisiopatologia desta doença.OBJECTIVE: An extensive body of evidence from experimental studies indicates that sepsis is associated with increased reactive oxygen species production, depletion of antioxidants, and accumulation of markers of oxidative stress. Moreover, mitochondrial dysfunction has been implicated in the pathogenesis of multiple organ dysfunction syndrome (MODS. Citrate synthase is an enzyme localized in the mitochondrial matrix and an important component of the Krebs cycle; consequently, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase activity in the brains of rats submitted to a cecal ligation puncture model of sepsis. METHODS: At several times points (3, 6, 12, 24 and 48 hours after the cecal ligation puncture operation, six rats were killed by decapitation. Their brains were removed, and the hippocampus, striatum, cerebellum, cerebral cortex and prefrontal cortex were dissected and used to determine citrate synthase activity. RESULTS: We found that citrate synthase activity in the prefrontal cortex was inhibited 12, 24 and 48 hours after cecal ligation puncture. In the cerebral cortex, citrate synthase activity was inhibited 3, 12, 24 and 48 hours after cecal ligation puncture. Citrate synthase was not affected in the hippocampus, striatum or cerebellum up to 48 hours after cecal ligation puncture. CONCLUSION: Considering that energy impairment due to mitochondrial dysfunction in sepsis has been well described and that oxidative stress plays a crucial role in sepsis development, we believe that energy impairment may also be involved in these processes. If citrate synthase inhibition also occurs in a sepsis model, it is tempting to speculate that a reduction in brain metabolism may be related to the pathophysiology of this disease.

  18. Inhibition of flower formation by antisense repression of mitochondrial citrate synthase in transgenic potato plants leads to a specific disintegration of the ovary tissues of flowers.

    OpenAIRE

    Landschütze, V; Willmitzer, L.; Müller-Röber, B

    1995-01-01

    The tricarboxylic acid (TCA) cycle constitutes a major component of the mitochondrial metabolism of eucaryotes, including higher plants. To analyze the importance of this pathway, we down-regulated mitochondrial citrate synthase (mCS; EC 4.1.3.7), the first enzyme of the TCA cycle, in transgenic potato plants using an antisense RNA approach. Several transformants were identified with reduced citrate synthase activity (down to approximately 6% of wild-type activity). These plants were indistin...

  19. Structural comparison between the open and closed forms of citrate synthase from Thermus thermophilus HB8.

    Science.gov (United States)

    Kanamori, Eiji; Kawaguchi, Shin-Ichi; Kuramitsu, Seiki; Kouyama, Tsutomu; Murakami, Midori

    2015-01-01

    The crystal structures of citrate synthase from the thermophilic eubacteria Thermus thermophilus HB8 (TtCS) were determined for an open form at 1.5 Å resolution and for closed form at 2.3 Å resolution, respectively. In the absence of ligands TtCS in the open form was crystalized into a tetragonal form with a single subunit in the asymmetric unit. TtCS was also co-crystallized with citrate and coenzyme-A to form an orthorhombic crystal with two homodimers in the asymmetric unit. Citrate and CoA are found in the active site situated between the large domain and the small domain in all subunit whereas the complex shows two distinct closed conformations, the fully closed form and partially closed form. Structural comparisons are performed to describe conformational changes associated with binding of products of TtCS. Upon binding of citrate, basic residues in the active site move toward citrate and make a hydrogen bond network in the active site, inducing a large-scale rotation of the small domain relative to the large domain. CoA is sandwiched between the small and large domains and then the cysteamine tail is inserted into the active site with a cooperative rotation around mainchain dihedrals in the hinge region connecting helices M and N. According to this rotation these helices are extended to close the active site completely. The considerable flexibility and structural rearrangements in the hinge region are crucial for an ordered bibi reaction in catalysis for microbial CSs.

  20. Reduced expression of citrate synthase leads to excessive superoxide formation and cell apoptosis.

    Science.gov (United States)

    Cai, Quanxiang; Zhao, Mengmeng; Liu, Xiang; Wang, Xiaochun; Nie, Yao; Li, Ping; Liu, Tingyan; Ge, Ruli; Han, Fengchan

    2017-02-16

    A/J mice are a mouse model of age-related hearing loss. It has been demonstrated that a mutation in gene of citrate synthase (CS) contributes to the early onset of hearing loss occurring at about one month of age. To understand the effects of a decreased CS activity that results from the mutation in Cs gene on hearing loss in A/J mice, human kidney cell line (293T) was transiently transfected with short hairpin RNA for Cs (shRNA-Cs) to reduce expression of CS. In comparison with those of cells transfected with a scrambled sequence (shRNA-NC), the oxygen consumption rate and adenosine trisphosphate (ATP) production level were decreased in 293T cells transfected with shRNA-Cs. Meanwhile, excessive superoxide production was induced as determined by mitochondrial superoxide formation assay (MitoSOX) and superoxide dismutase 2 (SOD2) detection. Moreover, the expression levels of BIP (binding immunoglobulin protein) and CHOP (CCAAT/enhancer-binding protein-homologous protein), markers of endoplasmic reticulum stress, were upregulated. Furthermore, apoptosis related molecule caspase-3 and the mitochondrial membrane potential were reduced. It is therefore concluded that downregulation of Cs expression in 293T cells leads to low level of ATP production, excessive superoxide formation and cell apoptosis, which implies a possible mechanism for hearing loss in A/J mice.

  1. Effect of Nitric Oxide on the Interaction Between Mitochondrial Malate Dehydrogenase and Citrate Synthase

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-chen; WANG Juan; SU Pei-ying; MA Chun-mei; ZHU Shu-hua

    2014-01-01

    Mitochondrial malate dehydrogenase (mMDH) and citrate synthase (CS) are sequential enzymes in Krebs cycle. mMDH, CS and the complex between mMDH and CS (mMDH+CS) were treated with nitric oxide solution. The roles of notric oxide (NO) on the secondary structures and the interactions between mMDH and CS were studied using circular diehroism (CD) and Fourier transform surface plasmon resonance (FT-SPR), respectivley. The effects of NO on the activities of mMDH, CS and mMDH+CS were also studied. And the regulations by NO on mMDH and CS were simulated by PyMOL software. The results of SPR conifrmed that strong interaction between mMDH and CS existed and NO could signiifcantly regulate the interaction between the two enzymes. NO reduced the mass percents ofα-helix and increased that of random in mMDH, CS and mMDH+CS. NO increased the activities of CS and mMDH+CS, and inhibited the activity of mMDH. Graphic simulation indicated that covalent bond was formed between NO and Asn242 in active site of CS. However, there was no direct bond between NO and mMDH. The increase in activity of mMDH+CS complex depended mostly on the interaction between NO and CS. All the results suggested that the regulations by NO on the activity and interaction between mMDH and CS were accord with the changes in mMDH, CS and mMDH+CS caused by NO.

  2. Regulation of expression of citrate synthase by the retinoic acid receptor-related orphan receptor α (RORα.

    Directory of Open Access Journals (Sweden)

    Christine Crumbley

    Full Text Available The retinoic acid receptor-related orphan receptor α (RORα is a member of the nuclear receptor superfamily of transcription factors that plays an important role in regulation of the circadian rhythm and metabolism. Mice lacking a functional RORα display a range of metabolic abnormalities including decreased serum cholesterol and plasma triglycerides. Citrate synthase (CS is a key enzyme of the citric acid cycle that provides energy for cellular function. Additionally, CS plays a critical role in providing citrate derived acetyl-CoA for lipogenesis and cholesterologenesis. Here, we identified a functional RORα response element (RORE in the promoter of the CS gene. ChIP analysis demonstrates RORα occupancy of the CS promoter and a putative RORE binds to RORα effectively in an electrophoretic mobility shift assay and confers RORα responsiveness to a reporter gene in a cotransfection assay. We also observed a decrease in CS gene expression and CS enzymatic activity in the staggerer mouse, which has a mutation of in the Rora gene resulting in nonfunctional RORα protein. Furthermore, we found that SR1001 a RORα inverse agonist eliminated the circadian pattern of expression of CS mRNA in mice. These data suggest that CS is a direct RORα target gene and one mechanism by which RORα regulates lipid metabolism is via regulation of CS expression.

  3. Molecular Cloning and Characterization of Citrate Synthase Gene in Rice( Oryza sativa)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shan-shan; MING Feng; LU Qun; GUO Bin; SHEN Da-leng

    2005-01-01

    The full-length OsCS encoding citrate synthase was isolated from rice (Oryza sativa L. subsp. japonica). OsCS is 1477-bp long and encodes a 474 amino acid polypeptide. Its putative protein sequence is highly identical to Daucus carota, Nicotiana tabacum,Beta vulgaris subsp., Arabidopsis thaliana, and Citrus junos (>70%). The deduced amino-terminal sequence of OsCS showes characteristics of mitochondrial targeting signal. Southern blot analysis using ORF of the OsCS as the probe indicated that this gene exists in multiple copies in rice genome. The band with predicated size of 82 kD was detected by Western blot after being induced by 0.4 mmol/L IPTG.

  4. Detailed enzyme kinetics in terms of biochemical species: study of citrate synthase.

    Directory of Open Access Journals (Sweden)

    Daniel A Beard

    Full Text Available The compulsory-ordered ternary catalytic mechanism for two-substrate two-product enzymes is analyzed to account for binding of inhibitors to each of the four enzyme states and to maintain the relationship between the kinetic constants and the reaction equilibrium constant. The developed quasi-steady flux expression is applied to the analysis of data from citrate synthase to determine and parameterize a kinetic scheme in terms of biochemical species, in which the effects of pH, ionic strength, and cation binding to biochemical species are explicitly accounted for in the analysis of the data. This analysis provides a mechanistic model that is consistent with the data that have been used support competing hypotheses regarding the catalytic mechanism of this enzyme.

  5. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase.

    Science.gov (United States)

    Cheng, Tsung-Lin; Liao, Ching-Chun; Tsai, Wen-Hui; Lin, Chin-Chih; Yeh, Chin-Wei; Teng, Chiao-Fang; Chang, Wen-Tsan

    2009-08-01

    Citrate synthase (CS), the first and rate-limiting enzyme of the tricarboxylic acid (TCA) cycle, plays a decisive role in regulating energy generation of mitochondrial respiration. Most mitochondrial proteins are synthesized in the cytoplasm as preproteins with an amino (N)-terminal mitochondrial targeting sequence (MTS) that directs mitochondria-specific sorting of the preprotein. However, the MTS and targeting mechanism of the human CS protein are not fully characterized. The human CS gene is a single nuclear gene which transcribes into two mRNA variants, isoform a (CSa) and b (CSb), by alternative splicing of exon 2. CSa encodes 466 amino acids, including a putative N-terminal MTS, while CSb expresses 400 residues with a shorter N terminus, lacking the MTS. Our results indicated that CSa is localized in the mitochondria and the N-terminal 27 amino acids, including a well-conserved RXY downward arrow (S/A) motif (the RHAS sequence), can efficiently target the enhanced green fluorescent protein (EGFP) into the mitochondria. Furthermore, site-directed mutagenesis analysis of the conserved basic amino acids and serine/threonine residues revealed that the R9 residue is essential but all serine/threonine residues are dispensable in the mitochondrial targeting function. Moreover, RNA interference (RNAi)-mediated gene silencing of the preprotein import receptors, including TOM20, TOM22, and TOM70, showed that all three preprotein import receptors are required for transporting CSa into the mitochondria. In conclusion, we have experimentally identified the mitochondrial targeting sequence of human CSa and elucidated its targeting mechanism. These results provide an important basis for the study of mitochondrial dysfunction due to aberrant CSa trafficking.

  6. Structures of mesophilic and extremophilic citrate synthases reveal rigidity and flexibility for function.

    Science.gov (United States)

    Wells, Stephen A; Crennell, Susan J; Danson, Michael J

    2014-10-01

    Citrate synthase (CS) catalyses the entry of carbon into the citric acid cycle and is highly-conserved structurally across the tree of life. Crystal structures of dimeric CSs are known in both "open" and "closed" forms, which differ by a substantial domain motion that closes the substrate-binding clefts. We explore both the static rigidity and the dynamic flexibility of CS structures from mesophilic and extremophilic organisms from all three evolutionary domains. The computational expense of this wide-ranging exploration is kept to a minimum by the use of rigidity analysis and rapid all-atom simulations of flexible motion, combining geometric simulation and elastic network modeling. CS structures from thermophiles display increased structural rigidity compared with the mesophilic enzyme. A CS structure from a psychrophile, stabilized by strong ionic interactions, appears to display likewise increased rigidity in conventional rigidity analysis; however, a novel modified analysis, taking into account the weakening of the hydrophobic effect at low temperatures, shows a more appropriate decreased rigidity. These rigidity variations do not, however, affect the character of the flexible dynamics, which are well conserved across all the structures studied. Simulation trajectories not only duplicate the crystallographically observed symmetric open-to-closed transitions, but also identify motions describing a previously unidentified antisymmetric functional motion. This antisymmetric motion would not be directly observed in crystallography but is revealed as an intrinsic property of the CS structure by modeling of flexible motion. This suggests that the functional motion closing the binding clefts in CS may be independent rather than symmetric and cooperative.

  7. Effect of olanzapine or fluoxetine and combined olanzapine with fluoxetine on citrate synthase activity in rat brain%奥氮平与氟西汀单独或联合给药对大鼠脑内柠檬酸合成酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    张普; 孔丽敏

    2016-01-01

    目的:研究奥氮平与氟西汀单独或两药联合给药对大鼠脑内柠檬酸合成酶活性短期和长期的影响。方法135只Wistar大鼠随机分为对照组与实验组。对照组腹腔注射生理盐水,实验组再分为几个亚组。2个剂量奥氮平组(3,6 mg· kg-1),2个剂量氟西汀组(12.5,25.0 mg· kg-1),联合用药组:A组(3 mg· kg-1奥氮平+12.5 mg · kg-1氟西汀)、B 组(3 mg · kg-1奥氮平+25.0 mg· kg-1氟西汀)、C组(6 mg· kg-1奥氮平+12.5 mg · kg -1氟西汀)、D组(6 mg· kg-1奥氮平+25.0 mg· kg-1氟西汀),连续给药28 d。用分光光度法测定并比较第1次给药后2 h、末次给药后2,24 h的大鼠前额叶皮层、海马区和纹状体柠檬酸合成酶的活性。结果与对照组相比,在给药第1次后2 h,2个剂量奥氮平组、大剂量氟西汀组、联合A组的大鼠海马区柠檬酸合成酶活性明显增加( P<0.05)。结论短程小剂量奥氮平联合氟西汀可显著增加大鼠脑内柠檬酸合成酶活性。%Objective To evaluated the effect of acute and chronic ad-ministration of fluoxetine , olanzapine and the combination of fluoxetine/olanzapine on citrate synthase activity in rat brain.Methods One hun-dred and thirty-five Wistar rats were randomly divided into control group and experimental group.The rats of the control group received injections of saline.The rats of the experimental group were divided into 8 sub groups by the ways of treament:low and high dose of olanzapine groups (3,6 mg· kg -1 ),the low and high dose of fluoxetine groups (12.5,25.0 mg· kg-1 ), the two -drug combination:A group(3 mg· kg -1 olanza-pine +12.5 mg· kg -1 fluoxetine), B group(3 mg· kg -1 olanzapine +25 mg · kg -1 fluoxetine ) , C group ( 6 mg · kg -1 olanzapine +12.5 mg· kg-1 fluoxetine), D group(6 mg· kg -1 olanzapine +25 mg· kg -1 fluoxetine ).Saline or medications were given once a day , which lasted

  8. Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Melkani, Girish C.; Lee, Chi F.; Cammarato, Anthony [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States); Bernstein, Sanford I., E-mail: sbernst@sciences.sdsu.edu [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States)

    2010-05-28

    UNC-45 belongs to the UCS (UNC-45, CRO1, She4p) domain protein family, whose members interact with various classes of myosin. Here we provide structural and biochemical evidence that Escherichia coli-expressed Drosophila UNC-45 (DUNC-45) maintains the integrity of several substrates during heat-induced stress in vitro. DUNC-45 displays chaperone function in suppressing aggregation of the muscle myosin heavy meromyosin fragment, the myosin S-1 motor domain, {alpha}-lactalbumin and citrate synthase. Biochemical evidence is supported by electron microscopy, which reveals the first structural evidence that DUNC-45 prevents inter- or intra-molecular aggregates of skeletal muscle heavy meromyosin caused by elevated temperatures. We also demonstrate for the first time that UNC-45 is able to refold a denatured substrate, urea-unfolded citrate synthase. Overall, this in vitro study provides insight into the fate of muscle myosin under stress conditions and suggests that UNC-45 protects and maintains the contractile machinery during in vivo stress.

  9. /sup 67/Ga citrate scintiscanning in active inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Rheingold, O.J.; Tedesco, F.J.; Block, F.E.; Maldonado, A.; Miale, A. Jr.

    1979-05-01

    Twenty-five hospitalized patients were studied prospectively with /sup 67/Ga citrate (GA) abdominal scintillation scanning in an attempt to define its role in the evaluation of patients with active inflammatory bowel disease (IBD). There were nine patients with ulcerative colitis (UC), seven with Crohn's disease (CD), and nine controls. In four patients, two with UC and two with CD, a tissue/plasma radioactivity ratio was obtained and compared to normals. All the UC patients had positive GA scans and only one of seven of the CD patients had a positive scan. There were no false positive scans. Scans performed after a 3- or 5-day delay were more accurate than 6-hr scans alone. Well-delineated colinic radioactivity 6 hr after injection which persists for 3 to 5 days indicates the presence of UC in patients with IBD, while a negative scan is more consistent with active CD. Colonic uptake at 6 hr which clears by 48 or 72 hr is not indicative of UC. This procedure aided in following the course of UC, delineating the extent of disease, and in differentiating active CD from an intraabdominal abscess. Tissues from UC patients had increased tissue/plasma ratioactivity ratios while tissues from CD patients had normal or decreased ratios which were consistent with the imaging data.

  10. Experimental evidences of the NO action on a recombinant PrxII F from pea plant and its effect preventing the citrate synthase aggregation

    Directory of Open Access Journals (Sweden)

    Daymi Camejo

    2015-06-01

    Full Text Available S-nitrosylation is emerging as a key post-translational protein modification for the transduction of NO as a signaling molecule in plants. This data article supports the research article entitled “Functional and structural changes in plant mitochondrial PrxII F caused by NO” [1]. To identify the Cys residues of the recombinant PrxII F modified after the treatment with S-nitrosylating agents we performed the LC ESI–QTOF tandem MS and MALDI peptide mass fingerprinting analysis. Change in A650 nm was monitored to estimate the thermal aggregation of citrate synthase in the presence S-nitrosylated PrxII F. The effect of the temperature on the oligomerization pattern and aggregation of PrxII F was analysed by SDS-PAGE and changes in absorbance at 650 nm, respectively.

  11. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity.

    Science.gov (United States)

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A

    2014-12-26

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.

  12. Unraveling the toxicity mechanisms of the herbicide diclofop-methyl in rice: modulation of the activity of key enzymes involved in citrate metabolism and induction of cell membrane anion channels.

    Science.gov (United States)

    Ding, Haiyan; Lu, Haiping; Lavoie, Michel; Xie, Jun; Li, Yali; Lv, Xiaolu; Fu, Zhengwei; Qian, Haifeng

    2014-11-01

    Residual soil concentrations of the herbicide diclofop-methyl (DM) can be toxic to other nontarget plant species, but the toxicity mechanisms at play are not fully understood. In the present study, we analyzed the toxic effect of DM on root growth and metabolism in the rice species Oryza sativa. The results show that a 48-h exposure to a trace level (5 μg/L) of DM inhibits rice root growth by almost 70%. A 48-h exposure to 5 μg/L DM also leads to an ≈2.5-fold increase in citrate synthase (CS) activity (and CS gene transcription) and an ≈2-fold decrease in the citrate lyase gene transcripts, which lead to an increase in the intracellular concentration of citrate and in citrate exudation rate. Addition of a specific inhibitor of cell membrane anion channel, anthracene-9-carboxylic acid, decreased citrate release in the culture, suggesting that DM-induced citrate loss from the cells is mediated by a specific membrane-bound channel protein. This study brings new insights into the key biochemical mechanisms leading to DM toxicity in rice.

  13. Citrate Metabolism by Pediococcus halophilus

    OpenAIRE

    Kanbe, Chiyuki; Uchida, Kinji

    1987-01-01

    Several strains of non-citrate-metabolizing Pediococcus halophilus have previously been isolated from soy sauce mash or moromi. The factors controlling the metabolism of citrate in soy pediococci were studied. All the soy pediococcal strains tested which failed to decompose citrate did not possess citrate lyase [citrate (pro-3S)-lyase; EC 4.1.3.6] activity. In P. halophilus, citrate lyase was an inducible enzyme, and the optimum pH for activity was 7.0. The metabolism of citrate in P. halophi...

  14. Effect of citrate on Aspergillus niger phytase adsorption and catalytic activity in soil

    Science.gov (United States)

    Mezeli, Malika; Menezes-Blackburn, Daniel; Zhang, Hao; Giles, Courtney; George, Timothy; Shand, Charlie; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Stutter, Marc; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip

    2015-04-01

    Current developments in cropping systems that promote mobilisation of phytate in agricultural soils, by exploiting plant-root exudation of phytase and organic acids, offer potential for developments in sustainable phosphorus use. However, phytase adsorption to soil particles and phytate complexion has been shown to inhibit phytate dephosphorylation, thereby inhibiting plant P uptake, increasing the risk of this pool contributing to diffuse pollution and reducing the potential benefits of biotechnologies and management strategies aimed to utilise this abundant reserve of 'legacy' phosphorus. Citrate has been seen to increase phytase catalytic efficiency towards complexed forms of phytate, but the mechanisms by which citrate promotes phytase remains poorly understood. In this study, we evaluated phytase (from Aspergillus niger) inactivation, and change in catalytic properties upon addition to soil and the effect citrate had on adsorption of phytase and hydrolysis towards free, precipitated and adsorbed phytate. A Langmuir model was fitted to phytase adsorption isotherms showing a maximum adsorption of 0.23 nKat g-1 (19 mg protein g-1) and affinity constant of 435 nKat gˉ1 (8.5 mg protein g-1 ), demonstrating that phytase from A.niger showed a relatively low affinity for our test soil (Tayport). Phytases were partially inhibited upon adsorption and the specific activity was of 40.44 nKat mgˉ1 protein for the free enzyme and 25.35 nKat mgˉ1 protein when immobilised. The kinetics of adsorption detailed that most of the adsorption occurred within the first 20 min upon addition to soil. Citrate had no effect on the rate or total amount of phytase adsorption or loss of activity, within the studied citrate concentrations (0-4mM). Free phytases in soil solution and phytase immobilised on soil particles showed optimum activity (>80%) at pH 4.5-5.5. Immobilised phytase showed greater loss of activity at pH levels over 5.5 and lower activities at the secondary peak at pH 2

  15. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal...... and endothelial nitric oxide synthase (NOS)], and enzymatic NO synthase activity. MRI guided biopsies documented more active plaques than macroscopic examination, and histological examination revealed further lesions. Inducible NOS (iNOS) was the dominant IR isoform, while reactive astrocytes were the dominant i......NOS expressing cells in active lesions. NOS IR expressing cells were widely distributed in plaques, in white and gray matter that appeared normal macroscopically, and on MR. Endothelial NOS (eNOS) was highly expressed in intraparenchymal vascular endothelial cells of MS patients. A control group matched for age...

  16. Functional analysis of the citrate activator CitO from Enterococcus faecalis implicates a divalent metal in ligand binding

    Directory of Open Access Journals (Sweden)

    Victor S. Blancato

    2016-02-01

    Full Text Available The regulator of citrate metabolism, CitO, from Enterococcus faecalis belongs to the FCD family within the GntR superfamily. In the presence of citrate, CitO binds to cis-acting sequences located upstream of the cit promoters inducing the expression of genes involved in citrate utilization. The quantification of the molecular binding affinities, performed by isothermal titration calorimetry (ITC, indicated that CitO has a high affinity for citrate (KD= 1.2±0.2 µM, while it did not recognize other metabolic intermediates. Based on a structural model of CitO where a putative small molecule and a metal binding site were identified, it was hypothesized that the metal ion is required for citrate binding. In agreement with this model, citrate binding to CitO sharply decreased when the protein was incubated with EDTA. This effect was reverted by the addition of Ni2+, and Zn2+ to a lesser extent. Structure-based site-directed mutagenesis was conducted and it was found that changes to alanine in residues Arg97 and His191 resulted in decreased binding affinities for citrate, as determined by EMSA and ITC. Further assays using lacZ fusions confirmed that these residues in CitO are involved in sensing citrate in vivo. These results indicate that the molecular modifications induced by a ligand and a metal binding in the C-terminal domain of CitO are required for optimal DNA binding activity, and consequently, transcriptional activation.

  17. Functional Analysis of the Citrate Activator CitO from Enterococcus faecalis Implicates a Divalent Metal in Ligand Binding

    Science.gov (United States)

    Blancato, Víctor S.; Pagliai, Fernando A.; Magni, Christian; Gonzalez, Claudio F.; Lorca, Graciela L.

    2016-01-01

    The regulator of citrate metabolism, CitO, from Enterococcus faecalis belongs to the FCD family within the GntR superfamily. In the presence of citrate, CitO binds to cis-acting sequences located upstream of the cit promoters inducing the expression of genes involved in citrate utilization. The quantification of the molecular binding affinities, performed by isothermal titration calorimetry (ITC), indicated that CitO has a high affinity for citrate (KD = 1.2 ± 0.2 μM), while it did not recognize other metabolic intermediates. Based on a structural model of CitO where a putative small molecule and a metal binding site were identified, it was hypothesized that the metal ion is required for citrate binding. In agreement with this model, citrate binding to CitO sharply decreased when the protein was incubated with EDTA. This effect was reverted by the addition of Ni2+, and Zn2+ to a lesser extent. Structure-based site-directed mutagenesis was conducted and it was found that changes to alanine in residues Arg97 and His191 resulted in decreased binding affinities for citrate, as determined by EMSA and ITC. Further assays using lacZ fusions confirmed that these residues in CitO are involved in sensing citrate in vivo. These results indicate that the molecular modifications induced by a ligand and a metal binding in the C-terminal domain of CitO are required for optimal DNA binding activity, and consequently, transcriptional activation. PMID:26903980

  18. 利用农杆菌介导法获得转柠檬酸合成酶基因粳稻及其耐低磷的研究%Genetic Transformation of Japonica Rice Mediated with Agrobacterium tumefaciens Harboring the Citrate Synthase Gene and Tolerance of the Transgenic Plants to Low Phosphorus in Soil

    Institute of Scientific and Technical Information of China (English)

    于志晶; 蔡勤安; 李淑芳; 刘丽; 林秀峰; 马瑞

    2012-01-01

    The citrate synthase gene was transformed into main cultivar (super rice 'Jijing 88') of Jilin Province, mediated with Agrobacterium tumefaciens. Total 162 obtained transgenic plants (TO) were validated by PCR and southern blot. Five transgenic plants (T3) with tolerance to low phosphorus in soil and good agronomic characteristics were obtained by PPT selection, PCR and Southern blot confirmation and tolerance test to low phosphorus. The citrate synthase activity and citrate acid contents in root tips and leaves of the 5 transgenic plants were higher than the control. The growth and yield of the transgenic plants were superior to the control.%利用根癌农杆菌介导法将柠檬酸合成酶CS基因导入吉林省主栽超级粳稻品种吉粳88中.经PCR检测,获得162株转基因阳性植株.转基因植株后代进一步经过PPT抗性筛选、分子检测和耐低磷筛选,获得5株(T3代)耐低磷性状明显且农艺性状较好的转基因植株.对转基因植株柠檬酸合成酶活性和柠檬酸含量的测定以及形态学和产量性状调查结果表明:转基因植株优于非转基因对照植株.

  19. Phytochelatin synthase activity as a marker of metal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Zitka, Ondrej; Krystofova, Olga; Sobrova, Pavlina [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Adam, Vojtech [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Zehnalek, Josef; Beklova, Miroslava [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kizek, Rene, E-mail: kizek@sci.muni.cz [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic)

    2011-08-30

    Highlights: {yields} New tool for determination of phytochelatin synthase activity. {yields} The optimization of experimental condition for determination of the enzyme activity. {yields} First evaluation of K{sub m} for the enzyme. {yields} The effects of cadmium (II) not only on the activity of the enzyme but also on K{sub m}. -- Abstract: The synthesis of phytochelatins is catalyzed by {gamma}-Glu-Cys dipeptidyl transpeptidase called phytochelatin synthase (PCS). Aim of this study was to suggest a new tool for determination of phytochelatin synthase activity in the tobacco BY-2 cells treated with different concentrations of the Cd(II). After the optimization steps, an experiment on BY-2 cells exposed to different concentrations of Cd(NO{sub 3}){sub 2} for 3 days was performed. At the end of the experiment, cells were harvested and homogenized. Reduced glutathione and cadmium (II) ions were added to the cell suspension supernatant. These mixtures were incubated at 35 {sup o}C for 30 min and analysed using high performance liquid chromatography coupled with electrochemical detector (HPLC-ED). The results revealed that PCS activity rises markedly with increasing concentration of cadmium (II) ions. The lowest concentration of the toxic metal ions caused almost three fold increase in PCS activity as compared to control samples. The activity of PCS (270 fkat) in treated cells was more than seven times higher in comparison to control ones. K{sub m} for PCS was estimated as 2.3 mM.

  20. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    expression analysis and proteomics have pointed to abnormalities in mitochondrial oxidative phosphorylation and cellular stress in muscle of type 2 diabetic subjects, and recent work suggests that impaired mitochondrial activity is another early defect in the pathogenesis of type 2 diabetes. This review...... will discuss the latest advances in the understanding of the molecular mechanisms underlying insulin resistance in human skeletal muscle in type 2 diabetes with focus on possible links between impaired glycogen synthase activity and mitochondrial dysfunction....

  1. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system.

    Science.gov (United States)

    Septer, Alecia N; Bose, Jeffrey L; Lipzen, Anna; Martin, Joel; Whistler, Cheryl; Stabb, Eric V

    2015-01-01

    The Gac/Csr regulatory system is conserved throughout the γ-proteobacteria and controls key pathways in central carbon metabolism, quorum sensing, biofilm formation and virulence in important plant and animal pathogens. Here we show that elevated intracellular citrate levels in a Vibrio fischeri aconitase mutant correlate with activation of the Gac/Csr cascade and induction of bright luminescence. Spontaneous or directed mutations in the gene that encodes citrate synthase reversed the bright luminescence of aconitase mutants, eliminated their citrate accumulation and reversed their elevated expression of CsrB. Our data elucidate a correlative link between central metabolic and regulatory pathways, and they suggest that the Gac system senses a blockage at the aconitase step of the tricarboxylic acid cycle, either through elevated citrate levels or a secondary metabolic effect of citrate accumulation, and responds by modulating carbon flow and various functions associated with host colonization, including bioluminescence.

  2. [Regulation of citrate synthese in bacteria: Comparison of the action of various effectors on the enzymes of Rhodospirillum rurbum and Bacillus stearothermophilus].

    Science.gov (United States)

    Higa, A I; Massarini, E; Cazzulo, J J

    1976-01-01

    A comparative study of the citrate synthases purified from the facultatively photosynthetic bacterium Rhodospirillum rubrum (Gram negative) and the thermophile Bacillus stearothermophilus (Gram positive) was made. The citrate synthase from R. rubrum was activated by KCl (6-fold at 0.1 M KCl) and, less effectively, by NaCl and NH4Cl. Its molecular weight was about 300,000. The enzyme was strongly inhibited by NADH, and this inhibition was counteracted by AMP. The citrate synthase from B. stearothermophilus was little affected by KCl, NaCl and NH4Cl, all of which activated by about 25% at 0.1 M. Its molecular weight was ca 100,000. The enzyme was not affected by NADH or AMP. Both citrate synthases were insensitive to alpah-oxoglutarate concentrations up to 5 mM, and were inhibited by ATP; the B. stearothermophilus enzyme was more strongly inhibited than the R. rubrum enzyme. In both cases the ATP inhibition was strictly competitive towards acetyl-CoA and non-competitive towards oxaloacetate. Both enzymes, in spite of the peculiar physiological properties of their bacterial sources, followed the close correlation between the properties of the citrate synthase and the taxonomical position of the microorganism, proposed by Weitzman and his co-workers.

  3. Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms

    Science.gov (United States)

    Martin, Belinda C.; George, Suman J.; Price, Charles A.; Shahsavari, Esmaeil; Ball, Andrew S.; Tibbett, Mark; Ryan, Megan H.

    2016-09-01

    Petroleum hydrocarbons (PHCs) are among the most prevalent sources of environmental contamination. It has been hypothesized that plant root exudation of low molecular weight organic acid anions (carboxylates) may aid degradation of PHCs by stimulating heterotrophic microbial activity. To test their potential implication for bioremediation, we applied two commonly exuded carboxylates (citrate and malonate) to uncontaminated and diesel-contaminated microcosms (10 000 mg kg-1; aged 40 days) and determined their impact on the microbial community and PHC degradation. Every 48 h for 18 days, soil received 5 µmol g-1 of (i) citrate, (ii) malonate, (iii) citrate + malonate or (iv) water. Microbial activity was measured daily as the flux of CO2. After 18 days, changes in the microbial community were assessed by a community-level physiological profile (CLPP) and 16S rRNA bacterial community profiles determined by denaturing gradient gel electrophoresis (DGGE). Saturated PHCs remaining in the soil were assessed by gas chromatography-mass spectrometry (GC-MS). Cumulative soil respiration increased 4- to 6-fold with the addition of carboxylates, while diesel contamination resulted in a small, but similar, increase across all carboxylate treatments. The addition of carboxylates resulted in distinct changes to the microbial community in both contaminated and uncontaminated soils but only a small increase in the biodegradation of saturated PHCs as measured by the n-C17 : pristane biomarker. We conclude that while the addition of citrate and malonate had little direct effect on the biodegradation of saturated hydrocarbons present in diesel, their effect on the microbial community leads us to suggest further studies using a variety of soils and organic acids, and linked to in situ studies of plants, to investigate the role of carboxylates in microbial community dynamics.

  4. Mosapride citrate, a 5-HT₄ receptor agonist, increased the plasma active and total glucagon-like peptide-1 levels in non-diabetic men.

    Science.gov (United States)

    Aoki, Kazutaka; Kamiyama, Hiroshi; Masuda, Kiyomi; Togashi, Yu; Terauchi, Yasuo

    2013-01-01

    Mosapride citrate, a selective agonist of the 5-hydroxytryptaine (5-HT)₄ receptor, is typically used to treat heartburn, nausea, and vomiting associated with chronic gastritis or to prepare for a barium enema X-ray examination. Mosapride citrate reportedly improves insulin sensitivity in patients with type 2 diabetes. As mosapride citrate activates the motility of the gastrointestinal tract, we hypothesized that mosapride citrate affects incretin secretion. We examined the effect of the administration of mosapride citrate on the plasma glucose, serum insulin, plasma glucagon, and plasma incretin levels before breakfast and at 60, 120, and 180 min after breakfast in men with normal glucose tolerance (NGT) or impaired glucose tolerance (IGT) to exclude gastropathy. Mosapride citrate was administered according to two different intake schedules (C: control (no drug), M: mosapride citrate 20 mg) in each of the subject groups. The area under the curve (AUC) of the plasma glucose levels was smaller in the M group than in the C group. The time profiles for the serum insulin levels at 60 and 120 min after treatment with mosapride citrate tended to be higher, although the difference was not statistically significant. The AUCs of the plasma active and total glucagon-like peptide-1 (GLP-1) levels were significantly larger in the M group than in the C group. No significant difference in the AUC of the plasma glucose-dependent insulinotropic polypeptide (GIP) level was observed between the two groups. Our results suggest that mosapride citrate may have an antidiabetic effect by increasing GLP-1 secretion.

  5. Platensimycin activity against mycobacterial beta-ketoacyl-ACP synthases.

    Directory of Open Access Journals (Sweden)

    Alistair K Brown

    Full Text Available BACKGROUND: There is an urgent need for the discovery and development of new drugs against Mycobacterium tuberculosis, the causative agent of tuberculosis, especially due to the recent emergence of multi-drug and extensively-drug resistant strains. Herein, we have examined the susceptibility of mycobacteria to the natural product platensimycin. METHODS AND FINDINGS: We have demonstrated that platensimycin has bacteriostatic activity against the fast growing Mycobacterium smegmatis (MIC = 14 microg/ml and against Mycobacterium tuberculosis (MIC = 12 microg/ml. Growth in the presence of paltensimycin specifically inhibited the biosynthesis of mycolic acids suggesting that the antibiotic targeted the components of the mycolate biosynthesis complex. Given the inhibitory activity of platensimycin against beta-ketoacyl-ACP synthases from Staphylococcus aureus, M. tuberculosis KasA, KasB or FabH were overexpressed in M. smegmatis to establish whether these mycobacterial KAS enzymes were targets of platensimycin. In M. smegmatis overexpression of kasA or kasB increased the MIC of the strains from 14 microg/ml, to 30 and 124 microg/ml respectively. However, overexpression of fabH on did not affect the MIC. Additionally, consistent with the overexpression data, in vitro assays using purified proteins demonstrated that platensimycin inhibited Mt-KasA and Mt-KasB, but not Mt-FabH. SIGNIFICANCE: Our results have shown that platensimycin is active against mycobacterial KasA and KasB and is thus an exciting lead compound against M. tuberculosis and the development of new synthetic analogues.

  6. SCREENING OF 6-PYRUVOYL-TETRAHYDROPTERIN SYNTHASE ACTIVITY DEFICIENCY AMONG HYPERP HENYLALANINEMIC PATIENTS

    Directory of Open Access Journals (Sweden)

    DURDI QUJEQ

    1999-10-01

    Full Text Available A deficiency of the phenylalanine hydroxylase activity or its cofactor tetrahydrobiopterin may"nlead to hyperphenylalamnemia and as a result, loss of IQ, poor school performance, and"nbehavior problems occurs. Deficiency in 6-pyruvoyl-tetrahydropterin synthase activity is the"nmajor cause of tetrahydrobiopterin deficient phenylketonuria. In this study, blood specimens"nfrom 165 healthy volunteers and 127 children with phenylketonuria were used to determine"nthe 6-pyruvoyl-tetrahydropterin synthase activity. It was found that the activity of 6-"npyruvoyl- tetrahydropterin synthase was decreased in comparison with control [23.46 +/-"n2.94, (mean +/- SD, mmol/ ml/h, n=I27 vs. 127.63 +/- 4.52, n=165, p<0.05]. Results of"nthis study indicate that examination of 6-pyruvoyl-tetrahydropterin synthase activity is helpful"nand may lead to the diagnosis cause of hyperphenylalaninemia.

  7. Citrate-Linked Keto- and Aldo-Hexose Monosaccharide Cellulose Conjugates Demonstrate Selective Human Neutrophil Elastase-Lowering Activity in Cotton Dressings

    Directory of Open Access Journals (Sweden)

    Sonya Caston-Pierre

    2013-05-01

    Full Text Available Sequestration of harmful proteases as human neutrophil elastase (HNE from the chronic wound environment is an important goal of wound dressing design and function. Monosaccharides attached to cellulose conjugates as ester-appended aldohexoses and ketohexoses were prepared on cotton gauze as monosccharide-citrate-cellulose-esters for HNE sequestration. The monosaccharide-cellulose analogs demonstrated selective binding when the derivatized cotton dressings were measured for sequestration of HNE. Each monosaccharide-cellulose conjugate was prepared as a cellulose citrate-linked monosaccharide ester on the cotton wound dressing, and assayed under wound exudate-mimicked conditions for elastase sequestration activity. A series of three aldohexose and four ketohexose ester cellulose conjugates were prepared on cotton gauze through citric acid-cellulose cross linking esterification. The monosaccharide portion of the conjugate was characterized by hydrolysis of the citrate-monosaccharide ester bond, and subsequent analysis of the free monosaccharide with high performance anion exchange chromatography. The ketohexose and aldohexose conjugate levels on cotton were quantified on cotton using chromatography and found to be present in milligram/gram amounts. The citrate-cellulose ester bonds were characterized with FTIR. Ketohexose-citrate-cellulose conjugates sequestered more elastase activity than aldohexose-citrate-cellulose conjugates. The monosaccharide cellulose conjugate families each gave distinctive profiles in elastase-lowering effects. Possible mechanisms of elastase binding to the monosaccharide-cellulose conjugates are discussed.

  8. Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury

    Institute of Scientific and Technical Information of China (English)

    Guang-Jin Yuan; Xiao-Rong Zhou; Zuo-Jiong Gong; Pin Zhang; Xiao-Mei Sun; Shi-Hua Zheng

    2006-01-01

    AIM: To study the expression and activity of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) in rats with ethanol-induced liver injury and their relation with liver damage, activation of nuclear factor-KB (NF-кB) and tumor necrosis factor-α (TNF-α)expression in the liver.METHODS: Female Sprague-Dawley rats were given fish oil (0.5 mL) along with ethanol or isocaloric dextrose daily via gastrogavage for 4 or 6 wk. Liver injury was assessed using serum alanine aminotransferase (ALT)activity and pathological analysis. Liver malondialdehyde (MDA), nitric oxide contents, iNOS and eNOS activity were determined. NF-KB p65, iNOS, eNOS and TNF-αprotein or mRNA expression in the liver were detected by immunohistochemistry or reverse transcriptase-polymerase chain reaction (RT-PCR).RESULTS: Chronic ethanol gavage for 4 wk caused steatosis, inflammation and necrosis in the liver, and elevated serum ALT activity. Prolonged ethanol administration (6 wk) enhanced the liver damage. These responses were accompanied with increased lipid peroxidation, NO contents, iNOS activity and reduced eNOS activity. NF-кB p65, iNOS and TNF-α protein or mRNA expression were markedly induced after chronic ethanol gavage, whereas eNOS mRNA expression remained unchanged. The enhanced iNOS activity and expression were positively correlated with the liver damage, especially the necro-inflammation, activation of NF-кB, and TNF-α mRNA expression.CONCLUSION: iNOS expression and activity are induced in the liver after chronic ethanol exposure in rats, which are correlated with the liver damage, especially the necro-inflammation, activation of NF-KB and TNF-αexpression. eNOS activity is reduced, but its mRNA expression is not affected.

  9. Bifunctional activity of deoxyhypusine synthase/hydroxylase from Trichomonas vaginalis.

    Science.gov (United States)

    Quintas-Granados, Laura Itzel; Carvajal Gamez, Bertha Isabel; Villalpando, Jose Luis; Ortega-Lopez, Jaime; Arroyo, Rossana; Azuara-Liceaga, Elisa; Álvarez-Sánchez, María Elizbeth

    2016-04-01

    The Trichomonas vaginalis genome analysis suggested the presence of a putative deoxyhypusine synthase (TvDHS) that catalyzes the posttranslational modification of eIF-5A. Herein, we expressed and purified the recombinant TvDHS (rTvDHS) protein (43 kDa) and the recombinant TveIF-5A (rTveIF-5A) precursor protein (46 kDa). A 41 kDa band of the native TvDHS was recognized by western blot analysis in T. vaginalis total protein extract by a mouse polyclonal anti-rTvDHS antibody. The enzymatic activity of rTvDHS was determined by in vitro rTveIF-5A precursor modification. The modification reaction was performed by using ((3)H)-spermidine, and the biochemical analysis showed that rTvDHS exhibited Km value of 0.6 μM. The rTvDHS activity was inhibited by the spermidine analog, N″-guanyl-1,7-diamino-heptane (GC7). Native gel electrophoresis analysis showed two bands corresponding to an rTvDHS-rTveIF-5A complex and an intermediate form of rTveIF-5A. The two forms were subsequently separated by ion exchange chromatography to identify the hypusine residue by MS/MS analysis. Moreover, mutations in TvDHS showed that the putative HE motif present in this enzyme is involved in the hydroxylation of TveIF-5A. We observed that only hypusine-containing TveIF-5A was bound to an RNA hairpin ERE structure from the cox-2 gene, which contains the AAAUGUCACAC consensus sequence. Interestingly, 2DE-WB assays, using parasites that were grown in DAB-culture conditions and transferred to exogenous putrescine, showed the new isoform of TveIF-5A. In summary, our results indicate that T. vaginalis contains an active TvDHS capable of modifying the precursor TveIF-5A protein, which subsequently exhibits RNA binding activity.

  10. Synthesis of PVP stabilized Cu/Pd nanoparticles with citrate complexing agent and its application as an activator for electroless copper deposition.

    Science.gov (United States)

    Lo, Sylvia H Y; Wang, Yung-Yun; Wan, Chi-Chao

    2007-06-01

    A simple method has been developed to synthesize Cu/Pd nanoparticles in aqueous solution in ambient condition with the addition of complexing agent, trisodium citrate. UV-vis spectra confirmed the complexing behavior of trisodium citrate and metal ions. The particles synthesized with trisodium citrate were well dispersed with particle size ranging between 3-4 nm while the particles without trisodium citrate were larger and aggregated, as demonstrated by transmission electron microscopy (TEM). X-ray diffraction patterns (XRD) indicated the formation of bimetallic nanoparticles without impurities in the complexing agent-supplemented system. In contrast, large amounts of PdO and Cu(OH)(2) were precipitated along with the formation of particles in the complexing agent-free system. X-ray photoelectron spectroscopy (XPS) revealed small amounts of oxidized Pd on the surface of particles and the existence of zerovalent Cu and oxidized Cu in particles with trisodium citrate. With a simpler process for electroless copper deposition, the Cu/Pd nanoparticle activator with less Pd metal used exhibited comparable catalytic activity to conventional Pd/Sn colloidal activator. In summary, application of Cu/Pd nanoparticles synthesized with the complexing agent as an activator suggested a novel, simpler and inexpensive process in PCB industry.

  11. Pressure-related activation of inducible nitric oxide synthase

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A lot of reports suggested that inducible nitric oxide synthase (iNOS) has a very different nature from constitutive NOS including endothelial NOS (eNOS) and neural NOS (nNOS). When exposed to cytokines or bacterial products, iNOS could be greatly activated and produces hundreds or thousands fold more NO than it does usually. Whether iNOS activation is arterial pressure related is not clear. In the present experiment, we studied three groups(n=6) of Sprague Dawley (SD) rats with implanted aorta and venous catheters that were maintained on 1 mEq/d, 12.5 mEq/d and 25 mEq/d of sodium intake respectively. Pulsatile arterial pressure signals from the amplifier were sent to a digital computer and the urine samples were taken every other day for nitrate/nitrite excretion (UNOx) assay using Greiss Reaction. After 6 days infusion, the rats were euthanized with an overdose of sodium pentobarbital, and the renal medullas were rapidly removed and frozen on dry ice for iNOS activity assay. Morever separate groups of hypertensive rats including spontaneously hypertensive rat (SHR, n=6) and High NaCl-induced hypertensive rat (NaHR, n=6) were used to measure renal iNOS protein by Western Blotting. The results showed that the mean arterial pressure (MAP) were significantly increased with the increase intake of sodium, the MAP (mmHg) at day 6 were 99.6±3.5,116.65±4.2 and 125.43±4.5, and the iNOS activity (nmol*g-1 protein*min-1) were 122.3±23.4, 342.4±35.6 and 623.9±65.4 in 1 mEq/d, 12.5 mEq/d and 25 mEq/d of sodium intake-rats respectively. At the same time, UNOx at day 6 were also increased, in turn, to 5 865.6±343.0 (for 12.5 mEq/d intake-rats) and (9 642.8±1 045.3) (for 25 mEq/d sodium intake-rats) nmol/d from (3 834.9±234.8) nmol/d of 1 mEq/d sodium intake-rats respectively. Western blotting showed that the renal medullary iNOS protein in SHR and NaHR were increased by 178%±13% and 104%±9% of normal Wistar rats. The data indicates that elevated arterial pressure

  12. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Bechard Matthew E.

    2003-01-01

    Full Text Available Tetrahydromethanopterin (H4MPT is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase. Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H4MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  13. Transformation of pristine and citrate-functionalized CeO2 nanoparticles in a laboratory-scale activated sludge reactor.

    Science.gov (United States)

    Barton, Lauren E; Auffan, Melanie; Bertrand, Marie; Barakat, Mohamed; Santaella, Catherine; Masion, Armand; Borschneck, Daniel; Olivi, Luca; Roche, Nicolas; Wiesner, Mark R; Bottero, Jean-Yves

    2014-07-01

    Engineered nanomaterials (ENMs) are used to enhance the properties of many manufactured products and technologies. Increased use of ENMs will inevitably lead to their release into the environment. An important route of exposure is through the waste stream, where ENMs will enter wastewater treatment plants (WWTPs), undergo transformations, and be discharged with treated effluent or biosolids. To better understand the fate of a common ENM in WWTPs, experiments with laboratory-scale activated sludge reactors and pristine and citrate-functionalized CeO2 nanoparticles (NPs) were conducted. Greater than 90% of the CeO2 introduced was observed to associate with biosolids. This association was accompanied by reduction of the Ce(IV) NPs to Ce(III). After 5 weeks in the reactor, 44 ± 4% reduction was observed for the pristine NPs and 31 ± 3% for the citrate-functionalized NPs, illustrating surface functionality dependence. Thermodynamic arguments suggest that the likely Ce(III) phase generated would be Ce2S3. This study indicates that the majority of CeO2 NPs (>90% by mass) entering WWTPs will be associated with the solid phase, and a significant portion will be present as Ce(III). At maximum, 10% of the CeO2 will remain in the effluent and be discharged as a Ce(IV) phase, governed by cerianite (CeO2).

  14. Comparison study on effects of overexpressing citrate synthase driven by light-inducible promoter and constitutive promoter on Al tolerance of transgenic tobacco plants%光诱导和组成型启动子控制柠檬酸合酶基因过量表达对转基因烟草耐铝性影响的比较

    Institute of Scientific and Technical Information of China (English)

    王奇峰; 胡清泉; 赵玥; 易琼; 李昆志; 玉永雄; 陈丽梅

    2011-01-01

    分别用光诱导型启动子(PrbcS)和组成型启动子(CaMV 35S)驱动柠檬酸合酶基因(cs)在转基因烟草中过量表达,比较转基因烟草中柠檬酸的含量和分泌量及其铝耐受性的变化.结果表明:诱导型转基因株系的CS酶活性是野生型的2.3~2.4倍,组成型转基因株系的酶活性是野生型的1.6~2倍;在30 μmol·L-1铝胁迫下,诱导型转基因植株的根相对伸长量是野生型的2.8~2.9倍,组成型的根相对伸长量是野生型的2~2.3倍;在无铝或300 μmo1·L-1铝胁迫下,转基因烟草叶片和根中柠檬酸含量均高于野生型,其中诱导型转基因植株叶片中柠檬酸含量高于组成型转基因植株,转基因烟草柠檬酸的分泌量分别是野生型的1.8~2.0倍和3.0~3.3倍;在有铝胁迫的珍珠岩基质上培养时,转基因烟草的生长情况好于野生型.这些结果证明,与CaMV 35S相比,采用PrbcS启动子控制cs基因的过量表达可更有效地增加转基因烟草中CS的酶活性及叶片中柠檬酸的合成量,同时也能更有效地提高转基因烟草柠檬酸的分泌量,从而增强其对铝毒害的抵御能力.%Overexpression of citrate synthase (cs) cDNA of tobacco was driven by the light-inducible promoter of rubisco small subunit (PrbcS) and the constitutive promoter CaMV 35S (35S) in transgenic tobacco plants, respectively. The changes in citrate contents and exudations as well as Al tolerances in transgenic PrbcS and 35S tobacco plants were compared. The results showed that CS enzyme activities were increased 2.3-2.4 folds and 1.6-2 folds in transgenic PrbcS and 35S tobacco plants as compared with wild tobacco (WT) plants, respectively. When exposed to 30 μmol·L-1 Al, relative root elongation rates of transgenic PrbcS and 35S tobacco plants were also increased 2.8-2.9 folds and 2-2. 3 folds as compared with WT, respectively. Citrate contents in the transgenic tobacco leaves were significantly increased compared with the WT

  15. Investigation of the effect of kaolin and tissue factor-activated citrated whole blood, on clot forming variables, as evaluated by thromboelastograph

    DEFF Research Database (Denmark)

    Johansson, Per Ingemar; Bochsen, L.; Andersen, S.;

    2008-01-01

    minutes were evaluated with kaolin as the activator. CONCLUSION: The TEG assays evaluated were reproducible and present with an acceptable CV% for routine clinical practice. Kaolin and TF 1:17,000 equally affected the clot formation variables. Storage of WB for up to 30 minutes in citrate did not, except......:42,500 was used. The CV for the different variables varied from 3 to 13 percent with no significant differences between assays. Storage of citrated WB significantly affected the TEG variables in a hypercoagulable direction. Only the R, however, was significantly affected (12%) when samples rested for 0 and 30...

  16. Adipocyte Mineralocorticoid Receptor Activation Leads to Metabolic Syndrome and Induction of Prostaglandin D2 Synthase.

    Science.gov (United States)

    Urbanet, Riccardo; Nguyen Dinh Cat, Aurelie; Feraco, Alessandra; Venteclef, Nicolas; El Mogrhabi, Soumaya; Sierra-Ramos, Catalina; Alvarez de la Rosa, Diego; Adler, Gail K; Quilliot, Didier; Rossignol, Patrick; Fallo, Francesco; Touyz, Rhian M; Jaisser, Frédéric

    2015-07-01

    Metabolic syndrome is a major risk factor for the development of diabetes mellitus and cardiovascular diseases. Pharmacological antagonism of the mineralocorticoid receptor (MR), a ligand-activated transcription factor, limits metabolic syndrome in preclinical models, but mechanistic studies are lacking to delineate the role of MR activation in adipose tissue. In this study, we report that MR expression is increased in visceral adipose tissue in a preclinical mouse model of metabolic syndrome and in obese patients. In vivo conditional upregulation of MR in mouse adipocytes led to increased weight and fat mass, insulin resistance, and metabolic syndrome features without affecting blood pressure. We identified prostaglandin D2 synthase as a novel MR target gene in adipocytes and AT56, a specific inhibitor of prostaglandin D2 synthase enzymatic activity, blunted adipogenic aldosterone effects. Moreover, translational studies showed that expression of MR and prostaglandin D2 synthase is strongly correlated in adipose tissues from obese patients.

  17. Effect of aging on expression of nitric oxide synthase I and activity of nitric oxide synthase in rat penis

    Institute of Scientific and Technical Information of China (English)

    Jun-PingSHI; Yong-MeiZHAO; Yu-TongSONG

    2003-01-01

    Aim: To investigate the effect of aging on the expression of nitric oxide synthase I (NOS I) and the activity of NOS in rat penis. Methods: Sixty male rats from 3 age groups (adult, old and senescent) were investigated.The expression of NOS I protein and mRNA in rat penis were detected by Western blot and RT-PCR respectively and the NOS activity, with ultraviolet spectrophotometry. Results: In the old and senescent group, NOS I protein expression was significantly decreased as compared with the adult. NOS I mRNA expression was well correlated with the protein expression. NOS activity was not statistically different between the adult and old groups, but it was significantly reduced in the senescent compared with the adult group (P<0.01). Conclusion: The aging-induced decreases in NOS I expression and NOS activity may be one of the main mechanisms leading to erectile dysfunctionin the senescent rats. ( Asian J Androl 2003 Jun; 5: 117-120)

  18. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine [beta]-synthase

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Kabil, Omer; Smith, Janet L.; Banerjee, Ruma (Michigan-Med)

    2011-08-17

    The catalytic potential for H{sub 2}S biogenesis and homocysteine clearance converge at the active site of cystathionine {beta}-synthase (CBS), a pyridoxal phosphate-dependent enzyme. CBS catalyzes {beta}-replacement reactions of either serine or cysteine by homocysteine to give cystathionine and water or H{sub 2}S, respectively. In this study, high-resolution structures of the full-length enzyme from Drosophila in which a carbanion (1.70 {angstrom}) and an aminoacrylate intermediate (1.55 {angstrom}) have been captured are reported. Electrostatic stabilization of the zwitterionic carbanion intermediate is afforded by the close positioning of an active site lysine residue that is initially used for Schiff base formation in the internal aldimine and later as a general base. Additional stabilizing interactions between active site residues and the catalytic intermediates are observed. Furthermore, the structure of the regulatory 'energy-sensing' CBS domains, named after this protein, suggests a mechanism for allosteric activation by S-adenosylmethionine.

  19. Sodium citrate assisted facile synthesis of AuPd alloy networks for ethanol electrooxidation with high activity and durability

    Science.gov (United States)

    Zhai, Yanling; Zhu, Zhijun; Lu, Xiaolin; Zhou, H. Susan

    2016-10-01

    The direct ethanol fuel cell is an emerging energy conversion device for which palladium is considered as the one of the most effective components for anode catalyst, however, its widespread application has been still limited by the activity and durability of the anode catalyst. In this work, AuPd alloy networks (NWs) are synthesized using H2PdCl4 and HAuCl4 as precursors reduced by NaBH4 in the presence of sodium citrate (SC). The results reveal that SC plays significant role in network structure, resulting in the enhanced electrocatalytic activity of the catalyst. This self-supported AuPd NWs catalyst exhibits much higher electrochemical catalytic activity than commercial Pd/C catalyst toward ethanol electrooxidation in alkaline solution. Significantly, AuPd NWs catalyst shows extremely high durability at the beginning of the chronoamperometry test, and as high as 49% of the mass current density (1.41 A/mgPd) remains after 4000 s current-time test at -0.3 V (vs. Ag/AgCl) in N2-saturated KOH-ethanol solution. This strategy provides a facile method for the preparation of alloy networks with high electrochemical activity, and can be potentially expanded to a variety of electrochemical applications.

  20. β-1,3 : 1,4-Glucan Synthase Activity in Rice Seedlings under Water

    Science.gov (United States)

    Kimpara, Tomoya; Aohara, Tsutomu; Soga, Kouichi; Wakabayashi, Kazuyuki; Hoson, Takayuki; Tsumuraya, Yoichi; Kotake, Toshihisa

    2008-01-01

    Background and Aims The metabolism of β-1,3 : 1,4-glucan regulates the mechanical properties of cell walls, and thereby changes the elongation growth of Poaceae plants. A previous study has shown that elongation growth of rice coleoptiles under water is enhanced by increased activity of β-1,3 : 1,4-glucan hydrolases; however, the involvement of β-1,3 : 1,4-glucan synthase activity in elongation growth under water has not yet been clarified. Methods The β-1,3 : 1,4-glucan synthase activity in a microsomal fraction prepared from rice seedlings grown under water was compared with that from control seedlings grown in air. The change under water in the relative expression level of CslF6, a major isoform of the β-1,3 : 1,4-glucan synthase genes, was examined by quantitative reverse-transcriptase PCR. Key Results The level of β-1,3 : 1,4-glucan synthase activity in submerged seedlings decreased to less than 40 % of that of the control seedlings and was accompanied by a significant reduction in the amount of β-1,3 : 1,4-glucan in the cell walls. Under water, the expression of CslF6 was reduced to less than 20 % of the unsubmerged control. Bubble aeration partially restored both β-1,3 : 1,4-glucan synthase activity and the expression of CslF6 under water, correlating with suppression of the submergence-induced elongation growth of coleoptiles. Conclusions Submergence down-regulates the expression of the CslF6 gene, leading to a decreased level of β-1,3 : 1,4-glucan synthase activity. Together with the increased activity of β-1,3 : 1,4-glucan hydrolases, the decreased activity of β-1,3 : 1,4-glucan synthase contributes to the decrease in the amount of β-1,3 : 1,4-glucan in the cell walls under water. The suppression of β-1,3 : 1,4-glucan synthesis under water may be mainly due to oxygen depletion. PMID:18487614

  1. Nitrate Protects Cucumber Plants Against Fusarium oxysporum by Regulating Citrate Exudation.

    Science.gov (United States)

    Wang, Min; Sun, Yuming; Gu, Zechen; Wang, Ruirui; Sun, Guomei; Zhu, Chen; Guo, Shiwei; Shen, Qirong

    2016-09-01

    Fusarium wilt causes severe yield losses in cash crops. Nitrogen plays a critical role in the management of plant disease; however, the regulating mechanism is poorly understood. Using biochemical, physiological, bioinformatic and transcriptome approaches, we analyzed how nitrogen forms regulate the interactions between cucumber plants and Fusarium oxysporum f. sp. cucumerinum (FOC). Nitrate significantly suppressed Fusarium wilt compared with ammonium in both pot and hydroponic experiments. Fewer FOC colonized the roots and stems under nitrate compared with ammonium supply. Cucumber grown with nitrate accumulated less fusaric acid (FA) after FOC infection and exhibited increased tolerance to chemical FA by decreasing FA absorption and transportation in shoots. A lower citrate concentration was observed in nitrate-grown cucumbers, which was associated with lower MATE (multidrug and toxin compound extrusion) family gene and citrate synthase (CS) gene expression, as well as lower CS activity. Citrate enhanced FOC spore germination and infection, and increased disease incidence and the FOC population in ammonium-treated plants. Our study provides evidence that nitrate protects cucumber plants against F. oxysporum by decreasing root citrate exudation and FOC infection. Citrate exudation is essential for regulating disease development of Fusarium wilt in cucumber plants.

  2. Synthesis of novel methotrexate derivatives with inhibition activity of nitric oxide synthase

    Institute of Scientific and Technical Information of China (English)

    Ming Sheng Feng; Ping Guo; Li Xun Jiang; Jing Bo Shi; Yu Ping Cao; Qi Zheng Yao

    2009-01-01

    Seventeen 4-alkylamino/arylamino-substituted methotrexate(MTX)derivatives 6a-14a were designed and synthesized.Their inhibition activities against inducible nitric oxide synthase(iNOS)were evaluated in vitro.The pharmacological results showed that most of the prepared compounds displayed the potent inhibitory effects on iNOS.

  3. Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii

    DEFF Research Database (Denmark)

    Kadziola, Anders; Jepsen, Clemens H; Johansson, Eva;

    2005-01-01

    The prs gene encoding phosphoribosyl diphosphate (PRPP) synthase of the hyperthermophilic autotrophic methanogenic archaeon Methanocaldococcus jannaschii has been cloned and expressed in Escherichia coli. Subsequently, M.jannaschii PRPP synthase has been purified, characterised, crystallised, and....... The properties of M.jannaschii PRPP synthase differ widely from previously characterised PRPP synthases by its tetrameric quaternary structure and the simultaneous phosphate ion-activation and lack of allosteric inhibition, and, thus, constitute a novel class of PRPP synthases....

  4. Cloning and sequence analysis of citrate synthase and phosphoenolpyruvate carboxylase in the root of ‘Sour pummelo' (Citrus grandis)%酸柚根系CS和PEPC基因的克隆及序列分析

    Institute of Scientific and Technical Information of China (English)

    杨林通; 林郑和; 陈立松

    2012-01-01

    Total RNA was extracted from root of ' sour pummelo' ( Citnus grandis) by hot borate method. The sequence of conserved region, 3' RACE product and 5' RACE product of citrate synthase (CS) and phosphoenolpyruvate cariboxylase (PEPC) genes were obtained by RT-PCR and RACE. The full-length cDNA of CS was 1217 bp, which contained a 1413 bp open reading frame (ORF) encoding 472 amino acids with a calculated molecular mass of 52.487 ku and an isoelectric point of 6.9, a 67 bp 5'-untranslated region (UTR) and a277 bp 3'-UTR. An alignment of deduced amino acid sequence of CS gene from ' sour pummelo' with other plants showed ihey shared high homeology (85.4% -99.6%). The full-length cDNA of PEPC was 3307, which contained a 2604 bp ORF encoding 868 amino acids with a calculated molecular mass of 99.569 ku and an isoelectric point of 6.68, a 431 bp 5'-UTR and a 269 bp 3'-UTR. An alignment of deduced amino acid sequence of PEPC gene from sour pummelo with other plants showed they shared high homeology (85.8% -95.7%).%以酸柚(Citrus grandis)根系为材料,利用热硼酸法提取了根系总RNA,并逆转录成cDNA,利用PCR和RACE技术相继得到柠檬酸合酶基因(CS)和磷酸烯醇式丙酮酸羧化酶基因(PEPC)的保守区、3′端和5′端.酸柚根系CS基因全长1760bp,开放读码框有1413bp,编码472个氨基酸,氨基酸序列相对分子质量为52.487 ku,等电点为6.9,亲水指数为-0.199;5′端非编码区为67 bp,3′端非编码区为277 bp;推导的氨基酸经序列比对,发现与其他物种具有很高的同源性(85.4% -99.6%).酸柚根系PEPC基因全长3307bp,开放读码框有2604 bp,编码868个氨基酸,氨基酸序列相对分子质量为99.569ku,等电点为6.68,亲水指数为-0,398;5′端非编码区为431 bp,3′端非编码区为269 bp,推导的氨基酸经序列比对,发现与其他物种具有很高的同源性(85.8% - 95.7%).初步确定克隆到的为酸柚根系CS和PEPC基因,登

  5. [Effect of melaxen and valdoxan on free radical processes intensity, aconitate hydratase activity and citrate content in rats tissues under hyperthyroidism].

    Science.gov (United States)

    Gorbenko, M V; Popova, T N; Shul'gin, K K; Popov, S S; Agarkov, A A

    2014-01-01

    The influence of melaxen and valdoxan on the biochemiluminescence parameters, aconitate hydratase activity and citrate level in rats heart and liver during development of experimental hyperthyroidism has been investigated. Administration of these substances promoted a decrease of biochemiluminescence parameters, which had been increased in tissues of rats in response to the development of oxidative stress under hyperthyroidism. Aconitate hydratase activity and citrate concentration in rats liver and heart, growing at pathological conditions, changed towards control value after administration of the drugs correcting melatonin level. The results indicate the positive effect of valdoxan and melaxen on oxidative status of the organism under the development of experimental hyperthyroidism that is associated with antioxidant action of melatonin.

  6. Role of Arginine-304 in the Diphosphate-Triggered Active Site Closure Mechanism of Trichodiene Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Vedula,L.; Cane, D.; Christianson, D.

    2005-01-01

    The X-ray crystal structures of R304K trichodiene synthase and its complexes with inorganic pyrophosphate (PPi) and aza analogues of the bisabolyl carbocation intermediate are reported. The R304K substitution does not cause large changes in the overall structure in comparison with the wild-type enzyme. The complexes with (R)- and (S)-azabisabolenes and PPi bind three Mg2+ ions, and each undergoes a diphosphate-triggered conformational change that caps the active site cavity. This conformational change is only slightly attenuated compared to that of the wild-type enzyme complexed with Mg{sup 2+}{sub 3-}PP{sub i}, in which R304 donates hydrogen bonds to PP{sub i} and D101. In R304K trichodiene synthase, K304 does not engage in any hydrogen bond interactions in the unliganded state and it donates a hydrogen bond to only PP{sub i} in the complex with (R)-azabisabolene; K304 makes no hydrogen bond contacts in its complex with PP{sub i} and (S)-azabisabolene. Thus, although the R304-D101 hydrogen bond interaction stabilizes diphosphate-triggered active site closure, it is not required for Mg{sup 2+}{sub 3-}PP{sub i} binding. Nevertheless, since R304K trichodiene synthase generates aberrant cyclic terpenoids with a 5000-fold reduction in kcat/KM, it is clear that a properly formed R304-D101 hydrogen bond is required in the enzyme-substrate complex to stabilize the proper active site contour, which in turn facilitates cyclization of farnesyl diphosphate for the exclusive formation of trichodiene. Structural analysis of the R304K mutant and comparison with the monoterpene cyclase (+)-bornyl diphosphate synthase suggest that the significant loss in activity results from compromised activation of the PP{sub i} leaving group.

  7. Reduced ceramide synthase 2 activity causes progressive myoclonic epilepsy

    DEFF Research Database (Denmark)

    Mosbech, Mai-Britt; Olsen, Anne S B; Neess, Ditte;

    2014-01-01

    with progressive myoclonic epilepsy (PME). Mass spectrometry and fluorescence microscopy were used to examine the effects of reduced CERS2 activity on cellular lipid composition and plasma membrane functions. RESULTS: We identify a novel 27 kb heterozygous deletion including the CERS2 gene in a proband diagnosed...... with PME. Compared to parental controls, levels of CERS2 mRNA, protein, and activity were reduced by ˜50% in fibroblasts isolated from this proband, resulting in significantly reduced levels of ceramides and sphingomyelins containing the very long-chain fatty acids C24:0 and C26:0. The change in SL...... to development of PME....

  8. A cell-free yellow lupin extract containing activities of pseudouridine 35 and 55 synthases.

    Science.gov (United States)

    Pieńkowska, J; Wrzesiński, J; Szweykowska-Kulińska, Z

    1998-01-01

    Plant cytoplasmic tyrosine tRNA was pseudouridylated at three different positions: 35, 39 and 55. These pseudouridines were introduced by three different enzymes--pseudouridine synthases. Variants of the Arabidopsis thaliana pre-tRNA(Tyr) were constructed that allow to monitor specifically pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis we have prepared an extract from Lupinus luteus cv. Ventus seeds containing activities of at least psi35 and psi55 synthases. This is the first report describing the preparation of the lupin seed extract that specifically modifies plant pre-tRNA(Tyr) transcribed by T7 RNA polymerase. U35 is converted to psi35 only in an intron-dependent manner, while pseudouridylation of U55 is insensitive to the presence or absence of an intron.

  9. A connecting hinge represses the activity of endothelial nitric oxide synthase

    OpenAIRE

    Haque, Mohammad Mahfuzul; Panda, Koustubh; Tejero, Jesús; Aulak, Kulwant S.; Fadlalla, Mohammed Adam; Mustovich, Anthony T.; Stuehr, Dennis J

    2007-01-01

    In mammals, endothelial nitric oxide synthase (eNOS) has the weakest activity, being one-tenth and one-sixth as active as the inducible NOS (iNOS) and the neuronal NOS (nNOS), respectively. The basis for this weak activity is unclear. We hypothesized that a hinge element that connects the FMN module in the reductase domain but is shorter and of unique composition in eNOS may be involved. To test this hypothesis, we generated an eNOS chimera that contained the nNOS hinge and two mutants that e...

  10. Pseudouridine synthases.

    Science.gov (United States)

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  11. Physicochemical action of potassium-magnesium citrate in nephrolithiasis

    Science.gov (United States)

    Pak, C. Y.; Koenig, K.; Khan, R.; Haynes, S.; Padalino, P.

    1992-01-01

    Effect of potassium-magnesium citrate on urinary biochemistry and crystallization of stone-forming salts was compared with that of potassium citrate at same dose of potassium in five normal subjects and five patients with calcium nephrolithiasis. Compared to the placebo phase, urinary pH rose significantly from 6.06 +/- 0.27 to 6.48 +/- 0.36 (mean +/- SD, p less than 0.0167) during treatment with potassium citrate (50 mEq/day for 7 days) and to 6.68 +/- 0.31 during therapy with potassium-magnesium citrate (containing 49 mEq K, 24.5 mEq Mg, and 73.5 mEq citrate per day). Urinary pH was significantly higher during potassium-magnesium citrate than during potassium citrate therapy. Thus, the amount of undissociated uric acid declined from 118 +/- 61 mg/day during the placebo phase to 68 +/- 54 mg/day during potassium citrate treatment and, more prominently, to 41 +/- 46 mg/day during potassium-magnesium citrate therapy. Urinary magnesium rose significantly from 102 +/- 25 to 146 +/- 37 mg/day during potassium-magnesium citrate therapy but not during potassium citrate therapy. Urinary citrate rose more prominently during potassium-magnesium citrate therapy (to 1027 +/- 478 mg/day from 638 +/- 252 mg/day) than during potassium citrate treatment (to 932 +/- 297 mg/day). Consequently, urinary saturation (activity product) of calcium oxalate declined significantly (from 1.49 x 10(-8) to 1.03 x 10(-8) M2) during potassium-magnesium citrate therapy and marginally (to 1.14 x 10(-8) M2) during potassium citrate therapy.(ABSTRACT TRUNCATED AT 250 WORDS).

  12. Citrat og nyresten

    DEFF Research Database (Denmark)

    Osther, P J

    1993-01-01

    Citrate is an important naturally occurring inhibitor of calcium stone formation in urine. Urinary citrate excretion was examined in 43 consecutive patients with recurrent idiopathic calcium nephrolithiasis and in 50 normal controls by a specific enzymatic technique. Hypocitraturia (<1.6 mmol/24h...

  13. Immobilization strategy for enhancing sensitivity of immunosensors: L-Asparagine-AuNPs as a promising alternative of EDC-NHS activated citrate-AuNPs for antibody immobilization.

    Science.gov (United States)

    Raghav, Ragini; Srivastava, Sudha

    2016-04-15

    This paper addresses the question - Is EDC-NHS activated gold nanoparticles modified electrode surface the best available option for antibody immobilization for immunosensor fabrication? Is there any other alternative covalent immobilization strategy for orthogonal orientation of antibody, ensuring enhanced sensitivity of immunosensors? Does EDC-NHS activation of carboxyl functionalized nanoparticles surface really leads to orthogonal or directed immobilization of antibody? Gold nanoparticles synthesized using L-Asparagine as reducing and stabilization agent were employed for orthogonal immobilization of antibody for immunosensor fabrication. Anti-CA125 antibody was used as a model system for immunosensor fabrication. A comparative evaluation of immunosensors fabricated using L-Asparagine stabilized gold nanoparticles and citrate stabilized gold nanoparticles via different immobilization strategies/chemistries was done. The three strategies involved immobilization of Anti-CA125 antibody - (1) after EDC-NHS activation of citrate stabilized gold nanoparticles, (2) directly onto citrate stabilized gold nanoparticles and (3) directly onto L-Asparagine stabilized gold nanoparticles modified electrode surfaces. Comparative evaluation of Impedimetric response characteristics showed 2.5 times increase in sensitivity (349.36 Ω/(IU/mL)/cm(2)) in case of third strategy as compared to first (147.53 Ω/(IU/mL)/cm(2)) and twice that of second strategy (166.24 Ω/(IU/mL)/cm(2)). Additionally, an extended dynamic range of 0-750 IU/mL was observed while for others it was up to 500 IU/mL. Amino acid coated gold nanoparticles ensured orthogonal immobilization, lesser randomization, with 88% of active antibody available for antigen binding as opposed to other two strategies with less than 30% active antibody.

  14. A novel aphrodisiac compound from an orchid that activates nitric oxide synthases.

    Science.gov (United States)

    Subramoniam, A; Gangaprasad, A; Sureshkumar, P K; Radhika, J; Arun, K B; Arun, B K

    2013-01-01

    Nitric oxide (NO) is known to have roles in several crucial biological functions including vasodilation and penile erection. There are neuronal, endothelial and inducible NO synthases that influence the levels of NO in tissues and blood. NO activates guanylate cyclase and thereby increases the levels of cyclic GMP (cGMP). Viagra (sildenafil), a top selling drug in the world for erectile dysfunction, inhibits phosphodiesterase-5, which hydrolyses cGMP to GMP. Thus, it fosters an NO-mediated increase in the levels of cGMP, which mediates erectile function. Here, we show the aphrodisiac activity of a novel chemical isolate from the flowers of an epiphytic orchid, Vanda tessellata (Roxb.) ex Don, which activates neuronal and endothelial, but not inducible, NO synthases. The aphrodisiac activity is caused by an increase in the level of NO in corpus cavernosum. The drug increases blood levels of NO as early as 30 min after oral administration. The active compound was isolated by column chromatography. Based on the spectral data, the active compound is found to be a new compound, 2,7,7-tri methyl bicyclo [2.2.1] heptane. We anticipate that our findings could lead to the development of a commercially viable and valuable drug for erectile dysfunction.

  15. A cyanobacterial protein with similarity to phytochelatin synthases catalyzes the conversion of glutathione to gamma-glutamylcysteine and lacks phytochelatin synthase activity.

    Science.gov (United States)

    Harada, Emiko; von Roepenack-Lahaye, Edda; Clemens, Stephan

    2004-12-01

    Phytochelatins are glutathione-derived, non-translationally synthesized peptides essential for cadmium and arsenic detoxification in plant, fungal and nematode model systems. Recent sequencing programs have revealed the existence of phytochelatin synthase-related genes in a wide range of organisms that have not been reported yet to produce phytochelatins. Among those are several cyanobacteria. We have studied one of the encoded proteins (alr0975 from Nostoc sp. strain PCC 7120) and demonstrate here that it does not possess phytochelatin synthase activity. Instead, this protein catalyzes the conversion of glutathione to gamma-glutamylcysteine. The thiol spectrum of yeast cells expressing alr0975 shows the disappearance of glutathione and the formation of a compound that by LC-MSMS analysis was unequivocally identified as gamma-glutamylcysteine. Purified recombinant protein catalyzes the respective reaction. Unlike phytochelatin synthesis, the conversion of glutathione to gamma-glutamylcysteine is not dependent on activation by metal cations. No evidence was found for the accumulation of phytochelatins in cyanobacteria even after prolonged exposure to toxic Cd2+ concentrations. Expression of alr0975 was detected in Nostoc sp. cells with an antiserum raised against the protein. No indication for a responsiveness of expression to toxic metal exposure was found. Taken together, these data provide further evidence for possible additional functions of phytochelatin synthase-related proteins in glutathione metabolism and provide a lead as to the evolutionary history of phytochelatin synthesis.

  16. Evaluation of synthase and hemisynthase activities of glucosamine-6-phosphate synthase by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Gaucher-Wieczorek, Florence; Guérineau, Vincent; Touboul, David; Thétiot-Laurent, Sophie; Pelissier, Franck; Badet-Denisot, Marie-Ange; Badet, Bernard; Durand, Philippe

    2014-08-01

    Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5'-diphospho-N-acetyl-D-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts D-fructose-6-phosphate (Fru-6P) and L-glutamine (Gln) into D-glucosamine-6-phosphate (GlcN-6P) and L-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme.

  17. Differential activation of nitric oxide synthase through muscarinic acetylcholine receptors in rat salivary glands.

    Science.gov (United States)

    Leirós, C P; Rosignoli, F; Genaro, A M; Sales, M E; Sterin-Borda, L; Santiago BordaE

    2000-03-15

    Muscarinic receptors play an important role in secretory and vasodilator responses in rat salivary glands. Nitric oxide synthase (NOS) appears to be one of the multiple effectors coupled to muscarinic receptors in both submandibular and sublingual glands although some differences have been found depending on the gland studied. First, submandibular glands had a lower basal activity of nitric oxide synthase than sublingual glands and the concentration-response curve for carbachol was bell-shaped in the former but not in sublingual glands. Second, cGMP levels displayed a similar profile to that observed for NOS activity in both glands. Third, protein kinase C also coupled to muscarinic receptor activation in the glands might have a regulatory effect on nitric oxide production since its activity was higher in basal conditions in submandibular than sublingual glands and it also increased in the presence of the agonist at a concentration that inhibited NOS activity in submandibular glands. The effects appear to be partly related to the expression of a minor population of M(1) receptors in submandibular glands absent in sublingual as determined in binding and signaling experiments with the muscarinic receptor antagonist pirenzepine.

  18. Isolation and characterization of a Saccharomyces cerevisiae mutant with impaired glutamate synthase activity.

    Science.gov (United States)

    Folch, J L; Antaramián, A; Rodríguez, L; Bravo, A; Brunner, A; González, A

    1989-12-01

    A mutant of Saccharomyces cerevisiae that lacks glutamate synthase (GOGAT) activity has been isolated. This mutant was obtained after chemical mutagenesis of a NADP-glutamate dehydrogenase-less mutant strain. The gdh gus mutant is a glutamate auxotroph. The genetic analysis of the gus mutant showed that the GOGAT-less phenotype is due to the presence of two loosely linked mutations. Evidence is presented which suggests the possibility that S. cerevisiae has two GOGAT activities, designated GOGAT A and GOGAT B. These activities can be distinguished by their pH optima and by their regulation by glutamate. Furthermore, one of the mutations responsible for the GOGAT-less phenotype affected GOGAT A activity, while the other mutation affected GOGAT B activity.

  19. Structure-Based Inhibitors Exhibit Differential Activities against Helicobacter pylori and Escherichia coli Undecaprenyl Pyrophosphate Synthases

    Directory of Open Access Journals (Sweden)

    Chih-Jung Kuo

    2008-01-01

    Full Text Available Helicobacter pylori colonizes the human gastric epithelium and causes diseases such as gastritis, peptic ulcers, and stomach cancer. Undecaprenyl pyrophosphate synthase (UPPS, which catalyzes consecutive condensation reactions of farnesyl pyrophosphate with eight isopentenyl pyrophosphate to form lipid carrier for bacterial peptidoglycan biosynthesis, represents a potential target for developing new antibiotics. In this study, we solved the crystal structure of H. pylori UPPS and performed virtual screening of inhibitors from a library of 58,635 compounds. Two hits were found to exhibit differential activities against Helicobacter pylori and Escherichia coli UPPS, giving the possibility of developing antibiotics specially targeting pathogenic H. pylori without killing the intestinal E. coli.

  20. Trisilver(I citrate

    Directory of Open Access Journals (Sweden)

    Andreas Fischer

    2011-02-01

    Full Text Available Trisilver(I citrate, 3Ag+·C6H5O73−, was obtained by evaporation of a saturated aqueous solution of the raw material that had been obtained from sodium dihydrogen citrate and silver nitrate. It features one formula unit in the asymmetric unit. There is an intramolecular O—H...O hydrogen bond between the OH group and one of the terminal carboxylate groups. Different citrate groups are linked via the three Ag+ ions, yielding a three-dimensional network with rather irregular [AgO4] polyhedra.

  1. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare.

    Science.gov (United States)

    Zerbe, Philipp; Chiang, Angela; Dullat, Harpreet; O'Neil-Johnson, Mark; Starks, Courtney; Hamberger, Björn; Bohlmann, Jörg

    2014-09-01

    Marrubium vulgare (Lamiaceae) is a medicinal plant whose major bioactive compounds, marrubiin and other labdane-related furanoid diterpenoids, have potential applications as anti-diabetics, analgesics or vasorelaxants. Metabolite and transcriptome profiling of M. vulgare leaves identified five different candidate diterpene synthases (diTPSs) of the TPS-c and TPS-e/f clades. We describe the in vitro and in vivo functional characterization of the M. vulgare diTPS family. In addition to MvEKS ent-kaurene synthase of general metabolism, we identified three diTPSs of specialized metabolism: MvCPS3 (+)-copalyl diphosphate synthase, and the functional diTPS pair MvCPS1 and MvELS. In a sequential reaction, MvCPS1 and MvELS produce a unique oxygenated diterpene scaffold 9,13-epoxy-labd-14-ene en route to marrubiin and an array of related compounds. In contrast with previously known diTPSs that introduce a hydroxyl group at carbon C-8 of the labdane backbone, the MvCPS1-catalyzed reaction proceeds via oxygenation of an intermediate carbocation at C-9, yielding the bicyclic peregrinol diphosphate. MvELS belongs to a subgroup of the diTPS TPS-e/f clade with unusual βα-domain architecture. MvELS is active in vitro and in vivo with three different prenyl diphosphate substrates forming the marrubiin precursor 9,13-epoxy-labd-14-ene, as identified by nuclear magnetic resonance (NMR) analysis, manoyl oxide and miltiradiene. MvELS fills a central position in the biosynthetic system that forms the foundation for the diverse repertoire of Marrubium diterpenoids. Co-expression of MvCPS1 and MvELS in engineered E. coli and Nicotiana benthamiana offers opportunities for producing precursors for an array of biologically active diterpenoids.

  2. Accommodation of GDP-Linked Sugars in the Active Site of GDP-Perosamine Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Paul D.; Carney, Amanda E.; Holden, Hazel M. (UW)

    2009-01-12

    Perosamine (4-amino-4,6-dideoxy-d-mannose), or its N-acetylated form, is one of several dideoxy sugars found in the O-antigens of such infamous Gram-negative bacteria as Vibrio cholerae O1 and Escherichia coli O157:H7. It is added to the bacterial O-antigen via a nucleotide-linked version, namely GDP-perosamine. Three enzymes are required for the biosynthesis of GDP-perosamine starting from mannose 1-phosphate. The focus of this investigation is GDP-perosamine synthase from Caulobacter crescentus, which catalyzes the final step in GDP-perosamine synthesis, the conversion of GDP-4-keto-6-deoxymannose to GDP-perosamine. The enzyme is PLP-dependent and belongs to the aspartate aminotransferase superfamily. It contains the typically conserved active site lysine residue, which forms a Schiff base with the PLP cofactor. Two crystal structures were determined for this investigation: a site-directed mutant protein (K186A) complexed with GDP-perosamine and the wild-type enzyme complexed with an unnatural ligand, GDP-3-deoxyperosamine. These structures, determined to 1.6 and 1.7 {angstrom} resolution, respectively, revealed the manner in which products, and presumably substrates, are accommodated within the active site pocket of GDP-perosamine synthase. Additional kinetic analyses using both the natural and unnatural substrates revealed that the K{sub m} for the unnatural substrate was unperturbed relative to that of the natural substrate, but the k{sub cat} was lowered by a factor of approximately 200. Taken together, these studies shed light on why GDP-perosamine synthase functions as an aminotransferase whereas another very similar PLP-dependent enzyme, GDP-4-keto-6-deoxy-d-mannose 3-dehydratase or ColD, catalyzes a dehydration reaction using the same substrate.

  3. [Intensity of apoptotic processes, aconitate hydratase activity and citrate level in patients with type 2 diabetes mellitus complicated steatohepatitis under application of epifamin at basic therapy].

    Science.gov (United States)

    Popov, S S; Pashkov, A N; Agarkov, A A; Shulgin, K K

    2015-01-01

    DNA fragmentation, caspase-1 and caspase-3, aconitate hydratase (AH) activities, and citrate content have been investigated in the blood of patients with type 2 diabetes mellitus complicated by steatohepatitis. These indicators of apoptotic processes intensity and oxidative stress development were estimated after basic treatment and a combined therapy including epifamin. Before treatment DNA fragmentation blood leukocytes, decrease of AH activity and increase of caspases activities in the serum of patients were detected. Treatment with epifamin provided more pronounced changes in the investigated parameters towards control values as compared to basis therapy. Epifamin caused a positive effect on the citrate content in the serum of patients. Epifamin inclusion to the basic therapy was accompanied by a more pronounced changes towards the normal values of such biochemical parameters as ALT, AST, b-lipoproteins, cholesterol, fasting glucose and postprandial glucose levels. All these changes may be obviously attributed to epifamin-induced correction of the melatonin level and manifestation of adaptogenic properties and antioxidant effects of the hormone.

  4. Insights into the phosphatase and the synthase activities of human bisphosphoglycerate mutase: a quantum mechanics/molecular mechanics simulation.

    Science.gov (United States)

    Chu, Wen-Ting; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2014-03-07

    Bisphosphoglycerate mutase (BPGM) is a multi-activity enzyme. Its main function is to synthesize the 2,3-bisphosphoglycerate, the allosteric effector of hemoglobin. This enzyme can also catalyze the 2,3-bisphosphoglycerate to the 3-phosphoglycerate. In this study, the reaction mechanisms of both the phosphatase and the synthase activities of human bisphosphoglycerate mutase were theoretically calculated by using the quantum mechanics/molecular mechanics method based on the metadynamics and umbrella sampling simulations. The simulation results not only show the free energy curve of the phosphatase and the synthase reactions, but also reveal the important role of some residues in the active site. Additionally, the energy barriers of the two reactions indicate that the activity of the synthase in human bisphosphoglycerate mutase is much higher than that of the phosphatase. The estimated reaction barriers are consistent with the experimental data. Therefore, our work can give important information to understand the catalytic mechanism of the bisphosphoglycerate mutase family.

  5. Roles of Conserved Active Site Residues in the Ketosynthase Domain of an Assembly Line Polyketide Synthase.

    Science.gov (United States)

    Robbins, Thomas; Kapilivsky, Joshuah; Cane, David E; Khosla, Chaitan

    2016-08-16

    Ketosynthase (KS) domains of assembly line polyketide synthases (PKSs) catalyze intermodular translocation of the growing polyketide chain as well as chain elongation via decarboxylative Claisen condensation. The mechanistic roles of ten conserved residues in the KS domain of Module 1 of the 6-deoxyerythronolide B synthase were interrogated via site-directed mutagenesis and extensive biochemical analysis. Although the C211A mutant at the KS active site exhibited no turnover activity, it was still a competent methylmalonyl-ACP decarboxylase. The H346A mutant exhibited reduced rates of both chain translocation and chain elongation, with a greater effect on the latter half-reaction. H384 contributed to methylmalonyl-ACP decarboxylation, whereas K379 promoted C-C bond formation. S315 played a role in coupling decarboxylation to C-C bond formation. These findings support a mechanism for the translocation and elongation half-reactions that provides a well-defined starting point for further analysis of the key chain-building domain in assembly line PKSs.

  6. Active-site models for complexes of quinolinate synthase with substrates and intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, Erika V.; Zhang, Yang; Colabroy, Keri L.; Sanders, Jennie M.; Settembre, Ethan C.; Dorrestein, Pieter C.; Begley, Tadhg P.; Ealick, Steven E., E-mail: see3@cornell.edu [Cornell University, Ithaca, NY 14853-1301 (United States)

    2013-09-01

    Structural studies of quinolinate synthase suggest a model for the enzyme–substrate complex and an enzyme–intermediate complex with a [4Fe–4S] cluster. Quinolinate synthase (QS) catalyzes the condensation of iminoaspartate and dihydroxyacetone phosphate to form quinolinate, the universal precursor for the de novo biosynthesis of nicotinamide adenine dinucleotide. QS has been difficult to characterize owing either to instability or lack of activity when it is overexpressed and purified. Here, the structure of QS from Pyrococcus furiosus has been determined at 2.8 Å resolution. The structure is a homodimer consisting of three domains per protomer. Each domain shows the same topology with a four-stranded parallel β-sheet flanked by four α-helices, suggesting that the domains are the result of gene triplication. Biochemical studies of QS indicate that the enzyme requires a [4Fe–4S] cluster, which is lacking in this crystal structure, for full activity. The organization of domains in the protomer is distinctly different from that of a monomeric structure of QS from P. horikoshii [Sakuraba et al. (2005 ▶), J. Biol. Chem.280, 26645–26648]. The domain arrangement in P. furiosus QS may be related to protection of cysteine side chains, which are required to chelate the [4Fe–4S] cluster, prior to cluster assembly.

  7. Characterization of a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans.

    Science.gov (United States)

    He, Ping; Deng, Cong; Liu, Boyu; Zeng, LingBing; Zhao, Wei; Zhang, Yan; Jiang, XuCheng; Guo, XiaoKui; Qin, JinHong

    2013-11-01

    Alarmone Guanosine 5'-diphosphate (or 5'-triphosphate) 3'-diphosphate [(p)ppGpp] is the key component that globally regulates stringent control in bacteria. There are two homologous enzymes, RelA and SpoT in Escherichia coli, which are responsible for fluctuations in (p)ppGpp concentration inside the cell, whereas there exists only a single RelA/SpoT enzyme in Gram-positive bacteria. We have identified a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans. We show that the relLin gene (LA_3085) encodes a protein that fully complements the relA/spoT double mutants in E. coli. The protein functions as a (p)ppGpp degradase as well as a (p)ppGpp synthase when the cells encounter amino acid stress and deprivation of carbon sources. N-terminus HD and RSD domains of relLin (relLinN ) were observed to restore growth of double mutants of E. coli. Finally, We demonstrate that purified RelLin and RelLinN show high (p)ppGpp synthesis activity in vitro. Taken together, our results suggest that L. interrogans contain a single Rel-like bifunctional protein, RelLin , which plays an important role in maintaining the basal level of (p)ppGpp in the cell potentially contributing to the regulation of bacterial stress response.

  8. Human gene encoding prostacyclin synthase (PTGIS): Genomic organization, chromosomal localization, and promoter activity

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Chieko; Yabuki, Tomoko; Inoue, Hiroyasu [National Cardiovascular Center Research Institute, Osaka (Japan)] [and others

    1996-09-01

    The prostacyclin synthase gene isolated from human genomic libraries (PTGIS) consists of 10 exons spanning approximately 60 kb. All the splice donor and acceptor sites conform to the GT/AG rule. Genomic Southern blot and fluorescence in situ hybridization analyses revealed that the human prostacyclin synthase gene is present as a single copy per haploid genome and is localized on chromosome 20q13.11-q13.13. The 1.5-kb sequence of the 5{prime} of the translational initiation site contained both GC-rich and pyrimidine-rich regions and consensus sequences of the transcription factor recognition sites such as Sp1, AP-2, the interferon-{gamma} response element, GATA, NF-{kappa}B, the CACCC box, and the glucocorticoid response element. The core binding sequence (GAGACC) of the shear stress responsive element was also found in the 5{prime}-flanking region of the gene. The major product of the primer extension analysis suggested that the transcription of the gene started from the positions around 49 bp upstream of the translational initiation codon. Transient transfection experiments using human aortic and bovine arterial endothelial cells demonstrated that the GC-rich region (positions -145 to -10) possessed a significant promoter activity. The 6-kb downstream sequence of the translational termination codon contained multiple polyadenylation signals, Alu repeat sequences, and the consensus sequence of the primate-repetitive DNA element, MER1. Two sizes of the prostacyclin synthase mRNAs (approximately 6 and 3.3 kb) were detected with the human aorta and lung. RNA blot hybridization analysis using the 3{prime}-untranslated region as probe indicated that the sizes of the 3{prime}-flanking regions were different in the major 6-kb and minor 3.3-kb mRNAs. 54 refs., 7 figs.

  9. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil

    Science.gov (United States)

    Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Molina, Daniel Martinez; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär

    2016-03-01

    Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery.

  10. Expression patterns, activities and carbohydrate-metabolizing regulation of sucrose phosphate synthase, sucrose synthase and neutral invertase in pineapple fruit during development and ripening.

    Science.gov (United States)

    Zhang, Xiu-Mei; Wang, Wei; Du, Li-Qing; Xie, Jiang-Hui; Yao, Yan-Li; Sun, Guang-Ming

    2012-01-01

    Differences in carbohydrate contents and metabolizing-enzyme activities were monitored in apical, medial, basal and core sections of pineapple (Ananas comosus cv. Comte de paris) during fruit development and ripening. Fructose and glucose of various sections in nearly equal amounts were the predominant sugars in the fruitlets, and had obvious differences until the fruit matured. The large rise of sucrose/hexose was accompanied by dramatic changes in sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities. By contrast, neutral invertase (NI) activity may provide a mechanism to increase fruit sink strength by increasing hexose concentrations. Furthermore, two cDNAs of Ac-sps (accession no. GQ996582) and Ac-ni (accession no. GQ996581) were first isolated from pineapple fruits utilizing conserved amino-acid sequences. Homology alignment reveals that the amino acid sequences contain some conserved function domains. Transcription expression analysis of Ac-sps, Ac-susy and Ac-ni also indicated distinct patterns related to sugar accumulation and composition of pineapple fruits. It suggests that differential expressions of multiple gene families are necessary for sugar metabolism in various parts and developmental stages of pineapple fruit. A cycle of sucrose breakdown in the cytosol of sink tissues could be mediated through both Ac-SuSy and Ac-NI, and Ac-NI could be involved in regulating crucial steps by generating sugar signals to the cells in a temporally and spatially restricted fashion.

  11. Gastrointestinal citrate absorption in nephrolithiasis

    Science.gov (United States)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  12. Pronounced between-subject and circadian variability in thymidylate synthase and dihydropyrimidine dehydrogenase enzyme activity in human volunteers

    NARCIS (Netherlands)

    Jacobs, Bart A W; Deenen, Maarten J; Pluim, Dick; van Hasselt, J G Coen; Krähenbühl, Martin D; van Geel, Robin M J M; de Vries, Niels; Rosing, Hilde; Meulendijks, Didier; Burylo, Artur M; Cats, Annemieke; Beijnen, Jos H; Huitema, Alwin D R; Schellens, Jan H M

    2016-01-01

    AIMS: The enzymatic activity of dihydropyrimidine dehydrogenase (DPD) and thymidylate synthase (TS) are important for the tolerability and efficacy of the fluoropyrimidine drugs. In the present study, we explored between-subject variability (BSV) and circadian rhythmicity in DPD and TS activity in h

  13. Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: similar activity but difference in subcellular localization

    NARCIS (Netherlands)

    Dong, L.; Miettinen, K.; Verstappen, F.W.A.; Voster, A.; Jongsma, M.A.; Memelink, J.; Krol, van der S.; Bouwmeester, H.J.

    2013-01-01

    Two geraniol synthases (GES), from Valeriana officinalis (VoGES) and Lippia dulcis (LdGES), were isolated and were shown to have geraniol biosynthetic activity with Km values of 32 µM and 51 µM for GPP, respectively, upon expression in Escherichia coli. The in planta enzymatic activity and sub-cellu

  14. Cloning, expression and functional activity of deoxyhypusine synthase from Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Nassar Marwa

    2006-10-01

    Full Text Available Abstract Background Plasmodium vivax is the most widespread human malaria parasite. However, genetic information about its pathogenesis is limited at present, due to the lack of a reproducible in vitro cultivation method. Sequencing of the Plasmodium vivax genome suggested the presence of a homolog of deoxyhypusine synthase (DHS from P. falciparum, the key regulatory enzyme in the first committed step of hypusine biosynthesis. DHS is involved in cell proliferation, and thus a valuable drug target for the human malaria parasite P. falciparum. A comparison of the enzymatic properties of the DHS enzymes between the benign and severe Plasmodium species should contribute to our understanding of the differences in pathogenicity and phylogeny of both malaria parasites. Results We describe the cloning of a 1368 bp putative deoxyhypusine synthase gene (dhs sequence from genomic DNA of P. vivax PEST strain Salvador I (Accession number AJ549098 after touchdown PCR. The corresponding protein was expressed and functionally characterized as deoxyhypusine synthase by determination of its specific activity and cross-reactivity to human DHS on a Western blot. The putative DHS protein from P. vivax displays a FASTA score of 75 relative to DHS from rodent malaria parasite, P. yoelii, and 74 relative to that from the human parasite, P. falciparum strain 3D7. The ORF encoding 456 amino acids was expressed under control of IPTG-inducible T7 promoter, and expressed as a protein of approximately 50 kDa (theoretically 52.7 kDa in E. coli BL21 DE3 cells. The N-terminal histidine-tagged protein was purified by Nickel-chelate affinity chromatography under denaturing conditions. DHS with a theoretical pI of 6.0 was present in both eluate fractions. The specific enzymatic activity of DHS was determined as 1268 U/mg protein. The inhibitor, N-guanyl-1, 7-diaminoheptane (GC7, suppressed specific activity by 36-fold. Western blot analysis performed with a polyclonal anti

  15. Unfolded protein response activates glycogen synthase kinase-3 via selective lysosomal degradation.

    Science.gov (United States)

    Nijholt, Diana A T; Nölle, Anna; van Haastert, Elise S; Edelijn, Hessel; Toonen, Ruud F; Hoozemans, Jeroen J M; Scheper, Wiep

    2013-07-01

    The unfolded protein response (UPR) is a stress response that is activated upon disturbed homeostasis in the endoplasmic reticulum. In Alzheimer's disease, as well as in other tauopathies, the UPR is activated in neurons that contain early tau pathology. A recent genome-wide association study identified genetic variation in a UPR transducer as a risk factor for tauopathy, supporting a functional connection between UPR activation and tau pathology. Here we show that UPR activation increases the activity of the major tau kinase glycogen synthase kinase (GSK)-3 in vitro via a selective removal of inactive GSK-3 phosphorylated at Ser(21/9). We demonstrate that this is mediated by the autophagy/lysosomal pathway. In brain tissue from patients with different tauopathies, lysosomal accumulations of pSer(21/9) GSK-3 are found in neurons with markers for UPR activation. Our data indicate that UPR activation increases the activity of GSK-3 by a novel mechanism, the lysosomal degradation of the inactive pSer(21/9) GSK-3. This may provide a functional explanation for the close association between UPR activation and early tau pathology in neurodegenerative diseases.

  16. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  17. Artificial citrate operon and Vitreoscilla hemoglobin gene enhanced mineral phosphate solubilizing ability of Enterobacter hormaechei DHRSS.

    Science.gov (United States)

    Yadav, Kavita; Kumar, Chanchal; Archana, G; Kumar, G Naresh

    2014-10-01

    Mineral phosphate solubilization by bacteria is mediated through secretion of organic acids, among which citrate is one of the most effective. To overproduce citrate in bacterial systems, an artificial citrate operon comprising of genes encoding NADH-insensitive citrate synthase of E. coli and Salmonella typhimurium sodium-dependent citrate transporter was constructed. In order to improve its mineral phosphate solubilizing (MPS) ability, the citrate operon was incorporated into E. hormaechei DHRSS. The artificial citrate operon transformant secreted 7.2 mM citric acid whereas in the native strain, it was undetectable. The transformant released 0.82 mM phosphate in flask studies in buffered medium containing rock phosphate as sole P source. In fermenter studies, similar phenotype was observed under aerobic conditions. However, under microaerobic conditions, no citrate was detected and P release was not observed. Therefore, an artificial citrate gene cluster containing Vitreoscilla hemoglobin (vgb) gene under its native promoter, along with artificial citrate operon under constitutive tac promoter, was constructed and transformed into E. hormaechei DHRSS. This transformant secreted 9 mM citric acid under microaerobic conditions and released 1.0 mM P. Thus, incorporation of citrate operon along with vgb gene improves MPS ability of E. hormaechei DHRSS under buffered, microaerobic conditions mimicking rhizospheric environment.

  18. Regulation of sucrose synthase activity and sugar yield by nitrogen in sugar beet

    Institute of Scientific and Technical Information of China (English)

    LI Caifeng; MA Fengming; LI Wenhua; WANG Rui; CHEN Shengyong; LUO Yu

    2007-01-01

    The content of sugar is influenced by sucrose synthase (SS) activity in roots. The effects of nitrogen level in the aminonitrate ratio on SS activity of leaves and roots, roots yield and sugar content in sugar beet were studied in the field experiment by nutrient solution culture. The results showed that SS activity in leaves was lower than that in roots. With nitrogen level increasing,SS decomposition activity enhanced, and synthesis activity reduced. SS activity was regulated by different nitrogen forms and the ratio of NO3- and NH4+. SS synthesis activity was enhanced as NH4+ increasing when NO3-: NH4+≥ 1, and it decreased as increasing NH4+ when NO3-: NH4+≤1, and it was the highest when NO3-: NH4+=1. SS decomposition activity was enhanced as NO3- increasing.Sucrose content in root was lowed as nitrogen level increasing, but it was enhanced as NH4+ increasing in the same nitrogen level.Root and sugar yield were the highest in the medium nitrogen level and NO3-: NH4+=1. The result in field experiment corresponded with that in the nutrient fluid culture. It provides a basis for using reasonably nitrogen fertilizer in sugar beet production.

  19. Structure and activity of NO synthase inhibitors specific to the L-arginine binding site.

    Science.gov (United States)

    Proskuryakov, S Ya; Konoplyannikov, A G; Skvortsov, V G; Mandrugin, A A; Fedoseev, V M

    2005-01-01

    Synthesis of compounds containing a fragment similar to the guanidine group of L-arginine, which is a substrate of nitric oxide synthase (NOS), is the main direction in creating NOS inhibitors. The inhibitory effect of such compounds is caused not only by their competition with the substrate for the L-arginine-binding site and/or oxidizing center of the enzyme (heme) but also by interaction with peptide motifs of the enzyme that influence its dimerization, affinity for cofactors, and interaction with associated proteins. Structures, activities, and relative in vitro and in vivo specificities of various NOS inhibitors (amino acid and non-amino acid) with linear or cyclic structure and containing guanidine, amidine, or isothiuronium group are considered. These properties are mainly analyzed by comparison with effects of the inhibitors on the inducible NOS.

  20. Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia.

    Science.gov (United States)

    Podstolski, Andrzej; Havkin-Frenkel, Daphna; Malinowski, Jacek; Blount, Jack W; Kourteva, Galina; Dixon, Richard A

    2002-11-01

    Tissue cultures of the vanilla orchid, Vanilla planifolia, produce the flavor compound vanillin (4-hydroxy-3-methoxybenzaldehyde) and vanillin precursors such as 4-hydroxybenzaldehyde. A constitutively expressed enzyme activity catalyzing chain shortening of a hydroxycinnamic acid, believed to be the first reaction specific for formation of vanilla flavor compounds, was identified in these cultures. The enzyme converts 4-coumaric acid non-oxidatively to 4-hydroxybenzaldehyde in the presence of a thiol reagent but with no co-factor requirement. Several forms of this 4-hydroxybenzaldehyde synthase (4HBS) were resolved and partially purified by a combination of hydrophobic interaction, ion exchange and gel filtration chromatography. These forms appear to be interconvertible. The unusual properties of the 4HBS, and its appearance in different protein fractions, raise questions as to its physiological role in vanillin biosynthesis in vivo.

  1. Mechanical Control of ATP Synthase Function: Activation Energy Difference between Tight and Loose Binding Sites

    KAUST Repository

    Beke-Somfai, Tamás

    2010-01-26

    Despite exhaustive chemical and crystal structure studies, the mechanistic details of how FoF1-ATP synthase can convert mechanical energy to chemical, producing ATP, are still not fully understood. On the basis of quantum mechanical calculations using a recent highresolution X-ray structure, we conclude that formation of the P-O bond may be achieved through a transition state (TS) with a planar PO3 - ion. Surprisingly, there is a more than 40 kJ/mol difference between barrier heights of the loose and tight binding sites of the enzyme. This indicates that even a relatively small change in active site conformation, induced by the γ-subunit rotation, may effectively block the back reaction in βTP and, thus, promote ATP. © 2009 American Chemical Society.

  2. A connecting hinge represses the activity of endothelial nitric oxide synthase.

    Science.gov (United States)

    Haque, Mohammad Mahfuzul; Panda, Koustubh; Tejero, Jesús; Aulak, Kulwant S; Fadlalla, Mohammed Adam; Mustovich, Anthony T; Stuehr, Dennis J

    2007-05-29

    In mammals, endothelial nitric oxide synthase (eNOS) has the weakest activity, being one-tenth and one-sixth as active as the inducible NOS (iNOS) and the neuronal NOS (nNOS), respectively. The basis for this weak activity is unclear. We hypothesized that a hinge element that connects the FMN module in the reductase domain but is shorter and of unique composition in eNOS may be involved. To test this hypothesis, we generated an eNOS chimera that contained the nNOS hinge and two mutants that either eliminated (P728IeNOS) or incorporated (I958PnNOS) a proline residue unique to the eNOS hinge. Incorporating the nNOS hinge into eNOS increased NO synthesis activity 4-fold, to an activity two-thirds that of nNOS. It also decreased uncoupled NADPH oxidation, increased the apparent K(m)O(2) for NO synthesis, and caused a faster heme reduction. Eliminating the hinge proline had similar, but lesser, effects. Our findings reveal that the hinge is an important regulator and show that differences in its composition restrict the activity of eNOS relative to other NOS enzymes.

  3. Inhibition of muscle glycogen synthase activity and non-oxidative glucose disposal during hypoglycaemia in normal man

    DEFF Research Database (Denmark)

    Ørskov, Lotte; Bak, Jens Friis; Abildgaard, Ulrik

    1996-01-01

    The purpose of the present study was to evaluate the role of muscle glycogen synthase activity in the reduction of glucose uptake during hypoglycaemia. Six healthy young men were examined twice; during 120 min of hyperinsulinaemic (1.5 mU.kg-1. min-1) euglycaemia followed by: 1)240 min of graded ...

  4. Redox and metal-regulated oligomeric state for human porphobilinogen synthase activation.

    Science.gov (United States)

    Sawada, N; Nagahara, N; Arisaka, F; Mitsuoka, K; Minami, M

    2011-06-01

    The oligomeric state of human porphobilinogen synthase (PBGS) [EC.4.2.1.24] is homooctamer, which consists of conformationally heterogenous subunits in the tertiary structure under air-saturated conditions. When PBGS is activated by reducing agent with zinc ion, a reservoir zinc ion coordinated by Cys(223) is transferred in the active center to be coordinated by Cys(122), Cys(124), and Cys(132) (Sawada et al. in J Biol Inorg Chem 10:199-207, 2005). The latter zinc ion serves as an electrophilic catalysis. In this study, we investigated a conformational change associated with the PBGS activation by reducing agent and zinc ion using analytical ultracentrifugation, negative staining electron microscopy, native PAGE, and enzyme activity staining. The results are in good agreement with our notion that the main component of PBGS is octamer with a few percent of hexamer and that the octamer changes spatial subunit arrangement upon reduction and further addition of zinc ion, accompanying decrease in f/f (0). It is concluded that redox-regulated PBGS activation via cleavage of disulfide bonds among Cys(122), Cys(124), and Cys(132) and coordination with zinc ion is closely linked to change in the oligomeric state.

  5. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    Directory of Open Access Journals (Sweden)

    Hoseok Choi

    2016-04-01

    Full Text Available Assaying the glycogen synthase kinase-3 (GSK3 activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts.

  6. Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase.

    Science.gov (United States)

    Lee, Yu-Ting; Cui, Chang-Jun; Chow, Eve W L; Pue, Nason; Lonhienne, Thierry; Wang, Jian-Guo; Fraser, James A; Guddat, Luke W

    2013-01-10

    The sulfonylurea herbicides exert their activity by inhibiting plant acetohydroxyacid synthase (AHAS), the first enzyme in the branched-chain amino acid biosynthesis pathway. It has previously been shown that if the gene for AHAS is deleted in Candida albicans , attenuation of virulence is achieved, suggesting AHAS as an antifungal drug target. Herein, we have cloned, expressed, and purified C. albicans AHAS and shown that several sulfonylureas are inhibitors of this enzyme and possess antifungal activity. The most potent of these compounds is ethyl 2-(N-((4-iodo-6-methoxypyrimidin-2-yl)carbamoyl)sulfamoyl)benzoate (10c), which has a K(i) value of 3.8 nM for C. albicans AHAS and an MIC₉₀ of 0.7 μg/mL for this fungus in cell-based assays. For the sulfonylureas tested there was a strong correlation between inhibitory activity toward C. albicans AHAS and fungicidal activity, supporting the hypothesis that AHAS is the target for their inhibitory activity within the cell.

  7. Domain swapping of Citrus limon monoterpene synthases: impact on enzymatic activity and product specifity.

    NARCIS (Netherlands)

    Tamer, el M.K.; Lucker, J.; Bosch, D.; Verhoeven, H.A.; Verstappen, F.W.A.; Schwab, W.; Tunen, van A.J.; Voragen, A.G.J.; Maagd, de R.A.; Bouwmeester, H.J.

    2003-01-01

    Monoterpene cyclases are the key enzymes in the monoterpene biosynthetic pathway, as they catalyze the cyclization of the ubiquitous geranyl diphosphate (GDP) to the specific monoterpene skeletons. From Citrus limon, four monoterpene synthase-encoding cDNAs for a P-pinene synthase named Cl(-)betaPIN

  8. Cloning and Expression Analysis of Citrate Synthase Gene (MbCS1) in Apple (Malus baccata Borkh)%苹果属山定子柠檬酸合成酶基因(MbCS1)的克隆及表达分析

    Institute of Scientific and Technical Information of China (English)

    张柳霞; 王忆; 朱斌; 王少甲; 张新忠; 许雪峰; 韩振海

    2012-01-01

    为了研究不同铁效率基因型苹果砧木铁吸收利用的分子机理,本研究以铁低效基因型山定子(Malus baccata Borkh)为试材,根据实验室从铁高效基因型小金海棠(Malus xiaojinensis)克隆到与铁运输相关的基因柠檬酸合成酶基因(MxCS1)的全长序列设计特异引物,通过RT-PCR方法从山定子cDNA中克隆到柠檬酸合成酶基因CS,基因全长为1 422 bp,与金冠(Malus domestica Borkh cv.Golden Delicious)、小金海棠中的CS基因具有较高的同源性,将该基因命名为MbCS1 (GenBank登录号:JQ898346).利用生物信息学软件对山定子柠檬酸合成酶基因(MbCS1)进行预测分析,结果显示该基因预测编码473个氨基酸,相对分子量为54.26 kD,理论等电点为8.95.亚细胞定位显示MbCS1蛋白定位在细胞膜上.半定量RT-PCR及Real-time PCR分析均表明,正常供铁时,该基因在山定子的根、茎、新叶中都有表达;缺铁处理(EDTA-NaFe,4μmol/L)时,该基因在根、茎和新叶中的表达加强,第9天达到最高值,之后开始下降;但各检测器官中表达增强的程度不同,其中茎中受缺铁诱导表达最明显.与小金海棠中MxCS1基因的表达趋势有明显的差别.本研究为高等植物抗性机理的深入研究以及铁低效资源型砧木资源的改良提供了基础资料.%In order to study the iron absorption and utilization molecular mechanism of different Fe efficiency genotypes apple rootstocks, we used the Malus baccata Borkh as material, which is an iron-inefficient genotype apple rootstock. Through the full-length of citrate synthase gene MxCSl was obtained from M. Xiaojinensis, which is an iron-efficient the gene encoding citrate synthase in Golden Delicious (M. Domestica Borkh ) and M. Xiaojinensis, thus we designated it as MbCS1 (GenBank accession No. JQ898346). The bioinformatics analysis showed that citrate synthase gene from M. Baccata Borkh encoded 473 amino acids, whose relative molecular weight was

  9. Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle.

    Science.gov (United States)

    Traaseth, Nathaniel; Elfering, Sarah; Solien, Joseph; Haynes, Virginia; Giulivi, Cecilia

    2004-07-23

    An apparent discrepancy arises about the role of calcium on the rates of oxygen consumption by mitochondria: mitochondrial calcium increases the rate of oxygen consumption because of the activation of calcium-activated dehydrogenases, and by activating mitochondrial nitric oxide synthase (mtNOS), decreases the rates of oxygen consumption because nitric oxide is a competitive inhibitor of cytochrome oxidase. To this end, the rates of oxygen consumption and nitric oxide production were followed in isolated rat liver mitochondria in the presence of either L-Arg (to sustain a mtNOS activity) or N(G)-monomethyl-L-Arg (NMMA, a competitive inhibitor of mtNOS) under State 3 conditions. In the presence of NMMA, the rates of State 3 oxygen consumption exhibited a K(0.5) of 0.16 microM intramitochondrial free calcium, agreeing with those required for the activation of the Krebs cycle. By plotting the difference between the rates of oxygen consumption in State 3 with L-Arg and with NMMA at various calcium concentrations, a K(0.5) of 1.2 microM intramitochondrial free calcium was obtained, similar to the K(0.5) (0.9 microM) of the dependence of the rate of nitric oxide production on calcium concentrations. The activation of dehydrogenases, followed by the activation of mtNOS, would lead to the modulation of the Krebs cycle activity by the modulation of nitric oxide on the respiratory rates. This would ensue in changes in the NADH/NAD and ATP/ADP ratios, which would influence the rate of the cycle and the oxygen diffusion.

  10. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang; Kun Yan Zhu

    2013-01-01

    Chitin synthase (CHS) is an important enzyme catalyzing the formation of chitin polymers in all chitin containing organisms and a potential target site for insect pest control.However,our understanding of biochemical properties of insect CHSs has been very limited.We here report enzymatic and inhibitory properties of CHS prepared from the African malaria mosquito,Anopheles gambiae.Our study,which represents the first time to use a nonradioactive method to assay CHS activity in an insect species,determined the optimal conditions for measuring the enzyme activity,including pH,temperature,and concentrations of the substrate uridine diphosphate N-acetyl-D-glucosamine (UDPGlcNAc) and Mg++.The optimal pH was about 6.5-7.0,and the highest activity was detected at temperatures between 37℃ and 44℃.Dithithreitol is required to prevent melanization of the enzyme extract.CHS activity was enhanced at low concentration of GlcNAc,but inhibited at high concentrations.Proteolytic activation of the activity is significant both in the 500×g supernatant and the 40 000×g pellet.Our study revealed only slight in vitro inhibition ofA.gambiae CHS activity by diflubenzuron and nikkomycin Z at the highest concentration (2.5μmol/L) examined.There was no in vitro inhibition by polyoxin D at any concentration examined.Furthermore,we did not observe any in vivo inhibition of CHS activity by any of these chemicals at any concentration examined.Our results suggest that the inhibition of chitin synthesis by these chemicals is not due to direct inhibition of CHS in A.gambiae.

  11. NMR crystallography of enzyme active sites: probing chemically detailed, three-dimensional structure in tryptophan synthase.

    Science.gov (United States)

    Mueller, Leonard J; Dunn, Michael F

    2013-09-17

    NMR crystallography applied to enzyme catalysis. We begin with a brief introduction to NMR crystallography and then define the process that we have employed to probe the active site in the β-subunit of tryptophan synthase with unprecedented atomic-level resolution. This approach has resulted in a novel structural hypothesis for the protonation state of the quinonoid intermediate in tryptophan synthase and its surprising role in directing the next step in the catalysis of L-Trp formation.

  12. Activation of Phosphotyrosine Phosphatase Activity Attenuates Mitogen-Activated Protein Kinase Signaling and Inhibits c-FOS and Nitric Oxide Synthase Expression in Macrophages Infected with Leishmania donovani

    OpenAIRE

    Nandan, Devki; Lo, Raymond; Reiner, Neil E

    1999-01-01

    Intracellular protozoan parasites of the genus Leishmania antagonize host defense mechanisms by interfering with cell signaling in macrophages. In this report, the impact of Leishmania donovani on mitogen-activated protein (MAP) kinases and nitric oxide synthase (NOS) expression in the macrophage cell line RAW 264 was investigated. Overnight infection of cells with leishmania led to a significant decrease in phorbol-12-myristate-13-acetate (PMA)-stimulated MAP kinase activity and inhibited PM...

  13. Production of functionally active Penicillium chrysogenum isopenicillin N synthase in the yeast Hansenula polymorpha

    Directory of Open Access Journals (Sweden)

    Veenhuis Marten

    2008-03-01

    Full Text Available Abstract Background β-Lactams like penicillin and cephalosporin are among the oldest known antibiotics used against bacterial infections. Industrially, penicillin is produced by the filamentous fungus Penicillium chrysogenum. Our goal is to introduce the entire penicillin biosynthesis pathway into the methylotrophic yeast Hansenula polymorpha. Yeast species have the advantage of being versatile, easy to handle and cultivate, and possess superior fermentation properties relative to filamentous fungi. One of the fundamental challenges is to produce functionally active enzyme in H. polymorpha. Results The P. chrysogenum pcbC gene encoding isopenicillin N synthase (IPNS was successfully expressed in H. polymorpha, but the protein produced was unstable and inactive when the host was grown at its optimal growth temperature (37°C. Heterologously produced IPNS protein levels were enhanced when the cultivation temperature was lowered to either 25°C or 30°C. Furthermore, IPNS produced at these lower cultivation temperatures was functionally active. Localization experiments demonstrated that, like in P. chrysogenum, in H. polymorpha IPNS is located in the cytosol. Conclusion In P. chrysogenum, the enzymes involved in penicillin production are compartmentalized in the cytosol and in microbodies. In this study, we focus on the cytosolic enzyme IPNS. Our data show that high amounts of functionally active IPNS enzyme can be produced in the heterologous host during cultivation at 25°C, the optimal growth temperature for P. chrysogenum. This is a new step forward in the metabolic reprogramming of H. polymorpha to produce penicillin.

  14. Ammonium assimilation by Candida albicans and other yeasts: evidence for activity of glutamate synthase.

    Science.gov (United States)

    Holmes, A R; Collings, A; Farnden, K J; Shepherd, M G

    1989-06-01

    Activities and properties of the ammonium assimilation enzymes NADP+-dependent glutamate dehydrogenase (GDH), glutamate synthase (GOGAT) and glutamine synthetase (GS) were determined in batch and continuous cultures of Candida albicans. NADP+-dependent GDH activity showed allosteric kinetics, with an S0.5 for 2-oxoglutarate of 7.5 mM and an apparent Km for ammonium of 5.0 mM. GOGAT activity was affected by the buffer used for extraction and assay, but in phosphate buffer, kinetics were hyperbolic, yielding Km values for glutamine of 750 microM and for 2-oxoglutarate of 65 microM. The enzymes GOGAT and NADP+-dependent GDH were also assayed in batch cultures of Saccharomyces cerevisiae and three other pathogenic Candida spp.: Candida tropicalis, Candida pseudotropicalis and Candida parapsilosis. Evidence is presented that GS/GOGAT is a major pathway for ammonium assimilation in Candida albicans and that this pathway is also significant in other Candida species.

  15. Elevation in sphingomyelin synthase activity is associated with increases in amyloid-beta peptide generation.

    Directory of Open Access Journals (Sweden)

    Jen-Hsiang T Hsiao

    Full Text Available A pathological hallmark of Alzheimer's disease (AD is the presence of amyloid-beta peptide (Aβ plaques in the brain. Aβ is derived from a sequential proteolysis of the transmenbrane amyloid precursor protein (APP, a process which is dependent on the distribution of lipids present in the plasma membrane. Sphingomyelin is a major membrane lipid, however its role in APP processing is unclear. Here, we assessed the expression of sphingomyelin synthase (SGMS1; the gene responsible for sphingomyelin synthesis in human brain and found that it was significantly elevated in the hippocampus of AD brains, but not in the cerebellum. Secondly, we assessed the impact of altering SGMS activity on Aβ generation. Inhibition of SGMS activity significantly reduced the level of Aβ in a dose- and time dependent manner. The decrease in Aβ level occurred without changes in APP expression or cell viability. These results when put together indicate that SGMS activity impacts on APP processing to produce Aβ and it could be a contributing factor in Aβ pathology associated with AD.

  16. Antioxidant and nitric oxide synthase activation properties of water soluble polysaccharides from Pleurotus florida

    Directory of Open Access Journals (Sweden)

    Subarna Saha

    2013-01-01

    Full Text Available Context: Cellular damage caused by reactive oxygen species has been implicated in several diseases, and, at the same time, nitric oxide is recognized as an important messenger molecule for several pathophysiological conditions. Hence, a novel antioxidant and nitric oxide synthase (NOS activator from natural sources have significant importance in human health. Aims: The present study was conducted to evaluate the free radical-scavenging activity and NOS activation properties of water-soluble crude polysaccharide (Floridan from Pleurotus florida. Materials and Methods: Crude polysaccharide was precipitated from hot water extract of P. florida, and their physicochemical parameters were determined. Then, α and β glucan were estimated using mushroom and yeast β glucan assay kit and Fourier transform infrared spectroscopy (FT-IR. Floridan was analyzed for their free radical scavenging activity in different test systems, namely hydroxyl and superoxide radical scavenging activity, ferrous ion chelating ability, determination of reducing power and inhibition of lipid peroxidation. Floridan was also tested for NOS activation using oxyhaemoglobin method. Statistical Analysis: The results were statistically analyzed using the Student′s t-test. Results: Results showed that Floridan was rich in water-soluble β glucan with very low amount of protein and phenols. The EC 50 for hydroxyl and superoxide radical-scavenging activity were 140 and 320 μg/ml, respectively, 450 μg/ml for chelating ability, 300 μg/ml for inhibition of lipid peroxidation and 2 mg/ml for reducing power. Floridan also increased nitric oxide production significantly. Conclusions: The present results revealed that this mushroom polysaccharide may be utilized as a promising dietary supplement to combat several killer diseases.

  17. Inhibition of the ATPase activity of the catalytic portion of ATP synthases by cationic amphiphiles.

    Science.gov (United States)

    Datiles, Manuel J; Johnson, Eric A; McCarty, Richard E

    2008-04-01

    Melittin, a cationic, amphiphilic polypeptide, has been reported to inhibit the ATPase activity of the catalytic portions of the mitochondrial (MF1) and chloroplast (CF1) ATP synthases. Gledhill and Walker [J.R. Gledhill, J.E. Walker. Inhibition sites in F1-ATPase from bovine heart mitochondria, Biochem. J. 386 (2005) 591-598.] suggested that melittin bound to the same site on MF1 as IF1, the endogenous inhibitor polypeptide. We have studied the inhibition of the ATPase activity of CF1 and of F1 from Escherichia coli (ECF1) by melittin and the cationic detergent, cetyltrimethylammonium bromide (CTAB). The Ca2+- and Mg2+-ATPase activities of CF1 deficient in its inhibitory epsilon subunit (CF1-epsilon) are sensitive to inhibition by melittin and by CTAB. The inhibition of Ca2+-ATPase activity by CTAB is irreversible. The Ca2+-ATPase activity of F1 from E. coli (ECF1) is inhibited by melittin and the detergent, but Mg2+-ATPase activity is much less sensitive to both reagents. The addition of CTAB or melittin to a solution of CF1-epsilon or ECF1 caused a large increase in the fluorescence of the hydrophobic probe, N-phenyl-1-naphthylamine, indicating that the detergent and melittin cause at least partial dissociation of the enzymes. ATP partially protects CF1-epsilon from inhibition by CTAB. We also show that ATP can cause the aggregation of melittin. This result complicates the interpretation of experiments in which ATP is shown to protect enzyme activity from inhibition by melittin. It is concluded that melittin and CTAB cause at least partial dissociation of the alpha/beta heterohexamer.

  18. Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats.

    Science.gov (United States)

    Zhang, Cheng-Xi; Pan, Si-Nian; Meng, Rong-Sen; Peng, Chao-Quan; Xiong, Zhao-Jun; Chen, Bao-Lin; Chen, Guang-Qin; Yao, Feng-Juan; Chen, Yi-Li; Ma, Yue-Dong; Dong, Yu-Gang

    2011-01-01

    1. Metformin is an activator of AMP-activated protein kinase (AMPK). Recent studies suggest that pharmacological activation of AMPK inhibits cardiac hypertrophy. In the present study, we examined whether long-term treatment with metformin could attenuate ventricular hypertrophy in a rat model. The potential involvement of nitric oxide (NO) in the effects of metformin was also investigated. 2. Ventricular hypertrophy was established in rats by transaortic constriction (TAC). Starting 1 week after the TAC procedure, rats were treated with metformin (300 mg/kg per day, p.o.), N(G)-nitro-L-arginine methyl ester (L-NAME; 50 mg/kg per day, p.o.) or both for 8 weeks prior to the assessment of haemodynamic function and cardiac hypertrophy. 3. Cultured cardiomyocytes were used to examine the effects of metformin on the AMPK-endothelial NO synthase (eNOS) pathway. Cells were exposed to angiotensin (Ang) II (10⁻⁶ mol/L) for 24 h under serum-free conditions in the presence or absence of metformin (10⁻³ mol/L), compound C (10⁻⁶ mol/L), L-NAME (10⁻⁶ mol/L) or their combination. The rate of incorporation of [³H]-leucine was determined, western blotting analyses of AMPK-eNOS, neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) were undertaken and the concentration of NO in culture media was determined. 4. Transaortic constriction resulted in significant haemodynamic dysfunction and ventricular hypertrophy. Myocardial fibrosis was also evident. Treatment with metformin improved haemodynamic function and significantly attenuated ventricular hypertrophy. Most of the effects of metformin were abolished by concomitant L-NAME treatment. L-NAME on its own had no effect on haemodynamic function and ventricular hypertrophy in TAC rats. 5. In cardiomyocytes, metformin inhibited AngII-induced protein synthesis, an effect that was suppressed by the AMPK inhibitor compound C or the eNOS inhibitor L-NAME. The improvement in cardiac structure and

  19. Cytochrome c oxidase deficiency accelerates mitochondrial apoptosis by activating ceramide synthase 6.

    Science.gov (United States)

    Schüll, S; Günther, S D; Brodesser, S; Seeger, J M; Tosetti, B; Wiegmann, K; Pongratz, C; Diaz, F; Witt, A; Andree, M; Brinkmann, K; Krönke, M; Wiesner, R J; Kashkar, H

    2015-03-12

    Although numerous pathogenic changes within the mitochondrial respiratory chain (RC) have been associated with an elevated occurrence of apoptosis within the affected tissues, the mechanistic insight into how mitochondrial dysfunction initiates apoptotic cell death is still unknown. In this study, we show that the specific alteration of the cytochrome c oxidase (COX), representing a common defect found in mitochondrial diseases, facilitates mitochondrial apoptosis in response to oxidative stress. Our data identified an increased ceramide synthase 6 (CerS6) activity as an important pro-apoptotic response to COX dysfunction induced either by chemical or genetic approaches. The elevated CerS6 activity resulted in accumulation of the pro-apoptotic C16 : 0 ceramide, which facilitates the mitochondrial apoptosis in response to oxidative stress. Accordingly, inhibition of CerS6 or its specific knockdown diminished the increased susceptibility of COX-deficient cells to oxidative stress. Our results provide new insights into how mitochondrial RC dysfunction mechanistically interferes with the apoptotic machinery. On the basis of its pivotal role in regulating cell death upon COX dysfunction, CerS6 might potentially represent a novel target for therapeutic intervention in mitochondrial diseases caused by COX dysfunction.

  20. Angiotensin II activates endothelial constitutive nitric oxide synthase via AT1 receptors.

    Science.gov (United States)

    Saito, S; Hirata, Y; Emori, T; Imai, T; Marumo, F

    1996-09-01

    To determine whether angiotensin (ANG) II, a vasoconstrictor hormone, activates constitutive nitric oxide synthase (cNOS) in endothelial cells (ECs), we investigated the cellular mechanism by which ANG II induces nitric oxide (NO) formation in cultured bovine ECs. ANG II rapidly (within 1 min) and dose-dependently (10(-9)-10(-6) M) increased nitrate/nitrite (NOx) production. This effect of ANG II was abolished by a NOS inhibitor, NG-monomethyl-L-arginine. An ANG II type 1 (AT1) receptor antagonist (DuP 753), but not an ANG II type 2 (AT2) receptor antagonist (PD 123177), dose-dependently inhibited ANG II-induced NOx production. A Ca(2+)-channel blocker (barnidipine) failed to affect ANG II-induced NOx production, whereas an intracellular Ca2+ chelator (BAPTA) and a calmodulin inhibitor (W-7) abolished NOx production induced by ANG II. A protein kinase C (PKC) inhibitor (H-7) and down-regulation of endogenous PKC after pretreatment with phorbol ester decreased NOx production stimulated by ANG II. ANG II transiently stimulated inositol 1,4,5-trisphosphate (IP3) formation, and increased cytosolic free Ca2+ concentrations; these effects were blocked by DuP 753. Our data demonstrate that ANG II stimulates NO release by activation of Ca2+/calmodulin-dependent cNOS via AT1 receptors in bovine ECs.

  1. Inhibition of nitric oxide synthase expression in activated microglia and peroxynitrite scavenging activity by Opuntia ficus indica var. saboten.

    Science.gov (United States)

    Lee, Ming Hong; Kim, Jae Yeon; Yoon, Jeong Hoon; Lim, Hyo Jin; Kim, Tae Hee; Jin, Changbae; Kwak, Wie-Jong; Han, Chang-Kyun; Ryu, Jae-Ha

    2006-09-01

    Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO-), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. A butanol fraction obtained from 50% ethanol extracts of Opuntia ficus indica var. saboten (Cactaceae) stem (SK OFB901) and its hydrolysis product (SK OFB901H) inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC50 15.9, 4.2 microg/mL, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at higher than 30 microg/mL as observed by western blot analysis and RT-PCR experiment. They also inhibited the degradation of I-kappaB-alpha in activated microglia. Moreover, they showed strong activity of peroxynitrite scavenging in a cell free bioassay system. These results imply that Opuntia ficus indica may have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity.

  2. Nitric oxide synthase activity and inhibition after neonatal hypoxia ischemia in the mouse brain.

    Science.gov (United States)

    Muramatsu, K; Sheldon, R A; Black, S M; Täuber, M; Ferriero, D M

    2000-10-28

    Despite the emergence of therapies for hypoxic-ischemic injury to the mature nervous system, there have been no proven efficacious therapies for the developing nervous system. Recent studies have shown that pharmacological blockade of neuronal nitric oxide synthase (nNOS) activity can ameliorate damage after ischemia in the mature rodent. We have previously shown that elimination of nNOS neurons, either by targeted disruption of the gene or by pharmacological depletion with intraparenchymal quisqualate, can decrease injury after hypoxia-ischemia. Using a simpler pharmacological approach, we studied the efficacy of a systemically administered NOS inhibitor, 7-nitroindazole, a relatively selective inhibitor of nNOS activity. Using multiple doses and concentrations administered after the insult, we found that there was only a trend for protection with higher doses of the drug. A significant decrease in NOS activity was seen at 18 h and 5 days in the cortex, and at 2 h and 18 h in the hippocampus after the hypoxia-ischemia. nNOS expression decreased and remained depressed for at least 18 h after the insult. When nNOS expression was normalized to MAP2 expression, a decrease was seen at 18 h in the cortex and at 2 and 18 h in the hippocampus. These data suggest that further inhibition of NOS activity at early timepoints may not provide substantial benefit. At 5 days after the insult, however, NOS activity and normalized nNOS expression returned to baseline or higher in the hippocampus, the region showing the most damage. These data suggest that delayed administration of nNOS inhibitor after hypoxic-ischemic injury might be beneficial.

  3. Effect of membrane perturbants on the activity and phase distribution of inositol phosphorylceramide synthase; development of a novel assay.

    Science.gov (United States)

    Aeed, Paul A; Sperry, Andrea E; Young, Casey L; Nagiec, Marek M; Elhammer, Ake P

    2004-07-06

    The effect of 26 different membrane-perturbing agents on the activity and phase distribution of inositol phosphorylceramide synthase (IPC synthase) activity in crude Candida albicans membranes was investigated. The nonionic detergents Triton X-100, Nonidet P-40, Brij, Tween, and octylglucoside all inactivated the enzyme. However, at moderate concentrations, the activity of the Triton X-100- and octylglucoside-solubilized material could be partially restored by inclusion of 5 mM phosphatidylinositol (PI) in the solubilization buffer. The apparent molecular mass of IPC synthase activity solubilized in 2% Triton X-100 was between 1.5 x 10(6) and 20 x 10(6) Da, while under identical conditions, octylglucoside-solubilized activity remained associated with large presumably membrane-like structures. Increased detergent concentrations produced more drastic losses of enzymatic activity. The zwitterionic detergents Empigen BB, N-dodecyl-N,N-(dimethylammonio)butyrate (DDMAB), Zwittergent 3-10, and amidosulfobetaine (ASB)-16 all appeared capable of solubilizing IPC synthase. However, these agents also inactivated the enzyme essentially irreversibly. Solubilization with lysophospholipids again resulted in drastic losses of enzymatic activity that were not restored by the inclusion of PI. Lysophosphatidylinositol also appeared to compete, to some extent, with the donor substrate phosphatidylinositol. The sterol-containing agent digitonin completely inactivated IPC synthase. By contrast, sterol-based detergents such as 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO), and taurodeoxycholate (tDOC) had little or no effect on the enzyme activity. The IPC synthase activity in C. albicans membranes remained largely intact and sedimentable at CHAPS concentrations (4%) where >90% of the phospholipids and 60% of the total proteins were extracted from the membranes. At 2.5% CHAPS, a

  4. Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Li DING; Jin ZHANG

    2012-01-01

    To investigate the effects of glucagon-like peptide-1 (GLP-1) on endothelial NO synthase (eNOS) in human umbilical vein endothelial cells (HUVECs),and elucidate whether GLP-1 receptor (GLP-1R) and GLP-1(9-36) are involved in these effects.Methods:HUVECs were used.The activity of eNOS was measured with NOS assay kit.Phosphorylated and total eNOS proteins were detected using Western blot analysis.The level of eNOS mRNA was quantified with real-time RT-PCR.Results:Incubation of HUVECs with GLP-1 (50-5000 pmol/L) for 30 min significantly increased the activity of eNOS.Incubation of HUVECs with GLP-1 (500-5000 pmol/L) for 5 or 10 min increased eNOS phosphorylated at ser-1177.Incubation with GLP-1 (5000 pmol/L) for 48 h elevated the level of eNOS protein,did not affect the level of eNOS mRNA.GLP-1R agonists exenatide and GLP-1(9-36) at the concentration of 5000 pmol/L increased the activity,phosphorylation and protein level of eNOS.GLP-1R antagonist exendin(9-39) or DPP-4 inhibitor sitagliptin,which abolished GLP-1(9-36) formation,at the concentration of 5000 pmol/L partially blocked the effects of GLP-1 on eNOS.Conclusion:GLP-1 upregulated the activity and protein expression of eNOS in HUVECs through the GLP-1R-dependent and GLP-1(9-36)-related pathways.GLP-1 may prevent or delay the formation of atherosclerosis in diabetes mellitus by improving the function of eNOS.

  5. Activation of GABA(B) receptors inhibits protein kinase B/glycogen synthase kinase 3 signaling.

    Science.gov (United States)

    Lu, Frances Fangjia; Su, Ping; Liu, Fang; Daskalakis, Zafiris J

    2012-11-28

    Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt)/glycogen synthase kinase (GSK)-3 signaling. Here we report that activation of GABA(B) receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABA(B) receptors enhances the phosphorylation of Akt (Thr-308) and enhances the phosphorylation of GSK-3α (Ser-21)/β (Ser-9) in both HEK-293T cells expressing GABA(B) receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABA(B) receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABA(B) receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  6. Activation of GABAB receptors inhibits protein kinase B /Glycogen Synthase Kinase 3 signaling

    Directory of Open Access Journals (Sweden)

    Lu Frances Fangjia

    2012-11-01

    Full Text Available Abstract Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt/glycogen synthase kinase (GSK-3 signaling. Here we report that activation of GABAB receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABAB receptors enhances the phosphorylation of Akt (Thr-308 and enhances the phosphorylation of GSK-3α (Ser-21/β (Ser-9 in both HEK-293T cells expressing GABAB receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABAB receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABAB receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  7. Activation of hypothalamic neuronal nitric oxide synthase in lithium-induced diabetes insipidus rats.

    Science.gov (United States)

    Anai, H; Ueta, Y; Serino, R; Nomura, M; Nakashima, Y; Yamashita, H

    2001-02-01

    The expression of the neuronal nitric oxide synthase (nNOS) gene in the paraventricular (PVN) and supraoptic nuclei (SON) in rats with lithium (Li)-induced polyuria was examined by using in situ hybridization histochemistry. The state of the thyroid axis in these rats was also examined by in situ hybridization histochemistry for thyrotropin-releasing hormone (TRH) and thyroid-stimulating hormone (TSH) mRNAs and radioimmunoassay for circulating thyroid hormones. Adult male Wistar rats consuming a diet that contained LiCl (60 mmol/kg) for 4 weeks developed remarkable polyuria. The urine in the Li-treated rats was hypotonic and had a large volume and low ionic concentration. The nNOS mRNA in the PVN and SON was significantly increased in the Li-treated rats in comparison with that in control. The increased levels of the nNOS mRNA in the PVN and SON were confirmed by NADPH-diaphorase histochemical staining. There were no differences of TRH mRNA in the PVN, TSH mRNA in the anterior pituitary and plasma concentrations of free T3 and free T4 between Li-treated rats and control rats. These results suggest that Li-induced diabetes insipidus may activate nNOS in the PVN and SON without change of the thyroid axis.

  8. It takes two to tango: defining an essential second active site in pyridoxal 5'-phosphate synthase.

    Directory of Open Access Journals (Sweden)

    Cyril Moccand

    Full Text Available The prevalent de novo biosynthetic pathway of vitamin B6 involves only two enzymes (Pdx1 and Pdx2 that form an ornate multisubunit complex functioning as a glutamine amidotransferase. The synthase subunit, Pdx1, utilizes ribose 5-phosphate and glyceraldehyde 3-phosphate, as well as ammonia derived from the glutaminase activity of Pdx2 to directly form the cofactor vitamer, pyridoxal 5'-phosphate. Given the fact that a single enzyme performs the majority of the chemistry behind this reaction, a complicated mechanism is anticipated. Recently, the individual steps along the reaction co-ordinate are beginning to be unraveled. In particular, the binding of the pentose substrate and the first steps of the reaction have been elucidated but it is not known if the latter part of the chemistry, involving the triose sugar, takes place in the same or a disparate site. Here, we demonstrate through the use of enzyme assays, enzyme kinetics, and mutagenesis studies that indeed a second site is involved in binding the triose sugar and moreover, is the location of the final vitamin product, pyridoxal 5'-phosphate. Furthermore, we show that product release is triggered by the presence of a PLP-dependent enzyme. Finally, we provide evidence that a single arginine residue of the C terminus of Pdx1 is responsible for coordinating co-operativity in this elaborate protein machinery.

  9. Enhanced glycogen synthase kinase-3β activity mediates podocyte apoptosis under diabetic conditions.

    Science.gov (United States)

    Paeng, Jisun; Chang, Jae Hyun; Lee, Sun Ha; Nam, Bo Young; Kang, Hye-Young; Kim, Seonghun; Oh, Hyung Jung; Park, Jung Tak; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook

    2014-12-01

    Glycogen synthase kinase-3β (GSK-3β) is involved in the pathogenesis of various kidney diseases. This study was undertaken to examine the changes in GSK-3β activity in podocytes under diabetic conditions and to elucidate the functional role of GSK-3β in podocyte apoptosis. In vivo, 32 rats were injected with either diluent (n = 16, C) or with streptozotocin intraperitoneally (n = 16, DM), and 8 rats from each group were treated with 6-bromoindirubin-3'-oxime (BIO) for 3 months. In vitro, immortalized mouse podocytes were exposed to 5.6 mM glucose or 30 mM glucose (HG) with or without 10 μM BIO. Western blot analysis and TUNEL or Hoechst 33342 staining were performed to identify apoptosis. Urinary albumin excretion was significantly higher in DM rats, and this increase was significantly abrogated in DM rats by BIO treatment. The protein expression of Tyr216-phospho-GSK-3β was significantly increased in DM glomeruli and in cultured podocytes exposed to HG. Western blot analysis revealed that the protein expression of Bax and active fragments of caspase-3 were significantly increased, whereas phospho-Akt, β-catenin, and Bcl-2 protein expression were significantly decreased in DM glomeruli and HG-stimulated podocytes. Apoptosis, determined by TUNEL assay and Hoechst 33342 staining, was also significantly increased in podocytes under diabetic conditions. The changes in the expression of apoptosis-related molecules and the increase in the number of apoptotic cells in DM glomeruli as well as in HG-stimulated podocytes were significantly ameliorated by BIO. These findings suggest that enhanced GSK-3β activity within podocytes under diabetic conditions is associated with podocyte loss in diabetic nephropathy.

  10. Analysis of the Expression and Activity of Nitric Oxide Synthase from Marine Photosynthetic Microorganisms.

    Science.gov (United States)

    Foresi, Noelia; Correa-Aragunde, Natalia; Santolini, Jerome; Lamattina, Lorenzo

    2016-01-01

    Nitric oxide (NO) functions as a signaling molecule in many biological processes in species belonging to all kingdoms of life. In animal cells, NO is synthesized primarily by NO synthase (NOS), an enzyme that catalyze the NADPH-dependent oxidation of L-arginine to NO and L-citrulline. Three NOS isoforms have been identified, the constitutive neuronal NOS (nNOS) and endothelial NOS (eNOS) and one inducible (iNOS). Plant NO synthesis is complex and is a matter of ongoing investigation and debate. Despite evidence of an Arg-dependent pathway for NO synthesis in plants, no plant NOS homologs to animal forms have been identified to date. In plants, there is also evidence for a nitrate-dependent mechanism of NO synthesis, catalyzed by cytosolic nitrate reductase. The existence of a NOS enzyme in the plant kingdom, from the tiny single-celled green alga Ostreococcus tauri was reported in 2010. O. tauri shares a common ancestor with higher plants and is considered to be part of an early diverging class within the green plant lineage.In this chapter we describe detailed protocols to study the expression and characterization of the enzymatic activity of NOS from O. tauri. The most used methods for the characterization of a canonical NOS are the analysis of spectral properties of the oxyferrous complex in the heme domain, the oxyhemoglobin (oxyHb) and citrulline assays and the NADPH oxidation for in vitro analysis of its activity or the use of fluorescent probes and Griess assay for in vivo NO determination. We further discuss the advantages and drawbacks of each method. Finally, we remark factors associated to the measurement of NOS activity in photosynthetic organisms that can generate misunderstandings in the interpretation of results.

  11. Structural and dynamic requirements for optimal activity of the essential bacterial enzyme dihydrodipicolinate synthase.

    Directory of Open Access Journals (Sweden)

    C F Reboul

    Full Text Available Dihydrodipicolinate synthase (DHDPS is an essential enzyme involved in the lysine biosynthesis pathway. DHDPS from E. coli is a homotetramer consisting of a 'dimer of dimers', with the catalytic residues found at the tight-dimer interface. Crystallographic and biophysical evidence suggest that the dimers associate to stabilise the active site configuration, and mutation of a central dimer-dimer interface residue destabilises the tetramer, thus increasing the flexibility and reducing catalytic efficiency and substrate specificity. This has led to the hypothesis that the tetramer evolved to optimise the dynamics within the tight-dimer. In order to gain insights into DHDPS flexibility and its relationship to quaternary structure and function, we performed comparative Molecular Dynamics simulation studies of native tetrameric and dimeric forms of DHDPS from E. coli and also the native dimeric form from methicillin-resistant Staphylococcus aureus (MRSA. These reveal a striking contrast between the dynamics of tetrameric and dimeric forms. Whereas the E. coli DHDPS tetramer is relatively rigid, both the E. coli and MRSA DHDPS dimers display high flexibility, resulting in monomer reorientation within the dimer and increased flexibility at the tight-dimer interface. The mutant E. coli DHDPS dimer exhibits disorder within its active site with deformation of critical catalytic residues and removal of key hydrogen bonds that render it inactive, whereas the similarly flexible MRSA DHDPS dimer maintains its catalytic geometry and is thus fully functional. Our data support the hypothesis that in both bacterial species optimal activity is achieved by fine tuning protein dynamics in different ways: E. coli DHDPS buttresses together two dimers, whereas MRSA dampens the motion using an extended tight-dimer interface.

  12. Structural and Dynamic Requirements for Optimal Activity of the Essential Bacterial Enzyme Dihydrodipicolinate Synthase

    Science.gov (United States)

    Reboul, C. F.; Porebski, B. T.; Griffin, M. D. W.; Dobson, R. C. J.; Perugini, M. A.; Gerrard, J. A.; Buckle, A. M.

    2012-01-01

    Dihydrodipicolinate synthase (DHDPS) is an essential enzyme involved in the lysine biosynthesis pathway. DHDPS from E. coli is a homotetramer consisting of a ‘dimer of dimers’, with the catalytic residues found at the tight-dimer interface. Crystallographic and biophysical evidence suggest that the dimers associate to stabilise the active site configuration, and mutation of a central dimer-dimer interface residue destabilises the tetramer, thus increasing the flexibility and reducing catalytic efficiency and substrate specificity. This has led to the hypothesis that the tetramer evolved to optimise the dynamics within the tight-dimer. In order to gain insights into DHDPS flexibility and its relationship to quaternary structure and function, we performed comparative Molecular Dynamics simulation studies of native tetrameric and dimeric forms of DHDPS from E. coli and also the native dimeric form from methicillin-resistant Staphylococcus aureus (MRSA). These reveal a striking contrast between the dynamics of tetrameric and dimeric forms. Whereas the E. coli DHDPS tetramer is relatively rigid, both the E. coli and MRSA DHDPS dimers display high flexibility, resulting in monomer reorientation within the dimer and increased flexibility at the tight-dimer interface. The mutant E. coli DHDPS dimer exhibits disorder within its active site with deformation of critical catalytic residues and removal of key hydrogen bonds that render it inactive, whereas the similarly flexible MRSA DHDPS dimer maintains its catalytic geometry and is thus fully functional. Our data support the hypothesis that in both bacterial species optimal activity is achieved by fine tuning protein dynamics in different ways: E. coli DHDPS buttresses together two dimers, whereas MRSA dampens the motion using an extended tight-dimer interface. PMID:22685390

  13. A previously unidentified activity of yeast and mouse RNA:pseudouridine synthases 1 (Pus1p) on tRNAs.

    Science.gov (United States)

    Behm-Ansmant, Isabelle; Massenet, Séverine; Immel, Françoise; Patton, Jeffrey R; Motorin, Yuri; Branlant, Christiane

    2006-08-01

    Mouse pseudouridine synthase 1 (mPus1p) was the first vertebrate RNA:pseudouridine synthase that was cloned and characterized biochemically. The mPus1p was previously found to catalyze Psi formation at positions 27, 28, 34, and 36 in in vitro produced yeast and human tRNAs. On the other hand, the homologous Saccharomyces cerevisiae scPus1p protein was shown to modify seven uridine residues in tRNAs (26, 27, 28, 34, 36, 65, and 67) and U44 in U2 snRNA. In this work, we expressed mPus1p in yeast cells lacking scPus1p and studied modification of U2 snRNA and several yeast tRNAs. Our data showed that, in these in vivo conditions, the mouse enzyme efficiently modifies yeast U2 snRNA at position 44 and tRNAs at positions 27, 28, 34, and 36. However, a tRNA:Psi26-synthase activity of mPus1p was not observed. Furthermore, we found that both scPus1p and mPus1p, in vivo and in vitro, have a previously unidentified activity at position 1 in cytoplasmic tRNAArg(ACG). This modification can take place in mature tRNA, as well as in pre-tRNAs with 5' and/or 3' extensions. Thus, we identified the protein carrying one of the last missing yeast tRNA:Psi synthase activities. In addition, our results reveal an additional activity of mPus1p at position 30 in tRNA that scPus1p does not possess.

  14. The ornithine decarboxylase, NO-synthase activities and phospho-c-Jun content under experimental gastric mucosa malignancy

    Directory of Open Access Journals (Sweden)

    Mariia Tymoshenko

    2016-04-01

    Full Text Available Ornithine decarboxylase is the first and key regulatory enzyme in synthesis of polyamines, which are essential for cell proliferation and differentiation, so its aberrant regulation is reported to play a role in neoplastic transformation and tumours growth. That's why, there were analysed some major links of metabolic pathways that are closely related to tumorigenesis: ornithine decarboxylase, and the NADPH-dependent enzyme nitric oxide synthase, the nuclear phosphoprotein c-Jun, that could play an important role in the development of gastric cancer malignancy.The gastric carcinogenesis was initiated in rats by 10-week replacement of drinking water by 0.01% N-methyl-N-nitro-N-nitrosoguanidine solution, at the same time they were redefined on the diet containing 5% NaCl. After this period expiry the animals were fed with standard diet till the end of the 24th week. The gastric mucosa cells were extracted at the end of the 4th, 6th, 8th, 10th, 12th, 18th and 24th week and underwent biochemical examinations. It was established the elevated phospho-c-Jun content, ornithine decarboxylase and inducible nitric oxide synthase activities from 6th to 24th week of gastric cancer development compared to the control references. The increasing of ornithine decarboxylase activity could probably be caused by the growth of phospho-c-Jun, it is also belonging to an ornithine decarboxylase transactivation effects. Thus, it was shown that the increase of ornithine decarboxylase and inducible nitric oxide synthase activities, phospho-c-Jun and nitrite-ions accumulation in gastric mucosa epithelial cells were associated with the gastric malignant progression. The complex relationships between the examined enzymes and transcription activator that pointed to an aggravation of pathological disturbances due to reciprocal action between ornithine decarboxylase and c-Jun and nitric oxide synthase participation. [Biomed Res Ther 2016; 3(4.000: 596-604

  15. Cloning of tobacco citrate synthase cDNA and construction of its light inducible plant expression vector%烟草柠檬酸合成酶基因的克隆及其光诱导型植物表达载体的构建

    Institute of Scientific and Technical Information of China (English)

    胡清泉; 王奇峰; 李昆志; 陈丽梅; 玉永雄

    2009-01-01

    紫花苜蓿为多年生优质豆科牧草.我国南方地区酸性土壤分布比较广,铝害比较严重,限制了紫花苜蓿在南方地区的推广利用.提高有机酸合成酶基因的表达活性,增加有机酸的合成与分泌,有利于增强植物的耐铝性.本研究根据Genebank中已知的烟草柠檬酸合成酶(Citrate Synthase, cs)基因的序列,通过RT-PCR从烟草总RNA中扩增cs基因的cDNA,亚克隆于T载体得到重组载体pMD18-cs,对pMD18-cs中的插入片断进行核酸序列分析确认为cs基因的cDNA全长.用光诱导型启动子(Rubisco,小亚基的启动子)和双元载体pPZP211构建了cs基因的光诱导型植物表达载体pPZP211-PrbcS-cs,为利用基因工程手段提高紫花苜蓿耐铝毒能力,促进其在南方地区推广利用奠定了物质基础.

  16. Introduction of Citrate Synthase Gene (CS) into an Elite Indica Rice Restorer Line Minghui 86 by A grobacterium -mediated Method%利用农杆菌介导法将柠檬酸合成酶基因(CS)导入籼稻品种明恢86

    Institute of Scientific and Technical Information of China (English)

    胡利华; 吴慧敏; 周泽民; 林拥军

    2006-01-01

    磷是生命的必需元素之一,在作物的生长发育中起着重要的作用.然而,大多数土壤中有效磷的含量很低,而作为磷肥生产的磷矿资源正趋于耗竭,与此同时,土壤中的磷大部分以作物难以利用的形态存在.已有的研究表明植物通过分泌柠檬酸活化土壤中难溶性无机磷从而提高了土壤磷的可利用性.本研究采用根癌农杆菌介导法将柠檬酸合成酶(citrate synthase)基因CS导入杂交籼稻优良恢复系明恢86,共获得48株T0再生植株.经PCR检测,其中22株为转基因阳性植株.对阳性转基因植株的Southern及Northern分析表明,外源基因已整合到了水稻基因组中并得以有效表达.转基因植株后代的生理学和农艺学性状的研究正在进行之中.

  17. Endothelial nitric oxide synthase activation and nitric oxide function: new light through old windows.

    Science.gov (United States)

    Bird, Ian M

    2011-09-01

    The principle mechanisms operating at the level of endothelial nitric oxide synthase (eNOS) itself to control its activity are phosphorylation, the auto-regulatory properties of the protein itself, and Ca(2)(+)/calmodulin binding. It is now clear that activation of eNOS is greatest when phosphorylation of certain serine and threonine residues is accompanied by elevation of cytosolic [Ca2+](i). While eNOS also contains an autoinhibitory loop, Rafikov et al. (2011) present the evidence for a newly identified 'flexible arm' that operates in response to redox state. Boeldt et al. (2011) also review the evidence that changes in the nature of endothelial Ca(2)(+) signaling itself in different physiologic states can extend both the amplitude and duration of NO output, and a failure to change these responses in pregnancy is associated with preeclampsia. The change in Ca(2)(+) signaling is mediated through altering capacitative entry mechanisms inherent in the cell, and so many agonist responses using this mechanism are altered. The term 'adaptive cell signaling' is also introduced for the first time to describe this phenomenon. Finally NO is classically regarded as a regulator of vascular function, but NO has other actions. One proposed role is regulation of steroid biosynthesis but the physiologic relevance was unclear. Ducsay & Myers (2011) now present new evidence that NO may provide the adrenal with a mechanism to regulate cortisol output according to exposure to hypoxia. One thing all three of these reviews show is that even after several decades of study into NO biosynthesis and function, there are clearly still many things left to discover.

  18. Gomisin J from Schisandra chinensis induces vascular relaxation via activation of endothelial nitric oxide synthase.

    Science.gov (United States)

    Park, Ji Young; Choi, Young Whan; Yun, Jung Wook; Bae, Jin Ung; Seo, Kyo Won; Lee, Seung Jin; Park, So Youn; Kim, Chi Dae

    2012-01-01

    Gomisin J (GJ) is a lignan contained in Schisandra chinensis (SC) which is a well-known medicinal herb for improvement of cardiovascular symptoms in Korean. Thus, the present study examined the vascular effects of GJ, and also determined the mechanisms involved. Exposure of rat thoracic aorta to GJ (1-30μg/ml) resulted in a concentration-dependent vasorelaxation, which was more prominent in the endothelium (ED)-intact aorta. ED-dependent relaxation induced by GJ was markedly attenuated by pretreatment with L-NAME, a nitric oxide synthase (NOS) inhibitor. In the intact endothelial cells of rat thoracic aorta, GJ also enhanced nitric oxide (NO) production. In studies using human coronary artery endothelial cells, GJ enhanced phosphorylation of endothelial NOS (eNOS) at Ser(1177) with increased cytosolic translocation of eNOS, and subsequently increased NO production. These effects of GJ were attenuated not only by calcium chelators including EGTA and BAPTA-AM, but also by LY294002, a PI3K/Akt inhibitor, indicating calcium- and PI3K/Akt-dependent activation of eNOS by GJ. Moreover, the levels of intracellular calcium were increased immediately after GJ administration, but Akt phosphorylation was started to increase at 20min of GJ treatment. Based on these results with the facts that ED-dependent relaxation occurred rapidly after GJ treatment, it was suggested that the ED-dependent vasorelaxant effects of GJ were mediated mainly by calcium-dependent activation of eNOS with subsequent production of endothelial NO.

  19. AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets.

    Science.gov (United States)

    Fleming, Ingrid; Schulz, Christian; Fichtlscherer, Birgit; Kemp, Bruce E; Fisslthaler, Beate; Busse, Rudi

    2003-11-01

    Little is known about the signaling cascades that eventually regulate the activity of the endothelial nitric oxide synthase (eNOS) in platelets. Here, we investigated the effects of insulin on the phosphorylation and activation of eNOS in washed human platelets and in endothelial cells. Insulin activated the protein kinase Akt in cultured endothelial cells and increased the phosphorylation of eNOS on Ser(1177) but failed to increase endothelial cyclic GMP levels or to elicit the relaxation of endothelium-intact porcine coronary arteries. In platelets, insulin also elicited the activation of Akt as well as the phosphorylation of eNOS and initiated NO production which was associated with increased cyclic GMP levels and the inhibition of thrombin-induced aggregation. The insulin-induced inhibition of aggregation was accompanied by a decreased Ca(2+) response to thrombin and was also prevented by N(omega) nitro-L-arginine. In platelets, but not in endothelial cells, insulin induced the activation of the AMP-activated protein kinase (AMPK), a metabolic stress-sensing kinase which was sensitive to the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and the AMPK inhibitor iodotubercidin. Moreover, the insulin-mediated inhibition of thrombin-induced aggregation was prevented by iodotubercidin. Insulin-independent activation of the AMPK using 5-aminoimidazole-4-carboxamide ribonucleoside, increased platelet eNOS phosphorylation, increased cyclic GMP levels and attenuated platelet aggregation. These results highlight the differences in the signal transduction cascade activated by insulin in endothelial cells and platelets, and demonstrate that insulin stimulates the formation of NO in human platelets, in the absence of an increase in Ca(2+), by acti-vating PI3-K and AMPK which phosphorylates eNOS on Ser(1177).

  20. Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53's transcriptional activity

    Directory of Open Access Journals (Sweden)

    Price Brendan D

    2001-07-01

    Full Text Available Abstract Background The p53 protein is activated by genotoxic stress, oncogene expression and during senescence, p53 transcriptionally activates genes involved in growth arrest and apoptosis. p53 activation is regulated by post-translational modification, including phosphorylation of the N-terminal transactivation domain. Here, we have examined how Glycogen Synthase Kinase (GSK3, a protein kinase involved in tumorigenesis, differentiation and apoptosis, phosphorylates and regulates p53. Results The 2 isoforms of GSK3, GSK3α and GSK3β, phosphorylate the sequence Ser-X-X-X-Ser(P when the C-terminal serine residue is already phosphorylated. Several p53 kinases were examined for their ability to create GSK3 phosphorylation sites on the p53 protein. Our results demonstrate that phosphorylation of serine 37 of p53 by DNA-PK creates a site for GSK3β phosphorylation at serine 33 in vitro. GSK3α did not phosphorylate p53 under any condition. GSK3β increased the transcriptional activity of the p53 protein in vivo. Mutation of either serine 33 or serine 37 of p53 to alanine blocked the ability of GSK3β to regulate p53 transcriptional activity. GSK3β is therefore able to regulate p53 function in vivo. p53's transcriptional activity is commonly increased by DNA damage. However, GSK3β kinase activity was inhibited in response to DNA damage, suggesting that GSK3β regulation of p53 is not involved in the p53-DNA damage response. Conclusions GSK3β can regulate p53's transcriptional activity by phosphorylating serine 33. However, GSK3β does not appear to be part of the p53-DNA damage response pathway. Instead, GSK3β may provide the link between p53 and non-DNA damage mechanisms for p53 activation.

  1. Alverine citrate induced acute hepatitis

    Institute of Scientific and Technical Information of China (English)

    Mehmet Arhan; Seyfettin K(o)klü; Aydln S K(o)ksal; (O)mer F Yolcu; Senem Koruk; Irfan Koruk; Ertugrul Kayacetin

    2004-01-01

    Alverine citrate is a commonly used smooth muscle relaxant agent. A MEDLINE search on January 2004 revealed only 1 report implicating the hepatotoxicity of this agent. A 34-year-old woman was investigated because of the finding of elevated liver function tests on biochemical screening. Other etiologies of hepatitis were appropriately ruled out and elevated enzymes were ascribed to alverine citrate treatment.Although alverine citrate hepatotoxicity was related to an immune mechanism in the first case, several features such as absence of predictable dose-dependent toxicity of alverine citrate in a previous study and absence of hypersensitivity manifestations in our patient are suggestive of a metabolic type of idiosyncratic toxicity.

  2. ATP citrate lyase activity is post-translationally regulated by sink strength and impacts the wax, cutin and rubber biosynthetic pathways.

    Science.gov (United States)

    Xing, Shufan; van Deenen, Nicole; Magliano, Pasqualina; Frahm, Lea; Forestier, Edith; Nawrath, Christiane; Schaller, Hubert; Gronover, Christian S; Prüfer, Dirk; Poirier, Yves

    2014-07-01

    Cytosolic acetyl-CoA is involved in the synthesis of a variety of compounds, including waxes, sterols and rubber, and is generated by the ATP citrate lyase (ACL). Plants over-expressing ACL were generated in an effort to understand the contribution of ACL activity to the carbon flux of acetyl-CoA to metabolic pathways occurring in the cytosol. Transgenic Arabidopsis plants synthesizing the polyester polyhydroxybutyrate (PHB) from cytosolic acetyl-CoA have reduced growth and wax content, consistent with a reduction in the availability of cytosolic acetyl-CoA to endogenous pathways. Increasing the ACL activity via the over-expression of the ACLA and ACLB subunits reversed the phenotypes associated with PHB synthesis while maintaining polymer synthesis. PHB production by itself was associated with an increase in ACL activity that occurred in the absence of changes in steady-state mRNA or protein level, indicating a post-translational regulation of ACL activity in response to sink strength. Over-expression of ACL in Arabidopsis was associated with a 30% increase in wax on stems, while over-expression of a chimeric homomeric ACL in the laticifer of roots of dandelion led to a four- and two-fold increase in rubber and triterpene content, respectively. Synthesis of PHB and over-expression of ACL also changed the amount of the cutin monomer octadecadien-1,18-dioic acid, revealing an unsuspected link between cytosolic acetyl-CoA and cutin biosynthesis. Together, these results reveal the complexity of ACL regulation and its central role in influencing the carbon flux to metabolic pathways using cytosolic acetyl-CoA, including wax and polyisoprenoids.

  3. Interventional effect of magnesium sulfate on nitric oxide synthase activity after acute craniocerebral injury

    Institute of Scientific and Technical Information of China (English)

    Ximin Yang; Jiangong Zhu; Zongchun Tang

    2007-01-01

    BACKGROUND: Abnormal changes in magnesium ion are closely related to cerebral injury. At present,some evidence indicates that magnesium reagent can improve nerve function and prognosis of patients with cerebral injury.OBJECTIVE: To observe the effect of magnesium sulfate on changes in nitric oxide synthase (NOS)activity in brain tissue of rats with acute craniocerebral injury.DESIGN: Completely randomized grouping design and randomly controlled study.SETTING: Laboratory of Neurosurgery, the Third Hospital of Chinese PLA.MATERIALS: Fifty-four male SD rats of clean grade and weighing 220 - 250 g were randomly divided into normal control group (n =6), cerebral injury group (n =24) and magnesium sulfate group (n =24). Especially,rats in cerebral injury group and magnesium sulfate group were equally divided into four subgroups and observed at 0.5, 2, 6 and 24 hours after model establishment. A solution of 125 g/L of magnesium sulfate was provided by the Seventh Pharmaceutical Factory of Wuxi and the NOS assay kit by Nanjing Jiancheng Bioengineering Institute.METHODS: The experiment was carried out in the Institute of Neurosurgery, the Third Hospital of Chinese PLA from August 2000 to August 2002. ① Rats in the cerebral injury group and magnesium sulfate group were anesthetized to establish cerebral injury models based on modified Feeney technique; magnesium sulfate group were intraperitoneally injected 600 mg/kg magnesium sulfate (125 g/L), but rats in the normal control group remained untreated. ② At 0.5, 2, 6 and 24 hours after cerebral injury, rats in cerebral injury group and magnesium sulfate group were decapitated and brains were dissected. Cerebral cortex of rats in cerebral injury group was selected for NOS assay; in addition, at 0.5 hour after cerebral injury, a portion of the parietal lobe was selected from the brains of rats in the normal control group. Brain samples were homogenized, the homogenated centrifuged and the supernatants were used to measure

  4. Pentalenene Synthase: Analysis of Active Site Residues by Site-Directed Mutagenesis

    NARCIS (Netherlands)

    Seemann, M.; Zhai, G.; Kraker, de J.W.; Paschall, C.M.; Christianson, D.W.; Cane, D.E.

    2002-01-01

    Incubation of farnesyl diphosphate (1) with the W308F or W308F/H309F mutants of pentalenene synthase, an enzyme from Streptomyces UC5319, yielded pentalenene (2), accompanied by varying proportions of (+)-germacrene A (7) with relatively minor changes in kcat and kcat/Km. By contrast, single H309 mu

  5. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemolsynthase activity

    NARCIS (Netherlands)

    Yang, T.; Gao, L.; Hu, H.; Stoopen, G.M.; Wang, C.; Jongsma, M.A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme inthe biosynthesis of pyrethrins, the most widely used plant-derivedpesticide.CDScatalyzes c1’-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP).

  6. Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis.

    Science.gov (United States)

    Polen, Tino; Schluesener, Daniela; Poetsch, Ansgar; Bott, Michael; Wendisch, Volker F

    2007-08-01

    Corynebacterium glutamicum grows aerobically on a variety of carbohydrates and organic acids as single or combined sources of carbon and energy. To characterize the citrate utilization in C. glutamicum on a genomewide scale, a comparative analysis was carried out by combining transcriptome and proteome analysis. In cells grown on citrate, transcriptome analysis revealed highest expression changes for two different citrate-uptake systems encoded by citM and tctCBA, whereas genes encoding uptake systems for the glucose- (ptsG), sucrose- (ptsS) and fructose- (ptsF) specific PTS components and permeases for gluconate (gntP) and glutamate (gluC) displayed decreased mRNA levels in citrate-grown cells. This pattern was also observed when cells grown in Luria-Bertani (LB) medium plus citrate were compared with cells grown in LB medium, indicating some kind of catabolite repression. Genes encoding enzymes of the tricarboxylic acid cycle (aconitase, succinyl-CoA synthetase, succinate dehydrogenase and fumarase), malic enzyme, PEP carboxykinase, gluconeogenic glyceraldehyde-3-phosphate dehydrogenase and ATP synthase displayed increased expression in cells grown on citrate. Accordingly, proteome analysis revealed elevated protein levels of these enzymes and showed a good correlation with the mRNA levels. In conclusion, this study revealed the citrate stimulon in C. glutamicum and the regulated central metabolic genes when grown on citrate.

  7. The effect of the Ti (IV-citrate complex on staphylococcus aureus growth and biofilm formation

    Directory of Open Access Journals (Sweden)

    Gritsenko Viktor A.

    2015-01-01

    Full Text Available The primary objective of this study was to investigate the influence of the Ti (IV-citrate complex on growth dynamics and biofilm formation of S. aureus. Speciation analysis was performed in order to estimate the structure of the Ti complex existing in citrate solutions at near-physiological pH. It is estimated that the fully deprotonated tris(citratetitanate ion [Ti(C6H4O73]8- predominates in solution at pH 6.46-7.44, and that this is most probably the biologically active form of Ti(IV-citrate. In in vitro experiments, increasing concentrations of citric acid solutions (0.05, 0.005, 0.0005 M, served as positive controls, while the effects of respective concentrations of Ti(IV-citrate were examined. The obtained results indicate that citrate decreased S. aureus 48 growth at all studied concentrations, whereas S. aureus 44 growth was decreased only by high concentrations of citrate (0.05M. Incubation of S. aureus culture with Ti(IV-citrate significantly potentiated citrate-induced effects. Ti(IV-citrate significantly altered specific bacterial growth rate in a similar manner. The most significant growth reduction was observed at the initial period of bacterial growth. At the same time, the opposite effect was detected in investigations of the effect of citrate and Ti(IV-citrate on S. aureus biofilm formation. Citric acid suppressed S. aureus biofilm formation, whereas Ti(IV-citrate displayed a significant stimulatory effect. Our findings suggest that Ti(IV-citrate possesses a more pronounced biological effect than citrate. The proposed mechanism of this action is activation of complex transport into the cell and induction of oxidative stress. However, the exact mechanism of Ti(IV-citrate biological action on bacterial cultures remains unknown.

  8. Role of Ga-67 citrate imaging in pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Aburano, T.; Yokoyama, K.; Hisada, K.; Kakuma, K.; Ichiyanagi, K.

    1988-11-01

    Two patients with pancreatitis in whom an area of predominant uptake of Ga-67 citrate was demonstrated involving the entire pancreas are presented. Ultrasound and x-ray CT did not reveal any morphologic abnormalities in the pancreas, whereas Ga-67 citrate imaging indicated the presence of active inflammatory change. Ga-67 citrate imaging may be useful in confirming the diagnosis of acute pancreatitis or acute exacerbation of chronic pancreatitis based on clinical and laboratory data, especially when ultrasound and/or x-ray CT cannot reveal any morphologic abnormalities in the pancreas.

  9. Activated platelets from diabetic rats cause endothelial dysfunction by decreasing Akt/endothelial NO synthase signaling pathway.

    Directory of Open Access Journals (Sweden)

    Keiko Ishida

    Full Text Available Diabetes is associated with endothelial dysfunction and platelet activation, both of which may contribute to increased cardiovascular risk. The purpose of this study was to characterize circulating platelets in diabetes and clarify their effects on endothelial function. Male Wistar rats were injected with streptozotocin (STZ to induce diabetes. Each experiment was performed by incubating carotid arterial rings with platelets (1.65×10(7 cells/mL; 30 min isolated from STZ or control rats. Thereafter, the vascular function was characterized in isolated carotid arterial rings in organ bath chambers, and each expression and activation of enzymes involved in nitric oxide and oxidative stress levels were analyzed. Endothelium-dependent relaxation induced by acetylcholine was significantly attenuated in carotid arteries treated with platelets isolated from STZ rats. Similarly, treatment with platelets isolated from STZ rats significantly reduced ACh-induced Akt/endothelial NO synthase signaling/NO production and enhanced TXB2 (metabolite of TXA2, while CD61 (platelet marker and CD62P (activated platelet marker were increased in carotid arteries treated with platelets isolated from STZ rats. Furthermore, the platelets isolated from STZ rats decreased total eNOS protein and eNOS dimerization, and increased oxidative stress. These data provide direct evidence that circulating platelets isolated from diabetic rats cause dysfunction of the endothelium by decreasing NO production (via Akt/endothelial NO synthase signaling pathway and increasing TXA2. Moreover, activated platelets disrupt the carotid artery by increasing oxidative stress.

  10. Short-term effect of the HMG-CoA reductase inhibitor rosuvastatin on erythrocyte nitric oxide synthase activity

    Directory of Open Access Journals (Sweden)

    Barbara Ludolph

    2008-01-01

    Full Text Available Barbara Ludolph1, Wilhelm Bloch2, Malte Kelm1, Rainer Schulz3, Petra Kleinbongard11Department of Medicine, Medical Clinic I, University Hospital RTWH Aachen, Germany; 2Department of Molecular and Cellular Sport Medicine, Sport University Cologne, Germany; 3Institute of Pathophysiology, Medical School, University of Essen, GermanyAbstract: Prevention and treatment of cardiovascular disorders by HMG-CoA reductase inhibitors (or statins, beyond their lipid-lowering properties, have been demonstrated including activation of the endothelial nitric oxide synthase (eNOS. Beside endothelial cells, red blood cells (RBCs possess NOS and produce nitric oxide (NO, which contributes to RBC deformability. The present study tested the capacity of statins to activate NOS in RBCs and subsequently to modulate RBC deformability in vitro. Blood samples of healthy young volunteers were incubated with or without rosuvastatin. Afterwards RBC-NOS activity and RBC deformability were determined. Rosuvastatin incubation significantly increased NOS phosphorylation, NOS dependent NO-formation, and RBC deformability. The NOS inhibitor NG- monomethyl-L-arginine reversed the stimulatory effect of rosuvastatin on RBC-NOS activity. This NO dependent effect of rosuvastatin might have an important influence on microcirculation and may offer new perspectives for the therapeutic use of statins.Keywords: red blood cell, nitric oxide synthase, red blood cell deformability, statin

  11. Structural changes during ATP hydrolysis activity of the ATP synthase from Escherichia coli as revealed by fluorescent probes.

    Science.gov (United States)

    Turina, P

    2000-08-01

    F1F0-ATPase complexes undergo several changes in their tertiary and quaternary structure during their functioning. As a possible way to detect some of these different conformations during their activity, an environment-sensitive fluorescence probe was bound to cysteine residues, introduced by site-directed mutagenesis, in the gamma subunit of the Escherichia coli enzyme. Fluorescence changes and ATP hydrolysis rates were compared under various conditions in F1 and in reconstituted F1F0. The results are discussed in terms of possible modes of operation of the ATP synthases.

  12. An unusual plant triterpene synthase with predominant α-amyrin-producing activity identified by characterizing oxidosqualene cyclases from Malus × domestica.

    Science.gov (United States)

    Brendolise, Cyril; Yauk, Yar-Khing; Eberhard, Ellen D; Wang, Mindy; Chagne, David; Andre, Christelle; Greenwood, David R; Beuning, Lesley L

    2011-07-01

    The pentacyclic triterpenes, in particular ursolic acid and oleanolic acid and their derivatives, exist abundantly in the plant kingdom, where they are well known for their anti-inflammatory, antitumour and antimicrobial properties. α-Amyrin and β-amyrin are the precursors of ursolic and oleanolic acids, respectively, formed by concerted cyclization of squalene epoxide by a complex synthase reaction. We identified three full-length expressed sequence tag sequences in cDNA libraries constructed from apple (Malus × domestica 'Royal Gala') that were likely to encode triterpene synthases. Two of these expressed sequence tag sequences were essentially identical (> 99% amino acid similarity; MdOSC1 and MdOSC3). MdOSC1 and MdOSC2 were expressed by transient expression in Nicotiana benthamiana leaves and by expression in the yeast Pichia methanolica. The resulting products were analysed by GC and GC-MS. MdOSC1 was shown to be a mixed amyrin synthase (a 5 : 1 ratio of α-amyrin to β-amyrin). MdOSC1 is the only triterpene synthase so far identified in which the level of α-amyrin produced is > 80% of the total product and is, therefore, primarily an α-amyrin synthase. No product was evident for MdOSC2 when expressed either transiently or in yeast, suggesting that this putative triterpene synthase is either encoded by a pseudogene or does not express well in these systems. Transcript expression analysis in Royal Gala indicated that the genes are mostly expressed in apple peel, and that the MdOSC2 expression level was much lower than that of MdOSC1 and MdOSC3 in all the tissues tested. Amyrin content analysis was undertaken by LC-MS, and demonstrated that levels and ratios differ between tissues, but that the true consequence of synthase activity is reflected in the ursolic/oleanolic acid content and in further triterpenoids derived from them. Phylogenetic analysis placed the three triterpene synthase sequences with other triterpene synthases that encoded either

  13. Production of technical-grade sodium citrate from glycerol-containing biodiesel waste by Yarrowia lipolytica.

    Science.gov (United States)

    Kamzolova, Svetlana V; Vinokurova, Natalia G; Lunina, Julia N; Zelenkova, Nina F; Morgunov, Igor G

    2015-10-01

    The production of technical-grade sodium citrate from the glycerol-containing biodiesel waste by Yarrowia lipolytica was studied. Batch experiments showed that citrate was actively produced within 144 h, then citrate formation decreased presumably due to inhibition of enzymes involved in this process. In contrast, when the method of repeated batch cultivation was used, the formation of citrate continued for more than 500 h. In this case, the final concentration of citrate in the culture liquid reached 79-82 g/L. Trisodium citrate was isolated from the culture liquid filtrate by the addition of a small amount of NaOH, so that the pH of the filtrate increased to 7-8. This simple and economic isolation procedure gave the yield of crude preparation containing trisodium citrate 5.5-hydrate up to 82-86%.

  14. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells.

    Science.gov (United States)

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru; Motley, Evangeline D

    2016-03-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca(2+)-dependent using the Ca(2+) chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  15. Synthesis and evaluation of M. tuberculosis salicylate synthase (MbtI) inhibitors designed to probe plasticity in the active site.

    Science.gov (United States)

    Manos-Turvey, Alexandra; Cergol, Katie M; Salam, Noeris K; Bulloch, Esther M M; Chi, Gamma; Pang, Angel; Britton, Warwick J; West, Nicholas P; Baker, Edward N; Lott, J Shaun; Payne, Richard J

    2012-12-14

    Mycobacterium tuberculosis salicylate synthase (MbtI) catalyses the first committed step in the biosynthesis of mycobactin T, an iron-chelating siderophore essential for the virulence and survival of M. tuberculosis. Co-crystal structures of MbtI with members of a first generation inhibitor library revealed large inhibitor-induced rearrangements within the active site of the enzyme. This plasticity of the MbtI active site was probed via the preparation of a library of inhibitors based on a 2,3-dihydroxybenzoate scaffold with a range of substituted phenylacrylate side chains appended to the C3 position. Most compounds exhibited moderate inhibitory activity against the enzyme, with inhibition constants in the micromolar range, while several dimethyl ester variants possessed promising anti-tubercular activity in vitro.

  16. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

    NARCIS (Netherlands)

    Haagsma, A.C.; Driessen, N.N.; Hahn, M.M.; Lill, H.; Bald, D.

    2010-01-01

    ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme

  17. CitI, a Transcription Factor Involved in Regulation of Citrate Metabolism in Lactic Acid Bacteria†

    Science.gov (United States)

    Martin, Mauricio G.; Magni, Christian; de Mendoza, Diego; López, Paloma

    2005-01-01

    A large variety of lactic acid bacteria (LAB) can utilize citrate under fermentative conditions. Although much information concerning the metabolic pathways leading to citrate utilization by LAB has been gathered, the mechanisms regulating these pathways are obscure. In Weissella paramesenteroides (formerly called Leuconostoc paramesenteroides), transcription of the citMDEFCGRP citrate operon and the upstream divergent gene citI is induced by the presence of citrate in the medium. Although genetic experiments have suggested that CitI is a transcriptional activator whose activity can be modulated in response to citrate availability, specific details of the interaction between CitI and DNA remained unknown. In this study, we show that CitI recognizes two A+T-rich operator sites located between citI and citM and that the DNA-binding affinity of CitI is increased by citrate. Subsequently, this citrate signal propagation leads to the activation of the cit operon through an enhanced recruitment of RNA polymerase to its promoters. Our results indicate that the control of CitI by the cellular pools of citrate provides a mechanism for sensing the availability of citrate and adjusting the expression of the cit operon accordingly. In addition, this is the first reported example of a transcription factor directly functioning as a citrate-activated switch allowing the cell to optimize the generation of metabolic energy. PMID:16030208

  18. Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles

    DEFF Research Database (Denmark)

    Kolnes, Anders J; Birk, Jesper Bratz; Eilertsen, Einar

    2015-01-01

    Adrenaline increases glycogen synthase (GS) phosphorylation and decreases GS activity but also stimulates glycogen breakdown and low glycogen content normally activates GS. To test the hypothesis that glycogen content directly regulates GS phosphorylation, glycogen breakdown was stimulated...... in condition with decreased GS activation. Saline or adrenaline (0.02mg/100g rat) was injected subcutaneously in Wistar rats (~130 g) with low (24 h fasted), normal (normal diet) and high glycogen content (fasted-refed) and epitrochlearis muscles were removed after 3 h and incubated ex vivo eliminating...... adrenaline action. Adrenaline injection reduced glycogen content in epitrochlearis muscles with high (120.7±17.8 vs 204.6±14.5 mmol•kg(-1); p

  19. Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells

    Science.gov (United States)

    Nonami, Atsushi; Weisberg, Ellen L.; Bonal, Dennis; Kirschmeier, Paul T.; Salgia, Sabrina; Podar, Klaus; Galinsky, Ilene; Chowdary, Tirumala K.; Neuberg, Donna; Tonon, Giovanni; Stone, Richard M.; Asara, John; Griffin, James D.; Sattler, Martin

    2015-01-01

    The rapid proliferation of myeloid leukemia cells is highly dependent on increased glucose metabolism. Through an unbiased metabolomics analysis of leukemia cells, we found that the glycogenic precursor UDP-D-glucose is pervasively upregulated, despite low glycogen levels. Targeting the rate-limiting glycogen synthase 1 (GYS1) not only decreased glycolytic flux but also increased activation of the glycogen-responsive AMPK (AMP kinase), leading to significant growth suppression. Further, genetic and pharmacological hyper-activation of AMPK was sufficient to induce the changes observed with GYS1 targeting. Cancer genomics data also indicate that elevated levels of the glycogenic enzymes GYS1/2 or GBE1 (glycogen branching enzyme 1) are associated with poor survival in AML. These results suggest a novel mechanism whereby leukemic cells sustain aberrant proliferation by suppressing excess AMPK activity through elevated glycogenic flux and provide a therapeutic entry point for targeting leukemia cell metabolism. PMID:25703587

  20. Regulation of oxidative enzyme activity and eukaryotic elongation factor 2 in human skeletal muscle: influence of gender and exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Schjerling, P.; Vistisen, Bodil

    2005-01-01

    AIM: To investigate gender-related differences in the responses of oxidative enzymes and eukaryotic elongation factor-2 (eEF2) to exercise. METHODS: The influence of exercise (90 min, 60%VO(2peak)) on citrate synthase (CS) and beta-hydroxyacyl-CoA dehydrogenase (HAD) activity and mRNA content, to...

  1. Effects of glucocorticoid dexamethasone on serum nitric oxide synthase activity and nitric oxide levels in a rat model of lung disease-induced brain injury

    Institute of Scientific and Technical Information of China (English)

    Huajun Li; Ligang Jiang; Meng Xia; Haiping Li; Fanhua Meng; Wei Li; Lifeng Liu; Zhaohui Wang

    2011-01-01

    In this study, we investigated the effects of dexamethasone, pertussis toxin (a Gi protein inhibitor), and actinomycin (a transcription inhibitor) on serum nitric oxide synthase activity and nitric oxide content in a rat model of lung disease-induced brain injury. High-dose dexamethasone (13 mg/kg) and dexamethasone + actinomycin reduced lung water content, increased serum nitric oxide synthase activity and nitric oxide content, diminished inflammatory cell infiltration in pulmonary alveolar interstitium, attenuated meningeal vascular hyperemia, reduced glial cell infiltration, and decreased cerebral edema. These results demonstrate that high-dose glucocorticoid treatment can reduce the severity of lung disease-induced brain injury by increasing nitric oxide synthase activity and nitric oxide levels.

  2. Nuclear factor YY1 activates the mammalian F0F1 ATP synthase alpha-subunit gene.

    Science.gov (United States)

    Breen, G A; Vander Zee, C A; Jordan, E M

    1996-01-01

    Analysis of the promoters of the bovine and human nuclear-encoded mitochondrial F0F1 ATP synthase alpha-subunit genes (ATPA) has identified several positive cis-acting regulatory regions that are important for basal promoter activity in human HeLa cells. We have previously determined that the binding of a protein factor, termed ATPF1, to an E-box sequence (CANNTG) located within one of these cis-acting regions is critical for transcriptional activation of the ATPA gene. In this article, we describe a second positive cis-acting regulatory element of the ATPA gene that is important for expression of the ATPA gene. We show that this cis-acting element also contains a binding site for a protein present in HeLa cells. On the basis of electrophoretic mobility shift patterns, oligonucleotide competition assays, and immunological cross-reactivity, we conclude that this protein factor is Yin-Yang 1 (YY1). Experiments carried out to examine the functional role of YY1 within the context of the ATPA promoter demonstrated that YY1 acts as a positive regulator of the ATPA gene. For example, when the YY1 binding site of the ATPA promoter was placed upstream of a reporter gene it was found to activate transcription in transient transfection assays. In addition, disruption of the YY1 binding site in the ATPA gene resulted in a loss of transcriptional activity. Furthermore, in cotransfection experiments overexpression of YY1 in trans was found to activate transcription of ATPA promoter-CAT constructs. Thus, at least two positive trans-acting regulatory factors, ATPF1 and YY1, are important for expression of the bovine and human F0F1 ATP synthase alpha-subunit genes.

  3. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette, E-mail: annette.rompel@univie.ac.at [Universität Wien, Althanstrasse 14, 1090 Wien (Austria)

    2015-05-22

    Latent and active aurone synthase purified from petals of C. grandiflora (cgAUS1) were crystallized. The crystal quality of recombinantly expressed latent cgAUS1 was significantly improved by co-crystallization with the polyoxotungstate Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase-separation zone. Aurone synthase (AUS), a member of a novel group of plant polyphenol oxidases (PPOs), catalyzes the oxidative conversion of chalcones to aurones. Two active cgAUS1 (41.6 kDa) forms that differed in the level of phosphorylation or sulfation as well as the latent precursor form (58.9 kDa) were purified from the petals of Coreopsis grandiflora. The differing active cgAUS1 forms and the latent cgAUS1 as well as recombinantly expressed latent cgAUS1 were crystallized, resulting in six different crystal forms. The active forms crystallized in space groups P2{sub 1}2{sub 1}2{sub 1} and P12{sub 1}1 and diffracted to ∼1.65 Å resolution. Co-crystallization of active cgAUS1 with 1,4-resorcinol led to crystals belonging to space group P3{sub 1}21. The crystals of latent cgAUS1 belonged to space group P12{sub 1}1 and diffracted to 2.50 Å resolution. Co-crystallization of recombinantly expressed pro-AUS with the hexatungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase separation zone significantly improved the quality of the crystals compared with crystals obtained without hexatungstotellurate(VI)

  4. Polyhydroxyalkanoates (PHA) production from synthetic waste using Pseudomonas pseudoflava: PHA synthase enzyme activity analysis from P. pseudoflava and P. palleronii.

    Science.gov (United States)

    Venkateswar Reddy, M; Mawatari, Yasuteru; Onodera, Rui; Nakamura, Yuki; Yajima, Yuka; Chang, Young-Cheol

    2017-03-04

    Synthetic wastewater (SW) at various carbon concentrations (5-60g/l) were evaluated for polyhydroxyalkanoates (PHA) production using the bacteria Pseudomonas pseudoflava. Bacteria showed highest PHA production with 20g/l (57±5%), and highest carbon removal at 5g/l (74±6%) concentrations respectively. Structure, molecular weight, and thermal properties of the produced PHA were evaluated using various analytical techniques. Bacteria produced homo-polymer [poly-3-hydroxybutyrate (P3HB)] when only acetate was used as carbon source; and it produced co-polymer [poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV)] by addition of co-substrate propionate. PHA synthase, the enzyme which produce PHA was extracted from two bacterial strains i.e., P. pseudoflava and P. palleronii and its molecular weight was analysed using SDS-PAGE. Protein concentration, and PHA synthase enzyme activity of P. pseudoflava and P. palleronii was carried out using spectrophotometer. Results denoted that P. pseudoflava can be used for degradation of organic carbon persistent in wastewaters and their subsequent conversion into PHA.

  5. The alpha2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian B; Nielsen, Jakob N.; Birk, Jesper Bratz

    2004-01-01

    The 5'AMP-activated protein kinase (AMPK) is a potential antidiabetic drug target. Here we show that the pharmacological activation of AMPK by 5-aminoimidazole-1-beta-4-carboxamide ribofuranoside (AICAR) leads to inactivation of glycogen synthase (GS) and phosphorylation of GS at Ser 7 (site 2). ...

  6. Design and structure-activity relationships of potent and selective inhibitors of undecaprenyl pyrophosphate synthase (UPPS): tetramic, tetronic acids and dihydropyridin-2-ones.

    Science.gov (United States)

    Peukert, Stefan; Sun, Yingchuan; Zhang, Rui; Hurley, Brian; Sabio, Mike; Shen, Xiaoyu; Gray, Christen; Dzink-Fox, JoAnn; Tao, Jianshi; Cebula, Regina; Wattanasin, Sompong

    2008-03-15

    Based on a pharmacophore hypothesis substituted tetramic and tetronic acid 3-carboxamides as well as dihydropyridin-2-one-3-carboxamides were investigated as inhibitors of undecaprenyl pyrophosphate synthase (UPPS) for use as novel antimicrobial agents. Synthesis and structure-activity relationship patterns for this class of compounds are discussed. Selectivity data and antibacterial activities for selected compounds are provided.

  7. Safety Assessment of Citric Acid, Inorganic Citrate Salts, and Alkyl Citrate Esters as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Heldreth, Bart A; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2014-05-26

    The CIR Expert Panel (Panel) assessed the safety of citric acid, 12 inorganic citrate salts, and 20 alkyl citrate esters as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration. Citric acid is reported to function as a pH adjuster, chelating agent, or fragrance ingredient. Some of the salts are also reported to function as chelating agents, and a number of the citrates are reported to function as skin-conditioning agents but other functions are also reported. The Panel reviewed available animal and clinical data, but because citric acid, calcium citrate, ferric citrate, manganese citrate, potassium citrate, sodium citrate, diammonium citrate, isopropyl citrate, stearyl citrate, and triethyl citrate are generally recognized as safe direct food additives, dermal exposure was the focus for these ingredients in this cosmetic ingredient safety assessment.

  8. Enzymatic changes in phenylalanine ammonia-lyase, cinnamic-4-hydroxylase, capsaicin synthase, and peroxidase activities in capsicum under drought stress.

    Science.gov (United States)

    Phimchan, Paongpetch; Chanthai, Saksit; Bosland, Paul W; Techawongstien, Suchila

    2014-07-23

    Penylalanine ammonia-lyase (PAL), cinnamic-4-hydroxylase (C4H), capsaicin synthase (CS), and peroxidase (POD) are involved in the capsaicinoid biosynthesis pathway and may be altered in cultivars with different pungency levels. This study clarified the action of these enzymes under drought stress for hot Capsicum cultivars with low, medium,and high pungency levels. At the flowering stage, control plants were watered at field capacity, whereas drought-induced plants were subjected to gradual drought stress. Under drought stress, PAL, C4H, CS, and POD enzyme activities increased as compared to the non-drought-stressed plants. A novel discovery was that PAL was the critical enzyme in capsaicinoid biosynthesis under drought stress because its activities and capsaicinoid increased across the different pungency levels of hot pepper cultivars examined.

  9. Activity of Acetolactate Synthase from Maize (Zea mays L. ) as Influenced by Chlorsulfuron and Tribenuron-methyl

    Institute of Scientific and Technical Information of China (English)

    FAN Zhi-jin; CHEN Jun-peng; HU Ji-ye; QIAN Chuan-fan; LI Zheng-ming

    2003-01-01

    Study on relative sensitivity of maize (Zea mays L. ) Nongda108 and Nongda3138 to sulfonylurea herbicide chlorsulfuron and tribenuron-methyl using maize taproot length by sand bioassy indicated that, Nongda3138 had higher tolerance to chlorsulfuron and tribenuron-methyl than Nongda108 did. Chlorsulfuron had stronger growth inhibition to maize Nongda108 and Nongda3138 than tribenuron-methyl did. Study on target enzyme of sulfonylurea herbicide acetolactate synthase (ALS) showed that, chlorsulfuron and tribenuron-methyl inhibited ALS in vitro strongly, and non-competitively. In the same concentration of inhibitors,chlorsuifuron had stronger ALS activity inhibition than tribenuron-methyl did. Lower level of chlorsulfuron and tribenuron-methyl has no ALS activity inhibition in vivo, the ALS inhibition only occurred in the condition of high concentration of chlorsulfuron and tribenuron-methyl in vivo.

  10. Anaphylaxis related to fentanyl citrate

    Directory of Open Access Journals (Sweden)

    Gaurav Singh Tomar

    2012-01-01

    Full Text Available Anaphylaxis is a fulminant, unexpected, immunoglobulin E-mediated allergic reaction that can be triggered by multiple agents. Common causative agents include neuromuscular blocking drugs, latex, antibiotics, colloids, hypnotics, and opioids. Fentanyl citrate, however, is an extremely unusual cause of anaphylaxis. Pulmonary edema, although uncommon in anaphylaxis, can be a prominent feature, as was in one of the patient. An adverse drug reaction is a noxious or unintended reaction to a drug that is administered in standard doses by the proper route for the purpose of prophylaxis, diagnosis, or treatment. Reactions are classified into two major subtypes: type A, which are dose dependent and predictable; and type B, which are not dose dependent and unpredictable. Unpredictable reactions include immune (allergic or no immune drug hypersensitivity reactions and are related to genetic susceptibilities or undefined mechanisms (formally called idiosyncratic and intolerance reactions. A drug allergy is always associated with an immune mechanism for which evidence of drug-specific antibodies or activated T lymphocytes can be shown. In the last few years, many novel drugs have entered clinical practice (i.e., biologic agents generating novel patterns of drug hypersensitivity reactions. As old drugs continue to be used, new clinical and biologic techniques enable improvement in the diagnosis of these reactions.

  11. Activity of glycogen synthase and glycogen phosphorylase in normal and cirrhotic rat liver during glycogen synthesis from glucose or fructose.

    Science.gov (United States)

    Bezborodkina, Natalia N; Chestnova, Anna Yu; Okovity, Sergey V; Kudryavtsev, Boris N

    2014-03-01

    Cirrhotic patients often demonstrate glucose intolerance, one of the possible causes being a decreased glycogen-synthesizing capacity of the liver. At the same time, information about the rates of glycogen synthesis in the cirrhotic liver is scanty and contradictory. We studied the dynamics of glycogen accumulation and the activity of glycogen synthase (GS) and glycogen phosphorylase (GP) in the course of 120min after per os administration of glucose or fructose to fasted rats with CCl4-cirrhosis or fasted normal rats. Blood serum and liver pieces were sampled for examinations. In the normal rat liver administration of glucose/fructose initiated a fast accumulation of glycogen, while in the cirrhotic liver glycogen was accumulated with a 20min delay and at a lower rate. In the normal liver GS activity rose sharply and GPa activity dropped in the beginning of glycogen synthesis, but 60min later a high synthesis rate was sustained at the background of a high GS and GPa activity. Contrariwise, in the cirrhotic liver glycogen was accumulated at the background of a decreased GS activity and a low GPa activity. Refeeding with fructose resulted in a faster increase in the GS activity in both the normal and the cirrhotic liver than refeeding with glucose. To conclude, the rate of glycogen synthesis in the cirrhotic liver is lower than in the normal one, the difference being probably associated with a low GS activity.

  12. Triterpenoic Acids from Apple Pomace Enhance the Activity of the Endothelial Nitric Oxide Synthase (eNOS).

    Science.gov (United States)

    Waldbauer, Katharina; Seiringer, Günter; Nguyen, Dieu Linh; Winkler, Johannes; Blaschke, Michael; McKinnon, Ruxandra; Urban, Ernst; Ladurner, Angela; Dirsch, Verena M; Zehl, Martin; Kopp, Brigitte

    2016-01-13

    Pomace is an easy-accessible raw material for the isolation of fruit-derived compounds. Fruit consumption is associated with health-promoting effects, such as the prevention of cardiovascular disease. Increased vascular nitric oxide (NO) bioavailability, for example, due to an enhanced endothelial nitric oxide synthase (eNOS) activity, could be one molecular mechanism mediating this effect. To identify compounds from apple (Malus domestica Borkh.) pomace that have the potential to amplify NO bioavailability via eNOS activation, a bioassay-guided fractionation of the methanol/water (70:30) extract has been performed using the (14)C-L-arginine to (14)C-L-citrulline conversion assay (ACCA) in the human endothelium-derived cell line EA.hy926. Phytochemical characterization of the active fractions was performed using the spectrophotometric assessment of the total phenolic content, as well as TLC, HPLC-DAD-ELSD, and HPLC-MS analyses. Eleven triterpenoic acids, of which one is a newly discovered compound, were identified as the main constituents in the most active fraction, accompanied by only minor contents of phenolic compounds. When tested individually, none of the tested compounds exhibited significant eNOS activation. Nevertheless, cell stimulation with the reconstituted compound mixture restored eNOS activation, validating the potential of apple pomace as a source of bioactive components.

  13. In Silico Structure Prediction of Human Fatty Acid Synthase-Dehydratase: A Plausible Model for Understanding Active Site Interactions.

    Science.gov (United States)

    John, Arun; Umashankar, Vetrivel; Samdani, A; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate-active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro.

  14. PC-PLC/sphingomyelin synthase activity plays a central role in the development of myogenic tone in murine resistance arteries.

    Science.gov (United States)

    Mauban, Joseph R H; Zacharia, Joseph; Fairfax, Seth; Wier, Withrow Gil

    2015-06-15

    Myogenic tone is an intrinsic property of the vasculature that contributes to blood pressure control and tissue perfusion. Earlier investigations assigned a key role in myogenic tone to phospholipase C (PLC) and its products, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Here, we used the PLC inhibitor, U-73122, and two other, specific inhibitors of PLC subtypes (PI-PLC and PC-PLC) to delineate the role of PLC in myogenic tone of pressurized murine mesenteric arteries. U-73122 inhibited depolarization-induced contractions (high external K(+) concentration), thus confirming reports of nonspecific actions of U-73122 and its limited utility for studies of myogenic tone. Edelfosine, a specific inhibitor of PI-PLC, did not affect depolarization-induced contractions but modulated myogenic tone. Because PI-PLC produces IP3, we investigated the effect of blocking IP3 receptor-mediated Ca(2+) release on myogenic tone. Incubation of arteries with xestospongin C did not affect tone, consistent with the virtual absence of Ca(2+) waves in arteries with myogenic tone. D-609, an inhibitor of PC-PLC and sphingomyelin synthase, strongly inhibited myogenic tone and had no effect on depolarization-induced contraction. D-609 appeared to act by lowering cytoplasmic Ca(2+) concentration to levels below those that activate contraction. Importantly, incubation of pressurized arteries with a membrane-permeable analog of DAG induced vasoconstriction. The results therefore mandate a reexamination of the signaling pathways activated by the Bayliss mechanism. Our results suggest that PI-PLC and IP3 are not required in maintaining myogenic tone, but DAG, produced by PC-PLC and/or SM synthase, is likely through multiple mechanisms to increase Ca(2+) entry and promote vasoconstriction.

  15. Lithium chloride ameliorates learning and memory ability and inhibits glycogen synthase kinase-3 beta activity in a mouse model of fragile X syndrome

    Institute of Scientific and Technical Information of China (English)

    Shengqiang Chen; Xuegang Luo; Quan Yang; Weiwen Sun; Kaiyi Cao; Xi Chen; Yueling Huang; Lijun Dai; Yonghong Yi

    2011-01-01

    In the present study, Fmr1 knockout mice (KO mice) were used as the model for fragile X syndrome. The results of step-through and step-down tests demonstrated that Fmr1 KO mice had shorter latencies and more error counts, indicating a learning and memory disorder. After treatment with 30, 60, 90, 120, or 200 mg/kg lithium chloride, the learning and memory abilities of the Fmr1 KO mice were significantly ameliorated, in particular, the 200 mg/kg lithium chloride treatment had the most significant effect. Western blot analysis showed that lithium chloride significantly enhanced the expression of phosphorylated glycogen synthase kinase 3 beta, an inactive form of glycogen synthase kinase 3 beta, in the cerebral cortex and hippocampus of the Fmr1 KO mice. These results indicated that lithium chloride improved learning and memory in the Fmr1 KO mice, possibly by inhibiting glycogen synthase kinase 3 beta activity.

  16. A Selective Assay to Detect Chitin and Biologically Active Nano-Machineries for Chitin-Biosynthesis with Their Intrinsic Chitin-Synthase Molecules

    Directory of Open Access Journals (Sweden)

    Hildgund Schrempf

    2010-09-01

    Full Text Available A new assay system for chitin has been developed. It comprises the chitin-binding protein ChbB in fusion with a His-tag as well as with a Strep-tag, the latter of which was chemically coupled to horseradish peroxidase. With the resulting complex, minimal quantities of chitin are photometrically detectable. In addition, the assay allows rapid scoring of the activity of chitin-synthases. As a result, a refined procedure for the rapid purification of yeast chitosomes (nano-machineries for chitin biosynthesis has been established. Immuno-electronmicroscopical studies of purified chitosomes, gained from a yeast strain carrying a chitin-synthase gene fused to that for GFP (green-fluorescence protein, has led to the in situ localization of chitin-synthase-GFP molecules within chitosomes.

  17. The conversion of nickel-bound CO into an acetyl thioester: organometallic chemistry relevant to the acetyl coenzyme A synthase active site.

    Science.gov (United States)

    Horn, Bettina; Limberg, Christian; Herwig, Christian; Mebs, Stefan

    2011-12-23

    When three become one: Within one nickel-based model system, the three reactants CO, MeI, and PhSH have been assembled to yield an acetyl thioester. The reactivity is of relevance for the functioning of the acetyl coenzyme A synthase active site and provides insights into possible binding sequences.

  18. Overexpression of erg20 gene encoding farnesyl pyrophosphate synthase has contrasting effects on activity of enzymes of the dolichyl and sterol branches of mevalonate pathway in Trichoderma reesei.

    Science.gov (United States)

    Piłsyk, Sebastian; Perlińska-Lenart, Urszula; Górka-Nieć, Wioletta; Graczyk, Sebastian; Antosiewicz, Beata; Zembek, Patrycja; Palamarczyk, Grażyna; Kruszewska, Joanna S

    2014-07-10

    The mevalonate pathway is the most diverse metabolic route resulting in the biosynthesis of at least 30,000 isoprenoid compounds, many of which, such as sterols or dolichols, are indispensable for living cells. In the filamentous fungus Trichoderma of major biotechnological interest isoprenoid metabolites are also involved in the biocontrol processes giving the mevalonate pathway an additional significance. On the other hand, little is known about genes coding for enzymes of the mevalonate pathway in Trichoderma. Here, we present cloning and functional analysis of the erg20 gene from Trichoderma reesei coding for farnesyl pyrophosphate (FPP) synthase (EC 2.5.1.10), an enzyme located at the branching point of the mevalonate pathway. Expression of the gene in a thermosensitive erg20-2 mutant of Saccharomyces cerevisiae impaired in the FPP synthase activity suppressed the thermosensitive phenotype. The same gene overexpressed in T. reesei significantly enhanced the FPP synthase activity and also stimulated the activity of cis-prenyltransferase, an enzyme of the dolichyl branch of the mevalonate pathway. Unexpectedly, the activity of squalene synthase from the other, sterol branch, was significantly decreased without, however, affecting ergosterol level.

  19. Low-dose ribavirin treatments attenuate neuroinflammatory activation of BV-2 Cells by interfering with inducible nitric oxide synthase.

    Science.gov (United States)

    Bozic, Iva; Savic, Danijela; Jovanovic, Marija; Bjelobaba, Ivana; Laketa, Danijela; Nedeljkovic, Nadezda; Stojiljkovic, Mirjana; Pekovic, Sanja; Lavrnja, Irena

    2015-01-01

    Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM) modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM) to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS) stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation.

  20. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Iva Bozic

    2015-01-01

    Full Text Available Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation.

  1. Enzyme activities in mitochondria isolated from ripening tomato fruit.

    Science.gov (United States)

    Jeffery, D; Goodenough, P W; Weitzman, P D

    1986-09-01

    Mitochondria were isolated from tomato (Lycopersicon esculentum L.) fruit at the mature green, orange-green and red stages and from fruit artificially suspended in their ripening stage. The specific activities of citrate synthase (EC 4.1.3.7), malate dehydrogenase (EC 1.1.1.37), NAD-linked isocitrate dehydrogenase (EC 1.1.1.41) and NAD-linked malic enzyme (EC 1.1.1.38) were determined. The specific activities of all these enzymes fell during ipening, although the mitochondria were fully functional as demonstrated by the uptake of oxygen. The fall in activity of mitochondrial malate dehydrogenase was accompanied by a similar fall in the activity of the cytosolic isoenzyme. Percoll-purified mitochondria isolated from mature green fruit remained intact for more than one week and at least one enzyme, citrate synthase, did not exhibit the fall in specific activity found in normal ripening fruit.

  2. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare

    DEFF Research Database (Denmark)

    Zerbe, Philipp; Chiang, Angela; Dullat, Harpreet

    2014-01-01

    different candidate diterpene synthases (diTPSs) of the TPS-c and TPS-e/f clades. We describe the in vitro and in vivo functional characterization of the M. vulgare diTPS family. In addition to MvEKS ent-kaurene synthase of general metabolism, we identified three diTPSs of specialized metabolism: MvCPS3...

  3. Morphological changes of the filamentous fungus Mucor mucedo and inhibition of chitin synthase activity induced by anethole.

    Science.gov (United States)

    Yutani, Masahiro; Hashimoto, Yukie; Ogita, Akira; Kubo, Isao; Tanaka, Toshio; Fujita, Ken-ichi

    2011-11-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum with antimicrobial activity relatively weaker than those of well-known antibiotics, and significantly enhances the antifungal activity of polygodial and dodecanol against the baker's yeast Saccharomyces cerevisiae and human pathogenic yeast Candida albicans. However, the antifungal mechanism of anethole is unresolved. Anethole demonstrated antifungal activity against the filamentous fungus, Mucor mucedo IFO 7684, accompanied by hyphal morphological changes such as swollen hyphae at the tips. Its minimum growth inhibitory concentration was 0.625 mM. A hyperosmotic condition (1.2 M sorbitol) restricted the induction of morphological changes, while hypoosmotic treatment (distilled water) induced bursting of hyphal tips and leakage of cytoplasmic constituents. Furthermore, anethole dose-dependently inhibited chitin synthase (CHS) activity in permeabilized hyphae in an uncompetitive manner. These results suggest that the morphological changes of M. mucedo could be explained by the fragility of cell walls caused by CHS inhibition.

  4. Wound healing activity and docking of glycogen-synthase-kinase-3-beta-protein with isolated triterpenoid lupeol in rats.

    Science.gov (United States)

    Harish, B G; Krishna, V; Santosh Kumar, H S; Khadeer Ahamed, B M; Sharath, R; Kumara Swamy, H M

    2008-09-01

    A triterpene compound lupeol isolated from petroleum ether extract of leaves of Celastrus paniculatus was screened for wound healing activity (8 mg/ml of 0.2% sodium alginate gel) by excision, incision and dead space wound models on Swiss Albino rats (175-225 g). In lupeol treated groups wound healing activity was more significant (17.83+/-0.48) than the standard skin ointment nitrofurazone (18.33+/-0.42). Epithelialization of the incision wound was faster with a high rate of wound contraction (571.50+/-5.07) as compared with the control group. In dead space wound model also the weight of the granulation tissue of the lupeol treated animal was increased indicating increase of collagenation and absence of monocytes. The comparative docking of isolated lupeol molecule and standard drug nitrofurazone to glycogen synthase kinase 3-beta protein by Wnt signaling pathway also supported the wound healing property of lupeol. The activation domain of GSK3-beta consisted of Tyr216, with residues Asn64, Gly65, Ser66, Phe67, Gly68, Val70, Lys85, Leu132, Val135, Asp181 in the active pocket docked with lupeol at the torsional degree of freedom 0.5 units with Lamarckian genetic algorithm showed the inhibition constant of 1.38 x 10(-7). The inhibition constant of nitrofurazone was only 1.35 x 10(-4).

  5. Role of dietary fish oil on nitric oxide synthase activity and oxidative status in mice red blood cells.

    Science.gov (United States)

    Martins, Marcela A; Moss, Monique B; Mendes, Iara K S; Águila, Márcia B; Mandarim-de-Lacerda, Carlos Alberto; Brunini, Tatiana M C; Mendes-Ribeiro, Antônio Cláudio

    2014-12-01

    The consumption of n-3 polyunsaturated fatty acids (PUFAs) derived from fish oil concomitant with a reduced intake of saturated fats is associated with cardiovascular benefits, which may result from the participation of nitric oxide (NO). In contrast, PUFAs are vulnerable to peroxidation, which could affect the oxidative stability of the cell and reduce NO bioavailability. Therefore, we investigated the effects of high fat diets with increasing amounts of fish oil (0-40% of energy) in place of lard on the l-arginine-NO pathway, the arginase pathway and oxidative status in mice red blood cells (RBC). We found that l-arginine transport, as well as NO synthase (NOS) expression and activity, was enhanced by the highest doses of fish oil (30 and 40%). In contrast, diets rich in lard led to NOS expression and activity impairment. Arginase expression was not significantly affected by any of the dietary regimens. No significant difference in protein and lipid oxidative markers was observed among any of the fish-oil fed mice; only lard feeding induced protein damage in addition to a decreased superoxide dismutase activity. These data suggest that a substantial dose of fish oil, but not low doses, activates the RBC l-arginine-NO pathway without resulting in oxidative damage.

  6. Rate of hydrolysis in ATP synthase is fine-tuned by  -subunit motif controlling active site conformation

    KAUST Repository

    Beke-Somfai, T.

    2013-01-23

    Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F(1) performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate.

  7. Structural and mechanistic analysis of engineered trichodiene synthase enzymes from Trichoderma harzianum: towards higher catalytic activities empowering sustainable agriculture.

    Science.gov (United States)

    Kumari, Indu; Chaudhary, Nitika; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2016-06-01

    Trichoderma spp. are well-known bioagents for the plant growth promotion and pathogen suppression. The beneficial activities of the fungus Trichoderma spp. are attributed to their ability to produce and secrete certain secondary metabolites such as trichodermin that belongs to trichothecene family of molecules. The initial steps of trichodermin biosynthetic pathway in Trichoderma are similar to the trichothecenes from Fusarium sporotrichioides. Trichodiene synthase (TS) encoded by tri5 gene in Trichoderma catalyses the conversion of farnesyl pyrophosphate to trichodiene as reported earlier. In this study, we have carried out a comprehensive comparative sequence and structural analysis of the TS, which revealed the conserved residues involved in catalytic activity of the protein. In silico, modelled tertiary structure of TS protein showed stable structural behaviour during simulations. Two single-substitution mutants, i.e. D109E, D248Y and one double-substitution mutant (D109E and D248Y) of TS with potentially higher activities are screened out. The mutant proteins showed more stability than the wild type, an increased number of electrostatic interactions and better binding energies with the ligand, which further elucidates the amino acid residues involved in the reaction mechanism. These results will lead to devise strategies for higher TS activity to ultimately enhance the trichodermin production by Trichoderma spp. for its better exploitation in the sustainable agricultural practices.

  8. Changes of Nitric Oxide Synthase Activity in Penumbral and Core Area during Focal Cerebral Ischemia and Reperfusion in Rats

    Institute of Scientific and Technical Information of China (English)

    GUZhen; ZHOUJian-ping; WUWen-zhong; ZHANGYong-jie; HANQun-ying; WANGHe-ming

    2004-01-01

    Objecivee: To study the changes of nitric oxide synthase (NOS) activity in penumbral and core area during focal cerebral ischemia and reperfusion, and to explore the therapeutic window of focal cerebral ischemia. Methods:The middle cerebral artery of rats was occluded for 15, 30,60,90 and 120 min by an inraluminal filament respectively,and recirculation was instituted for 24 h. The changes of NOS activity in ischemic core area(parietal cortex and caudoputamen) and penumbral area ( frontal cortex)were examined after focal cerebral ischemla and reperfusion using NADPH-d histochemistry, technique. Results. The NOS activity of the ischemic penumbral area peaked at 60 min while the ischemic core area peaked at 30 min then declined at 90-120 rain sharply. Conclusion: NOS takes part in cerebral ischemic damage during focal cerebral ischemia and reperfusion. The NOS activity of the ischemic penmnbral area is different from the ischemic core area. The peak time of the penumbral area is delayed comparing with the core area. The data suggest that the best time to apply NOS inhibitor is within 30 min in ischemic core area, and 60 rain in penumbral area.

  9. A limitation of the continuous spectrophotometric assay for the measurement of myo-inositol-1-phosphate synthase activity.

    Science.gov (United States)

    Huang, Xinyi; Hernick, Marcy

    2011-10-15

    Myo-inositol-1-phosphate synthase (MIPS) catalyzes the conversion of glucose-6-phosphate to myo-inositol-1-phosphate. The reaction catalyzed by MIPS is the first step in the biosynthesis of inositol and inositol-containing molecules that serve important roles in both eukaryotes and prokaryotes. Consequently, MIPS is a target for the development of therapeutic agents for the treatment of infectious diseases and bipolar disorder. We recently reported a continuous spectrophotometric method for measuring MIPS activity using a coupled assay that allows the rapid characterization of MIPS in a multiwell plate format. Here we validate the continuous assay as a high-throughput alternative for measuring MIPS activity and report on one limitation of this assay-the inability to examine the effect of divalent metal ions (at high concentrations) on MIPS activity. In addition, we demonstrate that the activity of MIPS from Arabidopsis thaliana is moderately enhanced by the addition Mg(2+) and is not enhanced by other divalent metal ions (Zn(2+) and Mn(2+)), consistent with what has been observed for other eukaryotic MIPS enzymes. Our findings suggest that the continuous assay is better suited for characterizing eukaryotic MIPS enzymes that require monovalent cations as cofactors than for characterizing bacterial or archeal MIPS enzymes that require divalent metal ions as cofactors.

  10. Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum.

    Science.gov (United States)

    Tijerino, Anamariela; Cardoza, R Elena; Moraga, Javier; Malmierca, Mónica G; Vicente, Francisca; Aleu, Josefina; Collado, Isidro G; Gutiérrez, Santiago; Monte, Enrique; Hermosa, Rosa

    2011-03-01

    Trichoderma brevicompactum produces trichodermin, a simple trichothecene-type toxin that shares the first steps of the sesquiterpene biosynthetic pathway with other phytotoxic trichothecenes from Fusarium spp. Trichodiene synthase catalyses the conversion of farnesyl pyrophosphate to trichodiene and it is encoded by the tri5 gene that was cloned and analysed functionally by homologous overexpression in T. brevicompactum. tri5 expression was up-regulated in media with glucose, H(2)O(2) or glycerol. tri5 repression was observed in cultures supplemented with the antioxidants ferulic acid and tyrosol. Acetone extracts of tri5-overexpressing transformants displayed higher antifungal activity than those from the wild-type. Chromatographic and spectroscopic analyses revealed that tri5 overexpression led to an increased production of trichodermin and tyrosol. Agar diffusion assays with these two purified metabolites from the tri5-overexpressing transformant T. brevicompactum Tb41tri5 showed that only trichodermin had antifungal activity against Saccharomyces cerevisiae, Kluyveromyces marxianus, Candida albicans, Candida glabrata, Candida tropicalis and Aspergillus fumigatus, in most cases such activity being higher than that observed for amphotericin B and hygromycin. Our results point to the significant role of tri5 in the production of trichodermin and in the antifungal activity of T. brevicompactum.

  11. Significance of redox-active cysteines in human FAD synthase isoform 2.

    Science.gov (United States)

    Miccolis, Angelica; Galluccio, Michele; Nitride, Chiara; Giancaspero, Teresa Anna; Ferranti, Pasquale; Iametti, Stefania; Indiveri, Cesare; Bonomi, Francesco; Barile, Maria

    2014-12-01

    FAD synthase (FMN:ATP adenylyl transferase, FMNAT or FADS, EC 2.7.7.2) is the last enzyme in the pathway converting riboflavin into FAD. In humans, FADS is localized in different subcellular compartments and exists in different isoforms. Isoform 2 (490-amino acids) is organized in two domains: the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase domain, that is the FAD-forming catalytic domain, and one resembling a molybdopterin-binding (MPTb) domain, with a hypothetical regulatory role. hFADS2 contains ten Cys residues, seven of which located in the PAPS reductase domain, with a possible involvement either in FAD synthesis or in FAD delivery to cognate apo-flavoproteins. A homology model of the PAPS reductase domain of hFADS2 revealed a co-ordinated network among the Cys residues in this domain. In this model, C312 and C303 are very close to the flavin substrate, consistent with a significantly lowered FAD synthesis rate in C303A and C312A mutants. FAD synthesis is also inhibited by thiol-blocking reagents, suggesting the involvement of free cysteines in the hFADS2 catalytic cycle. Mass spectrometry measurements and titration with thiol reagents on wt hFADS2 and on several individual cysteine/alanine mutants allowed us to detect two stably reduced cysteines (C139 and C241, one for each protein domain), two stable disulfide bridges (C399-C402, C303-C312, both in the PAPS domain), and two unstable disulfides (C39-C50; C440-C464). Whereas the C39-C50 unstable disulfide is located in the MPTb domain and appears to have no catalytic relevance, a cysteine-based redox switch may involve formation and breakdown of a disulfide between C440 and C464 in the PAPS domain.

  12. 21 CFR 184.1751 - Sodium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium citrate. 184.1751 Section 184.1751 Food and... Substances Affirmed as GRAS § 184.1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68... may be prepared in an anhydrous state or may contain two moles of water per mole of sodium citrate....

  13. 21 CFR 184.1449 - Manganese citrate.

    Science.gov (United States)

    2010-04-01

    ... sodium citrate to complete the reaction. (b) The ingredient must be of a purity suitable for its intended... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese citrate. 184.1449 Section 184.1449 Food... Specific Substances Affirmed as GRAS § 184.1449 Manganese citrate. (a) Manganese citrate (Mn3(C6H5O7)2,...

  14. Steroid receptor RNA activator (SRA modification by the human pseudouridine synthase 1 (hPus1p: RNA binding, activity, and atomic model.

    Directory of Open Access Journals (Sweden)

    Tiphaine Huet

    Full Text Available The most abundant of the modified nucleosides, and once considered as the "fifth" nucleotide in RNA, is pseudouridine, which results from the action of pseudouridine synthases. Recently, the mammalian pseudouridine synthase 1 (hPus1p has been reported to modulate class I and class II nuclear receptor responses through its ability to modify the Steroid receptor RNA Activator (SRA. These findings highlight a new level of regulation in nuclear receptor (NR-mediated transcriptional responses. We have characterised the RNA association and activity of the human Pus1p enzyme with its unusual SRA substrate. We validate that the minimal RNA fragment within SRA, named H7, is necessary for both the association and modification by hPus1p. Furthermore, we have determined the crystal structure of the catalytic domain of hPus1p at 2.0 Å resolution, alone and in a complex with several molecules present during crystallisation. This model shows an extended C-terminal helix specifically found in the eukaryotic protein, which may prevent the enzyme from forming a homodimer, both in the crystal lattice and in solution. Our biochemical and structural data help to understand the hPus1p active site architecture, and detail its particular requirements with regard to one of its nuclear substrates, the non-coding RNA SRA.

  15. Steroid receptor RNA activator (SRA) modification by the human pseudouridine synthase 1 (hPus1p): RNA binding, activity, and atomic model.

    Science.gov (United States)

    Huet, Tiphaine; Miannay, François-Alexandre; Patton, Jeffrey R; Thore, Stéphane

    2014-01-01

    The most abundant of the modified nucleosides, and once considered as the "fifth" nucleotide in RNA, is pseudouridine, which results from the action of pseudouridine synthases. Recently, the mammalian pseudouridine synthase 1 (hPus1p) has been reported to modulate class I and class II nuclear receptor responses through its ability to modify the Steroid receptor RNA Activator (SRA). These findings highlight a new level of regulation in nuclear receptor (NR)-mediated transcriptional responses. We have characterised the RNA association and activity of the human Pus1p enzyme with its unusual SRA substrate. We validate that the minimal RNA fragment within SRA, named H7, is necessary for both the association and modification by hPus1p. Furthermore, we have determined the crystal structure of the catalytic domain of hPus1p at 2.0 Å resolution, alone and in a complex with several molecules present during crystallisation. This model shows an extended C-terminal helix specifically found in the eukaryotic protein, which may prevent the enzyme from forming a homodimer, both in the crystal lattice and in solution. Our biochemical and structural data help to understand the hPus1p active site architecture, and detail its particular requirements with regard to one of its nuclear substrates, the non-coding RNA SRA.

  16. 21 CFR 582.6625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is...

  17. 21 CFR 582.1625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use....

  18. 21 CFR 582.6751 - Sodium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium citrate. 582.6751 Section 582.6751 Food and..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 2 § 582.6751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally recognized...

  19. 21 CFR 582.1751 - Sodium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium citrate. 582.1751 Section 582.1751 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is...

  20. 21 CFR 184.1298 - Ferric citrate.

    Science.gov (United States)

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1298 Ferric citrate. (a) Ferric citrate (iron (III) citrate, C6H5FeO7, CAS Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for...

  1. Inhibition of glycogen synthase kinase 3β activity with lithium prevents and attenuates paclitaxel-induced neuropathic pain.

    Science.gov (United States)

    Gao, M; Yan, X; Weng, H-R

    2013-12-19

    Paclitaxel (taxol) is a first-line chemotherapy-drug used to treat many types of cancers. Neuropathic pain and sensory dysfunction are the major toxicities, which are dose-limiting and significantly reduce the quality of life in patients. Two known critical spinal mechanisms underlying taxol-induced neuropathic pain are an increased production of pro-inflammatory cytokines including interleukin-1β (IL-1β) and suppressed glial glutamate transporter activities. In this study, we uncovered that increased activation of glycogen synthase kinase 3beta (GSK3β) in the spinal dorsal horn was concurrently associated with increased protein expressions of GFAP, IL-1β and a decreased protein expression of glial glutamate transporter 1 (GLT-1), as well as the development and maintenance of taxol-induced neuropathic pain. The enhanced GSK3β activities were supported by the concurrently decreased AKT and mTOR activities. The changes of all these biomarkers were basically prevented when animals received pre-emptive lithium (a GSK3β inhibitor) treatment, which also prevented the development of taxol-induced neuropathic pain. Further, chronic lithium treatment, which began on day 11 after the first taxol injection, reversed the existing mechanical and thermal allodynia induced by taxol. The taxol-induced increased GSK3β activities and decreased AKT and mTOR activities in the spinal dorsal horn were also reversed by lithium. Meanwhile, protein expressions of GLT-1, GFAP and IL-1β in the spinal dorsal horn were improved. Hence, suppression of spinal GSK3β activities is a key mechanism used by lithium to reduce taxol-induced neuropathic pain, and targeting spinal GSK3β is an effective approach to ameliorate GLT-1 expression and suppress the activation of astrocytes and IL-1β over-production in the spinal dorsal horn.

  2. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China); Zhang, Qunye, E-mail: wz.zhangqy@sdu.edu.cn [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong (China); Li, Guorong, E-mail: grli@sdnu.edu.cn [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China)

    2015-03-13

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.

  3. Plasmodium Infection Is Associated with Impaired Hepatic Dimethylarginine Dimethylaminohydrolase Activity and Disruption of Nitric Oxide Synthase Inhibitor/Substrate Homeostasis.

    Directory of Open Access Journals (Sweden)

    Jessica H Chertow

    2015-09-01

    Full Text Available Inhibition of nitric oxide (NO signaling may contribute to pathological activation of the vascular endothelium during severe malaria infection. Dimethylarginine dimethylaminohydrolase (DDAH regulates endothelial NO synthesis by maintaining homeostasis between asymmetric dimethylarginine (ADMA, an endogenous NO synthase (NOS inhibitor, and arginine, the NOS substrate. We carried out a community-based case-control study of Gambian children to determine whether ADMA and arginine homeostasis is disrupted during severe or uncomplicated malaria infections. Circulating plasma levels of ADMA and arginine were determined at initial presentation and 28 days later. Plasma ADMA/arginine ratios were elevated in children with acute severe malaria compared to 28-day follow-up values and compared to children with uncomplicated malaria or healthy children (p<0.0001 for each comparison. To test the hypothesis that DDAH1 is inactivated during Plasmodium infection, we examined DDAH1 in a mouse model of severe malaria. Plasmodium berghei ANKA infection inactivated hepatic DDAH1 via a post-transcriptional mechanism as evidenced by stable mRNA transcript number, decreased DDAH1 protein concentration, decreased enzyme activity, elevated tissue ADMA, elevated ADMA/arginine ratio in plasma, and decreased whole blood nitrite concentration. Loss of hepatic DDAH1 activity and disruption of ADMA/arginine homeostasis may contribute to severe malaria pathogenesis by inhibiting NO synthesis.

  4. New procedures to measure synthase and phosphatase activities of bis-phosphoglycerate mutase. Interest for development of therapeutic drugs; Nouveaux procedes pour mesurer les activites synthase et phosphatase de la bisphosphoglycerate mutase. Interet pour le developpement de drogues therapeutiques

    Energy Technology Data Exchange (ETDEWEB)

    Ravel, P.; Garel, M.C. [Hopital Henri-Mondor, 94 - Creteil (France); Toullec, D. [Laboratoire Glaxo Wellcome, 91- Les Ulis (France)

    1997-12-31

    In red blood cells, a modulation of the level of the allosteric effector of hemoglobin, 2,3-diphosphoglycerate (2,3-DPG) would have implications in the treatment of ischemia and sickle cell anemia. Its concentrations is determined by the relative activities of the synthase and phosphatase reactions of the multifunctional bis-phosphoglycerate mutase (BPGM). In this report we develop first a more direct synthase assay which uses glyceraldehyde phosphate to suppress the aldolase and triose phosphate isomerase reactions. Secondly we propose a radioactive phosphatase assay coupled to chromatographic separation and identification of the reaction products by paper electrophoresis. Such identification of these products allows us to show that the multifunctional BPGM expresses its mutase instead of its phosphatase activity in conditions of competition between the 3-phosphoglycerate and the 2-phospho-glycolate activator in the phosphatase reaction. These two more precise procedures could be used to study the effects of substrate and cofactor analogues regarding potential therapeutic approaches and could be used for clinical analyses to detect deficiency of BPGM. (author)

  5. By activating Fas/ceramide synthase 6/p38 kinase in lipid rafts, stichoposide D inhibits growth of leukemia xenografts.

    Science.gov (United States)

    Yun, Seong-Hoon; Park, Eun-Seon; Shin, Sung-Won; Ju, Mi-Ha; Han, Jin-Yeong; Jeong, Jin-Sook; Kim, Sung-Hyun; Stonik, Valentin A; Kwak, Jong-Young; Park, Joo-In

    2015-09-29

    Stichoposide D (STD) is a marine triterpene glycoside isolated from sea cucumbers. We examined the molecular mechanisms underlying the antitumor activity of STD in human leukemia cells. The role of Fas (CD95), ceramide synthase 6 (CerS6) and p38 kinase during STD-induced apoptosis was examined in human leukemia cells. In addition, the antitumor effects of STD in K562 and HL-60 leukemia xenograft models were investigated. We found that STD induces Fas translocation to lipid rafts, and thus mediates cell apoptosis. We also observed the activation of CerS6 and p38 kinase during STD-induced apoptosis. The use of methyl-β-cyclodextrin and nystatin to disrupt lipid rafts prevents the clustering of Fas and the activation of CerS6 and p38 kinase, and also inhibits STD-induced apoptosis. Specific inhibition by Fas, CerS6, and p38 kinase siRNA transfection partially blocked STD-induced apoptosis. In addition, STD has antitumor activity through the activation of CerS6 and p38 kinase without displaying any toxicity in HL-60 and K562 xenograft models. We observed that the anti-tumor effect of STD is partially prevented in CerS6 shRNA-silenced xenograft models. We first report that Fas/CerS6/p38 kinase activation in lipid rafts by STD is involved in its anti-leukemic activity. We also established that STD is able to enhance the chemosensitivity of K562 cells to etoposide or Ara-C. These data suggest that STD may be used alone or in combination with other chemotherapeutic agents to treat leukemia.

  6. The stimulating role of subunit F in ATPase activity inside the A1-complex of the Methanosarcina mazei Gö1 A1AO ATP synthase.

    Science.gov (United States)

    Singh, Dhirendra; Sielaff, Hendrik; Sundararaman, Lavanya; Bhushan, Shashi; Grüber, Gerhard

    2016-02-01

    A1AO ATP synthases couple ion-transport of the AO sector and ATP synthesis/hydrolysis of the A3B3-headpiece via their stalk subunits D and F. Here, we produced and purified stable A3B3D- and A3B3DF-complexes of the Methanosarcina mazei Gö1 A-ATP synthase as confirmed by electron microscopy. Enzymatic studies with these complexes showed that the M. mazei Gö1 A-ATP synthase subunit F is an ATPase activating subunit. The maximum ATP hydrolysis rates (Vmax) of A3B3D and A3B3DF were determined by substrate-dependent ATP hydrolysis experiments resulting in a Vmax of 7.9 s(-1) and 30.4 s(-1), respectively, while the KM is the same for both. Deletions of the N- or C-termini of subunit F abolished the effect of ATP hydrolysis activation. We generated subunit F mutant proteins with single amino acid substitutions and demonstrated that the subunit F residues S84 and R88 are important in stimulating ATP hydrolysis. Hybrid formation of the A3B3D-complex with subunit F of the related eukaryotic V-ATPase of Saccharomyces cerevisiae or subunit ε of the F-ATP synthase from Mycobacterium tuberculosis showed that subunit F of the archaea and eukaryotic enzymes are important in ATP hydrolysis.

  7. Antiproliferative Effects of Zinc-Citrate Compound on Hormone Refractory Prostate Cancer

    Institute of Scientific and Technical Information of China (English)

    Sung Hoo Hong; Yong Sun Choi; Hyuk Jin Cho; Ji Youl Lee; Joon Chul Kim; Tae Kon Hwang; Sae Woong Kim

    2012-01-01

    Objective:To investigate the antiproliferative effects of zinc-citrate compound on hormone refractory prostate cancer (HRPC).Methods:HRPC cell line (DU145) and normal prostate cell line (RWPE-1) were treated with zinc,citrate and zinc-citrate compound at different time intervals and concentrations to investigate the effect of zinc-citrate compound.Mitochondrial (m)-aconitase activity was determined using aconitase assay.DNA laddering analysis was performed to investigate apoptosis of DU145 cells.Molecular mechanism of apoptosis was investigated by Western blot analys s of P53,P21waf1,Bcl-2,Bcl-xL and Bax,and also caspase-3 activity analysis.Results:Treatment with zinc-citrate compound resulted in a time- and dose-dependent decrease in cell number of DU145 cells in comparison with RWPE-1.M-aconitase activity was significantly decreased.DNA laddering analysis indicated apoptosis of DU145 cells.Zinc-citrate compound increased the expression of P21waf1 and P53,and reduced the express on of Bcl-2 and Bcl-xL proteins but induced the expression of Bax protein.Zinc-citrate compound induced apoptosis of DU145 cells by activation of the caspase-3 pathway.Conclusion:Zinc-citrate compound can induce apoptotic cell death in DU145,by caspase-3 activation through up-regulation of apoptotic proteins and down-regulation of antiapoptotic proteins.

  8. Inhaled nitric oxide decreases pulmonary endothelial nitric oxide synthase expression and activity in normal newborn rat lungs

    Directory of Open Access Journals (Sweden)

    Thông Hua-Huy

    2016-02-01

    Full Text Available Inhaled nitric oxide (iNO is commonly used in the treatment of very ill pre-term newborns. Previous studies showed that exogenous NO could affect endothelial NO synthase (eNOS activity and expression in vascular endothelial cell cultures or adult rat models, but this has never been fully described in newborn rat lungs. We therefore aimed to assess the effects of iNO on eNOS expression and activity in newborn rats. Rat pups, post-natal day (P 0 to P7, and their dams were placed in a chamber containing NO at 5 ppm (iNO-5 ppm group or 20 ppm (iNO-20 ppm group, or in room air (control group. Rat pups were sacrificed at P7 and P14 for evaluation of lung eNOS expression and activity. At P7, eNOS protein expression in total lung lysates, in bronchial and arterial sections, was significantly decreased in the iNO-20 ppm versus control group. At P14, eNOS expression was comparable among all three groups. The amounts of eNOS mRNA significantly differed at P7 between the iNO-20 ppm and control groups. NOS activity decreased in the iNO-20 ppm group at P7 and returned to normal levels at P14. There was an imbalance between superoxide dismutase and NOS activities in the iNO-20 ppm group at P7. Inhalation of NO at 20 ppm early after birth decreases eNOS gene transcription, protein expression and enzyme activity. This decrease might account for the rebound phenomenon observed in patients treated with iNO.

  9. Methylene bridge regulated geometrical preferences of ligands in cobalt(III) coordination chemistry and phenoxazinone synthase mimicking activity.

    Science.gov (United States)

    Panja, Anangamohan; Shyamal, Milan; Saha, Amrita; Mandal, Tarun Kanti

    2014-04-14

    Two new azide bound cobalt(III) complexes, [Co(L(1))(N3)3] (fac-1) and [Co(L(2))(N3)3] (mer-2), where L(1) is bis(2-pyridylmethyl)amine and L(2) is (2-pyridylmethyl)(2-pyridylethyl)amine, derived from tridentate reduced Schiff-base ligands have been reported. Interestingly, a methylene bridge regulated preferential coordination mode of ligands is noticed in their crystal structures: it is found in a facial arrangement in fac-1 and has a meridional disposition in mer-2. Both complexes show phenoxazinone synthase-like activity and the role of the structural factor on the catalytic activity is also explored. Moreover, the easily reducible cobalt(III) center in mer-2 favors the oxidation of o-aminophenol. The ESI-MS positive spectra together with UV-vis spectroscopy clearly suggest the formation of a catalyst-substrate adduct by substitution of the coordinated azide ions in the catalytic cycle.

  10. Elucidating modes of activation and herbicide resistance by sequence assembly and molecular modelling of the Acetolactate synthase complex in sugarcane.

    Science.gov (United States)

    Lloyd Evans, Dyfed; Joshi, Shailesh Vinay

    2016-10-21

    Acetolactate synthase (ALS) catalyzes the first portion of the biosynthetic pathway leading to the generation of branched-chain amino acids. As such it is essential for plant health and is a major target for herbicides. ALS is a very poorly characterized molecule in sugarcane. The enzyme is activated and inhibited by a regulatory subunit (known as VAT1 in plants) whose mode of action is entirely unknown. Using Saccharum halepense as a template we have assembled the ALS gene of sugarcane (Saccharum hybrid) and have modelled the structure of ALS based on an Arabidopsis template (the first ALS model for a monocot). We have also assembled the ALS regulatory proteins (VAT1 and VAT2) from sugarcane and show that VAT2 is specific to true grasses. Employing a bacterial model, we have generated a structural model for VAT1, which explains why the separate domains of the proteins bind to either leucine or valine but not both. Using co-evolution studies we have determined molecular contacts by which we modelled the docking of VAT1 to ALS. In conclusion, we demonstrate how the binding of VAT1 to ALS activates ALS and show how VAT1 can also confer feedback inhibition to ALS. We validate our ALS model against biochemical data and employ this model to explain the function of a novel herbicide binding mutant in sugarcane.

  11. Implications of binding mode and active site flexibility for inhibitor potency against the salicylate synthase from Mycobacterium tuberculosis.

    Science.gov (United States)

    Chi, Gamma; Manos-Turvey, Alexandra; O'Connor, Patrick D; Johnston, Jodie M; Evans, Genevieve L; Baker, Edward N; Payne, Richard J; Lott, J Shaun; Bulloch, Esther M M

    2012-06-19

    MbtI is the salicylate synthase that catalyzes the first committed step in the synthesis of the iron chelating compound mycobactin in Mycobacterium tuberculosis. We previously developed a series of aromatic inhibitors against MbtI based on the reaction intermediate for this enzyme, isochorismate. The most potent of these inhibitors had hydrophobic substituents, ranging in size from a methyl to a phenyl group, appended to the terminal alkene of the enolpyruvyl group. These compounds exhibited low micromolar inhibition constants against MbtI and were at least an order of magnitude more potent than the parental compound for the series, which carries a native enolpyruvyl group. In this study, we sought to understand how the substituted enolpyruvyl group confers greater potency, by determining cocrystal structures of MbtI with six inhibitors from the series. A switch in binding mode at the MbtI active site is observed for inhibitors carrying a substituted enolpyruvyl group, relative to the parental compound. Computational studies suggest that the change in binding mode, and higher potency, is due to the effect of the substituents on the conformational landscape of the core inhibitor structure. The crystal structures and fluorescence-based thermal shift assays indicate that substituents larger than a methyl group are accommodated in the MbtI active site through significant but localized flexibility in the peptide backbone. These findings have implications for the design of improved inhibitors of MbtI, as well as other chorismate-utilizing enzymes from this family.

  12. Ligands of Peroxisome Proliferator-activated Receptor Inhibit Homocysteineinduced DNA Methylation of Inducible Nitric Oxide Synthase Gene

    Institute of Scientific and Technical Information of China (English)

    Yideng JIANG; Jianzhong ZHANG; Jiantuan XIONG; Jun CAO; Guizhong LI; Shuren WANG

    2007-01-01

    Homocysteine (Hcy) is a risk factor for atherosclerosis. It is generally accepted that inducible nitric oxide synthase (iNOS) is a key enzyme in the regulation of vascular disease. The aim of the present study is to investigate the effects of peroxisome proliferator-activated receptor ligands on iNOS in the presence of Hcy in human monocytes. Foam cells, induced by oxidize low density lipoprotein (ox-LDL) and phorbol myristate acetate (PMA) in the presence of different concentrations of Hcy, clofibrate and pioglitazone in human monocytes for 4 d, were examined by oil red O staining. The activity of iNOS was detected by real-time quantitative reverse transcription-polymerase chain reaction and Western blot analysis. The capability of DNA methylation was measured by assaying endogenous C5 DNA methyltransferase (C5MTase)activity, and the iNOS promoter methylation level was determined by quantitative MethyLight assays. The results indicated that Hcy increased the activity of C5MTase and the level of iNOS gene DNA methylation,resulting in a decrease of iNOS expression. Clofibrate and pioglitazone could antagonize the Hcy effect on iNOS expression through DNA methylation, resulting in attenuation of iNOS transcription. These findings suggested that Hcy decreased the expression of iNOS by elevating iNOS DNA methylation levels, which can repress the transcription of some genes. Peroxisome proliferator-activated receptor α/γ ligands can down-regulate iNOS DNA methylation, and could be useful for preventing Hcy-induced atherosclerosis by repressing iNOS expression.

  13. The effect of anandamide on uterine nitric oxide synthase activity depends on the presence of the blastocyst.

    Directory of Open Access Journals (Sweden)

    Micaela S Sordelli

    Full Text Available Nitric oxide production, catalyzed by nitric oxide synthase (NOS, should be strictly regulated to allow embryo implantation. Thus, our first aim was to study NOS activity during peri-implantation in the rat uterus. Day 6 inter-implantation sites showed lower NOS activity (0.19±0.01 pmoles L-citrulline mg prot(-1 h(-1 compared to days 4 (0.34±0.03 and 5 (0.35±0.02 of pregnancy and to day 6 implantation sites (0.33±0.01. This regulation was not observed in pseudopregnancy. Both dormant and active blastocysts maintained NOS activity at similar levels. Anandamide (AEA, an endocannabinoid, binds to cannabinoid receptors type 1 (CB1 and type 2 (CB2, and high concentrations are toxic for implantation and embryo development. Previously, we observed that AEA synthesis presents an inverted pattern compared to NOS activity described here. We adopted a pharmacological approach using AEA, URB-597 (a selective inhibitor of fatty acid amide hydrolase, the enzyme that degrades AEA and receptor selective antagonists to investigate the effect of AEA on uterine NOS activity in vitro in rat models of implantation. While AEA (0.70±0.02 vs 0.40±0.04 and URB-597 (1.08±0.09 vs 0.83±0.06 inhibited NOS activity in the absence of a blastocyst (pseudopregnancy through CB2 receptors, AEA did not modulate NOS on day 5 pregnant uterus. Once implantation begins, URB-597 decreased NOS activity on day 6 implantation sites via CB1 receptors (0.25±0.04 vs 0.40±0.05. While a CB1 antagonist augmented NOS activity on day 6 inter-implantation sites (0.17±0.02 vs 0.27±0.02, a CB2 antagonist decreased it (0.17±0.02 vs 0.12±0.01. Finally, we described the expression and localization of cannabinoid receptors during implantation. In conclusion, AEA levels close to and at implantation sites seems to modulate NOS activity and thus nitric oxide production, fundamental for implantation, via cannabinoid receptors. This modulation depends on the presence of the blastocyst. These

  14. Suppression of the barley uroporphyrinogen III synthase gene by a Ds activation tagging element generates developmental photosensitivity.

    Science.gov (United States)

    Ayliffe, Michael A; Agostino, Anthony; Clarke, Bryan C; Furbank, Robert; von Caemmerer, Susanne; Pryor, Anthony J

    2009-03-01

    Chlorophyll production involves the synthesis of photoreactive intermediates that, when in excess, are toxic due to the production of reactive oxygen species (ROS). A novel, activation-tagged barley (Hordeum vulgare) mutant is described that results from antisense suppression of a uroporphyrinogen III synthase (Uros) gene, the product of which catalyzes the sixth step in the synthesis of chlorophyll and heme. In homozygous mutant plants, uroporphyrin(ogen) I accumulates by spontaneous cyclization of hydroxyl methylbilane, the substrate of Uros. Accumulation of this tetrapyrrole intermediate results in photosensitive cell death due to the production of ROS. The efficiency of Uros gene suppression is developmentally regulated, being most effective in mature seedling leaves compared with newly emergent leaves. Reduced transcript accumulation of a number of nuclear-encoded photosynthesis genes occurs in the mutant, even under 3% light conditions, consistent with a retrograde plastid-nuclear signaling mechanism arising from Uros gene suppression. A similar set of nuclear genes was repressed in wild-type barley following treatment with a singlet oxygen-generating herbicide, but not by a superoxide generating herbicide, suggesting that the retrograde signaling apparent in the mutant is specific to singlet oxygen.

  15. Improving the glycosyltransferase activity of Agrobacterium tumefaciens glycogen synthase by fusion of N-terminal starch binding domains (SBDs).

    Science.gov (United States)

    Martín, Mariana; Wayllace, Nahuel Z; Valdez, Hugo A; Gomez-Casati, Diego F; Busi, María V

    2013-10-01

    Glycogen and starch, the major storage carbohydrate in most living organisms, result mainly from the action of starch or glycogen synthases (SS or GS, respectively, EC 2.4.1.21). SSIII from Arabidopsis thaliana is an SS isoform with a particular modular organization: the C-terminal highly conserved glycosyltransferase domain is preceded by a unique specific region (SSIII-SD) which contains three in tandem starch binding domains (SBDs, named D1, D2 and D3) characteristic of polysaccharide degrading enzymes. N-terminal SBDs have a probed regulatory role in SSIII activity, showing starch binding ability and modulating the catalytic properties of the enzyme. On the other hand, GS from Agrobacterium tumefaciens has a simple primary structure organization, characterized only by the highly conserved glycosyltransferase domain and lacking SBDs. To further investigate the functional role of A. thaliana SSIII-SD, three chimeric proteins were constructed combining the SBDs from A. thaliana with the GS from A. tumefaciens. Recombinant proteins were expressed in and purified to homogeneity from Escherichia coli cells in order to be kinetically characterized. Furthermore, we tested the ability to restore in vivo glycogen biosynthesis in transformed E. coli glgA(-) cells, deficient in GS. Results show that the D3-GS chimeric enzyme showed increased capacity of glycogen synthesis in vivo with minor changes in its kinetics parameters compared to GS.

  16. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yong, E-mail: drbiany@126.com [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China); Yu, Yun [College of Pharmacy, Nanjing University of Chinese Medicine, 210023 (China); Wang, Shanshan; Li, Lin [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China)

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  17. Fo Shou San, an ancient Chinese herbal decoction, protects endothelial function through increasing endothelial nitric oxide synthase activity.

    Directory of Open Access Journals (Sweden)

    Cathy W C Bi

    Full Text Available Fo Shou San (FSS is an ancient herbal decoction comprised of Chuanxiong Rhizoma (CR; Chuanxiong and Angelicae Sinensis Radix (ASR; Danggui in a ratio of 2:3. Previous studies indicate that FSS promotes blood circulation and dissipates blood stasis, thus which is being used widely to treat vascular diseases. Here, we aim to determine the cellular mechanism for the vascular benefit of FSS. The treatment of FSS reversed homocysteine-induced impairment of acetylcholine (ACh-evoked endothelium-dependent relaxation in aortic rings, isolated from rats. Like radical oxygen species (ROS scavenger tempol, FSS attenuated homocysteine-stimulated ROS generation in cultured human umbilical vein endothelial cells (HUVECs, and it also stimulated the production of nitric oxide (NO as measured by fluorescence dye and biochemical assay. In addition, the phosphorylation levels of both Akt kinase and endothelial NO synthases (eNOS were markedly increased by FSS treatment, which was abolished by an Akt inhibitor triciribine. Likewise, triciribine reversed FSS-induced NO production in HUVECs. Finally, FSS elevated intracellular Ca(2+ levels in HUVECs, and the Ca(2+ chelator BAPTA-AM inhibited the FSS-stimulated eNOS phosphorylation. The present results show that this ancient herbal decoction benefits endothelial function through increased activity of Akt kinase and eNOS; this effect is causally via a rise of intracellular Ca(2+ and a reduction of ROS.

  18. Nitric oxide synthase-dependent NADPH-diaphorase activity in the optic lobes of male and female Ceratitis capitata mutants

    Directory of Open Access Journals (Sweden)

    E Roda

    2009-06-01

    Full Text Available Nitric oxide (NO is acknowledged as a messenger molecule in the nervous system with a pivotal role in the modulation of the chemosensory information. It has been shown to be present in the optic lobes of several insect species. In the present study, we used males and females from four different strains of the medfly Ceratitis capitata (Diptera, Tephritidae: or; or,wp (both orange eyed; w,M360 and w,Heraklion (both white eyed, as models to further clarify the involvement of NO in the mutants’ visual system and differences in its activity and localization in the sexes. Comparison of the localization pattern of NO synthase (NOS, through NADPH-diaphorase (NADPHd staining, in the optic lobes of the four strains, revealed a stronger reaction intensity in the retina and in the neuropile region lamina than in medulla and lobula. Interestingly, the intensity of NADPHd staining differs, at least in some strains, in the optic lobes of the two sexes; all the areas are generally strongly labelled in the males of the or and w,M360 strains, whereas the w,Heraklion and or,wp mutants do not show evident sexdependent NADPHd staining. Taken as a whole, our data point to NO as a likely transmitter candidate in the visual information processes in insects, with a possible correlation among NOS distribution, eye pigmentation and visual function in C. capitata males. Moreover, NO could influence behavioural differences linked to vision in the two sexes.

  19. In vivo activities of farnesyl pyrophosphate synthase inhibitors against Leishmania donovani and Toxoplasma gondii.

    Science.gov (United States)

    Yardley, Vanessa; Khan, Anis A; Martin, Michael B; Slifer, Teri R; Araujo, Fausto G; Moreno, Silvia N J; Docampo, Roberto; Croft, Simon L; Oldfield, Eric

    2002-03-01

    The in vivo activities of three bisphosphonates were determined against Leishmania donovani and Toxoplasma gondii. Alendronate was essentially inactive against both parasites. Pamidronate was active against L. donovani by intravenous administration. Risedronate had a 50% effective dosage of five 2.6-mg/kg of body weight intraperitoneal doses against L. donovani-infected mice but was less effective against T. gondii-infected mice.

  20. Fatty Acid Synthase Activity as a Target for c-Met Driven Prostate Cancer

    Science.gov (United States)

    2013-07-01

    polyunsaturated fatty acids ( PUFAs ), rich in a Mediterranean diet, can reduce FASN activity. This activity has been shown to reduce Her2 expression as a...et al., Rapid and selective detection of fatty acylated proteins using omega - alkynyl- fatty acids and click chemistry. J Lipid Res, 2010. 51(6): p...Protein Phosphatase 2A PUFA Polyunsaturated Fatty Acids PTEN Phosphatase and Tensin Homolog RTK Receptor Tyrosine Kinase SREBP-1 Sterol

  1. Production of novel fusarielins by ectopic activation of the polyketide synthase 9 cluster in Fusarium graminearum

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Hansen, Frederik Teilfeldt; Sondergaard, Teis Esben;

    2012-01-01

    Like many other filamentous fungi, Fusarium graminearum has the genetic potential to produce a vast array of unknown secondary metabolites. A promising approach to determine the nature of these is to activate silent secondary metabolite gene clusters through constitutive expression of cluster...

  2. The Effect of Mitochondrial Supplements on Mitochondrial Activity in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Delhey, Leanna M.; Nur Kilinc, Ekim; Yin, Li; Slattery, John C.; Tippett, Marie L.; Rose, Shannon; Bennuri, Sirish C.; Kahler, Stephen G.; Damle, Shirish; Legido, Agustin; Goldenthal, Michael J.; Frye, Richard E.

    2017-01-01

    Treatment for mitochondrial dysfunction is typically guided by expert opinion with a paucity of empirical evidence of the effect of treatment on mitochondrial activity. We examined citrate synthase and Complex I and IV activities using a validated buccal swab method in 127 children with autism spectrum disorder with and without mitochondrial disease, a portion of which were on common mitochondrial supplements. Mixed-model linear regression determined whether specific supplements altered the absolute mitochondrial activity as well as the relationship between the activities of mitochondrial components. Complex I activity was increased by fatty acid and folate supplementation, but folate only effected those with mitochondrial disease. Citrate synthase activity was increased by antioxidant supplementation but only for the mitochondrial disease subgroup. The relationship between Complex I and IV was modulated by folate while the relationship between Complex I and Citrate Synthase was modulated by both folate and B12. This study provides empirical support for common mitochondrial treatments and demonstrates that the relationship between activities of mitochondrial components might be a marker to follow in addition to absolute activities. Measurements of mitochondrial activity that can be practically repeated over time may be very useful to monitor the biochemical effects of treatments. PMID:28208802

  3. Aqueous solubility of calcium citrate and interconversion between the tetrahydrate and the hexahydrate as a balance between endothermic dissolution and exothermic complex formation

    DEFF Research Database (Denmark)

    Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    Aqueous solubility of calcium citrate tetrahydrate was found to decrease with increasing temperature, while solubility of hexahydrate increased with a transition temperature at 51.6 °C. Excess citrate increased calcium citrate solubility but decreased the calcium ion activity of the saturated sol...

  4. Clustered Conserved Cysteines in Hyaluronan Synthase Mediate Cooperative Activation by Mg(2+) Ions and Severe Inhibitory Effects of Divalent Cations.

    Science.gov (United States)

    Tlapak-Simmons, Valarie L; Medina, Andria P; Baggenstoss, Bruce A; Nguyen, Long; Baron, Christina A; Weigel, Paul H

    2011-11-15

    Hyaluronan synthase (HAS) uses UDP-GlcUA and UDP-GlcNAc to make hyaluronan (HA). Streptococcus equisimilis HAS (SeHAS) contains four conserved cysteines clustered near the membrane, and requires phospholipids and Mg(2+) for activity. Activity of membrane-bound or purified enzyme displayed a sigmoidal saturation profile for Mg(2+) with a Hill coefficient of 2. To assess if Cys residues are important for cooperativity we examined the Mg(2+) dependence of mutants with various combinations of Cys-to-Ala mutations. All Cys-mutants lost the cooperative response to Mg(2+). In the presence of Mg(2+), other divalent cations inhibited SeHAS with different potencies (Cu(2+)~Zn(2+) >Co(2+) >Ni(2+) >Mn(2+) >Ba(2+) Sr(2+) Ca(2+)). Some divalent metal ions likely inhibit by displacement of Mg(2+)-UDP-Sugar complexes (e.g. Ca(2+), Sr(2+) and Ba(2+) had apparent Ki values of 2-5 mM). In contrast, Zn(2+) and Cu(2+) inhibited more potently (apparent Ki ≤ 0.2 mM). Inhibition of Cys-null SeHAS by Cu(2+), but not Zn(2+), was greatly attenuated compared to wildtype. Double and triple Cys-mutants showed differing sensitivities to Zn(2+) or Cu(2+). Wildtype SeHAS allowed to make HA prior to exposure to Zn(2+) or Cu(2+) was protected from inhibition, indicating that access of metal ions to sensitive functional groups was hindered in processively acting HA•HAS complexes. We conclude that clustered Cys residues mediate cooperative interactions with Mg(2+) and that transition metal ions inhibit SeHAS very potently by interacting with one or more of these -SH groups.

  5. Artificial citrate operon confers mineral phosphate solubilization ability to diverse fluorescent pseudomonads.

    Directory of Open Access Journals (Sweden)

    Hemanta Adhikary

    Full Text Available Citric acid is a strong acid with good cation chelating ability and can be very efficient in solubilizing mineral phosphates. Only a few phosphate solubilizing bacteria and fungi are known to secrete citric acids. In this work, we incorporated artificial citrate operon containing NADH insensitive citrate synthase (gltA1 and citrate transporter (citC genes into the genome of six-plant growth promoting P. fluorescens strains viz., PfO-1, Pf5, CHAO1, P109, ATCC13525 and Fp315 using MiniTn7 transposon gene delivery system. Comprehensive biochemical characterization of the genomic integrants and their comparison with plasmid transformants of the same operon in M9 minimal medium reveals the highest amount of ∼7.6±0.41 mM citric and 29.95±2.8 mM gluconic acid secretion along with ∼43.2±3.24 mM intracellular citrate without affecting the growth of these P. fluorescens strains. All genomic integrants showed enhanced citric and gluconic acid secretion on Tris-Cl rock phosphate (TRP buffered medium, which was sufficient to release 200-1000 µM Pi in TRP medium. This study demonstrates that MPS ability could be achieved in natural fluorescent pseudomonads by incorporation of artificial citrate operon not only as plasmid but also by genomic integration.

  6. Artificial citrate operon confers mineral phosphate solubilization ability to diverse fluorescent pseudomonads.

    Science.gov (United States)

    Adhikary, Hemanta; Sanghavi, Paulomi B; Macwan, Silviya R; Archana, Gattupalli; Naresh Kumar, G

    2014-01-01

    Citric acid is a strong acid with good cation chelating ability and can be very efficient in solubilizing mineral phosphates. Only a few phosphate solubilizing bacteria and fungi are known to secrete citric acids. In this work, we incorporated artificial citrate operon containing NADH insensitive citrate synthase (gltA1) and citrate transporter (citC) genes into the genome of six-plant growth promoting P. fluorescens strains viz., PfO-1, Pf5, CHAO1, P109, ATCC13525 and Fp315 using MiniTn7 transposon gene delivery system. Comprehensive biochemical characterization of the genomic integrants and their comparison with plasmid transformants of the same operon in M9 minimal medium reveals the highest amount of ∼7.6±0.41 mM citric and 29.95±2.8 mM gluconic acid secretion along with ∼43.2±3.24 mM intracellular citrate without affecting the growth of these P. fluorescens strains. All genomic integrants showed enhanced citric and gluconic acid secretion on Tris-Cl rock phosphate (TRP) buffered medium, which was sufficient to release 200-1000 µM Pi in TRP medium. This study demonstrates that MPS ability could be achieved in natural fluorescent pseudomonads by incorporation of artificial citrate operon not only as plasmid but also by genomic integration.

  7. 21 CFR 184.1625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O,...

  8. Antifungal Activity of Salvia miltiorrhiza Against Candida albicans Is Associated with the Alteration of Membrane Permeability and (1,3)-β-D-Glucan Synthase Activity.

    Science.gov (United States)

    Lee, Heung-Shick; Kim, Younhee

    2016-03-01

    Candidiasis has posed a serious health risk to immunocompromised patients owing to the increase in resistant yeasts, and Candida albicans is the prominent pathogen of fungal infections. Therefore, there is a critical need for the discovery and characterization of novel antifungals to treat infections caused by C. albicans. In the present study, we report on the antifungal activity of the ethanol extract from Salvia miltiorrhiza against C. albicans and the possible mode of action against C. albicans. The increase in the membrane permeability was evidenced by changes in diphenylhexatriene binding and release of both 260-nm-absorbing intracellular materials and protein. In addition, inhibition of cell wall synthesis was demonstrated by the enhanced minimal inhibitory concentration in the presence of sorbitol and reduced (1,3)-β-D-glucan synthase activity. The above evidence supports the notion that S. miltiorrhiza has antifungal activity against C. albicans by the synergistic activity of targeting the cell membrane and cell wall. These findings indicate that S. miltiorrhiza displays effective activity against C. albicans in vitro and merits further investigation to treat C. albicans-associated infections.

  9. Phenylalanine ammonia-lyase, flavanone 3β-hydroxylase and flavonol synthase enzyme activity by a new in vitro assay method in berry fruits.

    Science.gov (United States)

    Flores, Gema; De la Peña Moreno, Fernando; Blanch, Gracia Patricia; Del Castillo, Maria Luisa Ruiz

    2014-06-15

    An HPLC method for the determination of phenylalanine ammonia-lyase, flavanone 3β-hydroxylase and flavonol synthase enzyme activity is proposed. This method is based on the determination of the compounds produced and consumed on the enzymatic reaction in just one chromatographic analysis. Optimisation of the method considered kinetic studies to establish the incubation time to perform the assay. The method here described proved to be an interesting approach to measure the activities of the three enzymes simultaneously increasing the rapidity, selectivity and sensitivity over other exiting methods. The enzyme activity method developed was applied to strawberry, raspberry, blackberry, redcurrant and blackcurrant fruits.

  10. Dihydromyricetin protects neurons in an MPTP-induced model of Parkinson's disease by suppressing glycogen synthase kinase-3 beta activity

    Science.gov (United States)

    Ren, Zhao-xiang; Zhao, Ya-fei; Cao, Ting; Zhen, Xue-chu

    2016-01-01

    Aim: It is general believed that mitochondrial dysfunction and oxidative stress play critical roles in the pathology of Parkinson's disease (PD). Dihydromyricetin (DHM), a natural flavonoid extracted from Ampelopsis grossedentata, has recently been found to elicit potent anti-oxidative effects. In the present study, we explored the role of DHM in protecting dopaminergic neurons. Methods: Male C57BL/6 mice were intraperitoneally injected with 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 d to induce PD. Additionally, mice were treated with either 5 or 10 mg/kg DHM for a total of 13 d (3 d before the start of MPTP, during MPTP administration (7 d) and 3 d after the end of MPTP). For the saline or DHM alone treatment groups, mice were injected with saline or DHM for 13 d. On d 14, behavioral tests (locomotor activity, the rotarod test and the pole test) were administered. After the behavioral tests, the mice were sacrificed, and brain tissue was collected for immunofluorescence staining and Western blotting. In addition, MES23.5 cells were treated with MPP+ and DHM, and evaluated using cell viability assays, reactive oxygen species (ROS) measurements, apoptosis analysis and Western blotting. Results: DHM significantly attenuated MPTP-induced mouse behavioral impairments and dopaminergic neuron loss. In the MES23.5 cells, DHM attenuated MPP+-induced cell injury and ROS production in a dose-dependent manner. In addition, DHM increased glycogen synthase kinase-3 beta phosphorylation in a dose- and time-dependent manner, which may be associated with DHM-induced dopaminergic neuronal protection. Conclusion: The present study demonstrated that DHM is a potent neuroprotective agent for DA neurons by modulating the Akt/GSK-3β pathway, which suggests that DHM may be a promising therapeutic candidate for PD. PMID:27374489

  11. Effects of aspirin on number,activity and inducible nitric oxide synthase of endothelial progenitor cells from peripheral blood

    Institute of Scientific and Technical Information of China (English)

    Tu-gang CHEN; Jun-zhu CHEN; Xu-dong XIE

    2006-01-01

    Aim:To investigate whether aspirin has an influence on endothelial progenitor cells (EPC).Methods:Total mononuclear cells (MNC) were isolated from peripheral blood by Ficoll density gradient centrifugation,then cells were plated on fibronectin-coated culture dishes.After 7 d of culture,attached cells were stimulated with aspirin (to achieve final concentrations of 1,2,5,and 10 mmol/L) for 3,6,12,and 24 h.EPC were characterized as adherent cells that were double positive for 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine low density lipoprotein (DiLDL) uptake and lectin binding by direct fluorescent staining.EPC proliferation and migration were assayed using a 3- (4,5-dimethyl-2 thiazoyl) -2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and a modified Boyden chamber assay.respectively.An EPC adhesion assay was performed by replating the EPC on fibronectin-coated dishes,and then adherent cells were counted.In vitro vasculogenesis activity was assayed by using an in vitro vasculogenesis kit. Inducible nitric oxide synthase (iNOS) was assayed by Westem blotting.Results:Incubation of isolated human MNC with aspirin decreased the number of EPC.Aspirin also decreased the proliferative,migratory,adhesive,and in vitro Vasculogenesis capacity of EPC,and also their iNOS levels in a concentration-and time-dependent manner.Conclusion:Aspirin decreases (1) the number of EPC; (2) the proliferative,migratory,adhesive and in vitro vasculogenesis capacities of EPC;and (3) iNOS levels in EPC.

  12. Propofol improves cardiac functional recovery after ischemia-reperfusion by upregulating nitric oxide synthase activity in the isolated rat hearts

    Institute of Scientific and Technical Information of China (English)

    SUN Hai-yan; XUE Fu-shan; XU Ya-chao; LI Cheng-wen; XIONG Jun; LIAO Xu; ZHANG Yan-ming

    2009-01-01

    Background There are few studies to assess whether propofol attenuates myocardial ischemia-reperfusion injury via a mechanism related to nitric oxide (NO) route, so we designed this randomized blinded experiment to observe the changes of NO contents, nitric oxide synthase (NOS) activity, NOS contents in the myocardium, and cardiac function in ischemic reperfused isolated rat hearts, and to assess the relation between myocardial NO system and cardioprotection of propofol.Methods The hearts of 30 Sprague-Dawley male rats were removed, mounted on a Langendorff apparatus, and randomly assigned to one of three groups (n=10 each group) to be treated with the following treatments in a blinded manner: Group 1, control group, after perfusion with pure Krebs Henseleit bicarbonate (K-HBB) buffer solution for 15 minutes, hearts were subjected to 20 minutes global ischemia followed by 60 minutes reperfusion with pure K-HBB buffer; Group 2, after perfusion with K-HBB buffer solution containing propofol (10 μg/ml) for 15 minutes, the hearts underwent 20 minutes global ischemia followed by 60 minutes reperfusion with the same K-HBB buffer solution; Group 3, after perfusion with K-HBB buffer solution containing propofol (10 μg/ml) and L-NAME (100 μmol/L) for 15 minutes, the hearts underwent 20 minutes global ischemia followed by 60 minutes reperfusion with the same K-HBB buffer solution. The cardiac function was continuously monitored throughout the experiment.The coronary flow was also measured. An ISO-NO electrode was placed into the right atrium close to the coronary sinus to continuously measure NO concentration in the coronary effluent. The tissue samples from apex of hearts in Groups 1 and 2 were obtained to measure the NOS activity by spectrophotometry and the NOS contents by immunohistochemistry, respectively.Results The cardiac function was significantly inhibited after ischemia and then gradually improved with reperfusion in all three groups. As compared with Group 1

  13. Caenorhabditis elegans pseudouridine synthase 1 activity in vivo: tRNA is a substrate, but not U2 small nuclear RNA.

    Science.gov (United States)

    Patton, Jeffrey R; Padgett, Richard W

    2003-06-01

    The formation of pseudouridine (Psi) from uridine is post-transcriptional and catalysed by pseudouridine synthases, several of which have been characterized from eukaryotes. Pseudouridine synthase 1 (Pus1p) has been well characterized from yeast and mice. In yeast, Pus1p has been shown to have dual substrate specificity, modifying uridines in tRNAs and at position 44 in U2 small nuclear RNA (U2 snRNA). In order to study the in vivo activity of a metazoan Pus1p, a knockout of the gene coding for the homologue of Pus1p in Caenorhabditis elegans was obtained. The deletion encompasses the first two putative exons and includes the essential aspartate that is required for activity in truA pseudouridine synthases. The locations of most modified nucleotides on small RNAs in C. elegans are not known, and the positions of Psi were determined on four tRNAs and U2 snRNA. The uridine at position 27 of tRNA(Val) (AAC), a putative Pus1p-modification site, was converted into Psi in the wild-type worms, but the tRNA(Val) (AAC) from mutant worms lacked the modification. Psi formation at positions 13, 32, 38 and 39, all of which should be modified by other pseudouridine synthases, was not affected by the loss of Pus1p. The absence of Pus1p in C. elegans had no effect on the modification of U2 snRNA in vivo, even though worm U2 snRNA has a Psi at position 45 (the equivalent of yeast U2 snRNA position 44) and at four other positions. This result was unexpected, given the known dual specificity of yeast Pus1p.

  14. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots.

    Science.gov (United States)

    Ryan, Peter R; Raman, Harsh; Gupta, Sanjay; Horst, Walter J; Delhaize, Emmanuel

    2009-01-01

    The first confirmed mechanism for aluminum (Al) resistance in plants is encoded by the wheat (Triticum aestivum) gene, TaALMT1, on chromosome 4DL. TaALMT1 controls the Al-activated efflux of malate from roots, and this mechanism is widespread among Al-resistant genotypes of diverse genetic origins. This study describes a second mechanism for Al resistance in wheat that relies on citrate efflux. Citrate efflux occurred constitutively from the roots of Brazilian cultivars Carazinho, Maringa, Toropi, and Trintecinco. Examination of two populations segregating for this trait showed that citrate efflux was controlled by a single locus. Whole-genome linkage mapping using an F(2) population derived from a cross between Carazinho (citrate efflux) and the cultivar EGA-Burke (no citrate efflux) identified a major locus on chromosome 4BL, Xce(c), which accounts for more than 50% of the phenotypic variation in citrate efflux. Mendelizing the quantitative variation in citrate efflux into qualitative data, the Xce(c) locus was mapped within 6.3 cM of the microsatellite marker Xgwm495 locus. This linkage was validated in a second population of F(2:3) families derived from a cross between Carazinho and the cultivar Egret (no citrate efflux). We show that expression of an expressed sequence tag, belonging to the multidrug and toxin efflux (MATE) gene family, correlates with the citrate efflux phenotype. This study provides genetic and physiological evidence that citrate efflux is a second mechanism for Al resistance in wheat.

  15. Ranitidine bismuth citrate: A review

    Directory of Open Access Journals (Sweden)

    N Chiba

    2001-01-01

    Full Text Available Recognition of the relationship between Helicobacter pylori infection and the development of gastroduodenal disease has increased greatly in recent years. To avoid complications of H pylori infection, such as the development of recurrent duodenal and gastric ulcers, effective therapies are required for eradication of the infection. This article reviews ranitidine bismuth citrate (RBC, a novel complex of ranitidine, bismuth and citrate, which was developed specifically for the purpose of eradicating H pylori. Dual therapy with RBC in combination with clarithromycin for 14 days yields eradication rates of 76%. Triple therapy bid for one week with a proton pump inhibitor, clarithromycin and either amoxicillin or a nitroimidazole (tinidazole or metronidazole is advocated as the treatment of choice for H pylori eradication. Analogous regimens with RBC in place of proton pump inhibitors show effective eradication rates in comparative studies and with pooled data. RBC, used alone or in combination with other antibiotics, appears to be a safe and effective drug for the treatment of H pylori infection. Bismuth levels do not appear to rise to toxic levels.

  16. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria.

    Science.gov (United States)

    Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk

    2015-08-01

    The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.

  17. A Single Amino Acid Substitution Converts Benzophenone Synthase into Phenylpyrone Synthase*

    OpenAIRE

    Klundt, Tim; Bocola, Marco; Lütge, Maren; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2009-01-01

    Benzophenone metabolism provides a number of plant natural products with fascinating chemical structures and intriguing pharmacological activities. Formation of the carbon skeleton of benzophenone derivatives from benzoyl-CoA and three molecules of malonyl-CoA is catalyzed by benzophenone synthase (BPS), a member of the superfamily of type III polyketide synthases. A point mutation in the active site cavity (T135L) transformed BPS into a functional phenylpyrone synthase (PPS). The dramatic ch...

  18. Excess nickel modulates activities of carbohydrate metabolizing enzymes and induces accumulation of sugars by upregulating acid invertase and sucrose synthase in rice seedlings.

    Science.gov (United States)

    Mishra, Pallavi; Dubey, R S

    2013-02-01

    The effects of increasing concentrations of nickel sulfate, NiSO(4) (200 and 400 μM) in the growth medium on the content of starch and sugars and activity levels of enzymes involved in starch and sugar metabolism were examined in seedlings of the two Indica rice cvs. Malviya-36 and Pant-12. During a 5-20 day growth period of seedlings in sand cultures, with Ni treatment, no definite pattern of alteration in starch level could be observed in the seedlings. In both roots and shoots of the seedlings Ni treatment led to a significant decrease in activities of starch degrading enzymes α-amylase, β-amylase, whereas starch phosphorylase activity increased. The contents of reducing, non-reducing, and total sugars increased in Ni-treated rice seedlings with a concomitant increase in the activities of sucrose degrading enzymes acid invertase and sucrose synthase. However, the activity of sucrose synthesizing enzyme sucrose phosphate synthase declined. These results suggest that Ni toxicity in rice seedlings causes marked perturbation in metabolism of carbohydrates leading to increased accumulation of soluble sugars. Such perturbation could serve as a limiting factor for growth of rice seedlings in Ni polluted environments and accumulating soluble sugars could serve as compatible solutes in the cells under Ni toxicity conditions.

  19. 缓冲溶液浸提天麻多糖工艺的优化及抗氧化性研究%Study on citrate buffer assisted extraction of polysaccharide from Gastrodia elata and its antioxidant activity

    Institute of Scientific and Technical Information of China (English)

    曹小燕; 杨海涛

    2016-01-01

    Taking Gastrodia elata from Qinba area as raw material,citrate buffer solution at pH 6 as the extraction solvent,the extraction and antioxidant activities of polysaccharides from Gastrodia elata by ul-trasonic were studied.The results showed that the optimum extraction technology of Gastrodia elata poly-saccharides were as follows:extraction temperature 50 ℃,solid-liquid ratio of 1∶40 g/mL,ultrasonic ex-traction time of 30 min,extract power 300 W,citrate buffer solution pH 6.0 as the extraction agent,under this condition,the extraction yield of polysaccharide was 36.21%,which was 20% higher than traditional extraction.Scavenging free radicals IC50 values for O2 -·,·OH and ABTS +· were 0.46,0.76 mg/mL and 6.7 μg/mL respectively,which was superior to the conventional antioxidants of ascorbic acid.The study proved that polysaccharides from Gastrodia elata has good reducing capacity and scavenging radical activity.%以秦巴山区天麻为原料,pH 6柠檬酸盐酸性缓冲溶液为浸提溶剂,研究超声辅助浸提天麻多糖的工艺条件,并考察其还原能力和清除羟基自由基、超氧阴离子自由基和 ABTS 自由基正离子的能力。结果表明,天麻多糖的最佳提取工艺为:超声温度50℃,料液比1∶40 g/mL,提取时间30 min,超声功率300 W,柠檬酸盐缓冲溶液 pH 6。该工艺条件下,天麻多糖的提取率为36.21%,与传统水提法相比,提高了20%。天麻多糖清除 O2-·、·OH、ABTS +·的 IC50值分别为0.46,0.76 mg/mL 和6.7μg/mL,优于同浓度条件下抗氧化剂 VC 溶液。

  20. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  1. An active site mutant of Escherichia coli cyclopropane fatty acid synthase forms new non-natural fatty acids providing insights on the mechanism of the enzymatic reaction.

    Science.gov (United States)

    E, Guangqi; Drujon, Thierry; Correia, Isabelle; Ploux, Olivier; Guianvarc'h, Dominique

    2013-12-01

    We have produced and purified an active site mutant of the Escherichia coli cyclopropane fatty acid synthase (CFAS) by replacing the strictly conserved G236 within cyclopropane synthases, by a glutamate residue, which corresponds to E146 of the homologous mycolic acid methyltransferase, Hma, producing hydroxymethyl mycolic acids. The G236E CFAS mutant had less than 1% of the in vitro activity of the wild type enzyme. We expressed the G236E CFAS mutant in an E. coli (DE3) strain in which the chromosomal cfa gene had been deleted. After extraction of phospholipids and conversion into the corresponding fatty acid methyl esters (FAMEs), we observed the formation of cyclopropanated FAMEs suggesting that the mutant retained some of the normal activity in vivo. However, we also observed the formation of new C17 methyl-branched unsaturated FAMEs whose structures were determined using GC/MS and NMR analyses. The double bond was located at different positions 8, 9 or 10, and the methyl group at position 10 or 9. Thus, this new FAMEs are likely arising from a 16:1 acyl chain of a phospholipid that had been transformed by the G236E CFAS mutant in vivo. The reaction catalyzed by this G236E CFAS mutant thus starts by the methylation of the unsaturated acyl chain at position 10 or 9 yielding a carbocation at position 9 or 10 respectively. It follows then two competing steps, a normal cyclopropanation or hydride shift/elimination events giving different combinations of alkenes. This study not only provides further evidence that cyclopropane synthases (CSs) form a carbocationic intermediate but also opens the way to CSs engineering for the synthesis of non-natural fatty acids.

  2. In Vitro and In Vivo Activities of E5700 and ER-119884, Two Novel Orally Active Squalene Synthase Inhibitors, against Trypanosoma cruzi

    Science.gov (United States)

    Urbina, Julio A.; Concepcion, Juan Luis; Caldera, Aura; Payares, Gilberto; Sanoja, Cristina; Otomo, Takeshi; Hiyoshi, Hironobu

    2004-01-01

    Chagas' disease is a serious public health problem in Latin America, and no treatment is available for the prevalent chronic stage. Its causative agent, Trypanosoma cruzi, requires specific endogenous sterols for survival, and we have recently demonstrated that squalene synthase (SQS) is a promising target for antiparasitic chemotherapy. E5700 and ER-119884 are quinuclidine-based inhibitors of mammalian SQS that are currently in development as cholesterol- and triglyceride-lowering agents in humans. These compounds were found to be potent noncompetitive or mixed-type inhibitors of T. cruzi SQS with Ki values in the low nanomolar to subnanomolar range in the absence or presence of 20 μM inorganic pyrophosphate. The antiproliferative 50% inhibitory concentrations of the compounds against extracellular epimastigotes and intracellular amastigotes were ca. 10 nM and 0.4 to 1.6 nM, respectively, with no effects on host cells. When treated with these compounds at the MIC, all of the parasite's sterols disappeared from the parasite cells. In vivo studies indicated that E5700 was able to provide full protection against death and completely arrested the development of parasitemia when given at a concentration of 50 mg/kg of body weight/day for 30 days, while ER-119884 provided only partial protection. This is the first report of an orally active SQS inhibitor that is capable of providing complete protection against fulminant, acute Chagas' disease. PMID:15215084

  3. Sodium picosulfate/magnesium citrate: a review of its use as a colorectal cleanser.

    Science.gov (United States)

    Hoy, Sheridan M; Scott, Lesley J; Wagstaff, Antona J

    2009-01-01

    exploratory or surgical procedures. Nevertheless, oral sodium picosulfate/magnesium citrate provides a useful option in the preparation of the colon and rectum in adults, adolescents and children undergoing any diagnostic procedure (e.g. colonoscopy or x-ray examination) requiring a clean bowel and/or surgery. Oral sodium picosulfate/magnesium citrate acts locally in the colon as both a stimulant laxative, by increasing the frequency and the force of peristalsis (sodium picosulfate component), and an osmotic laxative, by retaining fluids in the colon (magnesium citrate component), to clear the colon and rectum of faecal contents. It is not absorbed in any detectable quantities. Sodium picosulfate is a prodrug: it is hydrolyzed by bacteria in the colon to the active metabolite 4,4'-dihydroxydiphenyl-(2-pyridyl)methane. Sodium picosulfate/magnesium citrate may be associated with a dehydrating effect, as evidenced by a reduction in bodyweight and increased haemoglobin levels; some at-risk patients may experience postural hypotension and older patients may require additional electrolytes. In three large (n >100), randomized, single-blind clinical studies, two sachets of oral sodium picosulfate/magnesium citrate was at least as effective as oral magnesium citrate 17.7 or 35.4 g, or oral polyethylene glycol 236 g as a colorectal cleansing agent in adult patients undergoing a double-contrast barium enema procedure. In contrast, sodium picosulfate/magnesium citrate was less effective than a sodium phosphate enema preparation in two studies in patients undergoing flexible sigmoidoscopy. A similar number of patients receiving two sachets of sodium picosulfate/magnesium citrate or two 45 mL doses of oral sodium phosphate the day before a double-contrast barium enema procedure achieved satisfactory barium coating and none/minimal faecal residue in one study. However, the data from three of these studies should be interpreted with caution because the administrative regimens used differed

  4. 21 CFR 184.1307c - Ferrous citrate.

    Science.gov (United States)

    2010-04-01

    ... the reaction of sodium citrate with ferrous sulfate or by direct action of citric acid on iron filings... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferrous citrate. 184.1307c Section 184.1307c Food... Specific Substances Affirmed as GRAS § 184.1307c Ferrous citrate. (a) Ferrous citrate (iron (II)...

  5. The Role of Lithium Carbonate and Lithium Citrate in Regulating Urinary Citrate Level and Preventing Nephrolithiasis

    OpenAIRE

    Zhang, Xiaobo; Aggarwal, Piyush; Li, Xiaoming; Oakman, Crystale; Wang, Zhiping; Rodriguez, Ronald

    2009-01-01

    Background and purpose: Urinary Citrate is an inhibitor of Calcium oxalate stone formation. It is reabsorbed in the proximal kidney through sodium dicarboxylate co-transporters (NaDC-1, NaDC-3) present in the renal tubular epithelium. Lithium (Li) is a known potent inhibitor of these transporters. We investigated the effect of lithium carbonate (LiC) and lithium citrate (LiCit) in regulating urinary citrate levels and preventing nephrolithiasis (NL) in the rat model. Experimental approach: We...

  6. Characterization of Al-responsive citrate excretion and citrate-transporting MATEs in Eucalyptus camaldulensis.

    Science.gov (United States)

    Sawaki, Yoshiharu; Kihara-Doi, Tomonori; Kobayashi, Yuriko; Nishikubo, Nobuyuki; Kawazu, Tetsu; Kobayashi, Yasufumi; Koyama, Hiroyuki; Sato, Shigeru

    2013-04-01

    Many plant species excrete organic acids into the rhizosphere in response to aluminum stress to protect sensitive cells from aluminum rhizotoxicity. When the roots of Eucalyptus camaldulensis, a major source of pulp production, were incubated in aluminum-toxic medium, citrate released into the solution increased as a function of time. Citrate excretion was inducible by aluminum, but not by copper or sodium chloride stresses. This indicated that citrate is the major responsive organic acid released from the roots of this plant species to protect the root tips from aluminum damage. Four genes highly homologs to known citrate-transporting multidrugs and toxic compounds exclusion proteins, named EcMATE1-4, were isolated using polymerase chain reaction-based cloning techniques. Their predicted proteins included 12 membrane spanning domains, a common structural feature of citrate-transporting MATE proteins, and consisted of 502-579 amino acids with >60 % homology to orthologous genes in other plant species. One of the homologs, designated EcMATE1, was expressed in the roots more abundantly than in the shoots and in response to both Al and low pH stresses. Ectopic expression of EcMATE1 and 3 in tobacco hairy roots enhanced Al-responsive citrate excretion. Pharmacological characterization indicated that Al-responsive citrate excretion involved a protein phosphorylation/dephosphorylation process. These results indicate that citrate excretion through citrate-transporting multidrugs and toxic compounds exclusion proteins is one of the important aluminum-tolerance mechanisms in Eucalyptus camaldulensis.

  7. Purification of L-glutamate-dependent citrate lyase from Clostridium sphenoides and electron microscopic analysis of citrate lyase isolated from Rhodopseudomonas gelatinosa, Streptococcus diacetilactis and C. sphenoides.

    Science.gov (United States)

    Antranikian, G; Klinner, C; Kümmel, A; Schwanitz, D; Zimmermann, T; Mayer, F; Gottschalk, G

    1982-08-01

    Citrate lyase from Clostridium sphenoides was purified 72-fold with a yield of 11%. In contrast to citrate lyase from other sources the activity of this enzyme was strictly dependent on the presence of L-glutamate. The purified enzyme was only stable in the presence of 150 mM L-glutamate or 7 mM L-glutamate plus glycerol, sucrose or bovine serum albumin. Changes of the L-glutamate pool and of enzyme activity in growing cells of C. sphenoides indicated that citrate lyase activity in this organism was regulated by the intracellular L-glutamate concentration. Citrate lyase isolated from C. sphenoides, Rhodopseudomonas gelatinosa and Streptococcus diacetilactis was investigated by electron microscopy using the negative staining technique. Three different projections of enzyme molecules were observed: 'star' form, 'ring' form and 'triangle' form. In samples from R. gelatinosa and S. diacetilactis, star and ring forms occurred in a ratio of about 1:9. Using the enzyme from S. diacetilactis it was demonstrated that this ratio could be altered in favour of the star form by the addition of citrate or tricarballylate. The triangle form was observed in less than 1% of all evaluated molecules and may represent a transition form. In lyase samples from C. sphenoides there existed a correlation between enzyme activity and the proportion of stars and rings at varying concentrations of L-glutamate.

  8. Accumulation of Carbohydrate and Regulation of 14-3-3 Protein on Sucrose Phosphate Synthase (SPS) Activity in Two Tomato Species

    Institute of Scientific and Technical Information of China (English)

    WANG Li; CUI Na; ZHAO Xiao-cui; FAN Hai-yan; LI Tian-lai

    2014-01-01

    To explore the differences of carbohydrate metabolism in two tomato species and discuss the possible regulation of 14-3-3 proteins on the sucrose phosphate synthase (SPS) activity, we determined the contents of soluble sugar and starch through high performance liquid chromatography (HPLC). The activities of sugar-metabolizing enzymes were assayed in desalted extract, and the relative expression levels of related genes in sugar metabolism were determined though real-time RT-PCR. The results indicated that glucose and fructose were mainly accumulated during the maturation of the fruit because of the high acid invertase (AI) and neutral invertase (NI) in Micro-Tom (Solanum lycopersicum) fruit, while inSolanum chmielewskii fruit, SPS which went along with the change of sucrose content led to the rapid sucrose increase during the fruit ripening. TFT1 and TFT10, belonging to 14-3-3 protein in tomato, were likely to down-regulated SPS activity during young and intumescence period.

  9. Detection of the enzymatically-active polyhydroxyalkanoate synthase subunit gene, phaC, in cyanobacteria via colony PCR.

    Science.gov (United States)

    Lane, Courtney E; Benton, Michael G

    2015-12-01

    A colony PCR-based assay was developed to rapidly determine if a cyanobacterium of interest contains the requisite genetic material, the PHA synthase PhaC subunit, to produce polyhydroxyalkanoates (PHAs). The test is both high throughput and robust, owing to an extensive sequence analysis of cyanobacteria PHA synthases. The assay uses a single detection primer set and a single reaction condition across multiple cyanobacteria strains to produce an easily detectable positive result - amplification via PCR as evidenced by a band in electrophoresis. In order to demonstrate the potential of the presence of phaC as an indicator of a cyanobacteria's PHA accumulation capabilities, the ability to produce PHA was assessed for five cyanobacteria with a traditional in vivo PHA granule staining using an oxazine dye. The confirmed in vivo staining results were then compared to the PCR-based assay results and found to be in agreement. The colony PCR assay was capable of successfully detecting the phaC gene in all six of the diverse cyanobacteria tested which possessed the gene, while exhibiting no undesired product formation across the nine total cyanobacteria strains tested. The colony PCR quick prep provides sufficient usable DNA template such that this assay could be readily expanded to assess multiple genes of interest simultaneously.

  10. Enhanced Nitric Oxide Synthase Activation via Protease-Activated Receptor 2 Is Involved in the Preserved Vasodilation in Aortas from Metabolic Syndrome Rats.

    Science.gov (United States)

    Maruyama, Kana; Kagota, Satomi; McGuire, John J; Wakuda, Hirokazu; Yoshikawa, Noriko; Nakamura, Kazuki; Shinozuka, Kazumasa

    2015-01-01

    Endothelium-dependent vasodilation via protease-activated receptor 2 (PAR2) is preserved in mesenteric arteries from SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP.ZF) with metabolic syndrome even though nitric oxide (NO)-mediated vasodilation is attenuated. Therefore, we examined the PAR2 mechanisms underlying metabolic syndrome-resistant vasodilation in SHRSP.ZF aortas with ageing. In isolated aortas, the PAR2 agonist 2-furoyl-LIGRLO-amide (2fly) caused vasodilation that was sustained in male SHRSP.ZF until 18 weeks of age, but was attenuated afterwards compared with age-matched Wistar-Kyoto rats (controls) at 23 weeks. In contrast, acetylcholine-induced vasodilation was impaired in SHRSP.ZF already at 18 weeks of age. Treatments of aortas with inhibitors of NO synthase and soluble guanylate cyclase abolished the sustained 2fly- and residual acetylcholine-induced vasodilation in SHRSP.ZF at 18 weeks of age. In the aortas of SHRSP.ZF, 8-bromo-cGMP-induced vasodilation, NO production and cGMP accumulation elicited by 2fly were not different from in the controls. PAR2 agonist increased phospho-Ser1177-eNOS protein content only in SHRSP.ZF aortas. These results indicate that vasodilation mediated by PAR2 is sustained even though NO-dependent relaxation is attenuated with ageing/exposure to metabolic disorders in large-caliber arteries from SHRSP.ZF. PAR2 stimulation of NO production via an additional pathway that targets phosphorylation of Ser1177-eNOS suggests a regulatory mechanism for sustaining agonist-mediated vasodilation in metabolic syndrome.

  11. Oligomycin A-induced inhibition of mitochondrial ATP-synthase activity suppresses boar sperm motility and in vitro capacitation achievement without modifying overall sperm energy levels.

    Science.gov (United States)

    Ramió-Lluch, Laura; Yeste, Marc; Fernández-Novell, Josep M; Estrada, Efrén; Rocha, Luiz; Cebrián-Pérez, José A; Muiño-Blanco, Teresa; Concha, Ilona I; Ramírez, Alfredo; Rodríguez-Gil, Joan E

    2014-01-01

    Incubation of boar spermatozoa in a capacitation medium with oligomycin A, a specific inhibitor of the F0 component of the mitochondrial ATP synthase, induced an immediate and almost complete immobilisation of cells. Oligomycin A also inhibited the ability of spermatozoa to achieve feasible in vitro capacitation (IVC), as measured through IVC-compatible changes in motility patterns, tyrosine phosphorylation levels of the acrosomal p32 protein, membrane fluidity and the ability of spermatozoa to achieve subsequent, progesterone-induced in vitro acrosome exocytosis (IVAE). Both inhibitory effects were caused without changes in the rhythm of O2 consumption, intracellular ATP levels or mitochondrial membrane potential (MMP). IVAE was accompanied by a fast and intense peak in O2 consumption and ATP levels in control spermatozoa. Oligomycin A also inhibited progesterone-induced IVAE as well as the concomitant peaks of O2 consumption and ATP levels. The effect of oligomycin on IVAE was also accompanied by concomitant alterations in the IVAE-induced changes on intracellular Ca(2+) levels and MMP. Our results suggest that the oligomycin A-sensitive mitochondrial ATP-synthase activity is instrumental in the achievement of an adequate boar sperm motion pattern, IVC and IVAE. However, this effect seems not to be linked to changes in the overall maintenance of adequate energy levels in stages other than IVAE.

  12. Use of Limited Proteolysis and Mutagenesis To Identify Folding Domains and Sequence Motifs Critical for Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase Activity

    Science.gov (United States)

    Villa, Juan A.; Cabezas, Matilde; de la Cruz, Fernando

    2014-01-01

    Triacylglycerols and wax esters are synthesized as energy storage molecules by some proteobacteria and actinobacteria under stress. The enzyme responsible for neutral lipid accumulation is the bifunctional wax ester synthase/acyl-coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT). Structural modeling of WS/DGAT suggests that it can adopt an acyl-CoA-dependent acyltransferase fold with the N-terminal and C-terminal domains connected by a helical linker, an architecture demonstrated experimentally by limited proteolysis. Moreover, we found that both domains form an active complex when coexpressed as independent polypeptides. The structural prediction and sequence alignment of different WS/DGAT proteins indicated catalytically important motifs in the enzyme. Their role was probed by measuring the activities of a series of alanine scanning mutants. Our study underscores the structural understanding of this protein family and paves the way for their modification to improve the production of neutral lipids. PMID:24296496

  13. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice.

    Science.gov (United States)

    Tsuda, Hirohisa; Shiraki, Mari; Inoue, Eri; Saito, Terumi

    2016-08-20

    It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination.

  14. Rerouting Citrate Metabolism in Lactococcus lactis to Citrate-Driven Transamination

    NARCIS (Netherlands)

    Pudlik, Agata M.; Lolkema, Juke S.

    2012-01-01

    Oxaloacetate is an intermediate of the citrate fermentation pathway that accumulates in the cytoplasm of Lactococcus lactis ILCitM(pFL3) at a high concentration due to the inactivation of oxaloacetate decarboxylase. An excess of toxic oxaloacetate is excreted into the medium in exchange for citrate

  15. Biochemistry: Acetohydroxyacid Synthase

    Directory of Open Access Journals (Sweden)

    Pham Ngoc Chien

    2010-02-01

    Full Text Available Acetohydroxyacid synthase (AHAS, EC 2.2.1.6; formerly known as acetolactate synthase, ALS is a thiamin-and FAD-dependent enzyme which catalyses the first common step in the biosynthesis of the branched-chain amino acids (BCAA isoleucine, leucine and valine. The enzyme is inhibited by several commercial herbicides and has been studied over the last 20 to 30 years. A short introductory note about acetohydroxyacid synthase has been provided.

  16. Piperine Inhibits the Activities of Platelet Cytosolic Phospholipase A2 and Thromboxane A2 Synthase without Affecting Cyclooxygenase-1 Activity: Different Mechanisms of Action Are Involved in the Inhibition of Platelet Aggregation and Macrophage Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Dong Ju Son

    2014-08-01

    Full Text Available PURPOSE: Piperine, a major alkaloid of black pepper (Piper nigrum and long pepper (Piper longum, was shown to have anti-inflammatory activity through the suppression of cyclooxygenase (COX-2 gene expression and enzyme activity. It is also reported to exhibit anti-platelet activity, but the mechanism underlying this action remains unknown. In this study, we investigated a putative anti-platelet aggregation mechanism involving arachidonic acid (AA metabolism and how this compares with the mechanism by which it inhibits macrophage inflammatory responses; METHODS: Rabbit platelets and murine macrophage RAW264.7 cells were treated with piperine, and the effect of piperine on the activity of AA-metabolizing enzymes, including cytosolic phospholipase A2 (cPLA2, COX-1, COX-2, and thromboxane A2 (TXA2 synthase, as well as its effect on AA liberation from the plasma membrane components, were assessed using isotopic labeling methods and enzyme immunoassay kit; RESULTS: Piperine significantly suppressed AA liberation by attenuating cPLA2 activity in collagen-stimulated platelets. It also significantly inhibited the activity of TXA2 synthase, but not of COX-1, in platelets. These results suggest that piperine inhibits platelet aggregation by attenuating cPLA2 and TXA2 synthase activities, rather than through the inhibition of COX-1 activity. On the other hand, piperine significantly inhibited lipopolysaccharide-induced generation of prostaglandin (PGE2 and PGD2 in RAW264.7 cells by suppressing the activity of COX-2, without effect on cPLA2; CONCLUSION: Our findings indicate that piperine inhibits platelet aggregation and macrophage inflammatory response by different mechanisms.

  17. The prostaglandin F synthase activity of the human aldose reductase AKR1B1 brings new lenses to look at pathologic conditions.

    Directory of Open Access Journals (Sweden)

    Eva eBresson

    2012-05-01

    Full Text Available Prostaglandins are important regulators of female reproductive functions to which aldose reductases exhibiting hydroxysteroid dehydrogenase activity also contribute. Our work on the regulation of reproductive function by prostaglandins (PGs, lead us to the discovery that AKR1B5 and later AKR1B1 were highly efficient and physiologically relevant PGF synthases. PGE2 and PGF2α are the main prostanoids produced in the human endometrium and proper balance in their relative production is important for normal menstruation and optimal fertility. Recent evidence suggests that PGE2 and PGF2α may constitute a functional dyad with physiological relevance at least as important as the prostacyclin-thromboxane dyad in the vascular system. We have recently reported that AKR1B1 was expressed and modulated in association with PGF2α production in response to IL-1β in the human endometrium. In the present study, we show that the human AKR1B1 (gene ID: 231 also known as ALDR1 or ALR2 is a functional PGF2α synthase in different models of living cells and tissues. Using human endometrial cells, prostate and vascular smooth muscle cells, cardiomyocytes and endothelial cells we demonstrate that IL-1β is able to up regulate COX-2 and AKR1B1 proteins as well as PGF2α production under normal glucose concentrations. We show that the promoter activity of AKR1B1 gene is increased by IL-1β particularly around the multiple stress response region (MSRR containing two putative antioxidant response elements (ARE adjacent to TonE and AP1.We also show that AKR1B1 is able to regulate PGE2 production through PGF2α acting on its FP receptor and that aldose reductase inhibitors (ARIs like alrestatin, statil (ponalrestat and EBPC exhibit distinct and characteristic inhibition of PGF2α production in different cell models. The PGF synthase activity of AKR1B1 represents a new and important target to regulate ischemic and inflammatory responses associated with several human

  18. Renal Localization of {sup 67}Ga Citrate in Noninfectious Nephritis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Wook; Jeong, Min Soo; Rhee, Sunn Kgoo; Kim, Sam Yong; Shin, Young Tai; Ro, Heung Kyu [Chungnam University College of Medicine, Deajeon (Korea, Republic of)

    1992-07-15

    {sup 67}Ga citrate scan has been requested for detection or follow-up of inflammatory or neoplastic disease. Visualization of {sup 67}Ga citrate in the kidneys at 48 and 72 hr post injection is usually interpreted as evidence of renal pathology. But precise mechanisms of abnormal {sup 67}Ga uptake in kidneys were unknown. We undertook a study to determine the clinical value of {sup 67}Ga citrate imaging of the kidneys in 68 patients with primary or secondary nephropathy confirmed by renal biopsy and 66 control patients without renal disease. Renal uptake in 48 to 72 hr images was graded as follows: Grade 0=background activity;1=faint uptake greater than background; 2=definite uptake, but less than lumbar vertebrae;3 same uptake as lumbar vertebrae, but less than liver; 4=same or higher uptake than liver. The results were as follows. 1) 42 of 68(62%) patients with noninfectious nephritis showed grade 2 or higher {sup 67}Ga renal uptake but only 10 percent of control patients showed similar uptake. 2) In 14 patients with systemic lupus erythematosus, 8 of 9 (89%) patients with lupus nephritis exhibited marked renal uptake. 3) 36 of 41 patients (88%) with combined nephrotic syndrome showed Grade 2 or higher renal uptake. 4) Renal {sup 67}Ga uptake was correlated with clinical severity of nephrotic syndrome determined by serum albumin level, 24 hr urine protein excretion and serum lipid levels. 5) After complete remission of nephrotic syndrome, renal uptake in all 8 patients who were initially Grade 3 or 4, decreased to Grade 1 or 0. In conclusion, we think that the mechanism of renal {sup 67}Ga uptake in nephrotic syndrome might be related to the pathogenesis of nephrotic syndrome. In systemic lupus erythematosus, {sup 67}Ga citrate scan is useful in predicting renal involvement.

  19. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...... I NO synthase immunoreactivity and NADPH diaphorase activity. Type III NO synthase immunoreactivity was observed both in the endothelium of larger vessels and of microvessels. The results establish that human skeletal muscle expresses two different constitutive isoforms of NO synthase in different...... endothelium is consistent with a role for NO in the control of blood flow in human skeletal muscle....

  20. Preparation and Quality Control of 68Ga-Citrate for PET Applications

    Directory of Open Access Journals (Sweden)

    Ayuob Aghanejad

    2015-07-01

    Full Text Available Objective(s: In nuclear medicine studies, gallium-68 (68Ga citrate has been recently known as a suitable infection agent in positron emission tomography (PET. In this study, by applying an in-house produced 68Ge/68Ga generator, a simple technique for the synthesis and quality control of 68Ga-citrate was introduced; followed by preliminary animal studies. Methods: 68GaCl3 eluted from the generator was studied in terms of quality control factors including radiochemical purity (assessed by HPLC and RTLC, chemical purity (assessed by ICP-EOS, radionuclide purity (evaluated by HPGe, and breakthrough. 68Ga-citrate was prepared from eluted 68GaCl3 and sodium citrate under various reaction conditions. Stability of the complex was evaluated in human serum for 2 h at 370C, followed by biodistribution studies in rats for 120 min. Results: 68Ga-citrate was prepared with acceptable radiochemical purity (>97 ITLC and >98% HPLC, specific activity (4-6 GBq/mM, chemical purity (Sn, FeConclusion: This study demonstrated the possible in-house preparation and quality control of 68Ga-citrate, using a commercially available 68Ge/68Ga generator for PET imaging throughout the country.

  1. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    Science.gov (United States)

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  2. Involvement of Salicylic Acid on Antioxidant and Anticancer Properties, Anthocyanin Production and Chalcone Synthase Activity in Ginger (Zingiber officinale Roscoe Varieties

    Directory of Open Access Journals (Sweden)

    Ehsan Karimi

    2012-11-01

    Full Text Available The effect of foliar application of salicylic acid (SA at different concentrations (10−3 M and 10−5 M was investigated on the production of secondary metabolites (flavonoids, chalcone synthase (CHS activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231 in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS enzyme activity (involving flavonoid synthesis and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10−5 M SA treatment. As the SA concentration was decreased from 10−3 M to 10−5 M, the free radical scavenging power (FRAP increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 μg mL−1, the DPPH antioxidant activity recorded the highest value of 58.30%–72.90% with the 10−5 M SA treatment followed by the 10−3 M SA (52.14%–63.66% treatment. The lowest value was recorded in the untreated control plants (42.5%–46.7%. These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10−5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of

  3. Studies on the Compounds of d4T Combined with Nitric Oxide Donors and Nitric Oxide Synthase Inhibitors and their Anti-HIV and AIDS Activity

    Institute of Scientific and Technical Information of China (English)

    KWALE MOLIME GUITREMBI Blaise(Central African); YAO Qi-zheng

    2004-01-01

    Stavudine, a potent anti-HIV and AiDS-related complex, is one of the Nucleoside Analogue Reverse Transcriptase Inhibitors (NARTIs). It is phosphorylated intracellularly and then inhibits the viral reverse transcriptase by acting as a false substrate. Modifications made on the hydrogen labile at the 5'-position on the sugar is an interesting template for the elaboration of new potent anti-HIV and AIDS drugs. The expected advantages of the modified stavudine prodrugs can be multiple: synergistic drug activities, enhancement of stavudine intracellular uptake, increase of stavudine brain delivery, and bypass of the first stavudine phosphorylation step into the cells. Nitric oxide synthase inhibitors of stavudine and nitric oxide donors of stavudine may hold significant promise for the treatment of HIV and AIDS.

  4. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings.

    Science.gov (United States)

    Balotf, Sadegh; Kavoosi, Gholamreza; Kholdebarin, Bahman

    2016-01-01

    The objective of this study was to examine the expression and activity of nitrate reductase (NR, EC 1.7.1.1), nitrite reductase (NiR, EC 1.7.2.2), glutamine synthetase (GS, EC 6.3.1.2), and glutamate synthase (GOGAT, EC 1.4.7.1) in response to potassium nitrate, ammonium chloride, and ammonium nitrate in nitrogen-starved wheat seedlings. Plants were grown in standard nutrient solution for 17 days and then subjected to nitrogen starvation for 7 days. The starved plants were supplied with potassium nitrate ammonium nitrate and ammonium chloride (50 mM) for 4 days and the leaves were harvested. The relative expression of NR, NiR, GS, and GOGAT as well as the enzyme activities were investigated. Nitrogen starvation caused a significant decrease both in transcript levels and in NR, NiR, GS, and GOGAT activities. Potassium nitrate and ammonium nitrate treatments restored NR, NiR, GS, and GOGAT expressions and activities. Ammonium chloride increased only the expressions and activities of GS and GOGAT in a dose-dependent manner. The results of our study highlight the differential effects between the type and the amount of nitrogen salts on NR, NiR, GS, and GOGAT activities in wheat seedlings while potassium nitrate being more effective.

  5. Regulation of the nuclear gene that encodes the alpha-subunit of the mitochondrial F0F1-ATP synthase complex. Activation by upstream stimulatory factor 2.

    Science.gov (United States)

    Breen, G A; Jordan, E M

    1997-04-18

    We have previously identified several positive cis-acting regulatory regions in the promoters of the bovine and human nuclear-encoded mitochondrial F0F1-ATP synthase alpha-subunit genes (ATPA). One of these cis-acting regions contains the sequence 5'-CACGTG-3' (an E-box), to which a number of transcription factors containing a basic helix-loop-helix motif can bind. This E-box element is required for maximum activity of the ATPA promoter in HeLa cells. The present study identifies the human transcription factor, upstream stimulatory factor 2 (USF2), as a nuclear factor that binds to the ATPA E-box and demonstrates that USF2 plays a critical role in the activation of the ATPA gene in vivo. Evidence includes the following. Antiserum directed against USF2 recognized factors present in HeLa nuclear extracts that interact with the ATPA promoter in mobility shift assays. Wild-type USF2 proteins synthesized from expression vectors trans-activated the ATPA promoter through the E-box, whereas truncated USF2 proteins devoid of the amino-terminal activation domains did not. Importantly, expression of a dominant-negative mutant of USF2 lacking the basic DNA binding domain but able to dimerize with endogenous USF proteins significantly reduced the level of activation of the ATPA promoter caused by ectopically coexpressed USF2, demonstrating the importance of endogenous USF2 in activation of the ATPA gene.

  6. The metastasis inducer CCN1 (CYR61) activates the fatty acid synthase (FASN)-driven lipogenic phenotype in breast cancer cells

    Science.gov (United States)

    Menendez, Javier A.; Vellon, Luciano; Espinoza, Ingrid; Lupu, Ruth

    2016-01-01

    The angiogenic inducer CCN1 (Cysteine-rich 61, CYR61) is differentially activated in metastatic breast carcinomas. However, little is known about the precise mechanisms that underlie the pro-metastatic actions of CCN1. Here, we investigated the impact of CCN1 expression on fatty acid synthase (FASN), a metabolic oncogene thought to provide cancer cells with proliferative and survival advantages. Forced expression of CCN1 in MCF-7 cells robustly up-regulated FASN protein expression and also significantly increased FASN gene promoter activity 2- to 3-fold, whereas deletion of the sterol response element-binding protein (SREBP) binding site in the FASN promoter completely abrogated CCN1-driven transcriptional activation. Pharmacological blockade of MAPK or PI-3'K activation similarly prevented the ability of CCN1 to induce FASN gene activation. Pharmacological inhibition of FASN activity with the mycotoxin cerulenin or the small compound C75 reversed CCN1-induced acquisition of estrogen independence and resistance to hormone therapies such as tamoxifen and fulvestrant in anchorage-independent growth assays. This study uncovers FASNdependent endogenous lipogenesis as a new mechanism controlling the metastatic phenotype promoted by CCN1. Because estrogen independence and progression to a metastatic phenotype are hallmarks of therapeutic resistance and mortality in breast cancer, this previously unrecognized CCN1-driven lipogenic phenotype represents a novel metabolic target to clinically manage metastatic disease progression.

  7. Leptin protection of salivary gland acinar cells against ethanol cytotoxicity involves Src kinase-mediated parallel activation of prostaglandin and constitutive nitric oxide synthase pathways.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2008-04-01

    Leptin, a pleiotropic cytokine secreted by adipocytes but also identified in salivary glands and saliva, is recognized as an important element of oral mucosal defense. Here, we report that in sublingual salivary glands leptin protects the acinar cells of against ethanol cytotoxicity. We show that ethanol- induced cytotoxicity, characterized by a marked drop in the acinar cell capacity for NO production, arachidonic acid release and prostaglandin generation, was subject to suppression by leptin. The loss in countering capacity of leptin on the ethanol-induced cytotoxicity was attained with cyclooxygenase inhibitor, indomethacin and nitric oxide synthase (cNOS) inhibitor, L-NAME, as well as PP2, an inhibitor of Src kinase. Indomethacin, while not affecting leptin-induced arachidonic acid release, caused the inhibition in PGE2 generation, pretreatment with L-NAME led to the inhibition in NO production, whereas PP2 exerted the inhibitory effect on leptin-induced changes in NO, arachidonic acid, and PGE2. The leptin-induced changes in arachidonic acid release and PGE2 generation were blocked by ERK inhibitor, PD98059, but not by PI3K inhibitor, wortmannin. Further, leptin suppression of ethanol cytotoxicity was reflected in the increased Akt and cNOS phosphorylation that was sensitive to PP2. Moreover, the stimulatory effect of leptin on the acinar cell cNOS activity was inhibited not only by PP2, but also by Akt inhibitor, SH-5, while wortmannin had no effect. Our findings demonstrate that leptin protection of salivary gland acinar cells against ethanol cytotoxicity involves Src kinase-mediated parallel activation of MAPK/ERK and Akt that result in up-regulation of the respective prostaglandin and nitric oxide synthase pathways.

  8. Determination of cystathionine beta-synthase activity in human plasma by LC-MS/MS: potential use in diagnosis of CBS deficiency.

    LENUS (Irish Health Repository)

    Krijt, Jakub

    2011-02-01

    Cystathionine β-synthase (CBS) deficiency is usually confirmed by assaying the enzyme activity in cultured skin fibroblasts. We investigated whether CBS is present in human plasma and whether determination of its activity in plasma could be used for diagnostic purposes. We developed an assay to measure CBS activity in 20 μL of plasma using a stable isotope substrate - 2,3,3-(2)H serine. The activity was determined by measurement of the product of enzyme reaction, 3,3-(2)H-cystathionine, using LC-MS\\/MS. The median enzyme activity in control plasma samples was 404 nmol\\/h\\/L (range 66-1,066; n = 57). In pyridoxine nonresponsive CBS deficient patients, the median plasma activity was 0 nmol\\/ho\\/L (range 0-9; n = 26), while in pyridoxine responsive patients the median activity was 16 nmol\\/hour\\/L (range 0-358; n = 28); this overlapped with the enzyme activity from control subject. The presence of CBS in human plasma was confirmed by an in silico search of the proteome database, and was further evidenced by the activation of CBS by S-adenosyl-L-methionine and pyridoxal 5\\'-phosphate, and by configuration of the detected reaction product, 3,3-(2)H-cystathionine, which was in agreement with the previously observed CBS reaction mechanism. We hypothesize that the CBS enzyme in plasma originates from liver cells, as the plasma CBS activities in patients with elevated liver aminotransferase activities were more than 30-fold increased. In this study, we have demonstrated that CBS is present in human plasma and that its catalytic activity is detectable by LC-MS\\/MS. CBS assay in human plasma brings new possibilities in the diagnosis of pyridoxine nonresponsive CBS deficiency.

  9. Human FAD synthase is a bi-functional enzyme with a FAD hydrolase activity in the molybdopterin binding domain.

    Science.gov (United States)

    Giancaspero, Teresa Anna; Galluccio, Michele; Miccolis, Angelica; Leone, Piero; Eberini, Ivano; Iametti, Stefania; Indiveri, Cesare; Barile, Maria

    2015-09-25

    FAD synthase (FMN:ATP adenylyl transferase, FMNAT or FADS, EC 2.7.7.2) is involved in the biochemical pathway for converting riboflavin into FAD. Human FADS exists in different isoforms. Two of these have been characterized and are localized in different subcellular compartments. hFADS2 containing 490 amino acids shows a two domain organization: the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase domain, that is the FAD-forming catalytic domain, and a resembling molybdopterin-binding (MPTb) domain. By a multialignment of hFADS2 with other MPTb containing proteins of various organisms from bacteria to plants, the critical residues for hydrolytic function were identified. A homology model of the MPTb domain of hFADS2 was built, using as template the solved structure of a T. acidophilum enzyme. The capacity of hFADS2 to catalyse FAD hydrolysis was revealed. The recombinant hFADS2 was able to hydrolyse added FAD in a Co(2+) and mersalyl dependent reaction. The recombinant PAPS reductase domain is not able to perform the same function. The mutant C440A catalyses the same hydrolytic function of WT with no essential requirement for mersalyl, thus indicating the involvement of C440 in the control of hydrolysis switch. The enzyme C440A is also able to catalyse hydrolysis of FAD bound to the PAPS reductase domain, which is quantitatively converted into FMN.

  10. Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase.

    Science.gov (United States)

    Irmler, S; Schröder, G; St-Pierre, B; Crouch, N P; Hotze, M; Schmidt, J; Strack, D; Matern, U; Schröder, J

    2000-12-01

    The molecular characterization of CYP72A1 from Catharanthus roseus (Madagascar periwinkle) was described nearly a decade ago, but the enzyme function remained unknown. We now show by in situ hybridization and immunohistochemistry that the expression in immature leaves is epidermis-specific. It thus follows the pattern previously established for early enzymes in the pathway to indole alkaloids, suggesting that CYP72A1 may be involved in their biosynthesis. The early reactions in that pathway, i.e. from geraniol to strictosidine, contain several candidates for P450 activities. We investigated in this work two reactions, the conversion of 7-deoxyloganin to loganin (deoxyloganin 7-hydroxylase, DL7H) and the oxidative ring cleavage converting loganin into secologanin (secologanin synthase, SLS). The action of DL7H has not been demonstrated in vitro previously, and SLS has only recently been identified as P450 activity in one other plant. We show for the first time that both enzyme activities are present in microsomes from C. roseus cell cultures. We then tested whether CYP72A1 expressed in E. coli as a translational fusion with the C. roseus P450 reductase (P450Red) has one or both of these activities. The results show that CYP72A1 converts loganin into secologanin.

  11. Impact of Trans-Resveratrol-Sulfates and -Glucuronides on Endothelial Nitric Oxide Synthase Activity, Nitric Oxide Release and Intracellular Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Angela Ladurner

    2014-10-01

    Full Text Available Resveratrol (3,5,4'-trihydroxy-trans-stilbene is a polyphenolic natural product mainly present in grape skin, berries and peanuts. In the vasculature resveratrol is thought to boost endothelial function by increasing endothelial nitric oxide synthase (eNOS expression, by enhancing eNOS activity, and by reduction of reactive oxygen species (ROS levels. Recent studies show that dietary resveratrol is metabolized in the liver and intestine into resveratrol-sulfate and -glucuronide derivatives questioning the relevance of multiple reported mechanistic in vitro data on resveratrol. In this study, we compare side by side different physiologically relevant resveratrol metabolites (resveratrol sulfates- and -glucuronides and their parent compound in their influence on eNOS enzyme activity, endothelial NO release, and intracellular ROS levels. In contrast to resveratrol, none of the tested resveratrol metabolites elevated eNOS enzyme activity and endothelial NO release or affected intracellular ROS levels, leaving the possibility that not tested metabolites are active and able to explain in vivo findings.

  12. Inhibition of endothelial nitric oxide synthase activity and suppression of endothelium-dependent vasorelaxation by 1,2-naphthoquinone, a component of diesel exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yang; Taguchi, Keiko; Sumi, Daigo [University of Tsukuba, Department of Environmental Medicine, Doctoral Programs in Medical Sciences, Graduate School of Comprehensive Sciences, Ibaraki (Japan); Yamano, Shigeru [Fukuoka University, Faculty of Pharmaceutical Sciences, Fukuoka (Japan); Kumagai, Yoshito [University of Tsukuba, Department of Environmental Medicine, Doctoral Programs in Medical Sciences, Graduate School of Comprehensive Sciences, Ibaraki (Japan); Southern California Particle Center and Supersite, Los Angeles, CA (United States)

    2006-05-15

    Diesel exhaust particles contain redox-active quinones, such as 9,10-phenanthraquinone (9,10-PQ) and 1,2-naphthoquinone (1,2-NQ), which act as potent electron acceptors, thereby altering electron transfer on proteins. We have previously found that 9,10-PQ inhibits constitutive nitric oxide synthase (NOS) activity, by shunting electrons away from NADPH on the cytochrome P450 reductase domain of NOS, and thus suppresses acetylcholine (Ach)-induced vasorelaxation in the aortic ring. However, the effect of 1,2-NQ on endothelial NOS (eNOS) activity is still poorly understood. With the membrane fraction of cultured bovine aortic endothelial cells, we found that 1,2-NQ was a potent inhibitor of eNOS with an IC{sub 50} value of 1.4 {mu}M, whereas trans-1,2-dihydroxy-1,2-dihydronaphthalene (1,2-DDN), a redox-negative naphthalene analog of 1,2-NQ, did not show such an inhibitory action. Although 1,2-DDN (5 {mu}M) did not affect Ach-mediated vasorelaxation, 1,2-NQ caused a significant suppression of Ach-induced endothelium-dependent vasorelaxation in the aortic ring. However, 1,2-NQ did not affect sodium nitroprusside-induced endothelium-independent vasorelaxation. These results suggest that 1,2-NQ is an environmental quinone that inhibits eNOS activity, thereby disrupting NO-dependent vascular tone. (orig.)

  13. Exercise protects against chronic β-adrenergic remodeling of the heart by activation of endothelial nitric oxide synthase.

    Directory of Open Access Journals (Sweden)

    Liang Yang

    Full Text Available Extensive data have shown that exercise training can provide cardio-protection against pathological cardiac hypertrophy. However, how long the heart can retain cardio-protective phenotype after the cessation of exercise is currently unknown. In this study, we investigated the time course of the loss of cardio-protection after cessation of exercise and the signaling molecules that are responsible for the possible sustained protection. Mice were made to run on a treadmill six times a week for 4 weeks and then rested for a period of 0, 1, 2 and 4 weeks followed by isoproterenol injection for 8 days. Morphological, echocardiographic and hemodynamic changes were measured, gene reactivation was determined by real-time PCR, and the expression and phosphorylation status of several cardio-protective signaling molecules were analyzed by Western-blot. HW/BW, HW/TL and LW/BW decreased significantly in exercise training (ER mice. The less necrosis and lower fetal gene reactivation induced by isoproterenol injection were also found in ER mice. The echocardiographic and hemodynamic changes induced by β-adrenergic overload were also attenuated in ER mice. The protective effects can be sustained for at least 2 weeks after the cessation of the training. Western-blot analysis showed that the alterations in the phosphorylation status of endothelial nitric oxide synthase (eNOS (increase in serine 1177 and decrease in threonine 495 continued for 2 weeks after the cessation of the training whereas increases of the phosphorylation of Akt and mTOR disappeared. Further study showed that L-NG-Nitroarginine methyl ester (L-NAME treatment abolished the cardio-protective effects of ER. Our findings demonstrate that stimulation of eNOS in mice through exercise training provides acute and sustained cardioprotection against cardiac hypertrophy.

  14. Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling.

    Science.gov (United States)

    Yang, J; Zhang, J; Wang, Z; Zhu, Q

    2001-11-01

    To understand the effect of water stress on the remobilization of prestored carbon reserves, the changes in the activities of starch hydrolytic enzymes and sucrose-phosphate synthase (SPS) in the stems of rice (Oryza sativa L.) during grain filling were investigated. Two rice cultivars, showing high lodging-resistance and slow remobilization, were grown in the field and subjected to well-watered (WW, psi(soil)=0) and water-stressed (WS, psi(soil)=-0.05 MPa) treatments 9 d after anthesis (DAA) till maturity. Leaf water potentials of both cultivars markedly decreased during the day as a result of WS treatment, but completely recovered by early morning. WS treatment accelerated the reduction of starch in the stems, promoted the reallocation of prefixed (14)C from the stems to grains, shortened the grain filling period, and increased the grain filling rate. More soluble sugars including sucrose were accumulated in the stems under WS than under WW treatments. Both alpha- and beta-amylase activities were enhanced by the WS, with the former enhanced more than the latter, and were significantly correlated with the concentrations of soluble sugars in the stems. The other two possible starch-breaking enzymes, alpha-glucosidase and starch phosphorylase, showed no significant differences in the activities between the WW and WS treatments. Water stress also increased the SPS activity that is responsible for sucrose production. Both V(limit) and V(max), the activities of the enzyme at limiting and saturating substrate concentrations, were enhanced and the activation state (V(limit)/V(max)) was also increased as a result of the more significant enhancement of V(limit). The enhanced SPS activity was closely correlated with an increase of sucrose accumulation in the stems. The results suggest that the fast hydrolysis of starch and increased carbon remobilization were attributed to the enhanced alpha-amylase activity and the high activation state of SPS when the rice was subjected

  15. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye Jin [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Lee, Dong-Hyung [Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University, Busan (Korea, Republic of); Park, Seong-Hwan; Kim, Juil; Do, Kee Hun [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); An, Tae Jin; Ahn, Young Sup; Park, Chung Berm [Department of Herbal Crop Research, NIHHS, RDA, Eumseong (Korea, Republic of); Moon, Yuseok, E-mail: moon@pnu.edu [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Medical Research Institute and Research Institute for Basic Sciences, Pusan National University, Busan (Korea, Republic of)

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  16. Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2.

    Science.gov (United States)

    Fujino, Hiromichi; West, Kimberly A; Regan, John W

    2002-01-25

    Recently we have shown that the FP(B) prostanoid receptor, a G-protein-coupled receptor that couples to Galpha(q), activates T-cell factor (Tcf)/lymphoid enhancer factor (Lef)-mediated transcriptional activation (Fujino, H., and Regan, J. W. (2001) J. Biol. Chem. 276, 12489-12492). We now report that the EP(2) and EP(4) prostanoid receptors, which couple to Galpha(s), also activate Tcf/Lef signaling. By using a Tcf/Lef-responsive luciferase reporter gene, transcriptional activity was stimulated approximately 10-fold over basal by 1 h of treatment with prostaglandin E(2) (PGE(2)) in HEK cells that were stably transfected with the human EP(2) and EP(4) receptors. This stimulation of reporter gene activity was accompanied by a PGE(2)-dependent increase in the phosphorylation of both glycogen synthase kinase-3 (GSK-3) and Akt kinase. H-89, an inhibitor of protein kinase A (PKA), completely blocked the agonist-dependent phosphorylation of GSK-3 in both EP(2)- and EP(4)-expressing cells. However, H-89 pretreatment only blocked PGE(2)-stimulated Lef/Tcf reporter gene activity by 20% in EP(4)-expressing cells compared with 65% inhibition in EP(2)-expressing cells. On the other hand wortmannin, an inhibitor of phosphatidylinositol 3-kinase, had the opposite effect and inhibited PGE(2)-stimulated reporter gene activity to a much greater extent in EP(4)-expressing cells as compared with EP(2)-expressing cells. These findings indicate that the activation of Tcf/Lef signaling by EP(2) receptors occurs primarily through a PKA-dependent pathway, whereas EP(4) receptors activate Tcf/Lef signaling mainly through a phosphatidylinositol 3-kinase-dependent pathway. This is the first indication of a fundamental difference in the signaling potential of EP(2) and EP(4) prostanoid receptors.

  17. Potassium citrate decreases urine calcium excretion in patients with hypocitraturic calcium oxalate nephrolithiasis.

    Science.gov (United States)

    Song, Yan; Hernandez, Natalia; Shoag, Jonathan; Goldfarb, David S; Eisner, Brian H

    2016-04-01

    Two previous studies (nephrolithiasis. The hypothesized mechanisms are (1) a decrease in bone turnover due to systemic alkalinization by the medications; (2) binding of calcium by citrate in the gastrointestinal tract; (3) direct effects on TRPV5 activity in the distal tubule. We performed a retrospective review of patients on potassium citrate therapy to evaluate the effects of this medication on urinary calcium excretion. A retrospective review was performed of a metabolic stone database at a tertiary care academic hospital. Patients were identified with a history of calcium oxalate nephrolithiasis and hypocitraturia who were on potassium citrate therapy for a minimum of 3 months. 24-h urine composition was assessed prior to the initiation of potassium citrate therapy and after 3 months of therapy. Patients received 30-60 mEq potassium citrate by mouth daily. Inclusion criterion was a change in urine potassium of 20 mEq/day or greater, which suggests compliance with potassium citrate therapy. Paired t test was used to compare therapeutic effect. Twenty-two patients were evaluated. Mean age was 58.8 years (SD 14.0), mean BMI was 29.6 kg/m(2) (SD 5.9), and gender prevalence was 36.4% female:63.6% male. Mean pre-treatment 24-h urine values were as follows: citrate 280.0 mg/day, potassium 58.7 mEq/day, calcium 216.0 mg/day, pH 5.87. Potassium citrate therapy was associated with statistically significant changes in each of these parameters-citrate increased to 548.4 mg/day (p < 0.0001), potassium increased to 94.1 mEq/day (p < 0.0001), calcium decreased to 156.5 mg/day (p = 0.04), pH increased to 6.47 (p = 0.001). Urine sodium excretion was not different pre- and post-therapy (175 mEq/day pre-therapy versus 201 mEq/day post-therapy, p = NS). Urinary calcium excretion decreased by a mean of 60 mg/day on potassium citrate therapy-a nearly 30 % decrease in urine calcium excretion. These data lend support to the hypothesis that alkali therapy reduces urine calcium

  18. Gibberellic Acid, Synthetic Auxins, and Ethylene Differentially Modulate α-l-Arabinofuranosidase Activities in Antisense 1-Aminocyclopropane-1-Carboxylic Acid Synthase Tomato Pericarp Discs1

    Science.gov (United States)

    Sozzi, Gabriel O.; Greve, L. Carl; Prody, Gerry A.; Labavitch, John M.

    2002-01-01

    α-l-Arabinofuranosidases (α-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different α-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. α-Af I and II are active throughout fruit ontogeny. α-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. α-Af II activity accounts for over 80% of the total α-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, α-Af III is ethylene dependent and specifically active during ripening. α-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas α-Af II and III acted on Na2CO3-soluble pectins. Different α-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. α-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only α-Af III activity. Results suggest that tomato α-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production. PMID:12114586

  19. Sucrose synthase activity and carbohydrates content in relation to phosphorylation status of Vicia faba root meristems during reactivation from sugar depletion.

    Science.gov (United States)

    Polit, Justyna Teresa; Ciereszko, Iwona

    2012-11-01

    Carbohydrate starvation of Vicia faba root meristems leads to readjustment of carbohydrate metabolism and blocks the cell cycle in two principal control points (PCP1/2). The cell cycle reactivation is possible after sucrose provision, although with a delay of about 12h. During this period, the cells are sensitive to 6-dimethylaminopurine (6-DMAP) and okadaic acid (OA), inhibitors of protein kinases and phosphatases, respectively. The aim of the present study was to investigate whether those inhibitors are involved in inhibition of cell cycle revival through interference with the activities of two sucrose-cleaving enzymes: sucrose synthase (SuSy; EC 2.4.1.13) and invertase (INV; EC 3.2.1.26). In sugar-starved cells, the in situ activity of both enzymes decreased significantly. Following supplementation of root meristems with sugar, INV remained inactive, but SuSy activity increased. Despite the lack of INV activity, glucose was present in meristem cells, but its content was low in cells treated with OA. In the latter case, the size of plastids was reduced, they had less starch, and Golgi structures were affected. In sugar-starved cells, SuSy activity was induced more by exogenous sucrose than by glucose. The sucrose-induced activity was strongly inhibited by OA (less by 6-DMAP) at early stages of regeneration, but not at the stages preceding DNA replication or mitotic activities. The results indicate that prolongation of regeneration and a marked decrease in the number of cells resuming proliferation (observed in previous studies) and resulting from the action of inhibitors, are correlated with the process of SuSy activation at the beginning of regeneration from sugar starvation.

  20. 14 N NQR spectrum of sildenafil citrate

    Science.gov (United States)

    Stephenson, David; Singh, Nadia

    2015-04-01

    The 14N nuclear quadrupole resonance (NQR) spectrum of sildenafil citrate tablets has been recorded allowing the quadrupole coupling constants and asymmetry parameters of all six unique nitrogen atoms in its structure to be determined. A density function calculation gives results that are largely in agreement with the experimental values.

  1. 21 CFR 522.800 - Droperidol and fentanyl citrate injection.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Droperidol and fentanyl citrate injection. 522.800... § 522.800 Droperidol and fentanyl citrate injection. (a) Specifications. Droperidol and fentanyl citrate injection is a sterile solution containing 20 milligrams of droperidol and 0.4 milligram of fentanyl...

  2. Ventricular tachycardia after administration of sildenafil citrate: a case report

    Directory of Open Access Journals (Sweden)

    Rasmussen Jeppe G

    2007-08-01

    Full Text Available Abstract Background It has not previously been reported that sildenafil citrate causes malignant arrhythmias in humans. Case presentation A 41-year-old man developed sustained ventricular tachycardia following sildenafil citrate administration. Conclusion It cannot be dismissed that this patient experienced ventricular tachycardia as an adverse effect of sildenafil citrate administration.

  3. 21 CFR 573.580 - Iron-choline citrate complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron-choline citrate complex. 573.580 Section 573.580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made...

  4. 21 CFR 172.370 - Iron-choline citrate complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron-choline citrate complex. 172.370 Section 172... CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting approximately equimolecular quantities of ferric hydroxide, choline,...

  5. 21 CFR 184.1296 - Ferric ammonium citrate.

    Science.gov (United States)

    2010-04-01

    ... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid, followed by treatment with ammonium hydroxide, evaporating, and drying. The resulting product occurs in two forms depending on the stoichiometry of the initial reactants. (1) Ferric ammonium citrate (iron...

  6. Effect of simulated microgravity on nitric oxide synthase activity of osteocyte-like cell line MLO-Y4 in response to fluid shear stress

    Science.gov (United States)

    Sun, Lian-Wen; Yang, Xiao; Fan, Yu-Bo

    It is well known that microgravity could induce bone loss. However, the mechanism remains poorly understood. Osteocytes are extremely sensitive to fluid shear stress, even more than osteobleasts. The effect of simulated microgravity on osteocytes in response to fluid shear was investigated in this study in order to see if the mechanosensibility of osteocytes changed under simulated microgravity. The osteocyte-like cell line, MLO-Y4, was cultured and divided into four groups, including control (CON), control and shear (CONS), rotary (RT), rotary and shear (RTS). In RT and RTS, the cells were cultured in the rotary cell culture system to simulate microgravity condition. After 5 days, the cells in RTS and CONS were subjected to flow shear for 15 min. Then nitric oxide synthase (NOS) activity in the cells was measured using assay kit. The results showed that NOS activity in respond to fluid shear decreased significantly in RTS compared with CONS. In addition, there was significant difference in NOS activity between CONS and CON while no significant difference between RTS and RT. These indicates that the mechanosensibility of osteocytes decreased under simulated microgravity and this maybe the partly causes of the poor effect of exercise to counter microgravity-induced-bone loss. However, further research need to be done to support this finding.

  7. Low sulfide levels and a high degree of cystathionine β-synthase (CBS activation by S-adenosylmethionine (SAM in the long-lived naked mole-rat

    Directory of Open Access Journals (Sweden)

    Maja Dziegelewska

    2016-08-01

    Full Text Available Hydrogen sulfide (H2S is a gaseous signalling molecule involved in many physiological and pathological processes. There is increasing evidence that H2S is implicated in aging and lifespan control in the diet-induced longevity models. However, blood sulfide concentration of naturally long-lived species is not known. Here we measured blood sulfide in the long-lived naked mole-rat and five other mammalian species considerably differing in lifespan and found a negative correlation between blood sulfide and maximum longevity residual. In addition, we show that the naked mole-rat cystathionine β-synthase (CBS, an enzyme whose activity in the liver significantly contributes to systemic sulfide levels, has lower activity in the liver and is activated to a higher degree by S-adenosylmethionine compared to other species. These results add complexity to the understanding of the role of H2S in aging and call for detailed research on naked mole-rat transsulfuration.

  8. Activation of nuclear factor Κb and induction of inducible nitric oxide synthase by lipid-associated membrane proteins isolated from Mycoplasma penetrans

    Institute of Scientific and Technical Information of China (English)

    曾焱华; 吴移谋; 张文波; 余敏君; 朱翠明; 谭立志

    2004-01-01

    Background This study was designed to investigate the potential pathogenicity of Mycoplasma penetrans (M. penetrans) and its molecular mechanisms responsible for the induction of iNOS gene expression in mouse macrophages stimulated by lipid-associated membrane proteins (LAMPs) prepared from M. penetrans.Methods Mouse macrophages were stimulated with M. penetrans LAMPs to assay the production of nitric oxide (NO). The expression of inducible nitric oxide synthase (iNOS) was detected by RT-PCR and Western blotting. The activity of nuclear factor κB (NF-κB) and the effects of pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB, on the production of nitric oxide and the expression of iNOS were also assessed in mouse macrophages treated with M. penetrans LAMPs by indirect immunofluorescence and Western blotting.Results M. penetrans LAMPs stimulated mouse macrophages to produce nitric oxide in a dose- and time-dependent manner. The mRNA and protein levels of iNOS were also upregulated in response to LAMP stimulation and inhibited by PDTC treatment. M. penetrans LAMPs were found to trigger NF-κB activation, a possible mechanism for the induction of iNOS expression.Conclusion This study demonstrated that M. penetrans may be an important etiological factor of certain diseases due to the ability of M. penetrans LAMPs to stimulate the expression of iNOS, which is probably mediated through the activation of NF-κB.

  9. Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro.

    Science.gov (United States)

    Yu, Zhanyang; Li, Zhaoyu; Liu, Ning; Jizhang, Yunneng; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying

    2015-06-01

    Near infrared radiation (NIR) has been shown to be neuroprotective against neurological diseases including stroke and brain trauma, but the underlying mechanisms remain poorly understood. In the current study we aimed to investigate the hypothesis that NIR may protect neurons by attenuating oxygen-glucose deprivation (OGD)-induced nitric oxide (NO) production and modulating cell survival/death signaling. Primary mouse cortical neurons were subjected to 4 h OGD and NIR was applied at 2 h reoxygenation. OGD significantly increased NO level in primary neurons compared to normal control, which was significantly ameliorated by NIR at 5 and 30 min post-NIR. Neither OGD nor NIR significantly changed neuronal nitric oxide synthase (nNOS) mRNA or total protein levels compared to control groups. However, OGD significantly increased nNOS activity compared to normal control, and this effect was significantly diminished by NIR. Moreover, NIR significantly ameliorated the neuronal death induced by S-Nitroso-N-acetyl-DL-penicillamine (SNAP), a NO donor. Finally, NIR significantly rescued OGD-induced suppression of p-Akt and Bcl-2 expression, and attenuated OGD-induced upregulation of Bax, BAD and caspase-3 activation. These results suggest NIR may protect against OGD at least partially through reducing NO production by down-regulating nNOS activity, and modulating cell survival/death signaling.

  10. Engineering of Recombinant Poplar Deoxy-D-Xylulose-5-Phosphate Synthase (PtDXS) by Site-Directed Mutagenesis Improves Its Activity

    Science.gov (United States)

    Banerjee, Aparajita; Preiser, Alyssa L.

    2016-01-01

    Deoxyxylulose 5-phosphate synthase (DXS), a thiamine diphosphate (ThDP) dependent enzyme, plays a regulatory role in the methylerythritol 4-phosphate (MEP) pathway. Isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the end products of this pathway, inhibit DXS by competing with ThDP. Feedback inhibition of DXS by IDP and DMADP constitutes a significant metabolic regulation of this pathway. The aim of this work was to experimentally test the effect of key residues of recombinant poplar DXS (PtDXS) in binding both ThDP and IDP. This work also described the engineering of PtDXS to improve the enzymatic activity by reducing its inhibition by IDP and DMADP. We have designed and tested modifications of PtDXS in an attempt to reduce inhibition by IDP. This could possibly be valuable by removing a feedback that limits the usefulness of the MEP pathway in biotechnological applications. Both ThDP and IDP use similar interactions for binding at the active site of the enzyme, however, ThDP being a larger molecule has more anchoring sites at the active site of the enzyme as compared to the inhibitors. A predicted enzyme structure was examined to find ligand-enzyme interactions, which are relatively more important for inhibitor-enzyme binding than ThDP-enzyme binding, followed by their modifications so that the binding of the inhibitors can be selectively affected compared to ThDP. Two alanine residues important for binding ThDP and the inhibitors were mutated to glycine. In two of the cases, both the IDP inhibition and the overall activity were increased. In another case, both the IDP inhibition and the overall activity were reduced. This provides proof of concept that it is possible to reduce the feedback from IDP on DXS activity. PMID:27548482

  11. Effects of L-arginine on serum nitric oxide, nitric oxide synthase and mucosal Na+-K+-A TPase and nitric oxide synthase activity in segmental small-bowel autotransplantation model

    Institute of Scientific and Technical Information of China (English)

    Ting-Liang Fu; Wen-Tong Zhang; Qiang-Pu Chen; Yong Gao; Yu-Hong Hu; Dian-Liang Zhang

    2005-01-01

    AIM: To explore a simple method to create intestinal autotransplantation in rats and growing pigs and to investigate the effect of L-arginine supplementation on serum nitric oxide (NO), nitric oxide synthase (NOS) and intestinal mucosal NOS and Na+-K+-ATPase activity during cold ischemia-reperfusion (IR) in growing pigs.METHODS: In adult Wistar rat models of small bowel autotransplantation, a fine tube was inserted into mesenteric artery via the abdominal aorta. The superior mesenteric artery and vein were occluded. Isolated terminal ileum segment was irrigated with Ringer'ssolution at 4 ℃ and preserved in the same solution at 0-4 ℃ for 60 min. Then, the tube was removed and reperfusion was established. In growing pig models, a terminal ileum segment, 50 cm in length, was isolated and its mesenteric artery was irrigated via a needle with lactated Ringer's solution at 4 ℃. The method and period of cold preservation and reperfusion were described above. Ten white outbred pigs were randomly divided into control group and experimental group. L-arginine (150 mg/kg) was continuously infused for 15 min before reperfusion and for 30 min after reperfusion in the experimental group. One, 24, 48, and 72 h after reperfusion, peripheral vein blood was respectively collected for NO and NOS determination. At the same time point, intestinal mucosae were also obtained for NOS and Na+-K+-ATPase activity measurement.RESULTS: In adult rat models, 16 of 20 rats sustained the procedure, three died of hemorrhage shock and one of deep anesthesia. In growing pig models, the viability of small bowel graft remained for 72 h after cold IR in eight of 10 pigs. In experimental group, serum NO level at 1 and 24 h after reperfusion increased significantly when compared with control group at the same time point (152.2±61.4 μmol/L vs60.8±31.6 μmol/L, t= 2.802,P = 0.02<0.05; 82.2±24.0 μmol/L vs 54.0±24.3 μmol/L, t = 2.490, P = 0.04<0.05). Serum NO level increased significantly at 1

  12. Nimbolide, a neem limonoid inhibits Phosphatidyl Inositol-3 Kinase to activate Glycogen Synthase Kinase-3β in a hamster model of oral oncogenesis.

    Science.gov (United States)

    Sophia, Josephraj; Kiran Kishore T, Kranthi; Kowshik, Jaganathan; Mishra, Rajakishore; Nagini, Siddavaram

    2016-02-23

    Glycogen synthase kinase-3β (GSK-3β), a serine/threonine kinase is frequently inactivated by the oncogenic signalling kinases PI3K/Akt and MAPK/ERK in diverse malignancies. The present study was designed to investigate GSK-3β signalling circuits in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model and the therapeutic potential of the neem limonoid nimbolide. Inactivation of GSK-3β by phosphorylation at serine 9 and activation of PI3K/Akt, MAPK/ERK and β-catenin was associated with increased cell proliferation and apoptosis evasion during stepwise evolution of HBP carcinomas. Administration of nimbolide inhibited PI3K/Akt signalling with consequent activation of GSK-3β thereby inducing trafficking of β-catenin away from the nucleus and enhancing the expression of miR-126 and let-7. Molecular docking studies confirmed interaction of nimbolide with PI3K, Akt, ERK and GSK-3β. Furthermore, nimbolide attenuated cell proliferation and induced apoptosis as evidenced by increased p-cyclin D1(Thr286) and pro-apoptotic proteins. The present study has unravelled aberrant phosphorylation as a key determinant for oncogenic signalling and acquisition of cancer hallmarks in the HBP model. The study has also provided mechanistic insights into the chemotherapeutic potential of nimbolide that may be a useful addition to the armamentarium of natural compounds targeting PI3K for oral cancer treatment.

  13. Crystal Structure of Mouse Thymidylate Synthase in Tertiary Complex with dUMP and Raltitrexed Reveals N-Terminus Architecture and Two Different Active Site Conformations

    Directory of Open Access Journals (Sweden)

    Anna Dowierciał

    2014-01-01

    Full Text Available The crystal structure of mouse thymidylate synthase (mTS in complex with substrate dUMP and antifolate inhibitor Raltitrexed is reported. The structure reveals, for the first time in the group of mammalian TS structures, a well-ordered segment of 13 N-terminal amino acids, whose ordered conformation is stabilized due to specific crystal packing. The structure consists of two homodimers, differing in conformation, one being more closed (dimer AB and thus supporting tighter binding of ligands, and the other being more open (dimer CD and thus allowing weaker binding of ligands. This difference indicates an asymmetrical effect of the binding of Raltitrexed to two independent mTS molecules. Conformational changes leading to a ligand-induced closing of the active site cleft are observed by comparing the crystal structures of mTS in three different states along the catalytic pathway: ligand-free, dUMP-bound, and dUMP- and Raltitrexed-bound. Possible interaction routes between hydrophobic residues of the mTS protein N-terminal segment and the active site are also discussed.

  14. Crystal structure of mouse thymidylate synthase in tertiary complex with dUMP and raltitrexed reveals N-terminus architecture and two different active site conformations.

    Science.gov (United States)

    Dowierciał, Anna; Wilk, Piotr; Rypniewski, Wojciech; Rode, Wojciech; Jarmuła, Adam

    2014-01-01

    The crystal structure of mouse thymidylate synthase (mTS) in complex with substrate dUMP and antifolate inhibitor Raltitrexed is reported. The structure reveals, for the first time in the group of mammalian TS structures, a well-ordered segment of 13 N-terminal amino acids, whose ordered conformation is stabilized due to specific crystal packing. The structure consists of two homodimers, differing in conformation, one being more closed (dimer AB) and thus supporting tighter binding of ligands, and the other being more open (dimer CD) and thus allowing weaker binding of ligands. This difference indicates an asymmetrical effect of the binding of Raltitrexed to two independent mTS molecules. Conformational changes leading to a ligand-induced closing of the active site cleft are observed by comparing the crystal structures of mTS in three different states along the catalytic pathway: ligand-free, dUMP-bound, and dUMP- and Raltitrexed-bound. Possible interaction routes between hydrophobic residues of the mTS protein N-terminal segment and the active site are also discussed.

  15. Protective Effects of Kaempferol against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart via Antioxidant Activity and Inhibition of Glycogen Synthase Kinase-3β

    Directory of Open Access Journals (Sweden)

    Mingjie Zhou

    2015-01-01

    Full Text Available Objective. This study aimed to evaluate the protective effect of kaempferol against myocardial ischemia/reperfusion (I/R injury in rats. Method. Left ventricular developed pressure (LVDP and its maximum up/down rate (±dp/dtmax were recorded as myocardial function. Infarct size was detected with 2,3,5-triphenyltetrazolium chloride staining. Cardiomyocyte apoptosis was determined using terminal deoxynucleotidyl nick-end labeling (TUNEL. The levels of creatine kinase (CK, lactate dehydrogenase (LDH, malondialdehyde (MDA, superoxide dismutase (SOD, glutathione/glutathione disulfide (GSH/GSSG ratio, and tumor necrosis factor-alpha (TNF-α were determined using enzyme linked immunosorbent assay (ELISA. Moreover, total glycogen synthase kinase-3β (GSK-3β, phospho-GSK-3β (P-GSK-3β, precaspase-3, cleaved caspase-3, and cytoplasm cytochrome C were assayed using Western blot analysis. Results. Pretreatment with kaempferol significantly improved the recovery of LVDP and ±dp/dtmax, as well as increased the levels of SOD and P-GSK-3β and GSH/GSSG ratio. However, the pretreatment reduced myocardial infarct size and TUNEL-positive cell rate, as well as decreased the levels of cleaved caspase-3, cytoplasm cytochrome C, CK, LDH, MDA, and TNF-α. Conclusion. These results suggested that kaempferol provides cardioprotection via antioxidant activity and inhibition of GSK-3β activity in rats with I/R.

  16. Stimulatory effects of androgens on normal children's bone marrow in culture: effects on BFU-E, CFU-E, and uroporphyrinogen I synthase activity.

    Science.gov (United States)

    Claustres, M; Sultan, C

    1986-01-01

    We studied the effect of natural and synthetic androgens on children's erythropoietic precursor cells in culture. Cultures of normal marrow were carried out according to a miniaturized methylcellulose method in the presence of erythropoietin. We then evaluated the effects of testosterone, nortestosterone, fluoxymesterone and etiocholanolone (10(-9)-10(-6) M) on erythroid colony-forming units (CFU-E) and burst-forming units (BFU-E). Androgen-induced growth of erythroid progenitors was quantified by directly scoring colonies and by a biochemical determination of the uroporphyrinogen I synthase activity (UROS). We observed a significant increase (p less than or equal to 0.05) in the number of CFU-E and BFU-E and in the UROS activity of derived colonies in the presence of androgens (10(-8) or 10(-7)M). This microculture assay could be useful not only to study the effect of androgens on erythroid progenitor cells in culture, but also to predict the best androgenic treatment of anemia in children and adults.

  17. Focal adhesion kinase-mediated activation of glycogen synthase kinase 3β regulates IL-33 receptor internalization and IL-33 signaling.

    Science.gov (United States)

    Zhao, Jing; Wei, Jianxin; Bowser, Rachel K; Traister, Russell S; Fan, Ming-Hui; Zhao, Yutong

    2015-01-15

    IL-33, a relatively new member of the IL-1 cytokine family, plays a crucial role in allergic inflammation and acute lung injury. Long form ST2 (ST2L), the receptor for IL-33, is expressed on immune effector cells and lung epithelia and plays a critical role in triggering inflammation. We have previously shown that ST2L stability is regulated by the ubiquitin-proteasome system; however, its upstream internalization has not been studied. In this study, we demonstrate that glycogen synthase kinase 3β (GSK3β) regulates ST2L internalization and IL-33 signaling. IL-33 treatment induced ST2L internalization, and an effect was attenuated by inhibition or downregulation of GSK3β. GSK3β was found to interact with ST2L on serine residue 446 in response to IL-33 treatment. GSK3β binding site mutant (ST2L(S446A)) and phosphorylation site mutant (ST2L(S442A)) are resistant to IL-33-induced ST2L internalization. We also found that IL-33 activated focal adhesion kinase (FAK). Inhibition of FAK impaired IL-33-induced GSK3β activation and ST2L internalization. Furthermore, inhibition of ST2L internalization enhanced IL-33-induced cytokine release in lung epithelial cells. These results suggest that modulation of the ST2L internalization by FAK/GSK3β might serve as a unique strategy to lessen pulmonary inflammation.

  18. Phylogenetic diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff), detection of polyketide synthase gene and their antagonistic activity analysis.

    Science.gov (United States)

    Wang, Ya; Gao, Bo Liang; Li, Xi Xi; Zhang, Zhi Bin; Yan, Ri Ming; Yang, Hui Lin; Zhu, Du

    2015-11-01

    The biodiversity of plant endophytic fungi is enormous, numerous competent endophytic fungi are capable of providing different forms of fitness benefits to host plants and also could produce a wide array of bioactive natural products, which make them a largely unexplored source of novel compounds with potential bioactivity. In this study, we provided a first insights into revealing the diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff.) from China using rDNA-ITS phylogenetic analysis. Here, the potential of fungi in producing bioactive natural products was estimated based on the beta-ketosynthase detected in the polyketide synthase (PKS) gene cluster and on the bioassay of antagonistic activity against two rice phytopathogens Thanatephorus cucumeris and Xanthomonas oryzae. A total of 229 endophytic fungal strains were validated in 19 genera. Among the 24 representative strains, 13 strains displayedantagonistic activity against the phytopathogens. Furthermore, PKS genes were detected in 9 strains, indicating their potential for synthesising PKS compounds. Our study confirms the phylogenetic diversity of endophytic fungi in O. rufipogon G. and highlights that endophytic fungi are not only promising resources of biocontrol agents against phytopathogens of rice plants, but also of bioactive natural products and defensive secondary metabolites.

  19. Activation of neuronal nitric oxide synthase (nNOS) signaling pathway in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced neurotoxicity.

    Science.gov (United States)

    Jiang, Junkang; Duan, Zhiqing; Nie, Xiaoke; Xi, Hanqing; Li, Aihong; Guo, Aisong; Wu, Qiyun; Jiang, Shengyang; Zhao, Jianya; Chen, Gang

    2014-07-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been reported to cause alterations in cognitive and motor behavior during both development and adulthood. In this study, the neuronal nitric oxide synthase (nNOS) signaling pathway was investigated in differentiated pheochromocytoma (PC12) cells to better understand the mechanisms of TCDD-induced neurotoxicity. TCDD exposure induced a time- and dose-dependent increase in nNOS expression. High levels of nitric oxide (NO) production by nNOS activation induced mitochondrial cytochrome c (Cyt-c) release and down-regulation of Bcl-2. Additionally, TCDD increased the expression of active caspase-3 and significantly led to apoptosis in PC12 cells. However, these effects above could be effectively inhibited by the addition of 7-nitroindazole (7-NI), a highly selective nNOS inhibitor. Moreover, in the brain cortex of Sprague-Dawley (SD) rats, nNOS was also found to have certain relationship with TCDD-induced neuronal apoptosis. Together, our findings establish a role for nNOS as an enhancer of TCDD-induced apoptosis in PC12 cells.

  20. Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase.

    Science.gov (United States)

    Kim, Jong Hun; Auger, Cyril; Kurita, Ikuko; Anselm, Eric; Rivoarilala, Lalainasoa Odile; Lee, Hyong Joo; Lee, Ki Won; Schini-Kerth, Valérie B

    2013-11-30

    This study examined the ability of Aronia melanocarpa (chokeberry) juice, a rich source of polyphenols, to cause NO-mediated endothelium-dependent relaxations of isolated coronary arteries and, if so, to determine the underlying mechanism and the active polyphenols. A. melanocarpa juice caused potent endothelium-dependent relaxations in porcine coronary artery rings. Relaxations to A. melanocarpa juice were minimally affected by inhibition of the formation of vasoactive prostanoids and endothelium-derived hyperpolarizing factor-mediated responses, and markedly reduced by N(ω)-nitro-l-arginine (endothelial NO synthase (eNOS) inhibitor), membrane permeant analogs of superoxide dismutase and catalase, PP2 (Src kinase inhibitor), and wortmannin (PI3-kinase inhibitor). In cultured endothelial cells, A. melanocarpa juice increased the formation of NO as assessed by electron paramagnetic resonance spectroscopy using the spin trap iron(II)diethyldithiocarbamate, and reactive oxygen species using dihydroethidium. These responses were associated with the redox-sensitive phosphorylation of Src, Akt and eNOS. A. melanocarpa juice-derived fractions containing conjugated cyanidins and chlorogenic acids induced the phosphorylation of Akt and eNOS. The present findings indicate that A. melanocarpa juice is a potent stimulator of the endothelial formation of NO in coronary arteries; this effect involves the phosphorylation of eNOS via the redox-sensitive activation of the Src/PI3-kinase/Akt pathway mostly by conjugated cyanidins and chlorogenic acids.

  1. Transcriptional activation and cell cycle block are the keys for 5-fluorouracil induced up-regulation of human thymidylate synthase expression.

    Directory of Open Access Journals (Sweden)

    Alessio Ligabue

    Full Text Available BACKGROUND: 5-fluorouracil, a commonly used chemotherapeutic agent, up-regulates expression of human thymidylate synthase (hTS. Several different regulatory mechanisms have been proposed to mediate this up-regulation in distinct cell lines, but their specific contributions in a single cell line have not been investigated to date. We have established the relative contributions of these previously proposed regulatory mechanisms in the ovarian cancer cell line 2008 and the corresponding cisplatin-resistant and 5-FU cross-resistant-subline C13*. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA polymerase II inhibitor DRB treated cell cultures, we showed that 70-80% of up-regulation of hTS results from transcriptional activation of TYMS mRNA. Moreover, we report that 5-FU compromises the cell cycle by blocking the 2008 and C13* cell lines in the S phase. As previous work has established that TYMS mRNA is synthesized in the S and G(1 phase and hTS is localized in the nuclei during S and G(2-M phase, the observed cell cycle changes are also expected to affect the intracellular regulation of hTS. Our data also suggest that the inhibition of the catalytic activity of hTS and the up-regulation of the hTS protein level are not causally linked, as the inactivated ternary complex, formed by hTS, deoxyuridine monophosphate and methylenetetrahydrofolate, was detected already 3 hours after 5-FU exposure, whereas substantial increase in global TS levels was detected only after 24 hours. CONCLUSIONS/SIGNIFICANCE: Altogether, our data indicate that constitutive TYMS mRNA transcription, cell cycle-induced hTS regulation and hTS enzyme stability are the three key mechanisms responsible for 5-fluorouracil induced up-regulation of human thymidylate synthase expression in the two ovarian cancer cell lines studied. As these three independent regulatory phenomena occur in a precise order, our work provides a feasible rationale for earlier observed synergistic combinations of 5

  2. Comparative study of two box H/ACA ribonucleoprotein pseudouridine-synthases: relation between conformational dynamics of the guide RNA, enzyme assembly and activity.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Fourmann

    Full Text Available Multiple RNA-guided pseudouridine synthases, H/ACA ribonucleoprotein particles (RNPs which contain a guide RNA and four proteins, catalyze site-specific post-transcriptional isomerization of uridines into pseudouridines in substrate RNAs. In archaeal particles, the guide small RNA (sRNA is anchored by the pseudouridine synthase aCBF5 and the ribosomal protein L7Ae. Protein aNOP10 interacts with both aCBF5 and L7Ae. The fourth protein, aGAR1, interacts with aCBF5 and enhances catalytic efficiency. Here, we compared the features of two H/ACA sRNAs, Pab21 and Pab91, from Pyrococcus abyssi. We found that aCBF5 binds much more weakly to Pab91 than to Pab21. Surprisingly, the Pab91 sRNP exhibits a higher catalytic efficiency than the Pab21 sRNP. We thus investigated the molecular basis of the differential efficiencies observed for the assembly and catalytic activity of the two enzymes. For this, we compared profiles of the extent of lead-induced cleavages in these sRNAs during a stepwise reconstitution of the sRNPs, and analyzed the impact of the absence of the aNOP10-L7Ae interaction. Such probing experiments indicated that the sRNAs undergo a series of conformational changes upon RNP assembly. These changes were also evaluated directly by circular dichroism (CD spectroscopy, a tool highly adapted to analyzing RNA conformational dynamics. In addition, our results reveal that the conformation of helix P1 formed at the base of the H/ACA sRNAs is optimized in Pab21 for efficient aCBF5 binding and RNP assembly. Moreover, P1 swapping improved the assembly of the Pab91 sRNP. Nonetheless, efficient aCBF5 binding probably also relies on the pseudouridylation pocket which is not optimized for high activity in the case of Pab21.

  3. Comparative study of two box H/ACA ribonucleoprotein pseudouridine-synthases: relation between conformational dynamics of the guide RNA, enzyme assembly and activity.

    Science.gov (United States)

    Fourmann, Jean-Baptiste; Tillault, Anne-Sophie; Blaud, Magali; Leclerc, Fabrice; Branlant, Christiane; Charpentier, Bruno

    2013-01-01

    Multiple RNA-guided pseudouridine synthases, H/ACA ribonucleoprotein particles (RNPs) which contain a guide RNA and four proteins, catalyze site-specific post-transcriptional isomerization of uridines into pseudouridines in substrate RNAs. In archaeal particles, the guide small RNA (sRNA) is anchored by the pseudouridine synthase aCBF5 and the ribosomal protein L7Ae. Protein aNOP10 interacts with both aCBF5 and L7Ae. The fourth protein, aGAR1, interacts with aCBF5 and enhances catalytic efficiency. Here, we compared the features of two H/ACA sRNAs, Pab21 and Pab91, from Pyrococcus abyssi. We found that aCBF5 binds much more weakly to Pab91 than to Pab21. Surprisingly, the Pab91 sRNP exhibits a higher catalytic efficiency than the Pab21 sRNP. We thus investigated the molecular basis of the differential efficiencies observed for the assembly and catalytic activity of the two enzymes. For this, we compared profiles of the extent of lead-induced cleavages in these sRNAs during a stepwise reconstitution of the sRNPs, and analyzed the impact of the absence of the aNOP10-L7Ae interaction. Such probing experiments indicated that the sRNAs undergo a series of conformational changes upon RNP assembly. These changes were also evaluated directly by circular dichroism (CD) spectroscopy, a tool highly adapted to analyzing RNA conformational dynamics. In addition, our results reveal that the conformation of helix P1 formed at the base of the H/ACA sRNAs is optimized in Pab21 for efficient aCBF5 binding and RNP assembly. Moreover, P1 swapping improved the assembly of the Pab91 sRNP. Nonetheless, efficient aCBF5 binding probably also relies on the pseudouridylation pocket which is not optimized for high activity in the case of Pab21.

  4. Interleukin-4 and interleukin-10 modulate nuclear factor kappaB activity and nitric oxide synthase-2 expression in Theiler's virus-infected brain astrocytes.

    Science.gov (United States)

    Molina-Holgado, Eduardo; Arévalo-Martín, Angel; Castrillo, Antonio; Boscá, Lisardo; Vela, José M; Guaza, Carmen

    2002-06-01

    In brain astrocytes, nuclear factor kappaB (NF-kappaB) is activated by stimuli that produce cellular stress causing the expression of genes involved in defence, including the inducible nitric oxide synthase (NOS-2). Theiler's murine encephalomyelitis virus (TMEV) induces a persistent CNS infection and chronic immune-mediated demyelination, similar to human multiple sclerosis. The cytokines interleukin (IL)-4 and IL-10 inhibit the expression of proinflammatory cytokines, counteracting the inflammatory process. Our study reports that infection of cultured astrocytes with TMEV resulted in a time-dependent phosphorylation of IkappaBalpha, degradation of IkappaBalpha and IkappaBbeta, activation of NF-kappaB and expression of NOS-2. The proteasome inhibitor MG-132 blocked TMEV-induced nitrite accumulation, NOS-2 mRNA expression and phospho-IkappaBalpha degradation, suggesting NF-kappaB-dependent NOS-2 expression. Pretreatment of astrocytes with IL-4 or IL-10 decreased p65 nuclear translocation, NF-kappaB binding activity and NOS-2 transcription. IL-4 and IL-10 caused an accumulation of IkappaBalpha in TMEV-infected astrocytes without affecting IkappaBbeta levels. The IkappaB kinase activity and the degradation rate of both IkappaBs were not modified by either cytokine, suggesting de novo synthesis of IkappaBalpha. Indeed, IL-4 or IL-10 up-regulated IkappaBalpha mRNA levels after TMEV infection. Therefore, the accumulation of IkappaBalpha might impair the translocation of the NF-kappaB to the nucleus, mediating the inhibition of NF-kappaB activity. Overall, these data suggest a novel mechanism of action of IL-4 and IL-10, which abrogates NOS-2 expression in viral-infected glial cells.

  5. Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield.

    Science.gov (United States)

    Baroja-Fernández, Edurne; Muñoz, Francisco José; Montero, Manuel; Etxeberria, Ed; Sesma, María Teresa; Ovecka, Miroslav; Bahaji, Abdellatif; Ezquer, Ignacio; Li, Jun; Prat, Salomé; Pozueta-Romero, Javier

    2009-09-01

    Sucrose synthase (SuSy) is a highly regulated cytosolic enzyme that catalyzes the conversion of sucrose and a nucleoside diphosphate into the corresponding nucleoside diphosphate glucose and fructose. To determine the impact of SuSy activity in starch metabolism and yield in potato (Solanum tuberosum L.) tubers we measured sugar levels and enzyme activities in tubers of SuSy-overexpressing potato plants grown in greenhouse and open field conditions. We also transcriptionally characterized tubers of SuSy-overexpressing and -antisensed potato plants. SuSy-overexpressing tubers exhibited a substantial increase in starch, UDPglucose and ADPglucose content when compared with controls. Tuber dry weight, starch content per plant and total yield of SuSy-overexpressing tubers increased significantly over those of control plants. In contrast, activities of enzymes directly involved in starch metabolism in SuSy-overexpressing tubers were normal when compared with controls. Transcriptomic analyses using POCI arrays and the MapMan software revealed that changes in SuSy activity affect the expression of genes involved in multiple biological processes, but not that of genes directly involved in starch metabolism. These analyses also revealed a reverse correlation between the expressions of acid invertase and SuSy-encoding genes, indicating that the balance between SuSy- and acid invertase-mediated sucrolytic pathways is a major determinant of starch accumulation in potato tubers. Results presented in this work show that SuSy strongly determines the intracellular levels of UDPglucose, ADPglucose and starch, and total yield in potato tubers. We also show that enhancement of SuSy activity represents a useful strategy for increasing starch accumulation and yield in potato tubers.

  6. CCR5-Dependent Activation of mTORC1 Regulates Translation of Inducible NO Synthase and COX-2 during Encephalomyocarditis Virus Infection.

    Science.gov (United States)

    Shaheen, Zachary R; Naatz, Aaron; Corbett, John A

    2015-11-01

    Encephalomyocarditis virus (EMCV) infection of macrophages results in the expression of a number of inflammatory and antiviral genes, including inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. EMCV-induced macrophage activation has been shown to require the presence of CCR5 and the activation of PI3K-dependent signaling cascades. The purpose of this study was to determine the role of PI3K in regulating the macrophage responses to EMCV. We show that PI3K regulates EMCV-stimulated iNOS and COX-2 expression by two independent mechanisms. In response to EMCV infection, Akt is activated and regulates the translation of iNOS and COX-2 through the mammalian target of rapamycin complex (mTORC)1. The activation of mTORC1 during EMCV infection is CCR5-dependent and appears to function in a manner that promotes the translation of iNOS and COX-2. CCR5-dependent mTORC1 activation functions as an antiviral response, as mTORC1 inhibition increases the expression of EMCV polymerase. PI3K also regulates the transcriptional induction of iNOS and COX-2 in response to EMCV infection by a mechanism that is independent of Akt and mTORC1 regulation. These findings indicate that macrophage expression of the inflammatory genes iNOS and COX-2 occurs via PI3K- and Akt-dependent translational control of mTORC1 and PI3K-dependent, Akt-independent transcriptional control.

  7. A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes.

    Science.gov (United States)

    Falara, Vasiliki; Pichersky, Eran; Kanellis, Angelos K

    2010-09-01

    The resin of Cistus creticus subsp. creticus, a plant native to Crete, is rich in labdane-type diterpenes with significant antimicrobial and cytotoxic activities. The full-length cDNA of a putative diterpene synthase was isolated from a C. creticus trichome cDNA library. The deduced amino acid sequence of this protein is highly similar (59%-70% identical) to type B diterpene synthases from other angiosperm species that catalyze a protonation-initiated cyclization. The affinity-purified recombinant Escherichia coli-expressed protein used geranylgeranyl diphosphate as substrate and catalyzed the formation of copal-8-ol diphosphate. This diterpene synthase, therefore, was named CcCLS (for C. creticus copal-8-ol diphosphate synthase). Copal-8-ol diphosphate is likely to be an intermediate in the biosynthesis of the oxygen-containing labdane-type diterpenes that are abundant in the resin of this plant. RNA gel-blot analysis revealed that CcCLS is preferentially expressed in the trichomes, with higher transcript levels found in glands on young leaves than on fully expanded leaves, while CcCLS transcript levels increased after mechanical wounding. Chemical analyses revealed that labdane-type diterpene production followed a similar pattern, with higher concentrations in trichomes of young leaves and increased accumulation upon wounding.

  8. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages

    OpenAIRE

    Belkheir, Asma K.; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity ...

  9. Structural basis for morpheein-type allosteric regulation of Escherichia coli glucosamine-6-phosphate synthase: equilibrium between inactive hexamer and active dimer.

    Science.gov (United States)

    Mouilleron, Stéphane; Badet-Denisot, Marie-Ange; Pecqueur, Ludovic; Madiona, Karine; Assrir, Nadine; Badet, Bernard; Golinelli-Pimpaneau, Béatrice

    2012-10-01

    The amino-terminal cysteine of glucosamine-6-phosphate synthase (GlmS) acts as a nucleophile to release and transfer ammonia from glutamine to fructose 6-phosphate through a channel. The crystal structure of the C1A mutant of Escherichia coli GlmS, solved at 2.5 Å resolution, is organized as a hexamer, where the glutaminase domains adopt an inactive conformation. Although the wild-type enzyme is active as a dimer, size exclusion chromatography, dynamic and quasi-elastic light scattering, native polyacrylamide gel electrophoresis, and ultracentrifugation data show that the dimer is in equilibrium with a hexameric state, in vitro and in cellulo. The previously determined structures of the wild-type enzyme, alone or in complex with glucosamine 6-phosphate, are also consistent with a hexameric assembly that is catalytically inactive because the ammonia channel is not formed. The shift of the equilibrium toward the hexameric form in the presence of cyclic glucosamine 6-phosphate, together with the decrease of the specific activity with increasing enzyme concentration, strongly supports product inhibition through hexamer stabilization. Altogether, our data allow us to propose a morpheein model, in which the active dimer can rearrange into a transiently stable form, which has the propensity to form an inactive hexamer. This would account for a physiologically relevant allosteric regulation of E. coli GlmS. Finally, in addition to cyclic glucose 6-phosphate bound at the active site, the hexameric organization of E. coli GlmS enables the binding of another linear sugar molecule. Targeting this sugar-binding site to stabilize the inactive hexameric state is therefore suggested for the development of specific antibacterial inhibitors.

  10. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity.

    Science.gov (United States)

    Hopperton, Kathryn E; Duncan, Robin E; Bazinet, Richard P; Archer, Michael C

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from (14)C-labeled acetate to those supplied exogenously as (14)C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2-3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells.

  11. Study on structure-activity relationship of mutation-dependent herbicide resistance acetohydroxyacid synthase through 3D-QSAR and mutation

    Institute of Scientific and Technical Information of China (English)

    YU ZhiHong; NIU CongWei; BAN ShuRong; WEN Xin; XI Zhen

    2007-01-01

    Seventy-four sulfonylureas were synthesized and tested for their inhibitory activity against the whole enzyme of E. Coli acetohydroxyacid synthase (AHAS, EC 2.2.1.6) isoenzyme Ⅱ, and 3D-QSAR analyses were performed based on these inhibitory activities. The binding conformation of chlorimuron-ethyl, a commercial herbicide of AHAS, in the crystal structure of AHAS complex was extracted and used as template to build the initial three-dimensional structure of other sulfonylureas, and then all structures were fully geometry optimized. After systematic optimization of the alignment rule, molecular orientation, grid space and attenuation factor, two satisfactory models with excellent performances (CoMFA: q2 = 0.735, r2 = 0.954, n = 7, r 2pred = 0.832; CoMSIA: q2 = 0.721, r2 = 0.913, n = 8, r 2pred = 0.844) were established. By mapping the 3D contour maps of CoMFA and CoMSIA models into the possible inhibitory active site in the crystal structure of catalytic subunit of yeast AHAS, a plausible binding model for AHAS, with best fit QSAR in the literature so far, was proposed. Moreover, the results of 3D-QSAR were further utilized to interpret resistance of site-directed mutants. A relative activity index (RAI) for AHAS enzyme mutant was defined for the first time to relate the 3D-QSAR and resistance of mutants. This study, for the first time, demonstrated that combination of 3D-QSAR and enzyme mutation can be used to decipher the molecular basis of ligand-receptor interaction mechanism. This study refined our understanding of the ligand-receptor interaction and resistance mechanism in AHAS-sulfonylurea system, and provided basis for designing new potent herbicides to combat the herbicide resistance.

  12. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    Science.gov (United States)

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  13. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    Science.gov (United States)

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  14. Potential of Inducible Nitric Oxide Synthase as a Therapeutic Target for Allergen-Induced Airway Hyperresponsiveness: A Critical Connection to Nitric Oxide Levels and PARP Activity

    Directory of Open Access Journals (Sweden)

    Salome’ V. Ibba

    2016-01-01

    Full Text Available Although expression of inducible NO synthase (iNOS in the lungs of asthmatics and associated nitrosative damage are established, iNOS failed as a therapeutic target for blocking airway hyperresponsiveness (AHR and inflammation in asthmatics. This dichotomy calls for better strategies with which the enzyme is adequately targeted. Here, we confirm iNOS expression in the asthmatic lung with concomitant protein nitration and poly(ADP-ribose polymerase (PARP activation. We show, for the first time, that iNOS is highly expressed in peripheral blood mononuclear cells (PBMCs of asthmatics with uncontrolled disease, which did not correspond to protein nitration. Selective iNOS inhibition with L-NIL protected against AHR upon acute, but not chronic, exposure to ovalbumin or house dust mite (HDM in mice. Supplementation of NO by nitrite administration significantly blocked AHR in chronically HDM-exposed mice that were treated with L-NIL. Protection against chronic HDM exposure-induced AHR by olaparib-mediated PARP inhibition may be associated with the partial but not the complete blockade of iNOS expression. Indeed, L-NIL administration prevented olaparib-mediated protection against AHR in chronically HDM-exposed mice. Our study suggests that the amount of iNOS and NO are critical determinants in the modulation of AHR by selective iNOS inhibitors and renews the potential of iNOS as a therapeutic target for asthma.

  15. TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection.

    Science.gov (United States)

    Schleicher, Ulrike; Paduch, Katrin; Debus, Andrea; Obermeyer, Stephanie; König, Till; Kling, Jessica C; Ribechini, Eliana; Dudziak, Diana; Mougiakakos, Dimitrios; Murray, Peter J; Ostuni, Renato; Körner, Heinrich; Bogdan, Christian

    2016-05-01

    Neutralization or deletion of tumor necrosis factor (TNF) causes loss of control of intracellular pathogens in mice and humans, but the underlying mechanisms are incompletely understood. Here, we found that TNF antagonized alternative activation of macrophages and dendritic cells by IL-4. TNF inhibited IL-4-induced arginase 1 (Arg1) expression by decreasing histone acetylation, without affecting STAT6 phosphorylation and nuclear translocation. In Leishmania major-infected C57BL/6 wild-type mice, type 2 nitric oxide (NO) synthase (NOS2) was detected in inflammatory dendritic cells or macrophages, some of which co-expressed Arg1. In TNF-deficient mice, Arg1 was hyperexpressed, causing an impaired production of NO in situ. A similar phenotype was seen in L. major-infected BALB/c mice. Arg1 deletion in hematopoietic cells protected these mice from an otherwise lethal disease, although their disease-mediating T cell response (Th2, Treg) was maintained. Thus, deletion or TNF-mediated restriction of Arg1 unleashes the production of NO by NOS2, which is critical for pathogen control.

  16. Glycogen synthase kinase 3β dictates podocyte motility and focal adhesion turnover by modulating paxillin activity: implications for the protective effect of low-dose lithium in podocytopathy.

    Science.gov (United States)

    Xu, Weiwei; Ge, Yan; Liu, Zhihong; Gong, Rujun

    2014-10-01

    Aberrant focal adhesion turnover is centrally involved in podocyte actin cytoskeleton disorganization and foot process effacement. The structural and dynamic integrity of focal adhesions is orchestrated by multiple cell signaling molecules, including glycogen synthase kinase 3β (GSK3β), a multitasking kinase lately identified as a mediator of kidney injury. However, the role of GSK3β in podocytopathy remains obscure. In doxorubicin (Adriamycin)-injured podocytes, lithium, a GSK3β inhibitor and neuroprotective mood stabilizer, obliterated the accelerated focal adhesion turnover, rectified podocyte hypermotility, and restored actin cytoskeleton integrity. Mechanistically, lithium counteracted the doxorubicin-elicited GSK3β overactivity and the hyperphosphorylation and overactivation of paxillin, a focal adhesion-associated adaptor protein. Moreover, forced expression of a dominant negative kinase dead mutant of GSK3β highly mimicked, whereas ectopic expression of a constitutively active GSK3β mutant abolished, the effect of lithium in doxorubicin-injured podocytes, suggesting that the effect of lithium is mediated, at least in part, through inhibition of GSK3β. Furthermore, paxillin interacted with GSK3β and served as its substrate. In mice with doxorubicin nephropathy, a single low dose of lithium ameliorated proteinuria and glomerulosclerosis. Consistently, lithium therapy abrogated GSK3β overactivity, blunted paxillin hyperphosphorylation, and reinstated actin cytoskeleton integrity in glomeruli associated with an early attenuation of podocyte foot process effacement. Thus, GSK3β-modulated focal adhesion dynamics might serve as a novel therapeutic target for podocytopathy.

  17. TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection

    Directory of Open Access Journals (Sweden)

    Ulrike Schleicher

    2016-05-01

    Full Text Available Neutralization or deletion of tumor necrosis factor (TNF causes loss of control of intracellular pathogens in mice and humans, but the underlying mechanisms are incompletely understood. Here, we found that TNF antagonized alternative activation of macrophages and dendritic cells by IL-4. TNF inhibited IL-4-induced arginase 1 (Arg1 expression by decreasing histone acetylation, without affecting STAT6 phosphorylation and nuclear translocation. In Leishmania major-infected C57BL/6 wild-type mice, type 2 nitric oxide (NO synthase (NOS2 was detected in inflammatory dendritic cells or macrophages, some of which co-expressed Arg1. In TNF-deficient mice, Arg1 was hyperexpressed, causing an impaired production of NO in situ. A similar phenotype was seen in L. major-infected BALB/c mice. Arg1 deletion in hematopoietic cells protected these mice from an otherwise lethal disease, although their disease-mediating T cell response (Th2, Treg was maintained. Thus, deletion or TNF-mediated restriction of Arg1 unleashes the production of NO by NOS2, which is critical for pathogen control.

  18. In vitro activity of a new oral glucan synthase inhibitor (MK-3118) tested against Aspergillus spp. by CLSI and EUCAST broth microdilution methods.

    Science.gov (United States)

    Pfaller, Michael A; Messer, Shawn A; Motyl, Mary R; Jones, Ronald N; Castanheira, Mariana

    2013-02-01

    MK-3118, a glucan synthase inhibitor derived from enfumafungin, and comparator agents were tested against 71 Aspergillus spp., including itraconazole-resistant strains (MIC, ≥ 4 μg/ml), using CLSI and EUCAST reference broth microdilution methods. The CLSI 90% minimum effective concentration (MEC(90))/MIC(90) values (μg/ml) for MK-3118, amphotericin B, and caspofungin, respectively, were as follows: 0.12, 2, and 0.03 for Aspergillus flavus species complex (SC); 0.25, 2, and 0.06 for Aspergillus fumigatus SC; 0.12, 2, and 0.06 for Aspergillus terreus SC; and 0.06, 1, and 0.03 for Aspergillus niger SC. Essential agreement between the values found by CLSI and EUCAST (± 2 log(2) dilution steps) was 94.3%. MK-3118 was determined to be a potent agent regardless of the in vitro method applied, with excellent activity against contemporary wild-type and itraconazole-resistant strains of Aspergillus spp.

  19. Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt

    Directory of Open Access Journals (Sweden)

    Hunter Randy

    2008-01-01

    Full Text Available Abstract Background Previous studies have suggested that peroxisome proliferator activated receptor-gamma (PPAR-γ-mediated neuroprotection involves inhibition of microglial activation and decreased expression and activity of inducible nitric oxide synthase (iNOS; however, the underlying molecular mechanisms have not yet been well established. In the present study we explored: (1 the effect of the PPAR-γ agonist pioglitazone on lipopolysaccharide (LPS-induced iNOS activity and nitric oxide (NO generation by microglia; (2 the differential role of p38 mitogen-activated protein kinase (p38 MAPK, c-Jun NH(2-terminal kinase (JNK, and phosphoinositide 3-kinase (PI3K on LPS-induced NO generation; and (3 the regulation of p38 MAPK, JNK, and PI3K by pioglitazone. Methods Mesencephalic neuron-microglia mixed cultures, and microglia-enriched cultures were treated with pioglitazone and/or LPS. The protein levels of iNOS, p38 MAPK, JNK, PPAR-γ, PI3K, and protein kinase B (Akt were measured by western blot. Different specific inhibitors of iNOS, p38MAPK, JNK, PI3K, and Akt were used in our experiment, and NO generation was measured using a nitrite oxide assay kit. Tyrosine hydroxylase (TH-positive neurons were counted in mesencephalic neuron-microglia mixed cultures. Results Our results showed that pioglitazone inhibits LPS-induced iNOS expression and NO generation, and inhibition of iNOS is sufficient to protect dopaminergic neurons against LPS insult. In addition, inhibition of p38 MAPK, but not JNK, prevented LPS-induced NO generation. Further, and of interest, pioglitazone inhibited LPS-induced phosphorylation of p38 MAPK. Wortmannin, a specific PI3K inhibitor, enhanced p38 MAPK phosphorylation upon LPS stimulation of microglia. Elevations of phosphorylated PPAR-γ, PI3K, and Akt levels were observed with pioglitazone treatment, and inhibition of PI3K activity enhanced LPS-induced NO production. Furthermore, wortmannin prevented the inhibitory effect of

  20. Nickel electrodeposition from novel citrate bath

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new type of electroplating bath suitable for nickel electrodeposition was developed. Trisodium citrate was used as a complexing agent and a buffer in the bath. The buffering capacity between trisodium citrate and boric acid were compared. The effects were investigated under different conditions of bath composition, current density, pH and temperature on the potentiodynamic cathodic polarization curves, cathodic current efficiency and throwing index, as well as the electrical conductivity of these baths. The optimum conditions for producing sound and satisfactory nickel deposits were: NiSO4·6H2O 350 g/L, NiC12·6H2O 45 g/L and Na3C6H5O7 30 g/L at pH=4 and 55 ℃. The surface morphology of the as-plated Ni deposit was examined by SEM. The results reveal that the nickel deposition obtained from the optimum conditions are composed of compact, non-porous fine grains covering the entire surface. X-ray analysis shows that nickel deposits obtained from the citrate bath have a fine crystal structure compared with deposits from the Watts bath.

  1. Asparagus IRX9, IRX10, and IRX14A Are Components of an Active Xylan Backbone Synthase Complex that Forms in the Golgi Apparatus.

    Science.gov (United States)

    Zeng, Wei; Lampugnani, Edwin R; Picard, Kelsey L; Song, Lili; Wu, Ai-Min; Farion, Isabela M; Zhao, Jia; Ford, Kris; Doblin, Monika S; Bacic, Antony

    2016-05-01

    Heteroxylans are abundant components of plant cell walls and provide important raw materials for the food, pharmaceutical, and biofuel industries. A number of studies in Arabidopsis (Arabidopsis thaliana) have suggested that the IRREGULAR XYLEM9 (IRX9), IRX10, and IRX14 proteins, as well as their homologs, are involved in xylan synthesis via a Golgi-localized complex termed the xylan synthase complex (XSC). However, both the biochemical and cell biological research lags the genetic and molecular evidence. In this study, we characterized garden asparagus (Asparagus officinalis) stem xylan biosynthesis genes (AoIRX9, AoIRX9L, AoIRX10, AoIRX14A, and AoIRX14B) by heterologous expression in Nicotiana benthamiana We reconstituted and partially purified an active XSC and showed that three proteins, AoIRX9, AoIRX10, and AoIRX14A, are necessary for xylan xylosyltranferase activity in planta. To better understand the XSC structure and its composition, we carried out coimmunoprecipitation and bimolecular fluorescence complementation analysis to show the molecular interactions between these three IRX proteins. Using a site-directed mutagenesis approach, we showed that the DxD motifs of AoIRX10 and AoIRX14A are crucial for the catalytic activity. These data provide, to our knowledge, the first lines of biochemical and cell biological evidence that AoIRX9, AoIRX10, and AoIRX14A are core components of a Golgi-localized XSC, each with distinct roles for effective heteroxylan biosynthesis.

  2. Identification of 2-aminothiazole-4-carboxylate derivatives active against Mycobacterium tuberculosis H37Rv and the beta-ketoacyl-ACP synthase mtFabH.

    Directory of Open Access Journals (Sweden)

    Qosay Al-Balas

    Full Text Available BACKGROUND: Tuberculosis (TB is a disease which kills two million people every year and infects approximately over one-third of the world's population. The difficulty in managing tuberculosis is the prolonged treatment duration, the emergence of drug resistance and co-infection with HIV/AIDS. Tuberculosis control requires new drugs that act at novel drug targets to help combat resistant forms of Mycobacterium tuberculosis and reduce treatment duration. METHODOLOGY/PRINCIPAL FINDINGS: Our approach was to modify the naturally occurring and synthetically challenging antibiotic thiolactomycin (TLM to the more tractable 2-aminothiazole-4-carboxylate scaffold to generate compounds that mimic TLM's novel mode of action. We report here the identification of a series of compounds possessing excellent activity against M. tuberculosis H(37R(v and, dissociatively, against the beta-ketoacyl synthase enzyme mtFabH which is targeted by TLM. Specifically, methyl 2-amino-5-benzylthiazole-4-carboxylate was found to inhibit M. tuberculosis H(37R(v with an MIC of 0.06 microg/ml (240 nM, but showed no activity against mtFabH, whereas methyl 2-(2-bromoacetamido-5-(3-chlorophenylthiazole-4-carboxylate inhibited mtFabH with an IC(50 of 0.95+/-0.05 microg/ml (2.43+/-0.13 microM but was not active against the whole cell organism. CONCLUSIONS/SIGNIFICANCE: These findings clearly identify the 2-aminothiazole-4-carboxylate scaffold as a promising new template towards the discovery of a new class of anti-tubercular agents.

  3. Changes in phytochemical synthesis, chalcone synthase activity and pharmaceutical qualities of sabah snake grass (Clinacanthus nutans L.) in relation to plant age.

    Science.gov (United States)

    Ghasemzadeh, Ali; Nasiri, Alireza; Jaafar, Hawa Z E; Baghdadi, Ali; Ahmad, Izham

    2014-10-30

    In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old). The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74) was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF) production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW]) and total phenolic (TP) (18.21 mg/g DW) were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW) and gallic acid (5.96 mg/g DW) were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50) values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP) assay showed a higher activity in 6-month-old buds (488 μM of Fe(II)/g) than in 1-year-old buds (453 μM of Fe(II)/g), in contrast to the DPPH result. Significant correlations (p < 0.05) were observed between CHS enzyme activity and FRAP activity, TF, catechin, and kaempferol content. Extracts of 6-month-old bud exhibited a significant in vitro anticancer activity against

  4. Changes in Phytochemical Synthesis, Chalcone Synthase Activity and Pharmaceutical Qualities of Sabah Snake Grass (Clinacanthus nutans L. in Relation to Plant Age

    Directory of Open Access Journals (Sweden)

    Ali Ghasemzadeh

    2014-10-01

    Full Text Available In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old. The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74 was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW] and total phenolic (TP (18.21 mg/g DW were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW and gallic acid (5.96 mg/g DW were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50 values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP assay showed a higher activity in 6-month-old buds (488 μM of Fe(II/g than in 1-year-old buds (453 μM of Fe(II/g, in contrast to the DPPH result. Significant correlations (p < 0.05 were observed between CHS enzyme activity and FRAP activity, TF, catechin, and kaempferol content. Extracts of 6-month-old bud exhibited a significant in vitro anticancer activity

  5. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    Science.gov (United States)

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms.

  6. Dietary citrate treatment of polycystic kidney disease in rats.

    Science.gov (United States)

    Tanner, George A; Tanner, Judith A

    2003-01-01

    Progression of autosomal-dominant polycystic kidney disease (ADPKD) in the heterozygous male Han:SPRD rat is dramatically slowed by ingestion of potassium or sodium citrate. This study examined the efficacy of delayed therapy with sodium citrate, the effect of sodium citrate therapy on kidney cortex levels of transforming growth factor-beta (TGF-beta), and the response to calcium citrate ingestion. Rats were provided with citrate salts in their food, and renal clearance, blood pressure, blood chemistry, and survival determinations were made. Sodium citrate therapy was most effective when started at age 1 month, and delay of therapy until age 3 months produced no benefit. Kidney cortex TGF-beta levels were elevated in 3- and 8-month-old rats with ADPKD, but not in 6-week-old rats. Sodium citrate treatment, started at age 1 month, lowered TGF-beta levels to normal in 3-month-old rats, but this is probably not the primary mechanism of citrate's beneficial effect. Calcium citrate had only a modest effect in preserving glomerular filtration rate. Effective treatment of ADPKD in this rat model requires early administration of a readily absorbed alkalinizing citrate salt. Existing data on ADPKD patients on vegetarian diets or with kidney stones should be studied in light of these findings.

  7. Glycogen synthase kinase 3 β activity is required for hBora/Aurora A-mediated mitotic entry.

    Science.gov (United States)

    Lee, Yu-Cheng; Liao, Po-Chi; Liou, Yih-Cherng; Hsiao, Michael; Huang, Chi-Ying; Lu, Pei-Jung

    2013-03-15

    The synthesis and degradation of hBora is important for the regulation of mitotic entry and exist. In G 2 phase, hBora can complex with Aurora A to activate Plk1 and control mitotic entry. However, whether the post-translational modification of hBora is relevant to the mitotic entry still unclear. Here, we used the LC-MS/MS phosphopeptide mapping assay to identify 13 in vivo hBora phosphorylation sites and characterized that GSK3β can interact with hBora and phosphorylate hBora at Ser274 and Ser278. Pharmacological inhibitors of GSK3β reduced the retarded migrating band of hBora in cells and diminished the phosphorylation of hBora by in vitro kinase assay. Moreover, as well as in GSK3β activity-inhibited cells, specific knockdown of GSK3β by shRNA and S274A/S278 hBora mutant-expressing cells also exhibited the reduced Plk1 activation and a delay in mitotic entry. It suggests that GSK3β activity is required for hBora-mediated mitotic entry through Ser274 and Ser278 phosphorylation.

  8. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W. (UIUC); (Iowa State); (Penn)

    2011-09-20

    The structure of ent-copalyl diphosphate synthase reveals three {alpha}-helical domains ({alpha}, {beta} and {gamma}), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the {beta}{gamma} domains in ent-copalyl diphosphate synthase but exclusively in the {alpha} domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.

  9. The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb(2+) by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity.

    Science.gov (United States)

    Estrella-Gómez, N; Mendoza-Cózatl, D; Moreno-Sánchez, R; González-Mendoza, D; Zapata-Pérez, O; Martínez-Hernández, A; Santamaría, J M

    2009-03-01

    The relationship between accumulation of Pb(2+) and the activation of chelation and metal sequestration mechanisms mediated by phytochelatins (PC) was analyzed in the Pb(2+) hyperaccumulator aquatic fern Salvinia minima, after exposure to 40microM Pb(NO(3))(2). The tissue accumulation pattern of lead and the phytochelatin biosynthesis responses were analyzed in both, S. minima submerged root-like modified fronds (here named "roots"), and in its aerial leaf-like fronds ("leaves"). S. minima roots accumulated a significantly higher concentrations of Pb(+2) than leaves did. Accumulation of Pb(2+) in roots was bi-phasic with a first uptake phase reached after 3h exposure and a second higher uptake phase reached after 24h exposure. In leaves, a single delayed, smaller uptake phase was attained only after 9h of exposure. In roots lead accumulation correlated with an increased phytochelatin synthase (PCS) activity and an enhanced PC production. A higher proportion of polymerized PC(4) was observed in both tissues of exposed S. minima plants relative to unexposed ones, although a higher concentration of PC(4) was found in roots than in leaves. PCS activity and Pb(2+) accumulation was also higher in roots than in leaves. The expression levels of the S. minima PCS gene (SmPCS), in response to Pb(2+) treatment, were also evaluated. In S. minima leaves, the accumulation of Pb(2+) correlated with a marked increase in expression of SmPCS, suggesting a transcriptional regulation in the PCS activation and PC accumulation in this S. minima tissue. However, in roots, the basal expression of SmPCS was down-regulated after Pb(2+) treatment. This fact did not correlate with the later but strong increase in both, PCS activity and PC production; suggesting that the PC biosynthesis activation in S. minima roots occurs only by post-translational activation of PCS. Taken together, our data suggest that the accumulation of PC in S. minima is a direct response to Pb(2+) accumulation, and

  10. Plasma membrane H-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin.

    Science.gov (United States)

    Tomasi, Nicola; Kretzschmar, Tobias; Espen, Luca; Weisskopf, Laure; Fuglsang, Anja Thoe; Palmgren, Michael Gjedde; Neumann, Günter; Varanini, Zeno; Pinton, Roberto; Martinoia, Enrico; Cesco, Stefano

    2009-05-01

    White lupin (Lupinus albus L.) is able to grow on soils with sparingly available phosphate (P) by producing specialized structures called cluster roots. To mobilize sparingly soluble P forms in soils, cluster roots release substantial amounts of carboxylates and concomitantly acidify the rhizosphere. The relationship between acidification and carboxylate exudation is still largely unknown. In the present work, we studied the linkage between organic acids (malate and citrate) and proton exudations in cluster roots of P-deficient white lupin. After the illumination started, citrate exudation increased transiently and reached a maximum after 5 h. This effect was accompanied by a strong acidification of the external medium and alkalinization of the cytosol, as evidenced by in vivo nuclear magnetic resonance (NMR) analysis. Fusicoccin, an activator of the plasma membrane (PM) H+-ATPase, stimulated citrate exudation, whereas vanadate, an inhibitor of the H+-ATPase, reduced citrate exudation. The burst of citrate exudation was associated with an increase in expression of the LHA1 PM H+-ATPase gene, an increased amount of H+-ATPase protein, a shift in pH optimum of the enzyme and post-translational modification of an H+-ATPase protein involving binding of activating 14-3-3 protein. Taken together, our results indicate a close link in cluster roots of P-deficient white lupin between the burst of citrate exudation and PM H+-ATPase-catalysed proton efflux.

  11. The Effect of Ethylene and Propylene Pulses on Respiration, Ripening Advancement, Ethylene-Forming Enzyme, and 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Avocado Fruit.

    Science.gov (United States)

    Starrett, D A; Laties, G G

    1991-03-01

    When early-season avocado fruit (Persea americana Mill. cv Hass) were treated with ethylene or propylene for 24 hours immediately on picking, the time to the onset of the respiratory climacteric, i.e. the lag period, remained unchanged compared with that in untreated fruit. When fruit were pulsed 24 hours after picking, on the other hand, the lag period was shortened. In both cases, however, a 24 hour ethylene or propylene pulse induced a transient increase in respiration, called the pulse-peak, unaccompanied by ethylene production (IL Eaks [1980] Am Soc Hortic Sci 105: 744-747). The pulse also caused a sharp rise in ethylene-forming enzyme activity in both cases, without any increase in the low level of 1-aminocyclopropane-1-carboxylic acid synthase activity. Thus, the shortening of the lag period by an ethylene pulse is not due to an effect of ethylene on either of the two key enzymes in ethylene biosynthesis. A comparison of two-dimensional polyacrylamide gel electrophoresis polypeptide profiles of in vitro translation products of poly(A(+)) mRNA from control and ethylene-pulsed fruit showed both up- and down-regulation in response to ethylene pulsing of a number of genes expressed during the ripening syndrome. It is proposed that the pulse-peak or its underlying events reflect an intrinsic element in the ripening process that in late-season or continuously ethylene-treated fruit may be subsumed in the overall climacteric response. A computerized system that allows continuous readout of multiple samples has established that the continued presentation of exogeneous ethylene or propylene to preclimacteric fruit elicits a dual respiration response comprising the merged pulse-peak and climacteric peak in series. The sequential removal of cores from a single fruit has proven an unsatisfactory sampling procedure inasmuch as coring induces wound ethylene, evokes a positive respiration response, and advances ripening.

  12. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  13. Studies on sildenafil citrate (Viagra) interaction with DNA using electrochemical DNA biosensor.

    Science.gov (United States)

    Rauf, Sakandar; Nawaz, Haq; Akhtar, Kalsoom; Ghauri, Muhammad A; Khalid, Ahmad M

    2007-05-15

    The interaction of sildenafil citrate (Viagra) with DNA was studied by using an electrochemical DNA biosensor. The binding mechanism of sildenafil citrate was elucidated by using constant current potentiometry and differential pulse voltammetry at DNA-modified glassy carbon electrode. The decrease in the guanine oxidation peak area or peak current was used as an indicator for the interaction in 0.2M acetate buffer (pH 5). The binding constant (K) values obtained were 2.01+/-0.05 x 10(5) and 1.97+/-0.01 x 10(5)M(-1) with constant current potentiometry and differential pulse voltammetry, respectively. A linear dependence of the guanine peak area or peak current was observed within the range of 1-40 microM sildenafil citrate with slope=-2.74 x 10(-4)s/microM, r=0.989 and slope=-2.78 x 10(-3)microA/microM, r=0.995 by using constant current potentiometry and differential pulse voltammetry, respectively. Additionally, binding constant values for sildenafil citrate-DNA interaction were determined for the pH range of 4-8 and in biological fluids (serum and urine) at pH 5. The influence of sodium and calcium ions was also studied to elucidate the mechanism of sildenafil citrate-DNA interaction under different solution conditions. The present study may prove to be helpful in extending our understanding of the anticancer activity of sildenafil citrate from cellular to DNA level.

  14. High-performance liquid chromatography method with radiochemical detection for measurement of nitric oxide synthase, arginase, and arginine decarboxylase activities

    DEFF Research Database (Denmark)

    Volke, A; Wegener, Gregers; Vasar, E

    2006-01-01

    regulate NOS activity. We aimed to develop a HPLC-based method to measure simultaneously the products of these three enzymes. Traditionally, the separation of amino acids and related compounds with HPLC has been carried out with precolumn derivatization and reverse phase chromatography. We describe here...... a simple and fast HPLC method with radiochemical detection to separate radiolabeled L-arginine, L-citrulline, L-ornithine, and agmatine. 3H-labeled L-arginine, L-citrulline, agmatine, and 14C-labeled L-citrulline were used as standards. These compounds were separated in the normal phase column (Allure...

  15. Critical aspartic acid residues in pseudouridine synthases.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  16. Regional age-related changes in neuronal nitric oxide synthase (nNOS, messenger RNA levels and activity in SAMP8 brain

    Directory of Open Access Journals (Sweden)

    Guidon Gérard

    2006-12-01

    Full Text Available Abstract Background Nitric oxide (NO is a multifunctional molecule synthesized by three isozymes of the NO synthase (NOSs acting as a messenger/modulator and/or a potential neurotoxin. In rodents, the role of NOSs in sleep processes and throughout aging is now well established. For example, sleep parameters are highly deteriorated in senescence accelerated-prone 8 (SAMP8 mice, a useful animal model to study aging or age-associated disorders, while the inducible form of NOS (iNOS is down-regulated within the cortex and the sleep-structures of the brainstem. Evidence is now increasing for a role of iNOS and resulting oxidative stress but not for the constitutive expressed isozyme (nNOS. To better understand the role of nNOS in the behavioural impairments observed in SAMP8 versus SAMR1 (control animals, we evaluated age-related variations occurring in the nNOS expression and activity and nitrites/nitrates (NOx- levels, in three brain areas (n = 7 animals in each group. Calibrated reverse transcriptase (RT and real-time polymerase chain reaction (PCR and biochemical procedures were used. Results We found that the levels of nNOS mRNA decreased in the cortex and the hippocampus of 8- vs 2-month-old animals followed by an increase in 12-vs 8-month-old animals in both strains. In the brainstem, levels of nNOS mRNA decreased in an age-dependent manner in SAMP8, but not in SAMR1. Regional age-related changes were also observed in nNOS activity. Moreover, nNOS activity in hippocampus was found lower in 8-month-old SAMP8 than in SAMR1, while in the cortex and the brainstem, nNOS activities increased at 8 months and afterward decreased with age in SAMP8 and SAMR1. NOx- levels showed profiles similar to nNOS activities in the cortex and the brainstem but were undetectable in the hippocampus of SAMP8 and SAMR1. Finally, NOx- levels were higher in the cortex of 8 month-old SAMP8 than in age-matched SAMR1. Conclusion Concomitant variations occurring in NO levels

  17. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  18. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  19. Activation of endothelial nitric oxide synthase by dietary isoflavones: role of NO in Nrf2-mediated antioxidant gene expression.

    Science.gov (United States)

    Mann, Giovanni E; Rowlands, David J; Li, Francois Y L; de Winter, Patricia; Siow, Richard C M

    2007-07-15

    The endothelium plays a key role in the maintenance of vascular homeostasis, and increased oxidative stress in vascular disease leads to reduced nitric oxide bioavailability and impaired endothelium-dependent relaxation of resistance vessels. Although epidemiological evidence suggests that diets containing high amounts of natural antioxidants afford protection against coronary heart disease (CHD), antioxidant supplementation trials have largely reported only marginal health benefits. There is controversy concerning the cardiovascular benefits of prolonged estrogen/progestin or soy isoflavone therapy for postmenopausal women and patients with an increased risk of CHD. Research on the potential health benefits of soy isoflavones and other polyphenols contained in red wine, green and black tea and dark chocolate developed rapidly during the 1990's, and recent clinical trials and studies in animal models and cultured endothelial cells provide important and novel insights into the mechanisms by which dietary polyphenols afford protection against oxidative stress. In this review, we highlight that NO and reactive oxygen radicals may mediate dietary polyphenol induced activation of Nrf2, which in turn triggers antioxidant response element (ARE) driven transcription of phase II detoxifying and antioxidant defense enzymes in vascular cells.

  20. Functional characterization and Me2+ ion specificity of a Ca2+-citrate transporter from Enterococcus faecalis

    NARCIS (Netherlands)

    Blancato, Victor S.; Magni, Christian; Lolkema, Juke S.

    2006-01-01

    Secondary transporters of the bacterial CitMHS family transport citrate in complex with a metal ion. Different members of the family are specific for the metal ion in the complex and have been shown to transport Mg2+-citrate, Ca2+-citrate or Fe3+-citrate. The Fe3+-citrate transporter of Streptococcu

  1. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3

    Energy Technology Data Exchange (ETDEWEB)

    Ojo, Kayode K; Arakaki, Tracy L; Napuli, Alberto J; Inampudi, Krishna K; Keyloun, Katelyn R; Zhang, Li; Hol, Wim G.J.; Verlind, Christophe L.M.J.; Merritt, Ethan A; Van Voorhis, Wesley C [UWASH

    2012-04-24

    Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18_V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 Å resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3β (HsGSK-3β) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found.

  2. Insulin-stimulated phosphorylation of ATP-citrate lyase in isolated hepatocytes. Stoichiometry and relation to the phosphoenzyme intermediate.

    Science.gov (United States)

    Alexander, M C; Palmer, J L; Pointer, R H; Kowaloff, E M; Koumjian, L L; Avruch, J

    1982-02-25

    We have estimated the insulin-stimulated phosphorylation of ATP-citrate lyase by two methods. Isolated hepatocytes incorporate extracellular 32P into [gamma-35P] ATP and immunoprecipitated ATP-citrate lyase to steady state levels by 1 h. The content of acid-stable 32P in hepatocyte ATP-citrate lyase at steady state is 0.33 +/- 0.038 mol of P/mol (tetrameric) holoenzyme. Insulin (1 milliunit/ml) increases the 32P content of immunoprecipitated lyase 2- to 3-fold in 10 min. Over 90% of acid-stable 32P on lyase is 32P-serine in enzyme isolated from both control and insulin-treated cells. ATP-citrate lyase isolated from hepatocytes contains 0.95 +/- 0.1 mol of alkali-labile phosphate/mol of holoenzyme. Insulin treatment of hepatocytes (1 milliunit/ml for 10 min) increases the alkali-labile P content by 45%. Evidence is presented which indicates that the insulin-stimulated phosphorylation does not arise by intramolecular migration from the catalytic phosphoenzyme intermediate. These observations support the conclusion that insulin-stimulated phosphorylation of ATP-citrate lyase is mediated either by an insulin-induced increase in the activity of lyase kinase and/or decrease in a lyase phosphatase. The functional role of the substoichiometric phosphorylation of ATP-citrate lyase remains unknown.

  3. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3.

    Science.gov (United States)

    Zhou, Gaofeng; Pereira, Jorge F; Delhaize, Emmanuel; Zhou, Meixue; Magalhaes, Jurandir V; Ryan, Peter R

    2014-06-01

    Malate and citrate efflux from root apices is a mechanism of Al(3+) tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al(3+)-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approach to increase the Al(3+) tolerance of barley by transforming it with two MATE genes that encode citrate transporters: SbMATE is the major Al(3+)-tolerance gene from sorghum whereas FRD3 is involved with Fe nutrition in Arabidopsis. Independent transgenic and null T3 lines were generated for both transgenes. Lines expressing SbMATE showed Al(3+)-activated citrate efflux from root apices and greater tolerance to Al(3+) toxicity than nulls in hydroponic and short-term soil trials. Transgenic lines expressing FRD3 exhibited similar phenotypes except citrate release from roots occurred constitutively. The Al(3+) tolerance of these lines was compared with previously generated transgenic barley lines overexpressing the endogenous HvAACT1 gene and the TaALMT1 gene from wheat. Barley lines expressing TaALMT1 showed significantly greater Al(3+) tolerance than all lines expressing MATE genes. This study highlights the relative efficacy of different organic anion transport proteins for increasing the Al(3+) tolerance of an important crop species.

  4. Sildenafil citrate-restored eNOS and PDE5 regulation in sickle cell mouse penis prevents priapism via control of oxidative/nitrosative stress.

    Science.gov (United States)

    Bivalacqua, Trinity J; Musicki, Biljana; Hsu, Lewis L; Berkowitz, Dan E; Champion, Hunter C; Burnett, Arthur L

    2013-01-01

    Sildenafil citrate revolutionized the practice of sexual medicine upon its federal regulatory agency approval approximately 15 years ago as the prototypical phosphodiesterase type 5 inhibitor indicated for the treatment of male erectile dysfunction. We now provide scientific support for its alternative use in the management of priapism, a clinical disorder of prolonged and uncontrolled penile erection. Sildenafil administered continuously to sickle cell mice, which show a priapism phenotype, reverses oxidative/nitrosative stress effects in the penis, mainly via reversion of uncoupled endothelial nitric oxide synthase to the functional coupled state of the enzyme, which in turn corrects aberrant signaling and function of the nitric oxide/cyclic GMP/protein kinase G/phosphodiesterase type 5 cascade. Priapism tendencies in these mice are reverted partially toward normal neurostimulated erection frequencies and durations after sildenafil treatment in association with normalized cyclic GMP concentration, protein kinase G activity and phosphodiesterase type 5 activity in the penis. Thus, sildenafil exerts pleiotropic effects in the penis that extend to diverse erection disorders.

  5. [Four cases of aldosterone synthase deficiency in childhood].

    Science.gov (United States)

    Collinet, E; Pelissier, P; Richard, O; Gay, C; Pugeat, M; Morel, Y; Stephan, J-L

    2012-11-01

    Neonatal salt-wasting syndromes are rare but potentially serious conditions. Isolated hypoaldosteronism is an autosomal recessive inherited disorder of terminal aldosterone synthesis, leading to selective aldosterone deficiency. Two different biochemical forms of this disease have been described, called aldosterone synthase deficiency or corticosterone methyl oxydase, types I and II. In type I, there is no aldosterone synthase activity and the 18 hydroxycorticosterone (18 OHB) level is low, whereas in type II, a residual activity of aldosterone synthase persists and 18 OHB is overproduced. We report on four patients with isolated hypoaldosteronism. In 2 of them, who were recently diagnosed with aldosterone synthase deficit, we discuss the symptoms and treatment. The 2 other patients are now adults. We discuss the long-term outcome, the quality of adult life, aldosterone synthase deficits, as well as the pathophysiology and molecular analysis.

  6. Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments.

    Science.gov (United States)

    Lozano, J C; Blanco Rodríguez, P; Tomé, F Vera; Calvo, C Prieto

    2011-12-30

    A systematic study was made of the effects of three soil amendments on the solubilization of uranium from a granitic soil. The aim was to optimize solubilization so as to enhance bioavailability for the purposes of remediation. The three amendments tested were with citrate, EDTA, and EDDS as chelating agents. The effects of pH, chelator concentration, and leaching time were studied. The most important factor in uranium solubilization was found to be the pH. In the absence of chelating agents, the greatest solubilization was obtained for alkaline conditions, with values representing about 15% of the total uranium activity in the bulk soil. There were major differences in uranium solubilization between the different amendments. The citrate treatment was the most efficient at acidic pH, particularly with the greatest concentration of citrate tested (50 mmol kg(-1)) after 6 days of treatment. Under these conditions, the uranium concentration in solution was greater by a factor of 356 than in the control suspension, and represented some 63% of the uranium concentration in the bulk soil. Under alkaline conditions, the EDTA and EDDS treatments gave the greatest uranium activity concentrations in solution, but these concentrations were much lower than those with the citrate amendment, and were not very different from the control results. The uranium extraction yield with EDDS amendment was greater than with EDTA.

  7. The role of VuMATE1 expression in aluminium-inducible citrate secretion in rice bean (Vigna umbellata) roots.

    Science.gov (United States)

    Liu, Mei Ya; Chen, Wei Wei; Xu, Jia Meng; Fan, Wei; Yang, Jian Li; Zheng, Shao Jian

    2013-04-01

    Aluminium (Al)-activated citrate secretion plays an important role in Al resistance in a number of plant species, such as rice bean (Vigna umbellata). This study further characterized the regulation of VuMATE1, an aluminium-activated citrate transporter. Al stress induced VuMATE1 expression, followed by the secretion of citrate. Citrate secretion was specific to Al stress, whereas VuMATE1 expression was not, which could be explained by a combined regulation of VuMATE1 expression and Al-specific activation of VuMATE1 protein. Pre-treatment with a protein translation inhibitor suppressed VuMATE1 expression, indicating that de novo biosynthesis of proteins is required for gene expression. Furthermore, post-treatment with a protein translation inhibitor inhibited citrate secretion, indicating that post-transcriptional regulation of VuMATE1 is critical for citrate secretion. Protein kinase and phosphatase inhibitor studies showed that reversible phosphorylation was important not only for transcriptional regulation of VuMATE1 expression but also for post-translational regulation of VuMATE1 protein activity. These results suggest that citrate secretion is dependent on both transcriptional and post-transcriptional regulation of VuMATE1. Additionally, VuMATE1 promoter-β-glucuronidase fusion lines revealed that VuMATE1 expression was restricted to the root apex and was entirely Al induced, indicating the presence of cis-acting elements regulating root tip-specific and Al-inducible gene expression, which will be an important resource for genetic improvement of plant Al resistance.

  8. Crystallization of Δ{sup 1}-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa

    Energy Technology Data Exchange (ETDEWEB)

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi [Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tamada, Taro; Adachi, Motoyasu; Kuroki, Ryota [Neutron Science Research Center, Japan Atomic Energy Research Institute, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Shoyama, Yukihiro; Morimoto, Satoshi, E-mail: morimoto@phar.kyushu-u.ac.jp [Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2005-08-01

    Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase from C. sativa was crystallized. The crystal diffracted to 2.7 Å resolution with sufficient quality for further structure determination. Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 M sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å{sup 3} Da{sup −1} assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively.

  9. Mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase and carnitine palmitoyltransferase II as potential control sites for ketogenesis during mitochondrion and peroxisome proliferation.

    Science.gov (United States)

    Madsen, L; Garras, A; Asins, G; Serra, D; Hegardt, F G; Berge, R K

    1999-05-01

    3-Thia fatty acids are potent hypolipidemic fatty acid derivatives and mitochondrion and peroxisome proliferators. Administration of 3-thia fatty acids to rats was followed by significantly increased levels of plasma ketone bodies, whereas the levels of plasma non-esterified fatty acids decreased. The hepatic mRNA levels of fatty acid binding protein and formation of acid-soluble products, using both palmitoyl-CoA and palmitoyl-L-carnitine as substrates, were increased. Hepatic mitochondrial carnitine palmitoyltransferase (CPT) -II and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase activities, immunodetectable proteins, and mRNA levels increased in parallel. In contrast, the mitochondrial CPT-I mRNA levels were unchanged and CPT-I enzyme activity was slightly reduced in the liver. The CoA ester of the monocarboxylic 3-thia fatty acid, tetradecylthioacetic acid, which accumulates in the liver after administration, inhibited the CPT-I activity in vitro, but not that of CPT-II. Acetoacetyl-CoA thiolase and HMG-CoA lyase activities involved in ketogenesis were increased, whereas the citrate synthase activity was decreased. The present data suggest that 3-thia fatty acids increase both the transport of fatty acids into the mitochondria and the capacity of the beta-oxidation process. Under these conditions, the regulation of ketogenesis may be shifted to step(s) beyond CPT-I. This opens the possibility that mitochondrial HMG-CoA synthase and CPT-II retain some control of ketone body formation.

  10. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation

    DEFF Research Database (Denmark)

    Ramachandran, Roshni; Bhatt, Deepak Kumar; Ploug, Kenneth Beri;

    2014-01-01

    Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene-related peptide (CGRP...

  11. The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity

    DEFF Research Database (Denmark)

    Gaster, Michael; Petersen, Ingrid; Højlund, Kurt;

    2002-01-01

    The most well-described defect in the pathophysiology of type 2 diabetes is reduced insulin-mediated glycogen synthesis in skeletal muscles. It is unclear whether this defect is primary or acquired secondary to dyslipidemia, hyperinsulinemia, or hyperglycemia. We determined the glycogen synthase...

  12. Enzyme activities of demersal fishes from the shelf to the abyssal plain

    Science.gov (United States)

    Drazen, Jeffrey C.; Friedman, Jason R.; Condon, Nicole E.; Aus, Erica J.; Gerringer, Mackenzie E.; Keller, Aimee A.; Elizabeth Clarke, M.

    2015-06-01

    The present study examined metabolic enzyme activities of 61 species of demersal fishes (331 individuals) trawled from a 3000 m depth range. Citrate synthase, lactate dehydrogenase, malate dehydrogenase, and pyruvate kinase activities were measured as proxies for aerobic and anaerobic activity and metabolic rate. Fishes were classified according to locomotory mode, either benthic or benthopelagic. Fishes with these two locomotory modes were found to exhibit differences in metabolic enzyme activity. This was particularly clear in the overall activity of citrate synthase, which had higher activity in benthopelagic fishes. Confirming earlier, less comprehensive studies, enzyme activities declined with depth in benthopelagic fishes. For the first time, patterns in benthic species could be explored and these fishes also exhibited depth-related declines in enzyme activity, contrary to expectations of the visual interactions hypothesis. Trends were significant when using depth parameters taken from the literature as well as from the present trawl information, suggesting a robust pattern regardless of the depth metric used. Potential explanations for the depth trends are discussed, but clearly metabolic rate does not vary simply as a function of mass and habitat temperature in fishes as shown by the substantial depth-related changes in enzymatic activities.

  13. Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase.

    Directory of Open Access Journals (Sweden)

    Aleksandra Usenik

    Full Text Available As an important part of metabolism, metabolic flux through the glycolytic pathway is tightly regulated. The most complex control is exerted on 6-phosphofructo-1-kinase (PFK1 level; this control overrules the regulatory role of other allosteric enzymes. Among other effectors, citrate has been reported to play a vital role in the suppression of this enzyme's activity. In eukaryotes, amino acid residues forming the allosteric binding site for citrate are found both on the N- and the C-terminal region of the enzyme. These site has evolved from the phosphoenolpyruvate/ADP binding site of bacterial PFK1 due to the processes of duplication and tandem fusion of prokaryotic ancestor gene followed by the divergence of the catalytic and effector binding sites. Stricter inhibition of the PFK1 enzyme was needed during the evolution of multi-cellular organisms, and the most stringent control of PFK1 by citrate occurs in vertebrates. By substituting a single amino acid (K557R or K617A as a component of the allosteric binding site in the C-terminal region of human muscle type PFK-M with a residue found in the corresponding site of a fungal enzyme, the inhibitory effect of citrate was attenuated. Moreover, the proteins carrying these single mutations enabled growth of E. coli transformants encoding mutated human PFK-M in a glucose-containing medium that did not support the growth of E. coli transformed with native human PFK-M. Substitution of another residue at the citrate-binding site (D591V of human PFK-M resulted in the complete loss of activity. Detailed analyses revealed that the mutated PFK-M subunits formed dimers but were unable to associate into the active tetrameric holoenzyme. These results suggest that stricter control over glycolytic flux developed in metazoans, whose somatic cells are largely characterized by slow proliferation.

  14. Protein kinase A-dependent Neuronal Nitric Oxide Synthase Activation Mediates the Enhancement of Baroreflex Response by Adrenomedullin in the Nucleus Tractus Solitarii of Rats

    Directory of Open Access Journals (Sweden)

    Ho I-Chun

    2011-05-01

    Full Text Available Abstract Background Adrenomedullin (ADM exerts its biological functions through the receptor-mediated enzymatic mechanisms that involve protein kinase A (PKA, or neuronal nitric oxide synthase (nNOS. We previously demonstrated that the receptor-mediated cAMP/PKA pathway involves in ADM-enhanced baroreceptor reflex (BRR response. It remains unclear whether ADM may enhance BRR response via activation of nNOS-dependent mechanism in the nucleus tractus solitarii (NTS. Methods Intravenous injection of phenylephrine was administered to evoke the BRR before and at 10, 30, and 60 min after microinjection of the test agents into NTS of Sprague-Dawley rats. Western blotting analysis was used to measure the level and phosphorylation of proteins that involved in BRR-enhancing effects of ADM (0.2 pmol in NTS. The colocalization of PKA and nNOS was examined by immunohistochemical staining and observed with a laser confocal microscope. Results We found that ADM-induced enhancement of BRR response was blunted by microinjection of NPLA or Rp-8-Br-cGMP, a selective inhibitor of nNOS or protein kinase G (PKG respectively, into NTS. Western blot analysis further revealed that ADM induced an increase in the protein level of PKG-I which could be attenuated by co-microinjection with the ADM receptor antagonist ADM22-52 or NPLA. Moreover, we observed an increase in phosphorylation at Ser1416 of nNOS at 10, 30, and 60 min after intra-NTS administration of ADM. As such, nNOS/PKG signaling may also account for the enhancing effect of ADM on BRR response. Interestingly, biochemical evidence further showed that ADM-induced increase of nNOS phosphorylation was prevented by co-microinjection with Rp-8-Br-cAMP, a PKA inhibitor. The possibility of PKA-dependent nNOS activation was substantiated by immunohistochemical demonstration of co-localization of PKA and nNOS in putative NTS neurons. Conclusions The novel finding of this study is that the signal transduction cascade that

  15. Antitumor effect of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles on mice bearing breast cancer: a systemic toxicity assay.

    Science.gov (United States)

    Peixoto, Raphael Cândido Apolinário; Miranda-Vilela, Ana Luisa; de Souza Filho, José; Carneiro, Marcella Lemos' Brettas; Oliveira, Ricardo G S; da Silva, Matheus Oliveira; de Souza, Aparecido R; Báo, Sônia Nair

    2015-05-01

    Breast cancer is one of the most prevalent cancer types among women. The use of magnetic fluids for specific delivery of drugs represents an attractive platform for chemotherapy. In our previous studies, it was demonstrated that maghemite nanoparticles coated with rhodium (II) citrate (Magh-Rh2Cit) induced in vitro cytotoxicity and in vivo antitumor activity, followed by intratumoral administration in breast carcinoma cells. In this study, our aim was to follow intravenous treatment to evaluate the systemic antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. Female Balb/c mice were evaluated with regard to toxicity of intravenous treatments through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine and liver, kidney, and lung histology. The antitumor activity of rhodium (II) citrate (Rh2Cit), Magh-Rh2Cit, and maghemite nanoparticles coated with citrate (Magh-Cit), used as control, was evaluated by tumor volume reduction, histology, and morphometric analysis. Magh-Rh2Cit and Magh-Cit promoted a significant decrease in tumor area, and no experimental groups presented hematotoxic effects or increased levels of serum ALT and creatinine. This observation was corroborated by the histopathological examination of the liver and kidney of mice. Furthermore, the presence of nanoparticles was verified in lung tissue with no morphological changes, supporting the idea that our nanoformulations did not induce toxicity effects. No studies about the systemic action of rhodium (II) citrate-loaded maghemite nanoparticles have been carried out, making this report a suitable starting point for exploring the therapeutic potential of these compounds in treating breast cancer.

  16. The distribution of plasmids determining citrate utilization in citrate-positive variants of Escherichia coli from humans, domestic animals, feral birds and environments.

    Science.gov (United States)

    Ishiguro, N; Sato, G

    1979-10-01

    Sixty-seven isolates of citrate-positive variants of Escherichia coli were isolated from human, domestic animal, feral bird and environmental sources. With the exception of citrate utilization, all isolates were identified as typical E. coli by their biochemical reactions. The transmission of the ability to utilize citrate on Simmons' citrate agar was demonstrated in 53 (79.1%) out of the 67 citrate-positive E. coli variants obtained from various sources. Drug resistance determinants and citrate utilizing character were co-transmitted into E. coli K-12 by conjugation among citrate-positive E. coli isolates carrying R plasmids except for that isolated from horses. The other characters (haemolysin or colicin production, raffinose or sucrose fermentation) were not transmitted together with the citrate utilizing character. These facts suggested that the structural gene responsible for citrate utilizing ability in citrate-positive variants of E. coli was located on a conjugative plasmid.

  17. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Lee-Chun eSu

    2014-07-01

    Full Text Available Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate (POC showed approximately 70-80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers (CUPEs and biodegradable photoluminescent polymers (BPLPs also exhibited significant bacteria reduction of ~20% and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that they are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired.

  18. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Wu, Xinxin; Li, Ren; Shi, Jin; Wang, Jinfang; Sun, Qianqian; Zhang, Haijun; Xing, Yanxia; Qi, Yan; Zhang, Na; Guo, Yang-Dong

    2014-08-01

    The secretion of organic acid anions from roots is an important mechanism for plant aluminum (Al) tolerance. Here we report cloning and characterizing BoMATE (KF031944), a multidrug and toxic compound extrusion (MATE) family gene from cabbage (Brassica oleracea). The expression of BoMATE was more abundant in roots than in shoots, and it was highly induced by Al treatment. The (14)C-citrate efflux experiments in oocytes demonstrated that BoMATE is a citrate transporter. Electrophysiological analysis and SIET analysis of Xenopus oocytes expressing BoMATE indicated BoMATE is activated by Al. Transient expression of BoMATE in onion epidermal cells demonstrated that it localized to the plasma membrane. Compared with the wild-type Arabidopsis, the transgenic lines constitutively overexpressing BoMATE enhanced Al tolerance and increased citrate secretion. In addition, Arabidopsis transgenic lines had a lower K(+) efflux and higher H(+) efflux, in the presence of Al, than control wild type in the distal elongation zone (DEZ). This is the first direct evidence that MATE protein is involved in the K(+) and H(+) flux in response to Al treatment. Taken together, our results show that BoMATE is an Al-induced citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

  19. Diffuse abdominal gallium-67 citrate uptake in salmonella infections

    Energy Technology Data Exchange (ETDEWEB)

    Garty, I.; Koren, A.

    1987-11-01

    Two pediatric patients with salmonella infections (one with typhoid fever and the second with salmonella C2 gastroenteritis), had a diffuse abdominal uptake of Ga-67 citrate. The possible explanation for this finding is discussed. Salmonella infection should be included as a cause in the differential diagnosis of diffuse accumulation of Ga-67 citrate.

  20. Structural Basis for Norovirus Inhibition and Fucose Mimicry by Citrate

    Energy Technology Data Exchange (ETDEWEB)

    Hansman, Grant S.; Shahzad-ul-Hussan, Syed; McLellan, Jason S.; Chuang, Gwo-Yu; Georgiev, Ivelin; Shimoike, Takashi; Katayama, Kazuhiko; Bewley, Carole A.; Kwong, Peter D. (NIAID)

    2012-01-20

    Human noroviruses bind with their capsid-protruding domains to histo-blood-group antigens (HBGAs), an interaction thought to direct their entry into cells. Although human noroviruses are the major cause of gastroenteritis outbreaks, development of antivirals has been lacking, mainly because human noroviruses cannot be cultivated. Here we use X-ray crystallography and saturation transfer difference nuclear magnetic resonance (STD NMR) to analyze the interaction of citrate with genogroup II (GII) noroviruses. Crystals of citrate in complex with the protruding domain from norovirus GII.10 Vietnam026 diffracted to 1.4 {angstrom} and showed a single citrate bound at the site of HBGA interaction. The citrate interaction was coordinated with a set of capsid interactions almost identical to that involved in recognizing the terminal HBGA fucose, the saccharide which forms the primary conserved interaction between HBGAs and GII noroviruses. Citrate and a water molecule formed a ring-like structure that mimicked the pyranoside ring of fucose. STD NMR showed the protruding domain to have weak affinity for citrate (460 {mu}M). This affinity, however, was similar to the affinities of the protruding domain for fucose (460 {mu}M) and H type 2 trisaccharide (390 {mu}M), an HBGA shown previously to be specifically recognized by human noroviruses. Importantly, competition STD NMR showed that citrate could compete with HBGA for norovirus binding. Together, the results suggest that citrate and other glycomimetics have the potential to block human noroviruses from binding to HBGAs.

  1. Citrate increases glass transition temperature of vitrified sucrose preparations

    NARCIS (Netherlands)

    Kets, E.P.W.; Lipelaar, P.J.; Hoekstra, F.A.; Vromans, H.

    2004-01-01

    The aim of this study was to investigate the effect of sodium citrate on the properties of dried amorphous sucrose glasses. Addition of sodium citrate to a sucrose solution followed by freeze-drying or convective drying resulted in a glass transition temperature (T-g) that was higher than the well-s

  2. Structural basis for norovirus inhibition and fucose mimicry by citrate.

    Science.gov (United States)

    Hansman, Grant S; Shahzad-Ul-Hussan, Syed; McLellan, Jason S; Chuang, Gwo-Yu; Georgiev, Ivelin; Shimoike, Takashi; Katayama, Kazuhiko; Bewley, Carole A; Kwong, Peter D

    2012-01-01

    Human noroviruses bind with their capsid-protruding domains to histo-blood-group antigens (HBGAs), an interaction thought to direct their entry into cells. Although human noroviruses are the major cause of gastroenteritis outbreaks, development of antivirals has been lacking, mainly because human noroviruses cannot be cultivated. Here we use X-ray crystallography and saturation transfer difference nuclear magnetic resonance (STD NMR) to analyze the interaction of citrate with genogroup II (GII) noroviruses. Crystals of citrate in complex with the protruding domain from norovirus GII.10 Vietnam026 diffracted to 1.4 Å and showed a single citrate bound at the site of HBGA interaction. The citrate interaction was coordinated with a set of capsid interactions almost identical to that involved in recognizing the terminal HBGA fucose, the saccharide which forms the primary conserved interaction between HBGAs and GII noroviruses. Citrate and a water molecule formed a ring-like structure that mimicked the pyranoside ring of fucose. STD NMR showed the protruding domain to have weak affinity for citrate (460 μM). This affinity, however, was similar to the affinities of the protruding domain for fucose (460 μM) and H type 2 trisaccharide (390 μM), an HBGA shown previously to be specifically recognized by human noroviruses. Importantly, competition STD NMR showed that citrate could compete with HBGA for norovirus binding. Together, the results suggest that citrate and other glycomimetics have the potential to block human noroviruses from binding to HBGAs.

  3. Hybrid polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  4. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  5. Na/K citrate versus sodium bicarbonate in prevention of contrast-induced nephropathy.

    Science.gov (United States)

    Abouzeid, Sameh Mohamed; ElHossary, Hossam E

    2016-05-01

    Contrast-induced nephropathy (CIN) is one of the important complications of radiographic procedures, especially in patients with chronic kidney disease. It is also one of the common causes of acute kidney injury. The pathogenesis is postulated to be the effect of oxygen- free radicals and hyperosmolar stress on the renal medulla. It is reported that the production of superoxide is most active at acid environment. K/Na citrate is well known as a urine alkalinization medium, and this has been evaluated earlier with standard hydration for reduction of CIN and was stated to be efficient. We aimed to determine the efficacy of Na/K citrate in reducing the frequency of CIN in comparison to sodium bicarbonate in patients after coronary angiography. Two hundred and ten patients with renal dysfunction [estimated glomerular filtration rate (eGFR), 60 mL/min/1.73 m(2) or less] who underwent elective or emergency coronary angiography (CAG) with/without percutaneous coronary intervention (PCI) at our institution were enrolled into the study. The patients were randomized into two groups, Group 1-Taking Na/K citrate and Group 2-Taking sodium bicarbonate. Radiographic contrast agent iohexol was used. Change in creatinine, percent change in creatinine, percent change in eGFR, change in serum potassium, and urine pH were all compared between the two groups. There was no significant difference for prevention of CIN when comparing the Na/K citrate with sodium bicarbonate solution in patients exposed to CAG with or without PCI. Mean absolute change in eGFR after 48 h after administration of contrast between sodium bicarbonate group and Na/K citrate group was -0.60 ± 1.58 versus -0.71 ± 1.38. Serum potassium decreased postprocedure in the sodium bicarbonate group than in the citrate group (3.90 ± 0.33 vs. 4.14 ± 0.39). Both agents are equally effective in reducing the incidence of CIN, but the citrate would possibly be a safer option for patients at risk of hypokalemia.

  6. Interactions between beta D372 and gamma subunit N-terminus residues gamma K9 and gamma S12 are important to catalytic activity catalyzed by Escherichia coli F1F0-ATP synthase.

    Science.gov (United States)

    Lowry, David S; Frasch, Wayne D

    2005-05-17

    Substitution of Escherichia coli F(1)F(0) ATP synthase residues betaD372 or gammaS12 with groups that are unable to form a hydrogen bond at this location decreased ATP synthase-dependent cell growth by 2 orders of magnitude, eliminated the ability of F(1)F(0) to catalyze ATPase-dependent proton pumping in inverted E. coli membranes, caused a 15-20% decrease in the coupling efficiency of the membranes as measured by the extent of succinate-dependent acridine orange fluorescence quenching, but increased soluble F(1)-ATPase activity by about 10%. Substitution of gammaK9 to eliminate the ability to form a salt bridge with betaD372 decreased soluble F(1)-ATPase activity and ATPase-driven proton pumping by 2-fold but had no effect on the proton gradient induced by addition of succinate. Mutations to eliminate the potential to form intersubunit hydrogen bonds and salt bridges between other less highly conserved residues on the gamma subunit N-terminus and the beta subunits had little effect on ATPase or ATP synthase activities. These results suggest that the betaD372-gammaK9 salt bridge contributes significantly to the rate-limiting step in ATP hydrolysis of soluble F(1) while the betaD372-gammaS12 hydrogen bond may serve as a component of an escapement mechanism for ATP synthesis in which alphabetagamma intersubunit interactions provide a means to make substrate binding a prerequisite of proton gradient-driven gamma subunit rotation.

  7. 76 FR 77206 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Final Results of...

    Science.gov (United States)

    2011-12-12

    ... grades and granulation sizes of citric acid, sodium citrate, and potassium citrate in their unblended... citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended ] form(s) of citric acid, sodium citrate, and potassium citrate constitute...

  8. 77 FR 74171 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Final Results of...

    Science.gov (United States)

    2012-12-13

    ... sodium citrate, otherwise known as citric acid sodium salt, and the monohydrate and monopotassium forms of potassium citrate.\\5\\ Sodium citrate also includes both trisodium citrate and monosodium citrate... acid and sodium citrate are classifiable under 2918.14.0000 and 2918.15.1000 of the Harmonized...

  9. Gene identification and functional analysis of methylcitrate synthase in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2013-01-01

    Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity.

  10. Enhanced dissolution of sildenafil citrate as dry foam tablets.

    Science.gov (United States)

    Sawatdee, Somchai; Atipairin, Apichart; Sae Yoon, Attawadee; Srichana, Teerapol; Changsan, Narumon

    2017-01-30

    Dry foam formulation technology is alternative approach to enhance dissolution of the drug. Sildenafil citrate was suspended in sodium dodecyl sulfate solution and adding a mixture of maltodextrin and mannitol as diluent to form a paste. Sildenafil citrate paste was passed through a nozzle spray bottle to obtain smooth foam. The homogeneous foam was dried in a vacuum oven and sieved to obtain dry foam granules. The granules were mixed with croscarmellose sodium, magnesium stearate and compressed into tablet. All formulations were evaluated for their physicochemical properties and dissolution profiles. All the tested excipients were compatible with sildenafil citrate by both differential scanning calorimetry (DSC) and infrared (IR) analysis. There are no X-ray diffraction (XRD) peaks representing crystals of sildenafil citrate observed form dry foam formulations. The hardness of tablets was about 5 kg, friability test foam tablet had higher dissolution rate in 0.1 N HCl in comparison with commercial sildenafil citrate tablet, sildenafil citrate prepared by direct compression and wet granulation method. Sildenafil citrate dry foam tablet with the high-level composition of surfactant, water and diluent showed enhanced dissolution rate than that of the lower-level composition of these excipients. This formulation was stable under accelerated conditions for at least 6 months.

  11. Molecular characterization of the thi3 gene involved in thiamine biosynthesis in Zea mays: cDNA sequence and enzymatic and structural properties of the recombinant bifunctional protein with 4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate) kinase and thiamine monophosphate synthase activities.

    Science.gov (United States)

    Rapala-Kozik, Maria; Olczak, Mariusz; Ostrowska, Katarzyna; Starosta, Agata; Kozik, Andrzej

    2007-12-01

    A thiamine biosynthesis gene, thi3, from maize Zea mays has been identified through cloning and sequencing of cDNA and heterologous overexpression of the encoded protein, THI3, in Escherichia coli. The recombinant THI3 protein was purified to homogeneity and shown to possess two essentially different enzymatic activities of HMP(-P) [4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate)] kinase and TMP (thiamine monophosphate) synthase. Both activities were characterized in terms of basic kinetic constants, with interesting findings that TMP synthase is uncompetitively inhibited by excess of one of the substrates [HMP-PP (HMP diphosphate)] and ATP. A bioinformatic analysis of the THI3 sequence suggested that these activities were located in two distinct, N-terminal kinase and C-terminal synthase, domains. Models of the overall folds of THI3 domains and the arrangements of active centre residues were obtained with the SWISS-MODEL protein modelling server, on the basis of the known three-dimensional structures of Salmonella enterica serotype Typhimurium HMP(-P) kinase and Bacillus subtilis TMP synthase. The essential roles of Gln98 and Met134 residues for HMP kinase activity and of Ser444 for TMP synthase activity were experimentally confirmed by site-directed mutagenesis.

  12. Hydroxychavicol, a Piper betle leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance.

    Science.gov (United States)

    Chakraborty, Jayashree B; Mahato, Sanjit K; Joshi, Kalpana; Shinde, Vaibhav; Rakshit, Srabanti; Biswas, Nabendu; Choudhury Mukherjee, Indrani; Mandal, Labanya; Ganguly, Dipyaman; Chowdhury, Avik A; Chaudhuri, Jaydeep; Paul, Kausik; Pal, Bikas C; Vinayagam, Jayaraman; Pal, Churala; Manna, Anirban; Jaisankar, Parasuraman; Chaudhuri, Utpal; Konar, Aditya; Roy, Siddhartha; Bandyopadhyay, Santu

    2012-01-01

    Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxy-chavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthase-mediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings.

  13. Human platelet nitric oxide synthase activity: an optimized method Atividade da óxido nítrico sintase em plaquetas humanas: um método otimizado

    Directory of Open Access Journals (Sweden)

    Elisa Mitiko Kawamato

    2002-09-01

    Full Text Available We investigated the kinetic analysis of human platelet Nitric Oxide Synthase (NOS activity by the rate of conversion of [³H] arginine to [³H]-citrulline in unstimulated fresh platelets. NOS activity was present in the membrane fraction and cytosol, and was Ca2+- and calmodulin dependent which is a characteristic of endothelial NOS. NOS activity was also dependent of NADPH since the omission of this cofactor induced an important decrease (85,2% in the enzyme activity. The kinetic varied with protein and arginine concentration but optimum concentrations were found up to 60 minutes, and up to 80 µg of protein at 120 nM of arginine and 0.5 µCi of ³H-arginine. NOS activity in the absence of FAD (flavin adenine dinucleotide, FMN (flavin mononucleotide and BH4 (tetrahydrobiopterin was only 2.8% of the activity measured in the presence of these three cofactors. The enzyme activity was completely inhibited by L-NAME (1 mM (98.1 % and EGTA (5 mM (98.8 %. Trifluoperazine (TFP caused 73.2% inhibition of the enzyme activity at 200 µM and 83.8 % at 500 µM. Under basal conditions, NOS Km for L-arginine was 0.84 ± 0.08 µM and mean Vmax values were 0.122 ± 0.025 pmol.mg-1.min-1. Mean human NOS platelet activity was 0.020 ± 0.010 pmol.mg-1.min-1. Results indicate that the eNOS in human platelet can be evaluated by conversion of [³H]-arginine to [³H]citrulline in an optimized method, which provide reproducible and accurate results with good sensitivity to clinical experiments involving neurological and psychiatric diseases.A análise cinética da atividade da óxido nítrico sintase (NOS plaquetária foi avaliada pela conversão de [³H]-arginina em [³H]-citrulina em plaquetas humanas frescas não estimuladas. A atividade da NOS foi detectada na fração citosólica e na membrana, além de ser dependente de Ca2+-calmodulina, que é uma característica da NOS endotelial (eNOS. A omissão de NADPH levou à diminuição da atividade da NOS dependente da

  14. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  15. C. elegans ATAD-3 is essential for mitochondrial activity and development.

    Directory of Open Access Journals (Sweden)

    Michael Hoffmann

    Full Text Available BACKGROUND: Mammalian ATAD3 is a mitochondrial protein, which is thought to play an important role in nucleoid organization. However, its exact function is still unresolved. RESULTS: Here, we characterize the Caenorhabditis elegans (C. elegans ATAD3 homologue (ATAD-3 and investigate its importance for mitochondrial function and development. We show that ATAD-3 is highly conserved among different species and RNA mediated interference against atad-3 causes severe defects, characterized by early larval arrest, gonadal dysfunction and embryonic lethality. Investigation of mitochondrial physiology revealed a disturbance in organellar structure while biogenesis and function, as indicated by complex I and citrate synthase activities, appeared to be unaltered according to the developmental stage. Nevertheless, we observed very low complex I and citrate synthase activities in L1 larvae populations in comparison to higher larval and adult stages. Our findings indicate that atad-3(RNAi animals arrest at developmental stages with low mitochondrial activity. In addition, a reduced intestinal fat storage and low lysosomal content after depletion of ATAD-3 suggests a central role of this protein for metabolic activity. CONCLUSIONS: In summary, our data clearly indicate that ATAD-3 is essential for C. elegans development in vivo. Moreover, our results suggest that the protein is important for the upregulation of mitochondrial activity during the transition to higher larval stages.

  16. Subcellular localization of the homocitrate synthase in Penicillium chrysogenum.

    Science.gov (United States)

    Bañuelos, O; Casqueiro, J; Steidl, S; Gutiérrez, S; Brakhage, A; Martín, J F

    2002-01-01

    There are conflicting reports regarding the cellular localization in Saccharomyces cerevisiae and filamentous fungi of homocitrate synthase, the first enzyme in the lysine biosynthetic pathway. The homocitrate synthase (HS) gene (lys1) of Penicillium chrysogenum was disrupted in three transformants (HS(-)) of the Wis 54-1255 pyrG strain. The three mutants named HS1(-), HS2(-) and HS3(-) all lacked homocitrate synthase activity and showed lysine auxotrophy, indicating that there is a single gene for homocitrate synthase in P. chrysogenum. The lys1 ORF was fused in frame to the gene for the green fluorescent protein (GFP) gene of the jellyfish Aequorea victoria. Homocitrate synthase-deficient mutants transformed with a plasmid containing the lys1-GFP fusion recovered prototrophy and showed similar levels of homocitrate synthase activity to the parental strain Wis 54-1255, indicating that the hybrid protein retains the biological function of wild-type homocitrate synthase. Immunoblotting analysis revealed that the HS-GFP fusion protein is maintained intact and does not release the GFP moiety. Fluorescence microscopy analysis of the transformants showed that homocitrate synthase was mainly located in the cytoplasm in P. chrysogenum; in S. cerevisiae the enzyme is targeted to the nucleus. The control nuclear protein StuA was properly targeted to the nucleus when the StuA (targeting domain)-GFP hybrid protein was expressed in P. chrysogenum. The difference in localization of homocitrate synthase between P. chrysogenum and S. cerevisiae suggests that this protein may play a regulatory function, in addition to its catalytic function, in S. cerevisiae but not in P. chrysogenum.

  17. Prenyldiphosphate synthases and gibberellin biosynthesis

    NARCIS (Netherlands)

    van Schie, C.C.N.; Haring, M.A.; Schuurink, R.C.; Bach, T.J.; Rohmer, M.

    2013-01-01

    Gibberellins are derived from the diterpene precursor geranylgeranyl diphophosphate (GGPP). GGPP is converted to ent-kaurene, which contains the basic structure of gibberellins, in the plastids by the combined actions of copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). Generally, ge

  18. Role of cysteine residues in pseudouridine synthases of different families.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  19. Mammalian N-acetylglutamate synthase.

    Science.gov (United States)

    Morizono, Hiroki; Caldovic, Ljubica; Shi, Dashuang; Tuchman, Mendel

    2004-04-01

    N-Acetylglutamate synthase (NAGS, E.C. 2.3.1.1) is a mitochondrial enzyme that catalyzes the formation of N-acetylglutamate (NAG), an essential allosteric activator of carbamylphosphate synthetase I (CPSI). The mouse and human NAGS genes have been identified based on similarity to regions of NAGS from Neurospora crassa and cloned from liver cDNA libraries. These genes were shown to complement an argA- (NAGS) deficient Escherichia coli strain, and enzymatic activity of the proteins was confirmed by a new stable isotope dilution assay. The deduced amino acid sequence of mammalian NAGS contains a putative mitochondrial-targeting signal at the N-terminus. The mouse NAGS preprotein was overexpressed in insect cells to determine post-translational modifications and two processed proteins with different N-terminal truncations have been identified. Sequence analysis using a hidden Markov model suggests that the vertebrate NAGS protein contains domains with a carbamate kinase fold and an acyl-CoA N-acyltransferase fold, and protein crystallization experiments are currently underway. Inherited NAGS deficiency results in hyperammonemia, presumably due to the loss of CPSI activity. We, and others, have recently identified mutations in families with neonatal and late-onset NAGS deficiency and the identification of the gene has now made carrier testing and prenatal diagnosis feasible. A structural analog of NAG, carbamylglutamate, has been shown to bind and activate CPSI, and several patients have been reported to respond favorably to this drug (Carbaglu).

  20. Application of chromatography technology in the separation of active alkaloids from Hypecoum leptocarpum and their inhibitory effect on fatty acid synthase.

    Science.gov (United States)

    Zhang, Qiulong; Luan, Guangxiang; Ma, Tao; Hu, Na; Suo, Yourui; Wang, Xiaoyan; Ma, Xiaofeng; Ding, Chenxu

    2015-12-01

    A method that involved the combination of pH-zone-refining counter-current chromatography and semipreparative reversed-phase liquid chromatography has been established for the preparative separation of alkaloids from Hypecoum leptocarpum. From 1.2 g of crude sample, 31 mg N-feruloyltyramine, 27 mg oxohydrastinine, 47 mg hydroprotopine, 25 mg leptopidine, and 18 mg hypecocarpine have been obtained. The structure of the new compound, hypecocarpine, is confirmed based on the analysis of spectroscopic data, including NMR, UV, and IR spectroscopy and positive electrospray ionization mass spectrometry. The known chemical structures were characterized on the basis of (1) H and (13) C NMR spectroscopy. The purities of the five alkaloids are all over 92.7% as determined by high-performance liquid chromatography. The alkaloids' cytotoxicity in breast cancer cells is assessed by using a Cell Counting Kit assay and their inhibitory effect on fatty acid synthase expression is assessed by a Western blot assay. These results suggest that leptopidine could suppress growth and induce cytotoxicity in breast cancer cells and that the cytotoxicity of leptopidine may be related to its inhibitory effect on fatty acid synthase expression.

  1. Synergistic activation of defense responses in Arabidopsis by simultaneous loss of the GSL5 callose synthase and the EDR1 protein kinase.

    Science.gov (United States)

    Wawrzynska, Anna; Rodibaugh, Natalie L; Innes, Roger W

    2010-05-01

    Loss-of-function mutations in the EDR1 gene of Arabidopsis confer enhanced resistance to Golovinomyces cichoracearum (powdery mildew). Disease resistance mediated by the edr1 mutation is dependent on an intact salicylic acid (SA) signaling pathway, but edr1 mutant plants do not constitutively express the SA-inducible gene PR-1 and are not dwarfed. To identify other components of the EDR1 signaling network, we screened for mutations that enhanced the edr1 mutant phenotype. Here, we describe an enhancer of edr1 mutant, eed3, which forms spontaneous lesions in the absence of pathogen infection, constitutively expresses both SA- and methyl jasmonate (JA)-inducible defense genes, and is dwarfed. Positional cloning of eed3 revealed that the mutation causes a premature stop codon in GLUCAN SYNTHASE-LIKE 5 (GSL5, also known as POWDERY MILDEW RESISTANT 4), which encodes a callose synthase required for pathogen-induced callose production. Significantly, gsl5 single mutants do not constitutively express PR-1 or AtERF1 (a JA-inducible gene) and are not dwarfed. Thus, loss of both EDR1 and GSL5 function has a synergistic effect. Our data suggest that EDR1 and GSL5 negatively regulate SA and JA production or signaling by independent mechanisms and that negative regulation of defense signaling by GSL5 may be independent of callose production.

  2. Two Predicted Transmembrane Domains Exclude Very Long Chain Fatty acyl-CoAs from the Active Site of Mouse Wax Synthase.

    Directory of Open Access Journals (Sweden)

    Steffen Kawelke

    Full Text Available Wax esters are used as coatings or storage lipids in all kingdoms of life. They are synthesized from a fatty alcohol and an acyl-CoA by wax synthases. In order to get insights into the structure-function relationships of a wax synthase from Mus musculus, a domain swap experiment between the mouse acyl-CoA:wax alcohol acyltransferase (AWAT2 and the homologous mouse acyl-CoA:diacylglycerol O-acyltransferase 2 (DGAT2 was performed. This showed that the substrate specificity of AWAT2 is partially determined by two predicted transmembrane domains near the amino terminus of AWAT2. Upon exchange of the two domains for the respective part of DGAT2, the resulting chimeric enzyme was capable of incorporating up to 20% of very long acyl chains in the wax esters upon expression in S. cerevisiae strain H1246. The amount of very long acyl chains in wax esters synthesized by wild type AWAT2 was negligible. The effect was narrowed down to a single amino acid position within one of the predicted membrane domains, the AWAT2 N36R variant. Taken together, we provide first evidence that two predicted transmembrane domains in AWAT2 are involved in determining its acyl chain length specificity.

  3. Fluvoxamine alters the activity of energy metabolism enzymes in the brain

    Directory of Open Access Journals (Sweden)

    Gabriela K. Ferreira

    2014-09-01

    Full Text Available Objective: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Methods: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. Results: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. Conclusions: Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent.

  4. Citrate uptake into Pectobacterium atrosepticum is critical for bacterial virulence.

    Science.gov (United States)

    Urbany, Claude; Neuhaus, H Ekkehard

    2008-05-01

    To analyze whether metabolite import into Pectobacterium atrosepticum cells affects bacterial virulence, we investigated the function of a carrier which exhibits significant structural homology to characterized carboxylic-acid transport proteins. The corresponding gene, ECA3984, previously annotated as coding for a Na(+)/sulphate carrier, in fact encodes a highly specific citrate transporter (Cit1) which is energized by the proton-motive force. Expression of the cit1 gene is stimulated by the presence of citrate in the growth medium and is substantial during growth of P. atrosepticum on potato tuber tissue. Infection of tuber tissue with P. atrosepticum leads to reduced citrate levels. P. atrosepticum insertion mutants, lacking the functional Cit1 protein, did not grow in medium containing citrate as the sole carbon source, showed a substantially reduced ability to macerate potato tuber tissue, and did not provoke reduced citrate levels in the plant tissue upon infection. We propose that citrate uptake into P. atrosepticum is critical for full bacterial virulence.

  5. Competitive and cooperative adsorption of arsenate and citrate on goethite

    Institute of Scientific and Technical Information of China (English)

    SHI Rong; JIA Yongfeng; WANG Chengzhi

    2009-01-01

    The fate of arsenic in natural environments is influenced by adsorption onto metal (hydr)oxides. The extent of arsenic adsorption is strongly affected by coexisting dissolved natural organic acids. Recently, some studies reported that there existed competitive adsorption between arsenate and citrate on goethite. Humic acid is known to interact strongly with arsenate by forming complexes in aqueous solution, hence it is necessary to undertake a comprehensive study of the adsorption of arsenate/citrate onto goethite in the presence of one another. The results showed that at the arsenate concentrations used in this study (0.006--0.27 mmol/L), citrate decreased arsenate adsorption at acidic pH but no effect was observed at alkaline pH. In comparison, citrate adsorption was inhibited at acidic pH, but enhanced at alkaline pH by arsenate. This was probably due to the formation of complex between arsenate and citrate like the case of arsenate with humic acid. These results implied that the mechanism of the adsorption of arsenate and citrate onto goethite in the presence of one another involved not only competition for binding sites, but the cooperation between the two species at the water-goethite interface as well.

  6. Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer

    OpenAIRE

    Fukushima, Tatsuya; Sia, Allyson K.; Allred, Benjamin E.; Nichiporuk, Rita; Zhou, Zhongrui; Andersen, Ulla N.; Raymond, Kenneth N.

    2012-01-01

    Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the Gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated ...

  7. Structure and Mechanism of the Diterpene Cyclase ent-Copalyl Diphosphate Synthase

    Science.gov (United States)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W.

    2011-01-01

    The structure of ent-copalyl diphosphate synthase (CPS) reveals three α-helical domains (α, β, γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in CPS but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions. PMID:21602811

  8. Aroma compounds generation in citrate metabolism of Enterococcus faecium: Genetic characterization of type I citrate gene cluster.

    Science.gov (United States)

    Martino, Gabriela P; Quintana, Ingrid M; Espariz, Martín; Blancato, Victor S; Magni, Christian

    2016-02-01

    Enterococcus is one of the most controversial genera belonging to Lactic Acid Bacteria. Research involving this microorganism reflects its dual behavior as regards its safety. Although it has also been associated to nosocomial infections, natural occurrence of Enterococcus faecium in food contributes to the final quality of cheese. This bacterium is capable of fermenting citrate, which is metabolized to pyruvate and finally derives in the production of the aroma compounds diacetyl, acetoin and 2,3 butanediol. Citrate metabolism was studied in E. faecium but no data about genes related to these pathways have been described. A bioinformatic approach allowed us to differentiate cit(-) (no citrate metabolism genes) from cit(+) strains in E. faecium. Furthermore, we could classify them according to genes encoding for the transcriptional regulator, the oxaloacetate decarboxylase and the citrate transporter. Thus we defined type I organization having CitI regulator (DeoR family), CitM cytoplasmic soluble oxaloacetate decarboxylase (Malic Enzyme family) and CitP citrate transporter (2-hydroxy-carboxylate transporter family) and type II organization with CitO regulator (GntR family), OAD membrane oxaloacetate decarboxylase complex (Na(+)-transport decarboxylase enzyme family) and CitH citrate transporter (CitMHS family). We isolated and identified 17 E. faecium strains from regional cheeses. PCR analyses allowed us to classify them as cit(-) or cit(+). Within the latter classification we could differentiate type I but no type II organization. Remarkably, we came upon E. faecium GM75 strain which carries the insertion sequence IS256, involved in adaptative and evolution processes of bacteria related to Staphylococcus and Enterococcus genera. In this work we describe the differential behavior in citrate transport, metabolism and aroma generation of three strains and we present results that link citrate metabolism and genetic organizations in E. faecium for the first time.

  9. Title A de novo synthesis citrate transporter VuMATE confers aluminum resistance in rice bean (vigna umbellata)

    Science.gov (United States)

    Al-activated organic acid anion efflux from roots is an important Al resistance mechanism in plants. We have conducted the homologous cloning and isolation of VuMATE (Vigna umbellata multidrug and toxic compound extrusion), a gene encoding a de novo citrate transporter from rice bean. Al treatment u...

  10. Smoking cessation early in pregnancy and birth weight, length, head circumference, and endothelial nitric oxide synthase activity in umbilical and chorionic vessels: an observational study of healthy singleton pregnancies

    DEFF Research Database (Denmark)

    Andersen, Malene R; Simonsen, Ulf; Uldbjerg, Niels;

    2009-01-01

    BACKGROUND: Reduced production of the vasodilator nitric oxide (NO) in fetal vessels in pregnant smokers may lower the blood flow to the fetus and result in lower birth weight, length, and head circumference. The present study measured endothelial NO synthase (eNOS) activity in fetal umbilical...... and chorionic vessels from nonsmokers, smokers, and ex-smokers and related the findings to the fetal outcome. METHODS AND RESULTS: Of 266 healthy, singleton pregnancies, 182 women were nonsmokers, 43 were smokers, and 41 stopped smoking early in pregnancy. eNOS activity and concentration were quantified...... in endothelial cells of the fetal vessels. Cotinine, lipid profiles, estradiol, l-arginine, and dimethylarginines that may affect NO production were determined in maternal and fetal blood. Serum cotinine verified self-reported smoking. Newborns of smokers had a lower weight (P

  11. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Andersen, Rune W.; Lo Leggio, Leila; Hove-Jensen, Bjarne

    2015-01-01

    PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate......The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg2+-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP....... A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii...

  12. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    Directory of Open Access Journals (Sweden)

    Zulfiqar Ahmad

    Full Text Available We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  13. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    Science.gov (United States)

    Ahmad, Zulfiqar; Laughlin, Thomas F; Kady, Ismail O

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  14. T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells.

    Science.gov (United States)

    Marigo, Ilaria; Zilio, Serena; Desantis, Giacomo; Mlecnik, Bernhard; Agnellini, Andrielly H R; Ugel, Stefano; Sasso, Maria Stella; Qualls, Joseph E; Kratochvill, Franz; Zanovello, Paola; Molon, Barbara; Ries, Carola H; Runza, Valeria; Hoves, Sabine; Bilocq, Amélie M; Bindea, Gabriela; Mazza, Emilia M C; Bicciato, Silvio; Galon, Jérôme; Murray, Peter J; Bronte, Vincenzo

    2016-09-12

    Effective cancer immunotherapy requires overcoming immunosuppressive tumor microenvironments. We found that local nitric oxide (NO) production by tumor-infiltrating myeloid cells is important for adoptively transferred CD8(+) cytotoxic T cells to destroy tumors. These myeloid cells are phenotypically similar to inducible nitric oxide synthase (NOS2)- and tumor necrosis factor (TNF)-producing dendritic cells (DC), or Tip-DCs. Depletion of immunosuppressive, colony stimulating factor 1 receptor (CSF-1R)-dependent arginase 1(+) myeloid cells enhanced NO-dependent tumor killing. Tumor elimination via NOS2 required the CD40-CD40L pathway. We also uncovered a strong correlation between survival of colorectal cancer patients and NOS2, CD40, and TNF expression in their tumors. Our results identify a network of pro-tumor factors that can be targeted to boost cancer immunotherapies.

  15. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet.

    Science.gov (United States)

    Huang, Hsiu-Chen; Lin, Jen-Kun

    2012-02-01

    Although green tea extract has been reported to suppress hyperlipidemia, it is unclear how tea extracts prepared from green, oolong, black and pu-erh teas modulate fatty acid synthase expression in rats fed on a high-fructose diet. In this animal study, we evaluated the hypolipidemic and hypoleptinemia effect of these four different tea leaves fed to male Wistar rats for 12 weeks. The results showed that a fructose-rich diet significantly elevated serum triacylglycerols, cholesterol, insulin, and leptin concentrations, as compared with those in the control group. Interestingly, consuming tea leaves for 12 weeks almost normalized the serum triacylglycerols concentrations. Again, rats fed with fructose/green tea and fructose/pu-erh tea showed the greatest reduction in serum TG, cholesterol, insulin and leptin levels. In contrast, serum cholesterol and insulin concentrations of the fructose/oolong tea-fed rats did not normalize. The relative epididymal adipose tissue weight was lower in all rats supplemented with tea leaves than those fed with fructose alone. There was molecular evidence of improved lipid homeostasis according to fatty acid synthase (FAS) protein expression. Furthermore, supplementation of green, black, and pu-erh tea leaves significantly decreased hepatic FAS mRNA and protein levels, and increased AMPK phosphorylation, compared with those of rats fed with fructose only. These findings suggest that the intake of green, black, and pu-erh tea leaves ameliorated the fructose-induced hyperlipidemia and hyperleptinemia state in part through the suppression of FAS protein levels and increased AMPK phosphorylation.

  16. Linking pseudouridine synthases to growth, development and cell competition.

    Science.gov (United States)

    Tortoriello, Giuseppe; de Celis, José F; Furia, Maria

    2010-08-01

    Eukaryotic pseudouridine synthases direct RNA pseudouridylation and bind H/ACA small nucleolar RNA (snoRNAs), which, in turn, may act as precursors of microRNA-like molecules. In humans, loss of pseudouridine synthase activity causes dyskeratosis congenita (DC), a complex systemic disorder characterized by cancer susceptibility, failures in ribosome biogenesis and telomere stability, and defects in stem cell formation. Considering the significant interest in deciphering the various molecular consequences of pseudouridine synthase failure, we performed a loss of function analysis of minifly (mfl), the pseudouridine synthase gene of Drosophila, in the wing disc, an advantageous model system for studies of cell growth and differentiation. In this organ, depletion of the mfl-encoded pseudouridine synthase causes a severe reduction in size by decreasing both the number and the size of wing cells. Reduction of cell number was mainly attributable to cell death rather than reduced proliferation, establishing that apoptosis plays a key role in the development of the loss of function mutant phenotype. Depletion of Mfl also causes a proliferative disadvantage in mosaic tissues that leads to the elimination of mutant cells by cell competition. Intriguingly, mfl silencing also triggered unexpected effects on wing patterning and cell differentiation, including deviations from normal lineage boundaries, mingling of cells of different compartments, and defects in the formation of the wing margin that closely mimic the phenotype of reduced Notch activity. These results suggest that a component of the pseudouridine synthase loss of function phenotype is caused by defects in Notch signalling.

  17. Alkali absorption and citrate excretion in calcium nephrolithiasis

    Science.gov (United States)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  18. Selective induction and subcellular distribution of ACONITASE 3 reveal the importance of cytosolic citrate metabolism during lipid mobilization in Arabidopsis.

    Science.gov (United States)

    Hooks, Mark A; Allwood, J William; Harrison, Joanna K D; Kopka, Joachim; Erban, Alexander; Goodacre, Royston; Balk, Janneke

    2014-10-15

    Arabidopsis thaliana has three genes that encode distinct aconitases (ACO), but little is known about the function of each isoenzyme during plant development. In newly emerged seedlings of Arabidopsis, transcript and protein levels for ACO3 were selectively induced to yield more than 80% of total aconitase activity. Characterization of knockout mutants for each of the three ACOs suggests a major role for only ACO3 in citrate metabolism. The aco3 mutant showed delayed early seedling growth, altered assimilation of [14C]acetate feeding and elevated citrate levels, which were nearly 4-fold greater than in wild-type, aco1 or aco2. However, both ACO1 and ACO2 are active in seedlings as shown by inhibition of aco3 growth by the toxin monofluoroacetate, and altered [14C]acetate assimilation and metabolite levels in aco1 and aco2. Relative levels of fumarate and malate differed between aco2 and aco3, indicating metabolically isolated pools of these metabolites in seedlings. Our inability to enrich ACO protein through mitochondria isolation, and the reduced cytosolic ACO activity of the iron-sulfur centre assembly mutant atm3-1, indicated a cytosolic localization of ACO3 in 3-day-old seedlings. Subsequently, we determined that more than 90% of ACO3 was cytosolic. We conclude that ACO3 is cytosolic in young seedlings and functions in citrate catabolism consistent with the operation of the classic glyoxylate and not direct catabolism of citrate within mitochondria.

  19. Treatment Efficacy and Safety During Plasma Exchange With Citrate Anticoagulation: A Randomized Study of 4 Versus 15% Citrate.

    Science.gov (United States)

    Antonic, Manja; Gubensek, Jakob; Buturovic-Ponikvar, Jadranka; Ponikvar, Rafael

    2016-04-01

    In plasma exchange (PE), contrary to dialysis, there is no ultrafiltration, and the volume of anticoagulant contributes to volume overload of the patient and might also reduce PE efficiency through dilution. To reduce the volume of citrate, we compared 4 and 15% citrate anticoagulation protocols in PE in a randomized study, aiming to evaluate PE efficacy, anticoagulation efficiency, and overall safety. In addition to standard biochemical analyses during PE treatments, the elimination rate (ER) of immunoglobulins was calculated to evaluate PE efficacy. Anticoagulation was evaluated by postfilter ionized calcium, visual evaluation of the extracorporeal system, and change in the sieving coefficient (SC) during PE. Accumulation of citrate was determined by calculating the total-to-ionized calcium ratio and measuring the citrate concentration after PE. One hundred forty procedures (70 in each group) were performed in 37 patients. The mean citrate infusion rate was 197 ± 10 mL/h in the 4% and 59 ± 5.5 mL/h in the 15% groups, respectively; the total volume of infused citrate was 502 ± 77 mL versus 164 ± 52 mL (P comparable. Ionized calcium was stable during the procedures, and there were no significant side effects. Although postfilter ionized calcium was on the upper limit of the target range (0.41 ± 0.16 vs. 0.37 ± 0.14 mmol/L, P = 0.38), the visual assessment score was excellent, and even a rise in SC was observed during the procedures in both groups. The total-to-ionized calcium ratio was increased in 20 versus 22% of procedures, and citrate concentrations after PE were also similar (1306 ± 441 vs. 1263 ± 405 μmol/L). To conclude, we were unable to show superior PE efficacy in the 15% citrate group, but we significantly reduced the infused volume, which is important in patients with fluid overload. Both citrate protocols were found to provide excellent anticoagulation without significant metabolic disturbances

  20. Arsenic mobilization by citrate and malate from a red mud-treated contaminated soil.

    Science.gov (United States)

    Castaldi, Paola; Silvetti, Margherita; Mele, Elena; Garau, Giovanni; Deiana, Salvatore

    2013-01-01

    The mobility and bioavailability of As in the soil-plant system can be affected by a number of organic acids that originate from the activity of plants and microorganisms. In this study we evaluated the ability of citrate and malate anions to mobilize As in a polluted subacidic soil (UP soil) treated with red mud (RM soil). Both anions promoted the mobilization of As from UP and RM soils, with citrate being more effective than malate. The RM treatment induced a greater mobility of As. The amounts of As released in RM and UP soils treated with 3.0 mmol L citric acid solution were 2.78 and 1.83 μmol g respectively, whereas an amount equal to 1.73 and 1.06 μmol g was found after the treatment with a 3.0 mmol L malic acid solution. The release of As in both soils increased with increasing concentration of organic acids, and the co-release of Al and Fe in solution also increased. The sequential extraction showed that Fe/Al (oxi)hydroxides in RM were the main phases involved in As binding in RM soil. Two possible mechanisms could be responsible for As solubilization: (i) competition of the organic anions for As adsorption sites and (ii) partial dissolution of the adsorbents (e.g., dissolution of iron and aluminum oxi-hydroxides) induced by citrate or malate and formation of complexes between dissolved Fe and Al and organic anions. This is the first report on the effect of malate and citrate on the As mobility in a polluted soil treated with RM.

  1. Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer.

    Science.gov (United States)

    Fukushima, Tatsuya; Sia, Allyson K; Allred, Benjamin E; Nichiporuk, Rita; Zhou, Zhongrui; Andersen, Ulla N; Raymond, Kenneth N

    2012-10-16

    Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated that B. cereus ATCC 14579 takes up (55)Fe radiolabeled ferric citrate and that a protein, BC_3466 [renamed FctC (ferric citrate-binding protein C)], binds ferric citrate. The dissociation constant (K(d)) of FctC at pH 7.4 with ferric citrate (molar ratio 1:50) is 2.6 nM. This is the tightest binding observed of any B. cereus siderophore-binding protein. Nano electrospray ionization-mass spectrometry (nano ESI-MS) analysis of FctC and ferric citrate complexes or citrate alone show that FctC binds diferric di-citrate, and triferric tricitrate, but does not bind ferric di-citrate, ferric monocitrate, or citrate alone. Significantly, the protein selectively binds triferric tricitrate even though this species is naturally present at very low equilibrium concentrations.

  2. 76 FR 33219 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2011-06-08

    ..., sodium citrate, and potassium citrate in their unblended forms, whether dry or in solution, and regardless of packaging type. The scope also includes blends of citric acid, sodium citrate, and potassium... acid, sodium citrate, and potassium citrate constitute 40 percent or more, by weight, of the blend....

  3. Theoretical Study on Sulfur Dioxide Absorption with Citrate Solution

    Institute of Scientific and Technical Information of China (English)

    薛娟琴; 洪涛; 王召启; 李林波

    2006-01-01

    The citrate absorption of SO2 is currently one of the most successful and economic methods to harness sulfur dioxide pollution.In order to theoretically elucidate the mechanism of SO2 absorption by citrate solution and provide theoretical instruction for experiments and industrial process, the theory of multi-buffer solution, combined with computer numerical calculation methods, was applied to study the distribution parameters of the components of the citrate solution in the process of SO2 absorption and the following results were obtained: (1) HCi2- and H2Ci- in the citrate solution played the dominant role in the absorption and desorption processes; (2) Through the calculation for the buffer capacity of citrate solution, it was found that the pH of the absorption and desorption solution should be in the range of 2~8, while at pH=4.5 the buffer capacity reached its maximum. Some valuable parameters were obtained, which are instructive to the ensuing experiments and industrial design.

  4. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    Directory of Open Access Journals (Sweden)

    Ting Xu

    2015-03-01

    Full Text Available The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.

  5. Strongly bound citrate stabilizes the apatite nanocrystals in bone

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y.-Y.; Rawal, A.; Schmidt-Rohr, K.

    2010-10-12

    Nanocrystals of apatitic calcium phosphate impart the organic-inorganic nanocomposite in bone with favorable mechanical properties. So far, the factors preventing crystal growth beyond the favorable thickness of ca. 3 nm have not been identified. Here we show that the apatite surfaces are studded with strongly bound citrate molecules, whose signals have been identified unambiguously by multinuclear magnetic resonance (NMR) analysis. NMR reveals that bound citrate accounts for 5.5 wt% of the organic matter in bone and covers apatite at a density of about 1 molecule per (2 nm){sup 2}, with its three carboxylate groups at distances of 0.3 to 0.45 nm from the apatite surface. Bound citrate is highly conserved, being found in fish, avian, and mammalian bone, which indicates its critical role in interfering with crystal thickening and stabilizing the apatite nanocrystals in bone

  6. Septal localization by membrane targeting sequences and a conserved sequence essential for activity at the COOH-terminus of Bacillus subtilis cardiolipin synthase.

    Science.gov (United States)

    Kusaka, Jin; Shuto, Satoshi; Imai, Yukiko; Ishikawa, Kazuki; Saito, Tomo; Natori, Kohei; Matsuoka, Satoshi; Hara, Hiroshi; Matsumoto, Kouji

    2016-04-01

    The acidic phospholipid cardiolipin (CL) is localized on polar and septal membranes and plays an important physiological role in Bacillus subtilis cells. ClsA, the enzyme responsible for CL synthesis, is also localized on septal membranes. We found that GFP fusion proteins of the enzyme with NH2-terminal and internal deletions retained septal localization. However, derivatives with deletions starting from the COOH-terminus (Leu482) ceased to localize to the septum once the deletion passed the Ile residue at 448, indicating that the sequence responsible for septal localization is confined within a short distance from the COOH-terminus. Two sequences, Ile436-Leu450 and Leu466-Leu478, are predicted to individually form an amphipathic α-helix. This configuration is known as a membrane targeting sequence (MTS) and we therefore refer to them as MTS2 and MTS1, respectively. Either one has the ability to affect septal localization, and each of these sequences by itself localizes to the septum. Membrane association of the constructs of this enzyme containing the MTSs was verified by subcellular fractionation of the cells. CL synthesis, in contrast, was abolished after deleting just the last residue, Leu482, in the COOH-terminal four amino acid residue sequence, Ser-Pro-Ile-Leu, which is highly conserved among bacterial CL synthases.

  7. The central administration of C75, a fatty acid synthase inhibitor, activates sympathetic outflow and thermogenesis in interscapular brown adipose tissue.

    Science.gov (United States)

    Cassolla, Priscila; Uchoa, Ernane Torres; Mansur Machado, Frederico Sander; Guimarães, Juliana Bohnen; Rissato Garófalo, Maria Antonieta; de Almeida Brito, Nilton; Kagohara Elias, Lucila Leico; Coimbra, Cândido Celso; do Carmo Kettelhut, Isis; Carvalho Navegantes, Luiz Carlos

    2013-12-01

    The present work investigated the participation of interscapular brown adipose tissue (IBAT), which is an important site for thermogenesis, in the anti-obesity effects of C75, a synthetic inhibitor of fatty acid synthase (FAS). We report that a single intracerebroventricular (i.c.v.) injection of C75 induced hypophagia and weight loss in fasted male Wistar rats. Furthermore, C75 induced a rapid increase in core body temperature and an increase in heat dissipation. In parallel, C75 stimulated IBAT thermogenesis, which was evidenced by a marked increase in the IBAT temperature that preceded the rise in the core body temperature and an increase in the mRNA levels of uncoupling protein-1. As with C75, an i.c.v. injection of cerulenin, a natural FAS inhibitor, increased the core body and IBAT temperatures. The sympathetic IBAT denervation attenuated all of the thermoregulatory effects of FAS inhibitors as well as the C75 effect on weight loss and hypophagia. C75 induced the expression of Fos in the paraventricular nucleus, preoptic area, dorsomedial nucleus, ventromedial nucleus, and raphé pallidus, all of which support a central role of FAS in regulating IBAT thermogenesis. These data indicate a role for IBAT in the increase in body temperature and hypophagia that is induced by FAS inhibitors and suggest new mechanisms explaining the weight loss induced by these compounds.

  8. Effect of sildenafil citrate on penile erection of rhesus macaques

    Institute of Scientific and Technical Information of China (English)

    Xun-BinHuang; Cheng-LiangXiong; Cheng-GaoYu; Jie-LingZhou; Ji-YunShen

    2004-01-01

    Aim: To examine the effect of sildenafil citrate on penile erection of male rhesus macaque. Methods:Twenty Macaca mulatta were divided into the sildenafil treated and the control groups of l0 animals each. The penile size, the corpus cavernosal electromyogram (EMG) and the intra-corpus cavernosal pressure (ICP) were determined. Results: The diameter of penis and the ICP were significantly increased and the corpus cavernosal EMG significantly reduced in the sildenafil group. Conclusion: Sildenafil citrate increases the penile size and ICP and reduces the corpus cavernosal EMG in male rhesus macaque. (Asian J Androl 2004 Sep; 6: 233-235)

  9. Hemodiafiltration using pre-dilutional on-line citrate dialysate: A new technique for regional citrate anticoagulation: A feasibility study

    Directory of Open Access Journals (Sweden)

    Radhouane Bousselmi

    2015-01-01

    Full Text Available A prospective, observational, feasibility study was carried out on four patients with end-stage renal failure undergoing bicarbonate hemodialysis to study the feasibility of an on-line hemodiafiltration technique using a citrate dialysate with pre-dilutional infusion of citrate as a technique for regional citrate anticoagulation. All patients had contraindication to systemic heparin anticoagulation. The dialysis technique consisted of an on-line hemodiafiltration with a citrate dialysate without calcium using a Fresenius 4008S dialysis machine and Fresenius Polysulfone F60 dialyzers. The infusion solution was procured directly from the dialysate and was infused into the arterial line. To avoid the risk of hypocalcemia, calcium gluconate was infused to the venous return line. The study was carried out in two stages. During the first stage, the citrate infusion rate was 80 mL/min and the calcium infusion rate was 9 mmol/h. At the second stage, the rates were 100 mL/min and 11 mmol/h, respectively. The primary endpoint of this study was the incidence of thrombosis in the extracorporeal blood circuit and/or the dialyzer. A total of 78 sessions were conducted. All the sessions were well tolerated clinically and there were no major incidents in any of the four patients. At the first stage of the study, there were five incidences of small clots in the venous blood chamber, an incidence of extracorporeal blood circuit thrombosis of 12.5%. At the second stage of the study, no cases of extracorporeal blood circuit or dialyzer thrombosis were noted. Hemodiafiltration with on-line citrate dialysate infusion to the arterial line is safe and allows an effective regional anticoagulation of the extracorporeal blood circuit without the need for systemic anticoagulation.

  10. n-Propyl gallate suppresses lipopolysaccharide-induced inducible nitric oxide synthase activation through protein kinase Cδ-mediated up-regulation of heme oxygenase-1 in RAW264.7 macrophages.

    Science.gov (United States)

    Jeon, Wookwang; Park, Seong Ji; Kim, Byung-Chul

    2017-04-15

    n-Propyl gallate is a synthetic phenolic antioxidant with potential anti-inflammatory effects. However, the underlying mechanism remains largely unknown. In the present study, we showed that n-propyl gallate increases the expression and activity of the heme oxygenase-1 (HO-1), a stress-inducible protein with potent anti-inflammatory activity, in RAW264.7 macrophages. The inhibition of the HO-1 activity by treatment with zinc (II) protoporphyrin IX (ZnPP) or by knockdown of the HO-1 expression with small interference RNA significantly reversed the inhibitory effect of n-Propyl gallate on activations of nuclear factor-κB (NF-κB) and inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide (LPS). An additional mechanism study using inhibitors of signaling kinases revealed the involvement of protein kinase Cδ (PKCδ) in the expression of HO-1 induced by n-Propyl gallate. Consistent with these results, n-Propyl gallate increased the intracellular levels of phosphorylated PKCδ in concentration- and time-dependent manners. The inhibitory effects of n-Propyl gallate on LPS-induced iNOS expression and nitric oxide production were also significantly attenuated by pretreatment with the PKCδ inhibitor, rottlerin, or by transfection with PKCδ (K376R), a kinase-inactive form of PKCδ. Taken together, these findings provide the first evidence that n-Propyl gallate exerts its anti-inflammatory effect through PKCδ-mediated up-regulation of HO-1 in macrophages.

  11. In Vitro Activities of ER-119884 and E5700, Two Potent Squalene Synthase Inhibitors, against Leishmania amazonensis: Antiproliferative, Biochemical, and Ultrastructural Effects▿

    Science.gov (United States)

    Fernandes Rodrigues, Juliany Cola; Concepcion, Juan Luis; Rodrigues, Carlos; Caldera, Aura; Urbina, Julio A.; de Souza, Wanderley

    2008-01-01

    ER-119884 and E5700, novel arylquinuclidine derivatives developed as cholesterol-lowering agents, were potent in vitro growth inhibitors of both proliferative stages of Leishmania amazonensis, the main causative agent of cutaneous leishmaniasis in South America, with the 50% inhibitory concentrations (IC50s) being in the low-nanomolar to subnanomolar range. The compounds were very potent noncompetitive inhibitors of native L. amazonensis squalene synthase (SQS), with inhibition constants also being in the nanomolar to subnanomolar range. Growth inhibition was strictly associated with the depletion of the parasite's main endogenous sterols and the concomitant accumulation of exogenous cholesterol. Using electron microscopy, we identified the intracellular structures affected by the compounds. A large number of lipid inclusions displaying different shapes and electron densities were observed after treatment with both SQS inhibitors, and these inclusions were associated with an intense disorganization of the membrane that surrounds the cell body and flagellum, as well as the endoplasmic reticulum and the Golgi complex. Cells treated with ER-119884 but not those treated with E5700 had an altered cytoskeleton organization due to an abnormal distribution of tubulin, and many were arrested at cytokinesis. A prominent contractile vacuole and a phenotype typical of programmed cell death were frequently found in drug-treated cells. The selectivity of the drugs was demonstrated with the JC-1 mitochondrial fluorescent label and by trypan blue exclusion tests with macrophages, which showed that the IC50s against the host cells were 4 to 5 orders of magnitude greater that those against the intracellular parasites. Taken together, our results show that ER-119884 and E5700 are unusually potent and selective inhibitors of the growth of Leishmania amazonensis, probably because of their inhibitory effects on de novo sterol biosynthesis at the level of SQS, but some of our

  12. Heat shock protein 70 protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus via inhibition of nuclear factor-κB activation-induced nitric oxide synthase II expression.

    Science.gov (United States)

    Chang, Chiung-Chih; Chen, Shang-Der; Lin, Tsu-Kung; Chang, Wen-Neng; Liou, Chia-Wei; Chang, Alice Y W; Chan, Samuel H H; Chuang, Yao-Chung

    2014-02-01

    Status epilepticus induces subcellular changes that may eventually lead to neuronal cell death in the hippocampus. Based on an animal model of status epilepticus, our laboratory showed previously that sustained hippocampal seizure activity activates nuclear factor-κB (NF-κB) and upregulates nitric oxide synthase (NOS) II gene expression, leading to apoptotic neuronal cell death in the hippocampus. The present study examined the potential modulatory role of heat shock protein 70 (HSP70) on NF-κB signaling in the hippocampus following experimental status epilepticus. In Sprague-Dawley rats, kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 subfield to induce prolonged bilateral seizure activity. Expression of HSP70 was elevated as early as 1h after the elicitation of sustained seizure activity, followed by a progressive elevation that peaked at 24h. Pretreatment with an antisense oligonucleotide against hsp70 decreased the HSP70 expression, and significantly augmented IκB kinase (IKK) activity and phosphorylation of IκBα, alongside enhanced nuclear translocation and DNA binding activity of NF-κB in the hippocampal CA3 neurons and glial cells. These cellular events were followed by enhanced upregulation of NOS II and peroxynitrite expression 3h after sustained seizure activity that led to an increase of caspase-3 and DNA fragmentation in the hippocampal CA3 neurons 7days after experimental status epilepticus. We concluded that HSP70 protects against apoptotic cell death induced by NF-κB activation and NOS II-peroxynitrite signaling cascade in the hippocampal CA3 and glial cells following experimental status epilepticus via suppression of IKK activity and deactivation of IκBα.

  13. The effect of sildenafil citrate (Viagra) on visual sensitivity.

    Science.gov (United States)

    Stockman, Andrew; Sharpe, Lindsay T; Tufail, Adnan; Kell, Philip D; Ripamonti, Caterina; Jeffery, Glen

    2007-06-08

    The erectile dysfunction medicine sildenafil citrate (Viagra) inhibits phosphodiesterase type 6 (PDE6), an essential enzyme involved in the activation and modulation of the phototransduction cascade. Although Viagra might thus be expected to impair visual performance, reports of deficits following its ingestion have so far been largely inconclusive or anecdotal. Here, we adopt tests sensitive to the slowing of the visual response likely to result from the inhibition of PDE6. We measured temporal acuity (critical fusion frequency) and modulation sensitivity in four subjects before and after the ingestion of a 100-mg dose of Viagra under conditions chosen to isolate the responses of either their short-wavelength-sensitive (S-) cone photoreceptors or their long- and middle-wavelength-sensitive (L- and M-) cones. When vision was mediated by S-cones, all subjects exhibited some statistically significant losses in sensitivity, which varied from mild to moderate. The two individuals who showed the largest S-cone sensitivity losses also showed comparable losses when their vision was mediated by the L- and M-cones. Some of the losses appear to increase with frequency, which is broadly consistent with Viagra interfering with the ability of PDE6 to shorten the time over which the visual system integrates signals as the light level increases. However, others appear to represent a roughly frequency-independent attenuation of the visual signal, which might also be consistent with Viagra lengthening the integration time (because it has the effect of increasing the effectiveness of steady background lights), but such changes are also open to other interpretations. Even for the more affected observers, however, Viagra is unlikely to impair common visual tasks, except under conditions of reduced visibility when objects are already near visual threshold.

  14. Polymeric architectures of bismuth citrate based on dimeric building blocks

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Four bismuth complexes, (H2En)[Bi2(cit)2(H2O)4/3]·(H2O)x (1), (H2En)3[Bi2(cit)2Cl4]·(H2O)x (2), (HPy)2[Bi2(cit)2(H2O)8/5]·(H2O)x (3) and (H2En)[Bi2(cit)2](H2O)x (4) [cit = citrate4-; En = ethylenediamine; Py = pyridine] have been synthesized and crystallized. The crystal structures reveal that the basic building blocks in all of these complexes are bismuth citrate dimeric units which combine to form polymeric architectures. The embedded protonated ethylenediamine and pyridine moieties in the polymeric frameworks have been identified by X-ray crystallography and solid-state cross polarization/magic angle spinning (CP/MAS) 13C NMR. Based on the framework of complex 1, a structural model of a clinically used antiulcer drug, ranitidine bismuth citrate (RBC) was generated. The behavior of the protonated amine-bismuth citrate complexes in acidic aqueous solution has been studied by electrospray ionization-mass spectrometry (ESI-MS).

  15. Genetics of mesophilic citrate fermenting lactic acid bacteria.

    NARCIS (Netherlands)

    David, S.

    1992-01-01

    A prerequisite for the stabilization of important features, such as aroma production, in starter strains used in dairy fermentations, is an extensive knowledge of the genetic basis of these properties. In this thesis the genetic basis of citrate metabolism in Lactococcus lactis subsp. lactis var. di

  16. Enhanced citrate production through gene insertion in Aspergillus niger

    DEFF Research Database (Denmark)

    Jongh, Wian de; Nielsen, Jens

    2007-01-01

    The effect of inserting genes involved in the reductive branch of the tricarboxylic acid (TCA) cycle on citrate production by Aspergillus niger was evaluated. Several different genes were inserted individually and in combination, i.e. malate dehydrogenase (mdh2) from Saccharomyces cerevisiae, two...

  17. {sup 14}N NQR spectrum of sildenafil citrate

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, David, E-mail: david.stephenson@sta.uwi.edu; Singh, Nadia [University of the West Indies, Chemistry Department (Trinidad and Tobago)

    2015-04-15

    The {sup 14}N nuclear quadrupole resonance (NQR) spectrum of sildenafil citrate tablets has been recorded allowing the quadrupole coupling constants and asymmetry parameters of all six unique nitrogen atoms in its structure to be determined. A density function calculation gives results that are largely in agreement with the experimental values.

  18. Bacillus caldolyticus prs gene encoding phosphoribosyl-diphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-1-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  19. Ca2+-Citrate Uptake and Metabolism in Lactobacillus casei ATCC 334

    NARCIS (Netherlands)

    Mortera, Pablo; Pudlik, Agata; Magni, Christian; Alarcon, Sergio; Lolkema, Juke S.

    2013-01-01

    The putative citrate metabolic pathway in Lactobacillus casei ATCC 334 consists of the transporter CitH, a proton symporter of the citrate-divalent metal ion family of transporters CitMHS, citrate lyase, and the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Resting cells of Lactobacill

  20. Properties of phosphorylated thymidylate synthase

    DEFF Research Database (Denmark)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr;

    2015-01-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichin......Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat...

  1. Structure of the dimeric form of CTP synthase from Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Lauritsen, Iben; Willemoës, Martin; Jensen, Kaj Frank;

    2011-01-01

    CTP synthase catalyzes the last committed step in de novo pyrimidine-nucleotide biosynthesis. Active CTP synthase is a tetrameric enzyme composed of a dimer of dimers. The tetramer is favoured in the presence of the substrate nucleotides ATP and UTP; when saturated with nucleotide, the tetramer c...

  2. Biphenyl synthase, a novel type III polyketide synthase.

    Science.gov (United States)

    Liu, B; Raeth, T; Beuerle, T; Beerhues, L

    2007-05-01

    Biphenyls and dibenzofurans are the phytoalexins of the Maloideae, a subfamily of the economically important Rosaceae. The carbon skeleton of the two classes of antimicrobial secondary metabolites is formed by biphenyl synthase (BIS). A cDNA encoding this key enzyme was cloned from yeast-extract-treated cell cultures of Sorbus aucuparia. BIS is a novel type III polyketide synthase (PKS) that shares about 60% amino acid sequence identity with other members of the enzyme superfamily. Its preferred starter substrate is benzoyl-CoA that undergoes iterative condensation with three molecules of malonyl-CoA to give 3,5-dihydroxybiphenyl via intramolecular aldol condensation. BIS did not accept CoA-linked cinnamic acids such as 4-coumaroyl-CoA. This substrate, however, was the preferential starter molecule for chalcone synthase (CHS) that was also cloned from S. aucuparia cell cultures. While BIS expression was rapidly, strongly and transiently induced by yeast extract treatment, CHS expression was not. In a phylogenetic tree, BIS grouped together closely with benzophenone synthase (BPS) that also uses benzoyl-CoA as starter molecule but cyclizes the common intermediate via intramolecular Claisen condensation. The molecular characterization of BIS thus contributes to the understanding of the functional diversity and evolution of type III PKSs.

  3. Genetics Home Reference: GM3 synthase deficiency

    Science.gov (United States)

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions GM3 synthase deficiency GM3 synthase ...

  4. Characterisation of the tryptophan synthase alpha subunit in maize

    Directory of Open Access Journals (Sweden)

    Gierl Alfons

    2008-04-01

    Full Text Available Abstract Background In bacteria, such as Salmonella typhimurium, tryptophan is synthesized from indole-3-glycerole phosphate (IGP by a tryptophan synthase αββα heterotetramer. Plants have evolved multiple α (TSA and β (TSB homologs, which have probably diverged in biological function and their ability of subunit interaction. There is some evidence for a tryptophan synthase (TS complex in Arabidopsis. On the other hand maize (Zea mays expresses the TSA-homologs BX1 and IGL that efficiently cleave IGP, independent of interaction with TSB. Results In order to clarify, how tryptophan is synthesized in maize, two TSA homologs, hitherto uncharacterized ZmTSA and ZmTSAlike, were functionally analyzed. ZmTSA is localized in plastids, the major site of tryptophan biosynthesis in plants. It catalyzes the tryptophan synthase α-reaction (cleavage of IGP, and forms a tryptophan synthase complex with ZmTSB1 in vitro. The catalytic efficiency of the α-reaction is strongly enhanced upon complex formation. A 160 kD tryptophan synthase complex was partially purified from maize leaves and ZmTSA was identified as native α-subunit of this complex by mass spectrometry. ZmTSAlike, for which no in vitro activity was detected, is localized in the cytosol. ZmTSAlike, BX1, and IGL were not detectable in the native tryptophan synthase complex in leaves. Conclusion It was demonstrated in vivo and in vitro that maize forms a tryptophan synthase complex and ZmTSA functions as α-subunit in this complex.

  5. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway.

    Science.gov (United States)

    Taura, Futoshi; Tanaka, Shinji; Taguchi, Chiho; Fukamizu, Tomohide; Tanaka, Hiroyuki; Shoyama, Yukihiro; Morimoto, Satoshi

    2009-06-18

    Alkylresorcinol moieties of cannabinoids are derived from olivetolic acid (OLA), a polyketide metabolite. However, the polyketide synthase (PKS) responsible for OLA biosynthesis has not been identified. In the present study, a cDNA encoding a novel PKS, olivetol synthase (OLS), was cloned from Cannabis sativa. Recombinant OLS did not produce OLA, but synthesized olivetol, the decarboxylated form of OLA, as the major reaction product. Interestingly, it was also confirmed that the crude enzyme extracts from flowers and rapidly expanding leaves, the cannabinoid-producing tissues of C. sativa, also exhibited olivetol-producing activity, suggesting that the native OLS is functionally expressed in these tissues. The possibility that OLS could be involved in OLA biosynthesis was discussed based on its catalytic properties and expression profile.

  6. Mayenite Synthesized Using the Citrate Sol-Gel Method

    Energy Technology Data Exchange (ETDEWEB)

    Ude, Sabina N [ORNL; Rawn, Claudia J [ORNL; Meisner, Roberta A [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Kirkham, Melanie J [ORNL; Jones, Gregory L. [University of Tennessee, Knoxville (UTK); Payzant, E Andrew [ORNL

    2014-01-01

    A citrate sol-gel method has been used to synthesize mayenite (Ca12Al14O33). X-ray powder diffraction data show that the samples synthesized using the citrate sol-gel method contained CaAl2O4 and CaCO3 along with mayenite when fired ex-situ in air at 800 C but were single phase when fired at 900 C and above. Using high temperature x-ray diffraction, data collected in-situ in air at temperatures of 600 C and below showed only amorphous content; however, data collected at higher temperatures indicated the first phase to crystallize is CaCO3. High temperature x-ray diffraction data collected in 4% H2/96% N2 does not show the presence of CaCO3, and Ca12Al14O33 starts to form around 850 C. In comparison, x-ray powder diffraction data collected ex-situ on samples synthesized using traditional solid-state synthesis shows that single phase was not reached until samples were fired at 1350 C. DTA/TGA data collected either in a nitrogen environment or air on samples synthesized using the citrate gel method suggest the complete decomposition of metastable phases and the formation of mayenite at 900 C, although the phase evolution is very different depending on the environment. Brunauer-Emmett-Teller (BET) measurements showed a slightly higher surface area of 7.4 0.1 m2/g in the citrate gel synthesized samples compared to solid-state synthesized sample with a surface area of 1.61 0.02 m2/g. SEM images show a larger particle size for samples synthesized using the solid-state method compared to those synthesized using the citrate gel method.

  7. A Single Amino Acid Substitution Converts Benzophenone Synthase into Phenylpyrone Synthase*

    Science.gov (United States)

    Klundt, Tim; Bocola, Marco; Lütge, Maren; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2009-01-01

    Benzophenone metabolism provides a number of plant natural products with fascinating chemical structures and intriguing pharmacological activities. Formation of the carbon skeleton of benzophenone derivatives from benzoyl-CoA and three molecules of malonyl-CoA is catalyzed by benzophenone synthase (BPS), a member of the superfamily of type III polyketide synthases. A point mutation in the active site cavity (T135L) transformed BPS into a functional phenylpyrone synthase (PPS). The dramatic change in both substrate and product specificities of BPS was rationalized by homology modeling. The mutation may open a new pocket that accommodates the phenyl moiety of the triketide intermediate but limits polyketide elongation to two reactions, resulting in phenylpyrone formation. 3-Hydroxybenzoyl-CoA is the second best starter molecule for BPS but a poor substrate for PPS. The aryl moiety of the triketide intermediate may be trapped in the new pocket by hydrogen bond formation with the backbone, thereby acting as an inhibitor. PPS is a promising biotechnological tool for manipulating benzoate-primed biosynthetic pathways to produce novel compounds. PMID:19710020

  8. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages

    Science.gov (United States)

    Belkheir, Asma K.; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  9. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages.

    Science.gov (United States)

    Belkheir, Asma K; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents.

  10. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    OpenAIRE

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control...

  11. Akt2 influences glycogen synthase activity in human skeletal muscle through regulation of NH2-terminal (sites 2+2a) phosphorylation

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Birk, Jesper Bratz; Richter, Erik;

    2013-01-01

    was positively associated with pAkt-T308 (P=0.01) and Akt2 activity (P=0.04), but not pAkt-S473 or IRS-1-PI3K activity. Furthermore, pAkt-T308 and Akt2 activity were negatively associated with NH(2)-terminal GS phosphorylation (P=0.001 for both), which in turn was negatively associated with insulin-stimulated GS...

  12. Metformin-clomiphene citrate vs. clomiphene citrate alone: Polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Aqueela Ayaz

    2013-01-01

    Full Text Available Background: Polycystic ovary syndrome (PCOS is the commonest endocrinopathy in women that is associated with reproductive and metabolic disorders. Objectives: We compared the ovulation and conception rates after the treatment with clomiphene citrate (CC alone and in combination with metformin in infertile patients presented with polycystic ovarian syndrome (PCOS. Materials and Methods: This randomized controlled trial of independent cases and controls was conducted at the Department of Obstetrics and Gynecology, Hera General Hospital, Makkah, Saudi Arabia from February 01 to December 31, 2008. The 42 subjects diagnosed as PCOS were divided into group A and B (21 subjects in each for management with CC + metformin and CC alone, respectively. Group A received 500 mg three times a day of metformin continuously from the first cycle for 6 months or till pregnancy was confirmed. In both groups CC was started at a dose of 50 mg from day-2 till day-6 of the menstrual cycle. The dose of CC was increased to 100 mg in second and 150 mg in third cycle, and then remained 150 mg for the remaining three cycles. With ovulation the dose of CC was unaltered in both groups. Data were analyzed using Statistical Package for the Social Sciences (SPSS version 16. Results: More than 50% females in both groups were had body mass index > 25. Group A achieved high rate of regular cycles, ovulation success, and conception than group B (71.4% vs. 38.1%; P = 0.03, (76.2% vs. 38.1%; P = 0.021, and (66.6% vs. 28.6%; P = 0.01, respectively. Conclusion: Management with metformin + CC increased the ovulation and conception rates.

  13. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    Science.gov (United States)

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  14. Regional citrate anticoagulation in critically ill patients during continuous blood purification

    Institute of Scientific and Technical Information of China (English)

    龚德华; 季大玺; 徐斌; 谢红浪; 刘云; 黎磊石

    2003-01-01

    Objectives To evaluate the safety and define the contraindication of regional citrate anticoagulation treatment on various critically ill patients being treated by continuous blood purification, who also had bleeding tendencies. Methods Forty critically ill patients being treated by continuous blood purification (CBP) were involved in this study. Due to their bleeding tendencies, regional citrate anticoagulation treatment was given to all of them. Those with hepatic function impairment (n=10) were classified as Group A, those with hypoxemia were classified as Group B (n=10), and the others as Group C (n=20). Blood samples were collected before treatment, and at 4, 12, 24, 36, and 48 hour intervals during CBP. These samples then were used arterial blood gas analysis, whole blood activated clotting time (WBACT) pre- and post-filter, and serum ionized calcium examination. Results WBACT pre-filter showed little fluctuant through the 48hr period of CBP, and WBACT post-filter showed obvious prolongation than that of the pre-filter (P<0.05) at all time points. Metabolic acidosis was found in Group A patients before CBP, and improved during CBP. Normal acid-base conditions of patients were disturbed and deteriorated in Group B during CBP, but not in Group C. Serum ionized calcium was maintained at a normal range during CBP in Group A and C patients, but declined significantly in Group B patients (vs. pre-treatment, P<0.05). Conclusions Regional citrate anticoagulation can be safely used in conjunction with CBP treatment for patients with hepatic function impairment , but may induce acidosis and a decline in serum ionized calcium when used with hypoxemic patients.

  15. Activin suppresses LPS-induced Toll-like receptor, cytokine and inducible nitric oxide synthase expression in normal human melanocytes by inhibiting NF-κB and MAPK pathway activation.

    Science.gov (United States)

    Kim, Young Il; Park, Seung-Won; Kang, In Jung; Shin, Min Kyung; Lee, Mu-Hyoung

    2015-10-01

    Activins are dimeric growth and differentiation factors that belong to the transforming growth factor (TGF)-β superfamily of structurally related signaling proteins. In the present study, we examined the mechanisms through which activin regulates the lipopolysaccharide (LPS)-induced transcription of Toll-like receptors (TLRs), cytokines and inducible nitric oxide synthase (iNOS) in human melanocytes, as well as the involvement of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling. Cell proliferation was analyzed by cell viability assay, mRNA expression was detected by RT-qPCR, and protein expression was measured by western blot analysis. LPS increased the mRNA expression of TLRs (TLR1-10) and cytokines [interleukin (IL)-1β, IL-6, IL-8 and TNF-α], as well as the mRNA and protein expression of iNOS. Activin decreased the LPS-induced TLR and cytokine mRNA expression, as well as the LPS-induced iNOS mRNA and protein expression. In addition, activin suppressed NF-κB p65 activation and blocked inhibitor of NF-κB (IκBα) degradation in LPS-stimulated melanocytes, and reduced LPS-induced p38 MAPK and MEK/ERK activation. On the whole, our results demonstrated that activin inhibited TLR and cytokine expression in LPS-activated normal human melanocytes and suppressed LPS-induced iNOS gene expression. Moreover, the anti-inflammatory effects of activin were shown to be mediated through the suppression of NF-κB and MAPK signaling, resulting in reduced TLR and iNOS expression, and in the inhibition of inflammatory cytokine expression.

  16. Density functional theory calculations on the active site of biotin synthase: mechanism of S transfer from the Fe(2)S(2) cluster and the role of 1st and 2nd sphere residues.

    Science.gov (United States)

    Rana, Atanu; Dey, Subal; Agrawal, Amita; Dey, Abhishek

    2015-10-01

    Density functional theory (DFT) calculations are performed on the active site of biotin synthase (BS) to investigate the sulfur transfer from the Fe(2)S(2) cluster to dethiobiotin (DTB). The active site is modeled to include both the 1st and 2nd sphere residues. Molecular orbital theory considerations and calculation on smaller models indicate that only an S atom (not S²⁻) transfer from an oxidized Fe(2)S(2) cluster leads to the formation of biotin from the DTB using two adenosyl radicals generated from S-adenosyl-L-methionine. The calculations on larger protein active site model indicate that a 9-monothiobiotin bound reduced cluster should be an intermediate during the S atom insertion from the Fe(2)S(2) cluster consistent with experimental data. The Arg260 bound to Fe1, being a weaker donor than cysteine bound to Fe(2), determines the geometry and the electronic structure of this intermediate. The formation of this intermediate containing the C9-S bond is estimated to have a ΔG(≠) of 17.1 kcal/mol while its decay by the formation of the 2nd C6-S bond is calculated to have a ΔG(≠) of 29.8 kcal/mol, i.e. the 2nd C-S bond formation is calculated to be the rate determining step in the cycle and it leads to the decay of the Fe(2)S(2) cluster. Significant configuration interaction (CI), present in these transition states, helps lower the barrier of these reactions by ~30-25 kcal/mol relative to a hypothetical outer-sphere reaction. The conserved Phe285 residue near the Fe(2)S(2) active site determines the stereo selectivity at the C6 center of this radical coupling reaction. Reaction mechanism of BS investigated using DFT calculations. Strong CI and the Phe285 residue control the kinetic rate and stereochemistry of the product.

  17. Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase.

    Science.gov (United States)

    Idelman, Gila; Smith, Darcey L H; Zucker, Stephen D

    2015-08-01

    It has been previously shown that bilirubin prevents the up-regulation of inducible nitric oxide synthase (iNOS) in response to LPS. The present study examines whether this effect is exerted through modulation of Toll-Like Receptor-4 (TLR4) signaling. LPS-stimulated iNOS and NADPH oxidase (Nox) activity in RAW 264.7 murine macrophages was assessed by measuring cellular nitrate and superoxide ( [Formula: see text] ) production, respectively. The generation of both nitrate and [Formula: see text] in response to LPS was suppressed by TLR4 inhibitors, indicating that activation of iNOS and Nox is TLR4-dependent. While treatment with superoxide dismutase (SOD) and bilirubin effectively abolished LPS-mediated [Formula: see text] production, hydrogen peroxide and nitrate release were inhibited by bilirubin and PEG-catalase, but not SOD, supporting that iNOS activation is primarily dependent upon intracellular H2O2. LPS treatment increased nuclear translocation of the redox-sensitive transcription factor Hypoxia Inducible Factor-1α (HIF-1α), an effect that was abolished by bilirubin. Cells transfected with murine iNOS reporter constructs in which the HIF-1α-specific hypoxia response element was disrupted exhibited a blunted response to LPS, supporting that HIF-1α mediates Nox-dependent iNOS expression. Bilirubin, but not SOD, blocked the cellular production of interferon-β, while interleukin-6 production remained unaffected. These data support that bilirubin inhibits the TLR4-mediated up-regulation of iNOS by preventing activation of HIF-1α through scavenging of Nox-derived reactive oxygen species. Bilirubin also suppresses interferon-β release via a ROS-independent mechanism. These findings characterize potential mechanisms for the anti-inflammatory effects of bilirubin.

  18. The promoter activities of sucrose phosphate synthase genes in rice, OsSPS1 and OsSPS11, are controlled by light and circadian clock, but not by sucrose

    Directory of Open Access Journals (Sweden)

    Madoka eYonekura

    2013-03-01

    Full Text Available Although sucrose plays a role in sugar sensing and its signaling pathway, little is known about the regulatory mechanisms of the expressions of plant sucrose-related genes. Our previous study on the expression of the sucrose phosphate synthase gene family in rice (OsSPSs suggested the involvement of sucrose sensing and/or circadian rhythm in the transcriptional regulation of OsSPS. To examine whether the promoters of OsSPSs can be controlled by sugars and circadian clock, we produced transgenic rice plants harboring a promoter–luciferase construct for OsSPS1 or OsSPS11 and analyzed the changes in the promoter activities by monitoring bioluminescence from intact transgenic plants in real time. Transgenic plants fed sucrose, glucose, or mannitol under continuous light conditions showed no changes in bioluminescence intensity; meanwhile, the addition of sucrose increased the concentration of sucrose in the plants, and the mRNA levels of OsSPS remained constant. These results suggest that these OsSPS promoters may not be regulated by sucrose levels in the tissues. Next, we investigated the changes in the promoter activities under 12-h light/12-h dark cycles and continuous light conditions. Under the light–dark cycle, both OsSPS1 and OsSPS11 promoter activities were low in the dark and increased rapidly after the beginning of the light period. When the transgenic rice plants were moved to the continuous light condition, both POsSPS1::LUC and POsSPS11::LUC reporter plants exhibited circadian bioluminescence rhythms; bioluminescence peaked during the subjective day with a 27-h period: in the early morning as for OsSPS1 promoter and midday for OsSPS11 promoter. These results indicate that these OsSPS promoters are controlled by both light illumination and circadian clock and that the regulatory mechanism of promoter activity differs between the 2 OsSPS genes.

  19. 78 FR 34642 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2013-06-10

    ... dihydrate and anhydrous forms of sodium citrate, otherwise known as citric acid sodium salt, and the monohydrate and monopotassium forms of potassium citrate.\\1\\ Sodium citrate also includes both trisodium... monosodium salt, respectively. Citric acid and sodium citrate are classifiable under 2918.14.0000 and...

  20. Distribution of vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, nitric oxide synthase, and their receptors in human and rat sphenopalatine ganglion

    DEFF Research Database (Denmark)

    Csati, A; Tajti, J; Kuris, A

    2012-01-01

    and VPAC1 immunoreactivity was found in the satellite glial cells of both human and rat. Western blot revealed protein expression of PAC1, VPAC1, and VPAC2 in rat SPG. The trigeminal-autonomic reflex may be active in migraine attacks. We hypothesized that VIP, PACAP, NOS, PAC1, VPAC1, and VPAC2 play a role...... in the activation of parasympathetic cranial outflow during migraine attacks....

  1. Impaired insulin activation and dephosphorylation of glycogen synthase in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment

    DEFF Research Database (Denmark)

    Glintborg, Dorte; Højlund, Kurt; Andersen, Nicoline Resen

    2008-01-01

    . No significant abnormalities in GSK-3alpha or -3beta were found in PCOS subjects. Pioglitazone treatment improved insulin-stimulated glucose metabolism and GS activity in PCOS (all P ... of GS including absent dephosphorylation at sites 2+2a contributes to insulin resistance in skeletal muscle in PCOS. The ability of pioglitazone to enhance insulin sensitivity, in part, involves improved insulin action on GS activity and dephosphorylation at NH2-terminal sites....

  2. Interactions of vanadium(V)-citrate complexes with the sarcoplasmic reticulum calcium pump.

    Science.gov (United States)

    Aureliano, Manuel; Tiago, Teresa; Gândara, Ricardo M C; Sousa, Andrea; Moderno, A; Kaliva, M; Salifoglou, A; Duarte, Rui O; Moura, José J G

    2005-12-01

    Among the biotargets interacting with vanadium is the calcium pump from the sarcoplasmic reticulum (SR). To this end, initial research efforts were launched with two vanadium(V)-citrate complexes, namely (NH(4))(6)[V(2)O(4)(C(6)H(4)O(7))(2)].6H(2)O and (NH(4))(6)[V(2)O(2)(O(2))(2)(C(6)H(4)O(7))(2)].4H(2)O, potentially capable of interacting with the SR calcium pump by combining kinetic studies with (51)V NMR spectroscopy. Upon dissolution in the reaction medium (concentration range: 4-0.5mM), both vanadium(V):citrate (VC) and peroxovanadium(V):citrate (PVC) complexes are partially converted into vanadate oligomers. A 1mM solution of the PVC complex, containing 184microM of the PVC complex, 94microM oxoperoxovanadium(V) (PV) species, 222microM monomeric (V1), 43microM dimeric (V2) and 53microM tetrameric (V4) species, inhibits Ca(2+) accumulation by 75 %, whereas a solution of the VC complex of the same vanadium concentration, containing 98microM of the VC complex, 263microM monomeric (V1), 64microM dimeric (V2) and 92microM tetrameric (V4) species inhibits the calcium pump activity by 33 %. In contrast, a 1 mM metavanadate solution, containing 460microM monomeric (V1), 90.2microM dimeric (V2) and 80microM tetrameric (V4) species, has no effect on Ca(2+) accumulation. The NMR signals from the VC complex (-548.0ppm), PVC complex (-551.5ppm) and PV (-611.1ppm) are broadened upon SR vesicle addition (2.5mg/ml total protein). The relative order for the half width line broadening of the NMR signals, which reflect the interaction with the protein, was found to be V4>PVC>VC>PV>V2=V1=1, with no effect observed for the V1 and V2 signals. Putting it all together the effects of two vanadium(V)-citrate complexes on the modulation of calcium accumulation and ATP hydrolysis by the SR calcium pump reflected the observed variable reactivity into the nature of key species forming upon dissolution of the title complexes in the reaction media.

  3. Activating the Wnt/β-Catenin Pathway for the Treatment of Melanoma--Application of LY2090314, a Novel Selective Inhibitor of Glycogen Synthase Kinase-3.

    Directory of Open Access Journals (Sweden)

    Jennifer M Atkinson

    Full Text Available It has previously been observed that a loss of β-catenin expression occurs with melanoma progression and that nuclear β-catenin levels are inversely proportional to cellular proliferation, suggesting that activation of the Wnt/β-catenin pathway may provide benefit for melanoma patients. In order to further probe this concept we tested LY2090314, a potent and selective small-molecule inhibitor with activity against GSK3α and GSK3β isoforms. In a panel of melanoma cell lines, nM concentrations of LY2090314 stimulated TCF/LEF TOPFlash reporter activity, stabilized β-catenin and elevated the expression of Axin2, a Wnt responsive gene and marker of pathway activation. Cytotoxicity assays revealed that melanoma cell lines are very sensitive to LY2090314 in vitro (IC50 ~10 nM after 72hr of treatment in contrast to other solid tumor cell lines (IC50 >10 uM as evidenced by caspase activation and PARP cleavage. Cell lines harboring mutant B-RAF or N-RAS were equally sensitive to LY2090314 as were those with acquired resistance to the BRAF inhibitor Vemurafenib. shRNA studies demonstrated that β-catenin stabilization is required for apoptosis following treatment with the GSK3 inhibitor since the sensitivity of melanoma cell lines to LY290314 could be overcome by β-catenin knockdown. We further demonstrate that in vivo, LY2090314 elevates Axin2 gene expression after a single dose and produces tumor growth delay in A375 melanoma xenografts with repeat dosing. The activity of LY2090314 in preclinical models suggests that the role of Wnt activators for the treatment of melanoma should be further explored.

  4. Sildenafil citrate and uteroplacental perfusion in fetal growth restriction

    Directory of Open Access Journals (Sweden)

    Marzieh Vahid Dastjerdi

    2012-01-01

    Full Text Available Background: To determine whether the phosphodiesterase type 5 inhibitor, Sildenafil citrate, affects uteroplacental perfusion. Materials and Methods: Based on a randomized double-blinded and placebo-controlled trial, forty one pregnant women with documented intrauterine growth retardation at 24-37 weeks of gestation were evaluated for the effect of a single dose of Sildenafil citrate on uteroplacental circulation as determined by Doppler ultrasound study of the umbilical and middle cerebral arteries. Statistical analysis included χ2 -test to compare proportions, and independent-samples t-test and paired student′s t-test to compare continuous variables. Results: Sildenafil group fetuses demonstrated a significant decrease in systolic/diastolic ratios (0.60 [SD 0.40] [95% Cl 0.37-0.84], P=0.000, and pulsatility index (0.12 [SD 0.15] [95% Cl 0.02-0.22], P=0.019 for the umbilical artery and a significant increase in middle cerebral artery pulsatility index (MCA PI (0.51 [SD 0.60] [95% Cl 0.16-0.85], P=0.008. Conclusion: Doppler velocimetry index values reflect decreased placental bed vascular resistance after Sildenafil. Sildenafil citrate can improve fetoplacental perfusion in pregnancies complicated by intrauterine growth restriction. It could be a potential therapeutic strategy to improve uteroplacental blood flow in pregnancies with fetal growth restriction (FGR.

  5. Cardiovascular safety of sildenafil citrate (Viagra): an updated perspective.

    Science.gov (United States)

    Jackson, Graham; Montorsi, Piero; Cheitlin, Melvin D

    2006-09-01

    Sildenafil citrate (Viagra; Pfizer Inc, New York, NY) relaxes vascular smooth muscle, resulting in modest reductions in blood pressure that are insufficient to stimulate a reflex increase in heart rate. These blood pressure reductions are similar for healthy men and men with coronary artery disease (CAD) or who use antihypertensive drugs. Sildenafil does not affect the force of cardiac contraction, and cardiac performance is unaffected. Sildenafil is mildly vasodilating in the coronary circulation and does not increase the risk of ventricular arrhythmia. During exercise and recovery, sildenafil does not cause clinically significant alterations in hemodynamic parameters in men with CAD, and it has no negative effects on coronary oxygen consumption, ischemia, or exercise capacity. Clinical trial data from >13,000 patients, 7 years of international postmarketing data, and observational studies of >28,000 men in the United Kingdom and 3813 men in the European Union reveal that (1) there are no special cardiovascular concerns when sildenafil is used in accordance with product labeling and (2) the risk for serious events such as myocardial infarction or death is not increased. However, because safety has not been established in patients with recent serious cardiovascular events, hypotension or uncontrolled hypertension, or retinitis pigmentosa, physicians should consult their current local prescribing information before prescribing sildenafil for these patients. Among men with erectile dysfunction treated with sildenafil, the adverse event profile is similar overall to that in men with comorbid cardiovascular disease (CVD), it is similar between those with and without CAD, and it is similar between those who take and those who do not take antihypertensive drugs (regardless of the number or class). In a controlled interaction study of sildenafil and amlodipine, the mean additional reduction in supine blood pressure was 8 mm Hg systolic and 7 mm Hg diastolic. Sildenafil

  6. The influence of ferric (III citrate on ATP-hydrolases of Desulfuromonas acetoxidans ІМV В-7384

    Directory of Open Access Journals (Sweden)

    O. Maslovska

    2013-02-01

    Full Text Available Desulfuromonas acetoxidans obtains energy for growth by the anaerobic oxidation of organic compounds with the carbon dioxide formation. It was found that ferrum and manganese are used as terminal electron acceptors in the processes of anaerobic respiration, such as dissimilative Fe3+- and Mn4+-reduction, carried out by these bacteria (Lovely, 1991. D. acetoxidans ІМV B-7384 can be used as anode biocatalyst in microbial fuel cell with high electron recovery through acetate oxidation to the electric current as a result of electron transfer to the anode or 3d-type transition metals, such as ferrum and manganese, in the process of their reduction. Investigation of biochemical changes of D. acetoxidans ІМV B-7384 under the influence of Fe (III compounds is important for optimization of the process of bacterial electricity generation. ATP-hydrolase is located in cytoplasmic membrane, and its subunits are exposed to both the cytoplasm and the external environment. Therefore, the changes of that enzyme activity can be used as an indicator of various stress exposure. Presence of ferric iron ions in the bacterial growth medium could catalyze generation of organic reactive oxygen species, such as peroxyl (ROO- and alkoxyl (RO- radicals. Lipid peroxidation is one of the main reasons of cell damage and it’s following death under the influence of reactive oxygen metabolites. It is known that lipid peroxidation and membrane transport processes are somehow interrelated, but mechanisms of such interaction are still unidentified. In our previous researche we have shown the influence of ferric (III citrate on the intensity of lipid peroxidation of D. аcetoxidans ІМV В-7384. Significant increase of the content of lipid peroxidation products (lipid hydroperoxides, conjugated dienes and malondialdehyde in bacterial cells has been observed under the addition of ferric (III citrate into the cultural medium. The increase of the concentration of lipid

  7. Evolution and function of phytochelatin synthases.

    Science.gov (United States)

    Clemens, Stephan

    2006-02-01

    Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy against metal excess is the expression of high-affinity binding sites to suppress uncontrolled binding of metal ions to physiologically important functional groups. The synthesis of phytochelatins, glutathione-derived metal binding peptides, represents the major detoxification mechanism for cadmium and arsenic in plants and an unknown range of other organisms. A few years ago genes encoding phytochelatin synthases (PCS) were cloned from plants, fungi and nematodes. Since then it has become apparent that PCS genes are far more widespread than ever anticipated. Searches in sequence databases indicate PCS expression in representatives of all eukaryotic kingdoms and the presence of PCS-like proteins in several prokaryotes. The almost ubiquitous presence in the plant kingdom and beyond as well as the constitutive expression of PCS genes and PCS activity in all major plant tissues are still mysterious. It is unclear, how the extremely rare need to cope with an excess of cadmium or arsenic ions could explain the evolution and distribution of PCS genes. Possible answers to this question are discussed. Also, the molecular characterization of phytochelatin synthases and our current knowledge about the enzymology of phytochelatin synthesis are reviewed.

  8. TRANSPORT OF CITRATE CATALYZED BY THE SODIUM-DEPENDENT CITRATE CARRIER OF KLEBSIELLA-PNEUMONIAE IS OBLIGATORILY COUPLED TO THE TRANSPORT OF 2 SODIUM-IONS

    NARCIS (Netherlands)

    LOLKEMA, JS; ENEQUIST, H; VANDERREST, ME

    1994-01-01

    Aerobically grown Escherichia coli GM48 harboring plasmid pKScitS that codes for the sodium-dependent citrate carrier from Klebsiella pneumoniae (CitS) allows initial-rate measurements of citrate uptake in whole cells. The cation stoichiometry and selectivity of CitS was studied using this experimen

  9. Transport of citrate catalyzed by the sodium-dependent citrate carrier of Klebsiella pneumoniae is obligatorily coupled to the transport of two sodium ions

    NARCIS (Netherlands)

    Lolkema, Juke S.; Enequist, Hans; Rest, Michel E. van der

    1994-01-01

    Aerobically grown Escherichia coli GM48 harboring plasmid pKScitS that codes for the sodium-dependent citrate carrier from Klebsiella pneumoniae (CitS) allows initial-rate measurements of citrate uptake in whole cells. The cation stoichiometry and selectivity of CitS was studied using this experimen

  10. Expression, crystallization and structure elucidation of γ-terpinene synthase from Thymus vulgaris.

    Science.gov (United States)

    Rudolph, Kristin; Parthier, Christoph; Egerer-Sieber, Claudia; Geiger, Daniel; Muller, Yves A; Kreis, Wolfgang; Müller-Uri, Frieder

    2016-01-01

    The biosynthesis of γ-terpinene, a precursor of the phenolic isomers thymol and carvacrol found in the essential oil from Thymus sp., is attributed to the activitiy of γ-terpinene synthase (TPS). Purified γ-terpinene synthase from T. vulgaris (TvTPS), the Thymus species that is the most widely spread and of the greatest economical importance, is able to catalyze the enzymatic conversion of geranyl diphosphate (GPP) to γ-terpinene. The crystal structure of recombinantly expressed and purified TvTPS is reported at 1.65 Å resolution, confirming the dimeric structure of the enzyme. The putative active site of TvTPS is deduced from its pronounced structural similarity to enzymes from other species of the Lamiaceae family involved in terpenoid biosynthesis: to (+)-bornyl diphosphate synthase and 1,8-cineole synthase from Salvia sp. and to (4S)-limonene synthase from Mentha spicata.

  11. Glutamate synthase activities and protein changes in relation to nitrogen nutrition in barley: the dependence on different plastidic glucose-6P dehydrogenase isoforms.

    Science.gov (United States)

    Esposito, Sergio; Guerriero, Gea; Vona, Vincenza; Di Martino Rigano, Vittoria; Carfagna, Simona; Rigano, Carmelo

    2005-01-01

    In barley (Hordeum vulgare L. var. Nure), glutamate synthesis and the production of reducing power by the oxidative pentose phosphate pathway (OPPP) are strictly correlated biochemical processes. NADH-GOGAT was the major root isoform, whose activity increased on a medium supplied with NH4+ or NO3-; by contrast, no noticeable variations could be observed in the leaves of plants supplied with nitrogen. In the leaves, the major isoform is Fd-GOGAT, whose activity increased under nitrogen feeding. G6PDH activity increased in the roots supplied with nitrogen; no variations were observed in the leaves. Moreover, an increase of the P2 isoform in the roots was measured, giving 13.6% G6PDH activity localized in the plastids under ammonium, and 25.2% under nitrate feeding conditions. Western blots confirmed that P2-G6PDH protein was induced in the roots by nitrogen. P1-G6PDH protein was absent in the roots and increased in the leaves by nitrogen supply to the plants. The changes measured in cytosolic G6PDH seem correlated to more general cell growth processes, and do not appear to be directly involved in glutamate synthesis. The effects of light on Fd-GOGAT is discussed, together with the possibility for P2-G6PDH to sustain nitrogen assimilation upon illumination.

  12. Regulation of NF-kappaB activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13)

    DEFF Research Database (Denmark)

    Mazumdar, Tuhina; Gorgun, F Murat; Sha, Youbao

    2010-01-01

    13 is involved in iNOS degradation and is required for iNOS interaction with the deubiquitination protein UCH37. Furthermore, we discovered that IkappaB-alpha, a protein whose proteasomal degradation activates the transcription factor NF-kappaB, is also a substrate for the Rpn13/UCH37 complex. Thus...

  13. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis.

    Science.gov (United States)

    Li, Guojing; Meng, Xiangzong; Wang, Ruigang; Mao, Guohong; Han, Ling; Liu, Yidong; Zhang, Shuqun

    2012-06-01

    Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.

  14. Inducible nitric oxide synthase (iNOS) drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2

    Science.gov (United States)

    Lopez-Rivera, Esther; Jayaraman, Padmini; Parikh, Falguni; Davies, Michael A.; Ekmekcioglu, Suhendan; Izadmehr, Sudeh; Milton, Denái R.; Chipuk, Jerry E.; Grimm, Elizabeth A.; Estrada, Yeriel; Aguirre-Ghiso, Julio; Sikora, Andrew G.

    2014-01-01

    Melanoma is one of the cancers of fastest-rising incidence in the world. iNOS is overexpressed in melanoma and other cancers, and previous data suggest that iNOS and nitric oxide (NO) drive survival and proliferation of human melanoma cells. However, specific mechanisms through which this occurs are poorly defined. One candidate is the PI3K/AKT/mTOR pathway, which plays a major role in proliferation, angiogenesis, and metastasis of melanoma and other cancers. We used the chick embryo chorioallantoic membrane (CAM) assay to test the hypothesis that melanoma growth is regulated by iNOS-dependent mTOR pathway activation. Both pharmacologic inhibition and siRNA-mediated gene silencing of iNOS suppressed melanoma proliferation and in vivo growth on the CAM in human melanoma models. This was associated with strong downregulation of mTOR pathway activation by Western blot analysis of p-mTOR, p-P70S6K, p-S6RP, and p-4EBP1. iNOS expression and NO were associated with reversible nitrosylation of TSC2, and inhibited dimerization of TSC2 with its inhibitory partner TSC1, enhancing GTPase activity of its target Rheb, a critical activator of mTOR signaling. Immunohistochemical analysis of tumor specimens from stage III melanoma patients showed a significant correlation between iNOS expression levels and expression of mTOR pathway members. Exogenously-supplied NO was also sufficient to reverse mTOR pathway inhibition by the B-Raf inhibitor Vemurafenib. In summary, covalent modification of TSC2 by iNOS-derived NO is associated with impaired TSC2/TSC1 dimerization, mTOR pathway activation, and proliferation of human melanoma. This model is consistent with the known association of iNOS overexpression and poor prognosis in melanoma and other cancers. PMID:24398473

  15. Age-related alteration of activity and gene expression of endothelial nitric oxide synthase in different parts of the brain in rats.

    Science.gov (United States)

    Strosznajder, Joanna B; Jeśko, Henryk; Zambrzycka, Agata; Eckert, Anne; Chalimoniuk, Małgorzata

    2004-11-11

    Nitric oxide (NO) plays important roles in aging and neurodegeneration. Our previous results indicated that aging differently affects NOS isoforms. Expression of nNOS mRNA was lower while iNOS was absent at any age. However, total NO synthesis increased in aged cerebral cortex and cerebellum as a consequence of changes of nNOS phosphorylation state. The question arise how aging influences activity and expression of eNOS in different parts of adult and aged brain. The levels of eNOS mRNA, protein and activity were measured using RT-PCR, immuno- and radiochemical methods, respectively. Our studies indicated that after inhibition of nNOS with 7-nitroindazole (7-NI) NO synthesis is lower in all parts of aged brain comparing to adults. However, eNOS activity significantly decreases only in cerebellum. The expression of eNOS determined on mRNA level was enhanced in all investigated aged brain parts to 140-190% of adult value and the data were statistically significant for cerebral cortex and cerebellum. The higher level of mRNA is probably the adaptive response to lower NOS activity. However, the Western-blot signal of eNOS protein was unchanged in aged brain parts comparing to adults suggesting age-related disturbances of protein synthesis and its function. It is also possible that a post-translational modification of the enzyme occurs in the aged rat brain. The lower eNOS activity in aged brain may significantly affects the signal transduction processes on the pathway NO/cGMP/PKG.

  16. Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli.

    Science.gov (United States)

    Del Campo, M; Kaya, Y; Ofengand, J

    2001-11-01

    There are 10 known putative pseudouridine synthase genes in Escherichia coli. The products of six have been previously assigned, one to formation of the single pseudouridine in 16S RNA, three to the formation of seven pseudouridines in 23S RNA, and three to the formation of three pseudouridines in tRNA (one synthase makes pseudouridine in 23S RNA and tRNA). Here we show that the remaining four putative synthase genes make bona fide pseudouridine synthases and identify which pseudouridines they make. RluB (formerly YciL) and RluE (formerly YmfC) make pseudouridine2605 and pseudouridine2457, respectively, in 23S RNA. RluF (formerly YjbC) makes the newly discovered pseudouridine2604 in 23S RNA, and TruC (formerly YqcB) makes pseudouridine65 in tRNA(Ile1) and tRNA(Asp). Deletion of each of these synthase genes individually had no effect on exponential growth in rich media at 25 degrees C, 37 degrees C, or 42 degrees C. A strain lacking RluB and RluF also showed no growth defect under these conditions. Mutation of a conserved aspartate in a common sequence motif, previously shown to be essential for the other six E. coli pseudouridine synthases and several yeast pseudouridine synthases, also caused a loss of in vivo activity in all four of the synthases studied in this work.

  17. Inhibition of lipopolysaccharide-inducible nitric oxide synthase and IL-1beta through suppression of NF-kappaB activation by 3-(1'-1'-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin isolated from Ruta graveolens L.

    Science.gov (United States)

    Raghav, Sunil Kumar; Gupta, Bhawna; Shrivastava, Anju; Das, Hasi Rani

    2007-03-29

    The Ruta graveolens L. plant is used in traditional medicine to treat a large number of diseases. The methanol (50%) extract of the whole plant was observed to inhibit the expression of inducible nitric oxide synthase (iNOS) and the cycloxygenase-2 (COX-2) gene in lipopolysaccharide (LPS)-induced macrophage cells (J774A.1, [Raghav, S.K., Gupta, B., Agrawal, C., Goswami, K., Das, H.R., 2006b. Anti-inflammatory effect of Ruta graveolens L. in murine macrophage cells. J. Ethnopharmacol. 104, 234-239]). The effect of whole plant extract on the expression of other pro-inflammatory genes such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-12, interferon-gamma (IFN-gamma) and the activation of nuclear factor-kB (NF-kappaB) were investigated in LPS stimulated macrophage cells. An active compound was isolated from this methanol extract by further solvent fractionation and reverse phase high performance liquid chromatography (RP-HPLC). The purified compound was identified as 3-(1'-1'-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin having IUPAC nomenclature of 6-hydroxy-7-methoxy-3-(2-methyl but-3-en-2yl)-2H-chromen-2-one by ESI-MS, MALDI, FT-IR and NMR. Effect of this purified compound was assessed on iNOS, COX-2 and various pro-inflammatory cytokine genes and was observed to inhibit both the protein and mRNA expression of iNOS and IL-1beta in LPS challenged macrophages. Electrophoretic mobility shift assay (EMSA) and Western blot analyses indicated that the plant extract and the isolated active compound blocked the LPS-induced activation of NF-kappaB through the prevention of inhibitor-kB (IkB) degradation. The purified compound also showed the anti-oxidant activity. The active compound at a dose of 40 mg/kg body weight was observed to inhibit the iNOS and IL-1beta gene expression significantly in endotoxin-induced inflammatory model of BALB/c mice. The low level of nitric oxide production was also observed in the sera of compound treated mice

  18. P2 purinergic receptor activation of neuronal nitric oxide synthase and guanylyl cyclase in the dorsal facial area of the medulla increases blood flow in the common carotid arteries of cats.

    Science.gov (United States)

    Hung, Y-W; Leung, Y-M; Lin, N-N; Lee, T J-F; Kuo, J-S; Tung, K-C; Gong, C-L

    2015-02-12

    In the dorsal facial area (DFA) of the medulla, an activation of either P2 purinergic receptor or nitric oxide synthase (NOS) results in the release of glutamate, leading to an increase in blood flow of the common carotid artery (CCA). It is not known whether activation of the P2 receptor by ATP may mediate activation of NOS/guanylyl cyclase to cause glutamate release and/or whether L-Arg (nitric oxide (NO) precursor) may also cause ATP release from any other neuron, to cause an increase in CCA flow. We demonstrated that microinjections of P2 receptor agonists (ATP, α,β-methylene ATP) or NO precursor (L-arginine) into the DFA increased CCA blood flow. The P2-induced CCA blood flow increase was dose-dependently reduced by pretreatment with NG-nitro-arginine methyl ester (L-NAME, a non-specific NOS inhibitor), 7-nitroindazole (7-NI, a relatively selective neuronal NOS inhibitor) or methylene blue (MB, a guanylyl cyclase inhibitor) but not by that with D-NAME (an isomer of L-NAME) or N5-(1-iminoethyl)-L-ornithine (L-NIO, a potent endothelial NOS inhibitor). Involvement of glutamate release in these responses were substantiated by microdialysis studies, in which perfusions of ATP into the DFA increased the glutamate concentration in dialysates, but co-perfusion of ATP with L-NAME or 7-NI did not. Nevertheless, the arginine-induced CCA blood flow increase was abolished by combined pretreatment of L-NAME and MB, but not affected by pretreatment with a selective P2 receptor antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS). In conclusion, ATP activation of the P2 receptor in the DFA induced activation of neuronal NOS/guanylyl cyclase, which causes glutamate release leading to an increase in CCA blood flow. However, arginine activation of neuronal NOS/guanylyl cyclase, which also caused glutamate release and CCA blood flow increase, did not induce activation of P2 receptors. These findings provide important information for drug design and

  19. Linoleic acid-induced expression of inducible nitric oxide synthase and cyclooxygenase II via p42/44 mitogen-activated protein kinase and nuclear factor-kappaB pathway in retinal pigment epithelial cells.

    Science.gov (United States)

    Fang, I-Mo; Yang, Chang-Hao; Yang, Chung-May; Chen, Muh-Shy

    2007-11-01

    High linoleic acid (LA) intake is known to correlate with age-related macular degeneration (AMD), but the molecular mechanisms remain unclear. This study was conducted to investigate the effects of LA on expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase II (COX-2) and their associated signaling pathways in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were treated with different concentrations of LA. Expressions of iNOS and COX-2 were examined using semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Concentrations of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in the culture medium were determined by enzyme-link immunosorbent assay (ELISA). Activation of p42/44, p38, JNK mitogen-activated protein kinase (MAPK) and nuclear factors (NF)-kappaB were evaluated by Western blot analysis and electrophoretic mobility shift assay (EMSA). We found that LA induced expression of iNOS and COX-2 in RPE cells at the mRNA and protein levels in a time-and dose-dependent manner. Upregulation of iNOS and COX-2 resulted in increased production of NO and PGE(2). Moreover, LA caused degradation of IkappaB and increased NF-kappaB DNA binding activity. Effects of LA-induced iNOS and COX-2 expression were inhibited by a NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC). LA activated p42/44, but not p38 or JNK MAPK. Inhibition of p42/44 activity by PD98059 significantly reduced LA-induced activation of NF-kappaB. Linoleic acid-induced expression of iNOS and COX-2 as well as PGE(2) and NO release in RPE cells were sequentially mediated through activation of p42/p44, MAPK, then NF-kappaB. These results may provide new insights into both mechanisms of LA action on RPE cells and pathogenesis of age-related macular degeneration.

  20. Detailed characterization of the substrate specificity of mouse wax synthase.

    Science.gov (United States)

    Miklaszewska, Magdalena; Kawiński, Adam; Banaś, Antoni

    2013-01-01

    Wax synthases are membrane-associated enzymes catalysing the esterification reaction between fatty acyl-CoA and a long chain fatty alcohol. In living organisms, wax esters function as storage materials or provide protection against harmful environmental influences. In industry, they are used as ingredients for the production of lubricants, pharmaceuticals, and cosmetics. Currently the biological sources of wax esters are limited to jojoba oil. In order to establish a large-scale production of desired wax esters in transgenic high-yielding oilseed plants, enzymes involved in wax esters synthesis from different biological resources should be characterized in detail taking into consideration their substrate specificity. Therefore, this study aims at determining the substrate specificity of one of such enzymes -- the mouse wax synthase. The gene encoding this enzyme was expressed heterologously in Saccharomyces cerevisiae. In the in vitro assays (using microsomal fraction from transgenic yeast), we evaluated the preferences of mouse wax synthase towards a set of combinations of 11 acyl-CoAs with 17 fatty alcohols. The highest activity was observed for 14:0-CoA, 12:0-CoA, and 16:0-CoA in combination with medium chain alcohols (up to 5.2, 3.4, and 3.3 nmol wax esters/min/mg microsomal protein, respectively). Unsaturated alcohols longer than 18°C were better utilized by the enzyme in comparison to the saturated ones. Combinations of all tested alcohols with 20:0-CoA, 22:1-CoA, or Ric-CoA were poorly utilized by the enzyme, and conjugated acyl-CoAs were not utilized at all. Apart from the wax synthase activity, mouse wax synthase also exhibited a very low acyl-CoA:diacylglycerol acyltransferase activity. However, it displayed neither acyl-CoA:monoacylglycerol acyltransferase, nor acyl-CoA:sterol acyltransferase activity.

  1. 百合鳞茎蔗糖合成酶活性检测体系的建立%Establishment of Detection System for Sucrose Synthase Activity in Lily Bulb

    Institute of Scientific and Technical Information of China (English)

    孙红梅; 王微微; 何玲; 王春夏; 李天来

    2011-01-01

    为了建立富含多糖的百合鳞茎蔗糖合成酶(sucrose synthase,EC2.4.1.13,SuSy)活性检测体系,深入研究其蔗糖代谢机制,以兰州百合(Lilium davidii var.unicolor)鳞茎外层鳞片为试材,分别研究了提取缓冲液种类及pH值、反应温度、底物浓度以及缓冲液pH值对SuSy合成和分解方向活性的影响.结果表明:SuSy合成方向活性检测的最适提取缓冲液是pH值为7.8的TrisHCl,最适反应温度为50℃,底物果糖最适浓度为50 mmol· L-1,UDPG最适浓度为5 mmol·L-1,反应缓冲液Tris-HCl最适pH值为7.5;SuSy分解方向活性检测的最适提取缓冲液为pH值7.8的Hepes-NaOH,最适反应温度为40℃,底物蔗糖最适浓度为10mmol· L-1,UDP最适浓度为7 mmol·L-1,反应缓冲液Mes-NaOH最适pH值为4.5.%This investigation was designed to establish the detection system for sucrose synthase (EC 2.4.1.13, SuSy) activities in lily bulb enriched with polysaccharides, which provided a detection method for the further research on the mechanism of sucrose metabolism. The effects of extracting buffer types, pH, reaction temperature, substrate concentrations, pH of the reaction buffer on the SuSy activities in both synthesis and decomposition direction were respectively studied by using the exterior scales of Lilium davidii var. Unicolor at planting stage as materials. And the results showed that the optimum extraction buffer was Tris-HCl of pH7.8, the appropriate temperature was 50 ℃, the preferential substrate concentration of fructose was 50 mmol·L-1, the preferential substrate concentration of UDPG was 5 mmol·L-1, and the suitable pH for reaction buffer Tris-HCI was 7.5 in the detection of SuSy synthesis activities. In the detection of SuSy decomposition activities, the optimum extraction buffer was Hepes-NaOH of pH7.8, the appropriate temperature was 40 X!, the adequate substrate concentration of sucrose was 10 mmol·L-1, the adequate substrate concentration of UDP was 7 mmol·L-1

  2. Exercise induces transient transcriptional activation of the PGC-1a gene in human skeletal muscle

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Saltin, Bengt; Neufer, P. Darrell

    2003-01-01

    Endurance exercise training induces mitochondrial biogenesis in skeletal muscle. The peroxisome proliferator activated receptor co-activator 1a (PGC-1a) has recently been identified as a nuclear factor critical for coordinating the activation of genes required for mitochondrial biogenesis in cell...... culture and rodent skeletal muscle. To determine whether PGC-1a transcription is regulated by acute exercise and exercise training in human skeletal muscle, seven male subjects performed 4 weeks of one-legged knee extensor exercise training. At the end of training, subjects completed 3 h of two......-legged knee extensor exercise. Biopsies were obtained from the vastus lateralis muscle of both the untrained and trained legs before exercise and after 0, 2, 6 and 24 h of recovery. Time to exhaustion (2 min maximum resistance), as well as hexokinase II (HKII), citrate synthase and 3-hydroxyacyl...

  3. Active site modification of the β-ketoacyl-ACP synthase FabF3 of Streptomyces coelicolor affects the fatty acid chain length of the CDA lipopeptides.

    Science.gov (United States)

    Lewis, Richard A; Nunns, Laura; Thirlway, Jenny; Carroll, Kathleen; Smith, Colin P; Micklefield, Jason

    2011-02-14

    Using site directed mutagenesis we altered an active site residue (Phe107) of the enzyme encoded by fabF3 (SCO3248) in the Streptomyces coelicolor gene cluster required for biosynthesis of the calcium dependent antibiotics (CDAs), successfully generating two novel CDA derivatives comprising truncated (C4) lipid side chains and confirming that fabF3 encodes a KAS-II homologue that is involved in determining CDA fatty acid chain length.

  4. A new member of the chalcone synthase (CHS family in sugarcane

    Directory of Open Access Journals (Sweden)

    Contessotto Miriam G.G.

    2001-01-01

    Full Text Available Sequences from the sugarcane expressed sequence tag (SUCEST database were analyzed based on their identities to genes encoding chalcone-synthase-like enzymes. The sorghum (Sorghum bicolor chalcone-synthase (CHS, EC 2.3.1.74 protein sequence (gi|12229613 was used to search the SUCEST database for clusters of sequencing reads that were most similar to chalcone synthase. We found 121 reads with homology to sorghum chalcone synthase, which we were then able to sort into 14 clusters which themselves were divided into two groups (group 1 and group 2 based on the similarity of their deduced amino acid sequences. Clusters in group 1 were more similar to the sorghum enzyme than those in group 2, having the consensus sequence of the active site of chalcone and stilbene synthase. Analysis of gene expression (based on the number of reads from a specific library present in each group indicated that most of the group 1 reads were from sugarcane flower and root libraries. Group 2 clusters were more similar to the amino acid sequence of an uncharacterized pathogen-induced protein (PI1, gi|9855801 from the S. bicolor expressed sequence tag (EST database. The group 2 clusters sequences and PI1 proteins are 90% identical, having two amino acid changes at the chalcone and stilbene synthase consensi but conserving the cysteine residue at the active site. The PI1 EST has not been previously associated with chalcone synthase and has a different consensus sequence from the previously described chalcone synthase of sorghum. Most of the group 2 reads were from libraries prepared from sugarcane roots and plants infected with Herbaspirillum rubrisubalbicans and Gluconacetobacter diazotroficans. Our results indicate that we have identified a sugarcane chalcone synthase similar to the pathogen-induced PI1 protein found in the sorghum cDNA libraries, and it appears that both proteins represent new members of the chalcone and stilbene synthase super-family.

  5. 柠檬酸铅在柠檬酸钠溶液中溶解行为%Dissolution behavior of lead citrate in sodium citrate solution

    Institute of Scientific and Technical Information of China (English)

    何东升; 李巧双; 杨典奇; 杨聪; 王贤晨; 杨家宽

    2014-01-01

    Lead citrate was prepared by the reaction of lead oxide and citrate. The effects of dissolution time, dissolution tempera-ture, sodium citrate concentration, and the addition amount of citric acid on the dissolution rate of lead citrate in sodium citrate solution were investigated. Experimental results show that, dissolution temperature, sodium citrate concentration, and the addition amount of citric acid are the main influencing factors. Increasing the dissolution temperature or the sodium citrate concentration can significantly improve the dissolution rate of lead citrate. The dissolution rate of lead citrate has a positive linear relation with the dissolution tempera-ture, and the fitted linear equation is Y=0.76+0.63T. Adding citric acid can inhibit the dissolution of lead citrate.%通过氧化铅与柠檬酸反应制备了柠檬酸铅,考察了溶解时间、溶解温度、柠檬酸钠浓度和柠檬酸加入量对柠檬酸铅在柠檬酸钠溶液中溶解率的影响.结果表明:温度、柠檬酸钠浓度及柠檬酸加入量是主要影响因素,升高温度和提高柠檬酸钠浓度可显著提高柠檬酸铅溶解率;温度和溶解率呈正线性关系,拟合的线性方程为Y=0.76+0.63T;加入柠檬酸则对柠檬酸铅溶解有抑制作用.

  6. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Guojing Li

    2012-06-01

    Full Text Available Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs. The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.

  7. Cleavage of the Carboxyl-Terminus of LEACS2, a Tomato 1-Aminocycl opropane-1-Carboxylic Acid Synthase Isomer, by a 64-kDa Tomato Metalloprotease Produces a Truncated but Active Enzyme

    Institute of Scientific and Technical Information of China (English)

    Jian-Feng LI; Robert QI; Liang-Hu QU; Autar K Mattoo; Ning LI

    2005-01-01

    l-Aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) is the principal enzyme in phytohormone ethylene biosynthesis. Previous studies have shown that the hypervariable C-terminus of ACS is proteolytically processed in vivo. However, the protease responsible for this has not yet been identified. In the present study, we investigated the processing of the 55-kDa full-length tomato ACS (LeACS2) into 52-, 50- and 49-kDa truncated isoforms in ripening tomato (Lycopersicon esculentum Mill. cv.Cooperation 903) fruit using the sodium dodecyl sulfate-boiling method. Meanwhile, an LeACS2-processing protease was purified via multi-step column chromatography from tomato fruit. Subsequent biochemical analysis of the 64-kDa purified protease revealed that it is a metalloprotease active at multiple cleavage sites within the hypervariable C-terminus of LeACS2. N-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight analysis indicated that the LeACS2-processing metalloprotease cleaves at the C-terminal sites Lys438, Glu447, Lys448, Asn456, Ser460, Ser462, Lys463, and Leu474, but does not cleave the Nterminus of LeACS2. Four C-terminus-deleted (26-50 amino acids) LeACS2 fusion proteins were overproduced and subjected to proteolysis by this metalloprotease to identify the multiple cleavage sites located on the N-terminal side of the phosphorylation site Ser460. The results indisputably confirmed the presence of cleavage sites within the region between the α-helix domain (H14) and Ser460 for this metalloprotease.Furhermore, the resulting C-terminally truncated LeACS2 isoforms were active enzymatically. Because this protease could produce LeACS2 isoforms in vitro similar to those detected in vivo, it is proposed that this metalloprotease may be involved in the proteolysis of LeACS2 in vivo.

  8. Changes in the level of cytosolic calcium, nitric oxide and nitric oxide synthase activity during platelet aggregation: an in vitro study in platelets from normal subjects and those with cirrhosis

    Indian Academy of Sciences (India)

    Sam Annie-JeyachristYn; Arumugam Geetha; Rajagopal Surendran

    2008-03-01

    Variceal bleeding due to abnormal platelet function is a well-known complication of cirrhosis. Nitric oxide-related stress has been implicated in the pathogenesis of liver cirrhosis. In the present investigation, we evaluated the level of platelet aggregation and concomitant changes in the level of platelet cytosolic calcium (Ca2+), nitric oxide (NO) and NO synthase (NOS) activity in liver cirrhosis. The aim of the present study was to investigate whether the production of NO by NOS and level of cytosolic Ca2+ influence the aggregation of platelets in patients with cirrhosis of the liver. Agonist-induced aggregation and the simultaneous changes in the level of cytosolic Ca2+, NO and NOS were monitored in platelets of patients with cirrhosis. Platelet aggregation was also measured in the presence of the eNOS inhibitor, diphenylene iodinium chloride (DIC). The level of agonist-induced platelet aggregation was significantly low in the platelets of patients with cirrhosis compared with that in platelets from normal subjects. During the course of platelet aggregation, concomitant elevation in the level of cytosolic Ca2+ was observed in normal samples, whereas the elevation was not significant in platelets of patients with cirrhosis. A parallel increase was observed in the levels of NO and NOS activity. In the presence of the eNOS inhibitor, platelet aggregation was enhanced and accompanied by an elevated calcium level. The inhibit