WorldWideScience

Sample records for citrate synthase activity

  1. Effect of hydrogen peroxide on rabbit urinary bladder citrate synthase activity in the presence and absence of a grape suspension

    Directory of Open Access Journals (Sweden)

    Vijay Venugopal

    2010-12-01

    Full Text Available PURPOSE: The etiology of obstructive bladder dysfunction includes free radical damage to mitochondria. Feeding rabbits a standardized grape suspension protects the ability of the bladder to contract and empty in part by preventing mitochondrial damage, thus maintaining smooth muscle and mucosal metabolism. The objective of the current study is to determine the direct effect of this grape suspension on the response of mitochondria to the oxidative effects of hydrogen peroxide. MATERIALS AND METHODS: Six male rabbits were anesthetized with sodium pentobarbital and the bladders excised. Four full thickness strips were obtained for contractile studies and the balance separated into smooth muscle and mucosa compartments by blunt dissection. The effect of hydrogen peroxide on the contractile response to field stimulation was quantitated. Each tissue was homogenized and the effects of increasing concentrations of hydrogen peroxide in the presence and absence of grape suspension on citrate synthase activity was determined. RESULTS: Citrate synthase activity was significantly higher in the mucosa than in the muscle. The grape suspension had no effect on control citrate synthase activity. However, the grape suspension provided significant protection of both smooth muscle and mucosal citrate synthase activity. CONCLUSIONS: These studies support the conclusion that the grape suspension provides direct protection of mitochondrial function.

  2. Exploring geometric properties of gold nanoparticles using TEM images to explain their chaperone like activity for citrate synthase

    OpenAIRE

    Kaushik, Vikas; Lahiri, Tapobrata; Singha, Shantiswaroop; Dasgupta, Anjan Kumar; Mishra, Hrishikesh; Kumar, Upendra; Kumar, Rajeev

    2011-01-01

    Study on geometric properties of nanoparticles and their relation with biomolecular activities, especially protein is quite a new field to explore. This work was carried out towards this direction where images of gold nanoparticles obtained from transmission electron microscopy were processed to extract their size and area profile at different experimental conditions including and excluding a protein, citrate synthase. Since the images were ill-posed, texture of a context-window for each pixe...

  3. An active site–tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Jesse R.; Donini, Stefano; Kappock, T. Joseph, E-mail: kappock@purdue.edu [Purdue University, 175 South University Street, West Lafayette, IN 47907-2063 (United States)

    2015-09-23

    Citrate synthase from the thermophilic euryarchaeon T. acidophilum fused to a hexahistidine tag was purified and biochemically characterized. The structure of the unliganded enzyme at 2.2 Å resolution contains tail–active site contacts in half of the active sites. Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that ‘close’ the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an ‘open’ structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site–tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS.

  4. An active site–tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase

    International Nuclear Information System (INIS)

    Citrate synthase from the thermophilic euryarchaeon T. acidophilum fused to a hexahistidine tag was purified and biochemically characterized. The structure of the unliganded enzyme at 2.2 Å resolution contains tail–active site contacts in half of the active sites. Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that ‘close’ the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an ‘open’ structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site–tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS

  5. Exploring geometric properties of gold nanoparticles using TEM images to explain their chaperone like activity for citrate synthase

    Science.gov (United States)

    Kaushik, Vikas; Lahiri, Tapobrata; Singha, Shantiswaroop; Dasgupta, Anjan Kumar; Mishra, Hrishikesh; Kumar, Upendra; Kumar, Rajeev

    2011-01-01

    Study on geometric properties of nanoparticles and their relation with biomolecular activities, especially protein is quite a new field to explore. This work was carried out towards this direction where images of gold nanoparticles obtained from transmission electron microscopy were processed to extract their size and area profile at different experimental conditions including and excluding a protein, citrate synthase. Since the images were ill-posed, texture of a context-window for each pixel was used as input to a back-propagation network architecture to obtain decision on its membership as nanoparticle. The segmented images were further analysed by k-means clustering to derive geometric properties of individual nanoparticles even from their assembled form. The extracted geometric information was found to be crucial to give a model featuring porous cage like configuration of nanoparticle assembly using which the chaperone like activity of gold nanoparticles can be explained. PMID:22355230

  6. An active site–tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase

    Science.gov (United States)

    Murphy, Jesse R.; Donini, Stefano; Kappock, T. Joseph

    2015-01-01

    Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that ‘close’ the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an ‘open’ structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site–tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS. PMID:26457521

  7. An active site-tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase.

    Science.gov (United States)

    Murphy, Jesse R; Donini, Stefano; Kappock, T Joseph

    2015-10-01

    Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that `close' the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an `open' structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site-tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS. PMID:26457521

  8. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Andersen, Nynne Bjerre; Dela, Flemming

    2014-01-01

    and changes in CS activity is often assumed. However, this relationship and absolute values of CS and maximal oxygen uptake (V.O2max) has never been assessed across different studies. A systematic PubMed search on literature published from 1983 to 2013 was performed. The search profile included: citrate.......4). Training induced changes in whole body oxidative capacity is matched by changes in muscle CS activity in a nearly 1:1 relationship. Absolute values of CS across different studies cannot be compared unless a standardized analytical method is used by all laboratories...... and CS activity. 70 publications with 97 intervention groups were included. There was a positive (r = 0.45) correlation (P values of CS and V.O2max did not correlate (r =- 0.07, n = 148, P = 0...

  9. Development of a biomarker for Geobacter activity and strain composition: Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, M.J.; Callister, S.J.; Miletto, M.; Williams, K.H.; Nicora, C.D.; Lovley, D.R.; Long, P.E.; Lipton, M.S.

    2010-02-15

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  10. Enhancement of Aminoacylase Activity by Sodium Citrate

    Institute of Scientific and Technical Information of China (English)

    于范利; 曹志方; 李森; 周海梦

    2001-01-01

    Kidney and other tissues of animals and humans have a high concentration of citrate which is an important intermediate substance in the citrate cycle. Citrate may play an important physiological role in metabolism. In this paper, we studied the interaction of the sodium salt of citrate with aminoacylase which is an important enzyme in metabolism and found sodium citrate can enhance the activity of aminoacylase. The maximum enzyme activity induced by sodium citrate increased approximately 3 folds over the enzyme activity without sodium citrate. The initial reaction rates (Ⅴ) for different concentrations of sodium citrate were obtained, showing that sodium citrate is a non-competitive activator. The result of the ANS binding fluorescence measurements for aminoacylase indicated that increasing sodium citrate concentrations markedly increased the ANS binding fluorescence with a blue shift of the emission spectra peak. This suggests the formation of more hydrophobic regions. Aggregates formed quickly when aminoacylase was incubated with sodium citrate (0.3 mol/L) and guanidinium chloride (0- 3. 5 mol/L). Aminoacylase lost enzyme activity in the guanidinium chloride more quickly in the presence of sodium citrate than in the absence of sodium citrate. The intrinsic fluorescence emission intensity decreased more quickly and the red shift of the emission spectra peak was larger than that without sodium citrate.

  11. Inibição da atividade da citrato sintase cerebral em um modelo animal de sepse Inhibition of brain citrate synthase activity in an animal model of sepsis

    Directory of Open Access Journals (Sweden)

    Giselli Scaini

    2011-06-01

    fisiopatologia desta doença.OBJECTIVE: An extensive body of evidence from experimental studies indicates that sepsis is associated with increased reactive oxygen species production, depletion of antioxidants, and accumulation of markers of oxidative stress. Moreover, mitochondrial dysfunction has been implicated in the pathogenesis of multiple organ dysfunction syndrome (MODS. Citrate synthase is an enzyme localized in the mitochondrial matrix and an important component of the Krebs cycle; consequently, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase activity in the brains of rats submitted to a cecal ligation puncture model of sepsis. METHODS: At several times points (3, 6, 12, 24 and 48 hours after the cecal ligation puncture operation, six rats were killed by decapitation. Their brains were removed, and the hippocampus, striatum, cerebellum, cerebral cortex and prefrontal cortex were dissected and used to determine citrate synthase activity. RESULTS: We found that citrate synthase activity in the prefrontal cortex was inhibited 12, 24 and 48 hours after cecal ligation puncture. In the cerebral cortex, citrate synthase activity was inhibited 3, 12, 24 and 48 hours after cecal ligation puncture. Citrate synthase was not affected in the hippocampus, striatum or cerebellum up to 48 hours after cecal ligation puncture. CONCLUSION: Considering that energy impairment due to mitochondrial dysfunction in sepsis has been well described and that oxidative stress plays a crucial role in sepsis development, we believe that energy impairment may also be involved in these processes. If citrate synthase inhibition also occurs in a sepsis model, it is tempting to speculate that a reduction in brain metabolism may be related to the pathophysiology of this disease.

  12. Inhibition of flower formation by antisense repression of mitochondrial citrate synthase in transgenic potato plants leads to a specific disintegration of the ovary tissues of flowers.

    OpenAIRE

    Landschütze, V; Willmitzer, L.; Müller-Röber, B

    1995-01-01

    The tricarboxylic acid (TCA) cycle constitutes a major component of the mitochondrial metabolism of eucaryotes, including higher plants. To analyze the importance of this pathway, we down-regulated mitochondrial citrate synthase (mCS; EC 4.1.3.7), the first enzyme of the TCA cycle, in transgenic potato plants using an antisense RNA approach. Several transformants were identified with reduced citrate synthase activity (down to approximately 6% of wild-type activity). These plants were indistin...

  13. Structural comparison between the open and closed forms of citrate synthase from Thermus thermophilus HB8.

    Science.gov (United States)

    Kanamori, Eiji; Kawaguchi, Shin-Ichi; Kuramitsu, Seiki; Kouyama, Tsutomu; Murakami, Midori

    2015-01-01

    The crystal structures of citrate synthase from the thermophilic eubacteria Thermus thermophilus HB8 (TtCS) were determined for an open form at 1.5 Å resolution and for closed form at 2.3 Å resolution, respectively. In the absence of ligands TtCS in the open form was crystalized into a tetragonal form with a single subunit in the asymmetric unit. TtCS was also co-crystallized with citrate and coenzyme-A to form an orthorhombic crystal with two homodimers in the asymmetric unit. Citrate and CoA are found in the active site situated between the large domain and the small domain in all subunit whereas the complex shows two distinct closed conformations, the fully closed form and partially closed form. Structural comparisons are performed to describe conformational changes associated with binding of products of TtCS. Upon binding of citrate, basic residues in the active site move toward citrate and make a hydrogen bond network in the active site, inducing a large-scale rotation of the small domain relative to the large domain. CoA is sandwiched between the small and large domains and then the cysteamine tail is inserted into the active site with a cooperative rotation around mainchain dihedrals in the hinge region connecting helices M and N. According to this rotation these helices are extended to close the active site completely. The considerable flexibility and structural rearrangements in the hinge region are crucial for an ordered bibi reaction in catalysis for microbial CSs.

  14. Mitochondrial citrate synthase crystals: novel finding in Sengers syndrome caused by acylglycerol kinase (AGK) mutations.

    Science.gov (United States)

    Siriwardena, Komudi; Mackay, Nevena; Levandovskiy, Valeriy; Blaser, Susan; Raiman, Julian; Kantor, Paul F; Ackerley, Cameron; Robinson, Brian H; Schulze, Andreas; Cameron, Jessie M

    2013-01-01

    We report on two families with Sengers syndrome and mutations in the acylglycerol kinase gene (AGK). In the first family, two brothers presented with vascular strokes, lactic acidosis, cardiomyopathy and cataracts, abnormal muscle cell histopathology and mitochondrial function. One proband had very abnormal mitochondria with citrate synthase crystals visible in electron micrographs, associated with markedly high citrate synthase activity. Exome sequencing was used to identify mutations in the AGK gene in the index patient. Targeted sequencing confirmed the same homozygous mutation (c.3G>A, p.M1I) in the brother. The second family had four affected members, of which we examined two. They also presented with similar clinical symptoms, but no strokes. Postmortem heart and skeletal muscle tissues showed low complex I, III and IV activities in the heart, but normal in the muscle. Skin fibroblasts showed elevated lactate/pyruvate ratios and low complex I+III activity. Targeted sequencing led to identification of a homozygous c.979A>T, p.K327* mutation. AGK is located in the mitochondria and phosphorylates monoacylglycerol and diacylglycerol to lysophosphatidic acid and phosphatidic acid. Disruption of these signaling molecules affects the mitochondria's response to superoxide radicals, resulting in oxidative damage to mitochondrial DNA, lipids and proteins, and stimulation of cellular detoxification pathways. High levels of manganese superoxide dismutase protein were detected in all four affected individuals, consistent with increased free radical damage. Phosphatidic acid is also involved in the synthesis of phospholipids and its loss will result in changes to the lipid composition of the inner mitochondrial membrane. These effects manifest as cataract formation in the eye, respiratory chain dysfunction and cardiac hypertrophy in heart tissue. These two pedigrees confirm that mutation of AGK is responsible for the severe neonatal presentation of Sengers syndrome. The

  15. Effect of Nitric Oxide on the Interaction Between Mitochondrial Malate Dehydrogenase and Citrate Synthase

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-chen; WANG Juan; SU Pei-ying; MA Chun-mei; ZHU Shu-hua

    2014-01-01

    Mitochondrial malate dehydrogenase (mMDH) and citrate synthase (CS) are sequential enzymes in Krebs cycle. mMDH, CS and the complex between mMDH and CS (mMDH+CS) were treated with nitric oxide solution. The roles of notric oxide (NO) on the secondary structures and the interactions between mMDH and CS were studied using circular diehroism (CD) and Fourier transform surface plasmon resonance (FT-SPR), respectivley. The effects of NO on the activities of mMDH, CS and mMDH+CS were also studied. And the regulations by NO on mMDH and CS were simulated by PyMOL software. The results of SPR conifrmed that strong interaction between mMDH and CS existed and NO could signiifcantly regulate the interaction between the two enzymes. NO reduced the mass percents ofα-helix and increased that of random in mMDH, CS and mMDH+CS. NO increased the activities of CS and mMDH+CS, and inhibited the activity of mMDH. Graphic simulation indicated that covalent bond was formed between NO and Asn242 in active site of CS. However, there was no direct bond between NO and mMDH. The increase in activity of mMDH+CS complex depended mostly on the interaction between NO and CS. All the results suggested that the regulations by NO on the activity and interaction between mMDH and CS were accord with the changes in mMDH, CS and mMDH+CS caused by NO.

  16. Regulation of expression of citrate synthase by the retinoic acid receptor-related orphan receptor α (RORα.

    Directory of Open Access Journals (Sweden)

    Christine Crumbley

    Full Text Available The retinoic acid receptor-related orphan receptor α (RORα is a member of the nuclear receptor superfamily of transcription factors that plays an important role in regulation of the circadian rhythm and metabolism. Mice lacking a functional RORα display a range of metabolic abnormalities including decreased serum cholesterol and plasma triglycerides. Citrate synthase (CS is a key enzyme of the citric acid cycle that provides energy for cellular function. Additionally, CS plays a critical role in providing citrate derived acetyl-CoA for lipogenesis and cholesterologenesis. Here, we identified a functional RORα response element (RORE in the promoter of the CS gene. ChIP analysis demonstrates RORα occupancy of the CS promoter and a putative RORE binds to RORα effectively in an electrophoretic mobility shift assay and confers RORα responsiveness to a reporter gene in a cotransfection assay. We also observed a decrease in CS gene expression and CS enzymatic activity in the staggerer mouse, which has a mutation of in the Rora gene resulting in nonfunctional RORα protein. Furthermore, we found that SR1001 a RORα inverse agonist eliminated the circadian pattern of expression of CS mRNA in mice. These data suggest that CS is a direct RORα target gene and one mechanism by which RORα regulates lipid metabolism is via regulation of CS expression.

  17. Molecular Cloning and Characterization of Citrate Synthase Gene in Rice( Oryza sativa)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shan-shan; MING Feng; LU Qun; GUO Bin; SHEN Da-leng

    2005-01-01

    The full-length OsCS encoding citrate synthase was isolated from rice (Oryza sativa L. subsp. japonica). OsCS is 1477-bp long and encodes a 474 amino acid polypeptide. Its putative protein sequence is highly identical to Daucus carota, Nicotiana tabacum,Beta vulgaris subsp., Arabidopsis thaliana, and Citrus junos (>70%). The deduced amino-terminal sequence of OsCS showes characteristics of mitochondrial targeting signal. Southern blot analysis using ORF of the OsCS as the probe indicated that this gene exists in multiple copies in rice genome. The band with predicated size of 82 kD was detected by Western blot after being induced by 0.4 mmol/L IPTG.

  18. Evaluation of the role of mitochondrial citrate synthase, mitochondrial and cytosolic isoforms of isocitrate dehydrogenase in tomato leaf metabolism

    OpenAIRE

    Sienkiewicz-Porzucek, Agata

    2010-01-01

    Der Citratzyklus (TCA) ist einer der bedeutendsten Stoffwechselwege für alle lebenden Organismen. Trotz der zentralen Rolle dieses Prozesses im Pflanzenmetabolismus ist er nur relativ wenig untersucht worden. In dieser Arbeit berichte ich über die Produktion und die funktionale Analyse von Tomatenpflanzen (Solanum lycopersicum), die unabhängig eine leicht eingeschränkte Aktivität der mitochondrialen Citrat-Synthase (CS) und zweier Isocitrat-dehydrogenasen (mitochondriale NAD-IDH und cytosoli...

  19. Structures of mesophilic and extremophilic citrate synthases reveal rigidity and flexibility for function.

    Science.gov (United States)

    Wells, Stephen A; Crennell, Susan J; Danson, Michael J

    2014-10-01

    Citrate synthase (CS) catalyses the entry of carbon into the citric acid cycle and is highly-conserved structurally across the tree of life. Crystal structures of dimeric CSs are known in both "open" and "closed" forms, which differ by a substantial domain motion that closes the substrate-binding clefts. We explore both the static rigidity and the dynamic flexibility of CS structures from mesophilic and extremophilic organisms from all three evolutionary domains. The computational expense of this wide-ranging exploration is kept to a minimum by the use of rigidity analysis and rapid all-atom simulations of flexible motion, combining geometric simulation and elastic network modeling. CS structures from thermophiles display increased structural rigidity compared with the mesophilic enzyme. A CS structure from a psychrophile, stabilized by strong ionic interactions, appears to display likewise increased rigidity in conventional rigidity analysis; however, a novel modified analysis, taking into account the weakening of the hydrophobic effect at low temperatures, shows a more appropriate decreased rigidity. These rigidity variations do not, however, affect the character of the flexible dynamics, which are well conserved across all the structures studied. Simulation trajectories not only duplicate the crystallographically observed symmetric open-to-closed transitions, but also identify motions describing a previously unidentified antisymmetric functional motion. This antisymmetric motion would not be directly observed in crystallography but is revealed as an intrinsic property of the CS structure by modeling of flexible motion. This suggests that the functional motion closing the binding clefts in CS may be independent rather than symmetric and cooperative.

  20. Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Melkani, Girish C.; Lee, Chi F.; Cammarato, Anthony [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States); Bernstein, Sanford I., E-mail: sbernst@sciences.sdsu.edu [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States)

    2010-05-28

    UNC-45 belongs to the UCS (UNC-45, CRO1, She4p) domain protein family, whose members interact with various classes of myosin. Here we provide structural and biochemical evidence that Escherichia coli-expressed Drosophila UNC-45 (DUNC-45) maintains the integrity of several substrates during heat-induced stress in vitro. DUNC-45 displays chaperone function in suppressing aggregation of the muscle myosin heavy meromyosin fragment, the myosin S-1 motor domain, {alpha}-lactalbumin and citrate synthase. Biochemical evidence is supported by electron microscopy, which reveals the first structural evidence that DUNC-45 prevents inter- or intra-molecular aggregates of skeletal muscle heavy meromyosin caused by elevated temperatures. We also demonstrate for the first time that UNC-45 is able to refold a denatured substrate, urea-unfolded citrate synthase. Overall, this in vitro study provides insight into the fate of muscle myosin under stress conditions and suggests that UNC-45 protects and maintains the contractile machinery during in vivo stress.

  1. Citrate Accumulation-Related Gene Expression and/or Enzyme Activity Analysis Combined With Metabolomics Provide a Novel Insight for an Orange Mutant

    Science.gov (United States)

    Guo, Ling-Xia; Shi, Cai-Yun; Liu, Xiao; Ning, Dong-Yuan; Jing, Long-Fei; Yang, Huan; Liu, Yong-Zhong

    2016-01-01

    ‘Hong Anliu’ (HAL, Citrus sinensis cv. Hong Anliu) is a bud mutant of ‘Anliu’ (AL), characterized by a comprehensive metabolite alteration, such as lower accumulation of citrate, high accumulation of lycopene and soluble sugars in fruit juice sacs. Due to carboxylic acid metabolism connects other metabolite biosynthesis and/or catabolism networks, we therefore focused analyzing citrate accumulation-related gene expression profiles and/or enzyme activities, along with metabolic fingerprinting between ‘HAL’ and ‘AL’. Compared with ‘AL’, the transcript levels of citrate biosynthesis- and utilization-related genes and/or the activities of their respective enzymes such as citrate synthase, cytosol aconitase and ATP-citrate lyase were significantly higher in ‘HAL’. Nevertheless, the mitochondrial aconitase activity, the gene transcript levels of proton pumps, including vacuolar H+-ATPase, vacuolar H+-PPase, and the juice sac-predominant p-type proton pump gene (CsPH8) were significantly lower in ‘HAL’. These results implied that ‘HAL’ has higher abilities for citrate biosynthesis and utilization, but lower ability for the citrate uptake into vacuole compared with ‘AL’. Combined with the metabolites-analyzing results, a model was then established and suggested that the reduction in proton pump activity is the key factor for the low citrate accumulation and the comprehensive metabolite alterations as well in ‘HAL’. PMID:27385485

  2. Citrate Accumulation-Related Gene Expression and/or Enzyme Activity Analysis Combined With Metabolomics Provide a Novel Insight for an Orange Mutant.

    Science.gov (United States)

    Guo, Ling-Xia; Shi, Cai-Yun; Liu, Xiao; Ning, Dong-Yuan; Jing, Long-Fei; Yang, Huan; Liu, Yong-Zhong

    2016-01-01

    'Hong Anliu' (HAL, Citrus sinensis cv. Hong Anliu) is a bud mutant of 'Anliu' (AL), characterized by a comprehensive metabolite alteration, such as lower accumulation of citrate, high accumulation of lycopene and soluble sugars in fruit juice sacs. Due to carboxylic acid metabolism connects other metabolite biosynthesis and/or catabolism networks, we therefore focused analyzing citrate accumulation-related gene expression profiles and/or enzyme activities, along with metabolic fingerprinting between 'HAL' and 'AL'. Compared with 'AL', the transcript levels of citrate biosynthesis- and utilization-related genes and/or the activities of their respective enzymes such as citrate synthase, cytosol aconitase and ATP-citrate lyase were significantly higher in 'HAL'. Nevertheless, the mitochondrial aconitase activity, the gene transcript levels of proton pumps, including vacuolar H(+)-ATPase, vacuolar H(+)-PPase, and the juice sac-predominant p-type proton pump gene (CsPH8) were significantly lower in 'HAL'. These results implied that 'HAL' has higher abilities for citrate biosynthesis and utilization, but lower ability for the citrate uptake into vacuole compared with 'AL'. Combined with the metabolites-analyzing results, a model was then established and suggested that the reduction in proton pump activity is the key factor for the low citrate accumulation and the comprehensive metabolite alterations as well in 'HAL'. PMID:27385485

  3. Unique animal prenyltransferase with monoterpene synthase activity

    Science.gov (United States)

    Gilg, Anna B.; Tittiger, Claus; Blomquist, Gary J.

    2009-06-01

    Monoterpenes are structurally diverse natural compounds that play an essential role in the chemical ecology of a wide array of organisms. A key enzyme in monoterpene biosynthesis is geranyl diphosphate synthase (GPPS). GPPS is an isoprenyl diphosphate synthase that catalyzes a single electrophilic condensation reaction between dimethylallyl diphosphate (C5) and isopentenyl diphosphate (C5) to produce geranyl diphosphate (GDP; C10). GDP is the universal precursor to all monoterpenes. Subsequently, monoterpene synthases are responsible for the transformation of GDP to a variety of acyclic, monocyclic, and bicyclic monoterpene products. In pheromone-producing male Ips pini bark beetles (Coleoptera: Scolytidae), the acyclic monoterpene myrcene is required for the production of the major aggregation pheromone component, ipsdienol. Here, we report monoterpene synthase activity associated with GPPS of I. pini. Enzyme assays were performed on recombinant GPPS to determine the presence of monoterpene synthase activity, and the reaction products were analyzed by coupled gas chromatography-mass spectrometry. The functionally expressed recombinant enzyme produced both GDP and myrcene, making GPPS of I. pini a bifunctional enzyme. This unique insect isoprenyl diphosphate synthase possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway.

  4. /sup 67/Ga citrate scintiscanning in active inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Rheingold, O.J.; Tedesco, F.J.; Block, F.E.; Maldonado, A.; Miale, A. Jr.

    1979-05-01

    Twenty-five hospitalized patients were studied prospectively with /sup 67/Ga citrate (GA) abdominal scintillation scanning in an attempt to define its role in the evaluation of patients with active inflammatory bowel disease (IBD). There were nine patients with ulcerative colitis (UC), seven with Crohn's disease (CD), and nine controls. In four patients, two with UC and two with CD, a tissue/plasma radioactivity ratio was obtained and compared to normals. All the UC patients had positive GA scans and only one of seven of the CD patients had a positive scan. There were no false positive scans. Scans performed after a 3- or 5-day delay were more accurate than 6-hr scans alone. Well-delineated colinic radioactivity 6 hr after injection which persists for 3 to 5 days indicates the presence of UC in patients with IBD, while a negative scan is more consistent with active CD. Colonic uptake at 6 hr which clears by 48 or 72 hr is not indicative of UC. This procedure aided in following the course of UC, delineating the extent of disease, and in differentiating active CD from an intraabdominal abscess. Tissues from UC patients had increased tissue/plasma ratioactivity ratios while tissues from CD patients had normal or decreased ratios which were consistent with the imaging data.

  5. Experimental evidences of the NO action on a recombinant PrxII F from pea plant and its effect preventing the citrate synthase aggregation

    Directory of Open Access Journals (Sweden)

    Daymi Camejo

    2015-06-01

    Full Text Available S-nitrosylation is emerging as a key post-translational protein modification for the transduction of NO as a signaling molecule in plants. This data article supports the research article entitled “Functional and structural changes in plant mitochondrial PrxII F caused by NO” [1]. To identify the Cys residues of the recombinant PrxII F modified after the treatment with S-nitrosylating agents we performed the LC ESI–QTOF tandem MS and MALDI peptide mass fingerprinting analysis. Change in A650 nm was monitored to estimate the thermal aggregation of citrate synthase in the presence S-nitrosylated PrxII F. The effect of the temperature on the oligomerization pattern and aggregation of PrxII F was analysed by SDS-PAGE and changes in absorbance at 650 nm, respectively.

  6. Essential Oil Prepared from Cymbopogon citrates Exerted an Antimicrobial Activity Against Plant Pathogenic and Medical Microorganisms

    OpenAIRE

    Jeong, Mi-Ran; Park, Pyeong Beom; Kim, Dae-Hyuk; Jang, Yong-Suk; Jeong, Han Sol; Choi, Sang-Hoon

    2009-01-01

    Essential oils are mixtures of volatile, lipophilic compounds originating from plants. Some essential oils have useful biological activities including antimicrobial, spasmolytic, antiplasmodial, and insect-repelling activities. In this study, we tested the antimicrobial activity of essential oil prepared from the aromatic plant, Cymbopogon citrates, against three important plant pathogenic and medical microorganisms, Pectobacterium carotovorum, Colletotrichum gloeosporioides, and Aspergillus ...

  7. Unraveling the toxicity mechanisms of the herbicide diclofop-methyl in rice: modulation of the activity of key enzymes involved in citrate metabolism and induction of cell membrane anion channels.

    Science.gov (United States)

    Ding, Haiyan; Lu, Haiping; Lavoie, Michel; Xie, Jun; Li, Yali; Lv, Xiaolu; Fu, Zhengwei; Qian, Haifeng

    2014-11-01

    Residual soil concentrations of the herbicide diclofop-methyl (DM) can be toxic to other nontarget plant species, but the toxicity mechanisms at play are not fully understood. In the present study, we analyzed the toxic effect of DM on root growth and metabolism in the rice species Oryza sativa. The results show that a 48-h exposure to a trace level (5 μg/L) of DM inhibits rice root growth by almost 70%. A 48-h exposure to 5 μg/L DM also leads to an ≈2.5-fold increase in citrate synthase (CS) activity (and CS gene transcription) and an ≈2-fold decrease in the citrate lyase gene transcripts, which lead to an increase in the intracellular concentration of citrate and in citrate exudation rate. Addition of a specific inhibitor of cell membrane anion channel, anthracene-9-carboxylic acid, decreased citrate release in the culture, suggesting that DM-induced citrate loss from the cells is mediated by a specific membrane-bound channel protein. This study brings new insights into the key biochemical mechanisms leading to DM toxicity in rice.

  8. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B;

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal...... and endothelial nitric oxide synthase (NOS)], and enzymatic NO synthase activity. MRI guided biopsies documented more active plaques than macroscopic examination, and histological examination revealed further lesions. Inducible NOS (iNOS) was the dominant IR isoform, while reactive astrocytes were the dominant i...

  9. Activities and regulation of peptidoglycan synthases

    NARCIS (Netherlands)

    Egan, Alexander J F; Biboy, Jacob; van 't Veer, Inge; Breukink, Eefjan; Vollmer, Waldemar

    2015-01-01

    Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have b

  10. Effect of citrate on Aspergillus niger phytase adsorption and catalytic activity in soil

    Science.gov (United States)

    Mezeli, Malika; Menezes-Blackburn, Daniel; Zhang, Hao; Giles, Courtney; George, Timothy; Shand, Charlie; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Stutter, Marc; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip

    2015-04-01

    Current developments in cropping systems that promote mobilisation of phytate in agricultural soils, by exploiting plant-root exudation of phytase and organic acids, offer potential for developments in sustainable phosphorus use. However, phytase adsorption to soil particles and phytate complexion has been shown to inhibit phytate dephosphorylation, thereby inhibiting plant P uptake, increasing the risk of this pool contributing to diffuse pollution and reducing the potential benefits of biotechnologies and management strategies aimed to utilise this abundant reserve of 'legacy' phosphorus. Citrate has been seen to increase phytase catalytic efficiency towards complexed forms of phytate, but the mechanisms by which citrate promotes phytase remains poorly understood. In this study, we evaluated phytase (from Aspergillus niger) inactivation, and change in catalytic properties upon addition to soil and the effect citrate had on adsorption of phytase and hydrolysis towards free, precipitated and adsorbed phytate. A Langmuir model was fitted to phytase adsorption isotherms showing a maximum adsorption of 0.23 nKat g-1 (19 mg protein g-1) and affinity constant of 435 nKat gˉ1 (8.5 mg protein g-1 ), demonstrating that phytase from A.niger showed a relatively low affinity for our test soil (Tayport). Phytases were partially inhibited upon adsorption and the specific activity was of 40.44 nKat mgˉ1 protein for the free enzyme and 25.35 nKat mgˉ1 protein when immobilised. The kinetics of adsorption detailed that most of the adsorption occurred within the first 20 min upon addition to soil. Citrate had no effect on the rate or total amount of phytase adsorption or loss of activity, within the studied citrate concentrations (0-4mM). Free phytases in soil solution and phytase immobilised on soil particles showed optimum activity (>80%) at pH 4.5-5.5. Immobilised phytase showed greater loss of activity at pH levels over 5.5 and lower activities at the secondary peak at pH 2

  11. Functional Analysis of the Citrate Activator CitO from Enterococcus faecalis Implicates a Divalent Metal in Ligand Binding

    Science.gov (United States)

    Blancato, Víctor S.; Pagliai, Fernando A.; Magni, Christian; Gonzalez, Claudio F.; Lorca, Graciela L.

    2016-01-01

    The regulator of citrate metabolism, CitO, from Enterococcus faecalis belongs to the FCD family within the GntR superfamily. In the presence of citrate, CitO binds to cis-acting sequences located upstream of the cit promoters inducing the expression of genes involved in citrate utilization. The quantification of the molecular binding affinities, performed by isothermal titration calorimetry (ITC), indicated that CitO has a high affinity for citrate (KD = 1.2 ± 0.2 μM), while it did not recognize other metabolic intermediates. Based on a structural model of CitO where a putative small molecule and a metal binding site were identified, it was hypothesized that the metal ion is required for citrate binding. In agreement with this model, citrate binding to CitO sharply decreased when the protein was incubated with EDTA. This effect was reverted by the addition of Ni2+, and Zn2+ to a lesser extent. Structure-based site-directed mutagenesis was conducted and it was found that changes to alanine in residues Arg97 and His191 resulted in decreased binding affinities for citrate, as determined by EMSA and ITC. Further assays using lacZ fusions confirmed that these residues in CitO are involved in sensing citrate in vivo. These results indicate that the molecular modifications induced by a ligand and a metal binding in the C-terminal domain of CitO are required for optimal DNA binding activity, and consequently, transcriptional activation. PMID:26903980

  12. Functional analysis of the citrate activator CitO from Enterococcus faecalis implicates a divalent metal in ligand binding

    Directory of Open Access Journals (Sweden)

    Victor S. Blancato

    2016-02-01

    Full Text Available The regulator of citrate metabolism, CitO, from Enterococcus faecalis belongs to the FCD family within the GntR superfamily. In the presence of citrate, CitO binds to cis-acting sequences located upstream of the cit promoters inducing the expression of genes involved in citrate utilization. The quantification of the molecular binding affinities, performed by isothermal titration calorimetry (ITC, indicated that CitO has a high affinity for citrate (KD= 1.2±0.2 µM, while it did not recognize other metabolic intermediates. Based on a structural model of CitO where a putative small molecule and a metal binding site were identified, it was hypothesized that the metal ion is required for citrate binding. In agreement with this model, citrate binding to CitO sharply decreased when the protein was incubated with EDTA. This effect was reverted by the addition of Ni2+, and Zn2+ to a lesser extent. Structure-based site-directed mutagenesis was conducted and it was found that changes to alanine in residues Arg97 and His191 resulted in decreased binding affinities for citrate, as determined by EMSA and ITC. Further assays using lacZ fusions confirmed that these residues in CitO are involved in sensing citrate in vivo. These results indicate that the molecular modifications induced by a ligand and a metal binding in the C-terminal domain of CitO are required for optimal DNA binding activity, and consequently, transcriptional activation.

  13. 利用农杆菌介导法获得转柠檬酸合成酶基因粳稻及其耐低磷的研究%Genetic Transformation of Japonica Rice Mediated with Agrobacterium tumefaciens Harboring the Citrate Synthase Gene and Tolerance of the Transgenic Plants to Low Phosphorus in Soil

    Institute of Scientific and Technical Information of China (English)

    于志晶; 蔡勤安; 李淑芳; 刘丽; 林秀峰; 马瑞

    2012-01-01

    The citrate synthase gene was transformed into main cultivar (super rice 'Jijing 88') of Jilin Province, mediated with Agrobacterium tumefaciens. Total 162 obtained transgenic plants (TO) were validated by PCR and southern blot. Five transgenic plants (T3) with tolerance to low phosphorus in soil and good agronomic characteristics were obtained by PPT selection, PCR and Southern blot confirmation and tolerance test to low phosphorus. The citrate synthase activity and citrate acid contents in root tips and leaves of the 5 transgenic plants were higher than the control. The growth and yield of the transgenic plants were superior to the control.%利用根癌农杆菌介导法将柠檬酸合成酶CS基因导入吉林省主栽超级粳稻品种吉粳88中.经PCR检测,获得162株转基因阳性植株.转基因植株后代进一步经过PPT抗性筛选、分子检测和耐低磷筛选,获得5株(T3代)耐低磷性状明显且农艺性状较好的转基因植株.对转基因植株柠檬酸合成酶活性和柠檬酸含量的测定以及形态学和产量性状调查结果表明:转基因植株优于非转基因对照植株.

  14. Phytochelatin synthase activity as a marker of metal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Zitka, Ondrej; Krystofova, Olga; Sobrova, Pavlina [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Adam, Vojtech [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Zehnalek, Josef; Beklova, Miroslava [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kizek, Rene, E-mail: kizek@sci.muni.cz [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic)

    2011-08-30

    Highlights: {yields} New tool for determination of phytochelatin synthase activity. {yields} The optimization of experimental condition for determination of the enzyme activity. {yields} First evaluation of K{sub m} for the enzyme. {yields} The effects of cadmium (II) not only on the activity of the enzyme but also on K{sub m}. -- Abstract: The synthesis of phytochelatins is catalyzed by {gamma}-Glu-Cys dipeptidyl transpeptidase called phytochelatin synthase (PCS). Aim of this study was to suggest a new tool for determination of phytochelatin synthase activity in the tobacco BY-2 cells treated with different concentrations of the Cd(II). After the optimization steps, an experiment on BY-2 cells exposed to different concentrations of Cd(NO{sub 3}){sub 2} for 3 days was performed. At the end of the experiment, cells were harvested and homogenized. Reduced glutathione and cadmium (II) ions were added to the cell suspension supernatant. These mixtures were incubated at 35 {sup o}C for 30 min and analysed using high performance liquid chromatography coupled with electrochemical detector (HPLC-ED). The results revealed that PCS activity rises markedly with increasing concentration of cadmium (II) ions. The lowest concentration of the toxic metal ions caused almost three fold increase in PCS activity as compared to control samples. The activity of PCS (270 fkat) in treated cells was more than seven times higher in comparison to control ones. K{sub m} for PCS was estimated as 2.3 mM.

  15. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    expression analysis and proteomics have pointed to abnormalities in mitochondrial oxidative phosphorylation and cellular stress in muscle of type 2 diabetic subjects, and recent work suggests that impaired mitochondrial activity is another early defect in the pathogenesis of type 2 diabetes. This review...... will discuss the latest advances in the understanding of the molecular mechanisms underlying insulin resistance in human skeletal muscle in type 2 diabetes with focus on possible links between impaired glycogen synthase activity and mitochondrial dysfunction....

  16. All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity[S

    OpenAIRE

    Ding, Tingbo; Kabir, Inamul; Li, Yue; Lou, Caixia; Yazdanyar, Amirfarbod; Xu, Jiachen; Dong, Jibin; Zhou, Hongwen; Park, Taesik; Boutjdir, Mohamed; Li, Zhiqiang; Jiang, Xian-Cheng

    2015-01-01

    Sphingomyelin synthase-related protein (SMSr) synthesizes the sphingomyelin analog ceramide phosphoethanolamine (CPE) in cells. Previous cell studies indicated that SMSr is involved in ceramide homeostasis and is crucial for cell function. To further examine SMSr function in vivo, we generated Smsr KO mice that were fertile and had no obvious phenotypic alterations. Quantitative MS analyses of plasma, liver, and macrophages from the KO mice revealed only marginal changes in CPE and ceramide a...

  17. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance

    Science.gov (United States)

    Aluminum (Al) activated root malate and citrate exudation play an important role in Al tolerance in many plant species. AtALMT1, an Al-activated malate transporter, is a major contributor to Arabidopsis Al tolerance. Here, we demonstrate that a second, unrelated gene, AtMATE, encodes an Arabidopsi...

  18. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

    Science.gov (United States)

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng

    2016-01-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10–8~10–6 mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10–9 mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase. PMID:27610030

  19. Insulin resistance is associated with reduced fasting and insulin-stimulated glycogen synthase phosphatase activity in human skeletal muscle.

    OpenAIRE

    Kida, Y; Esposito-Del Puente, A; Bogardus, C; Mott, D M

    1990-01-01

    Insulin-stimulated glycogen synthase activity in human skeletal muscle correlates with insulin-mediated glucose disposal rate (M) and is reduced in insulin-resistant subjects. We have previously reported reduced insulin-stimulated glycogen synthase activity associated with reduced fasting glycogen synthase phosphatase activity in skeletal muscle of insulin-resistant Pima Indians. In this study we investigated the time course for insulin stimulation of glycogen synthase and synthase phosphatas...

  20. Redox properties and activity of iron-citrate complexes: evidence for redox cycling.

    Science.gov (United States)

    Adam, Fatima I; Bounds, Patricia L; Kissner, Reinhard; Koppenol, Willem H

    2015-04-20

    Iron in iron overload disease is present as non-transferrin-bound iron, consisting of iron, citrate, and albumin. We investigated the redox properties of iron citrate by electrochemistry, by the kinetics of its reaction with ascorbate, by ESR, and by analyzing the products of reactions of ascorbate with iron citrate complexes in the presence of H2O2 with 4-hydroxybenzoic acid as a reporter molecule for hydroxylation. We report -0.03 V +0.01 V for the (Fe(3+)-cit/Fe(2+)-cit) couple. The first step in the reaction of iron citrate with ascorbate is the rapid formation of mixed complexes of iron with citrate and ascorbate, followed by slow reduction to Fe(2+)-citrate with k = ca. 3 M(-1) s(-1). The ascorbyl radical is formed by iron citrate oxidation of Hasc(-) with k = ca. 0.02 M(-1) s(-1); the majority of the ascorbyl radical formed is sequestered by complexation with iron and remains EPR silent. The hydroxylation of 4-hydroxybenzoic acid driven by the Fenton reduction of iron citrate by ascorbate in the presence of H2O2 proceeds in three phases: the first phase, which is independent of the presence of O2, is revealed as a nonzero intercept that reflects the rapid reaction of accumulated Fe(2+) with H2O2; the intermediate oxygen-dependent phase fits a first-order accumulation of product with k = 5 M(-1) s(-1) under aerobic and k = 13 M(-1) s(-1) under anaerobic conditions; the slope of the final linear phase is ca. k = 5 × 10(-2) M(-1) s(-1) under both aerobic and anaerobic conditions. Product yields under aerobic conditions are greater than predicted from the initial concentration of iron, but they are less than predicted for continuous redox cycling in the presence of excess ascorbate. The ongoing formation of hydroxylated product supports slow redox cycling by iron citrate. Thus, when H2O2 is available, iron-citrate complexes may contribute to pathophysiological manifestations of iron overload diseases. PMID:25654270

  1. Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices.

    Science.gov (United States)

    Rangel, Andrés Felipe; Rao, Idupulapati Madhusudana; Braun, Hans-Peter; Horst, Walter Johannes

    2010-02-01

    Two common bean (Phaseolus vulgaris L.) genotypes differing in aluminum (Al) resistance, Quimbaya (Al-resistant) and VAX-1 (Al-sensitive) were grown in hydroponics for up to 25 h with or without Al, and several parameters related to the exudation of organic acids anions from the root apex were investigated. Al treatment enhanced the exudation of citrate from the root tips of both genotypes. However, its dynamic offers the most consistent relationship between Al-induced inhibition of root elongation and Al accumulation in and exclusion from the root apices. Initially, in both genotypes the short-term (4 h) Al-injury period was characterized by the absence of citrate efflux independent of the citrate content of the root apices, and reduction of cytosolic turnover of citrate conferred by a reduced Nicotinamide adenine dinucleotide phosphate-isocitrate dehydrogenase (EC 1.1.1.42) activity. Transient recovery from initial Al stress (4-12 h) was found to be dependent mainly on the capacity to utilize internal citrate pools (Al-resistant genotype Quimbaya) or enhanced citrate synthesis [increased activities of NAD-malate dehydrogenase (EC 1.1.1.37) and ATP-phosphofructokinase (EC 2.7.1.11) in Al-sensitive VAX-1]. Sustained recovery from Al stress through citrate exudation in genotype Quimbaya after 24 h Al treatment relied on restoring the internal citrate pool and the constitutive high activity of citrate synthase (CS) (EC 4.1.3.7) fuelled by high phosphoenolpyruvate carboxylase (EC 4.1.1.31) activity. In the Al-sensitive genotype VAX-1 the citrate exudation and thus Al exclusion and root elongation could not be maintained coinciding with an exhaustion of the internal citrate pool and decreased CS activity. PMID:20053183

  2. Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms

    Science.gov (United States)

    Martin, Belinda C.; George, Suman J.; Price, Charles A.; Shahsavari, Esmaeil; Ball, Andrew S.; Tibbett, Mark; Ryan, Megan H.

    2016-09-01

    Petroleum hydrocarbons (PHCs) are among the most prevalent sources of environmental contamination. It has been hypothesized that plant root exudation of low molecular weight organic acid anions (carboxylates) may aid degradation of PHCs by stimulating heterotrophic microbial activity. To test their potential implication for bioremediation, we applied two commonly exuded carboxylates (citrate and malonate) to uncontaminated and diesel-contaminated microcosms (10 000 mg kg-1; aged 40 days) and determined their impact on the microbial community and PHC degradation. Every 48 h for 18 days, soil received 5 µmol g-1 of (i) citrate, (ii) malonate, (iii) citrate + malonate or (iv) water. Microbial activity was measured daily as the flux of CO2. After 18 days, changes in the microbial community were assessed by a community-level physiological profile (CLPP) and 16S rRNA bacterial community profiles determined by denaturing gradient gel electrophoresis (DGGE). Saturated PHCs remaining in the soil were assessed by gas chromatography-mass spectrometry (GC-MS). Cumulative soil respiration increased 4- to 6-fold with the addition of carboxylates, while diesel contamination resulted in a small, but similar, increase across all carboxylate treatments. The addition of carboxylates resulted in distinct changes to the microbial community in both contaminated and uncontaminated soils but only a small increase in the biodegradation of saturated PHCs as measured by the n-C17 : pristane biomarker. We conclude that while the addition of citrate and malonate had little direct effect on the biodegradation of saturated hydrocarbons present in diesel, their effect on the microbial community leads us to suggest further studies using a variety of soils and organic acids, and linked to in situ studies of plants, to investigate the role of carboxylates in microbial community dynamics.

  3. Mosapride citrate, a 5-HT₄ receptor agonist, increased the plasma active and total glucagon-like peptide-1 levels in non-diabetic men.

    Science.gov (United States)

    Aoki, Kazutaka; Kamiyama, Hiroshi; Masuda, Kiyomi; Togashi, Yu; Terauchi, Yasuo

    2013-01-01

    Mosapride citrate, a selective agonist of the 5-hydroxytryptaine (5-HT)₄ receptor, is typically used to treat heartburn, nausea, and vomiting associated with chronic gastritis or to prepare for a barium enema X-ray examination. Mosapride citrate reportedly improves insulin sensitivity in patients with type 2 diabetes. As mosapride citrate activates the motility of the gastrointestinal tract, we hypothesized that mosapride citrate affects incretin secretion. We examined the effect of the administration of mosapride citrate on the plasma glucose, serum insulin, plasma glucagon, and plasma incretin levels before breakfast and at 60, 120, and 180 min after breakfast in men with normal glucose tolerance (NGT) or impaired glucose tolerance (IGT) to exclude gastropathy. Mosapride citrate was administered according to two different intake schedules (C: control (no drug), M: mosapride citrate 20 mg) in each of the subject groups. The area under the curve (AUC) of the plasma glucose levels was smaller in the M group than in the C group. The time profiles for the serum insulin levels at 60 and 120 min after treatment with mosapride citrate tended to be higher, although the difference was not statistically significant. The AUCs of the plasma active and total glucagon-like peptide-1 (GLP-1) levels were significantly larger in the M group than in the C group. No significant difference in the AUC of the plasma glucose-dependent insulinotropic polypeptide (GIP) level was observed between the two groups. Our results suggest that mosapride citrate may have an antidiabetic effect by increasing GLP-1 secretion. PMID:23257734

  4. Human uroporphyrinogen III synthase: NMR-based mapping of the active site.

    Science.gov (United States)

    Cunha, Luis; Kuti, Miklos; Bishop, David F; Mezei, Mihaly; Zeng, Lei; Zhou, Ming-Ming; Desnick, Robert J

    2008-05-01

    Uroporphyrinogen III synthase (URO-synthase) catalyzes the cyclization and D-ring isomerization of hydroxymethylbilane (HMB) to uroporphyrinogen (URO'gen) III, the cyclic tetrapyrrole and physiologic precursor of heme, chlorophyl, and corrin. The deficient activity of human URO-synthase results in the autosomal recessive cutaneous disorder, congenital erythropoietic porphyria. Mapping of the structural determinants that specify catalysis and, potentially, protein-protein interactions is lacking. To map the active site and assess the enzyme's possible interaction in a complex with hydroxymethylbilane-synthase (HMB-synthase) and/or uroporphyrinogen-decarboxylase (URO-decarboxylase) by NMR, an efficient expression and purification procedure was developed for these cytosolic enzymes of heme biosynthesis that enabled preparation of special isotopically-labeled protein samples for NMR characterization. Using an 800 MHz instrument, assignment of the URO-synthase backbone (13)C(alpha) (100%), (1)H(alpha) (99.6%), and nonproline (1)H(N) and (15)N resonances (94%) was achieved as well as 85% of the side-chain (13)C and (1)H resonances. NMR analyses of URO-synthase titrated with competitive inhibitors N(D)-methyl-1-formylbilane (NMF-bilane) or URO'gen III, revealed resonance perturbations of specific residues lining the cleft between the two major domains of URO synthase that mapped the enzyme's active site. In silico docking of the URO-synthase crystal structure with NMF-bilane and URO'gen III was consistent with the perturbation results and provided a 3D model of the enzyme-inhibitor complex. The absence of chemical shift changes in the (15)N spectrum of URO-synthase mixed with the homogeneous HMB-synthase holoenzyme or URO-decarboxylase precluded occurrence of a stable cytosolic enzyme complex. PMID:18004775

  5. Platelet-derived growth factor (PDGF) stimulates glycogen synthase activity in 3T3 cells

    International Nuclear Information System (INIS)

    Hormonal regulation of glycogen synthase, an enzyme that can be phosphorylated on multiple sites, is often associated with changes in its phosphorylation state. Enzyme activation is conventionally monitored by determining the synthase activity ratio [(activity in the absence of glucose 6-P)/(activity in the presence of glucose 6-P)]. Insulin causes an activation of glycogen synthase with a concomitant decrease in its phosphate content. In a previous report, the authors showed that epidermal growth factor (EGF) increases the glycogen synthase activity ratio in Swiss 3T3 cells. The time and dose-dependency of this response was similar to that of insulin. Their recent results indicate that PDGF also stimulates glycogen synthase activity. Enzyme activation was maximal after 30 min. of incubation with PDGF; the time course observed was very similar to that with insulin and EGF. At 1 ng/ml (0.03nM), PDGF caused a maximal stimulation of 4-fold in synthase activity ratio. Half-maximal stimulation was observed at 0.2 ng/ml (6 pM). The time course of changes in enzyme activity ratio closely followed that of 125I-PDGF binding. The authors data suggest that PDGF, as well as EFG and insulin, may be important in regulating glycogen synthesis through phosphorylation/dephosphorylation mechanisms

  6. A specific method for measurement of nitric oxide synthase enzymatic activity in peritoneal biopsies.

    OpenAIRE

    Combet, S.; Balligand, Jean-Luc; Lameire, N.; Goffin, Eric; Devuyst, Olivier

    2000-01-01

    A specific method for measurement of nitric oxide synthase enzymatic activity in peritoneal biopsies. BACKGROUND: Nitric oxide (NO) is synthesized by NO synthase (NOS) isoforms that are expressed in the peritoneum. Thus far, NOS activity in the peritoneum has been assessed by nonspecific methods. We describe the application of a specific method for determination of NOS activity in rat and human peritoneal biopsies. METHODS: The L-citrulline assay is based on the stoechiometric production of N...

  7. Platensimycin activity against mycobacterial beta-ketoacyl-ACP synthases.

    Directory of Open Access Journals (Sweden)

    Alistair K Brown

    Full Text Available BACKGROUND: There is an urgent need for the discovery and development of new drugs against Mycobacterium tuberculosis, the causative agent of tuberculosis, especially due to the recent emergence of multi-drug and extensively-drug resistant strains. Herein, we have examined the susceptibility of mycobacteria to the natural product platensimycin. METHODS AND FINDINGS: We have demonstrated that platensimycin has bacteriostatic activity against the fast growing Mycobacterium smegmatis (MIC = 14 microg/ml and against Mycobacterium tuberculosis (MIC = 12 microg/ml. Growth in the presence of paltensimycin specifically inhibited the biosynthesis of mycolic acids suggesting that the antibiotic targeted the components of the mycolate biosynthesis complex. Given the inhibitory activity of platensimycin against beta-ketoacyl-ACP synthases from Staphylococcus aureus, M. tuberculosis KasA, KasB or FabH were overexpressed in M. smegmatis to establish whether these mycobacterial KAS enzymes were targets of platensimycin. In M. smegmatis overexpression of kasA or kasB increased the MIC of the strains from 14 microg/ml, to 30 and 124 microg/ml respectively. However, overexpression of fabH on did not affect the MIC. Additionally, consistent with the overexpression data, in vitro assays using purified proteins demonstrated that platensimycin inhibited Mt-KasA and Mt-KasB, but not Mt-FabH. SIGNIFICANCE: Our results have shown that platensimycin is active against mycobacterial KasA and KasB and is thus an exciting lead compound against M. tuberculosis and the development of new synthetic analogues.

  8. Citrate-Linked Keto- and Aldo-Hexose Monosaccharide Cellulose Conjugates Demonstrate Selective Human Neutrophil Elastase-Lowering Activity in Cotton Dressings

    Directory of Open Access Journals (Sweden)

    Sonya Caston-Pierre

    2013-05-01

    Full Text Available Sequestration of harmful proteases as human neutrophil elastase (HNE from the chronic wound environment is an important goal of wound dressing design and function. Monosaccharides attached to cellulose conjugates as ester-appended aldohexoses and ketohexoses were prepared on cotton gauze as monosccharide-citrate-cellulose-esters for HNE sequestration. The monosaccharide-cellulose analogs demonstrated selective binding when the derivatized cotton dressings were measured for sequestration of HNE. Each monosaccharide-cellulose conjugate was prepared as a cellulose citrate-linked monosaccharide ester on the cotton wound dressing, and assayed under wound exudate-mimicked conditions for elastase sequestration activity. A series of three aldohexose and four ketohexose ester cellulose conjugates were prepared on cotton gauze through citric acid-cellulose cross linking esterification. The monosaccharide portion of the conjugate was characterized by hydrolysis of the citrate-monosaccharide ester bond, and subsequent analysis of the free monosaccharide with high performance anion exchange chromatography. The ketohexose and aldohexose conjugate levels on cotton were quantified on cotton using chromatography and found to be present in milligram/gram amounts. The citrate-cellulose ester bonds were characterized with FTIR. Ketohexose-citrate-cellulose conjugates sequestered more elastase activity than aldohexose-citrate-cellulose conjugates. The monosaccharide cellulose conjugate families each gave distinctive profiles in elastase-lowering effects. Possible mechanisms of elastase binding to the monosaccharide-cellulose conjugates are discussed.

  9. Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury

    Institute of Scientific and Technical Information of China (English)

    Guang-Jin Yuan; Xiao-Rong Zhou; Zuo-Jiong Gong; Pin Zhang; Xiao-Mei Sun; Shi-Hua Zheng

    2006-01-01

    AIM: To study the expression and activity of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) in rats with ethanol-induced liver injury and their relation with liver damage, activation of nuclear factor-KB (NF-кB) and tumor necrosis factor-α (TNF-α)expression in the liver.METHODS: Female Sprague-Dawley rats were given fish oil (0.5 mL) along with ethanol or isocaloric dextrose daily via gastrogavage for 4 or 6 wk. Liver injury was assessed using serum alanine aminotransferase (ALT)activity and pathological analysis. Liver malondialdehyde (MDA), nitric oxide contents, iNOS and eNOS activity were determined. NF-KB p65, iNOS, eNOS and TNF-αprotein or mRNA expression in the liver were detected by immunohistochemistry or reverse transcriptase-polymerase chain reaction (RT-PCR).RESULTS: Chronic ethanol gavage for 4 wk caused steatosis, inflammation and necrosis in the liver, and elevated serum ALT activity. Prolonged ethanol administration (6 wk) enhanced the liver damage. These responses were accompanied with increased lipid peroxidation, NO contents, iNOS activity and reduced eNOS activity. NF-кB p65, iNOS and TNF-α protein or mRNA expression were markedly induced after chronic ethanol gavage, whereas eNOS mRNA expression remained unchanged. The enhanced iNOS activity and expression were positively correlated with the liver damage, especially the necro-inflammation, activation of NF-кB, and TNF-α mRNA expression.CONCLUSION: iNOS expression and activity are induced in the liver after chronic ethanol exposure in rats, which are correlated with the liver damage, especially the necro-inflammation, activation of NF-KB and TNF-αexpression. eNOS activity is reduced, but its mRNA expression is not affected.

  10. Interaction between DAHP synthase and chorismate mutase endows new regulation on DAHP synthase activity in Corynebacterium glutamicum.

    Science.gov (United States)

    Li, Pan-Pan; Li, De-Feng; Liu, Di; Liu, Yi-Ming; Liu, Chang; Liu, Shuang-Jiang

    2013-12-01

    Previous research on Corynebacterium glutamicum revealed that 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DSCg, formerly DS2098) interacts with chorismate mutase (CMCg, formerly CM0819). In this study, we investigated the interaction by means of structure-guided mutation and enzymatic assays. Our results show that the interaction imparted a new mechanism for regulation of DAHP activity: In the absence of CMCg, DSCg activity was not regulated by prephenate, whereas in the presence of CMCg, prephenate markedly inhibited DSCg activity. Prephenate competed with the substrate phosphoenolpyruvate, and the inhibition constant (K i) was determined to be 0.945 mM. Modeling based on the structure of the complex formed between DAHP synthase and chorismate mutase of Mycobacterium tuberculosis predicted the interaction surfaces of the putative DSCg-CMCg complex. The amino acid residues and structural domains that contributed to the interaction surfaces were experimentally identified to be the (212)SPAGARYE(219) sequence of DSCg and the (60)SGGTR(64) loop and C-terminus ((97)RGKLG(101)) of CMCg. PMID:23467831

  11. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Bechard Matthew E.

    2003-01-01

    Full Text Available Tetrahydromethanopterin (H4MPT is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase. Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H4MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  12. Transformation of pristine and citrate-functionalized CeO2 nanoparticles in a laboratory-scale activated sludge reactor.

    Science.gov (United States)

    Barton, Lauren E; Auffan, Melanie; Bertrand, Marie; Barakat, Mohamed; Santaella, Catherine; Masion, Armand; Borschneck, Daniel; Olivi, Luca; Roche, Nicolas; Wiesner, Mark R; Bottero, Jean-Yves

    2014-07-01

    Engineered nanomaterials (ENMs) are used to enhance the properties of many manufactured products and technologies. Increased use of ENMs will inevitably lead to their release into the environment. An important route of exposure is through the waste stream, where ENMs will enter wastewater treatment plants (WWTPs), undergo transformations, and be discharged with treated effluent or biosolids. To better understand the fate of a common ENM in WWTPs, experiments with laboratory-scale activated sludge reactors and pristine and citrate-functionalized CeO2 nanoparticles (NPs) were conducted. Greater than 90% of the CeO2 introduced was observed to associate with biosolids. This association was accompanied by reduction of the Ce(IV) NPs to Ce(III). After 5 weeks in the reactor, 44 ± 4% reduction was observed for the pristine NPs and 31 ± 3% for the citrate-functionalized NPs, illustrating surface functionality dependence. Thermodynamic arguments suggest that the likely Ce(III) phase generated would be Ce2S3. This study indicates that the majority of CeO2 NPs (>90% by mass) entering WWTPs will be associated with the solid phase, and a significant portion will be present as Ce(III). At maximum, 10% of the CeO2 will remain in the effluent and be discharged as a Ce(IV) phase, governed by cerianite (CeO2).

  13. Pressure-related activation of inducible nitric oxide synthase

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A lot of reports suggested that inducible nitric oxide synthase (iNOS) has a very different nature from constitutive NOS including endothelial NOS (eNOS) and neural NOS (nNOS). When exposed to cytokines or bacterial products, iNOS could be greatly activated and produces hundreds or thousands fold more NO than it does usually. Whether iNOS activation is arterial pressure related is not clear. In the present experiment, we studied three groups(n=6) of Sprague Dawley (SD) rats with implanted aorta and venous catheters that were maintained on 1 mEq/d, 12.5 mEq/d and 25 mEq/d of sodium intake respectively. Pulsatile arterial pressure signals from the amplifier were sent to a digital computer and the urine samples were taken every other day for nitrate/nitrite excretion (UNOx) assay using Greiss Reaction. After 6 days infusion, the rats were euthanized with an overdose of sodium pentobarbital, and the renal medullas were rapidly removed and frozen on dry ice for iNOS activity assay. Morever separate groups of hypertensive rats including spontaneously hypertensive rat (SHR, n=6) and High NaCl-induced hypertensive rat (NaHR, n=6) were used to measure renal iNOS protein by Western Blotting. The results showed that the mean arterial pressure (MAP) were significantly increased with the increase intake of sodium, the MAP (mmHg) at day 6 were 99.6±3.5,116.65±4.2 and 125.43±4.5, and the iNOS activity (nmol*g-1 protein*min-1) were 122.3±23.4, 342.4±35.6 and 623.9±65.4 in 1 mEq/d, 12.5 mEq/d and 25 mEq/d of sodium intake-rats respectively. At the same time, UNOx at day 6 were also increased, in turn, to 5 865.6±343.0 (for 12.5 mEq/d intake-rats) and (9 642.8±1 045.3) (for 25 mEq/d sodium intake-rats) nmol/d from (3 834.9±234.8) nmol/d of 1 mEq/d sodium intake-rats respectively. Western blotting showed that the renal medullary iNOS protein in SHR and NaHR were increased by 178%±13% and 104%±9% of normal Wistar rats. The data indicates that elevated arterial pressure

  14. The Domain Responsible for Sphingomyelin Synthase (SMS) Activity

    OpenAIRE

    Yeang, Calvin; Varsheny, Shweta; Wang, Renxiao; ZHANG, YA; Ye, Deyong; Jiang, Xian-Cheng

    2008-01-01

    Sphingomyelin synthase (SMS) sits at the crossroads of sphingomyelin (SM), ceramide, diacylglycerol (DAG) metabolism. It utilizes ceramide and phosphatidylcholine as substrates to produce SM and DAG, thereby regulating lipid messengers which play a role in cell survival and apoptosis. There are two isoforms of the enzyme, SMS1 and SMS2. Both SMS1 and SMS2 contain two histidines and one aspartic acid which are evolutionary conserved within the lipid phosphate phosphatase superfamily. In this s...

  15. Comparison study on effects of overexpressing citrate synthase driven by light-inducible promoter and constitutive promoter on Al tolerance of transgenic tobacco plants%光诱导和组成型启动子控制柠檬酸合酶基因过量表达对转基因烟草耐铝性影响的比较

    Institute of Scientific and Technical Information of China (English)

    王奇峰; 胡清泉; 赵玥; 易琼; 李昆志; 玉永雄; 陈丽梅

    2011-01-01

    分别用光诱导型启动子(PrbcS)和组成型启动子(CaMV 35S)驱动柠檬酸合酶基因(cs)在转基因烟草中过量表达,比较转基因烟草中柠檬酸的含量和分泌量及其铝耐受性的变化.结果表明:诱导型转基因株系的CS酶活性是野生型的2.3~2.4倍,组成型转基因株系的酶活性是野生型的1.6~2倍;在30 μmol·L-1铝胁迫下,诱导型转基因植株的根相对伸长量是野生型的2.8~2.9倍,组成型的根相对伸长量是野生型的2~2.3倍;在无铝或300 μmo1·L-1铝胁迫下,转基因烟草叶片和根中柠檬酸含量均高于野生型,其中诱导型转基因植株叶片中柠檬酸含量高于组成型转基因植株,转基因烟草柠檬酸的分泌量分别是野生型的1.8~2.0倍和3.0~3.3倍;在有铝胁迫的珍珠岩基质上培养时,转基因烟草的生长情况好于野生型.这些结果证明,与CaMV 35S相比,采用PrbcS启动子控制cs基因的过量表达可更有效地增加转基因烟草中CS的酶活性及叶片中柠檬酸的合成量,同时也能更有效地提高转基因烟草柠檬酸的分泌量,从而增强其对铝毒害的抵御能力.%Overexpression of citrate synthase (cs) cDNA of tobacco was driven by the light-inducible promoter of rubisco small subunit (PrbcS) and the constitutive promoter CaMV 35S (35S) in transgenic tobacco plants, respectively. The changes in citrate contents and exudations as well as Al tolerances in transgenic PrbcS and 35S tobacco plants were compared. The results showed that CS enzyme activities were increased 2.3-2.4 folds and 1.6-2 folds in transgenic PrbcS and 35S tobacco plants as compared with wild tobacco (WT) plants, respectively. When exposed to 30 μmol·L-1 Al, relative root elongation rates of transgenic PrbcS and 35S tobacco plants were also increased 2.8-2.9 folds and 2-2. 3 folds as compared with WT, respectively. Citrate contents in the transgenic tobacco leaves were significantly increased compared with the WT

  16. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    Energy Technology Data Exchange (ETDEWEB)

    Schoenitzer, Veronika [INM - Leibniz Institute for New Materials, Biomineralisation Group, Campus D2.2, D-66123 Saarbruecken (Germany); Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Eichner, Norbert [Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Clausen-Schaumann, Hauke [Munich University of Applied Sciences, Lothstrasse 34, D-80335 Muenchen, Germany, and Center for NanoScience (CeNS), Geschwister-Scholl-Platz 1, D-80539 Muenchen (Germany); Weiss, Ingrid M., E-mail: ingrid.weiss@inm-gmbh.de [INM - Leibniz Institute for New Materials, Biomineralisation Group, Campus D2.2, D-66123 Saarbruecken (Germany); Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.

  17. Investigation of the effect of kaolin and tissue factor-activated citrated whole blood, on clot forming variables, as evaluated by thromboelastograph

    DEFF Research Database (Denmark)

    Johansson, Per Ingemar; Bochsen, L.; Andersen, S.;

    2008-01-01

    ), and maximum clot strength (amplitude [MA]) were evaluated, together with day-to-day variation, the coefficient of variance (CV%), and the effect of citrate storage time. RESULTS: Clot formation variables were equally affected by TF 1:17,000 and kaolin activation, whereas R was significantly longer when TF 1...

  18. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine [beta]-synthase

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Kabil, Omer; Smith, Janet L.; Banerjee, Ruma (Michigan-Med)

    2011-08-17

    The catalytic potential for H{sub 2}S biogenesis and homocysteine clearance converge at the active site of cystathionine {beta}-synthase (CBS), a pyridoxal phosphate-dependent enzyme. CBS catalyzes {beta}-replacement reactions of either serine or cysteine by homocysteine to give cystathionine and water or H{sub 2}S, respectively. In this study, high-resolution structures of the full-length enzyme from Drosophila in which a carbanion (1.70 {angstrom}) and an aminoacrylate intermediate (1.55 {angstrom}) have been captured are reported. Electrostatic stabilization of the zwitterionic carbanion intermediate is afforded by the close positioning of an active site lysine residue that is initially used for Schiff base formation in the internal aldimine and later as a general base. Additional stabilizing interactions between active site residues and the catalytic intermediates are observed. Furthermore, the structure of the regulatory 'energy-sensing' CBS domains, named after this protein, suggests a mechanism for allosteric activation by S-adenosylmethionine.

  19. Effect of aging on expression of nitric oxide synthase I and activity of nitric oxide synthase in rat penis

    Institute of Scientific and Technical Information of China (English)

    Jun-PingSHI; Yong-MeiZHAO; Yu-TongSONG

    2003-01-01

    Aim: To investigate the effect of aging on the expression of nitric oxide synthase I (NOS I) and the activity of NOS in rat penis. Methods: Sixty male rats from 3 age groups (adult, old and senescent) were investigated.The expression of NOS I protein and mRNA in rat penis were detected by Western blot and RT-PCR respectively and the NOS activity, with ultraviolet spectrophotometry. Results: In the old and senescent group, NOS I protein expression was significantly decreased as compared with the adult. NOS I mRNA expression was well correlated with the protein expression. NOS activity was not statistically different between the adult and old groups, but it was significantly reduced in the senescent compared with the adult group (P<0.01). Conclusion: The aging-induced decreases in NOS I expression and NOS activity may be one of the main mechanisms leading to erectile dysfunctionin the senescent rats. ( Asian J Androl 2003 Jun; 5: 117-120)

  20. Sodium citrate assisted facile synthesis of AuPd alloy networks for ethanol electrooxidation with high activity and durability

    Science.gov (United States)

    Zhai, Yanling; Zhu, Zhijun; Lu, Xiaolin; Zhou, H. Susan

    2016-10-01

    The direct ethanol fuel cell is an emerging energy conversion device for which palladium is considered as the one of the most effective components for anode catalyst, however, its widespread application has been still limited by the activity and durability of the anode catalyst. In this work, AuPd alloy networks (NWs) are synthesized using H2PdCl4 and HAuCl4 as precursors reduced by NaBH4 in the presence of sodium citrate (SC). The results reveal that SC plays significant role in network structure, resulting in the enhanced electrocatalytic activity of the catalyst. This self-supported AuPd NWs catalyst exhibits much higher electrochemical catalytic activity than commercial Pd/C catalyst toward ethanol electrooxidation in alkaline solution. Significantly, AuPd NWs catalyst shows extremely high durability at the beginning of the chronoamperometry test, and as high as 49% of the mass current density (1.41 A/mgPd) remains after 4000 s current-time test at -0.3 V (vs. Ag/AgCl) in N2-saturated KOH-ethanol solution. This strategy provides a facile method for the preparation of alloy networks with high electrochemical activity, and can be potentially expanded to a variety of electrochemical applications.

  1. Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Mogensen, Martin; Petersen, Ingrid;

    2005-01-01

    In myotubes established from patients with type 2 diabetes (T2D), lipid oxidation and insulin-mediated glucose oxidation are reduced, whereas in myotubes from obese non-diabetic subjects, exposure to palmitate impairs insulin-mediated glucose oxidation. To determine the underlying mechanisms...

  2. Nitrate Protects Cucumber Plants Against Fusarium oxysporum by Regulating Citrate Exudation.

    Science.gov (United States)

    Wang, Min; Sun, Yuming; Gu, Zechen; Wang, Ruirui; Sun, Guomei; Zhu, Chen; Guo, Shiwei; Shen, Qirong

    2016-09-01

    Fusarium wilt causes severe yield losses in cash crops. Nitrogen plays a critical role in the management of plant disease; however, the regulating mechanism is poorly understood. Using biochemical, physiological, bioinformatic and transcriptome approaches, we analyzed how nitrogen forms regulate the interactions between cucumber plants and Fusarium oxysporum f. sp. cucumerinum (FOC). Nitrate significantly suppressed Fusarium wilt compared with ammonium in both pot and hydroponic experiments. Fewer FOC colonized the roots and stems under nitrate compared with ammonium supply. Cucumber grown with nitrate accumulated less fusaric acid (FA) after FOC infection and exhibited increased tolerance to chemical FA by decreasing FA absorption and transportation in shoots. A lower citrate concentration was observed in nitrate-grown cucumbers, which was associated with lower MATE (multidrug and toxin compound extrusion) family gene and citrate synthase (CS) gene expression, as well as lower CS activity. Citrate enhanced FOC spore germination and infection, and increased disease incidence and the FOC population in ammonium-treated plants. Our study provides evidence that nitrate protects cucumber plants against F. oxysporum by decreasing root citrate exudation and FOC infection. Citrate exudation is essential for regulating disease development of Fusarium wilt in cucumber plants.

  3. Nitrate Protects Cucumber Plants Against Fusarium oxysporum by Regulating Citrate Exudation.

    Science.gov (United States)

    Wang, Min; Sun, Yuming; Gu, Zechen; Wang, Ruirui; Sun, Guomei; Zhu, Chen; Guo, Shiwei; Shen, Qirong

    2016-09-01

    Fusarium wilt causes severe yield losses in cash crops. Nitrogen plays a critical role in the management of plant disease; however, the regulating mechanism is poorly understood. Using biochemical, physiological, bioinformatic and transcriptome approaches, we analyzed how nitrogen forms regulate the interactions between cucumber plants and Fusarium oxysporum f. sp. cucumerinum (FOC). Nitrate significantly suppressed Fusarium wilt compared with ammonium in both pot and hydroponic experiments. Fewer FOC colonized the roots and stems under nitrate compared with ammonium supply. Cucumber grown with nitrate accumulated less fusaric acid (FA) after FOC infection and exhibited increased tolerance to chemical FA by decreasing FA absorption and transportation in shoots. A lower citrate concentration was observed in nitrate-grown cucumbers, which was associated with lower MATE (multidrug and toxin compound extrusion) family gene and citrate synthase (CS) gene expression, as well as lower CS activity. Citrate enhanced FOC spore germination and infection, and increased disease incidence and the FOC population in ammonium-treated plants. Our study provides evidence that nitrate protects cucumber plants against F. oxysporum by decreasing root citrate exudation and FOC infection. Citrate exudation is essential for regulating disease development of Fusarium wilt in cucumber plants. PMID:27481896

  4. Synthesis of novel methotrexate derivatives with inhibition activity of nitric oxide synthase

    Institute of Scientific and Technical Information of China (English)

    Ming Sheng Feng; Ping Guo; Li Xun Jiang; Jing Bo Shi; Yu Ping Cao; Qi Zheng Yao

    2009-01-01

    Seventeen 4-alkylamino/arylamino-substituted methotrexate(MTX)derivatives 6a-14a were designed and synthesized.Their inhibition activities against inducible nitric oxide synthase(iNOS)were evaluated in vitro.The pharmacological results showed that most of the prepared compounds displayed the potent inhibitory effects on iNOS.

  5. Cloning and sequence analysis of citrate synthase and phosphoenolpyruvate carboxylase in the root of ‘Sour pummelo' (Citrus grandis)%酸柚根系CS和PEPC基因的克隆及序列分析

    Institute of Scientific and Technical Information of China (English)

    杨林通; 林郑和; 陈立松

    2012-01-01

    Total RNA was extracted from root of ' sour pummelo' ( Citnus grandis) by hot borate method. The sequence of conserved region, 3' RACE product and 5' RACE product of citrate synthase (CS) and phosphoenolpyruvate cariboxylase (PEPC) genes were obtained by RT-PCR and RACE. The full-length cDNA of CS was 1217 bp, which contained a 1413 bp open reading frame (ORF) encoding 472 amino acids with a calculated molecular mass of 52.487 ku and an isoelectric point of 6.9, a 67 bp 5'-untranslated region (UTR) and a277 bp 3'-UTR. An alignment of deduced amino acid sequence of CS gene from ' sour pummelo' with other plants showed ihey shared high homeology (85.4% -99.6%). The full-length cDNA of PEPC was 3307, which contained a 2604 bp ORF encoding 868 amino acids with a calculated molecular mass of 99.569 ku and an isoelectric point of 6.68, a 431 bp 5'-UTR and a 269 bp 3'-UTR. An alignment of deduced amino acid sequence of PEPC gene from sour pummelo with other plants showed they shared high homeology (85.8% -95.7%).%以酸柚(Citrus grandis)根系为材料,利用热硼酸法提取了根系总RNA,并逆转录成cDNA,利用PCR和RACE技术相继得到柠檬酸合酶基因(CS)和磷酸烯醇式丙酮酸羧化酶基因(PEPC)的保守区、3′端和5′端.酸柚根系CS基因全长1760bp,开放读码框有1413bp,编码472个氨基酸,氨基酸序列相对分子质量为52.487 ku,等电点为6.9,亲水指数为-0.199;5′端非编码区为67 bp,3′端非编码区为277 bp;推导的氨基酸经序列比对,发现与其他物种具有很高的同源性(85.4% -99.6%).酸柚根系PEPC基因全长3307bp,开放读码框有2604 bp,编码868个氨基酸,氨基酸序列相对分子质量为99.569ku,等电点为6.68,亲水指数为-0,398;5′端非编码区为431 bp,3′端非编码区为269 bp,推导的氨基酸经序列比对,发现与其他物种具有很高的同源性(85.8% - 95.7%).初步确定克隆到的为酸柚根系CS和PEPC基因,登

  6. "Dopamine-first" mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile

    OpenAIRE

    Lichman, B. R.; Gershater, M. C.; Lamming, E. D.; Pesnot, T.; Sula, A.; Keep, N.H.; Hailes, H. C.; Ward, J. M.

    2015-01-01

    Norcoclaurine synthase (NCS) (EC 4.2.1.78) catalyzes the Pictet-Spengler condensation of dopamine and an aldehyde, forming a substituted (S)-tetrahydroisoquinoline, a pharmaceutically important moiety. This unique activity has led to NCS being used for both in vitro biocatalysis and in vivo recombinant metabolism. Future engineering of NCS activity to enable the synthesis of diverse tetrahydroisoquinolines is dependent on an understanding of the NCS mechanism and kinetics. We assess two propo...

  7. Sphingomyelin synthase 1 activity is regulated by the BCR-ABL oncogene[S

    OpenAIRE

    Burns, Tara Ann; Subathra, Marimuthu; signorelli, Paola; Choi, Young; Yang, Xiaofeng; Wang, Yong; Villani, Maristella; Bhalla, Kapil; Zhou, Daohong; Luberto, Chiara

    2013-01-01

    Sphingomyelin synthase (SMS) produces sphingomyelin while consuming ceramide (a negative regulator of cell proliferation) and forming diacylglycerol (DAG) (a mitogenic factor). Therefore, enhanced SMS activity could favor cell proliferation. To examine if dysregulated SMS contributes to leukemogenesis, we measured SMS activity in several leukemic cell lines and found that it is highly elevated in K562 chronic myelogenous leukemia (CML) cells. The increased SMS in K562 cells was caused by the ...

  8. Histochemical study of the nitric oxide synthase activity in experimental trichinellosis.

    Science.gov (United States)

    Hadaś, E; Gustowska, L; Boczoń, K; Janczewska, D

    1999-01-01

    Nitric oxide plays a critical role in a variety of biological activities. It has been nicknamed a "killer" and "mediator" due to its toxic and signalling properties. Apart from its regular physiological function, nitric oxide indirectly participates in infectious diseases. Our report seems to be the first presentation of the nitric oxide synthase participation in the host biochemical defence mechanisms and in morphological transformation of muscle cells in trichinellosis. PMID:16883715

  9. Arginase activity in mitochondria - An interfering factor in nitric oxide synthase activity assays

    International Nuclear Information System (INIS)

    Previously, in tightly controlled studies, using three independent, yet complementary techniques, we refuted the claim that a mitochondrial nitric oxide synthase (mtNOS) isoform exists within pure, rat liver mitochondria (MT). Of those techniques, the NOS-catalyzed [14C]-L-arginine to [14C]-L-citrulline conversion assay (NOS assay) with MT samples indicated a weak, radioactive signal that was NOS-independent . Aliquots of samples from the NOS assays were then extracted with acetone, separated by high performance thin-layer chromatography (HPTLC) and exposed to autoradiography. Results obtained from these samples showed no radioactive band for L-citrulline. However, a fast-migrating, diffuse, radioactive band was observed in the TLC lanes loaded with MT samples. In this manuscript, we identify and confirm that this radioactive signal in MT samples is due to the arginase-catalyzed conversion of [14C]-L-arginine to [14C]-urea. The current results, in addition to reconfirming the absence of NOS activity in rat liver MT, also show the need to include arginase inhibitors in studies using MT samples in order to avoid confounding results when using NOS activity assays.

  10. A cell-free yellow lupin extract containing activities of pseudouridine 35 and 55 synthases.

    Science.gov (United States)

    Pieńkowska, J; Wrzesiński, J; Szweykowska-Kulińska, Z

    1998-01-01

    Plant cytoplasmic tyrosine tRNA was pseudouridylated at three different positions: 35, 39 and 55. These pseudouridines were introduced by three different enzymes--pseudouridine synthases. Variants of the Arabidopsis thaliana pre-tRNA(Tyr) were constructed that allow to monitor specifically pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis we have prepared an extract from Lupinus luteus cv. Ventus seeds containing activities of at least psi35 and psi55 synthases. This is the first report describing the preparation of the lupin seed extract that specifically modifies plant pre-tRNA(Tyr) transcribed by T7 RNA polymerase. U35 is converted to psi35 only in an intron-dependent manner, while pseudouridylation of U55 is insensitive to the presence or absence of an intron.

  11. Hyperhomocysteinaemia in rats is associated with erectile dysfunction by impairing endothelial nitric oxide synthase activity.

    Science.gov (United States)

    Jiang, Weijun; Xiong, Lei; Bin Yang; Li, Weiwei; Zhang, Jing; Zhou, Qing; Wu, Qiuyue; Li, Tianfu; Zhang, Cui; Zhang, Mingchao; Xia, Xinyi

    2016-01-01

    To investigate the effect of hyperhomocysteinaemia (HHCy) on penile erectile function in a rat model, a methionine-rich diet was used in which erectile function, the reproductive system, and nitric oxide synthase were characterized. The intracavernous pressure, apomorphine experiments, measurement of oxidative stress, hematoxylin and eosin staining, immunohistochemistry analysis, reverse transcription-polymerase chain reactions and measurement of endothelial nitric oxide synthase activity were utilized. Our results showed that erections in the middle-dose, high-dose, and interference (INF) groups were significantly lower than the control (P < 0.05). INF group, being fed with vitamins B and folic acid, demonstrated markedly improved penile erections compared with the middle-dose group (P < 0.05). HHCy-induced eNOS and phospho-eNOS protein expression was reduced and the antioxidant effect was markedly impaired. The data of the present data provide evidence that HHCy is a vascular risk factor for erectile dysfunction by impairing cavernosa endothelial nitric oxide synthase activity. Intake of vitamins B can alleviate this abnormality. PMID:27221552

  12. A connecting hinge represses the activity of endothelial nitric oxide synthase

    OpenAIRE

    Haque, Mohammad Mahfuzul; Panda, Koustubh; Tejero, Jesús; Aulak, Kulwant S.; Fadlalla, Mohammed Adam; Mustovich, Anthony T.; Stuehr, Dennis J

    2007-01-01

    In mammals, endothelial nitric oxide synthase (eNOS) has the weakest activity, being one-tenth and one-sixth as active as the inducible NOS (iNOS) and the neuronal NOS (nNOS), respectively. The basis for this weak activity is unclear. We hypothesized that a hinge element that connects the FMN module in the reductase domain but is shorter and of unique composition in eNOS may be involved. To test this hypothesis, we generated an eNOS chimera that contained the nNOS hinge and two mutants that e...

  13. Reduced activity of ATP synthase in mitochondria causes cytoplasmic male sterility in chili pepper.

    Science.gov (United States)

    Li, Jinjie; Pandeya, Devendra; Jo, Yeong Deuk; Liu, Wing Yee; Kang, Byoung-Cheorl

    2013-04-01

    Cytoplasmic male sterility (CMS) is a maternally inherited trait characterized by the inability to produce functional pollen. The CMS-associated protein Orf507 (reported as Orf456 in previous researches) was previously identified as a candidate gene for mediating male sterility in pepper. Here, we performed yeast two-hybrid analysis to screen for interacting proteins, and found that the ATP synthase 6 kDa subunit containing a mitochondrial signal peptide (MtATP6) specifically interacted with Orf507. In addition, the two proteins were found to be interacted in vivo using bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays. Further functional characterization of Orf507 revealed that the encoded protein is toxic to bacterial cells. Analysis of tissue-specific expression of ATP synthase 6 kDa showed that the transcription level was much lower in anthers of the CMS line than in their wild type counterparts. In CMS plants, ATP synthase activity and content were reduced by more than half compared to that of the normal plants. Taken together, it can be concluded that reduced ATP synthase activity and ATP content might have affected pollen development in CMS plants. Here, we hypothesize that Orf507 might cause MtATP6 to be nonfunctional by changing the latter's conformation or producing an inhibitor that prevents the normal functioning of MtATP6. Thus, further functional analysis of mitochondrial Orf507 will provide insights into the mechanisms underlying CMS in plants. PMID:23274393

  14. Pseudouridine synthases.

    Science.gov (United States)

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  15. Physicochemical action of potassium-magnesium citrate in nephrolithiasis

    Science.gov (United States)

    Pak, C. Y.; Koenig, K.; Khan, R.; Haynes, S.; Padalino, P.

    1992-01-01

    Effect of potassium-magnesium citrate on urinary biochemistry and crystallization of stone-forming salts was compared with that of potassium citrate at same dose of potassium in five normal subjects and five patients with calcium nephrolithiasis. Compared to the placebo phase, urinary pH rose significantly from 6.06 +/- 0.27 to 6.48 +/- 0.36 (mean +/- SD, p less than 0.0167) during treatment with potassium citrate (50 mEq/day for 7 days) and to 6.68 +/- 0.31 during therapy with potassium-magnesium citrate (containing 49 mEq K, 24.5 mEq Mg, and 73.5 mEq citrate per day). Urinary pH was significantly higher during potassium-magnesium citrate than during potassium citrate therapy. Thus, the amount of undissociated uric acid declined from 118 +/- 61 mg/day during the placebo phase to 68 +/- 54 mg/day during potassium citrate treatment and, more prominently, to 41 +/- 46 mg/day during potassium-magnesium citrate therapy. Urinary magnesium rose significantly from 102 +/- 25 to 146 +/- 37 mg/day during potassium-magnesium citrate therapy but not during potassium citrate therapy. Urinary citrate rose more prominently during potassium-magnesium citrate therapy (to 1027 +/- 478 mg/day from 638 +/- 252 mg/day) than during potassium citrate treatment (to 932 +/- 297 mg/day). Consequently, urinary saturation (activity product) of calcium oxalate declined significantly (from 1.49 x 10(-8) to 1.03 x 10(-8) M2) during potassium-magnesium citrate therapy and marginally (to 1.14 x 10(-8) M2) during potassium citrate therapy.(ABSTRACT TRUNCATED AT 250 WORDS).

  16. Data of enzymatic activities of the electron transport chain and ATP synthase complexes in mouse hepatoma cells following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

    Science.gov (United States)

    Hwang, Hye Jin; Steidemann, Michelle; Dunivin, Taylor K; Rizzo, Mike; LaPres, John J

    2016-09-01

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most widely studied ligand of the aryl hydrocarbon receptor (AHR). The AHR-dependent TCDD-induced mitochondrial hyperpolarization (Tappenden et al., 2011) [1] and reduced oxygen consumption rate of intact mouse hepatoma cells (Huang et al., in press) [2] in the previous studies suggest that these alterations can be related to enzymatic activities of the electron transport chain (ETC) and ATP synthase in oxidative phosphorylation (OXPHOS) system. Here, we evaluated the activity of each complex in the OXPHOS system using in vitro enzymatic assays. The calculated enzymatic activity of each complex was normalized against the activity of citrate synthase. To combine each value from an independent experiment, normalized enzyme activities from cells exposed to TCDD were converted to fold changes via comparison to the activity relative to time-matched vehicle control. The averaged fold change for each treatment suggests more replicates are needed in order to clearly evaluate a difference between treatments. PMID:27284569

  17. Citrat og nyresten

    DEFF Research Database (Denmark)

    Osther, P J

    1993-01-01

    Citrate is an important naturally occurring inhibitor of calcium stone formation in urine. Urinary citrate excretion was examined in 43 consecutive patients with recurrent idiopathic calcium nephrolithiasis and in 50 normal controls by a specific enzymatic technique. Hypocitraturia (<1.6 mmol/24h...

  18. Immobilization strategy for enhancing sensitivity of immunosensors: L-Asparagine-AuNPs as a promising alternative of EDC-NHS activated citrate-AuNPs for antibody immobilization.

    Science.gov (United States)

    Raghav, Ragini; Srivastava, Sudha

    2016-04-15

    This paper addresses the question - Is EDC-NHS activated gold nanoparticles modified electrode surface the best available option for antibody immobilization for immunosensor fabrication? Is there any other alternative covalent immobilization strategy for orthogonal orientation of antibody, ensuring enhanced sensitivity of immunosensors? Does EDC-NHS activation of carboxyl functionalized nanoparticles surface really leads to orthogonal or directed immobilization of antibody? Gold nanoparticles synthesized using L-Asparagine as reducing and stabilization agent were employed for orthogonal immobilization of antibody for immunosensor fabrication. Anti-CA125 antibody was used as a model system for immunosensor fabrication. A comparative evaluation of immunosensors fabricated using L-Asparagine stabilized gold nanoparticles and citrate stabilized gold nanoparticles via different immobilization strategies/chemistries was done. The three strategies involved immobilization of Anti-CA125 antibody - (1) after EDC-NHS activation of citrate stabilized gold nanoparticles, (2) directly onto citrate stabilized gold nanoparticles and (3) directly onto L-Asparagine stabilized gold nanoparticles modified electrode surfaces. Comparative evaluation of Impedimetric response characteristics showed 2.5 times increase in sensitivity (349.36 Ω/(IU/mL)/cm(2)) in case of third strategy as compared to first (147.53 Ω/(IU/mL)/cm(2)) and twice that of second strategy (166.24 Ω/(IU/mL)/cm(2)). Additionally, an extended dynamic range of 0-750 IU/mL was observed while for others it was up to 500 IU/mL. Amino acid coated gold nanoparticles ensured orthogonal immobilization, lesser randomization, with 88% of active antibody available for antigen binding as opposed to other two strategies with less than 30% active antibody.

  19. A cyanobacterial protein with similarity to phytochelatin synthases catalyzes the conversion of glutathione to gamma-glutamylcysteine and lacks phytochelatin synthase activity.

    Science.gov (United States)

    Harada, Emiko; von Roepenack-Lahaye, Edda; Clemens, Stephan

    2004-12-01

    Phytochelatins are glutathione-derived, non-translationally synthesized peptides essential for cadmium and arsenic detoxification in plant, fungal and nematode model systems. Recent sequencing programs have revealed the existence of phytochelatin synthase-related genes in a wide range of organisms that have not been reported yet to produce phytochelatins. Among those are several cyanobacteria. We have studied one of the encoded proteins (alr0975 from Nostoc sp. strain PCC 7120) and demonstrate here that it does not possess phytochelatin synthase activity. Instead, this protein catalyzes the conversion of glutathione to gamma-glutamylcysteine. The thiol spectrum of yeast cells expressing alr0975 shows the disappearance of glutathione and the formation of a compound that by LC-MSMS analysis was unequivocally identified as gamma-glutamylcysteine. Purified recombinant protein catalyzes the respective reaction. Unlike phytochelatin synthesis, the conversion of glutathione to gamma-glutamylcysteine is not dependent on activation by metal cations. No evidence was found for the accumulation of phytochelatins in cyanobacteria even after prolonged exposure to toxic Cd2+ concentrations. Expression of alr0975 was detected in Nostoc sp. cells with an antiserum raised against the protein. No indication for a responsiveness of expression to toxic metal exposure was found. Taken together, these data provide further evidence for possible additional functions of phytochelatin synthase-related proteins in glutathione metabolism and provide a lead as to the evolutionary history of phytochelatin synthesis.

  20. [Activity of 5-aminolevulinate synthase in rat liver during degradation of cytochrome P-450 caused by administration of cadmium chloride].

    Science.gov (United States)

    Kaliman, P A; Inshina, N N

    2003-01-01

    The 5-aminolevulinate synthase, tryptophan-2,3-dioxygenase activities and cytochrome P-450 content in the rat liver was studied in different terms after CdCl2 administration and after administration of metal salt against a background of 2-hours action of alpha-tocopherol. The lowering of activity of 5-aminolevulinate synthase in 2 h with the consequent increase of the enzyme activity in 6 h and 24 h was detected. The holoenzyme activity and heme saturation of tryptophan-2,3-dioxygenase increased 6 h after CdCl2 administration. The holoenzyme activity and the total activity of tryptophan-2,3-dioxygenase rised in 24 h. The level of cytochrome P-450 lowered. Preliminary administration of alpha-tocopherol prevented changes of studied parameters 24 h after CdCl2 administration. The relationship between decrease of cytochrome P-450 level and 5-aminolevulinate synthase activation are discussed. PMID:14577179

  1. Differential activation of nitric oxide synthase through muscarinic acetylcholine receptors in rat salivary glands.

    Science.gov (United States)

    Leirós, C P; Rosignoli, F; Genaro, A M; Sales, M E; Sterin-Borda, L; Santiago BordaE

    2000-03-15

    Muscarinic receptors play an important role in secretory and vasodilator responses in rat salivary glands. Nitric oxide synthase (NOS) appears to be one of the multiple effectors coupled to muscarinic receptors in both submandibular and sublingual glands although some differences have been found depending on the gland studied. First, submandibular glands had a lower basal activity of nitric oxide synthase than sublingual glands and the concentration-response curve for carbachol was bell-shaped in the former but not in sublingual glands. Second, cGMP levels displayed a similar profile to that observed for NOS activity in both glands. Third, protein kinase C also coupled to muscarinic receptor activation in the glands might have a regulatory effect on nitric oxide production since its activity was higher in basal conditions in submandibular than sublingual glands and it also increased in the presence of the agonist at a concentration that inhibited NOS activity in submandibular glands. The effects appear to be partly related to the expression of a minor population of M(1) receptors in submandibular glands absent in sublingual as determined in binding and signaling experiments with the muscarinic receptor antagonist pirenzepine.

  2. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    Directory of Open Access Journals (Sweden)

    Thi Le Nhung Nguyen-Deroche

    2012-01-01

    Full Text Available Zinc-supplementation (20 μM effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase, and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa. Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  3. Thiolactomycin-Based Inhibitors of Bacterial β-Ketoacyl-ACP Synthases with in Vivo Activity.

    Science.gov (United States)

    Bommineni, Gopal R; Kapilashrami, Kanishk; Cummings, Jason E; Lu, Yang; Knudson, Susan E; Gu, Chendi; Walker, Stephen G; Slayden, Richard A; Tonge, Peter J

    2016-06-01

    β-Ketoacyl-ACP synthases (KAS) are key enzymes involved in the type II bacterial fatty acid biosynthesis (FASII) pathway and are putative targets for antibacterial discovery. Several natural product KAS inhibitors have previously been reported, including thiolactomycin (TLM), which is produced by Nocardia spp. Here we describe the synthesis and characterization of optically pure 5R-thiolactomycin (TLM) analogues that show improved whole cell activity against bacterial strains including methicillin-resistant Staphylococcus aureus (MRSA) and priority pathogens such as Francisella tularensis and Burkholderia pseudomallei. In addition, we identify TLM analogues with in vivo efficacy against MRSA and Klebsiella pneumoniae in animal models of infection. PMID:27187871

  4. Structure-Based Inhibitors Exhibit Differential Activities against Helicobacter pylori and Escherichia coli Undecaprenyl Pyrophosphate Synthases

    Directory of Open Access Journals (Sweden)

    Chih-Jung Kuo

    2008-01-01

    Full Text Available Helicobacter pylori colonizes the human gastric epithelium and causes diseases such as gastritis, peptic ulcers, and stomach cancer. Undecaprenyl pyrophosphate synthase (UPPS, which catalyzes consecutive condensation reactions of farnesyl pyrophosphate with eight isopentenyl pyrophosphate to form lipid carrier for bacterial peptidoglycan biosynthesis, represents a potential target for developing new antibiotics. In this study, we solved the crystal structure of H. pylori UPPS and performed virtual screening of inhibitors from a library of 58,635 compounds. Two hits were found to exhibit differential activities against Helicobacter pylori and Escherichia coli UPPS, giving the possibility of developing antibiotics specially targeting pathogenic H. pylori without killing the intestinal E. coli.

  5. Mechanism of activation of bacterial cellulose synthase by cyclic-di-GMP

    OpenAIRE

    Morgan, Jacob L.W.; McNamara, Joshua T.; Zimmer, Jochen

    2014-01-01

    The bacterial signaling molecule cyclic-di-GMP stimulates the synthesis of bacterial cellulose, frequently found in biofilms. Bacterial cellulose is synthesized and translocated across the inner membrane by a complex of the cellulose synthase BcsA and BcsB subunits. Here we present crystal structures of the cyclic-di-GMP-activated BcsA–B complex. The structures reveal that cyclic-di-GMP releases an auto-inhibited state of the enzyme by breaking a salt bridge which otherwise tethers a conserve...

  6. Trisilver(I citrate

    Directory of Open Access Journals (Sweden)

    Andreas Fischer

    2011-02-01

    Full Text Available Trisilver(I citrate, 3Ag+·C6H5O73−, was obtained by evaporation of a saturated aqueous solution of the raw material that had been obtained from sodium dihydrogen citrate and silver nitrate. It features one formula unit in the asymmetric unit. There is an intramolecular O—H...O hydrogen bond between the OH group and one of the terminal carboxylate groups. Different citrate groups are linked via the three Ag+ ions, yielding a three-dimensional network with rather irregular [AgO4] polyhedra.

  7. Accommodation of GDP-Linked Sugars in the Active Site of GDP-Perosamine Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Paul D.; Carney, Amanda E.; Holden, Hazel M. (UW)

    2009-01-12

    Perosamine (4-amino-4,6-dideoxy-d-mannose), or its N-acetylated form, is one of several dideoxy sugars found in the O-antigens of such infamous Gram-negative bacteria as Vibrio cholerae O1 and Escherichia coli O157:H7. It is added to the bacterial O-antigen via a nucleotide-linked version, namely GDP-perosamine. Three enzymes are required for the biosynthesis of GDP-perosamine starting from mannose 1-phosphate. The focus of this investigation is GDP-perosamine synthase from Caulobacter crescentus, which catalyzes the final step in GDP-perosamine synthesis, the conversion of GDP-4-keto-6-deoxymannose to GDP-perosamine. The enzyme is PLP-dependent and belongs to the aspartate aminotransferase superfamily. It contains the typically conserved active site lysine residue, which forms a Schiff base with the PLP cofactor. Two crystal structures were determined for this investigation: a site-directed mutant protein (K186A) complexed with GDP-perosamine and the wild-type enzyme complexed with an unnatural ligand, GDP-3-deoxyperosamine. These structures, determined to 1.6 and 1.7 {angstrom} resolution, respectively, revealed the manner in which products, and presumably substrates, are accommodated within the active site pocket of GDP-perosamine synthase. Additional kinetic analyses using both the natural and unnatural substrates revealed that the K{sub m} for the unnatural substrate was unperturbed relative to that of the natural substrate, but the k{sub cat} was lowered by a factor of approximately 200. Taken together, these studies shed light on why GDP-perosamine synthase functions as an aminotransferase whereas another very similar PLP-dependent enzyme, GDP-4-keto-6-deoxy-d-mannose 3-dehydratase or ColD, catalyzes a dehydration reaction using the same substrate.

  8. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare.

    Science.gov (United States)

    Zerbe, Philipp; Chiang, Angela; Dullat, Harpreet; O'Neil-Johnson, Mark; Starks, Courtney; Hamberger, Björn; Bohlmann, Jörg

    2014-09-01

    Marrubium vulgare (Lamiaceae) is a medicinal plant whose major bioactive compounds, marrubiin and other labdane-related furanoid diterpenoids, have potential applications as anti-diabetics, analgesics or vasorelaxants. Metabolite and transcriptome profiling of M. vulgare leaves identified five different candidate diterpene synthases (diTPSs) of the TPS-c and TPS-e/f clades. We describe the in vitro and in vivo functional characterization of the M. vulgare diTPS family. In addition to MvEKS ent-kaurene synthase of general metabolism, we identified three diTPSs of specialized metabolism: MvCPS3 (+)-copalyl diphosphate synthase, and the functional diTPS pair MvCPS1 and MvELS. In a sequential reaction, MvCPS1 and MvELS produce a unique oxygenated diterpene scaffold 9,13-epoxy-labd-14-ene en route to marrubiin and an array of related compounds. In contrast with previously known diTPSs that introduce a hydroxyl group at carbon C-8 of the labdane backbone, the MvCPS1-catalyzed reaction proceeds via oxygenation of an intermediate carbocation at C-9, yielding the bicyclic peregrinol diphosphate. MvELS belongs to a subgroup of the diTPS TPS-e/f clade with unusual βα-domain architecture. MvELS is active in vitro and in vivo with three different prenyl diphosphate substrates forming the marrubiin precursor 9,13-epoxy-labd-14-ene, as identified by nuclear magnetic resonance (NMR) analysis, manoyl oxide and miltiradiene. MvELS fills a central position in the biosynthetic system that forms the foundation for the diverse repertoire of Marrubium diterpenoids. Co-expression of MvCPS1 and MvELS in engineered E. coli and Nicotiana benthamiana offers opportunities for producing precursors for an array of biologically active diterpenoids.

  9. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare.

    Science.gov (United States)

    Zerbe, Philipp; Chiang, Angela; Dullat, Harpreet; O'Neil-Johnson, Mark; Starks, Courtney; Hamberger, Björn; Bohlmann, Jörg

    2014-09-01

    Marrubium vulgare (Lamiaceae) is a medicinal plant whose major bioactive compounds, marrubiin and other labdane-related furanoid diterpenoids, have potential applications as anti-diabetics, analgesics or vasorelaxants. Metabolite and transcriptome profiling of M. vulgare leaves identified five different candidate diterpene synthases (diTPSs) of the TPS-c and TPS-e/f clades. We describe the in vitro and in vivo functional characterization of the M. vulgare diTPS family. In addition to MvEKS ent-kaurene synthase of general metabolism, we identified three diTPSs of specialized metabolism: MvCPS3 (+)-copalyl diphosphate synthase, and the functional diTPS pair MvCPS1 and MvELS. In a sequential reaction, MvCPS1 and MvELS produce a unique oxygenated diterpene scaffold 9,13-epoxy-labd-14-ene en route to marrubiin and an array of related compounds. In contrast with previously known diTPSs that introduce a hydroxyl group at carbon C-8 of the labdane backbone, the MvCPS1-catalyzed reaction proceeds via oxygenation of an intermediate carbocation at C-9, yielding the bicyclic peregrinol diphosphate. MvELS belongs to a subgroup of the diTPS TPS-e/f clade with unusual βα-domain architecture. MvELS is active in vitro and in vivo with three different prenyl diphosphate substrates forming the marrubiin precursor 9,13-epoxy-labd-14-ene, as identified by nuclear magnetic resonance (NMR) analysis, manoyl oxide and miltiradiene. MvELS fills a central position in the biosynthetic system that forms the foundation for the diverse repertoire of Marrubium diterpenoids. Co-expression of MvCPS1 and MvELS in engineered E. coli and Nicotiana benthamiana offers opportunities for producing precursors for an array of biologically active diterpenoids. PMID:24990389

  10. Invertase and sucrose synthase activities in coffee plants sprayed with sucrose solution

    Directory of Open Access Journals (Sweden)

    Silva José Carlos da

    2003-01-01

    Full Text Available One management practice of which the efficiency has not yet been scientifically tested is spraying coffee plants with diluted sucrose solutions as a source of carbon for the plant. This paper evaluates the effect of foliar spraying with sugar on the endogenous level of carbohydrates and on the activities of invertase and sucrose synthase in coffee (Coffea arabica L. seedlings with reduced (low and high (normal levels of carbon reserve. The concentrations used were 0.5 and 1.0% sucrose, and water as a control. The use of sucrose at 1.0% caused an increase in the concentration of total soluble sugars in depauperate plants, as well as increased the activity of the following enzymes: cell wall and vacuole acid invertase, neutral cytosol invertase and sucrose synthase. In plants with high level of carbon reserve, no increments in total soluble sugar levels or in enzymatic activity were observed. Regardless of treatments or plants physiological state, no differences in transpiration or stomatal conductance were observed, demonstrating the stomatal control of transpiration. Photosynthesis was stimulated with the use of 0.5 and 1.0 % sucrose only in depauperate plants. Coffee seedling spraying with sucrose is only efficient for depauperate plants, at the concentration of 1.0%.

  11. Extract of Meretrix meretrix Linnaeus induces angiogenesis in vitro and activates endothelial nitric oxide synthase

    Science.gov (United States)

    Liu, Ming; Wei, Jianteng; Wang, Hui; Ding, Lili; Zhang, Yuyan; Lin, Xiukun

    2012-09-01

    Meretrix meretrix Linnaeus has long been used as traditional Chinese medicine in oriental medicine. The angiogentic activity of the extract of M. meretrix was investigated in this study, using human umbilical vein endothelial cells (HUVECs). Extract of M. meretrix Linnaeus (AFG-25) was prepared with acetone and ethanol precipitation, and further separated by Sephadex G-25 column. The results show that AFG-25 promoted proliferation, migration, and capillary-like tube formation in HUVECs, and in the presence of eNOS inhibitor NMA, the tube formation induced by AFG-25 is inhibited significantly. Moreover, AFG-25 could also promote the activation of endothelial nitric oxide synthase (eNOS) and the resultant elevation of nitric oxide (NO) production. The results suggested that M. meretrix contains active ingredients with angiogentic activity and eNOS/NO signal pathway is in part involved in the proangiogenesis effect induced by AFG-25.

  12. Active-site models for complexes of quinolinate synthase with substrates and intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, Erika V.; Zhang, Yang; Colabroy, Keri L.; Sanders, Jennie M.; Settembre, Ethan C.; Dorrestein, Pieter C.; Begley, Tadhg P.; Ealick, Steven E., E-mail: see3@cornell.edu [Cornell University, Ithaca, NY 14853-1301 (United States)

    2013-09-01

    Structural studies of quinolinate synthase suggest a model for the enzyme–substrate complex and an enzyme–intermediate complex with a [4Fe–4S] cluster. Quinolinate synthase (QS) catalyzes the condensation of iminoaspartate and dihydroxyacetone phosphate to form quinolinate, the universal precursor for the de novo biosynthesis of nicotinamide adenine dinucleotide. QS has been difficult to characterize owing either to instability or lack of activity when it is overexpressed and purified. Here, the structure of QS from Pyrococcus furiosus has been determined at 2.8 Å resolution. The structure is a homodimer consisting of three domains per protomer. Each domain shows the same topology with a four-stranded parallel β-sheet flanked by four α-helices, suggesting that the domains are the result of gene triplication. Biochemical studies of QS indicate that the enzyme requires a [4Fe–4S] cluster, which is lacking in this crystal structure, for full activity. The organization of domains in the protomer is distinctly different from that of a monomeric structure of QS from P. horikoshii [Sakuraba et al. (2005 ▶), J. Biol. Chem.280, 26645–26648]. The domain arrangement in P. furiosus QS may be related to protection of cysteine side chains, which are required to chelate the [4Fe–4S] cluster, prior to cluster assembly.

  13. Roles of Conserved Active Site Residues in the Ketosynthase Domain of an Assembly Line Polyketide Synthase.

    Science.gov (United States)

    Robbins, Thomas; Kapilivsky, Joshuah; Cane, David E; Khosla, Chaitan

    2016-08-16

    Ketosynthase (KS) domains of assembly line polyketide synthases (PKSs) catalyze intermodular translocation of the growing polyketide chain as well as chain elongation via decarboxylative Claisen condensation. The mechanistic roles of ten conserved residues in the KS domain of Module 1 of the 6-deoxyerythronolide B synthase were interrogated via site-directed mutagenesis and extensive biochemical analysis. Although the C211A mutant at the KS active site exhibited no turnover activity, it was still a competent methylmalonyl-ACP decarboxylase. The H346A mutant exhibited reduced rates of both chain translocation and chain elongation, with a greater effect on the latter half-reaction. H384 contributed to methylmalonyl-ACP decarboxylation, whereas K379 promoted C-C bond formation. S315 played a role in coupling decarboxylation to C-C bond formation. These findings support a mechanism for the translocation and elongation half-reactions that provides a well-defined starting point for further analysis of the key chain-building domain in assembly line PKSs.

  14. Characterization of a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans.

    Science.gov (United States)

    He, Ping; Deng, Cong; Liu, Boyu; Zeng, LingBing; Zhao, Wei; Zhang, Yan; Jiang, XuCheng; Guo, XiaoKui; Qin, JinHong

    2013-11-01

    Alarmone Guanosine 5'-diphosphate (or 5'-triphosphate) 3'-diphosphate [(p)ppGpp] is the key component that globally regulates stringent control in bacteria. There are two homologous enzymes, RelA and SpoT in Escherichia coli, which are responsible for fluctuations in (p)ppGpp concentration inside the cell, whereas there exists only a single RelA/SpoT enzyme in Gram-positive bacteria. We have identified a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans. We show that the relLin gene (LA_3085) encodes a protein that fully complements the relA/spoT double mutants in E. coli. The protein functions as a (p)ppGpp degradase as well as a (p)ppGpp synthase when the cells encounter amino acid stress and deprivation of carbon sources. N-terminus HD and RSD domains of relLin (relLinN ) were observed to restore growth of double mutants of E. coli. Finally, We demonstrate that purified RelLin and RelLinN show high (p)ppGpp synthesis activity in vitro. Taken together, our results suggest that L. interrogans contain a single Rel-like bifunctional protein, RelLin , which plays an important role in maintaining the basal level of (p)ppGpp in the cell potentially contributing to the regulation of bacterial stress response.

  15. Calcium-independent NO-synthase activity and nitrites/nitrates production in transient focal cerebral ischaemia in mice

    OpenAIRE

    Grandati, M; Verrecchia, C; Revaud, M L; Allix, M.; Boulu, R. G.; Plotkine, M.

    1997-01-01

    The temporal changes in constitutive NO-synthase (cNOS) and in calcium-independent NO-synthase activities were studied in mice subjected to 2 h of transient focal cerebral ischaemia. The changes in brain nitrites/nitrates (NOx) content were also studied.NOS activities were measured by the conversion of L-[14C]-arginine to L-[14C]-citrulline. Brain NOx contents were investigated by the Griess colourimetric method.cNOS activity in the infarcted cortical area was significantly reduced after 6 h ...

  16. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil

    Science.gov (United States)

    Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Molina, Daniel Martinez; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär

    2016-03-01

    Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery.

  17. Gastrointestinal citrate absorption in nephrolithiasis

    Science.gov (United States)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  18. Phase I study using desferrioxamine and iron sorbitol citrate in an attempt to modulate the iron status of tumor cells to enhance doxorubicin activity.

    Science.gov (United States)

    Voest, E E; Neijt, J P; Keunen, J E; Dekker, A W; van Asbeck, B S; Nortier, J W; Ros, F E; Marx, J J

    1993-01-01

    A novel approach to enhance the activity of doxorubicin is to increase the availability of cellular "chelatable" iron to participate in doxorubicin-mediated free-radical generation. To achieve this, we designed a regimen consisting of desferrioxamine (DFO, 50 mg/kg daily given as an i.v. infusion over 72 h) to increase cellular iron uptake. Thereafter, the combination of iron sorbitol citrate (ISC) and doxorubicin (as a single agent or as part of the CHOP regimen) was given. In a phase I study we investigated the toxicity of this regimen in nine patients with refractory malignant disease. Severe but reversible ocular toxicity (i.e., acute maculopathy) was observed in two patients. As these patients were the only ones who were pretreated with cisplatin, we caution against the use of DFO in cisplatin-pretreated patients. Severe phlebitis was encountered in five of nine patients. A partial remission was observed in two of four patients with refractory Non-Hodgkin's lymphoma who were treated with DFO, ISC, and doxorubicin as part of the CHOP regimen. We conclude that pretreatment with DFO and iron sorbitol citrate may be of benefit in the treatment of malignancies with doxorubicin-containing regimens, but ocular toxicity and severe phlebitis limits the use of DFO in this approach. The attachment of DFO to biocompatible polymers may be a method of overcoming the observed toxicity and warrants further study. PMID:8431969

  19. Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: similar activity but difference in subcellular localization

    NARCIS (Netherlands)

    Dong, L.; Miettinen, K.; Verstappen, F.W.A.; Voster, A.; Jongsma, M.A.; Memelink, J.; Krol, van der S.; Bouwmeester, H.J.

    2013-01-01

    Two geraniol synthases (GES), from Valeriana officinalis (VoGES) and Lippia dulcis (LdGES), were isolated and were shown to have geraniol biosynthetic activity with Km values of 32 µM and 51 µM for GPP, respectively, upon expression in Escherichia coli. The in planta enzymatic activity and sub-cellu

  20. Artificial citrate operon and Vitreoscilla hemoglobin gene enhanced mineral phosphate solubilizing ability of Enterobacter hormaechei DHRSS.

    Science.gov (United States)

    Yadav, Kavita; Kumar, Chanchal; Archana, G; Kumar, G Naresh

    2014-10-01

    Mineral phosphate solubilization by bacteria is mediated through secretion of organic acids, among which citrate is one of the most effective. To overproduce citrate in bacterial systems, an artificial citrate operon comprising of genes encoding NADH-insensitive citrate synthase of E. coli and Salmonella typhimurium sodium-dependent citrate transporter was constructed. In order to improve its mineral phosphate solubilizing (MPS) ability, the citrate operon was incorporated into E. hormaechei DHRSS. The artificial citrate operon transformant secreted 7.2 mM citric acid whereas in the native strain, it was undetectable. The transformant released 0.82 mM phosphate in flask studies in buffered medium containing rock phosphate as sole P source. In fermenter studies, similar phenotype was observed under aerobic conditions. However, under microaerobic conditions, no citrate was detected and P release was not observed. Therefore, an artificial citrate gene cluster containing Vitreoscilla hemoglobin (vgb) gene under its native promoter, along with artificial citrate operon under constitutive tac promoter, was constructed and transformed into E. hormaechei DHRSS. This transformant secreted 9 mM citric acid under microaerobic conditions and released 1.0 mM P. Thus, incorporation of citrate operon along with vgb gene improves MPS ability of E. hormaechei DHRSS under buffered, microaerobic conditions mimicking rhizospheric environment.

  1. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  2. Enzyme catalysis via control of activation entropy: site-directed mutagenesis of 6,7-dimethyl-8-ribityllumazine synthase.

    Science.gov (United States)

    Fischer, Markus; Haase, Ilka; Kis, Klaus; Meining, Winfried; Ladenstein, Rudolf; Cushman, Mark; Schramek, Nicholas; Huber, Robert; Bacher, Adelbert

    2003-02-21

    6,7-Dimethyl-8-ribityllumazine synthase (lumazine synthase) catalyses the penultimate step in the biosynthesis of riboflavin. In Bacillus subtilis, 60 lumazine synthase subunits form an icosahedral capsid enclosing a homotrimeric riboflavin synthase unit. The ribH gene specifying the lumazine synthase subunit can be expressed in high yield. All amino acid residues exposed at the surface of the active site cavity were modified by PCR assisted mutagenesis. Polar amino acid residues in direct contact with the enzyme substrates, 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione and 3,4-dihydroxy-2-butanone 4-phosphate, could be replaced with relative impunity with regard to the catalytic properties. Only the replacement of Arg127, which forms a salt bridge with the phosphate group of 3,4-dihydroxy-2-butanone 4-phosphate, reduced the catalytic rate by more than one order of magnitude. Replacement of His88, which is believed to assist in proton transfer reactions, reduced the catalytic activity by about one order of magnitude. Surprisingly, the activation enthalpy deltaH of the lumazine synthase reaction exceeds that of the uncatalysed reaction. On the other hand, the free energy of activation deltaG of the uncatalysed reaction is characterised by a large entropic term (TdeltaS) of -37.8 kJmol(-1), whereas the entropy of activation (TdeltaS) of the enzyme-catalysed reaction is -6.7 kJmol(-1). This suggests that the rate enhancement by the enzyme is predominantly achieved by establishing a favourable topological relation of the two substrates, whereas acid/base catalysis may play a secondary role. PMID:12581640

  3. Regulation of sucrose synthase activity and sugar yield by nitrogen in sugar beet

    Institute of Scientific and Technical Information of China (English)

    LI Caifeng; MA Fengming; LI Wenhua; WANG Rui; CHEN Shengyong; LUO Yu

    2007-01-01

    The content of sugar is influenced by sucrose synthase (SS) activity in roots. The effects of nitrogen level in the aminonitrate ratio on SS activity of leaves and roots, roots yield and sugar content in sugar beet were studied in the field experiment by nutrient solution culture. The results showed that SS activity in leaves was lower than that in roots. With nitrogen level increasing,SS decomposition activity enhanced, and synthesis activity reduced. SS activity was regulated by different nitrogen forms and the ratio of NO3- and NH4+. SS synthesis activity was enhanced as NH4+ increasing when NO3-: NH4+≥ 1, and it decreased as increasing NH4+ when NO3-: NH4+≤1, and it was the highest when NO3-: NH4+=1. SS decomposition activity was enhanced as NO3- increasing.Sucrose content in root was lowed as nitrogen level increasing, but it was enhanced as NH4+ increasing in the same nitrogen level.Root and sugar yield were the highest in the medium nitrogen level and NO3-: NH4+=1. The result in field experiment corresponded with that in the nutrient fluid culture. It provides a basis for using reasonably nitrogen fertilizer in sugar beet production.

  4. Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia.

    Science.gov (United States)

    Podstolski, Andrzej; Havkin-Frenkel, Daphna; Malinowski, Jacek; Blount, Jack W; Kourteva, Galina; Dixon, Richard A

    2002-11-01

    Tissue cultures of the vanilla orchid, Vanilla planifolia, produce the flavor compound vanillin (4-hydroxy-3-methoxybenzaldehyde) and vanillin precursors such as 4-hydroxybenzaldehyde. A constitutively expressed enzyme activity catalyzing chain shortening of a hydroxycinnamic acid, believed to be the first reaction specific for formation of vanilla flavor compounds, was identified in these cultures. The enzyme converts 4-coumaric acid non-oxidatively to 4-hydroxybenzaldehyde in the presence of a thiol reagent but with no co-factor requirement. Several forms of this 4-hydroxybenzaldehyde synthase (4HBS) were resolved and partially purified by a combination of hydrophobic interaction, ion exchange and gel filtration chromatography. These forms appear to be interconvertible. The unusual properties of the 4HBS, and its appearance in different protein fractions, raise questions as to its physiological role in vanillin biosynthesis in vivo.

  5. Mechanical Control of ATP Synthase Function: Activation Energy Difference between Tight and Loose Binding Sites

    KAUST Repository

    Beke-Somfai, Tamás

    2010-01-26

    Despite exhaustive chemical and crystal structure studies, the mechanistic details of how FoF1-ATP synthase can convert mechanical energy to chemical, producing ATP, are still not fully understood. On the basis of quantum mechanical calculations using a recent highresolution X-ray structure, we conclude that formation of the P-O bond may be achieved through a transition state (TS) with a planar PO3 - ion. Surprisingly, there is a more than 40 kJ/mol difference between barrier heights of the loose and tight binding sites of the enzyme. This indicates that even a relatively small change in active site conformation, induced by the γ-subunit rotation, may effectively block the back reaction in βTP and, thus, promote ATP. © 2009 American Chemical Society.

  6. ‘Dopamine-first’ mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile

    Science.gov (United States)

    Lichman, Benjamin R; Gershater, Markus C; Lamming, Eleanor D; Pesnot, Thomas; Sula, Altin; Keep, Nicholas H; Hailes, Helen C; Ward, John M

    2015-01-01

    Norcoclaurine synthase (NCS) (EC 4.2.1.78) catalyzes the Pictet–Spengler condensation of dopamine and an aldehyde, forming a substituted (S)-tetrahydroisoquinoline, a pharmaceutically important moiety. This unique activity has led to NCS being used for both in vitro biocatalysis and in vivo recombinant metabolism. Future engineering of NCS activity to enable the synthesis of diverse tetrahydroisoquinolines is dependent on an understanding of the NCS mechanism and kinetics. We assess two proposed mechanisms for NCS activity: (a) one based on the holo X-ray crystal structure and (b) the ‘dopamine-first’ mechanism based on computational docking. Thalictrum flavum NCS variant activities support the dopamine-first mechanism. Suppression of the non-enzymatic background reaction reveals novel kinetic parameters for NCS, showing it to act with low catalytic efficiency. This kinetic behaviour can account for the ineffectiveness of recombinant NCS in in vivo systems, and also suggests NCS may have an in planta role as a metabolic gatekeeper. The amino acid substitution L76A, situated in the proposed aldehyde binding site, results in the alteration of the enzyme's aldehyde activity profile. This both verifies the dopamine-first mechanism and demonstrates the potential for the rational engineering of NCS activity. PMID:25620686

  7. 'Dopamine-first' mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile.

    Science.gov (United States)

    Lichman, Benjamin R; Gershater, Markus C; Lamming, Eleanor D; Pesnot, Thomas; Sula, Altin; Keep, Nicholas H; Hailes, Helen C; Ward, John M

    2015-03-01

    Norcoclaurine synthase (NCS) (EC 4.2.1.78) catalyzes the Pictet-Spengler condensation of dopamine and an aldehyde, forming a substituted (S)-tetrahydroisoquinoline, a pharmaceutically important moiety. This unique activity has led to NCS being used for both in vitro biocatalysis and in vivo recombinant metabolism. Future engineering of NCS activity to enable the synthesis of diverse tetrahydroisoquinolines is dependent on an understanding of the NCS mechanism and kinetics. We assess two proposed mechanisms for NCS activity: (a) one based on the holo X-ray crystal structure and (b) the 'dopamine-first' mechanism based on computational docking. Thalictrum flavum NCS variant activities support the dopamine-first mechanism. Suppression of the non-enzymatic background reaction reveals novel kinetic parameters for NCS, showing it to act with low catalytic efficiency. This kinetic behaviour can account for the ineffectiveness of recombinant NCS in in vivo systems, and also suggests NCS may have an in planta role as a metabolic gatekeeper. The amino acid substitution L76A, situated in the proposed aldehyde binding site, results in the alteration of the enzyme's aldehyde activity profile. This both verifies the dopamine-first mechanism and demonstrates the potential for the rational engineering of NCS activity. PMID:25620686

  8. A connecting hinge represses the activity of endothelial nitric oxide synthase.

    Science.gov (United States)

    Haque, Mohammad Mahfuzul; Panda, Koustubh; Tejero, Jesús; Aulak, Kulwant S; Fadlalla, Mohammed Adam; Mustovich, Anthony T; Stuehr, Dennis J

    2007-05-29

    In mammals, endothelial nitric oxide synthase (eNOS) has the weakest activity, being one-tenth and one-sixth as active as the inducible NOS (iNOS) and the neuronal NOS (nNOS), respectively. The basis for this weak activity is unclear. We hypothesized that a hinge element that connects the FMN module in the reductase domain but is shorter and of unique composition in eNOS may be involved. To test this hypothesis, we generated an eNOS chimera that contained the nNOS hinge and two mutants that either eliminated (P728IeNOS) or incorporated (I958PnNOS) a proline residue unique to the eNOS hinge. Incorporating the nNOS hinge into eNOS increased NO synthesis activity 4-fold, to an activity two-thirds that of nNOS. It also decreased uncoupled NADPH oxidation, increased the apparent K(m)O(2) for NO synthesis, and caused a faster heme reduction. Eliminating the hinge proline had similar, but lesser, effects. Our findings reveal that the hinge is an important regulator and show that differences in its composition restrict the activity of eNOS relative to other NOS enzymes.

  9. Disruption of ATCSLD5 results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis

    DEFF Research Database (Denmark)

    Bernal Giraldo, Adriana Jimena; Jensen, Jacob Krüger; Harholt, Jesper;

    2007-01-01

    labelling indicated a reduction in the level of xylan in stems, and in vitro GT assays using microsomes from stems revealed that ATCSLD5 knock-out plants also had reduced xylan and homogalacturonan synthase activity. Expression in Nicotiana benthamiana of ATCSLD5 and ATCSLD3, fluorescently tagged at either...

  10. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    Directory of Open Access Journals (Sweden)

    Hoseok Choi

    2016-04-01

    Full Text Available Assaying the glycogen synthase kinase-3 (GSK3 activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts.

  11. Cloning and Expression Analysis of Citrate Synthase Gene (MbCS1) in Apple (Malus baccata Borkh)%苹果属山定子柠檬酸合成酶基因(MbCS1)的克隆及表达分析

    Institute of Scientific and Technical Information of China (English)

    张柳霞; 王忆; 朱斌; 王少甲; 张新忠; 许雪峰; 韩振海

    2012-01-01

    为了研究不同铁效率基因型苹果砧木铁吸收利用的分子机理,本研究以铁低效基因型山定子(Malus baccata Borkh)为试材,根据实验室从铁高效基因型小金海棠(Malus xiaojinensis)克隆到与铁运输相关的基因柠檬酸合成酶基因(MxCS1)的全长序列设计特异引物,通过RT-PCR方法从山定子cDNA中克隆到柠檬酸合成酶基因CS,基因全长为1 422 bp,与金冠(Malus domestica Borkh cv.Golden Delicious)、小金海棠中的CS基因具有较高的同源性,将该基因命名为MbCS1 (GenBank登录号:JQ898346).利用生物信息学软件对山定子柠檬酸合成酶基因(MbCS1)进行预测分析,结果显示该基因预测编码473个氨基酸,相对分子量为54.26 kD,理论等电点为8.95.亚细胞定位显示MbCS1蛋白定位在细胞膜上.半定量RT-PCR及Real-time PCR分析均表明,正常供铁时,该基因在山定子的根、茎、新叶中都有表达;缺铁处理(EDTA-NaFe,4μmol/L)时,该基因在根、茎和新叶中的表达加强,第9天达到最高值,之后开始下降;但各检测器官中表达增强的程度不同,其中茎中受缺铁诱导表达最明显.与小金海棠中MxCS1基因的表达趋势有明显的差别.本研究为高等植物抗性机理的深入研究以及铁低效资源型砧木资源的改良提供了基础资料.%In order to study the iron absorption and utilization molecular mechanism of different Fe efficiency genotypes apple rootstocks, we used the Malus baccata Borkh as material, which is an iron-inefficient genotype apple rootstock. Through the full-length of citrate synthase gene MxCSl was obtained from M. Xiaojinensis, which is an iron-efficient the gene encoding citrate synthase in Golden Delicious (M. Domestica Borkh ) and M. Xiaojinensis, thus we designated it as MbCS1 (GenBank accession No. JQ898346). The bioinformatics analysis showed that citrate synthase gene from M. Baccata Borkh encoded 473 amino acids, whose relative molecular weight was

  12. Expression Patterns, Activities and Carbohydrate-Metabolizing Regulation of Sucrose Phosphate Synthase, Sucrose Synthase and Neutral Invertase in Pineapple Fruit during Development and Ripening

    Directory of Open Access Journals (Sweden)

    Yan-Li Yao

    2012-07-01

    Full Text Available Differences in carbohydrate contents and metabolizing-enzyme activities were monitored in apical, medial, basal and core sections of pineapple (Ananas comosus cv. Comte de paris during fruit development and ripening. Fructose and glucose of various sections in nearly equal amounts were the predominant sugars in the fruitlets, and had obvious differences until the fruit matured. The large rise of sucrose/hexose was accompanied by dramatic changes in sucrose phosphate synthase (SPS and sucrose synthase (SuSy activities. By contrast, neutral invertase (NI activity may provide a mechanism to increase fruit sink strength by increasing hexose concentrations. Furthermore, two cDNAs of Ac-sps (accession no. GQ996582 and Ac-ni (accession no. GQ996581 were first isolated from pineapple fruits utilizing conserved amino-acid sequences. Homology alignment reveals that the amino acid sequences contain some conserved function domains. Transcription expression analysis of Ac-sps, Ac-susy and Ac-ni also indicated distinct patterns related to sugar accumulation and composition of pineapple fruits. It suggests that differential expressions of multiple gene families are necessary for sugar metabolism in various parts and developmental stages of pineapple fruit. A cycle of sucrose breakdown in the cytosol of sink tissues could be mediated through both Ac-SuSy and Ac-NI, and Ac-NI could be involved in regulating crucial steps by generating sugar signals to the cells in a temporally and spatially restricted fashion.

  13. Domain swapping of Citrus limon monoterpene synthases: impact on enzymatic activity and product specifity.

    NARCIS (Netherlands)

    Tamer, el M.K.; Lucker, J.; Bosch, D.; Verhoeven, H.A.; Verstappen, F.W.A.; Schwab, W.; Tunen, van A.J.; Voragen, A.G.J.; Maagd, de R.A.; Bouwmeester, H.J.

    2003-01-01

    Monoterpene cyclases are the key enzymes in the monoterpene biosynthetic pathway, as they catalyze the cyclization of the ubiquitous geranyl diphosphate (GDP) to the specific monoterpene skeletons. From Citrus limon, four monoterpene synthase-encoding cDNAs for a P-pinene synthase named Cl(-)betaPIN

  14. Sodium bicarbonate and sodium citrate: ergogenic aids?

    Science.gov (United States)

    Requena, Bernardo; Zabala, Mikel; Padial, Paulino; Feriche, Belén

    2005-02-01

    Numerous studies have used exogenous administration of sodium bicarbonate (NaHCO(3)) and sodium citrate (Na-citrate) in an attempt to enhance human performance. After ingestion of NaHCO(3) and Na-citrate, two observations have been made: (a) There was great individual variability in the ergogenic benefit reached, which can be attributed to the level of physical conditioning of the subjects and to their tolerance of the buffer substance; and (b) the subjects who had ingested NaHCO(3) and Na-citrate show higher levels of pH, bicarbonate, and lactate ions concentrations in their exercising blood than do the subjects who had ingested the placebo. A majority of the studies have suggested that the ingestion of both substances provides an ergogenic effect due to the establishment and maintenance of an elevated pH level during exercise. However, the exact mechanism by which the ergogenic effects occur has not been demonstrated conclusively. Sodium bicarbonate and Na-citrate seem to be effective in activities with a sufficient duration to generate a difference in the hydrogen ion gradient, characterized by a very high intensity and involving large muscular groups. However, in activities of equally high intensity, but with longer duration, the results obtained have been conflicting and inconclusive. PMID:15705037

  15. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang; Kun Yan Zhu

    2013-01-01

    Chitin synthase (CHS) is an important enzyme catalyzing the formation of chitin polymers in all chitin containing organisms and a potential target site for insect pest control.However,our understanding of biochemical properties of insect CHSs has been very limited.We here report enzymatic and inhibitory properties of CHS prepared from the African malaria mosquito,Anopheles gambiae.Our study,which represents the first time to use a nonradioactive method to assay CHS activity in an insect species,determined the optimal conditions for measuring the enzyme activity,including pH,temperature,and concentrations of the substrate uridine diphosphate N-acetyl-D-glucosamine (UDPGlcNAc) and Mg++.The optimal pH was about 6.5-7.0,and the highest activity was detected at temperatures between 37℃ and 44℃.Dithithreitol is required to prevent melanization of the enzyme extract.CHS activity was enhanced at low concentration of GlcNAc,but inhibited at high concentrations.Proteolytic activation of the activity is significant both in the 500×g supernatant and the 40 000×g pellet.Our study revealed only slight in vitro inhibition ofA.gambiae CHS activity by diflubenzuron and nikkomycin Z at the highest concentration (2.5μmol/L) examined.There was no in vitro inhibition by polyoxin D at any concentration examined.Furthermore,we did not observe any in vivo inhibition of CHS activity by any of these chemicals at any concentration examined.Our results suggest that the inhibition of chitin synthesis by these chemicals is not due to direct inhibition of CHS in A.gambiae.

  16. NMR crystallography of enzyme active sites: probing chemically detailed, three-dimensional structure in tryptophan synthase.

    Science.gov (United States)

    Mueller, Leonard J; Dunn, Michael F

    2013-09-17

    NMR crystallography applied to enzyme catalysis. We begin with a brief introduction to NMR crystallography and then define the process that we have employed to probe the active site in the β-subunit of tryptophan synthase with unprecedented atomic-level resolution. This approach has resulted in a novel structural hypothesis for the protonation state of the quinonoid intermediate in tryptophan synthase and its surprising role in directing the next step in the catalysis of L-Trp formation.

  17. Production of functionally active Penicillium chrysogenum isopenicillin N synthase in the yeast Hansenula polymorpha

    Directory of Open Access Journals (Sweden)

    Veenhuis Marten

    2008-03-01

    Full Text Available Abstract Background β-Lactams like penicillin and cephalosporin are among the oldest known antibiotics used against bacterial infections. Industrially, penicillin is produced by the filamentous fungus Penicillium chrysogenum. Our goal is to introduce the entire penicillin biosynthesis pathway into the methylotrophic yeast Hansenula polymorpha. Yeast species have the advantage of being versatile, easy to handle and cultivate, and possess superior fermentation properties relative to filamentous fungi. One of the fundamental challenges is to produce functionally active enzyme in H. polymorpha. Results The P. chrysogenum pcbC gene encoding isopenicillin N synthase (IPNS was successfully expressed in H. polymorpha, but the protein produced was unstable and inactive when the host was grown at its optimal growth temperature (37°C. Heterologously produced IPNS protein levels were enhanced when the cultivation temperature was lowered to either 25°C or 30°C. Furthermore, IPNS produced at these lower cultivation temperatures was functionally active. Localization experiments demonstrated that, like in P. chrysogenum, in H. polymorpha IPNS is located in the cytosol. Conclusion In P. chrysogenum, the enzymes involved in penicillin production are compartmentalized in the cytosol and in microbodies. In this study, we focus on the cytosolic enzyme IPNS. Our data show that high amounts of functionally active IPNS enzyme can be produced in the heterologous host during cultivation at 25°C, the optimal growth temperature for P. chrysogenum. This is a new step forward in the metabolic reprogramming of H. polymorpha to produce penicillin.

  18. Elevation in sphingomyelin synthase activity is associated with increases in amyloid-beta peptide generation.

    Directory of Open Access Journals (Sweden)

    Jen-Hsiang T Hsiao

    Full Text Available A pathological hallmark of Alzheimer's disease (AD is the presence of amyloid-beta peptide (Aβ plaques in the brain. Aβ is derived from a sequential proteolysis of the transmenbrane amyloid precursor protein (APP, a process which is dependent on the distribution of lipids present in the plasma membrane. Sphingomyelin is a major membrane lipid, however its role in APP processing is unclear. Here, we assessed the expression of sphingomyelin synthase (SGMS1; the gene responsible for sphingomyelin synthesis in human brain and found that it was significantly elevated in the hippocampus of AD brains, but not in the cerebellum. Secondly, we assessed the impact of altering SGMS activity on Aβ generation. Inhibition of SGMS activity significantly reduced the level of Aβ in a dose- and time dependent manner. The decrease in Aβ level occurred without changes in APP expression or cell viability. These results when put together indicate that SGMS activity impacts on APP processing to produce Aβ and it could be a contributing factor in Aβ pathology associated with AD.

  19. Antioxidant and nitric oxide synthase activation properties of water soluble polysaccharides from Pleurotus florida

    Directory of Open Access Journals (Sweden)

    Subarna Saha

    2013-01-01

    Full Text Available Context: Cellular damage caused by reactive oxygen species has been implicated in several diseases, and, at the same time, nitric oxide is recognized as an important messenger molecule for several pathophysiological conditions. Hence, a novel antioxidant and nitric oxide synthase (NOS activator from natural sources have significant importance in human health. Aims: The present study was conducted to evaluate the free radical-scavenging activity and NOS activation properties of water-soluble crude polysaccharide (Floridan from Pleurotus florida. Materials and Methods: Crude polysaccharide was precipitated from hot water extract of P. florida, and their physicochemical parameters were determined. Then, α and β glucan were estimated using mushroom and yeast β glucan assay kit and Fourier transform infrared spectroscopy (FT-IR. Floridan was analyzed for their free radical scavenging activity in different test systems, namely hydroxyl and superoxide radical scavenging activity, ferrous ion chelating ability, determination of reducing power and inhibition of lipid peroxidation. Floridan was also tested for NOS activation using oxyhaemoglobin method. Statistical Analysis: The results were statistically analyzed using the Student′s t-test. Results: Results showed that Floridan was rich in water-soluble β glucan with very low amount of protein and phenols. The EC 50 for hydroxyl and superoxide radical-scavenging activity were 140 and 320 μg/ml, respectively, 450 μg/ml for chelating ability, 300 μg/ml for inhibition of lipid peroxidation and 2 mg/ml for reducing power. Floridan also increased nitric oxide production significantly. Conclusions: The present results revealed that this mushroom polysaccharide may be utilized as a promising dietary supplement to combat several killer diseases.

  20. Structural basis for the extended substrate spectrum of AmpC BER and structure-guided discovery of the inhibition activity of citrate against the class C β-lactamases AmpC BER and CMY-10.

    Science.gov (United States)

    Na, Jung Hyun; Cha, Sun Shin

    2016-08-01

    AmpC BER is an extended substrate spectrum class C β-lactamase with a two-amino-acid insertion in the R2 loop compared with AmpC EC2. The crystal structures of AmpC BER (S64A mutant) and AmpC EC2 were determined. Structural comparison of the two proteins revealed that the insertion increases the conformational flexibility of the R2 loop. Two citrate molecules originating from the crystallization solution were observed in the active site of the S64A mutant. One citrate molecule makes extensive interactions with active-site residues that are highly conserved among class C β-lactamases, whereas the other one is weakly bound. Based on this structural observation, it is demonstrated that citrate, a primary metabolite that is widely used as a food additive, is a competitive inhibitor of two class C β-lactamases (AmpC BER and CMY-10). Consequently, the data indicate enhancement of the flexibility of the R2 loop as an operative strategy for molecular evolution of extended-spectrum class C β-lactamases, and also suggest that the citrate scaffold is recognized by the active sites of class C β-lactamases. PMID:27487828

  1. Sleep-active neuronal nitric oxide synthase-positive cells of the cerebral cortex: a local regulator of sleep?

    OpenAIRE

    Wisor, Jonathan P.; Gerashchenko, Dmitry; Kilduff, Thomas S.

    2011-01-01

    Our recent report demonstrated that a small subset of GABAergic interneurons in the cerebral cortex of rodents expresses Fos protein, a marker for neuronal activity, during slow wave sleep (Gerashchenko et al., 2008). The population of sleep-active neurons consists of strongly immunohistochemically-stained cells for the enzyme neuronal nitric oxide synthase. By virtue of their widespread localization within the cerebral cortex and their widespread projections to other cortical cell types, cor...

  2. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases

    OpenAIRE

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette

    2016-01-01

    Catechol oxidases and tyrosinases belong to the family of polyphenol oxidases (PPOs). In contrast to tyrosinases, catechol oxidases were so far defined to lack hydroxylase activity toward monophenols. Aurone synthase (AUS1) is a plant catechol oxidase that specializes in the conversion of chalcones to aurones (flower pigments). We evidence for the first time, to our knowledge, hydroxylase activity for a catechol oxidase (AUS1) toward its natural monophenolic substrate (chalcone). The presente...

  3. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels

    Science.gov (United States)

    Berkowitz, Dan E.; White, Ron; Li, Dechun; Minhas, Khalid M.; Cernetich, Amy; Kim, Soonyul; Burke, Sean; Shoukas, Artin A.; Nyhan, Daniel; Champion, Hunter C.; Hare, Joshua M.

    2003-01-01

    BACKGROUND: Although abnormal L-arginine NO signaling contributes to endothelial dysfunction in the aging cardiovascular system, the biochemical mechanisms remain controversial. L-arginine, the NO synthase (NOS) precursor, is also a substrate for arginase. We tested the hypotheses that arginase reciprocally regulates NOS by modulating L-arginine bioavailability and that arginase is upregulated in aging vasculature, contributing to depressed endothelial function. METHODS AND RESULTS: Inhibition of arginase with (S)-(2-boronoethyl)-L-cysteine, HCl (BEC) produced vasodilation in aortic rings from young (Y) adult rats (maximum effect, 46.4+/-9.4% at 10(-5) mol/L, P<0.01). Similar vasorelaxation was elicited with the additional arginase inhibitors N-hydroxy-nor-L-arginine (nor-NOHA) and difluoromethylornithine (DFMO). This effect required intact endothelium and was prevented by 1H-oxadiazole quinoxalin-1-one (P<0.05 and P<0.001, respectively), a soluble guanylyl cyclase inhibitor. DFMO-elicited vasodilation was greater in old (O) compared with Y rat aortic rings (60+/-6% versus 39+/-6%, P<0.05). In addition, BEC restored depressed L-arginine (10(-4) mol/L)-dependent vasorelaxant responses in O rings to those of Y. Arginase activity and expression were increased in O rings, whereas NOS activity and cyclic GMP levels were decreased. BEC and DFMO suppressed arginase activity and restored NOS activity and cyclic GMP levels in O vessels to those of Y. CONCLUSIONS: These findings demonstrate that arginase modulates NOS activity, likely by regulating intracellular L-arginine availability. Arginase upregulation contributes to endothelial dysfunction of aging and may therefore be a therapeutic target.

  4. Decreased glycogen synthase kinase-3 levels and activity contribute to Huntington's disease.

    Science.gov (United States)

    Fernández-Nogales, Marta; Hernández, Félix; Miguez, Andrés; Alberch, Jordi; Ginés, Silvia; Pérez-Navarro, Esther; Lucas, José J

    2015-09-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by brain atrophy particularly in striatum leading to personality changes, chorea and dementia. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase in the crossroad of many signaling pathways that is highly pleiotropic as it phosphorylates more than hundred substrates including structural, metabolic, and signaling proteins. Increased GSK-3 activity is believed to contribute to the pathogenesis of neurodegenerative diseases like Alzheimer's disease and GSK-3 inhibitors have been postulated as therapeutic agents for neurodegeneration. Regarding HD, GSK-3 inhibitors have shown beneficial effects in cell and invertebrate animal models but no evident efficacy in mouse models. Intriguingly, those studies were performed without interrogating GSK-3 level and activity in HD brain. Here we aim to explore the level and also the enzymatic activity of GSK-3 in the striatum and other less affected brain regions of HD patients and of the R6/1 mouse model to then elucidate the possible contribution of its alteration to HD pathogenesis by genetic manipulation in mice. We report a dramatic decrease in GSK-3 levels and activity in striatum and cortex of HD patients with similar results in the mouse model. Correction of the GSK-3 deficit in HD mice, by combining with transgenic mice with conditional GSK-3 expression, resulted in amelioration of their brain atrophy and behavioral motor and learning deficits. Thus, our results demonstrate that decreased brain GSK-3 contributes to HD neurological phenotype and open new therapeutic opportunities based on increasing GSK-3 activity or attenuating the harmful consequences of its decrease. PMID:26082469

  5. Vibrational study of tamoxifen citrate polymorphism

    Science.gov (United States)

    Gamberini, M. C.; Baraldi, C.; Tinti, A.; Palazzoli, F.; Ferioli, V.

    2007-09-01

    The trans isomer of ( Z)-2-[ p-(1,2-diphenyl-butenyl)phenoxy]- N, N-dimethyletylamine (tamoxifen) is well known for its endocrine activity as an antiestrogenic agent. Its citrate salt, a widely used pharmaceutical agent, appears in three main polymorphic forms, two of which are well known (I and II) and another form not yet well evidenced. A vibrational study has been conducted for identifying the two known polymorphic forms of tamoxifen citrate (I and II) and for characterising the other form (form III) examined in this study. Other techniques for the characterization of the different polymorphs, such as XRDP, have been used.

  6. Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer

    Directory of Open Access Journals (Sweden)

    Fairman Robert

    2004-11-01

    Full Text Available Abstract Background The enzyme porphobilinogen synthase (PBGS, which is central to the biosynthesis of heme, chlorophyll and cobalamins, has long been known to use a variety of metal ions and has recently been shown able to exist in two very different quaternary forms that are related to metal ion usage. This paper reports new information on the metal ion independence and quaternary structure of PBGS from the photosynthetic bacterium Rhodobacter capsulatus. Results The gene for R. capsulatus PBGS was amplified from genomic DNA and sequencing revealed errors in the sequence database. R. capsulatus PBGS was heterologously expressed in E. coli and purified to homogeneity. Analysis of an unusual phylogenetic variation in metal ion usage by PBGS enzymes predicts that R. capsulatus PBGS does not utilize metal ions such as Zn2+, or Mg2+, which have been shown to act in other PBGS at either catalytic or allosteric sites. Studies with these ions and chelators confirm the predictions. A broad pH optimum was determined to be independent of monovalent cations, approximately 8.5, and the Km value shows an acidic pKa of ~6. Because the metal ions of other PBGS affect the quaternary structure, gel permeation chromatography and analytical ultracentrifugation experiments were performed to examine the quaternary structure of metal ion independent R. capsulatus PBGS. The enzyme was found to be predominantly hexameric, in contrast with most other PBGS, which are octameric. A protein concentration dependence to the specific activity suggests that the hexameric R. capsulatus PBGS is very active and can dissociate to smaller, less active, species. A homology model of hexameric R. capsulatus PBGS is presented and discussed. Conclusion The evidence presented in this paper supports the unusual position of the R. capsulatus PBGS as not requiring any metal ions for function. Unlike other wild-type PBGS, the R. capsulatus protein is a hexamer with an unusually high specific

  7. [DYNAMICS OF GLUTAMINE SYNTHASE ACTIVITY IN RAT BRAIN IN PRENATAL HYPOXIA MODEL].

    Science.gov (United States)

    Khairova, V R; Safarov, M I

    2015-01-01

    Prenatal ontogenesis is a period of high sensitivity to stressful impact, so any stressor can lead to changes of physiological, biochemical indicators, behavioral and cognitive functions. The most common and clinically significant stress factor, which the embryo may be exposed during embryonic development, is hypoxia. In this case pathological changes in the central nervous system depend on the duration and severity of hypoxic exposure, individual tolerance and the stage of prenatal development, at each of which in the brain take place the basic histogenetic processes. By activating energetically disadvantageous anaerobic glycolysis hypoxia leads to excess of glutamate emission and cell apoptosis. Glutamine synthase is a basic enzyme that regulates metabolism of glutamate, catalyzing conversion of glutamate to glutamine with ammonia detoxification. The aim of the presented work was to reveal changes in the activity of one of the key enzyme of glutamate metabolism- glutamine synthetase in the brain of offspring of white rats undergone to hypoxia at different stages of prenatal ontogenesis. Hypoxia was created by placing female rats at stages of the pregnancy, corresponding to progestation period of organogenesis and fetal period of prenatal development, in the hypobaric chamber with exposure to 5% oxygen and 95% nitrogen gas mixture during 30 minutes per day. The offspring obtained from females of control and experimental groups were used for biochemical determinations in the age of 1 and 3 month. It has been established that hypoxia exposed to pregnant females during embryonic organogenesis causes significant changes in enzyme activity, particularly pronounced in the cerebral cortex and cerebellum, as compared with progestational and fetal hypoxia. Enzyme activity decreased in a greater degree in one-month-old rats undergone to prenatal hypoxia, than three- month-old animals. Thus, stress during intensive processes of proliferation and migration of cells of the

  8. Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Li DING; Jin ZHANG

    2012-01-01

    To investigate the effects of glucagon-like peptide-1 (GLP-1) on endothelial NO synthase (eNOS) in human umbilical vein endothelial cells (HUVECs),and elucidate whether GLP-1 receptor (GLP-1R) and GLP-1(9-36) are involved in these effects.Methods:HUVECs were used.The activity of eNOS was measured with NOS assay kit.Phosphorylated and total eNOS proteins were detected using Western blot analysis.The level of eNOS mRNA was quantified with real-time RT-PCR.Results:Incubation of HUVECs with GLP-1 (50-5000 pmol/L) for 30 min significantly increased the activity of eNOS.Incubation of HUVECs with GLP-1 (500-5000 pmol/L) for 5 or 10 min increased eNOS phosphorylated at ser-1177.Incubation with GLP-1 (5000 pmol/L) for 48 h elevated the level of eNOS protein,did not affect the level of eNOS mRNA.GLP-1R agonists exenatide and GLP-1(9-36) at the concentration of 5000 pmol/L increased the activity,phosphorylation and protein level of eNOS.GLP-1R antagonist exendin(9-39) or DPP-4 inhibitor sitagliptin,which abolished GLP-1(9-36) formation,at the concentration of 5000 pmol/L partially blocked the effects of GLP-1 on eNOS.Conclusion:GLP-1 upregulated the activity and protein expression of eNOS in HUVECs through the GLP-1R-dependent and GLP-1(9-36)-related pathways.GLP-1 may prevent or delay the formation of atherosclerosis in diabetes mellitus by improving the function of eNOS.

  9. It takes two to tango: defining an essential second active site in pyridoxal 5'-phosphate synthase.

    Directory of Open Access Journals (Sweden)

    Cyril Moccand

    Full Text Available The prevalent de novo biosynthetic pathway of vitamin B6 involves only two enzymes (Pdx1 and Pdx2 that form an ornate multisubunit complex functioning as a glutamine amidotransferase. The synthase subunit, Pdx1, utilizes ribose 5-phosphate and glyceraldehyde 3-phosphate, as well as ammonia derived from the glutaminase activity of Pdx2 to directly form the cofactor vitamer, pyridoxal 5'-phosphate. Given the fact that a single enzyme performs the majority of the chemistry behind this reaction, a complicated mechanism is anticipated. Recently, the individual steps along the reaction co-ordinate are beginning to be unraveled. In particular, the binding of the pentose substrate and the first steps of the reaction have been elucidated but it is not known if the latter part of the chemistry, involving the triose sugar, takes place in the same or a disparate site. Here, we demonstrate through the use of enzyme assays, enzyme kinetics, and mutagenesis studies that indeed a second site is involved in binding the triose sugar and moreover, is the location of the final vitamin product, pyridoxal 5'-phosphate. Furthermore, we show that product release is triggered by the presence of a PLP-dependent enzyme. Finally, we provide evidence that a single arginine residue of the C terminus of Pdx1 is responsible for coordinating co-operativity in this elaborate protein machinery.

  10. Activation of GABA(B) receptors inhibits protein kinase B/glycogen synthase kinase 3 signaling.

    Science.gov (United States)

    Lu, Frances Fangjia; Su, Ping; Liu, Fang; Daskalakis, Zafiris J

    2012-11-28

    Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt)/glycogen synthase kinase (GSK)-3 signaling. Here we report that activation of GABA(B) receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABA(B) receptors enhances the phosphorylation of Akt (Thr-308) and enhances the phosphorylation of GSK-3α (Ser-21)/β (Ser-9) in both HEK-293T cells expressing GABA(B) receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABA(B) receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABA(B) receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  11. Nitration of tyrosyl residues in human alpha-lactalbumin. Effect on lactose synthase specifier activity.

    Science.gov (United States)

    Prieels, J P; Dolmans, M; Leonis, J; Brew, K

    1975-12-15

    Alpha-Lactalbumin isolated from human milk was reacted with tetranitromethane in molar excess of 8-32 mol/mol of tyrosine. After gel filtration on Sephadex G-75, followed by chromatographic fractionation using DEAE-Sephadex A-25, three main components were separated, which differed from one another in the extent of nitration. These protein fractions were found to contain, respectively, one and two nitrotyrosine residues, or two nitrotyrosine residues together with one nitrotryptophan. The lactose synthase specifier activity of each of these components was measured and compared with that of unsubstituted alpha-lactalbumin. Comparison of kinetic parameters showed the chemically modified proteins to be only slightly less active when tyrosines were the sole residues modified. In sharp contrast the additional nitration of a single tryptophan residue totally abolished the specifying activity of alpha-lactalbumin. Circular dichroism spectra of the tryptophan derivative revealed some structural alteration when compared with the other two and with the native protein. The conclusion could also be confirmed by using a double-immunodiffusion technique. After hydrolysis of the derivatives with thermolysin, it was possible to localize the substituted residues in the known sequence of human alpha-lactalbumin. Tyrosine-103 was found to be more easily nitrated than tyrosine-18. These two residues seem, therefore, to be on the outer surface of the molecule and more exposed than tyrosine-36 and tyrosine-50. Some precautions are indicated in the use of tetranitromethane as a nitrating agent on the basis of complex products observed in the nitration of the free amino acids tyrosine and tryptophan and their derivatives. PMID:812700

  12. Analysis of the Expression and Activity of Nitric Oxide Synthase from Marine Photosynthetic Microorganisms.

    Science.gov (United States)

    Foresi, Noelia; Correa-Aragunde, Natalia; Santolini, Jerome; Lamattina, Lorenzo

    2016-01-01

    Nitric oxide (NO) functions as a signaling molecule in many biological processes in species belonging to all kingdoms of life. In animal cells, NO is synthesized primarily by NO synthase (NOS), an enzyme that catalyze the NADPH-dependent oxidation of L-arginine to NO and L-citrulline. Three NOS isoforms have been identified, the constitutive neuronal NOS (nNOS) and endothelial NOS (eNOS) and one inducible (iNOS). Plant NO synthesis is complex and is a matter of ongoing investigation and debate. Despite evidence of an Arg-dependent pathway for NO synthesis in plants, no plant NOS homologs to animal forms have been identified to date. In plants, there is also evidence for a nitrate-dependent mechanism of NO synthesis, catalyzed by cytosolic nitrate reductase. The existence of a NOS enzyme in the plant kingdom, from the tiny single-celled green alga Ostreococcus tauri was reported in 2010. O. tauri shares a common ancestor with higher plants and is considered to be part of an early diverging class within the green plant lineage.In this chapter we describe detailed protocols to study the expression and characterization of the enzymatic activity of NOS from O. tauri. The most used methods for the characterization of a canonical NOS are the analysis of spectral properties of the oxyferrous complex in the heme domain, the oxyhemoglobin (oxyHb) and citrulline assays and the NADPH oxidation for in vitro analysis of its activity or the use of fluorescent probes and Griess assay for in vivo NO determination. We further discuss the advantages and drawbacks of each method. Finally, we remark factors associated to the measurement of NOS activity in photosynthetic organisms that can generate misunderstandings in the interpretation of results. PMID:27094418

  13. Activation of macrophage nuclear factor-κB and induction of inducible nitric oxide synthase by LPS

    OpenAIRE

    Yan Zhong-Qun; Li Ying-Hua; Brauner Annelie; Tullus Kjell

    2002-01-01

    Abstract Background Chronic lung disease (CLD) of prematurity is a major problem of neonatal care. Bacterial infection and inflammatory response have been thought to play an important role in the development of CLD and steroids have been given, with some benefit, to neonates with this disease. In the present study, we assessed the ability of lipopolysaccharide (LPS) to stimulate rat alveolar macrophages to produce nitric oxide (NO), express inducible nitric oxide synthase (iNOS) and activate ...

  14. A previously unidentified activity of yeast and mouse RNA:pseudouridine synthases 1 (Pus1p) on tRNAs.

    Science.gov (United States)

    Behm-Ansmant, Isabelle; Massenet, Séverine; Immel, Françoise; Patton, Jeffrey R; Motorin, Yuri; Branlant, Christiane

    2006-08-01

    Mouse pseudouridine synthase 1 (mPus1p) was the first vertebrate RNA:pseudouridine synthase that was cloned and characterized biochemically. The mPus1p was previously found to catalyze Psi formation at positions 27, 28, 34, and 36 in in vitro produced yeast and human tRNAs. On the other hand, the homologous Saccharomyces cerevisiae scPus1p protein was shown to modify seven uridine residues in tRNAs (26, 27, 28, 34, 36, 65, and 67) and U44 in U2 snRNA. In this work, we expressed mPus1p in yeast cells lacking scPus1p and studied modification of U2 snRNA and several yeast tRNAs. Our data showed that, in these in vivo conditions, the mouse enzyme efficiently modifies yeast U2 snRNA at position 44 and tRNAs at positions 27, 28, 34, and 36. However, a tRNA:Psi26-synthase activity of mPus1p was not observed. Furthermore, we found that both scPus1p and mPus1p, in vivo and in vitro, have a previously unidentified activity at position 1 in cytoplasmic tRNAArg(ACG). This modification can take place in mature tRNA, as well as in pre-tRNAs with 5' and/or 3' extensions. Thus, we identified the protein carrying one of the last missing yeast tRNA:Psi synthase activities. In addition, our results reveal an additional activity of mPus1p at position 30 in tRNA that scPus1p does not possess.

  15. Cloning of tobacco citrate synthase cDNA and construction of its light inducible plant expression vector%烟草柠檬酸合成酶基因的克隆及其光诱导型植物表达载体的构建

    Institute of Scientific and Technical Information of China (English)

    胡清泉; 王奇峰; 李昆志; 陈丽梅; 玉永雄

    2009-01-01

    紫花苜蓿为多年生优质豆科牧草.我国南方地区酸性土壤分布比较广,铝害比较严重,限制了紫花苜蓿在南方地区的推广利用.提高有机酸合成酶基因的表达活性,增加有机酸的合成与分泌,有利于增强植物的耐铝性.本研究根据Genebank中已知的烟草柠檬酸合成酶(Citrate Synthase, cs)基因的序列,通过RT-PCR从烟草总RNA中扩增cs基因的cDNA,亚克隆于T载体得到重组载体pMD18-cs,对pMD18-cs中的插入片断进行核酸序列分析确认为cs基因的cDNA全长.用光诱导型启动子(Rubisco,小亚基的启动子)和双元载体pPZP211构建了cs基因的光诱导型植物表达载体pPZP211-PrbcS-cs,为利用基因工程手段提高紫花苜蓿耐铝毒能力,促进其在南方地区推广利用奠定了物质基础.

  16. Introduction of Citrate Synthase Gene (CS) into an Elite Indica Rice Restorer Line Minghui 86 by A grobacterium -mediated Method%利用农杆菌介导法将柠檬酸合成酶基因(CS)导入籼稻品种明恢86

    Institute of Scientific and Technical Information of China (English)

    胡利华; 吴慧敏; 周泽民; 林拥军

    2006-01-01

    磷是生命的必需元素之一,在作物的生长发育中起着重要的作用.然而,大多数土壤中有效磷的含量很低,而作为磷肥生产的磷矿资源正趋于耗竭,与此同时,土壤中的磷大部分以作物难以利用的形态存在.已有的研究表明植物通过分泌柠檬酸活化土壤中难溶性无机磷从而提高了土壤磷的可利用性.本研究采用根癌农杆菌介导法将柠檬酸合成酶(citrate synthase)基因CS导入杂交籼稻优良恢复系明恢86,共获得48株T0再生植株.经PCR检测,其中22株为转基因阳性植株.对阳性转基因植株的Southern及Northern分析表明,外源基因已整合到了水稻基因组中并得以有效表达.转基因植株后代的生理学和农艺学性状的研究正在进行之中.

  17. Jujuboside B Reduces Vascular Tension by Increasing Ca2+ Influx and Activating Endothelial Nitric Oxide Synthase.

    Science.gov (United States)

    Zhao, Yixiu; Zhang, Xin; Li, Jiannan; Bian, Yu; Sheng, Miaomiao; Liu, Bin; Fu, Zidong; Zhang, Yan; Yang, Baofeng

    2016-01-01

    Jujuboside B has been reported to have protective effect on many cardiovascular diseases. However, the effects of Jujuboside B on vascular tension and endothelial function are unknown. The present study investigated the effects of Jujuboside B on reducing vascular tension, protecting endothelial function and the potential mechanisms. The tension of isolated rat thoracic aorta ring was measured by Wire myograph system. The concentration of nitric oxide (NO) and the activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells (HAECs) were determined by Griess reagent method and enzyme-linked immune sorbent assay. The protein levels of eNOS and p-eNOS at Serine-1177 were determined by western blot analysis. Intracellular Ca2+ concentration in HAECs was measured by laser confocal imaging microscopy. Results showed that Jujuboside B reduced the tension of rat thoracic aorta rings with intact endothelium in a dose-dependent manner. L-NAME, KN93, EGTA, SKF96365, iberiotoxin and glibenclamide significantly attenuated Jujuboside B-induced vasodilation in endothelium-intact tissues. In contrast, indometacin and 4-DAMP had no such effects. Jujuboside B also promoted NO generation and increased eNOS activity, which were attenuated by L-NAME, EGTA and SKF96365. Moreover, Jujuboside B increased intracellular Ca2+ concentration dose-dependently, which was inhibited by EGTA and SKF96365. Besides, Jujuboside B induced a rapid Ca2+ influx instantaneously after depleting intracellular Ca2+ store, which was significantly inhibited by SKF96365. In conclusion, this study preliminarily confirmed that Jujuboside B reduced vascular tension endothelium-dependently. The underlying mechanisms involved that Jujuboside B increased extracellular Ca2+ influx through endothelial transient receptor potential cation (TRPC) channels, phosphorylated eNOS and promoted NO generation in vascular endothelial cells. In addition, Jujuboside B-induced vasodilation involved

  18. Linolenate 9R-dioxygenase and allene oxide synthase activities of Lasiodiplodia theobromae.

    Science.gov (United States)

    Jernerén, Fredrik; Eng, Felipe; Hamberg, Mats; Oliw, Ernst H

    2012-01-01

    Jasmonic acid (JA) is synthesized from linolenic acid (18:3n-3) by sequential action of 13-lipoxygenase, allene oxide synthase (AOS), and allene oxide cyclase. The fungus Lasiodiplodia theobromae can produce large amounts of JA and was recently reported to form the JA precursor 12-oxophytodienoic acid. The objective of our study was to characterize the fatty acid dioxygenase activities of this fungus. Two strains of L. theobromae with low JA secretion (~0.2 mg/L medium) oxygenated 18:3n-3 to 5,8-dihydroxy-9Z,12Z,15Z-octadecatrienoic acid as well as 9R-hydroperoxy-10E,12Z,15Z-octadecatrienoic acid, which was metabolized by an AOS activity into 9-hydroxy-10-oxo-12Z,15Z-octadecadienoic acid. Analogous conversions were observed with linoleic acid (18:2n-6). Studies using [11S-(2)H]18:2n-6 revealed that the putative 9R-dioxygenase catalyzed stereospecific removal of the 11R hydrogen followed by suprafacial attack of dioxygen at C-9. Mycelia from these strains of L. theobromae contained 18:2n-6 as the major polyunsaturated acid but lacked 18:3n-3. A third strain with a high secretion of JA (~200 mg/L) contained 18:3n-3 as a major fatty acid and produced 5,8-dihydroxy-9Z,12Z,15Z-octadecatrienoic acid from added 18:3n-3. This strain also lacked the JA biosynthetic enzymes present in higher plants. PMID:22048860

  19. AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets.

    Science.gov (United States)

    Fleming, Ingrid; Schulz, Christian; Fichtlscherer, Birgit; Kemp, Bruce E; Fisslthaler, Beate; Busse, Rudi

    2003-11-01

    Little is known about the signaling cascades that eventually regulate the activity of the endothelial nitric oxide synthase (eNOS) in platelets. Here, we investigated the effects of insulin on the phosphorylation and activation of eNOS in washed human platelets and in endothelial cells. Insulin activated the protein kinase Akt in cultured endothelial cells and increased the phosphorylation of eNOS on Ser(1177) but failed to increase endothelial cyclic GMP levels or to elicit the relaxation of endothelium-intact porcine coronary arteries. In platelets, insulin also elicited the activation of Akt as well as the phosphorylation of eNOS and initiated NO production which was associated with increased cyclic GMP levels and the inhibition of thrombin-induced aggregation. The insulin-induced inhibition of aggregation was accompanied by a decreased Ca(2+) response to thrombin and was also prevented by N(omega) nitro-L-arginine. In platelets, but not in endothelial cells, insulin induced the activation of the AMP-activated protein kinase (AMPK), a metabolic stress-sensing kinase which was sensitive to the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and the AMPK inhibitor iodotubercidin. Moreover, the insulin-mediated inhibition of thrombin-induced aggregation was prevented by iodotubercidin. Insulin-independent activation of the AMPK using 5-aminoimidazole-4-carboxamide ribonucleoside, increased platelet eNOS phosphorylation, increased cyclic GMP levels and attenuated platelet aggregation. These results highlight the differences in the signal transduction cascade activated by insulin in endothelial cells and platelets, and demonstrate that insulin stimulates the formation of NO in human platelets, in the absence of an increase in Ca(2+), by acti-vating PI3-K and AMPK which phosphorylates eNOS on Ser(1177).

  20. Sleep active cortical neurons expressing neuronal nitric oxide synthase are active after both acute sleep deprivation and chronic sleep restriction.

    Science.gov (United States)

    Zielinski, M R; Kim, Y; Karpova, S A; Winston, S; McCarley, R W; Strecker, R E; Gerashchenko, D

    2013-09-01

    Non-rapid eye movement (NREM) sleep electroencephalographic (EEG) delta power (~0.5-4 Hz), also known as slow wave activity (SWA), is typically enhanced after acute sleep deprivation (SD) but not after chronic sleep restriction (CSR). Recently, sleep-active cortical neurons expressing neuronal nitric oxide synthase (nNOS) were identified and associated with enhanced SWA after short acute bouts of SD (i.e., 6h). However, the relationship between cortical nNOS neuronal activity and SWA during CSR is unknown. We compared the activity of cortical neurons expressing nNOS (via c-Fos and nNOS immuno-reactivity, respectively) and sleep in rats in three conditions: (1) after 18-h of acute SD; (2) after five consecutive days of sleep restriction (SR) (18-h SD per day with 6h ad libitum sleep opportunity per day); (3) and time-of-day matched ad libitum sleep controls. Cortical nNOS neuronal activity was enhanced during sleep after both 18-h SD and 5 days of SR treatments compared to control treatments. SWA and NREM sleep delta energy (the product of NREM sleep duration and SWA) were positively correlated with enhanced cortical nNOS neuronal activity after 18-h SD but not 5days of SR. That neurons expressing nNOS were active after longer amounts of acute SD (18h vs. 6h reported in the literature) and were correlated with SWA further suggest that these cells might regulate SWA. However, since these neurons were active after CSR when SWA was not enhanced, these findings suggest that mechanisms downstream of their activation are altered during CSR. PMID:23685166

  1. Alverine citrate induced acute hepatitis

    Institute of Scientific and Technical Information of China (English)

    Mehmet Arhan; Seyfettin K(o)klü; Aydln S K(o)ksal; (O)mer F Yolcu; Senem Koruk; Irfan Koruk; Ertugrul Kayacetin

    2004-01-01

    Alverine citrate is a commonly used smooth muscle relaxant agent. A MEDLINE search on January 2004 revealed only 1 report implicating the hepatotoxicity of this agent. A 34-year-old woman was investigated because of the finding of elevated liver function tests on biochemical screening. Other etiologies of hepatitis were appropriately ruled out and elevated enzymes were ascribed to alverine citrate treatment.Although alverine citrate hepatotoxicity was related to an immune mechanism in the first case, several features such as absence of predictable dose-dependent toxicity of alverine citrate in a previous study and absence of hypersensitivity manifestations in our patient are suggestive of a metabolic type of idiosyncratic toxicity.

  2. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare

    DEFF Research Database (Denmark)

    Zerbe, Philipp; Chiang, Angela; Dullat, Harpreet;

    2014-01-01

    different candidate diterpene synthases (diTPSs) of the TPS-c and TPS-e/f clades. We describe the in vitro and in vivo functional characterization of the M. vulgare diTPS family. In addition to MvEKS ent-kaurene synthase of general metabolism, we identified three diTPSs of specialized metabolism: MvCPS3...... (+)-copalyl diphosphate synthase, and the functional diTPS pair MvCPS1 and MvELS. In a sequential reaction, MvCPS1 and MvELS produce a unique oxygenated diterpene scaffold 9,13-epoxy-labd-14-ene en route to marrubiin and an array of related compounds. In contrast with previously known diTPSs that introduce...

  3. Lid L11 of the glutamine amidotransferase domain of CTP synthase mediates allosteric GTP activation of glutaminase activity

    DEFF Research Database (Denmark)

    Willemoës, Martin; Mølgaard, Anne; Johansson, Eva;

    2005-01-01

    GTP is an allosteric activator of CTP synthase and acts to increase the k(cat) for the glutamine-dependent CTP synthesis reaction. GTP is suggested, in part, to optimally orient the oxy-anion hole for hydrolysis of glutamine that takes place in the glutamine amidotransferase class I (GATase) domain...... position depending on the presence or absence of glutamine in the glutamine binding site. Displacement or rearrangement of this loop may provide a means for the suggested role of allosteric activation by GTP to optimize the oxy-anion hole for glutamine hydrolysis. Arg359, Gly360 and Glu362 of the...... enzyme behaved like wild-type enzyme. Apart from the G360A enzyme, the results from kinetic analysis of the enzymes altered at position 359 and 360 showed a 10- to 50-fold decrease in GTP activation of glutamine dependent CTP synthesis and concomitant four- to 10-fold increases in K(A) for GTP. The R359M...

  4. Iridoid synthase activity is common among the plant progesterone 5β-reductase family.

    Science.gov (United States)

    Munkert, Jennifer; Pollier, Jacob; Miettinen, Karel; Van Moerkercke, Alex; Payne, Richard; Müller-Uri, Frieder; Burlat, Vincent; O'Connor, Sarah E; Memelink, Johan; Kreis, Wolfgang; Goossens, Alain

    2015-01-01

    Catharanthus roseus, the Madagascar periwinkle, synthesizes bioactive monoterpenoid indole alkaloids, including the anti-cancer drugs vinblastine and vincristine. The monoterpenoid branch of the alkaloid pathway leads to the secoiridoid secologanin and involves the enzyme iridoid synthase (IS), a member of the progesterone 5β-reductase (P5βR) family. IS reduces 8-oxogeranial to iridodial. Through transcriptome mining, we show that IS belongs to a family of six C. roseus P5βR genes. Characterization of recombinant CrP5βR proteins demonstrates that all but CrP5βR3 can reduce progesterone and thus can be classified as P5βRs. Three of them, namely CrP5βR1, CrP5βR2, and CrP5βR4, can also reduce 8-oxogeranial, pointing to a possible redundancy with IS (corresponding to CrP5βR5) in secoiridoid synthesis. In-depth functional analysis by subcellular protein localization, gene expression analysis, in situ hybridization, and virus-induced gene silencing indicate that besides IS, CrP5βR4 may also participate in secoiridoid biosynthesis. We cloned a set of P5βR genes from angiosperm plant species not known to produce iridoids and demonstrate that the corresponding recombinant proteins are also capable of using 8-oxogeranial as a substrate. This suggests that IS activity is intrinsic to angiosperm P5βR proteins and has evolved early during evolution. PMID:25578278

  5. Interventional effect of magnesium sulfate on nitric oxide synthase activity after acute craniocerebral injury

    Institute of Scientific and Technical Information of China (English)

    Ximin Yang; Jiangong Zhu; Zongchun Tang

    2007-01-01

    BACKGROUND: Abnormal changes in magnesium ion are closely related to cerebral injury. At present,some evidence indicates that magnesium reagent can improve nerve function and prognosis of patients with cerebral injury.OBJECTIVE: To observe the effect of magnesium sulfate on changes in nitric oxide synthase (NOS)activity in brain tissue of rats with acute craniocerebral injury.DESIGN: Completely randomized grouping design and randomly controlled study.SETTING: Laboratory of Neurosurgery, the Third Hospital of Chinese PLA.MATERIALS: Fifty-four male SD rats of clean grade and weighing 220 - 250 g were randomly divided into normal control group (n =6), cerebral injury group (n =24) and magnesium sulfate group (n =24). Especially,rats in cerebral injury group and magnesium sulfate group were equally divided into four subgroups and observed at 0.5, 2, 6 and 24 hours after model establishment. A solution of 125 g/L of magnesium sulfate was provided by the Seventh Pharmaceutical Factory of Wuxi and the NOS assay kit by Nanjing Jiancheng Bioengineering Institute.METHODS: The experiment was carried out in the Institute of Neurosurgery, the Third Hospital of Chinese PLA from August 2000 to August 2002. ① Rats in the cerebral injury group and magnesium sulfate group were anesthetized to establish cerebral injury models based on modified Feeney technique; magnesium sulfate group were intraperitoneally injected 600 mg/kg magnesium sulfate (125 g/L), but rats in the normal control group remained untreated. ② At 0.5, 2, 6 and 24 hours after cerebral injury, rats in cerebral injury group and magnesium sulfate group were decapitated and brains were dissected. Cerebral cortex of rats in cerebral injury group was selected for NOS assay; in addition, at 0.5 hour after cerebral injury, a portion of the parietal lobe was selected from the brains of rats in the normal control group. Brain samples were homogenized, the homogenated centrifuged and the supernatants were used to measure

  6. Inducible nitric oxide synthase (NOS2) expressed in septic patients is nitrated on selected tyrosine residues: implications for enzymic activity.

    Science.gov (United States)

    Lanone, Sophie; Manivet, Philippe; Callebert, Jacques; Launay, Jean-Marie; Payen, Didier; Aubier, Michel; Boczkowski, Jorge; Mebazaa, Alexandre

    2002-01-01

    Tyrosine nitration is a post-translational protein modification with potentially significant biological implications. In the present study we demonstrate, for the first time, that tyrosine residues of human inducible nitric oxide synthase (NOS2) can be nitrated by peroxynitrite in vitro, leading to a decreased activity. Moreover, we show that NOS2 expressed in a skeletal muscle from septic patients is nitrated on selective tyrosine residues belonging to a canonic sequence. This phenomenon could be an endogenous mechanism of in vivo modulation of NOS2 enzymic activity. PMID:12097137

  7. Jujuboside B Reduces Vascular Tension by Increasing Ca2+ Influx and Activating Endothelial Nitric Oxide Synthase.

    Directory of Open Access Journals (Sweden)

    Yixiu Zhao

    Full Text Available Jujuboside B has been reported to have protective effect on many cardiovascular diseases. However, the effects of Jujuboside B on vascular tension and endothelial function are unknown. The present study investigated the effects of Jujuboside B on reducing vascular tension, protecting endothelial function and the potential mechanisms. The tension of isolated rat thoracic aorta ring was measured by Wire myograph system. The concentration of nitric oxide (NO and the activity of endothelial nitric oxide synthase (eNOS in human aortic endothelial cells (HAECs were determined by Griess reagent method and enzyme-linked immune sorbent assay. The protein levels of eNOS and p-eNOS at Serine-1177 were determined by western blot analysis. Intracellular Ca2+ concentration in HAECs was measured by laser confocal imaging microscopy. Results showed that Jujuboside B reduced the tension of rat thoracic aorta rings with intact endothelium in a dose-dependent manner. L-NAME, KN93, EGTA, SKF96365, iberiotoxin and glibenclamide significantly attenuated Jujuboside B-induced vasodilation in endothelium-intact tissues. In contrast, indometacin and 4-DAMP had no such effects. Jujuboside B also promoted NO generation and increased eNOS activity, which were attenuated by L-NAME, EGTA and SKF96365. Moreover, Jujuboside B increased intracellular Ca2+ concentration dose-dependently, which was inhibited by EGTA and SKF96365. Besides, Jujuboside B induced a rapid Ca2+ influx instantaneously after depleting intracellular Ca2+ store, which was significantly inhibited by SKF96365. In conclusion, this study preliminarily confirmed that Jujuboside B reduced vascular tension endothelium-dependently. The underlying mechanisms involved that Jujuboside B increased extracellular Ca2+ influx through endothelial transient receptor potential cation (TRPC channels, phosphorylated eNOS and promoted NO generation in vascular endothelial cells. In addition, Jujuboside B-induced vasodilation

  8. Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis.

    Science.gov (United States)

    Polen, Tino; Schluesener, Daniela; Poetsch, Ansgar; Bott, Michael; Wendisch, Volker F

    2007-08-01

    Corynebacterium glutamicum grows aerobically on a variety of carbohydrates and organic acids as single or combined sources of carbon and energy. To characterize the citrate utilization in C. glutamicum on a genomewide scale, a comparative analysis was carried out by combining transcriptome and proteome analysis. In cells grown on citrate, transcriptome analysis revealed highest expression changes for two different citrate-uptake systems encoded by citM and tctCBA, whereas genes encoding uptake systems for the glucose- (ptsG), sucrose- (ptsS) and fructose- (ptsF) specific PTS components and permeases for gluconate (gntP) and glutamate (gluC) displayed decreased mRNA levels in citrate-grown cells. This pattern was also observed when cells grown in Luria-Bertani (LB) medium plus citrate were compared with cells grown in LB medium, indicating some kind of catabolite repression. Genes encoding enzymes of the tricarboxylic acid cycle (aconitase, succinyl-CoA synthetase, succinate dehydrogenase and fumarase), malic enzyme, PEP carboxykinase, gluconeogenic glyceraldehyde-3-phosphate dehydrogenase and ATP synthase displayed increased expression in cells grown on citrate. Accordingly, proteome analysis revealed elevated protein levels of these enzymes and showed a good correlation with the mRNA levels. In conclusion, this study revealed the citrate stimulon in C. glutamicum and the regulated central metabolic genes when grown on citrate. PMID:17559405

  9. Role of Ga-67 citrate imaging in pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Aburano, T.; Yokoyama, K.; Hisada, K.; Kakuma, K.; Ichiyanagi, K.

    1988-11-01

    Two patients with pancreatitis in whom an area of predominant uptake of Ga-67 citrate was demonstrated involving the entire pancreas are presented. Ultrasound and x-ray CT did not reveal any morphologic abnormalities in the pancreas, whereas Ga-67 citrate imaging indicated the presence of active inflammatory change. Ga-67 citrate imaging may be useful in confirming the diagnosis of acute pancreatitis or acute exacerbation of chronic pancreatitis based on clinical and laboratory data, especially when ultrasound and/or x-ray CT cannot reveal any morphologic abnormalities in the pancreas.

  10. Determination of amino-acidic positions important for Ocimum basilicum geraniol synthase activity

    OpenAIRE

    Fischer, Marc; Meyer, Sophie; Claudel, Patricia; Steyer, Damien; Bergdoll, Marc; Hugueney, Philippe

    2013-01-01

    Terpenes are one of the largest and most diversified families of natural compounds. Although they have found numerous industrial applications, the molecular basis of their synthesis in plants has, until now, not been fully understood. Plant genomes have been shown to contain dozens of terpene synthase (TPS) genes, however knowledge of their amino-acidic protein sequence in not sufficient to predict which terpene(s) will be produced by a particular enzyme. In order to investigate the structura...

  11. Activated platelets from diabetic rats cause endothelial dysfunction by decreasing Akt/endothelial NO synthase signaling pathway.

    Directory of Open Access Journals (Sweden)

    Keiko Ishida

    Full Text Available Diabetes is associated with endothelial dysfunction and platelet activation, both of which may contribute to increased cardiovascular risk. The purpose of this study was to characterize circulating platelets in diabetes and clarify their effects on endothelial function. Male Wistar rats were injected with streptozotocin (STZ to induce diabetes. Each experiment was performed by incubating carotid arterial rings with platelets (1.65×10(7 cells/mL; 30 min isolated from STZ or control rats. Thereafter, the vascular function was characterized in isolated carotid arterial rings in organ bath chambers, and each expression and activation of enzymes involved in nitric oxide and oxidative stress levels were analyzed. Endothelium-dependent relaxation induced by acetylcholine was significantly attenuated in carotid arteries treated with platelets isolated from STZ rats. Similarly, treatment with platelets isolated from STZ rats significantly reduced ACh-induced Akt/endothelial NO synthase signaling/NO production and enhanced TXB2 (metabolite of TXA2, while CD61 (platelet marker and CD62P (activated platelet marker were increased in carotid arteries treated with platelets isolated from STZ rats. Furthermore, the platelets isolated from STZ rats decreased total eNOS protein and eNOS dimerization, and increased oxidative stress. These data provide direct evidence that circulating platelets isolated from diabetic rats cause dysfunction of the endothelium by decreasing NO production (via Akt/endothelial NO synthase signaling pathway and increasing TXA2. Moreover, activated platelets disrupt the carotid artery by increasing oxidative stress.

  12. Production of technical-grade sodium citrate from glycerol-containing biodiesel waste by Yarrowia lipolytica.

    Science.gov (United States)

    Kamzolova, Svetlana V; Vinokurova, Natalia G; Lunina, Julia N; Zelenkova, Nina F; Morgunov, Igor G

    2015-10-01

    The production of technical-grade sodium citrate from the glycerol-containing biodiesel waste by Yarrowia lipolytica was studied. Batch experiments showed that citrate was actively produced within 144 h, then citrate formation decreased presumably due to inhibition of enzymes involved in this process. In contrast, when the method of repeated batch cultivation was used, the formation of citrate continued for more than 500 h. In this case, the final concentration of citrate in the culture liquid reached 79-82 g/L. Trisodium citrate was isolated from the culture liquid filtrate by the addition of a small amount of NaOH, so that the pH of the filtrate increased to 7-8. This simple and economic isolation procedure gave the yield of crude preparation containing trisodium citrate 5.5-hydrate up to 82-86%.

  13. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells.

    Science.gov (United States)

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru; Motley, Evangeline D

    2016-03-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca(2+)-dependent using the Ca(2+) chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  14. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

    NARCIS (Netherlands)

    Haagsma, A.C.; Driessen, N.N.; Hahn, M.M.; Lill, H.; Bald, D.

    2010-01-01

    ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme

  15. CitI, a Transcription Factor Involved in Regulation of Citrate Metabolism in Lactic Acid Bacteria†

    Science.gov (United States)

    Martin, Mauricio G.; Magni, Christian; de Mendoza, Diego; López, Paloma

    2005-01-01

    A large variety of lactic acid bacteria (LAB) can utilize citrate under fermentative conditions. Although much information concerning the metabolic pathways leading to citrate utilization by LAB has been gathered, the mechanisms regulating these pathways are obscure. In Weissella paramesenteroides (formerly called Leuconostoc paramesenteroides), transcription of the citMDEFCGRP citrate operon and the upstream divergent gene citI is induced by the presence of citrate in the medium. Although genetic experiments have suggested that CitI is a transcriptional activator whose activity can be modulated in response to citrate availability, specific details of the interaction between CitI and DNA remained unknown. In this study, we show that CitI recognizes two A+T-rich operator sites located between citI and citM and that the DNA-binding affinity of CitI is increased by citrate. Subsequently, this citrate signal propagation leads to the activation of the cit operon through an enhanced recruitment of RNA polymerase to its promoters. Our results indicate that the control of CitI by the cellular pools of citrate provides a mechanism for sensing the availability of citrate and adjusting the expression of the cit operon accordingly. In addition, this is the first reported example of a transcription factor directly functioning as a citrate-activated switch allowing the cell to optimize the generation of metabolic energy. PMID:16030208

  16. Alverine citrate induced acute hepatitis.

    Science.gov (United States)

    Arhan, Mehmet; Koklu, Seyfettin; Koksal, Aydln-S; Yolcu, Omer-F; Koruk, Senem; Koruk, Irfan; Kayacetin, Ertugrul

    2004-08-01

    Alverine citrate is a commonly used smooth muscle relaxant agent. A MEDLINE search on January 2004 revealed only 1 report implicating the hepatotoxicity of this agent. A 34-year-old woman was investigated because of the finding of elevated liver function tests on biochemical screening. Other etiologies of hepatitis were appropriately ruled out and elevated enzymes were ascribed to alverine citrate treatment. Although alverine citrate hepatotoxicity was related to an immune mechanism in the first case, several features such as absence of predictable dose-dependent toxicity of alverine citrate in a previous study and absence of hypersensitivity manifestations in our patient are suggestive of a metabolic type of idiosyncratic toxicity. PMID:15259090

  17. Citrate-Stabilized Gold Nanorods

    OpenAIRE

    Mehtala, Jonathan G; Zemlyanov, Dmitry Y.; Max, Joann P.; Kadasala, Naveen; Zhao, Shou; Wei, Alexander

    2014-01-01

    Stable aqueous dispersions of citrate-stabilized gold nanorods (cit-GNRs) have been prepared in scalable fashion by surfactant exchange from cetyltrimethylammonium bromide (CTAB)-stabilized GNRs, using polystyrenesulfonate (PSS) as a detergent. The surfactant exchange process was monitored by infrared spectroscopy, surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopy (XPS). The latter established the quantitative displacement of CTAB (by PSS) and of PSS (by citrate)....

  18. Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles

    DEFF Research Database (Denmark)

    Kolnes, Anders J; Birk, Jesper Bratz; Eilertsen, Einar;

    2015-01-01

    Adrenaline increases glycogen synthase (GS) phosphorylation and decreases GS activity but also stimulates glycogen breakdown and low glycogen content normally activates GS. To test the hypothesis that glycogen content directly regulates GS phosphorylation, glycogen breakdown was stimulated...... in condition with decreased GS activation. Saline or adrenaline (0.02mg/100g rat) was injected subcutaneously in Wistar rats (~130 g) with low (24 h fasted), normal (normal diet) and high glycogen content (fasted-refed) and epitrochlearis muscles were removed after 3 h and incubated ex vivo eliminating...... adrenaline action. Adrenaline injection reduced glycogen content in epitrochlearis muscles with high (120.7±17.8 vs 204.6±14.5 mmol•kg(-1); p

  19. Effects of glucocorticoid dexamethasone on serum nitric oxide synthase activity and nitric oxide levels in a rat model of lung disease-induced brain injury

    Institute of Scientific and Technical Information of China (English)

    Huajun Li; Ligang Jiang; Meng Xia; Haiping Li; Fanhua Meng; Wei Li; Lifeng Liu; Zhaohui Wang

    2011-01-01

    In this study, we investigated the effects of dexamethasone, pertussis toxin (a Gi protein inhibitor), and actinomycin (a transcription inhibitor) on serum nitric oxide synthase activity and nitric oxide content in a rat model of lung disease-induced brain injury. High-dose dexamethasone (13 mg/kg) and dexamethasone + actinomycin reduced lung water content, increased serum nitric oxide synthase activity and nitric oxide content, diminished inflammatory cell infiltration in pulmonary alveolar interstitium, attenuated meningeal vascular hyperemia, reduced glial cell infiltration, and decreased cerebral edema. These results demonstrate that high-dose glucocorticoid treatment can reduce the severity of lung disease-induced brain injury by increasing nitric oxide synthase activity and nitric oxide levels.

  20. Safety Assessment of Citric Acid, Inorganic Citrate Salts, and Alkyl Citrate Esters as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Heldreth, Bart A; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2014-05-26

    The CIR Expert Panel (Panel) assessed the safety of citric acid, 12 inorganic citrate salts, and 20 alkyl citrate esters as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration. Citric acid is reported to function as a pH adjuster, chelating agent, or fragrance ingredient. Some of the salts are also reported to function as chelating agents, and a number of the citrates are reported to function as skin-conditioning agents but other functions are also reported. The Panel reviewed available animal and clinical data, but because citric acid, calcium citrate, ferric citrate, manganese citrate, potassium citrate, sodium citrate, diammonium citrate, isopropyl citrate, stearyl citrate, and triethyl citrate are generally recognized as safe direct food additives, dermal exposure was the focus for these ingredients in this cosmetic ingredient safety assessment.

  1. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette, E-mail: annette.rompel@univie.ac.at [Universität Wien, Althanstrasse 14, 1090 Wien (Austria)

    2015-05-22

    Latent and active aurone synthase purified from petals of C. grandiflora (cgAUS1) were crystallized. The crystal quality of recombinantly expressed latent cgAUS1 was significantly improved by co-crystallization with the polyoxotungstate Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase-separation zone. Aurone synthase (AUS), a member of a novel group of plant polyphenol oxidases (PPOs), catalyzes the oxidative conversion of chalcones to aurones. Two active cgAUS1 (41.6 kDa) forms that differed in the level of phosphorylation or sulfation as well as the latent precursor form (58.9 kDa) were purified from the petals of Coreopsis grandiflora. The differing active cgAUS1 forms and the latent cgAUS1 as well as recombinantly expressed latent cgAUS1 were crystallized, resulting in six different crystal forms. The active forms crystallized in space groups P2{sub 1}2{sub 1}2{sub 1} and P12{sub 1}1 and diffracted to ∼1.65 Å resolution. Co-crystallization of active cgAUS1 with 1,4-resorcinol led to crystals belonging to space group P3{sub 1}21. The crystals of latent cgAUS1 belonged to space group P12{sub 1}1 and diffracted to 2.50 Å resolution. Co-crystallization of recombinantly expressed pro-AUS with the hexatungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase separation zone significantly improved the quality of the crystals compared with crystals obtained without hexatungstotellurate(VI)

  2. The alpha2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian B; Nielsen, Jakob N.; Birk, Jesper Bratz;

    2004-01-01

    The 5'AMP-activated protein kinase (AMPK) is a potential antidiabetic drug target. Here we show that the pharmacological activation of AMPK by 5-aminoimidazole-1-beta-4-carboxamide ribofuranoside (AICAR) leads to inactivation of glycogen synthase (GS) and phosphorylation of GS at Ser 7 (site 2). ...

  3. Activity of Acetolactate Synthase from Maize (Zea mays L. ) as Influenced by Chlorsulfuron and Tribenuron-methyl

    Institute of Scientific and Technical Information of China (English)

    FAN Zhi-jin; CHEN Jun-peng; HU Ji-ye; QIAN Chuan-fan; LI Zheng-ming

    2003-01-01

    Study on relative sensitivity of maize (Zea mays L. ) Nongda108 and Nongda3138 to sulfonylurea herbicide chlorsulfuron and tribenuron-methyl using maize taproot length by sand bioassy indicated that, Nongda3138 had higher tolerance to chlorsulfuron and tribenuron-methyl than Nongda108 did. Chlorsulfuron had stronger growth inhibition to maize Nongda108 and Nongda3138 than tribenuron-methyl did. Study on target enzyme of sulfonylurea herbicide acetolactate synthase (ALS) showed that, chlorsulfuron and tribenuron-methyl inhibited ALS in vitro strongly, and non-competitively. In the same concentration of inhibitors,chlorsuifuron had stronger ALS activity inhibition than tribenuron-methyl did. Lower level of chlorsulfuron and tribenuron-methyl has no ALS activity inhibition in vivo, the ALS inhibition only occurred in the condition of high concentration of chlorsulfuron and tribenuron-methyl in vivo.

  4. Activity of glycogen synthase and glycogen phosphorylase in normal and cirrhotic rat liver during glycogen synthesis from glucose or fructose.

    Science.gov (United States)

    Bezborodkina, Natalia N; Chestnova, Anna Yu; Okovity, Sergey V; Kudryavtsev, Boris N

    2014-03-01

    Cirrhotic patients often demonstrate glucose intolerance, one of the possible causes being a decreased glycogen-synthesizing capacity of the liver. At the same time, information about the rates of glycogen synthesis in the cirrhotic liver is scanty and contradictory. We studied the dynamics of glycogen accumulation and the activity of glycogen synthase (GS) and glycogen phosphorylase (GP) in the course of 120min after per os administration of glucose or fructose to fasted rats with CCl4-cirrhosis or fasted normal rats. Blood serum and liver pieces were sampled for examinations. In the normal rat liver administration of glucose/fructose initiated a fast accumulation of glycogen, while in the cirrhotic liver glycogen was accumulated with a 20min delay and at a lower rate. In the normal liver GS activity rose sharply and GPa activity dropped in the beginning of glycogen synthesis, but 60min later a high synthesis rate was sustained at the background of a high GS and GPa activity. Contrariwise, in the cirrhotic liver glycogen was accumulated at the background of a decreased GS activity and a low GPa activity. Refeeding with fructose resulted in a faster increase in the GS activity in both the normal and the cirrhotic liver than refeeding with glucose. To conclude, the rate of glycogen synthesis in the cirrhotic liver is lower than in the normal one, the difference being probably associated with a low GS activity.

  5. Synthesis of benzimidazole based thiadiazole and carbohydrazide conjugates as glycogen synthase kinase-3β inhibitors with anti-depressant activity.

    Science.gov (United States)

    Khan, Imran; Tantray, Mushtaq A; Hamid, Hinna; Alam, Mohammad Sarwar; Kalam, Abul; Dhulap, Abhijeet

    2016-08-15

    A series of benzimidazole based thiadiazole and carbohydrazide conjugates have been synthesized and evaluated for inhibition of glycogen synthase kinase-3β and anti-depressant effect. Compounds 4f, 4j, 5b, 5g and 5i were found to be the most potent inhibitors of GSK-3β in vitro amongst the twenty-five benzimidazole based thiadiazole and carbohydrazide conjugates synthesized. Compound 5i was also found to exhibit significant antidepressant activity in vivo at 50mg/kg, when compared to fluoxetine, a known antidepressant drug. The molecular docking studies revealed multiple hydrogen bond interactions by the synthesized compounds with various amino acid residues, viz, ASP-133, LYS-183, PRO-136, VAL-135, TYR-134, or LYS-60 at the GSK-3β receptor site. PMID:27406796

  6. In Silico Structure Prediction of Human Fatty Acid Synthase-Dehydratase: A Plausible Model for Understanding Active Site Interactions.

    Science.gov (United States)

    John, Arun; Umashankar, Vetrivel; Samdani, A; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate-active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro.

  7. In Silico Structure Prediction of Human Fatty Acid Synthase-Dehydratase: A Plausible Model for Understanding Active Site Interactions.

    Science.gov (United States)

    John, Arun; Umashankar, Vetrivel; Samdani, A; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate-active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro. PMID:27559295

  8. PC-PLC/sphingomyelin synthase activity plays a central role in the development of myogenic tone in murine resistance arteries.

    Science.gov (United States)

    Mauban, Joseph R H; Zacharia, Joseph; Fairfax, Seth; Wier, Withrow Gil

    2015-06-15

    Myogenic tone is an intrinsic property of the vasculature that contributes to blood pressure control and tissue perfusion. Earlier investigations assigned a key role in myogenic tone to phospholipase C (PLC) and its products, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Here, we used the PLC inhibitor, U-73122, and two other, specific inhibitors of PLC subtypes (PI-PLC and PC-PLC) to delineate the role of PLC in myogenic tone of pressurized murine mesenteric arteries. U-73122 inhibited depolarization-induced contractions (high external K(+) concentration), thus confirming reports of nonspecific actions of U-73122 and its limited utility for studies of myogenic tone. Edelfosine, a specific inhibitor of PI-PLC, did not affect depolarization-induced contractions but modulated myogenic tone. Because PI-PLC produces IP3, we investigated the effect of blocking IP3 receptor-mediated Ca(2+) release on myogenic tone. Incubation of arteries with xestospongin C did not affect tone, consistent with the virtual absence of Ca(2+) waves in arteries with myogenic tone. D-609, an inhibitor of PC-PLC and sphingomyelin synthase, strongly inhibited myogenic tone and had no effect on depolarization-induced contraction. D-609 appeared to act by lowering cytoplasmic Ca(2+) concentration to levels below those that activate contraction. Importantly, incubation of pressurized arteries with a membrane-permeable analog of DAG induced vasoconstriction. The results therefore mandate a reexamination of the signaling pathways activated by the Bayliss mechanism. Our results suggest that PI-PLC and IP3 are not required in maintaining myogenic tone, but DAG, produced by PC-PLC and/or SM synthase, is likely through multiple mechanisms to increase Ca(2+) entry and promote vasoconstriction.

  9. Nitric oxide in the bovine oviduct: influence on contractile activity and nitric oxide synthase isoforms localization.

    Science.gov (United States)

    Yilmaz, O; Całka, J; Bukowski, R; Zalecki, M; Wasowicz, K; Jaroszewski, J J; Markiewicz, W; Bulbul, A; Ucar, M

    2012-04-15

    The oviducts of 64 Holstein cows in luteal (early I, early II and late) and follicular phases were evaluated to determine the protein expression and mRNA transcription of different nitric oxide synthase isoforms (eNOS, iNOS, nNOS) as well as the effect of nitric oxide (NO) on spontaneous contractility in vitro. The expression patterns of nitric oxide synthase (NOS) isoforms in isthmus and ampulla (n = 6 for each phase) were determined by immunohistochemistry, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. In the contractility studies, longitudinal and circular isolated strips of isthmus and ampulla (n = 10 for each phase) of oviducts located ipsilateral to the luteal structure or preovulatory follicle were treated as follows: a) L-arginine, an endogenous NO donor (10(-8) to 10(-3)m), b) N(ω)-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor (10(-5)m) and L-arginine (10(-3)m), c) methylene blue (MB), an inhibitor of soluble guanylate (10(-5)m) and L-arginine (10(-3)m) and d) sodium nitroprusside (SNP), an exogenous NO donor (10(-8) to 10(-4)m). Immunohistochemical evaluation revealed that endothelial NOS (eNOS) expression detected in epithelial layer of isthmus and ampulla was strong in early I luteal phase, moderate in follicular phase and weak in other phases. Neuronal NOS (nNOS) immunoreactivity was strong in isthmus and moderate in ampulla, and staining of nerve fibers was observed mostly in early I luteal and follicular phases. All eNOS, nNOS and inducible NOS (iNOS) isoforms were detected by RT-PCR. eNOS and iNOS proteins were evident, whereas nNOS was undetectable by Western blot analysis in the tissue examined. L-arginine applied alone or after L-NAME did not alter or increase the contractile tension of the strips in most tissues examined. However, L-arginine applied after MB increased contractile tension in the strips of ampulla and longitudinal isthmus from early I luteal phase and circular isthmus from

  10. Triterpenoic Acids from Apple Pomace Enhance the Activity of the Endothelial Nitric Oxide Synthase (eNOS).

    Science.gov (United States)

    Waldbauer, Katharina; Seiringer, Günter; Nguyen, Dieu Linh; Winkler, Johannes; Blaschke, Michael; McKinnon, Ruxandra; Urban, Ernst; Ladurner, Angela; Dirsch, Verena M; Zehl, Martin; Kopp, Brigitte

    2016-01-13

    Pomace is an easy-accessible raw material for the isolation of fruit-derived compounds. Fruit consumption is associated with health-promoting effects, such as the prevention of cardiovascular disease. Increased vascular nitric oxide (NO) bioavailability, for example, due to an enhanced endothelial nitric oxide synthase (eNOS) activity, could be one molecular mechanism mediating this effect. To identify compounds from apple (Malus domestica Borkh.) pomace that have the potential to amplify NO bioavailability via eNOS activation, a bioassay-guided fractionation of the methanol/water (70:30) extract has been performed using the (14)C-L-arginine to (14)C-L-citrulline conversion assay (ACCA) in the human endothelium-derived cell line EA.hy926. Phytochemical characterization of the active fractions was performed using the spectrophotometric assessment of the total phenolic content, as well as TLC, HPLC-DAD-ELSD, and HPLC-MS analyses. Eleven triterpenoic acids, of which one is a newly discovered compound, were identified as the main constituents in the most active fraction, accompanied by only minor contents of phenolic compounds. When tested individually, none of the tested compounds exhibited significant eNOS activation. Nevertheless, cell stimulation with the reconstituted compound mixture restored eNOS activation, validating the potential of apple pomace as a source of bioactive components.

  11. Lithium chloride ameliorates learning and memory ability and inhibits glycogen synthase kinase-3 beta activity in a mouse model of fragile X syndrome

    Institute of Scientific and Technical Information of China (English)

    Shengqiang Chen; Xuegang Luo; Quan Yang; Weiwen Sun; Kaiyi Cao; Xi Chen; Yueling Huang; Lijun Dai; Yonghong Yi

    2011-01-01

    In the present study, Fmr1 knockout mice (KO mice) were used as the model for fragile X syndrome. The results of step-through and step-down tests demonstrated that Fmr1 KO mice had shorter latencies and more error counts, indicating a learning and memory disorder. After treatment with 30, 60, 90, 120, or 200 mg/kg lithium chloride, the learning and memory abilities of the Fmr1 KO mice were significantly ameliorated, in particular, the 200 mg/kg lithium chloride treatment had the most significant effect. Western blot analysis showed that lithium chloride significantly enhanced the expression of phosphorylated glycogen synthase kinase 3 beta, an inactive form of glycogen synthase kinase 3 beta, in the cerebral cortex and hippocampus of the Fmr1 KO mice. These results indicated that lithium chloride improved learning and memory in the Fmr1 KO mice, possibly by inhibiting glycogen synthase kinase 3 beta activity.

  12. A Selective Assay to Detect Chitin and Biologically Active Nano-Machineries for Chitin-Biosynthesis with Their Intrinsic Chitin-Synthase Molecules

    Directory of Open Access Journals (Sweden)

    Hildgund Schrempf

    2010-09-01

    Full Text Available A new assay system for chitin has been developed. It comprises the chitin-binding protein ChbB in fusion with a His-tag as well as with a Strep-tag, the latter of which was chemically coupled to horseradish peroxidase. With the resulting complex, minimal quantities of chitin are photometrically detectable. In addition, the assay allows rapid scoring of the activity of chitin-synthases. As a result, a refined procedure for the rapid purification of yeast chitosomes (nano-machineries for chitin biosynthesis has been established. Immuno-electronmicroscopical studies of purified chitosomes, gained from a yeast strain carrying a chitin-synthase gene fused to that for GFP (green-fluorescence protein, has led to the in situ localization of chitin-synthase-GFP molecules within chitosomes.

  13. Transcriptional activation of the parsley chalcone synthase promoter in heterologous pea and yeast systems.

    Science.gov (United States)

    Kalbin; Strid; Frohnmeyer

    1999-11-01

    Introduction by electroporation of different parsley (Petroselinum crispum) CHS-promoter/beta-glucuronidase(GUS)-reporter constructs into pea (Pisum sativum L.) protoplasts leads to a high constitutive GUS-expression and to the loss of the light-inducibility seen in the homologous parsley protoplast system. These results indicate that Unit 1 of the parsley CHS-promoter is only partly responsible for the GUS-expression detected. Instead, additional cis-elements, which are located downstream within 100 bp from the transcriptional start site, mediate the de-repression in pea protoplasts. In contrast, in yeast (Saccharomyces cerevisiae) cells, the GUS expression from the heterologous CHS/GUS construct is controlled by elements between Unit 1 and -100 bp. In both pea and yeast cells, transcription factors different from those regulating UV-responsiveness in parsley, are probably mediating the constitutive expression from the heterologous construct. The results with pea protoplasts imply that protoplastation of pea leaf cells itself induces de-repression as a result of stress to the protoplasts. This notion was strengthened by the finding that mRNA levels of the endogenous chalcone synthase were drastically increased as the result of the protoplastation procedure. PMID:10580282

  14. Overexpression of erg20 gene encoding farnesyl pyrophosphate synthase has contrasting effects on activity of enzymes of the dolichyl and sterol branches of mevalonate pathway in Trichoderma reesei.

    Science.gov (United States)

    Piłsyk, Sebastian; Perlińska-Lenart, Urszula; Górka-Nieć, Wioletta; Graczyk, Sebastian; Antosiewicz, Beata; Zembek, Patrycja; Palamarczyk, Grażyna; Kruszewska, Joanna S

    2014-07-10

    The mevalonate pathway is the most diverse metabolic route resulting in the biosynthesis of at least 30,000 isoprenoid compounds, many of which, such as sterols or dolichols, are indispensable for living cells. In the filamentous fungus Trichoderma of major biotechnological interest isoprenoid metabolites are also involved in the biocontrol processes giving the mevalonate pathway an additional significance. On the other hand, little is known about genes coding for enzymes of the mevalonate pathway in Trichoderma. Here, we present cloning and functional analysis of the erg20 gene from Trichoderma reesei coding for farnesyl pyrophosphate (FPP) synthase (EC 2.5.1.10), an enzyme located at the branching point of the mevalonate pathway. Expression of the gene in a thermosensitive erg20-2 mutant of Saccharomyces cerevisiae impaired in the FPP synthase activity suppressed the thermosensitive phenotype. The same gene overexpressed in T. reesei significantly enhanced the FPP synthase activity and also stimulated the activity of cis-prenyltransferase, an enzyme of the dolichyl branch of the mevalonate pathway. Unexpectedly, the activity of squalene synthase from the other, sterol branch, was significantly decreased without, however, affecting ergosterol level.

  15. Distribution of vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, nitric oxide synthase, and their receptors in human and rat sphenopalatine ganglion

    DEFF Research Database (Denmark)

    Csati, A; Tajti, J; Kuris, A;

    2012-01-01

    for the demonstration of vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), nitric oxide synthase (NOS), glutamine synthetase (GS), glial fibrillary acidic protein (GFAP), VIP and PACAP common receptors (VPAC1, VPAC2), and PACAP receptor (PAC1). In addition, double labeling...

  16. Regulation of NF-kappaB activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13)

    DEFF Research Database (Denmark)

    Mazumdar, Tuhina; Gorgun, F Murat; Sha, Youbao;

    2010-01-01

    activity. The specific substrates for the Rpn13/UCH37 complex have not been determined. Because of a previous discovery of an interaction between Rpn13 and inducible nitric oxide synthase (iNOS), we hypothesized that iNOS is one of the substrates for the Rpn13/UCH37 complex. In this study, we show that Rpn...

  17. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    Science.gov (United States)

    Bozic, Iva; Savic, Danijela; Jovanovic, Marija; Bjelobaba, Ivana; Laketa, Danijela; Nedeljkovic, Nadezda; Stojiljkovic, Mirjana; Pekovic, Sanja; Lavrnja, Irena

    2015-01-01

    Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM) modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM) to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS) stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation. PMID:26413464

  18. Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids

    Science.gov (United States)

    Limbourg, Florian P.; Huang, Zhihong; Plumier, Jean-Christophe; Simoncini, Tommaso; Fujioka, Masayuki; Tuckermann, Jan; Schütz, Günther; Moskowitz, Michael A.; Liao, James K.

    2002-01-01

    Many cellular responses to corticosteroids involve the transcriptional modulation of target genes by the glucocorticoid receptor (GR). A rapid, non-nuclear effect of GR was found to mediate neuroprotection. High-dose corticosteroids (20 mg/kg intraperitoneally), given within 2 hours of transient cerebral ischemia, acutely increased endothelial nitric oxide synthase (eNOS) activity, augmented regional cerebral blood flow (CBF) by 40% to 50%, and reduced cerebral infarct size by 32%. These neuroprotective effects of corticosteroids were abolished by the GR antagonist RU486 and by inhibition of phosphatidylinositol 3-kinase (PI3K), and were absent in eNOS–/– mice. To determine the mechanism by which GR activated eNOS, we measured the effect of corticosteroids on PI3K and the protein kinase Akt. In a ligand-dependent manner, GR activated PI3K and Akt in vitro and in vivo caused NO-dependent vasodilation, which was blocked by cotreatment with RU486 or the PI3K inhibitor LY294002 but not by transcriptional inhibitors. Indeed, a mutant GR, which cannot dimerize and bind to DNA, still activated PI3K and Akt in response to corticosteroids. These findings indicate that non-nuclear GR rapidly activates eNOS through the PI3K/Akt pathway and suggest that this mechanism mediates the acute neuroprotective effects of corticosteroids through augmentation of CBF. PMID:12464678

  19. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Iva Bozic

    2015-01-01

    Full Text Available Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation.

  20. 21 CFR 184.1751 - Sodium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium citrate. 184.1751 Section 184.1751 Food and... Substances Affirmed as GRAS § 184.1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68... may be prepared in an anhydrous state or may contain two moles of water per mole of sodium citrate....

  1. 21 CFR 184.1449 - Manganese citrate.

    Science.gov (United States)

    2010-04-01

    ... sodium citrate to complete the reaction. (b) The ingredient must be of a purity suitable for its intended... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese citrate. 184.1449 Section 184.1449 Food... Specific Substances Affirmed as GRAS § 184.1449 Manganese citrate. (a) Manganese citrate (Mn3(C6H5O7)2,...

  2. Involvement of Salicylic Acid on Antioxidant and Anticancer Properties, Anthocyanin Production and Chalcone Synthase Activity in Ginger (Zingiber officinale Roscoe) Varieties

    OpenAIRE

    Ehsan Karimi; Jaafar, Hawa Z. E.; Ali Ghasemzadeh

    2012-01-01

    The effect of foliar application of salicylic acid (SA) at different concentrations (10−3 M and 10−5 M) was investigated on the production of secondary metabolites (flavonoids), chalcone synthase (CHS) activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231) in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC) analysis showed that application of SA induced t...

  3. 2C-Methyl-d-erythritol 4-phosphate enhances and sustains cyclodiphosphate synthase IspF activity.

    Science.gov (United States)

    Bitok, J Kipchirchir; Meyers, Caren Freel

    2012-10-19

    There is significant progress toward understanding catalysis throughout the essential MEP pathway to isoprenoids in human pathogens; however, little is known about pathway regulation. The present study begins by testing the hypothesis that isoprenoid biosynthesis is regulated via feedback inhibition of the fifth enzyme cyclodiphosphate synthase IspF by downstream isoprenoid diphosphates. Here, we demonstrate recombinant E. coli IspF is not inhibited by downstream metabolites isopentenyl diphosphate (IDP), dimethylallyl diphosphate (DMADP), geranyl diphosphate (GDP), and farnesyl diphosphate (FDP) under standard assay conditions. However, 2C-methyl-d-erythritol 4-phosphate (MEP), the product of reductoisomerase IspC and first committed MEP pathway intermediate, activates and sustains this enhanced IspF activity, and the IspF-MEP complex is inhibited by FDP. We further show that the methylerythritol scaffold itself, which is unique to this pathway, drives the activation and stabilization of active IspF. Our results suggest a novel feed-forward regulatory mechanism for 2C-methyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) production and support an isoprenoid biosynthesis regulatory mechanism via feedback inhibition of the IspF-MEP complex by FDP. The results have important implications for development of inhibitors against the IspF-MEP complex, which may be the physiologically relevant form of the enzyme. PMID:22839733

  4. Rate of hydrolysis in ATP synthase is fine-tuned by  -subunit motif controlling active site conformation

    KAUST Repository

    Beke-Somfai, T.

    2013-01-23

    Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F(1) performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate.

  5. A limitation of the continuous spectrophotometric assay for the measurement of myo-inositol-1-phosphate synthase activity.

    Science.gov (United States)

    Huang, Xinyi; Hernick, Marcy

    2011-10-15

    Myo-inositol-1-phosphate synthase (MIPS) catalyzes the conversion of glucose-6-phosphate to myo-inositol-1-phosphate. The reaction catalyzed by MIPS is the first step in the biosynthesis of inositol and inositol-containing molecules that serve important roles in both eukaryotes and prokaryotes. Consequently, MIPS is a target for the development of therapeutic agents for the treatment of infectious diseases and bipolar disorder. We recently reported a continuous spectrophotometric method for measuring MIPS activity using a coupled assay that allows the rapid characterization of MIPS in a multiwell plate format. Here we validate the continuous assay as a high-throughput alternative for measuring MIPS activity and report on one limitation of this assay-the inability to examine the effect of divalent metal ions (at high concentrations) on MIPS activity. In addition, we demonstrate that the activity of MIPS from Arabidopsis thaliana is moderately enhanced by the addition Mg(2+) and is not enhanced by other divalent metal ions (Zn(2+) and Mn(2+)), consistent with what has been observed for other eukaryotic MIPS enzymes. Our findings suggest that the continuous assay is better suited for characterizing eukaryotic MIPS enzymes that require monovalent cations as cofactors than for characterizing bacterial or archeal MIPS enzymes that require divalent metal ions as cofactors. PMID:21729692

  6. Structural and mechanistic analysis of engineered trichodiene synthase enzymes from Trichoderma harzianum: towards higher catalytic activities empowering sustainable agriculture.

    Science.gov (United States)

    Kumari, Indu; Chaudhary, Nitika; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2016-06-01

    Trichoderma spp. are well-known bioagents for the plant growth promotion and pathogen suppression. The beneficial activities of the fungus Trichoderma spp. are attributed to their ability to produce and secrete certain secondary metabolites such as trichodermin that belongs to trichothecene family of molecules. The initial steps of trichodermin biosynthetic pathway in Trichoderma are similar to the trichothecenes from Fusarium sporotrichioides. Trichodiene synthase (TS) encoded by tri5 gene in Trichoderma catalyses the conversion of farnesyl pyrophosphate to trichodiene as reported earlier. In this study, we have carried out a comprehensive comparative sequence and structural analysis of the TS, which revealed the conserved residues involved in catalytic activity of the protein. In silico, modelled tertiary structure of TS protein showed stable structural behaviour during simulations. Two single-substitution mutants, i.e. D109E, D248Y and one double-substitution mutant (D109E and D248Y) of TS with potentially higher activities are screened out. The mutant proteins showed more stability than the wild type, an increased number of electrostatic interactions and better binding energies with the ligand, which further elucidates the amino acid residues involved in the reaction mechanism. These results will lead to devise strategies for higher TS activity to ultimately enhance the trichodermin production by Trichoderma spp. for its better exploitation in the sustainable agricultural practices.

  7. Structural and mechanistic analysis of engineered trichodiene synthase enzymes from Trichoderma harzianum: towards higher catalytic activities empowering sustainable agriculture.

    Science.gov (United States)

    Kumari, Indu; Chaudhary, Nitika; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2016-06-01

    Trichoderma spp. are well-known bioagents for the plant growth promotion and pathogen suppression. The beneficial activities of the fungus Trichoderma spp. are attributed to their ability to produce and secrete certain secondary metabolites such as trichodermin that belongs to trichothecene family of molecules. The initial steps of trichodermin biosynthetic pathway in Trichoderma are similar to the trichothecenes from Fusarium sporotrichioides. Trichodiene synthase (TS) encoded by tri5 gene in Trichoderma catalyses the conversion of farnesyl pyrophosphate to trichodiene as reported earlier. In this study, we have carried out a comprehensive comparative sequence and structural analysis of the TS, which revealed the conserved residues involved in catalytic activity of the protein. In silico, modelled tertiary structure of TS protein showed stable structural behaviour during simulations. Two single-substitution mutants, i.e. D109E, D248Y and one double-substitution mutant (D109E and D248Y) of TS with potentially higher activities are screened out. The mutant proteins showed more stability than the wild type, an increased number of electrostatic interactions and better binding energies with the ligand, which further elucidates the amino acid residues involved in the reaction mechanism. These results will lead to devise strategies for higher TS activity to ultimately enhance the trichodermin production by Trichoderma spp. for its better exploitation in the sustainable agricultural practices. PMID:26207800

  8. Morphological changes of the filamentous fungus Mucor mucedo and inhibition of chitin synthase activity induced by anethole.

    Science.gov (United States)

    Yutani, Masahiro; Hashimoto, Yukie; Ogita, Akira; Kubo, Isao; Tanaka, Toshio; Fujita, Ken-ichi

    2011-11-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum with antimicrobial activity relatively weaker than those of well-known antibiotics, and significantly enhances the antifungal activity of polygodial and dodecanol against the baker's yeast Saccharomyces cerevisiae and human pathogenic yeast Candida albicans. However, the antifungal mechanism of anethole is unresolved. Anethole demonstrated antifungal activity against the filamentous fungus, Mucor mucedo IFO 7684, accompanied by hyphal morphological changes such as swollen hyphae at the tips. Its minimum growth inhibitory concentration was 0.625 mM. A hyperosmotic condition (1.2 M sorbitol) restricted the induction of morphological changes, while hypoosmotic treatment (distilled water) induced bursting of hyphal tips and leakage of cytoplasmic constituents. Furthermore, anethole dose-dependently inhibited chitin synthase (CHS) activity in permeabilized hyphae in an uncompetitive manner. These results suggest that the morphological changes of M. mucedo could be explained by the fragility of cell walls caused by CHS inhibition.

  9. Changes of Nitric Oxide Synthase Activity in Penumbral and Core Area during Focal Cerebral Ischemia and Reperfusion in Rats

    Institute of Scientific and Technical Information of China (English)

    GUZhen; ZHOUJian-ping; WUWen-zhong; ZHANGYong-jie; HANQun-ying; WANGHe-ming

    2004-01-01

    Objecivee: To study the changes of nitric oxide synthase (NOS) activity in penumbral and core area during focal cerebral ischemia and reperfusion, and to explore the therapeutic window of focal cerebral ischemia. Methods:The middle cerebral artery of rats was occluded for 15, 30,60,90 and 120 min by an inraluminal filament respectively,and recirculation was instituted for 24 h. The changes of NOS activity in ischemic core area(parietal cortex and caudoputamen) and penumbral area ( frontal cortex)were examined after focal cerebral ischemla and reperfusion using NADPH-d histochemistry, technique. Results. The NOS activity of the ischemic penumbral area peaked at 60 min while the ischemic core area peaked at 30 min then declined at 90-120 rain sharply. Conclusion: NOS takes part in cerebral ischemic damage during focal cerebral ischemia and reperfusion. The NOS activity of the ischemic penmnbral area is different from the ischemic core area. The peak time of the penumbral area is delayed comparing with the core area. The data suggest that the best time to apply NOS inhibitor is within 30 min in ischemic core area, and 60 rain in penumbral area.

  10. 21 CFR 184.1298 - Ferric citrate.

    Science.gov (United States)

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1298 Ferric citrate. (a) Ferric citrate (iron (III) citrate, C6H5FeO7, CAS Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for...

  11. 21 CFR 582.6751 - Sodium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium citrate. 582.6751 Section 582.6751 Food and..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 2 § 582.6751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally recognized...

  12. 21 CFR 582.1751 - Sodium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium citrate. 582.1751 Section 582.1751 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is...

  13. 21 CFR 582.6625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is...

  14. 21 CFR 582.1625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use....

  15. Steroid receptor RNA activator (SRA modification by the human pseudouridine synthase 1 (hPus1p: RNA binding, activity, and atomic model.

    Directory of Open Access Journals (Sweden)

    Tiphaine Huet

    Full Text Available The most abundant of the modified nucleosides, and once considered as the "fifth" nucleotide in RNA, is pseudouridine, which results from the action of pseudouridine synthases. Recently, the mammalian pseudouridine synthase 1 (hPus1p has been reported to modulate class I and class II nuclear receptor responses through its ability to modify the Steroid receptor RNA Activator (SRA. These findings highlight a new level of regulation in nuclear receptor (NR-mediated transcriptional responses. We have characterised the RNA association and activity of the human Pus1p enzyme with its unusual SRA substrate. We validate that the minimal RNA fragment within SRA, named H7, is necessary for both the association and modification by hPus1p. Furthermore, we have determined the crystal structure of the catalytic domain of hPus1p at 2.0 Å resolution, alone and in a complex with several molecules present during crystallisation. This model shows an extended C-terminal helix specifically found in the eukaryotic protein, which may prevent the enzyme from forming a homodimer, both in the crystal lattice and in solution. Our biochemical and structural data help to understand the hPus1p active site architecture, and detail its particular requirements with regard to one of its nuclear substrates, the non-coding RNA SRA.

  16. Steroid receptor RNA activator (SRA) modification by the human pseudouridine synthase 1 (hPus1p): RNA binding, activity, and atomic model.

    Science.gov (United States)

    Huet, Tiphaine; Miannay, François-Alexandre; Patton, Jeffrey R; Thore, Stéphane

    2014-01-01

    The most abundant of the modified nucleosides, and once considered as the "fifth" nucleotide in RNA, is pseudouridine, which results from the action of pseudouridine synthases. Recently, the mammalian pseudouridine synthase 1 (hPus1p) has been reported to modulate class I and class II nuclear receptor responses through its ability to modify the Steroid receptor RNA Activator (SRA). These findings highlight a new level of regulation in nuclear receptor (NR)-mediated transcriptional responses. We have characterised the RNA association and activity of the human Pus1p enzyme with its unusual SRA substrate. We validate that the minimal RNA fragment within SRA, named H7, is necessary for both the association and modification by hPus1p. Furthermore, we have determined the crystal structure of the catalytic domain of hPus1p at 2.0 Å resolution, alone and in a complex with several molecules present during crystallisation. This model shows an extended C-terminal helix specifically found in the eukaryotic protein, which may prevent the enzyme from forming a homodimer, both in the crystal lattice and in solution. Our biochemical and structural data help to understand the hPus1p active site architecture, and detail its particular requirements with regard to one of its nuclear substrates, the non-coding RNA SRA.

  17. Inhibition of glycogen synthase kinase 3β activity with lithium prevents and attenuates paclitaxel-induced neuropathic pain.

    Science.gov (United States)

    Gao, M; Yan, X; Weng, H-R

    2013-12-19

    Paclitaxel (taxol) is a first-line chemotherapy-drug used to treat many types of cancers. Neuropathic pain and sensory dysfunction are the major toxicities, which are dose-limiting and significantly reduce the quality of life in patients. Two known critical spinal mechanisms underlying taxol-induced neuropathic pain are an increased production of pro-inflammatory cytokines including interleukin-1β (IL-1β) and suppressed glial glutamate transporter activities. In this study, we uncovered that increased activation of glycogen synthase kinase 3beta (GSK3β) in the spinal dorsal horn was concurrently associated with increased protein expressions of GFAP, IL-1β and a decreased protein expression of glial glutamate transporter 1 (GLT-1), as well as the development and maintenance of taxol-induced neuropathic pain. The enhanced GSK3β activities were supported by the concurrently decreased AKT and mTOR activities. The changes of all these biomarkers were basically prevented when animals received pre-emptive lithium (a GSK3β inhibitor) treatment, which also prevented the development of taxol-induced neuropathic pain. Further, chronic lithium treatment, which began on day 11 after the first taxol injection, reversed the existing mechanical and thermal allodynia induced by taxol. The taxol-induced increased GSK3β activities and decreased AKT and mTOR activities in the spinal dorsal horn were also reversed by lithium. Meanwhile, protein expressions of GLT-1, GFAP and IL-1β in the spinal dorsal horn were improved. Hence, suppression of spinal GSK3β activities is a key mechanism used by lithium to reduce taxol-induced neuropathic pain, and targeting spinal GSK3β is an effective approach to ameliorate GLT-1 expression and suppress the activation of astrocytes and IL-1β over-production in the spinal dorsal horn.

  18. New procedures to measure synthase and phosphatase activities of bis-phosphoglycerate mutase. Interest for development of therapeutic drugs; Nouveaux procedes pour mesurer les activites synthase et phosphatase de la bisphosphoglycerate mutase. Interet pour le developpement de drogues therapeutiques

    Energy Technology Data Exchange (ETDEWEB)

    Ravel, P.; Garel, M.C. [Hopital Henri-Mondor, 94 - Creteil (France); Toullec, D. [Laboratoire Glaxo Wellcome, 91- Les Ulis (France)

    1997-12-31

    In red blood cells, a modulation of the level of the allosteric effector of hemoglobin, 2,3-diphosphoglycerate (2,3-DPG) would have implications in the treatment of ischemia and sickle cell anemia. Its concentrations is determined by the relative activities of the synthase and phosphatase reactions of the multifunctional bis-phosphoglycerate mutase (BPGM). In this report we develop first a more direct synthase assay which uses glyceraldehyde phosphate to suppress the aldolase and triose phosphate isomerase reactions. Secondly we propose a radioactive phosphatase assay coupled to chromatographic separation and identification of the reaction products by paper electrophoresis. Such identification of these products allows us to show that the multifunctional BPGM expresses its mutase instead of its phosphatase activity in conditions of competition between the 3-phosphoglycerate and the 2-phospho-glycolate activator in the phosphatase reaction. These two more precise procedures could be used to study the effects of substrate and cofactor analogues regarding potential therapeutic approaches and could be used for clinical analyses to detect deficiency of BPGM. (author)

  19. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China); Zhang, Qunye, E-mail: wz.zhangqy@sdu.edu.cn [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong (China); Li, Guorong, E-mail: grli@sdnu.edu.cn [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China)

    2015-03-13

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.

  20. Antiproliferative Effects of Zinc-Citrate Compound on Hormone Refractory Prostate Cancer

    Institute of Scientific and Technical Information of China (English)

    Sung Hoo Hong; Yong Sun Choi; Hyuk Jin Cho; Ji Youl Lee; Joon Chul Kim; Tae Kon Hwang; Sae Woong Kim

    2012-01-01

    Objective:To investigate the antiproliferative effects of zinc-citrate compound on hormone refractory prostate cancer (HRPC).Methods:HRPC cell line (DU145) and normal prostate cell line (RWPE-1) were treated with zinc,citrate and zinc-citrate compound at different time intervals and concentrations to investigate the effect of zinc-citrate compound.Mitochondrial (m)-aconitase activity was determined using aconitase assay.DNA laddering analysis was performed to investigate apoptosis of DU145 cells.Molecular mechanism of apoptosis was investigated by Western blot analys s of P53,P21waf1,Bcl-2,Bcl-xL and Bax,and also caspase-3 activity analysis.Results:Treatment with zinc-citrate compound resulted in a time- and dose-dependent decrease in cell number of DU145 cells in comparison with RWPE-1.M-aconitase activity was significantly decreased.DNA laddering analysis indicated apoptosis of DU145 cells.Zinc-citrate compound increased the expression of P21waf1 and P53,and reduced the express on of Bcl-2 and Bcl-xL proteins but induced the expression of Bax protein.Zinc-citrate compound induced apoptosis of DU145 cells by activation of the caspase-3 pathway.Conclusion:Zinc-citrate compound can induce apoptotic cell death in DU145,by caspase-3 activation through up-regulation of apoptotic proteins and down-regulation of antiapoptotic proteins.

  1. The stimulating role of subunit F in ATPase activity inside the A1-complex of the Methanosarcina mazei Gö1 A1AO ATP synthase.

    Science.gov (United States)

    Singh, Dhirendra; Sielaff, Hendrik; Sundararaman, Lavanya; Bhushan, Shashi; Grüber, Gerhard

    2016-02-01

    A1AO ATP synthases couple ion-transport of the AO sector and ATP synthesis/hydrolysis of the A3B3-headpiece via their stalk subunits D and F. Here, we produced and purified stable A3B3D- and A3B3DF-complexes of the Methanosarcina mazei Gö1 A-ATP synthase as confirmed by electron microscopy. Enzymatic studies with these complexes showed that the M. mazei Gö1 A-ATP synthase subunit F is an ATPase activating subunit. The maximum ATP hydrolysis rates (Vmax) of A3B3D and A3B3DF were determined by substrate-dependent ATP hydrolysis experiments resulting in a Vmax of 7.9 s(-1) and 30.4 s(-1), respectively, while the KM is the same for both. Deletions of the N- or C-termini of subunit F abolished the effect of ATP hydrolysis activation. We generated subunit F mutant proteins with single amino acid substitutions and demonstrated that the subunit F residues S84 and R88 are important in stimulating ATP hydrolysis. Hybrid formation of the A3B3D-complex with subunit F of the related eukaryotic V-ATPase of Saccharomyces cerevisiae or subunit ε of the F-ATP synthase from Mycobacterium tuberculosis showed that subunit F of the archaea and eukaryotic enzymes are important in ATP hydrolysis.

  2. By activating Fas/ceramide synthase 6/p38 kinase in lipid rafts, stichoposide D inhibits growth of leukemia xenografts.

    Science.gov (United States)

    Yun, Seong-Hoon; Park, Eun-Seon; Shin, Sung-Won; Ju, Mi-Ha; Han, Jin-Yeong; Jeong, Jin-Sook; Kim, Sung-Hyun; Stonik, Valentin A; Kwak, Jong-Young; Park, Joo-In

    2015-09-29

    Stichoposide D (STD) is a marine triterpene glycoside isolated from sea cucumbers. We examined the molecular mechanisms underlying the antitumor activity of STD in human leukemia cells. The role of Fas (CD95), ceramide synthase 6 (CerS6) and p38 kinase during STD-induced apoptosis was examined in human leukemia cells. In addition, the antitumor effects of STD in K562 and HL-60 leukemia xenograft models were investigated. We found that STD induces Fas translocation to lipid rafts, and thus mediates cell apoptosis. We also observed the activation of CerS6 and p38 kinase during STD-induced apoptosis. The use of methyl-β-cyclodextrin and nystatin to disrupt lipid rafts prevents the clustering of Fas and the activation of CerS6 and p38 kinase, and also inhibits STD-induced apoptosis. Specific inhibition by Fas, CerS6, and p38 kinase siRNA transfection partially blocked STD-induced apoptosis. In addition, STD has antitumor activity through the activation of CerS6 and p38 kinase without displaying any toxicity in HL-60 and K562 xenograft models. We observed that the anti-tumor effect of STD is partially prevented in CerS6 shRNA-silenced xenograft models. We first report that Fas/CerS6/p38 kinase activation in lipid rafts by STD is involved in its anti-leukemic activity. We also established that STD is able to enhance the chemosensitivity of K562 cells to etoposide or Ara-C. These data suggest that STD may be used alone or in combination with other chemotherapeutic agents to treat leukemia.

  3. In vitro studies of enzymatic properties of starch synthases and interactions between starch synthase I and starch branching enzymes from rice.

    Science.gov (United States)

    Nakamura, Yasunori; Aihara, Satomi; Crofts, Naoko; Sawada, Takayuki; Fujita, Naoko

    2014-07-01

    The present study was conducted to characterize the functions of the major starch synthase (SS) isozymes SSI, SSIIa, and SSIIIa in rice endosperm and their functional interaction with starch branching enzyme (BE), by using their purified recombinant proteins. All the SS isozymes had similarly significant activities toward branched glucans such as amylopecin and glycogen whereas they scarcely showed activities toward maltohexaose. In vitro studies indicate that SSI mainly attacked A and B chains with degree of polymerization (DP) of 6 and 7 in their external segments and elongated them to DP8. It is likely that SSIIa and SSIIIa produced wider ranges of intermediate chains and long chains, respectively. This study also revealed that without addition of exogenous primer, the glucan synthesis of SSI in the presence of ≧0.3 M citrate was accelerated by the addition of any of the rice BE isozymes- BEI, BEIIa, or BEIIb, whereas no such interaction occurred between SSIIa or SSIIIa with any of the BEs. The SSI-BE unprimed glucan synthesis absolutely required citrate. The interaction between SSI and BE was established by stimulation of SSI activity with BE and by activation of the BE activity by SSI.

  4. S-nitrosylation of dimethylarginine dimethylaminohydrolase regulates enzyme activity: Further interactions between nitric oxide synthase and dimethylarginine dimethylaminohydrolase

    Science.gov (United States)

    Leiper, James; Murray-Rust, Judith; McDonald, Neil; Vallance, Patrick

    2002-01-01

    The enzyme dimethylarginine dimethylaminohydrolase (DDAH) hydrolyses asymmetrically methylated arginine residues that are endogenously produced inhibitors of nitric oxide synthases (NOS). We and others have proposed that DDAH activity is a key determinant of intracellular methylarginine concentrations and that factors that regulate the activity of DDAH may modulate nitric oxide (NO) production in vivo. We recently solved the crystal structure of a bacterial DDAH and identified a Cys-His-Glu catalytic triad [Murray-Rust, J., Leiper, J. M., McAlister, M., Phelan, J., Tilley, S., Santa Maria, J., Vallance, P. & McDonald, N. (2001) Nat. Struct. Biol. 8, 679–683]. The presence of a reactive cysteine residue (Cys-249) in the active site of DDAH raised the possibility that DDAH activity might be directly regulated by S-nitrosylation of this residue by NO. In the present study, we demonstrate that recombinant DDAH is reversibly inhibited after incubation with NO donors in vitro. Similarly mammalian DDAH in cytosolic extracts is also reversibly inhibited by NO donors. In cultured endothelial cells, heterologously expressed human DDAH II was S-nitrosylated after cytokine induced expression of the inducible NOS isoforms. The implication of these findings is that under certain conditions when NO generation increases, S-nitrosylation diminishes DDAH activity and this would be expected to lead to accumulation of asymmetric dimethylarginine and inhibition of NOS. This observation may help explain why expression of iNOS often leads to inhibition of activity of constitutively expressed NOS isozymes. We also identify Cys-His-Glu as a nitrosylation motif that is conserved in a family of arginine handling enzymes. PMID:12370443

  5. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.

    Science.gov (United States)

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette

    2016-03-29

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze theo-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme's interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate-enzyme complexes were performed, and a key residue was identified that influences the plant PPO's acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their--so far unknown--natural substrates in vivo. PMID:26976571

  6. High-performance liquid chromatography method with radiochemical detection for measurement of nitric oxide synthase, arginase, and arginine decarboxylase activities.

    Science.gov (United States)

    Volke, A; Wegener, G; Vasar, E; Volke, V

    2006-01-01

    Nitric oxide has been shown to be involved in numerous biological processes, and many studies have aimed to measure nitric oxide synthase (NOS) activity. Recently, it has been demonstrated that arginase and arginine decarboxylase (ADC), two enzymes that also employ arginine as a substrate, may regulate NOS activity. We aimed to develop a HPLC-based method to measure simultaneously the products of these three enzymes. Traditionally, the separation of amino acids and related compounds with HPLC has been carried out with precolumn derivatization and reverse phase chromatography. We describe here a simple and fast HPLC method with radiochemical detection to separate radiolabeled L-arginine, L-citrulline, L-ornithine, and agmatine. 3H-labeled L-arginine, L-citrulline, agmatine, and 14C-labeled L-citrulline were used as standards. These compounds were separated in the normal phase column (Allure Acidix 250 x 4.6 mm i.d.) under isocratic conditions in less than 20 min with good sensitivity. Using the current method, we have shown the formation of L-citrulline and L-ornithine in vitro using brain tissue homogenate of rats and that of agmatine by Escherichia coli ADC. PMID:16541190

  7. Methylene bridge regulated geometrical preferences of ligands in cobalt(III) coordination chemistry and phenoxazinone synthase mimicking activity.

    Science.gov (United States)

    Panja, Anangamohan; Shyamal, Milan; Saha, Amrita; Mandal, Tarun Kanti

    2014-04-14

    Two new azide bound cobalt(III) complexes, [Co(L(1))(N3)3] (fac-1) and [Co(L(2))(N3)3] (mer-2), where L(1) is bis(2-pyridylmethyl)amine and L(2) is (2-pyridylmethyl)(2-pyridylethyl)amine, derived from tridentate reduced Schiff-base ligands have been reported. Interestingly, a methylene bridge regulated preferential coordination mode of ligands is noticed in their crystal structures: it is found in a facial arrangement in fac-1 and has a meridional disposition in mer-2. Both complexes show phenoxazinone synthase-like activity and the role of the structural factor on the catalytic activity is also explored. Moreover, the easily reducible cobalt(III) center in mer-2 favors the oxidation of o-aminophenol. The ESI-MS positive spectra together with UV-vis spectroscopy clearly suggest the formation of a catalyst-substrate adduct by substitution of the coordinated azide ions in the catalytic cycle.

  8. Atorvastatin enhance efficacy of mesenchymal stem cells treatment for swine myocardial infarction via activation of nitric oxide synthase.

    Directory of Open Access Journals (Sweden)

    Lei Song

    Full Text Available BACKGROUND: In a swine model of acute myocardial infarction (AMI, Statins can enhance the therapeutic efficacy of mesenchymal stem cell (MSCs transplantation. However, the mechanisms remain unclear. This study aims at assessing whether atorvastatin (Ator facilitates the effects of MSCs through activation of nitric oxide synthase (NOS, especially endothelial nitric oxide synthase (eNOS, which is known to protect against ischemic injury. METHODS AND RESULTS: 42 miniswines were randomized into six groups (n = 7/group: Sham operation; AMI control; Ator only; MSC only, Ator+MSCs and Ator+MSCs+NG-nitrol-L-arginine (L-NNA, an inhibitor of NOS. In an open-heart surgery, swine coronary artery ligation and reperfusion model were established, and autologous bone-marrow MSCs were injected intramyocardium. Four weeks after transplantation, compared with the control group, Ator+MSCs animals exhibited decreased defect areas of both "perfusion" defined by Single-Photon Emission Computed Tomography (-6.2±1.8% vs. 2.0±5.1%, P = 0.0001 and "metabolism" defined by Positron Emission Tomography (-3.00±1.41% vs. 4.20±4.09%, P = 0.0004; Ejection fraction by Magnetic Resonance Imaging increased substantially (14.22±12.8% vs. 1.64±2.64%, P = 0.019. In addition, indices of inflammation, fibrosis, and apoptosis were reduced and survivals of MSCs or MSC-derived cells were increased in Ator+MSCs animals. In Ator or MSCs alone group, perfusion, metabolism, inflammation, fibrosis or apoptosis were reduced but there were no benefits in terms of heart function and cell survival. Furthermore, the above benefits of Ator+MSCs treatment could be partially blocked by L-NNA. CONCLUSIONS: Atorvastatin facilitates survival of implanted MSCs, improves function and morphology of infarcted hearts, mediated by activation of eNOS and alleviated by NOS inhibitor. The data reveal the cellular and molecular mechanism for anti-AMI therapy with a combination of statin and

  9. Ligands of Peroxisome Proliferator-activated Receptor Inhibit Homocysteineinduced DNA Methylation of Inducible Nitric Oxide Synthase Gene

    Institute of Scientific and Technical Information of China (English)

    Yideng JIANG; Jianzhong ZHANG; Jiantuan XIONG; Jun CAO; Guizhong LI; Shuren WANG

    2007-01-01

    Homocysteine (Hcy) is a risk factor for atherosclerosis. It is generally accepted that inducible nitric oxide synthase (iNOS) is a key enzyme in the regulation of vascular disease. The aim of the present study is to investigate the effects of peroxisome proliferator-activated receptor ligands on iNOS in the presence of Hcy in human monocytes. Foam cells, induced by oxidize low density lipoprotein (ox-LDL) and phorbol myristate acetate (PMA) in the presence of different concentrations of Hcy, clofibrate and pioglitazone in human monocytes for 4 d, were examined by oil red O staining. The activity of iNOS was detected by real-time quantitative reverse transcription-polymerase chain reaction and Western blot analysis. The capability of DNA methylation was measured by assaying endogenous C5 DNA methyltransferase (C5MTase)activity, and the iNOS promoter methylation level was determined by quantitative MethyLight assays. The results indicated that Hcy increased the activity of C5MTase and the level of iNOS gene DNA methylation,resulting in a decrease of iNOS expression. Clofibrate and pioglitazone could antagonize the Hcy effect on iNOS expression through DNA methylation, resulting in attenuation of iNOS transcription. These findings suggested that Hcy decreased the expression of iNOS by elevating iNOS DNA methylation levels, which can repress the transcription of some genes. Peroxisome proliferator-activated receptor α/γ ligands can down-regulate iNOS DNA methylation, and could be useful for preventing Hcy-induced atherosclerosis by repressing iNOS expression.

  10. Changes in the profile of NO synthases affect coronary blood flow autoregulation and myocardial contractile activity during restraint stress in rats.

    Science.gov (United States)

    Solodkov, A P; Lazuko, S S; Knyazev, E N; Nechaev, I N; Krainova, N A

    2014-12-01

    The efficiency of autoregulation of the coronary blood flow and contractile activity of the myocardium in the presence of inhibitors of constitutive and inducible NO synthases was studied in rats exposed to 6-h restraint stress. Intracoronary administration of S-methylisothiourea (10 μmol/liter), but not L-NAME (60 μmol/liter) fully prevented post-stress increase in the volume coronary blood flow rate, intensity of heart perfusion, and reduction of ventricular developed pressure at all levels of perfusion pressure. Real-time PCR showed 6-fold increased expression of inducible NO-synthase mRNA in the heart tissue against the background of unchanged expression of neuronal and endothelial NO synthases and 2-3-fold elevated content of transcripts of stress-inducible genes Hspa1a and Hspbp1. It was shown that the hypotension of coronary vessels and reduced contractile function of the myocardium are related to NO production by inducible NO synthase in endotheliocytes of coronary vessels and cardiomyocytes. PMID:25430647

  11. The effect of anandamide on uterine nitric oxide synthase activity depends on the presence of the blastocyst.

    Directory of Open Access Journals (Sweden)

    Micaela S Sordelli

    Full Text Available Nitric oxide production, catalyzed by nitric oxide synthase (NOS, should be strictly regulated to allow embryo implantation. Thus, our first aim was to study NOS activity during peri-implantation in the rat uterus. Day 6 inter-implantation sites showed lower NOS activity (0.19±0.01 pmoles L-citrulline mg prot(-1 h(-1 compared to days 4 (0.34±0.03 and 5 (0.35±0.02 of pregnancy and to day 6 implantation sites (0.33±0.01. This regulation was not observed in pseudopregnancy. Both dormant and active blastocysts maintained NOS activity at similar levels. Anandamide (AEA, an endocannabinoid, binds to cannabinoid receptors type 1 (CB1 and type 2 (CB2, and high concentrations are toxic for implantation and embryo development. Previously, we observed that AEA synthesis presents an inverted pattern compared to NOS activity described here. We adopted a pharmacological approach using AEA, URB-597 (a selective inhibitor of fatty acid amide hydrolase, the enzyme that degrades AEA and receptor selective antagonists to investigate the effect of AEA on uterine NOS activity in vitro in rat models of implantation. While AEA (0.70±0.02 vs 0.40±0.04 and URB-597 (1.08±0.09 vs 0.83±0.06 inhibited NOS activity in the absence of a blastocyst (pseudopregnancy through CB2 receptors, AEA did not modulate NOS on day 5 pregnant uterus. Once implantation begins, URB-597 decreased NOS activity on day 6 implantation sites via CB1 receptors (0.25±0.04 vs 0.40±0.05. While a CB1 antagonist augmented NOS activity on day 6 inter-implantation sites (0.17±0.02 vs 0.27±0.02, a CB2 antagonist decreased it (0.17±0.02 vs 0.12±0.01. Finally, we described the expression and localization of cannabinoid receptors during implantation. In conclusion, AEA levels close to and at implantation sites seems to modulate NOS activity and thus nitric oxide production, fundamental for implantation, via cannabinoid receptors. This modulation depends on the presence of the blastocyst. These

  12. Distinct parts of leukotriene C{sub 4} synthase interact with 5-lipoxygenase and 5-lipoxygenase activating protein

    Energy Technology Data Exchange (ETDEWEB)

    Strid, Tobias; Svartz, Jesper; Franck, Niclas; Hallin, Elisabeth; Ingelsson, Bjoern; Soederstroem, Mats [Division of Cell biology, Department of Clinical and Experimental Medicine, Linkoeping University, SE-58185 Linkoeping (Sweden); Hammarstroem, Sven, E-mail: sven.hammarstrom@liu.se [Division of Cell biology, Department of Clinical and Experimental Medicine, Linkoeping University, SE-58185 Linkoeping (Sweden)

    2009-04-17

    Leukotriene C{sub 4} is a potent inflammatory mediator formed from arachidonic acid and glutathione. 5-Lipoxygenase (5-LO), 5-lipoxygenase activating protein (FLAP) and leukotriene C{sub 4} synthase (LTC{sub 4}S) participate in its biosynthesis. We report evidence that LTC{sub 4}S interacts in vitro with both FLAP and 5-LO and that these interactions involve distinct parts of LTC{sub 4}S. FLAP bound to the N-terminal part/first hydrophobic region of LTC{sub 4}S. This part did not bind 5-LO which bound to the second hydrophilic loop of LTC{sub 4}S. Fluorescent FLAP- and LTC{sub 4}S-fusion proteins co-localized at the nuclear envelope. Furthermore, GFP-FLAP and GFP-LTC{sub 4}S co-localized with a fluorescent ER marker. In resting HEK293/T or COS-7 cells GFP-5-LO was found mainly in the nuclear matrix. Upon stimulation with calcium ionophore, GFP-5-LO translocated to the nuclear envelope allowing it to interact with FLAP and LTC{sub 4}S. Direct interaction of 5-LO and LTC{sub 4}S in ionophore-stimulated (but not un-stimulated) cells was demonstrated by BRET using GFP-5-LO and Rluc-LTC{sub 4}S.

  13. The N-terminal Part of Arabidopsis thaliana Starch Synthase 4 Determines the Localization and Activity of the Enzyme.

    Science.gov (United States)

    Raynaud, Sandy; Ragel, Paula; Rojas, Tomás; Mérida, Ángel

    2016-05-13

    Starch synthase 4 (SS4) plays a specific role in starch synthesis because it controls the number of starch granules synthesized in the chloroplast and is involved in the initiation of the starch granule. We showed previously that SS4 interacts with fibrillins 1 and is associated with plastoglobules, suborganelle compartments physically attached to the thylakoid membrane in chloroplasts. Both SS4 localization and its interaction with fibrillins 1 were mediated by the N-terminal part of SS4. Here we show that the coiled-coil region within the N-terminal portion of SS4 is involved in both processes. Elimination of this region prevents SS4 from binding to fibrillins 1 and alters SS4 localization in the chloroplast. We also show that SS4 forms dimers, which depends on a region located between the coiled-coil region and the glycosyltransferase domain of SS4. This region is highly conserved between all SS4 enzymes sequenced to date. We show that the dimerization seems to be necessary for the activity of the enzyme. Both dimerization and the functionality of the coiled-coil region are conserved among SS4 proteins from phylogenetically distant species, such as Arabidopsis and Brachypodium This finding suggests that the mechanism of action of SS4 is conserved among different plant species. PMID:26969163

  14. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yong, E-mail: drbiany@126.com [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China); Yu, Yun [College of Pharmacy, Nanjing University of Chinese Medicine, 210023 (China); Wang, Shanshan; Li, Lin [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China)

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  15. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    International Nuclear Information System (INIS)

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression

  16. Regulation of the expression of nitric oxide synthase and leishmanicidal activity by glycoconjugates of Leishmania lipophosphoglycan in murine macrophages.

    Science.gov (United States)

    Proudfoot, L; Nikolaev, A V; Feng, G J; Wei, W Q; Ferguson, M A; Brimacombe, J S; Liew, F Y

    1996-10-01

    Lipophosphoglycan (LPG) glycoconjugates from promastigotes of Leishmania were not able to induce the expression of the cytokine-inducible nitric oxide synthase (iNOS) by the murine macrophage cell line, J774. However, they synergize with interferon gamma to stimulate the macrophages to express high levels of iNOS. This synergistic effect was critically time-dependent. Preincubation of J774 cells with the LPG glycans 4-18 h before stimulation with interferon gamma resulted in a significant reduction in the expression of iNOS mRNA and of NO synthesis, compared with cells preincubated with culture medium alone. The regulatory effect on the induction of iNOS by LPG is located in the LPG phosphoglycan disaccharide backbone. Synthetic fragments of this backbone had a similar regulatory effect on NO synthesis. Further, the production of NO by activated macrophages in the present system was correlated directly with the leishmanicidal capacity of the cells. These data therefore demonstrate that LPG glycoconjugates have a profound effect on the survival of Leishmania parasites through their ability to regulate the expression of iNOS by macrophages. PMID:8855295

  17. Fo Shou San, an ancient Chinese herbal decoction, protects endothelial function through increasing endothelial nitric oxide synthase activity.

    Directory of Open Access Journals (Sweden)

    Cathy W C Bi

    Full Text Available Fo Shou San (FSS is an ancient herbal decoction comprised of Chuanxiong Rhizoma (CR; Chuanxiong and Angelicae Sinensis Radix (ASR; Danggui in a ratio of 2:3. Previous studies indicate that FSS promotes blood circulation and dissipates blood stasis, thus which is being used widely to treat vascular diseases. Here, we aim to determine the cellular mechanism for the vascular benefit of FSS. The treatment of FSS reversed homocysteine-induced impairment of acetylcholine (ACh-evoked endothelium-dependent relaxation in aortic rings, isolated from rats. Like radical oxygen species (ROS scavenger tempol, FSS attenuated homocysteine-stimulated ROS generation in cultured human umbilical vein endothelial cells (HUVECs, and it also stimulated the production of nitric oxide (NO as measured by fluorescence dye and biochemical assay. In addition, the phosphorylation levels of both Akt kinase and endothelial NO synthases (eNOS were markedly increased by FSS treatment, which was abolished by an Akt inhibitor triciribine. Likewise, triciribine reversed FSS-induced NO production in HUVECs. Finally, FSS elevated intracellular Ca(2+ levels in HUVECs, and the Ca(2+ chelator BAPTA-AM inhibited the FSS-stimulated eNOS phosphorylation. The present results show that this ancient herbal decoction benefits endothelial function through increased activity of Akt kinase and eNOS; this effect is causally via a rise of intracellular Ca(2+ and a reduction of ROS.

  18. Role of Nitric Oxide Dependence on Nitric Oxide Synthase-like Activity in the Water Stress Signaling of Maize Seedling

    Institute of Scientific and Technical Information of China (English)

    Gang-Ping Hao; Yu Xing; Jian-Hua Zhang

    2008-01-01

    Nitric oxide (NO) has been known as an important signal in plant antioxidative defense but its production and roles in water stress are less known. The present study investigated whether NO dependence on a NO synthase-lika (NOS) activity is involved in the signaling of drought-induced protective responses in maize seedlings. NOS activity, rate of NO release and drought responses were analyzed when NO donor sodium nitroprusside (SNP), NO scavenger c-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramathylimidazoline-1-oxyl-3-oxide) and NOS inhibitor L-NAME (NG-nitro-L-arginine methyl ester) were applied to both detached maize leaves and whole plants. Both NOS activity and the rate of NO release increased substantially under dehydration stress. The high NOS activity induced by c-PTIO as NO scavenger and NO accumulation Inhibited by NOS inhibitor L-NAME In dehydration-treated maize seedlings Indicated that most NO production under water deficit stress may be generated from NOS-like activity. After dehydration stress for 3 h, detached maize leaves pretreated with NO donor SNP maintained more water content than that of control leaves pretreated with water. This result was consistent with the decrease in the transpiration rate of SNP-treated leaves subjected to drought treatment for 3 h. Membrane permeability, a cell injury index, was lower in SNP-trested maize leaves under dehydration stress for 4 h when compared with the control leaves. Also, superoxide dismutsse (SOD) activity of SNP combined drought treatment maize leaves was higher than that of drought treatment alone, indicating that exogenous NO treatment alleviated the water loss and oxidative damage of maize leaves under water deficit stress. When c-PTIO as a specific NO scavenger was applied, the effects of applied SNP were overridden. Treatment with L-NAME on leaves also led to higher membrane permeability, higher transpiration rate and lower SOD activities than those of control leaves, indicating that NOS-like activity

  19. Anti-malarial Activities of Two Soil Actinomycete Isolates from Sabah via Inhibition of Glycogen Synthase Kinase 3β.

    Science.gov (United States)

    Dahari, Dhiana Efani; Salleh, Raifana Mohamad; Mahmud, Fauze; Chin, Lee Ping; Embi, Noor; Sidek, Hasidah Mohd

    2016-08-01

    Exploiting natural resources for bioactive compounds is an attractive drug discovery strategy in search for new anti-malarial drugs with novel modes of action. Initial screening efforts in our laboratory revealed two preparations of soil-derived actinomycetes (H11809 and FH025) with potent anti-malarial activities. Both crude extracts showed glycogen synthase kinase 3β (GSK3β)-inhibitory activities in a yeast-based kinase assay. We have previously shown that the GSK3 inhibitor, lithium chloride (LiCl), was able to suppress parasitaemia development in a rodent model of malarial infection. The present study aims to evaluate whether anti-malarial activities of H11809 and FH025 involve the inhibition of GSK3β. The acetone crude extracts of H11809 and FH025 each exerted strong inhibition on the growth of Plasmodium falciparum 3D7 in vitro with 50% inhibitory concentration (IC50) values of 0.57 ± 0.09 and 1.28 ± 0.11 µg/mL, respectively. The tested extracts exhibited Selectivity Index (SI) values exceeding 10 for the 3D7 strain. Both H11809 and FH025 showed dosage-dependent chemo-suppressive activities in vivo and improved animal survivability compared to non-treated infected mice. Western analysis revealed increased phosphorylation of serine (Ser 9) GSK3β (by 6.79 to 6.83-fold) in liver samples from infected mice treated with H11809 or FH025 compared to samples from non-infected or non-treated infected mice. A compound already identified in H11809 (data not shown), dibutyl phthalate (DBP) showed active anti-plasmodial activity against 3D7 (IC50 4.87 ± 1.26 µg/mL which is equivalent to 17.50 µM) and good chemo-suppressive activity in vivo (60.80% chemo-suppression at 300 mg/kg body weight [bw] dosage). DBP administration also resulted in increased phosphorylation of Ser 9 GSK3β compared to controls. Findings from the present study demonstrate that the potent anti-malarial activities of H11809 and FH025 were mediated via inhibition of host GSK3β. In addition

  20. Activation of macrophage nuclear factor-κB and induction of inducible nitric oxide synthase by LPS

    Science.gov (United States)

    Li, Ying-Hua; Yan, Zhong-Qun; Brauner, Annelie; Tullus, Kjell

    2002-01-01

    Background Chronic lung disease (CLD) of prematurity is a major problem of neonatal care. Bacterial infection and inflammatory response have been thought to play an important role in the development of CLD and steroids have been given, with some benefit, to neonates with this disease. In the present study, we assessed the ability of lipopolysaccharide (LPS) to stimulate rat alveolar macrophages to produce nitric oxide (NO), express inducible nitric oxide synthase (iNOS) and activate nuclear factor-κB (NF-κB) in vitro. In addition, we investigated the impact of dexamethasone and budesonide on these processes. Methods Griess reaction was used to measure the nitrite level. Western blot and a semi-quantitative RT-PCR were performed to detect iNOS expression. Electrophoretic mobility shift assay (EMSA) was performed to analyze the activation of NF-κB. Results We found that LPS stimulated the rat alveolar macrophages to produce NO in a dose (≥10 ng/ml) and time dependent manner (p < 0.05). This effect was further enhanced by IFN-γ (≥10 IU/ml, p < 0.05), but was attenuated by budesonide (10-4–10-10 M) and dexamethasone (10-4–10-6 M) (p < 0.05). The mRNA and protein levels of iNOS were also induced in response to LPS and attenuated by steroids. LPS triggered NF-κB activation, a mechanism responsible for the iNOS expression. Conclusion Our findings imply that Gram-negative bacterial infection and the inflammatory responses are important factors in the development of CLD. The down-regulatory effect of steroids on iNOS expression and NO production might explain the beneficial effect of steroids in neonates with CLD. PMID:12323081

  1. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN).

    Science.gov (United States)

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook

    2008-10-24

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402

  2. Inhibition of glycogen synthase kinase 3β promotes autophagy to protect mice from acute liver failure mediated by peroxisome proliferator-activated receptor α

    OpenAIRE

    Ren, F.; Zhang, L; Zhang, X; Shi, H; T. Wen; Bai, L.; S. Zheng; Y. Chen; Chen, D.; Li, L.; Duan, Z

    2016-01-01

    Our previous studies have demonstrated that inhibition of glycogen synthase kinase 3β (GSK3β) activity protects mice from acute liver failure (ALF), whereas its protective and regulatory mechanism remains elusive. Autophagy is a recently recognized rudimentary cellular response to inflammation and injury. The aim of the present study was to test the hypothesis that inhibition of GSK3β mediates autophagy to inhibit liver inflammation and protect against ALF. In ALF mice model induced by d-gala...

  3. Changes in Phytochemical Synthesis, Chalcone Synthase Activity and Pharmaceutical Qualities of Sabah Snake Grass (Clinacanthus nutans L.) in Relation to Plant Age

    OpenAIRE

    Ali Ghasemzadeh; Alireza Nasiri; Jaafar, Hawa Z. E.; Ali Baghdadi; Izham Ahmad

    2014-01-01

    In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old). The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74) was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF) production were observed between the three plant growth periods and the different plant parts. The highest conten...

  4. Production of novel fusarielins by ectopic activation of the polyketide synthase 9 cluster in Fusarium graminearum

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Hansen, Frederik Teilfeldt; Sondergaard, Teis Esben;

    2012-01-01

    Like many other filamentous fungi, Fusarium graminearum has the genetic potential to produce a vast array of unknown secondary metabolites. A promising approach to determine the nature of these is to activate silent secondary metabolite gene clusters through constitutive expression of cluster...

  5. Artificial citrate operon confers mineral phosphate solubilization ability to diverse fluorescent pseudomonads.

    Directory of Open Access Journals (Sweden)

    Hemanta Adhikary

    Full Text Available Citric acid is a strong acid with good cation chelating ability and can be very efficient in solubilizing mineral phosphates. Only a few phosphate solubilizing bacteria and fungi are known to secrete citric acids. In this work, we incorporated artificial citrate operon containing NADH insensitive citrate synthase (gltA1 and citrate transporter (citC genes into the genome of six-plant growth promoting P. fluorescens strains viz., PfO-1, Pf5, CHAO1, P109, ATCC13525 and Fp315 using MiniTn7 transposon gene delivery system. Comprehensive biochemical characterization of the genomic integrants and their comparison with plasmid transformants of the same operon in M9 minimal medium reveals the highest amount of ∼7.6±0.41 mM citric and 29.95±2.8 mM gluconic acid secretion along with ∼43.2±3.24 mM intracellular citrate without affecting the growth of these P. fluorescens strains. All genomic integrants showed enhanced citric and gluconic acid secretion on Tris-Cl rock phosphate (TRP buffered medium, which was sufficient to release 200-1000 µM Pi in TRP medium. This study demonstrates that MPS ability could be achieved in natural fluorescent pseudomonads by incorporation of artificial citrate operon not only as plasmid but also by genomic integration.

  6. Artificial citrate operon confers mineral phosphate solubilization ability to diverse fluorescent pseudomonads.

    Science.gov (United States)

    Adhikary, Hemanta; Sanghavi, Paulomi B; Macwan, Silviya R; Archana, Gattupalli; Naresh Kumar, G

    2014-01-01

    Citric acid is a strong acid with good cation chelating ability and can be very efficient in solubilizing mineral phosphates. Only a few phosphate solubilizing bacteria and fungi are known to secrete citric acids. In this work, we incorporated artificial citrate operon containing NADH insensitive citrate synthase (gltA1) and citrate transporter (citC) genes into the genome of six-plant growth promoting P. fluorescens strains viz., PfO-1, Pf5, CHAO1, P109, ATCC13525 and Fp315 using MiniTn7 transposon gene delivery system. Comprehensive biochemical characterization of the genomic integrants and their comparison with plasmid transformants of the same operon in M9 minimal medium reveals the highest amount of ∼7.6±0.41 mM citric and 29.95±2.8 mM gluconic acid secretion along with ∼43.2±3.24 mM intracellular citrate without affecting the growth of these P. fluorescens strains. All genomic integrants showed enhanced citric and gluconic acid secretion on Tris-Cl rock phosphate (TRP) buffered medium, which was sufficient to release 200-1000 µM Pi in TRP medium. This study demonstrates that MPS ability could be achieved in natural fluorescent pseudomonads by incorporation of artificial citrate operon not only as plasmid but also by genomic integration. PMID:25259527

  7. Jujuboside B Reduces Vascular Tension by Increasing Ca2+ Influx and Activating Endothelial Nitric Oxide Synthase

    OpenAIRE

    Zhao, Yixiu; Zhang, Xin; Li, Jiannan; Bian, Yu; Sheng, Miaomiao; Liu, Bin; Fu, Zidong; Zhang, Yan; Yang, Baofeng

    2016-01-01

    Jujuboside B has been reported to have protective effect on many cardiovascular diseases. However, the effects of Jujuboside B on vascular tension and endothelial function are unknown. The present study investigated the effects of Jujuboside B on reducing vascular tension, protecting endothelial function and the potential mechanisms. The tension of isolated rat thoracic aorta ring was measured by Wire myograph system. The concentration of nitric oxide (NO) and the activity of endothelial nitr...

  8. Clustered Conserved Cysteines in Hyaluronan Synthase Mediate Cooperative Activation by Mg(2+) Ions and Severe Inhibitory Effects of Divalent Cations.

    Science.gov (United States)

    Tlapak-Simmons, Valarie L; Medina, Andria P; Baggenstoss, Bruce A; Nguyen, Long; Baron, Christina A; Weigel, Paul H

    2011-11-15

    Hyaluronan synthase (HAS) uses UDP-GlcUA and UDP-GlcNAc to make hyaluronan (HA). Streptococcus equisimilis HAS (SeHAS) contains four conserved cysteines clustered near the membrane, and requires phospholipids and Mg(2+) for activity. Activity of membrane-bound or purified enzyme displayed a sigmoidal saturation profile for Mg(2+) with a Hill coefficient of 2. To assess if Cys residues are important for cooperativity we examined the Mg(2+) dependence of mutants with various combinations of Cys-to-Ala mutations. All Cys-mutants lost the cooperative response to Mg(2+). In the presence of Mg(2+), other divalent cations inhibited SeHAS with different potencies (Cu(2+)~Zn(2+) >Co(2+) >Ni(2+) >Mn(2+) >Ba(2+) Sr(2+) Ca(2+)). Some divalent metal ions likely inhibit by displacement of Mg(2+)-UDP-Sugar complexes (e.g. Ca(2+), Sr(2+) and Ba(2+) had apparent Ki values of 2-5 mM). In contrast, Zn(2+) and Cu(2+) inhibited more potently (apparent Ki ≤ 0.2 mM). Inhibition of Cys-null SeHAS by Cu(2+), but not Zn(2+), was greatly attenuated compared to wildtype. Double and triple Cys-mutants showed differing sensitivities to Zn(2+) or Cu(2+). Wildtype SeHAS allowed to make HA prior to exposure to Zn(2+) or Cu(2+) was protected from inhibition, indicating that access of metal ions to sensitive functional groups was hindered in processively acting HA•HAS complexes. We conclude that clustered Cys residues mediate cooperative interactions with Mg(2+) and that transition metal ions inhibit SeHAS very potently by interacting with one or more of these -SH groups.

  9. Regulation of delta-aminolevulinate synthase activity during the development of oxidative stress.

    Science.gov (United States)

    Kaliman, P A; Barannik, T V

    1999-06-01

    Activities of rat liver delta-aminolevulinate synthetase (delta-ALAS), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH), GSH content in the liver, and the absorption spectrum of blood serum were investigated after CoCl2, HgCl2, or beta-adrenoblocker (propranolol) injection and after CoCl2 and propranolol co-administration. Inhibition of the activity of the key heme biosynthesis enzyme delta-ALAS was most pronounced and prolonged during the first hours after CoCl2 and CoCl2 plus propranolol injections; this was associated with accumulation of Co2+--protoporphyrin-containing products of hemolysis. Inhibition of delta-ALAS after propranolol injection is not mediated by hemolysis. A decrease in GSH content precedes the induction of heme biosynthesis only in the case of HgCl2 administration, and this was associated with inhibition of GR and G6PDH. The decreased GSH content during the first hours after injection of propranolol and co-administration of CoCl2 and propranolol was not followed by increase in delta-ALAS activity 24 h after the injection. The mechanisms of the increase in the free heme content in the liver during the early stages of oxidative stress and the regulation of the key heme biosynthesis enzyme are discussed. PMID:10395986

  10. Regulation of oxidative enzyme activity and eukaryotic elongation factor 2 in human skeletal muscle: influence of gender and exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Schjerling, P.; Vistisen, Bodil;

    2005-01-01

    AIM: To investigate gender-related differences in the responses of oxidative enzymes and eukaryotic elongation factor-2 (eEF2) to exercise. METHODS: The influence of exercise (90 min, 60%VO(2peak)) on citrate synthase (CS) and beta-hydroxyacyl-CoA dehydrogenase (HAD) activity and mRNA content......, together with eEF2 expression and phosphorylation at rest, were assessed in skeletal muscle of untrained (UT) and endurance trained (ET) females and males. RESULTS: Citrate synthase and HAD mRNA were higher in females than in males (27% and 48%, respectively, P activity did...... not differ between females and males (NS). In females only, CS activity was enhanced (P activity was 56% higher in ET than in UT volunteers (P activity were not influenced...

  11. Effects of chronic prenatal ethanol exposure on locomotor activity, and hippocampal weight, neurons, and nitric oxide synthase activity of the young postnatal guinea pig.

    Science.gov (United States)

    Gibson, M A; Butters, N S; Reynolds, J N; Brien, J F

    2000-01-01

    Decreased nitric oxide synthase (NOS)-catalyzed formation of NO from L-arginine may be involved in ethanol teratogenesis involving the hippocampus. This hypothesis was tested by determining the effects of chronic prenatal ethanol exposure on locomotor activity and on hippocampal weight, number of CA1 and CA3 pyramidal cells and dentate gyrus granule cells, and NOS activity of the postnatal guinea pig. Timed, pregnant guinea pigs received one of the following chronic oral regimens throughout gestation: 4 g ethanol/kg maternal body weight/day, isocaloric-sucrose/pair-feeding, or water. At postnatal day (PD) 10, spontaneous locomotor activity was measured. At PD 12, histological analysis was performed on the hippocampal formation, in which hippocampal CA1 and CA3 pyramidal cells and dentate gyrus granule cells were counted; body, brain, and hippocampal weights were measured; and hippocampal NOS enzymatic activity was determined using a radiometric assay. Chronic prenatal ethanol exposure produced hyperactivity, decreased the brain and hippocampal weights with no change in body weight, decreased the number of hippocampal CA1 pyramidal cells by 25-30%, and had no effect on hippocampal NOS activity compared with the two control groups. These data, together with our previous findings in the fetal guinea pig, demonstrate that chronic prenatal ethanol exposure decreases hippocampal NOS activity in near-term fetal life that temporally precedes the selective loss of hippocampal CA1 pyramidal cells in postnatal life. PMID:10758347

  12. 21 CFR 184.1625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O,...

  13. Nitric oxide synthase and breast cancer: role of TIMP-1 in NO-mediated Akt activation.

    Directory of Open Access Journals (Sweden)

    Lisa A Ridnour

    Full Text Available Prediction of therapeutic response and cancer patient survival can be improved by the identification of molecular markers including tumor Akt status. A direct correlation between NOS2 expression and elevated Akt phosphorylation status has been observed in breast tumors. Tissue inhibitor matrix metalloproteinase-1 (TIMP-1 has been proposed to exert oncogenic properties through CD63 cell surface receptor pathway initiation of pro-survival PI3k/Akt signaling. We employed immunohistochemistry to examine the influence of TIMP-1 on the functional relationship between NOS2 and phosphorylated Akt in breast tumors and found that NOS2-associated Akt phosphorylation was significantly increased in tumors expressing high TIMP-1, indicating that TIMP-1 may further enhance NO-induced Akt pathway activation. Moreover, TIMP-1 silencing by antisense technology blocked NO-induced PI3k/Akt/BAD phosphorylation in cultured MDA-MB-231 human breast cancer cells. TIMP-1 protein nitration and TIMP-1/CD63 co-immunoprecipitation was observed at NO concentrations that induced PI3k/Akt/BAD pro-survival signaling. In the survival analysis, elevated tumor TIMP-1 predicted poor patient survival. This association appears to be mainly restricted to tumors with high NOS2 protein. In contrast, TIMP-1 did not predict poor survival in patient tumors with low NOS2 expression. In summary, our findings suggest that tumors with high TIMP-1 and NOS2 behave more aggressively by mechanisms that favor Akt pathway activation.

  14. Plasma membrane H+-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin

    DEFF Research Database (Denmark)

    Tomasi, Nicola; Kretzschmar, Tobias; Espen, Luca;

    2009-01-01

    the rhizosphere.The relationship between acidification and carboxylate exudation is still largely unknown. In the present work,we studied the linkage between organic acids (malate and citrate) and proton exudations in cluster roots of P-deficient white lupin. After the illumination started, citrate exudation......,an activator of the plasmamembrane (PM)H+-ATPase, stimulated citrate exudation, whereas vanadate, an inhibitor of the H+-ATPase, reduced citrate exudation. The burst of citrate exudation was associated with an increase in expression of theLHA1PMH+-ATPase gene,an increased amount of H+-ATPase protein, a shift...... in pH optimum of the enzymeand post-translational modification of an H ++-ATPase protein involving binding of activating 14-3-3 protein.Taken together, our results indicate a close link in cluster roots of P-deficient white lupin between the burst of citrate exudation and PM H+-ATPase-catalysed proton...

  15. Dihydromyricetin protects neurons in an MPTP-induced model of Parkinson's disease by suppressing glycogen synthase kinase-3 beta activity

    Science.gov (United States)

    Ren, Zhao-xiang; Zhao, Ya-fei; Cao, Ting; Zhen, Xue-chu

    2016-01-01

    Aim: It is general believed that mitochondrial dysfunction and oxidative stress play critical roles in the pathology of Parkinson's disease (PD). Dihydromyricetin (DHM), a natural flavonoid extracted from Ampelopsis grossedentata, has recently been found to elicit potent anti-oxidative effects. In the present study, we explored the role of DHM in protecting dopaminergic neurons. Methods: Male C57BL/6 mice were intraperitoneally injected with 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 d to induce PD. Additionally, mice were treated with either 5 or 10 mg/kg DHM for a total of 13 d (3 d before the start of MPTP, during MPTP administration (7 d) and 3 d after the end of MPTP). For the saline or DHM alone treatment groups, mice were injected with saline or DHM for 13 d. On d 14, behavioral tests (locomotor activity, the rotarod test and the pole test) were administered. After the behavioral tests, the mice were sacrificed, and brain tissue was collected for immunofluorescence staining and Western blotting. In addition, MES23.5 cells were treated with MPP+ and DHM, and evaluated using cell viability assays, reactive oxygen species (ROS) measurements, apoptosis analysis and Western blotting. Results: DHM significantly attenuated MPTP-induced mouse behavioral impairments and dopaminergic neuron loss. In the MES23.5 cells, DHM attenuated MPP+-induced cell injury and ROS production in a dose-dependent manner. In addition, DHM increased glycogen synthase kinase-3 beta phosphorylation in a dose- and time-dependent manner, which may be associated with DHM-induced dopaminergic neuronal protection. Conclusion: The present study demonstrated that DHM is a potent neuroprotective agent for DA neurons by modulating the Akt/GSK-3β pathway, which suggests that DHM may be a promising therapeutic candidate for PD. PMID:27374489

  16. Effects of aspirin on number,activity and inducible nitric oxide synthase of endothelial progenitor cells from peripheral blood

    Institute of Scientific and Technical Information of China (English)

    Tu-gang CHEN; Jun-zhu CHEN; Xu-dong XIE

    2006-01-01

    Aim:To investigate whether aspirin has an influence on endothelial progenitor cells (EPC).Methods:Total mononuclear cells (MNC) were isolated from peripheral blood by Ficoll density gradient centrifugation,then cells were plated on fibronectin-coated culture dishes.After 7 d of culture,attached cells were stimulated with aspirin (to achieve final concentrations of 1,2,5,and 10 mmol/L) for 3,6,12,and 24 h.EPC were characterized as adherent cells that were double positive for 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine low density lipoprotein (DiLDL) uptake and lectin binding by direct fluorescent staining.EPC proliferation and migration were assayed using a 3- (4,5-dimethyl-2 thiazoyl) -2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and a modified Boyden chamber assay.respectively.An EPC adhesion assay was performed by replating the EPC on fibronectin-coated dishes,and then adherent cells were counted.In vitro vasculogenesis activity was assayed by using an in vitro vasculogenesis kit. Inducible nitric oxide synthase (iNOS) was assayed by Westem blotting.Results:Incubation of isolated human MNC with aspirin decreased the number of EPC.Aspirin also decreased the proliferative,migratory,adhesive,and in vitro Vasculogenesis capacity of EPC,and also their iNOS levels in a concentration-and time-dependent manner.Conclusion:Aspirin decreases (1) the number of EPC; (2) the proliferative,migratory,adhesive and in vitro vasculogenesis capacities of EPC;and (3) iNOS levels in EPC.

  17. Impairments in cognition and neural precursor cell proliferation in mice expressing constitutively active glycogen synthase kinase-3

    Directory of Open Access Journals (Sweden)

    Marta ePardo

    2015-03-01

    Full Text Available ABSTRACTBrain glycogen synthase kinase-3 (GSK3 is hyperactive in several neurological conditions that involve impairments in both cognition and neurogenesis. This raises the hypotheses that hyperactive GSK3 may directly contribute to impaired cognition, and that this may be related to deficiencies in neural precursor cells (NPC. To study the effects of hyperactive GSK3 in the absence of disease influences, we compared adult hippocampal NPC proliferation and performance in three cognitive tasks in male and female wild-type mice and GSK3 knockin mice, which express constitutively active GSK3. NPC proliferation was ~40% deficient in both male and female GSK3 knockin mice compared with wild-type mice. Environmental enrichment (EE increased NPC proliferation in male, but not female, GSK3 knockin mice and wild-type mice. Male and female GSK3 knockin mice exhibited impairments in novel object recognition, temporal order memory, and coordinate spatial processing compared with gender-matched wild-type mice. EE restored impaired novel object recognition and temporal ordering in both sexes of GSK3 knockin mice, indicating that this repair was not dependent on NPC proliferation, which was not increased by EE in female GSK3 knockin mice. Acute 1 hr pretreatment with the GSK3 inhibitor TDZD-8 also improved novel object recognition and temporal ordering in male and female GSK3 knockin mice. These findings demonstrate that hyperactive GSK3 is sufficient to impair adult hippocampal NPC proliferation and to impair performance in three cognitive tasks in both male and female mice, but these changes in NPC proliferation do not directly regulate novel object recognition and temporal ordering tasks.

  18. Effect of four classes of herbicides on growth and acetolactate-synthase activity in several variants of Arabidopsis thaliana.

    Science.gov (United States)

    Mourad, G; King, J

    1992-11-01

    We have isolated a triazolopyrimidine-resistant mutant csrl-2, of Arabidopsis thaliana (L.) Heynh. Here, we compare csrl-2 with the previously isolated mutants csrl and csr1-1, and with wild-type Arabidopsis for responses to members of four classes of herbicides, namely, sulfonylureas, triazolopyrimidines, imidazolinones, and pyrimidyl-oxy-benzoates. Two separable herbicide binding sites have been identified previously on the protein of acetolactate synthase (ALS). Here, the mutation giving rise to csrl, originating in a coding sequence towards the 5' end of the ALS gene, and that in csrl-2, affected the inhibitory action on growth and ALS activity of sulfonylurea and triazolopyrimidine herbicides but not that of the imidazolinones or pyrimidyl-oxybenzoates. The other mutation, in csrl-1, originating in a coding sequence towards the 3' end of the ALS gene, affected the inhibitory action of imidazolinones and pyrimidyl-oxy-benzoates but not that of the sulfonylureas or triazolopyrimidines. Additional, stimulatory effects of some of these herbicides on growth of seedlings was unrelated to their effect on their primary target, ALS. The conclusion from these observations is that one of the two previously identified herbicide-binding sites may bind sulfonylureas and triazolopyrimidines while the other may bind imidazolinones and pyrimidyl-oxy-benzoates within a herbicide-binding domain on the ALS enzyme. Such a comparative study using near-isogenic mutants from the same species allows not only the further definition of the domain of herbicide binding on ALS but also could aid investigation of the relationship between herbicide-, substrate-, and allosteric-binding sites on this enzyme.This research was supported by an Operating Grant from the Natural Sciences and Engineering Research Council of Canada to J.K. PMID:24178380

  19. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots.

    Science.gov (United States)

    Ryan, Peter R; Raman, Harsh; Gupta, Sanjay; Horst, Walter J; Delhaize, Emmanuel

    2009-01-01

    The first confirmed mechanism for aluminum (Al) resistance in plants is encoded by the wheat (Triticum aestivum) gene, TaALMT1, on chromosome 4DL. TaALMT1 controls the Al-activated efflux of malate from roots, and this mechanism is widespread among Al-resistant genotypes of diverse genetic origins. This study describes a second mechanism for Al resistance in wheat that relies on citrate efflux. Citrate efflux occurred constitutively from the roots of Brazilian cultivars Carazinho, Maringa, Toropi, and Trintecinco. Examination of two populations segregating for this trait showed that citrate efflux was controlled by a single locus. Whole-genome linkage mapping using an F(2) population derived from a cross between Carazinho (citrate efflux) and the cultivar EGA-Burke (no citrate efflux) identified a major locus on chromosome 4BL, Xce(c), which accounts for more than 50% of the phenotypic variation in citrate efflux. Mendelizing the quantitative variation in citrate efflux into qualitative data, the Xce(c) locus was mapped within 6.3 cM of the microsatellite marker Xgwm495 locus. This linkage was validated in a second population of F(2:3) families derived from a cross between Carazinho and the cultivar Egret (no citrate efflux). We show that expression of an expressed sequence tag, belonging to the multidrug and toxin efflux (MATE) gene family, correlates with the citrate efflux phenotype. This study provides genetic and physiological evidence that citrate efflux is a second mechanism for Al resistance in wheat.

  20. Caenorhabditis elegans pseudouridine synthase 1 activity in vivo: tRNA is a substrate, but not U2 small nuclear RNA.

    Science.gov (United States)

    Patton, Jeffrey R; Padgett, Richard W

    2003-06-01

    The formation of pseudouridine (Psi) from uridine is post-transcriptional and catalysed by pseudouridine synthases, several of which have been characterized from eukaryotes. Pseudouridine synthase 1 (Pus1p) has been well characterized from yeast and mice. In yeast, Pus1p has been shown to have dual substrate specificity, modifying uridines in tRNAs and at position 44 in U2 small nuclear RNA (U2 snRNA). In order to study the in vivo activity of a metazoan Pus1p, a knockout of the gene coding for the homologue of Pus1p in Caenorhabditis elegans was obtained. The deletion encompasses the first two putative exons and includes the essential aspartate that is required for activity in truA pseudouridine synthases. The locations of most modified nucleotides on small RNAs in C. elegans are not known, and the positions of Psi were determined on four tRNAs and U2 snRNA. The uridine at position 27 of tRNA(Val) (AAC), a putative Pus1p-modification site, was converted into Psi in the wild-type worms, but the tRNA(Val) (AAC) from mutant worms lacked the modification. Psi formation at positions 13, 32, 38 and 39, all of which should be modified by other pseudouridine synthases, was not affected by the loss of Pus1p. The absence of Pus1p in C. elegans had no effect on the modification of U2 snRNA in vivo, even though worm U2 snRNA has a Psi at position 45 (the equivalent of yeast U2 snRNA position 44) and at four other positions. This result was unexpected, given the known dual specificity of yeast Pus1p.

  1. Propofol improves cardiac functional recovery after ischemia-reperfusion by upregulating nitric oxide synthase activity in the isolated rat hearts

    Institute of Scientific and Technical Information of China (English)

    SUN Hai-yan; XUE Fu-shan; XU Ya-chao; LI Cheng-wen; XIONG Jun; LIAO Xu; ZHANG Yan-ming

    2009-01-01

    Background There are few studies to assess whether propofol attenuates myocardial ischemia-reperfusion injury via a mechanism related to nitric oxide (NO) route, so we designed this randomized blinded experiment to observe the changes of NO contents, nitric oxide synthase (NOS) activity, NOS contents in the myocardium, and cardiac function in ischemic reperfused isolated rat hearts, and to assess the relation between myocardial NO system and cardioprotection of propofol.Methods The hearts of 30 Sprague-Dawley male rats were removed, mounted on a Langendorff apparatus, and randomly assigned to one of three groups (n=10 each group) to be treated with the following treatments in a blinded manner: Group 1, control group, after perfusion with pure Krebs Henseleit bicarbonate (K-HBB) buffer solution for 15 minutes, hearts were subjected to 20 minutes global ischemia followed by 60 minutes reperfusion with pure K-HBB buffer; Group 2, after perfusion with K-HBB buffer solution containing propofol (10 μg/ml) for 15 minutes, the hearts underwent 20 minutes global ischemia followed by 60 minutes reperfusion with the same K-HBB buffer solution; Group 3, after perfusion with K-HBB buffer solution containing propofol (10 μg/ml) and L-NAME (100 μmol/L) for 15 minutes, the hearts underwent 20 minutes global ischemia followed by 60 minutes reperfusion with the same K-HBB buffer solution. The cardiac function was continuously monitored throughout the experiment.The coronary flow was also measured. An ISO-NO electrode was placed into the right atrium close to the coronary sinus to continuously measure NO concentration in the coronary effluent. The tissue samples from apex of hearts in Groups 1 and 2 were obtained to measure the NOS activity by spectrophotometry and the NOS contents by immunohistochemistry, respectively.Results The cardiac function was significantly inhibited after ischemia and then gradually improved with reperfusion in all three groups. As compared with Group 1

  2. Purification and activity evaluation of methionine synthase%蛋氨酸合酶活性筛选体系的建立

    Institute of Scientific and Technical Information of China (English)

    郭莹; 李超; 张志丽; 田超; 王孝伟; 刘俊义

    2012-01-01

    钴胺素依赖的蛋氨酸合酶催化N5-甲基四氢叶酸转移甲基至同型半胱氨酸生成蛋氨酸和四氢叶酸,直接参与蛋氨酸循环、叶酸循环及含硫氨基酸代谢,与DNA、蛋白质合成及生物甲基化有密切关系.本研究采用蛋白层析技术,将大鼠肝匀浆经超声破碎和高速离心处理后,依次经过DE-52批处理、Q Sepharose Fast Flow离子交换层析和CHT陶瓷羟基磷灰石吸附柱层析进行纯化,并对纯化产物进行了SDS-PAGE和Western blotting 鉴定.采用分光光度法测定蛋氨酸合酶的活性,对纯化酶的酶促反应动力学进行了研究,确定了最佳反应条件,动力学结果显示蛋氨酸合酶的双底物酶促反应的机制为乒乓机制.研究表明,采用层析技术纯化得到的蛋氨酸合酶适用于以其为靶点的化合物高通量筛选.%Methionine synthase (MS, EC2.1.1.13), a key enzyme in the folate metabolism area catalyzing methyl transfer from N5-methyltetrahydrofolate to homocysteine to give tetrahydrofolate and methionine, takes a core position in folate cycle, one-carbon-unit transfer and sculpture amino acid pathways. Cobalamin-dependent methionine synthase was purified from rat liver. The enzyme was purified 609-fold to near homogeneity by batch chromatography on DE-52, anion-exchange chromatography on Q Sepharose Fast Flow and CHT-I hydroxyapatite column and was identified by SDS-PAGE and Western blotting. The enzyme activity was determined by spectrophotometric assay. In addition, the influencing factor and optimal reaction condition were performed. The steady state kinetic of rat liver methionine synthase was similar to that of other mammalian cobalamin-dependent methionine synthase which employed a Ping-Pong mechanism. The result indicated that cobalamin-dependent methionine synthase purified from rat liver is suitable for screening and studying methionine synthase specific inhibitors.

  3. Ranitidine bismuth citrate: A review

    Directory of Open Access Journals (Sweden)

    N Chiba

    2001-01-01

    Full Text Available Recognition of the relationship between Helicobacter pylori infection and the development of gastroduodenal disease has increased greatly in recent years. To avoid complications of H pylori infection, such as the development of recurrent duodenal and gastric ulcers, effective therapies are required for eradication of the infection. This article reviews ranitidine bismuth citrate (RBC, a novel complex of ranitidine, bismuth and citrate, which was developed specifically for the purpose of eradicating H pylori. Dual therapy with RBC in combination with clarithromycin for 14 days yields eradication rates of 76%. Triple therapy bid for one week with a proton pump inhibitor, clarithromycin and either amoxicillin or a nitroimidazole (tinidazole or metronidazole is advocated as the treatment of choice for H pylori eradication. Analogous regimens with RBC in place of proton pump inhibitors show effective eradication rates in comparative studies and with pooled data. RBC, used alone or in combination with other antibiotics, appears to be a safe and effective drug for the treatment of H pylori infection. Bismuth levels do not appear to rise to toxic levels.

  4. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Pil; Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Hien, Tran Thi [College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Jeong, Myung Ho [Heart Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyungsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2011-11-15

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-{alpha}-stimulated monocytes to endothelial cells and suppressed the TNF-{alpha} induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-{alpha}-induced nuclear factor-{kappa}B activation, which was attenuated by pretreatment with N{sup G}-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: Black-Right-Pointing-Pointer Puerarin induced the phosphorylation of eNOS and the production of NO. Black-Right-Pointing-Pointer Puerarin activated eNOS through ER-dependent PI3-kinase and Ca{sup 2+}-dependent AMPK. Black-Right-Pointing-Pointer Puerarin-induced NO was involved in the inhibition of NF-kB activation. Black-Right-Pointing-Pointer Puerarin may help for prevention of vascular dysfunction and diabetes.

  5. Lipopolysaccharide induces nitric oxide synthase expression and platelet-activating factor increases nitric oxide production in human fetal membranes in culture

    Directory of Open Access Journals (Sweden)

    Seyffarth Gunter

    2004-06-01

    Full Text Available Abstract Background Platelet-activating factor and nitric oxide may be involved in the initiation of human labour as inflammatory mediators. The aim of this study was to test whether platelet-activating factor and lipopolysaccharide were able to induce nitric oxide synthase expression and stimulate the production of nitric oxide in human fetal membrane explants in culture. Methods Fetal membranes were collected from Caesarean sections at term. RNA was extracted from membranes and subjected to a qualitative RT-PCR to assess the baseline expression of iNOS. Discs of fetal membranes were cultured for 24 hours in the presence of platelet-activating factor at a dose range of 0.1 nanomolar – 1 micomolar or 1 microgram/ml lipopolysaccharide. Nitric oxide production was measured via nitrite ions in the culture medium and mRNA for iNOS was detected by RT-PCR. Results Culturing the membrane discs in medium containing serum induced nitric oxide synthase expression and platelet-activating factor significantly stimulated the production of nitric oxide under these conditions. When cultured without serum inducible nitric oxide synthase expression was induced by lipopolysaccharide, but not by platelet-activating factor. Conclusion Platelet-activating factor may have a role in the initiation of labour, at term or preterm, via the increased local production of nitric oxide as an inflammatory mediator. In this model of intrauterine infection, lipopolysaccharide was found to induce iNOS expression by fetal membranes, and this mechanism could be involved in preterm labour.

  6. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole;

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  7. Impairments in cognition and neural precursor cell proliferation in mice expressing constitutively active glycogen synthase kinase-3

    OpenAIRE

    Marta ePardo; King, Margaret K.; EMMA ePEREZ-COSTAS; Miguel eMelendez-Ferro; Ana eMartinez; Eleonore eBeurel; Richard Scott Jope

    2015-01-01

    ABSTRACTBrain glycogen synthase kinase-3 (GSK3) is hyperactive in several neurological conditions that involve impairments in both cognition and neurogenesis. This raises the hypotheses that hyperactive GSK3 may directly contribute to impaired cognition, and that this may be related to deficiencies in neural precursor cells (NPC). To study the effects of hyperactive GSK3 in the absence of disease influences, we compared adult hippocampal NPC proliferation and performance in three cognitive ta...

  8. Regulation of the expression of nitric oxide synthase and leishmanicidal activity by glycoconjugates of Leishmania lipophosphoglycan in murine macrophages.

    OpenAIRE

    Proudfoot, L; Nikolaev, A. V.; Feng, G.J.; Wei, W Q; Ferguson, M A; Brimacombe, J S; Liew, F. Y.

    1996-01-01

    Lipophosphoglycan (LPG) glycoconjugates from promastigotes of Leishmania were not able to induce the expression of the cytokine-inducible nitric oxide synthase (iNOS) by the murine macrophage cell line, J774. However, they synergize with interferon gamma to stimulate the macrophages to express high levels of iNOS. This synergistic effect was critically time-dependent. Preincubation of J774 cells with the LPG glycans 4-18 h before stimulation with interferon gamma resulted in a significant red...

  9. Impaired insulin activation and dephosphorylation of glycogen synthase in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment

    DEFF Research Database (Denmark)

    Glintborg, Dorte; Højlund, Kurt; Andersen, Nicoline Resen;

    2008-01-01

    CONTEXT: Insulin resistance is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). The molecular mechanisms underlying reduced insulin-mediated glycogen synthesis in skeletal muscle of patients with PCOS have not been established. SUBJECTS AND METHODS: We...... investigated protein content, activity, and phosphorylation of glycogen synthase (GS) and its major upstream inhibitor, GS kinase (GSK)-3 in skeletal muscle biopsies from 24 PCOS patients (before treatment) and 14 matched control subjects and 10 PCOS patients after 16 wk treatment with pioglitazone. All were...... metabolically characterized by euglycemic-hyperinsulinemic clamps and indirect calorimetry. RESULTS: Reduced insulin-mediated glucose disposal (P PCOS patients (P

  10. Hyperglycaemia normalises insulin action on glucose metabolism but not the impaired activation of AKT and glycogen synthase in the skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Vind, B F; Birk, Jesper Bratz; Vienberg, Sara Gry;

    2012-01-01

    AIMS/HYPOTHESIS: In type 2 diabetes, reduced insulin-stimulated glucose disposal, primarily glycogen synthesis, is associated with defective insulin activation of glycogen synthase (GS) in skeletal muscle. Hyperglycaemia may compensate for these defects, but to what extent it involves improved...... insulin signalling to glycogen synthesis remains to be clarified. METHODS: Whole-body glucose metabolism was studied in 12 patients with type 2 diabetes, and 10 lean and 10 obese non-diabetic controls by means of indirect calorimetry and tracers during a euglycaemic-hyperinsulinaemic clamp. The diabetic...

  11. In Vitro and In Vivo Activities of E5700 and ER-119884, Two Novel Orally Active Squalene Synthase Inhibitors, against Trypanosoma cruzi

    Science.gov (United States)

    Urbina, Julio A.; Concepcion, Juan Luis; Caldera, Aura; Payares, Gilberto; Sanoja, Cristina; Otomo, Takeshi; Hiyoshi, Hironobu

    2004-01-01

    Chagas' disease is a serious public health problem in Latin America, and no treatment is available for the prevalent chronic stage. Its causative agent, Trypanosoma cruzi, requires specific endogenous sterols for survival, and we have recently demonstrated that squalene synthase (SQS) is a promising target for antiparasitic chemotherapy. E5700 and ER-119884 are quinuclidine-based inhibitors of mammalian SQS that are currently in development as cholesterol- and triglyceride-lowering agents in humans. These compounds were found to be potent noncompetitive or mixed-type inhibitors of T. cruzi SQS with Ki values in the low nanomolar to subnanomolar range in the absence or presence of 20 μM inorganic pyrophosphate. The antiproliferative 50% inhibitory concentrations of the compounds against extracellular epimastigotes and intracellular amastigotes were ca. 10 nM and 0.4 to 1.6 nM, respectively, with no effects on host cells. When treated with these compounds at the MIC, all of the parasite's sterols disappeared from the parasite cells. In vivo studies indicated that E5700 was able to provide full protection against death and completely arrested the development of parasitemia when given at a concentration of 50 mg/kg of body weight/day for 30 days, while ER-119884 provided only partial protection. This is the first report of an orally active SQS inhibitor that is capable of providing complete protection against fulminant, acute Chagas' disease. PMID:15215084

  12. Sodium picosulfate/magnesium citrate: a review of its use as a colorectal cleanser.

    Science.gov (United States)

    Hoy, Sheridan M; Scott, Lesley J; Wagstaff, Antona J

    2009-01-01

    exploratory or surgical procedures. Nevertheless, oral sodium picosulfate/magnesium citrate provides a useful option in the preparation of the colon and rectum in adults, adolescents and children undergoing any diagnostic procedure (e.g. colonoscopy or x-ray examination) requiring a clean bowel and/or surgery. Oral sodium picosulfate/magnesium citrate acts locally in the colon as both a stimulant laxative, by increasing the frequency and the force of peristalsis (sodium picosulfate component), and an osmotic laxative, by retaining fluids in the colon (magnesium citrate component), to clear the colon and rectum of faecal contents. It is not absorbed in any detectable quantities. Sodium picosulfate is a prodrug: it is hydrolyzed by bacteria in the colon to the active metabolite 4,4'-dihydroxydiphenyl-(2-pyridyl)methane. Sodium picosulfate/magnesium citrate may be associated with a dehydrating effect, as evidenced by a reduction in bodyweight and increased haemoglobin levels; some at-risk patients may experience postural hypotension and older patients may require additional electrolytes. In three large (n >100), randomized, single-blind clinical studies, two sachets of oral sodium picosulfate/magnesium citrate was at least as effective as oral magnesium citrate 17.7 or 35.4 g, or oral polyethylene glycol 236 g as a colorectal cleansing agent in adult patients undergoing a double-contrast barium enema procedure. In contrast, sodium picosulfate/magnesium citrate was less effective than a sodium phosphate enema preparation in two studies in patients undergoing flexible sigmoidoscopy. A similar number of patients receiving two sachets of sodium picosulfate/magnesium citrate or two 45 mL doses of oral sodium phosphate the day before a double-contrast barium enema procedure achieved satisfactory barium coating and none/minimal faecal residue in one study. However, the data from three of these studies should be interpreted with caution because the administrative regimens used differed

  13. 21 CFR 184.1307c - Ferrous citrate.

    Science.gov (United States)

    2010-04-01

    ... the reaction of sodium citrate with ferrous sulfate or by direct action of citric acid on iron filings... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferrous citrate. 184.1307c Section 184.1307c Food... Specific Substances Affirmed as GRAS § 184.1307c Ferrous citrate. (a) Ferrous citrate (iron (II)...

  14. 21 CFR 184.1195 - Calcium citrate.

    Science.gov (United States)

    2010-04-01

    ... with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... four moles of water per mole of calcium citrate. (b) The ingredient meets the specifications of...

  15. Characterization of Al-responsive citrate excretion and citrate-transporting MATEs in Eucalyptus camaldulensis.

    Science.gov (United States)

    Sawaki, Yoshiharu; Kihara-Doi, Tomonori; Kobayashi, Yuriko; Nishikubo, Nobuyuki; Kawazu, Tetsu; Kobayashi, Yasufumi; Koyama, Hiroyuki; Sato, Shigeru

    2013-04-01

    Many plant species excrete organic acids into the rhizosphere in response to aluminum stress to protect sensitive cells from aluminum rhizotoxicity. When the roots of Eucalyptus camaldulensis, a major source of pulp production, were incubated in aluminum-toxic medium, citrate released into the solution increased as a function of time. Citrate excretion was inducible by aluminum, but not by copper or sodium chloride stresses. This indicated that citrate is the major responsive organic acid released from the roots of this plant species to protect the root tips from aluminum damage. Four genes highly homologs to known citrate-transporting multidrugs and toxic compounds exclusion proteins, named EcMATE1-4, were isolated using polymerase chain reaction-based cloning techniques. Their predicted proteins included 12 membrane spanning domains, a common structural feature of citrate-transporting MATE proteins, and consisted of 502-579 amino acids with >60 % homology to orthologous genes in other plant species. One of the homologs, designated EcMATE1, was expressed in the roots more abundantly than in the shoots and in response to both Al and low pH stresses. Ectopic expression of EcMATE1 and 3 in tobacco hairy roots enhanced Al-responsive citrate excretion. Pharmacological characterization indicated that Al-responsive citrate excretion involved a protein phosphorylation/dephosphorylation process. These results indicate that citrate excretion through citrate-transporting multidrugs and toxic compounds exclusion proteins is one of the important aluminum-tolerance mechanisms in Eucalyptus camaldulensis.

  16. Plasmodium falciparum avoids change in erythrocytic surface expression of phagocytosis markers during inhibition of nitric oxide synthase activity

    DEFF Research Database (Denmark)

    Hempel, Casper; Kohnke, Hannes; Maretty, Lasse;

    2014-01-01

    Nitric oxide (NO) accumulates in Plasmodium falciparum-infected erythrocytes. It may be produced by a parasite NO synthase (NOS) or by nitrate reduction. The parasite's benefit of NO accumulation is not understood. We investigated if inhibiting the P. falciparum NOS with specific and unspecific NOS...... increased the fraction of phosphatidyl serine exposing cells significantly. The infection did not change the level of expression of neither total CD47 nor its oxidized form. Unrelated to NOS inhibition, incubation with caveolin-1 scaffolding domain peptide lead to a decrease in oxidized CD47. In conclusion...

  17. Dinuclear nickel complexes modeling the structure and function of the acetyl CoA synthase active site

    OpenAIRE

    Ito, Mikinao; Kotera, Mai; Matsumoto, Tsuyoshi; Tatsumi, Kazuyuki

    2009-01-01

    A dinuclear nickel complex with methyl and thiolate ligands, Ni(dadtEt)Ni(Me)(SDmp) (2), has been synthesized as a dinuclear Nid–Nip-site model of acetyl-CoA synthase (ACS) (dadtEt is N,N′-diethyl-3,7-diazanonane-1,9-dithiolate; Dmp is 2,6-dimesitylphenyl). Complex 2 was prepared via 2 methods: (i) ligand substitution of a dinuclear Ni(II)–Ni(II) cation complex [Ni(dadtEt) Ni(tmtu)2] (OTf)2(1) with MeMgBr and KSDmp (tmtu is tetramethylthiourea), (ii) methyl transfer from methylcobaloxime Co(d...

  18. Accumulation of Carbohydrate and Regulation of 14-3-3 Protein on Sucrose Phosphate Synthase (SPS) Activity in Two Tomato Species

    Institute of Scientific and Technical Information of China (English)

    WANG Li; CUI Na; ZHAO Xiao-cui; FAN Hai-yan; LI Tian-lai

    2014-01-01

    To explore the differences of carbohydrate metabolism in two tomato species and discuss the possible regulation of 14-3-3 proteins on the sucrose phosphate synthase (SPS) activity, we determined the contents of soluble sugar and starch through high performance liquid chromatography (HPLC). The activities of sugar-metabolizing enzymes were assayed in desalted extract, and the relative expression levels of related genes in sugar metabolism were determined though real-time RT-PCR. The results indicated that glucose and fructose were mainly accumulated during the maturation of the fruit because of the high acid invertase (AI) and neutral invertase (NI) in Micro-Tom (Solanum lycopersicum) fruit, while inSolanum chmielewskii fruit, SPS which went along with the change of sucrose content led to the rapid sucrose increase during the fruit ripening. TFT1 and TFT10, belonging to 14-3-3 protein in tomato, were likely to down-regulated SPS activity during young and intumescence period.

  19. Mean platelet volume measurement, EDTA or citrate?

    Science.gov (United States)

    Dastjerdi, Mansour Siavash; Emami, Tajolmolouk; Najafian, Alireza; Amini, Masoud

    2006-10-01

    Most laboratories use EDTA for anticoagulation of whole blood prior to automated cell counting but due to platelet swelling, mean platelet volume (MPV) values may increase with its use. MPV changes may be less with acid citrate based anticoagulation. As MPV is a marker of platelet function and its precise measurement is important in a number of clinical situations, this study was performed to assess if EDTA and citrate based anticoagulated blood samples can be used interchangeably for MPV measurement. In this cross sectional descriptive study, EDTA and citrate based anticoagulated blood samples of the same patients were assessed by auto-analyzer within 1 h of sampling. In the 61 evaluated patients, there was a close correlation between MPV as measured by EDTA and citrate, but mean MPV measured from EDTA samples was 0.66 fL (9%) more than citrate. There was also a significant negative correlation between platelets count and MPV by both methods. The results of our study reveal that MPV can be measured accurately by both methods of anticoagulation; EDTA and citrate if analysis be performed within 1 h of sampling. PMID:17607580

  20. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation

    DEFF Research Database (Denmark)

    Ramachandran, Roshni; Bhatt, Deepak Kumar; Ploug, Kenneth Beri;

    2014-01-01

    BACKGROUND AND AIM: Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene......-related peptide (CGRP) systems on the GTN-induced neuronal activation in this model. MATERIALS AND METHODS: The femoral vein was catheterised in rats and GTN was infused (4 µg/kg/min, for 20 minutes, intravenously). Immunohistochemistry was performed to analyse Fos, nNOS and CGRP and Western blot for measuring n......NOS protein expression. The effect of olcegepant, L-nitro-arginine methyl ester (L-NAME) and neurokinin (NK)-1 receptor antagonist L-733060 were analysed on Fos activation. RESULTS: GTN-treated rats showed a significant increase of nNOS and CGRP in dura mater and CGRP in the trigeminal nucleus caudalis (TNC...

  1. Rerouting Citrate Metabolism in Lactococcus lactis to Citrate-Driven Transamination

    NARCIS (Netherlands)

    Pudlik, Agata M.; Lolkema, Juke S.

    2012-01-01

    Oxaloacetate is an intermediate of the citrate fermentation pathway that accumulates in the cytoplasm of Lactococcus lactis ILCitM(pFL3) at a high concentration due to the inactivation of oxaloacetate decarboxylase. An excess of toxic oxaloacetate is excreted into the medium in exchange for citrate

  2. Elevated CO2-induced production of nitric oxide (NO) by NO synthase differentially affects nitrate reductase activity in Arabidopsis plants under different nitrate supplies.

    Science.gov (United States)

    Du, Shaoting; Zhang, Ranran; Zhang, Peng; Liu, Huijun; Yan, Minggang; Chen, Ni; Xie, Huaqiang; Ke, Shouwei

    2016-02-01

    CO2 elevation often alters the plant's nitrate reductase (NR) activity, the first enzyme acting in the nitrate assimilation pathway. However, the mechanism underlying this process remains unknown. The association between elevated CO2-induced alterations of NR activity and nitric oxide (NO) was examined in Col-0 Arabidopsis fed with 0.2-10 mM nitrate, using NO donors, NO scavenger, and NO synthase (NOS) inhibitor. The noa1 mutant, in which most NOS activity was lost, and the NR activity-null mutant nia1 nia2 were also used to examine the above association. In response to CO2 elevation, NR activity increased in low-nitrate Col-0 plants but was inhibited in high-nitrate Col-0 plants. NO scavenger and NOS inhibitor could eliminate these two responses, whereas the application of NO donors mimicked these distinct responses in ambient CO2-grown Col-0 plants. Furthermore, in both low- and high-nitrate conditions, elevated CO2 increased NOS activity and NO levels in Col-0 and nia1 nia2 plants but had little effect on NO level and NR activity in noa1 plants. Considering all of these findings, this study concluded that, in response to CO2 elevation, either the NR activity induction in low-nitrate plants or the NR activity inhibition in high-nitrate plants is regulated by NOS-generated NO. PMID:26608644

  3. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice.

    Science.gov (United States)

    Tsuda, Hirohisa; Shiraki, Mari; Inoue, Eri; Saito, Terumi

    2016-08-20

    It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination. PMID:27372278

  4. Renal Localization of {sup 67}Ga Citrate in Noninfectious Nephritis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Wook; Jeong, Min Soo; Rhee, Sunn Kgoo; Kim, Sam Yong; Shin, Young Tai; Ro, Heung Kyu [Chungnam University College of Medicine, Deajeon (Korea, Republic of)

    1992-07-15

    {sup 67}Ga citrate scan has been requested for detection or follow-up of inflammatory or neoplastic disease. Visualization of {sup 67}Ga citrate in the kidneys at 48 and 72 hr post injection is usually interpreted as evidence of renal pathology. But precise mechanisms of abnormal {sup 67}Ga uptake in kidneys were unknown. We undertook a study to determine the clinical value of {sup 67}Ga citrate imaging of the kidneys in 68 patients with primary or secondary nephropathy confirmed by renal biopsy and 66 control patients without renal disease. Renal uptake in 48 to 72 hr images was graded as follows: Grade 0=background activity;1=faint uptake greater than background; 2=definite uptake, but less than lumbar vertebrae;3 same uptake as lumbar vertebrae, but less than liver; 4=same or higher uptake than liver. The results were as follows. 1) 42 of 68(62%) patients with noninfectious nephritis showed grade 2 or higher {sup 67}Ga renal uptake but only 10 percent of control patients showed similar uptake. 2) In 14 patients with systemic lupus erythematosus, 8 of 9 (89%) patients with lupus nephritis exhibited marked renal uptake. 3) 36 of 41 patients (88%) with combined nephrotic syndrome showed Grade 2 or higher renal uptake. 4) Renal {sup 67}Ga uptake was correlated with clinical severity of nephrotic syndrome determined by serum albumin level, 24 hr urine protein excretion and serum lipid levels. 5) After complete remission of nephrotic syndrome, renal uptake in all 8 patients who were initially Grade 3 or 4, decreased to Grade 1 or 0. In conclusion, we think that the mechanism of renal {sup 67}Ga uptake in nephrotic syndrome might be related to the pathogenesis of nephrotic syndrome. In systemic lupus erythematosus, {sup 67}Ga citrate scan is useful in predicting renal involvement.

  5. Piperine Inhibits the Activities of Platelet Cytosolic Phospholipase A2 and Thromboxane A2 Synthase without Affecting Cyclooxygenase-1 Activity: Different Mechanisms of Action Are Involved in the Inhibition of Platelet Aggregation and Macrophage Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Dong Ju Son

    2014-08-01

    Full Text Available PURPOSE: Piperine, a major alkaloid of black pepper (Piper nigrum and long pepper (Piper longum, was shown to have anti-inflammatory activity through the suppression of cyclooxygenase (COX-2 gene expression and enzyme activity. It is also reported to exhibit anti-platelet activity, but the mechanism underlying this action remains unknown. In this study, we investigated a putative anti-platelet aggregation mechanism involving arachidonic acid (AA metabolism and how this compares with the mechanism by which it inhibits macrophage inflammatory responses; METHODS: Rabbit platelets and murine macrophage RAW264.7 cells were treated with piperine, and the effect of piperine on the activity of AA-metabolizing enzymes, including cytosolic phospholipase A2 (cPLA2, COX-1, COX-2, and thromboxane A2 (TXA2 synthase, as well as its effect on AA liberation from the plasma membrane components, were assessed using isotopic labeling methods and enzyme immunoassay kit; RESULTS: Piperine significantly suppressed AA liberation by attenuating cPLA2 activity in collagen-stimulated platelets. It also significantly inhibited the activity of TXA2 synthase, but not of COX-1, in platelets. These results suggest that piperine inhibits platelet aggregation by attenuating cPLA2 and TXA2 synthase activities, rather than through the inhibition of COX-1 activity. On the other hand, piperine significantly inhibited lipopolysaccharide-induced generation of prostaglandin (PGE2 and PGD2 in RAW264.7 cells by suppressing the activity of COX-2, without effect on cPLA2; CONCLUSION: Our findings indicate that piperine inhibits platelet aggregation and macrophage inflammatory response by different mechanisms.

  6. Biochemistry: Acetohydroxyacid Synthase

    Directory of Open Access Journals (Sweden)

    Pham Ngoc Chien

    2010-02-01

    Full Text Available Acetohydroxyacid synthase (AHAS, EC 2.2.1.6; formerly known as acetolactate synthase, ALS is a thiamin-and FAD-dependent enzyme which catalyses the first common step in the biosynthesis of the branched-chain amino acids (BCAA isoleucine, leucine and valine. The enzyme is inhibited by several commercial herbicides and has been studied over the last 20 to 30 years. A short introductory note about acetohydroxyacid synthase has been provided.

  7. The prostaglandin F synthase activity of the human aldose reductase AKR1B1 brings new lenses to look at pathologic conditions.

    Directory of Open Access Journals (Sweden)

    Eva eBresson

    2012-05-01

    Full Text Available Prostaglandins are important regulators of female reproductive functions to which aldose reductases exhibiting hydroxysteroid dehydrogenase activity also contribute. Our work on the regulation of reproductive function by prostaglandins (PGs, lead us to the discovery that AKR1B5 and later AKR1B1 were highly efficient and physiologically relevant PGF synthases. PGE2 and PGF2α are the main prostanoids produced in the human endometrium and proper balance in their relative production is important for normal menstruation and optimal fertility. Recent evidence suggests that PGE2 and PGF2α may constitute a functional dyad with physiological relevance at least as important as the prostacyclin-thromboxane dyad in the vascular system. We have recently reported that AKR1B1 was expressed and modulated in association with PGF2α production in response to IL-1β in the human endometrium. In the present study, we show that the human AKR1B1 (gene ID: 231 also known as ALDR1 or ALR2 is a functional PGF2α synthase in different models of living cells and tissues. Using human endometrial cells, prostate and vascular smooth muscle cells, cardiomyocytes and endothelial cells we demonstrate that IL-1β is able to up regulate COX-2 and AKR1B1 proteins as well as PGF2α production under normal glucose concentrations. We show that the promoter activity of AKR1B1 gene is increased by IL-1β particularly around the multiple stress response region (MSRR containing two putative antioxidant response elements (ARE adjacent to TonE and AP1.We also show that AKR1B1 is able to regulate PGE2 production through PGF2α acting on its FP receptor and that aldose reductase inhibitors (ARIs like alrestatin, statil (ponalrestat and EBPC exhibit distinct and characteristic inhibition of PGF2α production in different cell models. The PGF synthase activity of AKR1B1 represents a new and important target to regulate ischemic and inflammatory responses associated with several human

  8. Preparation and Quality Control of 68Ga-Citrate for PET Applications

    Directory of Open Access Journals (Sweden)

    Ayuob Aghanejad

    2015-07-01

    Full Text Available Objective(s: In nuclear medicine studies, gallium-68 (68Ga citrate has been recently known as a suitable infection agent in positron emission tomography (PET. In this study, by applying an in-house produced 68Ge/68Ga generator, a simple technique for the synthesis and quality control of 68Ga-citrate was introduced; followed by preliminary animal studies. Methods: 68GaCl3 eluted from the generator was studied in terms of quality control factors including radiochemical purity (assessed by HPLC and RTLC, chemical purity (assessed by ICP-EOS, radionuclide purity (evaluated by HPGe, and breakthrough. 68Ga-citrate was prepared from eluted 68GaCl3 and sodium citrate under various reaction conditions. Stability of the complex was evaluated in human serum for 2 h at 370C, followed by biodistribution studies in rats for 120 min. Results: 68Ga-citrate was prepared with acceptable radiochemical purity (>97 ITLC and >98% HPLC, specific activity (4-6 GBq/mM, chemical purity (Sn, FeConclusion: This study demonstrated the possible in-house preparation and quality control of 68Ga-citrate, using a commercially available 68Ge/68Ga generator for PET imaging throughout the country.

  9. Sevoflurane and nitric oxide synthase expression in rat cochlea

    Institute of Scientific and Technical Information of China (English)

    Yuantao Li; Qingzhong Hou; Mingguang Wu; Xiaolei Huang; Jun Cao; Yin Gu; Xiaofei Qi; Yawen Li

    2010-01-01

    Sevoflurane exhibits anesthetic action by inhibiting the auditory cortex,brain stem nitric oxide synthase activity,and reducing nitric oxide(NO),thereby interfering with the hearing process.However,the influence of sevoflurane on peripheric receptor(cochlea)NO remains poorly understood.Results from the present study showed that sevoflurane downregulated cochlear inducible NO synthase,endothelial NO synthase and neuronal NO synthase expression in a dose dependent manner.This suggests that sevoflurane can decrease cochlear NO synthase expression in a dose dependent manner.

  10. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    Science.gov (United States)

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  11. Involvement of salicylic acid on antioxidant and anticancer properties, anthocyanin production and chalcone synthase activity in ginger (Zingiber officinale Roscoe) varieties.

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Karimi, Ehsan

    2012-01-01

    The effect of foliar application of salicylic acid (SA) at different concentrations (10-3 M and 10-5 M) was investigated on the production of secondary metabolites (flavonoids), chalcone synthase (CHS) activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231) in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC) analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin) decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS) enzyme activity (involving flavonoid synthesis) and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10-5 M SA treatment. As the SA concentration was decreased from 10-3 M to 10-5 M, the free radical scavenging power (FRAP) increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 μg mL-1, the DPPH antioxidant activity recorded the highest value of 58.30%-72.90% with the 10-5 M SA treatment followed by the 10-3 M SA (52.14%-63.66%) treatment. The lowest value was recorded in the untreated control plants (42.5%-46.7%). These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10-5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of flavonoids in ginger can be increased

  12. Involvement of Salicylic Acid on Antioxidant and Anticancer Properties, Anthocyanin Production and Chalcone Synthase Activity in Ginger (Zingiber officinale Roscoe Varieties

    Directory of Open Access Journals (Sweden)

    Ehsan Karimi

    2012-11-01

    Full Text Available The effect of foliar application of salicylic acid (SA at different concentrations (10−3 M and 10−5 M was investigated on the production of secondary metabolites (flavonoids, chalcone synthase (CHS activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231 in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS enzyme activity (involving flavonoid synthesis and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10−5 M SA treatment. As the SA concentration was decreased from 10−3 M to 10−5 M, the free radical scavenging power (FRAP increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 μg mL−1, the DPPH antioxidant activity recorded the highest value of 58.30%–72.90% with the 10−5 M SA treatment followed by the 10−3 M SA (52.14%–63.66% treatment. The lowest value was recorded in the untreated control plants (42.5%–46.7%. These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10−5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of

  13. Studies on the Compounds of d4T Combined with Nitric Oxide Donors and Nitric Oxide Synthase Inhibitors and their Anti-HIV and AIDS Activity

    Institute of Scientific and Technical Information of China (English)

    KWALE MOLIME GUITREMBI Blaise(Central African); YAO Qi-zheng

    2004-01-01

    Stavudine, a potent anti-HIV and AiDS-related complex, is one of the Nucleoside Analogue Reverse Transcriptase Inhibitors (NARTIs). It is phosphorylated intracellularly and then inhibits the viral reverse transcriptase by acting as a false substrate. Modifications made on the hydrogen labile at the 5'-position on the sugar is an interesting template for the elaboration of new potent anti-HIV and AIDS drugs. The expected advantages of the modified stavudine prodrugs can be multiple: synergistic drug activities, enhancement of stavudine intracellular uptake, increase of stavudine brain delivery, and bypass of the first stavudine phosphorylation step into the cells. Nitric oxide synthase inhibitors of stavudine and nitric oxide donors of stavudine may hold significant promise for the treatment of HIV and AIDS.

  14. Leptin protection of salivary gland acinar cells against ethanol cytotoxicity involves Src kinase-mediated parallel activation of prostaglandin and constitutive nitric oxide synthase pathways.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2008-04-01

    Leptin, a pleiotropic cytokine secreted by adipocytes but also identified in salivary glands and saliva, is recognized as an important element of oral mucosal defense. Here, we report that in sublingual salivary glands leptin protects the acinar cells of against ethanol cytotoxicity. We show that ethanol- induced cytotoxicity, characterized by a marked drop in the acinar cell capacity for NO production, arachidonic acid release and prostaglandin generation, was subject to suppression by leptin. The loss in countering capacity of leptin on the ethanol-induced cytotoxicity was attained with cyclooxygenase inhibitor, indomethacin and nitric oxide synthase (cNOS) inhibitor, L-NAME, as well as PP2, an inhibitor of Src kinase. Indomethacin, while not affecting leptin-induced arachidonic acid release, caused the inhibition in PGE2 generation, pretreatment with L-NAME led to the inhibition in NO production, whereas PP2 exerted the inhibitory effect on leptin-induced changes in NO, arachidonic acid, and PGE2. The leptin-induced changes in arachidonic acid release and PGE2 generation were blocked by ERK inhibitor, PD98059, but not by PI3K inhibitor, wortmannin. Further, leptin suppression of ethanol cytotoxicity was reflected in the increased Akt and cNOS phosphorylation that was sensitive to PP2. Moreover, the stimulatory effect of leptin on the acinar cell cNOS activity was inhibited not only by PP2, but also by Akt inhibitor, SH-5, while wortmannin had no effect. Our findings demonstrate that leptin protection of salivary gland acinar cells against ethanol cytotoxicity involves Src kinase-mediated parallel activation of MAPK/ERK and Akt that result in up-regulation of the respective prostaglandin and nitric oxide synthase pathways.

  15. The metastasis inducer CCN1 (CYR61) activates the fatty acid synthase (FASN)-driven lipogenic phenotype in breast cancer cells

    Science.gov (United States)

    Menendez, Javier A.; Vellon, Luciano; Espinoza, Ingrid; Lupu, Ruth

    2016-01-01

    The angiogenic inducer CCN1 (Cysteine-rich 61, CYR61) is differentially activated in metastatic breast carcinomas. However, little is known about the precise mechanisms that underlie the pro-metastatic actions of CCN1. Here, we investigated the impact of CCN1 expression on fatty acid synthase (FASN), a metabolic oncogene thought to provide cancer cells with proliferative and survival advantages. Forced expression of CCN1 in MCF-7 cells robustly up-regulated FASN protein expression and also significantly increased FASN gene promoter activity 2- to 3-fold, whereas deletion of the sterol response element-binding protein (SREBP) binding site in the FASN promoter completely abrogated CCN1-driven transcriptional activation. Pharmacological blockade of MAPK or PI-3'K activation similarly prevented the ability of CCN1 to induce FASN gene activation. Pharmacological inhibition of FASN activity with the mycotoxin cerulenin or the small compound C75 reversed CCN1-induced acquisition of estrogen independence and resistance to hormone therapies such as tamoxifen and fulvestrant in anchorage-independent growth assays. This study uncovers FASNdependent endogenous lipogenesis as a new mechanism controlling the metastatic phenotype promoted by CCN1. Because estrogen independence and progression to a metastatic phenotype are hallmarks of therapeutic resistance and mortality in breast cancer, this previously unrecognized CCN1-driven lipogenic phenotype represents a novel metabolic target to clinically manage metastatic disease progression.

  16. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings.

    Science.gov (United States)

    Balotf, Sadegh; Kavoosi, Gholamreza; Kholdebarin, Bahman

    2016-01-01

    The objective of this study was to examine the expression and activity of nitrate reductase (NR, EC 1.7.1.1), nitrite reductase (NiR, EC 1.7.2.2), glutamine synthetase (GS, EC 6.3.1.2), and glutamate synthase (GOGAT, EC 1.4.7.1) in response to potassium nitrate, ammonium chloride, and ammonium nitrate in nitrogen-starved wheat seedlings. Plants were grown in standard nutrient solution for 17 days and then subjected to nitrogen starvation for 7 days. The starved plants were supplied with potassium nitrate ammonium nitrate and ammonium chloride (50 mM) for 4 days and the leaves were harvested. The relative expression of NR, NiR, GS, and GOGAT as well as the enzyme activities were investigated. Nitrogen starvation caused a significant decrease both in transcript levels and in NR, NiR, GS, and GOGAT activities. Potassium nitrate and ammonium nitrate treatments restored NR, NiR, GS, and GOGAT expressions and activities. Ammonium chloride increased only the expressions and activities of GS and GOGAT in a dose-dependent manner. The results of our study highlight the differential effects between the type and the amount of nitrogen salts on NR, NiR, GS, and GOGAT activities in wheat seedlings while potassium nitrate being more effective.

  17. Effect of simulated microgravity and centrifugation on nitric oxide synthase activity of osteocyte-like cell line MLO-Y4

    Science.gov (United States)

    Sun, Lian-Wen; Yang, Xiao; Fan, Yu-Bo

    Bone is a highly mechanosensitive tissue, which can adapt functionally to varying levels of mechanical loads throughout a lifetime. Osteocytes are thought to be the most mechanically sensitive bone cell population. In order to understand the mechanism of microgravity-induced bone loss, it's very important to research the behavior of osteocytes under microgravity. In this study, rotary cell culture system was used to simulate microgravity. Nitric oxide synthase (NOS) activity in osteocyte-like cell MLO-Y4 was investigated under simulated microgravity. And the effect of centrifugation on NOS activity in sedentary and rotary culture cell was also investi-gated. The cultured cells were divided into four groups, including sedentary control (CON), sedentary control and centrifugation (CONC), rotary culture (RT), rotary and centrifugation (RTC). In CONC and RTC, NOS activity was determined after centrifugation (1100g 5min). The results showed NOS activity decreased significantly in RT compared with CON. However, this difference disappeared after centrifugation. On the other hand, NOS activity increased significant in RTC compared with RT while there was no difference between CON and CONC. These results indicate the normal centrifugation could counter the effect of simulated micro-gravity on NOS activity. However, it has no effect on the cells cultured under 1G. In general, osteocytes under simulated microgravity are more sensitive to centrifugation than that under 1G.

  18. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Edwin R Lampugnani; Persson, Staffan

    2016-01-01

    ABSTRACT Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated ...

  19. Determination of cystathionine beta-synthase activity in human plasma by LC-MS/MS: potential use in diagnosis of CBS deficiency.

    LENUS (Irish Health Repository)

    Krijt, Jakub

    2011-02-01

    Cystathionine β-synthase (CBS) deficiency is usually confirmed by assaying the enzyme activity in cultured skin fibroblasts. We investigated whether CBS is present in human plasma and whether determination of its activity in plasma could be used for diagnostic purposes. We developed an assay to measure CBS activity in 20 μL of plasma using a stable isotope substrate - 2,3,3-(2)H serine. The activity was determined by measurement of the product of enzyme reaction, 3,3-(2)H-cystathionine, using LC-MS\\/MS. The median enzyme activity in control plasma samples was 404 nmol\\/h\\/L (range 66-1,066; n = 57). In pyridoxine nonresponsive CBS deficient patients, the median plasma activity was 0 nmol\\/ho\\/L (range 0-9; n = 26), while in pyridoxine responsive patients the median activity was 16 nmol\\/hour\\/L (range 0-358; n = 28); this overlapped with the enzyme activity from control subject. The presence of CBS in human plasma was confirmed by an in silico search of the proteome database, and was further evidenced by the activation of CBS by S-adenosyl-L-methionine and pyridoxal 5\\'-phosphate, and by configuration of the detected reaction product, 3,3-(2)H-cystathionine, which was in agreement with the previously observed CBS reaction mechanism. We hypothesize that the CBS enzyme in plasma originates from liver cells, as the plasma CBS activities in patients with elevated liver aminotransferase activities were more than 30-fold increased. In this study, we have demonstrated that CBS is present in human plasma and that its catalytic activity is detectable by LC-MS\\/MS. CBS assay in human plasma brings new possibilities in the diagnosis of pyridoxine nonresponsive CBS deficiency.

  20. Crystallization and preliminary X-ray analysis of beta-alanine synthase from the yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Dobritzsch, D.; Gojkovic, Zoran; Andersen, Birgit;

    2003-01-01

    In eukaryotes and some bacteria, the third step of reductive pyrimidine catabolism is catalyzed by beta-alanine synthase (EC 3.5.1.6). Crystals of the recombinant enzyme from the yeast Saccharomyces kluyveri were obtained using sodium citrate as a precipitant. The crystals belong to space group P2...

  1. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hopperton, Kathryn E., E-mail: kathryn.hopperton@mail.utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Duncan, Robin E., E-mail: robin.duncan@uwaterloo.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Bazinet, Richard P., E-mail: richard.bazinet@utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Archer, Michael C., E-mail: m.archer@utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada)

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from {sup 14}C-labeled acetate to those supplied exogenously as {sup 14}C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare

  2. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye Jin [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Lee, Dong-Hyung [Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University, Busan (Korea, Republic of); Park, Seong-Hwan; Kim, Juil; Do, Kee Hun [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); An, Tae Jin; Ahn, Young Sup; Park, Chung Berm [Department of Herbal Crop Research, NIHHS, RDA, Eumseong (Korea, Republic of); Moon, Yuseok, E-mail: moon@pnu.edu [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Medical Research Institute and Research Institute for Basic Sciences, Pusan National University, Busan (Korea, Republic of)

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  3. 21 CFR 172.370 - Iron-choline citrate complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron-choline citrate complex. 172.370 Section 172... CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting approximately equimolecular quantities of ferric hydroxide, choline,...

  4. 21 CFR 573.580 - Iron-choline citrate complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron-choline citrate complex. 573.580 Section 573.580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made...

  5. Ventricular tachycardia after administration of sildenafil citrate: a case report

    Directory of Open Access Journals (Sweden)

    Rasmussen Jeppe G

    2007-08-01

    Full Text Available Abstract Background It has not previously been reported that sildenafil citrate causes malignant arrhythmias in humans. Case presentation A 41-year-old man developed sustained ventricular tachycardia following sildenafil citrate administration. Conclusion It cannot be dismissed that this patient experienced ventricular tachycardia as an adverse effect of sildenafil citrate administration.

  6. 21 CFR 184.1296 - Ferric ammonium citrate.

    Science.gov (United States)

    2010-04-01

    ... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid, followed by treatment with ammonium hydroxide, evaporating, and drying. The resulting product occurs in two forms depending on the stoichiometry of the initial reactants. (1) Ferric ammonium citrate (iron...

  7. 21 CFR 522.800 - Droperidol and fentanyl citrate injection.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Droperidol and fentanyl citrate injection. 522.800... § 522.800 Droperidol and fentanyl citrate injection. (a) Specifications. Droperidol and fentanyl citrate injection is a sterile solution containing 20 milligrams of droperidol and 0.4 milligram of fentanyl...

  8. Gibberellic Acid, Synthetic Auxins, and Ethylene Differentially Modulate α-l-Arabinofuranosidase Activities in Antisense 1-Aminocyclopropane-1-Carboxylic Acid Synthase Tomato Pericarp Discs1

    Science.gov (United States)

    Sozzi, Gabriel O.; Greve, L. Carl; Prody, Gerry A.; Labavitch, John M.

    2002-01-01

    α-l-Arabinofuranosidases (α-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different α-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. α-Af I and II are active throughout fruit ontogeny. α-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. α-Af II activity accounts for over 80% of the total α-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, α-Af III is ethylene dependent and specifically active during ripening. α-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas α-Af II and III acted on Na2CO3-soluble pectins. Different α-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. α-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only α-Af III activity. Results suggest that tomato α-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production. PMID:12114586

  9. Effect of simulated microgravity on nitric oxide synthase activity of osteocyte-like cell line MLO-Y4 in response to fluid shear stress

    Science.gov (United States)

    Sun, Lian-Wen; Yang, Xiao; Fan, Yu-Bo

    It is well known that microgravity could induce bone loss. However, the mechanism remains poorly understood. Osteocytes are extremely sensitive to fluid shear stress, even more than osteobleasts. The effect of simulated microgravity on osteocytes in response to fluid shear was investigated in this study in order to see if the mechanosensibility of osteocytes changed under simulated microgravity. The osteocyte-like cell line, MLO-Y4, was cultured and divided into four groups, including control (CON), control and shear (CONS), rotary (RT), rotary and shear (RTS). In RT and RTS, the cells were cultured in the rotary cell culture system to simulate microgravity condition. After 5 days, the cells in RTS and CONS were subjected to flow shear for 15 min. Then nitric oxide synthase (NOS) activity in the cells was measured using assay kit. The results showed that NOS activity in respond to fluid shear decreased significantly in RTS compared with CONS. In addition, there was significant difference in NOS activity between CONS and CON while no significant difference between RTS and RT. These indicates that the mechanosensibility of osteocytes decreased under simulated microgravity and this maybe the partly causes of the poor effect of exercise to counter microgravity-induced-bone loss. However, further research need to be done to support this finding.

  10. Activation of nuclear factor Κb and induction of inducible nitric oxide synthase by lipid-associated membrane proteins isolated from Mycoplasma penetrans

    Institute of Scientific and Technical Information of China (English)

    曾焱华; 吴移谋; 张文波; 余敏君; 朱翠明; 谭立志

    2004-01-01

    Background This study was designed to investigate the potential pathogenicity of Mycoplasma penetrans (M. penetrans) and its molecular mechanisms responsible for the induction of iNOS gene expression in mouse macrophages stimulated by lipid-associated membrane proteins (LAMPs) prepared from M. penetrans.Methods Mouse macrophages were stimulated with M. penetrans LAMPs to assay the production of nitric oxide (NO). The expression of inducible nitric oxide synthase (iNOS) was detected by RT-PCR and Western blotting. The activity of nuclear factor κB (NF-κB) and the effects of pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB, on the production of nitric oxide and the expression of iNOS were also assessed in mouse macrophages treated with M. penetrans LAMPs by indirect immunofluorescence and Western blotting.Results M. penetrans LAMPs stimulated mouse macrophages to produce nitric oxide in a dose- and time-dependent manner. The mRNA and protein levels of iNOS were also upregulated in response to LAMP stimulation and inhibited by PDTC treatment. M. penetrans LAMPs were found to trigger NF-κB activation, a possible mechanism for the induction of iNOS expression.Conclusion This study demonstrated that M. penetrans may be an important etiological factor of certain diseases due to the ability of M. penetrans LAMPs to stimulate the expression of iNOS, which is probably mediated through the activation of NF-κB.

  11. Gene cloning, structural gene and promoter identification, and active assay of the phosphatidylcholine synthase of Pseudomonas sp. strain 593.

    Science.gov (United States)

    He, Huoguang; Wu, Bin; Xiong, Min; Li, Yang; Wu, Wenhua; Wang, Xingguo

    2011-10-01

    Pseudomonas sp. strain 593, a soil bacterium, is able to use exogenous choline to synthesize phosphatidylcholine via phosphatidylcholine synthase (Pcs). A 2020 bp DNA fragment that hybridized to a Pcs probe was cloned. This fragment contained a large open reading frame (ORF) with two potential ATG start sites that would encode for 293 and 231 amino acid proteins. Fragments containing the two ORFs encoded Pcs when they were inserted into the expression vector pET23a and expressed under the control of the T7 promoter in Escherichia coli BL21(DE3) pLysS. However, when the two ORFs were inserted into the cloning vector pMD18-T and expressed without control of the plasmid promoter in E. coli DH5α, only the larger clone exhibited Pcs activity. This suggested that the larger fragment contained a native promoter driving expression of the smaller ORF. A promoter activity assay, in which DNA fragments were inserted into the promoter-probe plasmid pCB182 and β-galactosidase activity of E. coli transformants was tested, demonstrated that a promoter is indeed present in the DNA region. All results together indicate that the 696 bp ORF, not the larger 897 bp ORF, encodes the Pcs in Pseudomonas sp. strain 593 and carries a promoter in front of its 5' terminus. PMID:21939372

  12. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB.

    Science.gov (United States)

    Yu, Zhiyuan; Zhang, Wenzheng; Kone, Bruce C

    2002-01-01

    Prolific generation of NO by inducible nitric oxide synthase (iNOS) can cause unintended injury to host cells during glomerulonephritis and other inflammatory diseases. While much is known about the mechanisms of iNOS induction, few transcriptional repressors have been found. We explored the role of signal transducers and activators of transcription 3 (STAT3) proteins in interleukin (IL)-1beta- and lipopolysaccharide (LPS)+interferon (IFN)-gamma-mediated iNOS induction in murine mesangial cells. Both stimuli induced rapid phosphorylation of STAT3 and sequence-specific STAT3 DNA-binding activity. Supershift assays with a STAT3 element probe demonstrated that nuclear factor kappaB (NF-kappaB) p65 and p50 complexed with STAT3 in the DNA-protein complex. The direct interaction of STAT3 and NF-kappaB p65 was verified in vivo by co-immunoprecipitation and in vitro by pull-down assays with glutathione S-transferase-NF-kappaB p65 fusion protein and in vitro -translated STAT3alpha. Overexpression of STAT3 dramatically inhibited IL-1beta- or LPS+IFN-gamma-mediated induction of iNOS promoter-luciferase constructs that contained the wild-type iNOS promoter or ones harbouring mutated STAT-binding elements. In tests of indirect inhibitory effects of STAT3, overexpression of STAT3 dramatically inhibited the activity of an NF-kappaB-dependent promoter devoid of STAT-binding elements without affecting NF-kappaB DNA-binding activity. Thus STAT3, via direct interactions with NF-kappaB p65, serves as a dominant-negative inhibitor of NF-kappaB activity to suppress indirectly cytokine induction of the iNOS promoter in mesangial cells. These results provide a new model for the termination of NO production by activated iNOS following exposure to pro-inflammatory stimuli. PMID:12057007

  13. Chiral hydroxylation at the mononuclear nonheme Fe(II center of 4-(S hydroxymandelate synthase--a structure-activity relationship analysis.

    Directory of Open Access Journals (Sweden)

    Cristiana M L Di Giuro

    Full Text Available (S-Hydroxymandelate synthase (Hms is a nonheme Fe(II dependent dioxygenase that catalyzes the oxidation of 4-hydroxyphenylpyruvate to (S-4-hydroxymandelate by molecular oxygen. In this work, the substrate promiscuity of Hms is characterized in order to assess its potential for the biosynthesis of chiral α-hydroxy acids. Enzyme kinetic analyses, the characterization of product spectra, quantitative structure activity relationship (QSAR analyses and in silico docking studies are used to characterize the impact of substrate properties on particular steps of catalysis. Hms is found to accept a range of α-oxo acids, whereby the presence of an aromatic substituent is crucial for efficient substrate turnover. A hydrophobic substrate binding pocket is identified as the likely determinant of substrate specificity. Upon introduction of a steric barrier, which is suspected to obstruct the accommodation of the aromatic ring in the hydrophobic pocket during the final hydroxylation step, the racemization of product is obtained. A steady state kinetic analysis reveals that the turnover number of Hms strongly correlates with substrate hydrophobicity. The analysis of product spectra demonstrates high regioselectivity of oxygenation and a strong coupling efficiency of C-C bond cleavage and subsequent hydroxylation for the tested substrates. Based on these findings the structural basis of enantioselectivity and enzymatic activity is discussed.

  14. Nimbolide, a neem limonoid inhibits Phosphatidyl Inositol-3 Kinase to activate Glycogen Synthase Kinase-3β in a hamster model of oral oncogenesis.

    Science.gov (United States)

    Sophia, Josephraj; Kiran Kishore T, Kranthi; Kowshik, Jaganathan; Mishra, Rajakishore; Nagini, Siddavaram

    2016-02-23

    Glycogen synthase kinase-3β (GSK-3β), a serine/threonine kinase is frequently inactivated by the oncogenic signalling kinases PI3K/Akt and MAPK/ERK in diverse malignancies. The present study was designed to investigate GSK-3β signalling circuits in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model and the therapeutic potential of the neem limonoid nimbolide. Inactivation of GSK-3β by phosphorylation at serine 9 and activation of PI3K/Akt, MAPK/ERK and β-catenin was associated with increased cell proliferation and apoptosis evasion during stepwise evolution of HBP carcinomas. Administration of nimbolide inhibited PI3K/Akt signalling with consequent activation of GSK-3β thereby inducing trafficking of β-catenin away from the nucleus and enhancing the expression of miR-126 and let-7. Molecular docking studies confirmed interaction of nimbolide with PI3K, Akt, ERK and GSK-3β. Furthermore, nimbolide attenuated cell proliferation and induced apoptosis as evidenced by increased p-cyclin D1(Thr286) and pro-apoptotic proteins. The present study has unravelled aberrant phosphorylation as a key determinant for oncogenic signalling and acquisition of cancer hallmarks in the HBP model. The study has also provided mechanistic insights into the chemotherapeutic potential of nimbolide that may be a useful addition to the armamentarium of natural compounds targeting PI3K for oral cancer treatment.

  15. Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase.

    Science.gov (United States)

    Kim, Jong Hun; Auger, Cyril; Kurita, Ikuko; Anselm, Eric; Rivoarilala, Lalainasoa Odile; Lee, Hyong Joo; Lee, Ki Won; Schini-Kerth, Valérie B

    2013-11-30

    This study examined the ability of Aronia melanocarpa (chokeberry) juice, a rich source of polyphenols, to cause NO-mediated endothelium-dependent relaxations of isolated coronary arteries and, if so, to determine the underlying mechanism and the active polyphenols. A. melanocarpa juice caused potent endothelium-dependent relaxations in porcine coronary artery rings. Relaxations to A. melanocarpa juice were minimally affected by inhibition of the formation of vasoactive prostanoids and endothelium-derived hyperpolarizing factor-mediated responses, and markedly reduced by N(ω)-nitro-l-arginine (endothelial NO synthase (eNOS) inhibitor), membrane permeant analogs of superoxide dismutase and catalase, PP2 (Src kinase inhibitor), and wortmannin (PI3-kinase inhibitor). In cultured endothelial cells, A. melanocarpa juice increased the formation of NO as assessed by electron paramagnetic resonance spectroscopy using the spin trap iron(II)diethyldithiocarbamate, and reactive oxygen species using dihydroethidium. These responses were associated with the redox-sensitive phosphorylation of Src, Akt and eNOS. A. melanocarpa juice-derived fractions containing conjugated cyanidins and chlorogenic acids induced the phosphorylation of Akt and eNOS. The present findings indicate that A. melanocarpa juice is a potent stimulator of the endothelial formation of NO in coronary arteries; this effect involves the phosphorylation of eNOS via the redox-sensitive activation of the Src/PI3-kinase/Akt pathway mostly by conjugated cyanidins and chlorogenic acids.

  16. Crystal Structure of Mouse Thymidylate Synthase in Tertiary Complex with dUMP and Raltitrexed Reveals N-Terminus Architecture and Two Different Active Site Conformations

    Directory of Open Access Journals (Sweden)

    Anna Dowierciał

    2014-01-01

    Full Text Available The crystal structure of mouse thymidylate synthase (mTS in complex with substrate dUMP and antifolate inhibitor Raltitrexed is reported. The structure reveals, for the first time in the group of mammalian TS structures, a well-ordered segment of 13 N-terminal amino acids, whose ordered conformation is stabilized due to specific crystal packing. The structure consists of two homodimers, differing in conformation, one being more closed (dimer AB and thus supporting tighter binding of ligands, and the other being more open (dimer CD and thus allowing weaker binding of ligands. This difference indicates an asymmetrical effect of the binding of Raltitrexed to two independent mTS molecules. Conformational changes leading to a ligand-induced closing of the active site cleft are observed by comparing the crystal structures of mTS in three different states along the catalytic pathway: ligand-free, dUMP-bound, and dUMP- and Raltitrexed-bound. Possible interaction routes between hydrophobic residues of the mTS protein N-terminal segment and the active site are also discussed.

  17. Citrate Anticoagulation for CRRT in Children: Comparison with Heparin

    Directory of Open Access Journals (Sweden)

    Sara Nicole Fernández

    2014-01-01

    Full Text Available Regional anticoagulation with citrate is an alternative to heparin in continuous renal replacement therapies, which may prolong circuit lifetime and decrease hemorrhagic complications. A retrospective comparative cohort study based on a prospective observational registry was conducted including critically ill children undergoing CRRT. Efficacy, measured as circuit survival, and secondary effects of heparin and citrate were compared. 12 patients on CRRT with citrate anticoagulation and 24 patients with heparin anticoagulation were analyzed. Median citrate dose was 2.6 mmol/L. Median calcium dose was 0.16 mEq/kg/h. Median heparin dose was 15 UI/kg/h. Median circuit survival was 48 hours with citrate and 31 hours with heparin (P=0.028. 66.6% of patients treated with citrate developed mild metabolic alkalosis, which was directly related to citrate dose. There were no cases of citrate intoxication: median total calcium/ionic calcium index (CaT/I of 2.16 and a maximum CaT/I of 2.33, without metabolic acidosis. In the citrate group, 45.5% of patients developed hypochloremia and 27.3% hypomagnesemia. In the heparin group, 27.8% developed hypophosphatemia. Three patients were moved from heparin to citrate to control postoperatory bleeding. In conclusion citrate is a safe and effective anticoagulation method for CRRT in children and it achieves longer circuit survival than heparin.

  18. Effects of L-arginine on serum nitric oxide, nitric oxide synthase and mucosal Na+-K+-A TPase and nitric oxide synthase activity in segmental small-bowel autotransplantation model

    Institute of Scientific and Technical Information of China (English)

    Ting-Liang Fu; Wen-Tong Zhang; Qiang-Pu Chen; Yong Gao; Yu-Hong Hu; Dian-Liang Zhang

    2005-01-01

    AIM: To explore a simple method to create intestinal autotransplantation in rats and growing pigs and to investigate the effect of L-arginine supplementation on serum nitric oxide (NO), nitric oxide synthase (NOS) and intestinal mucosal NOS and Na+-K+-ATPase activity during cold ischemia-reperfusion (IR) in growing pigs.METHODS: In adult Wistar rat models of small bowel autotransplantation, a fine tube was inserted into mesenteric artery via the abdominal aorta. The superior mesenteric artery and vein were occluded. Isolated terminal ileum segment was irrigated with Ringer'ssolution at 4 ℃ and preserved in the same solution at 0-4 ℃ for 60 min. Then, the tube was removed and reperfusion was established. In growing pig models, a terminal ileum segment, 50 cm in length, was isolated and its mesenteric artery was irrigated via a needle with lactated Ringer's solution at 4 ℃. The method and period of cold preservation and reperfusion were described above. Ten white outbred pigs were randomly divided into control group and experimental group. L-arginine (150 mg/kg) was continuously infused for 15 min before reperfusion and for 30 min after reperfusion in the experimental group. One, 24, 48, and 72 h after reperfusion, peripheral vein blood was respectively collected for NO and NOS determination. At the same time point, intestinal mucosae were also obtained for NOS and Na+-K+-ATPase activity measurement.RESULTS: In adult rat models, 16 of 20 rats sustained the procedure, three died of hemorrhage shock and one of deep anesthesia. In growing pig models, the viability of small bowel graft remained for 72 h after cold IR in eight of 10 pigs. In experimental group, serum NO level at 1 and 24 h after reperfusion increased significantly when compared with control group at the same time point (152.2±61.4 μmol/L vs60.8±31.6 μmol/L, t= 2.802,P = 0.02<0.05; 82.2±24.0 μmol/L vs 54.0±24.3 μmol/L, t = 2.490, P = 0.04<0.05). Serum NO level increased significantly at 1

  19. Transcriptional activation and cell cycle block are the keys for 5-fluorouracil induced up-regulation of human thymidylate synthase expression.

    Directory of Open Access Journals (Sweden)

    Alessio Ligabue

    Full Text Available BACKGROUND: 5-fluorouracil, a commonly used chemotherapeutic agent, up-regulates expression of human thymidylate synthase (hTS. Several different regulatory mechanisms have been proposed to mediate this up-regulation in distinct cell lines, but their specific contributions in a single cell line have not been investigated to date. We have established the relative contributions of these previously proposed regulatory mechanisms in the ovarian cancer cell line 2008 and the corresponding cisplatin-resistant and 5-FU cross-resistant-subline C13*. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA polymerase II inhibitor DRB treated cell cultures, we showed that 70-80% of up-regulation of hTS results from transcriptional activation of TYMS mRNA. Moreover, we report that 5-FU compromises the cell cycle by blocking the 2008 and C13* cell lines in the S phase. As previous work has established that TYMS mRNA is synthesized in the S and G(1 phase and hTS is localized in the nuclei during S and G(2-M phase, the observed cell cycle changes are also expected to affect the intracellular regulation of hTS. Our data also suggest that the inhibition of the catalytic activity of hTS and the up-regulation of the hTS protein level are not causally linked, as the inactivated ternary complex, formed by hTS, deoxyuridine monophosphate and methylenetetrahydrofolate, was detected already 3 hours after 5-FU exposure, whereas substantial increase in global TS levels was detected only after 24 hours. CONCLUSIONS/SIGNIFICANCE: Altogether, our data indicate that constitutive TYMS mRNA transcription, cell cycle-induced hTS regulation and hTS enzyme stability are the three key mechanisms responsible for 5-fluorouracil induced up-regulation of human thymidylate synthase expression in the two ovarian cancer cell lines studied. As these three independent regulatory phenomena occur in a precise order, our work provides a feasible rationale for earlier observed synergistic combinations of 5

  20. Comparative study of two box H/ACA ribonucleoprotein pseudouridine-synthases: relation between conformational dynamics of the guide RNA, enzyme assembly and activity.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Fourmann

    Full Text Available Multiple RNA-guided pseudouridine synthases, H/ACA ribonucleoprotein particles (RNPs which contain a guide RNA and four proteins, catalyze site-specific post-transcriptional isomerization of uridines into pseudouridines in substrate RNAs. In archaeal particles, the guide small RNA (sRNA is anchored by the pseudouridine synthase aCBF5 and the ribosomal protein L7Ae. Protein aNOP10 interacts with both aCBF5 and L7Ae. The fourth protein, aGAR1, interacts with aCBF5 and enhances catalytic efficiency. Here, we compared the features of two H/ACA sRNAs, Pab21 and Pab91, from Pyrococcus abyssi. We found that aCBF5 binds much more weakly to Pab91 than to Pab21. Surprisingly, the Pab91 sRNP exhibits a higher catalytic efficiency than the Pab21 sRNP. We thus investigated the molecular basis of the differential efficiencies observed for the assembly and catalytic activity of the two enzymes. For this, we compared profiles of the extent of lead-induced cleavages in these sRNAs during a stepwise reconstitution of the sRNPs, and analyzed the impact of the absence of the aNOP10-L7Ae interaction. Such probing experiments indicated that the sRNAs undergo a series of conformational changes upon RNP assembly. These changes were also evaluated directly by circular dichroism (CD spectroscopy, a tool highly adapted to analyzing RNA conformational dynamics. In addition, our results reveal that the conformation of helix P1 formed at the base of the H/ACA sRNAs is optimized in Pab21 for efficient aCBF5 binding and RNP assembly. Moreover, P1 swapping improved the assembly of the Pab91 sRNP. Nonetheless, efficient aCBF5 binding probably also relies on the pseudouridylation pocket which is not optimized for high activity in the case of Pab21.

  1. Comparative study of two box H/ACA ribonucleoprotein pseudouridine-synthases: relation between conformational dynamics of the guide RNA, enzyme assembly and activity.

    Science.gov (United States)

    Fourmann, Jean-Baptiste; Tillault, Anne-Sophie; Blaud, Magali; Leclerc, Fabrice; Branlant, Christiane; Charpentier, Bruno

    2013-01-01

    Multiple RNA-guided pseudouridine synthases, H/ACA ribonucleoprotein particles (RNPs) which contain a guide RNA and four proteins, catalyze site-specific post-transcriptional isomerization of uridines into pseudouridines in substrate RNAs. In archaeal particles, the guide small RNA (sRNA) is anchored by the pseudouridine synthase aCBF5 and the ribosomal protein L7Ae. Protein aNOP10 interacts with both aCBF5 and L7Ae. The fourth protein, aGAR1, interacts with aCBF5 and enhances catalytic efficiency. Here, we compared the features of two H/ACA sRNAs, Pab21 and Pab91, from Pyrococcus abyssi. We found that aCBF5 binds much more weakly to Pab91 than to Pab21. Surprisingly, the Pab91 sRNP exhibits a higher catalytic efficiency than the Pab21 sRNP. We thus investigated the molecular basis of the differential efficiencies observed for the assembly and catalytic activity of the two enzymes. For this, we compared profiles of the extent of lead-induced cleavages in these sRNAs during a stepwise reconstitution of the sRNPs, and analyzed the impact of the absence of the aNOP10-L7Ae interaction. Such probing experiments indicated that the sRNAs undergo a series of conformational changes upon RNP assembly. These changes were also evaluated directly by circular dichroism (CD) spectroscopy, a tool highly adapted to analyzing RNA conformational dynamics. In addition, our results reveal that the conformation of helix P1 formed at the base of the H/ACA sRNAs is optimized in Pab21 for efficient aCBF5 binding and RNP assembly. Moreover, P1 swapping improved the assembly of the Pab91 sRNP. Nonetheless, efficient aCBF5 binding probably also relies on the pseudouridylation pocket which is not optimized for high activity in the case of Pab21.

  2. CCR5-Dependent Activation of mTORC1 Regulates Translation of Inducible NO Synthase and COX-2 during Encephalomyocarditis Virus Infection.

    Science.gov (United States)

    Shaheen, Zachary R; Naatz, Aaron; Corbett, John A

    2015-11-01

    Encephalomyocarditis virus (EMCV) infection of macrophages results in the expression of a number of inflammatory and antiviral genes, including inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. EMCV-induced macrophage activation has been shown to require the presence of CCR5 and the activation of PI3K-dependent signaling cascades. The purpose of this study was to determine the role of PI3K in regulating the macrophage responses to EMCV. We show that PI3K regulates EMCV-stimulated iNOS and COX-2 expression by two independent mechanisms. In response to EMCV infection, Akt is activated and regulates the translation of iNOS and COX-2 through the mammalian target of rapamycin complex (mTORC)1. The activation of mTORC1 during EMCV infection is CCR5-dependent and appears to function in a manner that promotes the translation of iNOS and COX-2. CCR5-dependent mTORC1 activation functions as an antiviral response, as mTORC1 inhibition increases the expression of EMCV polymerase. PI3K also regulates the transcriptional induction of iNOS and COX-2 in response to EMCV infection by a mechanism that is independent of Akt and mTORC1 regulation. These findings indicate that macrophage expression of the inflammatory genes iNOS and COX-2 occurs via PI3K- and Akt-dependent translational control of mTORC1 and PI3K-dependent, Akt-independent transcriptional control.

  3. Effect of the structural and morphological properties of Cu/ZnO catalysts prepared by citrate method on their activity toward methanol synthesis from CO2 and H2 under mild reaction conditions

    OpenAIRE

    Karelovic, Alejandro; Bargibant, Alice; Fernandez Rojas, Camila; Ruiz, Patricio

    2012-01-01

    Methanol synthesis from CO2 + H2 was studied at mild reaction conditions (140–250 °C and 7 bar) over Cu/ZnO catalysts prepared by citrate method. The copper content and calcination temperatures were varied so as to obtain a wide range in copper particle size (2–12 nm). Methanol formation rates vary between 0.84 and 2.98 × 10−3 s−1 at 180 °C. Methanol selectivity can attain 100% at temperatures lower than 160 °C. At higher temperatures, CO formation by reverse water gas shift reaction is highl...

  4. A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes.

    Science.gov (United States)

    Falara, Vasiliki; Pichersky, Eran; Kanellis, Angelos K

    2010-09-01

    The resin of Cistus creticus subsp. creticus, a plant native to Crete, is rich in labdane-type diterpenes with significant antimicrobial and cytotoxic activities. The full-length cDNA of a putative diterpene synthase was isolated from a C. creticus trichome cDNA library. The deduced amino acid sequence of this protein is highly similar (59%-70% identical) to type B diterpene synthases from other angiosperm species that catalyze a protonation-initiated cyclization. The affinity-purified recombinant Escherichia coli-expressed protein used geranylgeranyl diphosphate as substrate and catalyzed the formation of copal-8-ol diphosphate. This diterpene synthase, therefore, was named CcCLS (for C. creticus copal-8-ol diphosphate synthase). Copal-8-ol diphosphate is likely to be an intermediate in the biosynthesis of the oxygen-containing labdane-type diterpenes that are abundant in the resin of this plant. RNA gel-blot analysis revealed that CcCLS is preferentially expressed in the trichomes, with higher transcript levels found in glands on young leaves than on fully expanded leaves, while CcCLS transcript levels increased after mechanical wounding. Chemical analyses revealed that labdane-type diterpene production followed a similar pattern, with higher concentrations in trichomes of young leaves and increased accumulation upon wounding.

  5. A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes.

    Science.gov (United States)

    Falara, Vasiliki; Pichersky, Eran; Kanellis, Angelos K

    2010-09-01

    The resin of Cistus creticus subsp. creticus, a plant native to Crete, is rich in labdane-type diterpenes with significant antimicrobial and cytotoxic activities. The full-length cDNA of a putative diterpene synthase was isolated from a C. creticus trichome cDNA library. The deduced amino acid sequence of this protein is highly similar (59%-70% identical) to type B diterpene synthases from other angiosperm species that catalyze a protonation-initiated cyclization. The affinity-purified recombinant Escherichia coli-expressed protein used geranylgeranyl diphosphate as substrate and catalyzed the formation of copal-8-ol diphosphate. This diterpene synthase, therefore, was named CcCLS (for C. creticus copal-8-ol diphosphate synthase). Copal-8-ol diphosphate is likely to be an intermediate in the biosynthesis of the oxygen-containing labdane-type diterpenes that are abundant in the resin of this plant. RNA gel-blot analysis revealed that CcCLS is preferentially expressed in the trichomes, with higher transcript levels found in glands on young leaves than on fully expanded leaves, while CcCLS transcript levels increased after mechanical wounding. Chemical analyses revealed that labdane-type diterpene production followed a similar pattern, with higher concentrations in trichomes of young leaves and increased accumulation upon wounding. PMID:20595348

  6. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...... gene product had no PRPP synthase activity. In contrast, expression of five pairwise combinations of PRS genes resulted in the formation of active PRPP synthase. These combinations were PRS1 PRS2, PRS1 PRS3, and PRS1 PRS4, as well as PRS5 PRS2 and PRS5 PRS4. None of the remaining five possible pairwise...... combinations of PRS genes appeared to produce active enzyme. Extract of an E. coli strain containing a plasmid-borne PRS1 gene and a chromosome-borne PRS3 gene contained detectable PRPP synthase activity, whereas extracts of strains containing PRS1 PRS2, PRS1 PRS4, PRS5 PRS2, or PRS5 PRS4 contained...

  7. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    Science.gov (United States)

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  8. A highly prevalent equine glycogen storage disease is explained by constitutive activation of a mutant glycogen synthase

    DEFF Research Database (Denmark)

    Maile, C A; Hingst, Janne Rasmuss; Mahalingan, K K;

    2016-01-01

    and recombinant enzyme kinetic assays in vitro and homology modelling in silico, were used to investigate the hypothesis that higher GS activity in affected horse muscle is caused by higher GS expression, dysregulation, or constitutive activation via a conformational change. RESULTS: PSSM1-affected horse muscle...

  9. Leukotriene-C4 Synthase, a Critical Enzyme in the Activation of Store-independent Orai1/Orai3 Channels, Is Required for Neointimal Hyperplasia*

    Science.gov (United States)

    Zhang, Wei; Zhang, Xuexin; González-Cobos, José C.; Stolwijk, Judith A.; Matrougui, Khalid; Trebak, Mohamed

    2015-01-01

    Leukotriene-C4 synthase (LTC4S) generates LTC4 from arachidonic acid metabolism. LTC4 is a proinflammatory factor that acts on plasma membrane cysteinyl leukotriene receptors. Recently, however, we showed that LTC4 was also a cytosolic second messenger that activated store-independent LTC4-regulated Ca2+ (LRC) channels encoded by Orai1/Orai3 heteromultimers in vascular smooth muscle cells (VSMCs). We showed that Orai3 and LRC currents were up-regulated in medial and neointimal VSMCs after vascular injury and that Orai3 knockdown inhibited LRC currents and neointimal hyperplasia. However, the role of LTC4S in neointima formation remains unknown. Here we show that LTC4S knockdown inhibited LRC currents in VSMCs. We performed in vivo experiments where rat left carotid arteries were injured using balloon angioplasty to cause neointimal hyperplasia. Neointima formation was associated with up-regulation of LTC4S protein expression in VSMCs. Inhibition of LTC4S expression in injured carotids by lentiviral particles encoding shRNA inhibited neointima formation and inward and outward vessel remodeling. LRC current activation did not cause nuclear factor for activated T cells (NFAT) nuclear translocation in VSMCs. Surprisingly, knockdown of either LTC4S or Orai3 yielded more robust and sustained Akt1 and Akt2 phosphorylation on Ser-473/Ser-474 upon serum stimulation. LTC4S and Orai3 knockdown inhibited VSMC migration in vitro with no effect on proliferation. Akt activity was suppressed in neointimal and medial VSMCs from injured vessels at 2 weeks postinjury but was restored when the up-regulation of either LTC4S or Orai3 was prevented by shRNA. We conclude that LTC4S and Orai3 altered Akt signaling to promote VSMC migration and neointima formation. PMID:25540197

  10. Study on structure-activity relationship of mutation-dependent herbicide resistance acetohydroxyacid synthase through 3D-QSAR and mutation

    Institute of Scientific and Technical Information of China (English)

    YU ZhiHong; NIU CongWei; BAN ShuRong; WEN Xin; XI Zhen

    2007-01-01

    Seventy-four sulfonylureas were synthesized and tested for their inhibitory activity against the whole enzyme of E. Coli acetohydroxyacid synthase (AHAS, EC 2.2.1.6) isoenzyme Ⅱ, and 3D-QSAR analyses were performed based on these inhibitory activities. The binding conformation of chlorimuron-ethyl, a commercial herbicide of AHAS, in the crystal structure of AHAS complex was extracted and used as template to build the initial three-dimensional structure of other sulfonylureas, and then all structures were fully geometry optimized. After systematic optimization of the alignment rule, molecular orientation, grid space and attenuation factor, two satisfactory models with excellent performances (CoMFA: q2 = 0.735, r2 = 0.954, n = 7, r 2pred = 0.832; CoMSIA: q2 = 0.721, r2 = 0.913, n = 8, r 2pred = 0.844) were established. By mapping the 3D contour maps of CoMFA and CoMSIA models into the possible inhibitory active site in the crystal structure of catalytic subunit of yeast AHAS, a plausible binding model for AHAS, with best fit QSAR in the literature so far, was proposed. Moreover, the results of 3D-QSAR were further utilized to interpret resistance of site-directed mutants. A relative activity index (RAI) for AHAS enzyme mutant was defined for the first time to relate the 3D-QSAR and resistance of mutants. This study, for the first time, demonstrated that combination of 3D-QSAR and enzyme mutation can be used to decipher the molecular basis of ligand-receptor interaction mechanism. This study refined our understanding of the ligand-receptor interaction and resistance mechanism in AHAS-sulfonylurea system, and provided basis for designing new potent herbicides to combat the herbicide resistance.

  11. Identification of novel membrane-associated prostaglandin E synthase-1 (mPGES-1) inhibitors with anti-influenza activities in vitro.

    Science.gov (United States)

    Park, Ji Hoon; Park, Eun Beul; Lee, Jae Yeol; Min, Ji-Young

    2016-01-22

    Influenza A virus (IAV) is a major public health concern that leads to high morbidity and mortality worldwide. Despite various vaccination programs and development of drugs targeting essential viral proteins, the emergence of drug-resistant variants has been frequently reported and the therapeutic options are limited. Because exaggerated inflammation is considered as an important factor in disease pathogenesis, immunomodulatory agents that effectively suppress cytokine responses are needed for the treatment of IAV infection. Membrane-associated prostaglandin E synthase-1 (mPGES-1) is an enzyme responsible for the production of prostaglandin E2 (PGE2) that is the best-characterized immune modulatory lipid in vitro and in vivo models of inflammation. In the present study, we tested the anti-influenza activities of mPGES-1 inhibitors, using a phenotype-based assay involving image analyses. Seven primary hits among 49 compounds targeting mPGES-1 exhibited anti-influenza activities against A/Puerto Rico/8/1934 (H1N1) in a dose-dependent manner. The most effective hit, MPO-0047, suppressed influenza-induced p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) activation. We also showed that mRNA levels of TNF-α, IL-8, CCL5/RANTES, and CXCL10/IP-10 were significantly reduced by the treatment of influenza-infected cells with MPO-0047. Exogenous PGE2 reversed the inhibitory effects of MPO-0047. Our results showed that this selective mPGES-1 inhibitor has anti-influenza effects by inhibiting PGE2 production, which suppresses the induction of pro-inflammatory genes. Taken together our data revealed that mPGES-1 inhibitor has the potential for further development as an influenza therapeutic agent. PMID:26673392

  12. Process-driven bacterial community dynamics are key to cured meat colour formation by coagulase-negative staphylococci via nitrate reductase or nitric oxide synthase activities.

    Science.gov (United States)

    Sánchez Mainar, María; Leroy, Frédéric

    2015-11-01

    The cured colour of European raw fermented meats is usually achieved by nitrate-into-nitrite reduction by coagulase-negative staphylococci (CNS), subsequently generating nitric oxide to form the relatively stable nitrosomyoglobin pigment. The present study aimed at comparing this classical curing procedure, based on nitrate reductase activity, with a potential alternative colour formation mechanism, based on nitric oxide synthase (NOS) activity, under different acidification profiles. To this end, meat models with and without added nitrate were fermented with cultures of an acidifying strain (Lactobacillus sakei CTC 494) and either a nitrate-reducing Staphylococcus carnosus strain or a rare NOS-positive CNS strain (Staphylococcus haemolyticus G110), or by relying on the background microbiota. Satisfactory colour was obtained in the models prepared with added nitrate and S. carnosus. In the presence of nitrate but absence of added CNS, however, cured colour was only obtained when L. sakei CTC 494 was also omitted. This was ascribed to the pH dependency of the emerging CNS background microbiota, selecting for nitrate-reducing Staphylococcus equorum strains at mild acidification conditions but for Staphylococcus saprophyticus strains with poor colour formation capability when the pH decrease was more rapid. This reliance of colour formation on the composition of the background microbiota was further explored by a side experiment, demonstrating the heterogeneity in nitrate reduction of a set of 88 CNS strains from different species. Finally, in all batches prepared with S. haemolyticus G110, colour generation failed as the strain was systematically outcompeted by the background microbiota, even when imposing milder acidification profiles. Thus, when aiming at colour formation through CNS metabolism, technological processing can severely interfere with the composition and functionality of the meat-associated CNS communities, for both nitrate reductase and NOS activities

  13. Structural basis for morpheein-type allosteric regulation of Escherichia coli glucosamine-6-phosphate synthase: equilibrium between inactive hexamer and active dimer.

    Science.gov (United States)

    Mouilleron, Stéphane; Badet-Denisot, Marie-Ange; Pecqueur, Ludovic; Madiona, Karine; Assrir, Nadine; Badet, Bernard; Golinelli-Pimpaneau, Béatrice

    2012-10-01

    The amino-terminal cysteine of glucosamine-6-phosphate synthase (GlmS) acts as a nucleophile to release and transfer ammonia from glutamine to fructose 6-phosphate through a channel. The crystal structure of the C1A mutant of Escherichia coli GlmS, solved at 2.5 Å resolution, is organized as a hexamer, where the glutaminase domains adopt an inactive conformation. Although the wild-type enzyme is active as a dimer, size exclusion chromatography, dynamic and quasi-elastic light scattering, native polyacrylamide gel electrophoresis, and ultracentrifugation data show that the dimer is in equilibrium with a hexameric state, in vitro and in cellulo. The previously determined structures of the wild-type enzyme, alone or in complex with glucosamine 6-phosphate, are also consistent with a hexameric assembly that is catalytically inactive because the ammonia channel is not formed. The shift of the equilibrium toward the hexameric form in the presence of cyclic glucosamine 6-phosphate, together with the decrease of the specific activity with increasing enzyme concentration, strongly supports product inhibition through hexamer stabilization. Altogether, our data allow us to propose a morpheein model, in which the active dimer can rearrange into a transiently stable form, which has the propensity to form an inactive hexamer. This would account for a physiologically relevant allosteric regulation of E. coli GlmS. Finally, in addition to cyclic glucose 6-phosphate bound at the active site, the hexameric organization of E. coli GlmS enables the binding of another linear sugar molecule. Targeting this sugar-binding site to stabilize the inactive hexameric state is therefore suggested for the development of specific antibacterial inhibitors.

  14. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    Science.gov (United States)

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  15. Pyrolytic citrate synthesis and ozone annealing

    International Nuclear Information System (INIS)

    A pyrolytic procedure is described that via a citrate synthesis allowed us to obtain very fine grained YBCO powders that, after a first furnace thermal treatment in ozone, results already to contain a large amount of superconducting microcrystals. A second identical thermal treatment gives a final product strongly textured, as shown by magnetic torque measurements. Complementary structural and diamagnetic measurement show the high quality of these sintered pellets. The role covered by both the pyrolytic preparation and the ozone annealing are discussed

  16. Pyrolitic citrate synthesis and ozone annealing

    International Nuclear Information System (INIS)

    A pyrolytic procedure that via a citrate synthesis allowed to obtain very fine grained YBCO powders that, after a first furnace thermal treatment in ozone, result already to contain a large amount of superconducting microcystals is described. A second identical thermal treatment gives a final product strongly textured, as shown by magnetic torque measurements. Complementary structural and diamagnetic measurements show the high quality of these sintered pellets. The role covered by both the pyrolytic preparation and the ozone annealing are discussed

  17. Nickel electrodeposition from novel citrate bath

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new type of electroplating bath suitable for nickel electrodeposition was developed. Trisodium citrate was used as a complexing agent and a buffer in the bath. The buffering capacity between trisodium citrate and boric acid were compared. The effects were investigated under different conditions of bath composition, current density, pH and temperature on the potentiodynamic cathodic polarization curves, cathodic current efficiency and throwing index, as well as the electrical conductivity of these baths. The optimum conditions for producing sound and satisfactory nickel deposits were: NiSO4·6H2O 350 g/L, NiC12·6H2O 45 g/L and Na3C6H5O7 30 g/L at pH=4 and 55 ℃. The surface morphology of the as-plated Ni deposit was examined by SEM. The results reveal that the nickel deposition obtained from the optimum conditions are composed of compact, non-porous fine grains covering the entire surface. X-ray analysis shows that nickel deposits obtained from the citrate bath have a fine crystal structure compared with deposits from the Watts bath.

  18. Ontogeny of nitric oxide synthase I and III protein expression and enzymatic activity in the guinea pig hippocampus.

    Science.gov (United States)

    Kimura, K A; Reynolds, J N; Brien, J F

    1999-09-01

    60. NOS enzymatic activity increased throughout prenatal and postnatal life, and attained highest activity in the adult. The developmental profile of NOS III protein expression was similar to that for NOS enzymatic activity. There was differential expression of NOS I protein, which was low in the GD 50 fetus and increased rapidly during fetal development to attain adult level by GD 62. These data suggest that the guinea pig is a reliable animal model in which to investigate the roles of NO in normal hippocampal development and in mediating neuronal injury in this brain region. PMID:10521566

  19. Maintained activity of glycogen synthase kinase-3{beta} despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yong-Whan [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yoon, Seung-Yong, E-mail: ysy@amc.seoul.kr [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Jung-Eun [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sang-Min [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Hui-Sun; Choe, Han [Department of Physiology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Seung-Chul [CrystalGenomics, Seoul (Korea, Republic of); Kim, Dong-Hou, E-mail: dhkim@amc.seoul.kr [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2010-04-30

    Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.

  20. TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection.

    Science.gov (United States)

    Schleicher, Ulrike; Paduch, Katrin; Debus, Andrea; Obermeyer, Stephanie; König, Till; Kling, Jessica C; Ribechini, Eliana; Dudziak, Diana; Mougiakakos, Dimitrios; Murray, Peter J; Ostuni, Renato; Körner, Heinrich; Bogdan, Christian

    2016-05-01

    Neutralization or deletion of tumor necrosis factor (TNF) causes loss of control of intracellular pathogens in mice and humans, but the underlying mechanisms are incompletely understood. Here, we found that TNF antagonized alternative activation of macrophages and dendritic cells by IL-4. TNF inhibited IL-4-induced arginase 1 (Arg1) expression by decreasing histone acetylation, without affecting STAT6 phosphorylation and nuclear translocation. In Leishmania major-infected C57BL/6 wild-type mice, type 2 nitric oxide (NO) synthase (NOS2) was detected in inflammatory dendritic cells or macrophages, some of which co-expressed Arg1. In TNF-deficient mice, Arg1 was hyperexpressed, causing an impaired production of NO in situ. A similar phenotype was seen in L. major-infected BALB/c mice. Arg1 deletion in hematopoietic cells protected these mice from an otherwise lethal disease, although their disease-mediating T cell response (Th2, Treg) was maintained. Thus, deletion or TNF-mediated restriction of Arg1 unleashes the production of NO by NOS2, which is critical for pathogen control.

  1. TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection

    Directory of Open Access Journals (Sweden)

    Ulrike Schleicher

    2016-05-01

    Full Text Available Neutralization or deletion of tumor necrosis factor (TNF causes loss of control of intracellular pathogens in mice and humans, but the underlying mechanisms are incompletely understood. Here, we found that TNF antagonized alternative activation of macrophages and dendritic cells by IL-4. TNF inhibited IL-4-induced arginase 1 (Arg1 expression by decreasing histone acetylation, without affecting STAT6 phosphorylation and nuclear translocation. In Leishmania major-infected C57BL/6 wild-type mice, type 2 nitric oxide (NO synthase (NOS2 was detected in inflammatory dendritic cells or macrophages, some of which co-expressed Arg1. In TNF-deficient mice, Arg1 was hyperexpressed, causing an impaired production of NO in situ. A similar phenotype was seen in L. major-infected BALB/c mice. Arg1 deletion in hematopoietic cells protected these mice from an otherwise lethal disease, although their disease-mediating T cell response (Th2, Treg was maintained. Thus, deletion or TNF-mediated restriction of Arg1 unleashes the production of NO by NOS2, which is critical for pathogen control.

  2. M-CSF from Cancer Cells Induces Fatty Acid Synthase and PPARβ/δ Activation in Tumor Myeloid Cells, Leading to Tumor Progression

    Directory of Open Access Journals (Sweden)

    Jonghanne Park

    2015-03-01

    Full Text Available We investigate crosstalk between cancer cells and stromal myeloid cells. We find that Lewis lung carcinoma cells significantly induce PPARβ/δ activity in myeloid cells in vitro and in vivo. Myeloid cell-specific knockout of PPARβ/δ results in impaired growth of implanted tumors, and this is restored by adoptive transfer of wild-type myeloid cells. We find that IL-10 is a downstream effector of PPARβ/δ and facilitates tumor cell invasion and angiogenesis. This observation is supported by the finding that the CD11blowIL-10+ pro-tumoral myeloid cell is scarcely detected in tumors from myeloid-cell-specific PPARβ/δ knockout mice, where vessel densities are also decreased. Fatty acid synthase (FASN is shown to be an upstream regulator of PPARβ/δ in myeloid cells and is induced by M-CSF secreted from tumor cells. Our study gives insight into how cancer cells influence myeloid stromal cells to get a pro-tumoral phenotype.

  3. Dietary citrate treatment of polycystic kidney disease in rats.

    Science.gov (United States)

    Tanner, George A; Tanner, Judith A

    2003-01-01

    Progression of autosomal-dominant polycystic kidney disease (ADPKD) in the heterozygous male Han:SPRD rat is dramatically slowed by ingestion of potassium or sodium citrate. This study examined the efficacy of delayed therapy with sodium citrate, the effect of sodium citrate therapy on kidney cortex levels of transforming growth factor-beta (TGF-beta), and the response to calcium citrate ingestion. Rats were provided with citrate salts in their food, and renal clearance, blood pressure, blood chemistry, and survival determinations were made. Sodium citrate therapy was most effective when started at age 1 month, and delay of therapy until age 3 months produced no benefit. Kidney cortex TGF-beta levels were elevated in 3- and 8-month-old rats with ADPKD, but not in 6-week-old rats. Sodium citrate treatment, started at age 1 month, lowered TGF-beta levels to normal in 3-month-old rats, but this is probably not the primary mechanism of citrate's beneficial effect. Calcium citrate had only a modest effect in preserving glomerular filtration rate. Effective treatment of ADPKD in this rat model requires early administration of a readily absorbed alkalinizing citrate salt. Existing data on ADPKD patients on vegetarian diets or with kidney stones should be studied in light of these findings.

  4. Asparagus IRX9, IRX10, and IRX14A Are Components of an Active Xylan Backbone Synthase Complex that Forms in the Golgi Apparatus1[OPEN

    Science.gov (United States)

    Zeng, Wei; Picard, Kelsey L.; Song, Lili; Wu, Ai-Min; Farion, Isabela M.; Zhao, Jia; Ford, Kris; Bacic, Antony

    2016-01-01

    Heteroxylans are abundant components of plant cell walls and provide important raw materials for the food, pharmaceutical, and biofuel industries. A number of studies in Arabidopsis (Arabidopsis thaliana) have suggested that the IRREGULAR XYLEM9 (IRX9), IRX10, and IRX14 proteins, as well as their homologs, are involved in xylan synthesis via a Golgi-localized complex termed the xylan synthase complex (XSC). However, both the biochemical and cell biological research lags the genetic and molecular evidence. In this study, we characterized garden asparagus (Asparagus officinalis) stem xylan biosynthesis genes (AoIRX9, AoIRX9L, AoIRX10, AoIRX14A, and AoIRX14B) by heterologous expression in Nicotiana benthamiana. We reconstituted and partially purified an active XSC and showed that three proteins, AoIRX9, AoIRX10, and AoIRX14A, are necessary for xylan xylosyltranferase activity in planta. To better understand the XSC structure and its composition, we carried out coimmunoprecipitation and bimolecular fluorescence complementation analysis to show the molecular interactions between these three IRX proteins. Using a site-directed mutagenesis approach, we showed that the DxD motifs of AoIRX10 and AoIRX14A are crucial for the catalytic activity. These data provide, to our knowledge, the first lines of biochemical and cell biological evidence that AoIRX9, AoIRX10, and AoIRX14A are core components of a Golgi-localized XSC, each with distinct roles for effective heteroxylan biosynthesis. PMID:26951434

  5. Asparagus IRX9, IRX10, and IRX14A Are Components of an Active Xylan Backbone Synthase Complex that Forms in the Golgi Apparatus.

    Science.gov (United States)

    Zeng, Wei; Lampugnani, Edwin R; Picard, Kelsey L; Song, Lili; Wu, Ai-Min; Farion, Isabela M; Zhao, Jia; Ford, Kris; Doblin, Monika S; Bacic, Antony

    2016-05-01

    Heteroxylans are abundant components of plant cell walls and provide important raw materials for the food, pharmaceutical, and biofuel industries. A number of studies in Arabidopsis (Arabidopsis thaliana) have suggested that the IRREGULAR XYLEM9 (IRX9), IRX10, and IRX14 proteins, as well as their homologs, are involved in xylan synthesis via a Golgi-localized complex termed the xylan synthase complex (XSC). However, both the biochemical and cell biological research lags the genetic and molecular evidence. In this study, we characterized garden asparagus (Asparagus officinalis) stem xylan biosynthesis genes (AoIRX9, AoIRX9L, AoIRX10, AoIRX14A, and AoIRX14B) by heterologous expression in Nicotiana benthamiana We reconstituted and partially purified an active XSC and showed that three proteins, AoIRX9, AoIRX10, and AoIRX14A, are necessary for xylan xylosyltranferase activity in planta. To better understand the XSC structure and its composition, we carried out coimmunoprecipitation and bimolecular fluorescence complementation analysis to show the molecular interactions between these three IRX proteins. Using a site-directed mutagenesis approach, we showed that the DxD motifs of AoIRX10 and AoIRX14A are crucial for the catalytic activity. These data provide, to our knowledge, the first lines of biochemical and cell biological evidence that AoIRX9, AoIRX10, and AoIRX14A are core components of a Golgi-localized XSC, each with distinct roles for effective heteroxylan biosynthesis. PMID:26951434

  6. Identification of 2-aminothiazole-4-carboxylate derivatives active against Mycobacterium tuberculosis H37Rv and the beta-ketoacyl-ACP synthase mtFabH.

    Directory of Open Access Journals (Sweden)

    Qosay Al-Balas

    Full Text Available BACKGROUND: Tuberculosis (TB is a disease which kills two million people every year and infects approximately over one-third of the world's population. The difficulty in managing tuberculosis is the prolonged treatment duration, the emergence of drug resistance and co-infection with HIV/AIDS. Tuberculosis control requires new drugs that act at novel drug targets to help combat resistant forms of Mycobacterium tuberculosis and reduce treatment duration. METHODOLOGY/PRINCIPAL FINDINGS: Our approach was to modify the naturally occurring and synthetically challenging antibiotic thiolactomycin (TLM to the more tractable 2-aminothiazole-4-carboxylate scaffold to generate compounds that mimic TLM's novel mode of action. We report here the identification of a series of compounds possessing excellent activity against M. tuberculosis H(37R(v and, dissociatively, against the beta-ketoacyl synthase enzyme mtFabH which is targeted by TLM. Specifically, methyl 2-amino-5-benzylthiazole-4-carboxylate was found to inhibit M. tuberculosis H(37R(v with an MIC of 0.06 microg/ml (240 nM, but showed no activity against mtFabH, whereas methyl 2-(2-bromoacetamido-5-(3-chlorophenylthiazole-4-carboxylate inhibited mtFabH with an IC(50 of 0.95+/-0.05 microg/ml (2.43+/-0.13 microM but was not active against the whole cell organism. CONCLUSIONS/SIGNIFICANCE: These findings clearly identify the 2-aminothiazole-4-carboxylate scaffold as a promising new template towards the discovery of a new class of anti-tubercular agents.

  7. Changes in phytochemical synthesis, chalcone synthase activity and pharmaceutical qualities of sabah snake grass (Clinacanthus nutans L.) in relation to plant age.

    Science.gov (United States)

    Ghasemzadeh, Ali; Nasiri, Alireza; Jaafar, Hawa Z E; Baghdadi, Ali; Ahmad, Izham

    2014-01-01

    In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old). The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74) was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF) production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW]) and total phenolic (TP) (18.21 mg/g DW) were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW) and gallic acid (5.96 mg/g DW) were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50) values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP) assay showed a higher activity in 6-month-old buds (488 μM of Fe(II)/g) than in 1-year-old buds (453 μM of Fe(II)/g), in contrast to the DPPH result. Significant correlations (p < 0.05) were observed between CHS enzyme activity and FRAP activity, TF, catechin, and kaempferol content. Extracts of 6-month-old bud exhibited a significant in vitro anticancer activity against

  8. Changes in Phytochemical Synthesis, Chalcone Synthase Activity and Pharmaceutical Qualities of Sabah Snake Grass (Clinacanthus nutans L. in Relation to Plant Age

    Directory of Open Access Journals (Sweden)

    Ali Ghasemzadeh

    2014-10-01

    Full Text Available In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old. The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74 was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW] and total phenolic (TP (18.21 mg/g DW were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW and gallic acid (5.96 mg/g DW were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50 values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP assay showed a higher activity in 6-month-old buds (488 μM of Fe(II/g than in 1-year-old buds (453 μM of Fe(II/g, in contrast to the DPPH result. Significant correlations (p < 0.05 were observed between CHS enzyme activity and FRAP activity, TF, catechin, and kaempferol content. Extracts of 6-month-old bud exhibited a significant in vitro anticancer activity

  9. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W. (UIUC); (Iowa State); (Penn)

    2011-09-20

    The structure of ent-copalyl diphosphate synthase reveals three {alpha}-helical domains ({alpha}, {beta} and {gamma}), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the {beta}{gamma} domains in ent-copalyl diphosphate synthase but exclusively in the {alpha} domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.

  10. Invertase and sucrose synthase activities in coffee plants sprayed with sucrose solution Atividade de invertases e sacarose sintase em plantas de cafeeiro pulverizadas com solução de sacarose

    OpenAIRE

    José Carlos da Silva; José Donizeti Alves; Amauri Alves de Alvarenga; Marcelo Murad Magalhães; Dárlan Einstein do Livramento; Daniela Deitos Fries

    2003-01-01

    One management practice of which the efficiency has not yet been scientifically tested is spraying coffee plants with diluted sucrose solutions as a source of carbon for the plant. This paper evaluates the effect of foliar spraying with sugar on the endogenous level of carbohydrates and on the activities of invertase and sucrose synthase in coffee (Coffea arabica L.) seedlings with reduced (low) and high (normal) levels of carbon reserve. The concentrations used were 0.5 and 1.0% sucrose, and...

  11. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line

    OpenAIRE

    Cruz, M. Teresa; Gonçalo, Margarida; Figueiredo, Américo; Carvalho, Arsélio P.; Duarte, Carlos B.; Lopes, M. Celeste

    2004-01-01

    Nuclear factor kappa B (NF-kB) and activating protein-1 (AP-1) transcription factors are ubiquitously expressed signaling molecules known to regulate the transcription of a large number of genes involved in immune responses, namely the inducible isoform of nitric oxide synthase (iNOS). In this study, we demonstrate that a fetal skin-derived dendritic cell line (FSDC) produces nitric oxide (NO) in response to the contact sensitizer nickel sulfate (NiSO4) and increases the ...

  12. High-performance liquid chromatography method with radiochemical detection for measurement of nitric oxide synthase, arginase, and arginine decarboxylase activities

    DEFF Research Database (Denmark)

    Volke, A; Wegener, Gregers; Vasar, E;

    2006-01-01

    regulate NOS activity. We aimed to develop a HPLC-based method to measure simultaneously the products of these three enzymes. Traditionally, the separation of amino acids and related compounds with HPLC has been carried out with precolumn derivatization and reverse phase chromatography. We describe here...

  13. Glycogen synthase kinase 3 β activity is required for hBora/Aurora A-mediated mitotic entry.

    Science.gov (United States)

    Lee, Yu-Cheng; Liao, Po-Chi; Liou, Yih-Cherng; Hsiao, Michael; Huang, Chi-Ying; Lu, Pei-Jung

    2013-03-15

    The synthesis and degradation of hBora is important for the regulation of mitotic entry and exist. In G 2 phase, hBora can complex with Aurora A to activate Plk1 and control mitotic entry. However, whether the post-translational modification of hBora is relevant to the mitotic entry still unclear. Here, we used the LC-MS/MS phosphopeptide mapping assay to identify 13 in vivo hBora phosphorylation sites and characterized that GSK3β can interact with hBora and phosphorylate hBora at Ser274 and Ser278. Pharmacological inhibitors of GSK3β reduced the retarded migrating band of hBora in cells and diminished the phosphorylation of hBora by in vitro kinase assay. Moreover, as well as in GSK3β activity-inhibited cells, specific knockdown of GSK3β by shRNA and S274A/S278 hBora mutant-expressing cells also exhibited the reduced Plk1 activation and a delay in mitotic entry. It suggests that GSK3β activity is required for hBora-mediated mitotic entry through Ser274 and Ser278 phosphorylation.

  14. The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb(2+) by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity.

    Science.gov (United States)

    Estrella-Gómez, N; Mendoza-Cózatl, D; Moreno-Sánchez, R; González-Mendoza, D; Zapata-Pérez, O; Martínez-Hernández, A; Santamaría, J M

    2009-03-01

    The relationship between accumulation of Pb(2+) and the activation of chelation and metal sequestration mechanisms mediated by phytochelatins (PC) was analyzed in the Pb(2+) hyperaccumulator aquatic fern Salvinia minima, after exposure to 40microM Pb(NO(3))(2). The tissue accumulation pattern of lead and the phytochelatin biosynthesis responses were analyzed in both, S. minima submerged root-like modified fronds (here named "roots"), and in its aerial leaf-like fronds ("leaves"). S. minima roots accumulated a significantly higher concentrations of Pb(+2) than leaves did. Accumulation of Pb(2+) in roots was bi-phasic with a first uptake phase reached after 3h exposure and a second higher uptake phase reached after 24h exposure. In leaves, a single delayed, smaller uptake phase was attained only after 9h of exposure. In roots lead accumulation correlated with an increased phytochelatin synthase (PCS) activity and an enhanced PC production. A higher proportion of polymerized PC(4) was observed in both tissues of exposed S. minima plants relative to unexposed ones, although a higher concentration of PC(4) was found in roots than in leaves. PCS activity and Pb(2+) accumulation was also higher in roots than in leaves. The expression levels of the S. minima PCS gene (SmPCS), in response to Pb(2+) treatment, were also evaluated. In S. minima leaves, the accumulation of Pb(2+) correlated with a marked increase in expression of SmPCS, suggesting a transcriptional regulation in the PCS activation and PC accumulation in this S. minima tissue. However, in roots, the basal expression of SmPCS was down-regulated after Pb(2+) treatment. This fact did not correlate with the later but strong increase in both, PCS activity and PC production; suggesting that the PC biosynthesis activation in S. minima roots occurs only by post-translational activation of PCS. Taken together, our data suggest that the accumulation of PC in S. minima is a direct response to Pb(2+) accumulation, and

  15. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  16. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation

    OpenAIRE

    DU, XUELIANG; Edelstein, Diane; Obici, Silvana; Higham, Ninon; Zou, Ming-Hui; Brownlee, Michael

    2006-01-01

    Insulin resistance markedly increases cardiovascular disease risk in people with normal glucose tolerance, even after adjustment for known risk factors such as LDL, triglycerides, HDL, and systolic blood pressure. In this report, we show that increased oxidation of FFAs in aortic endothelial cells without added insulin causes increased production of superoxide by the mitochondrial electron transport chain. FFA-induced overproduction of superoxide activated a variety of proinflammatory signals...

  17. Dimer-dimer interaction of the bacterial selenocysteine synthase SelA promotes functional active-site formation and catalytic specificity.

    Science.gov (United States)

    Itoh, Yuzuru; Bröcker, Markus J; Sekine, Shun-ichi; Söll, Dieter; Yokoyama, Shigeyuki

    2014-04-17

    The 21st amino acid, selenocysteine (Sec), is incorporated translationally into proteins and is synthesized on its specific tRNA (tRNA(Sec)). In Bacteria, the selenocysteine synthase SelA converts Ser-tRNA(Sec), formed by seryl-tRNA synthetase, to Sec-tRNA(Sec). SelA, a member of the fold-type-I pyridoxal 5'-phosphate-dependent enzyme superfamily, has an exceptional homodecameric quaternary structure with a molecular mass of about 500kDa. Our previously determined crystal structures of Aquifex aeolicus SelA complexed with tRNA(Sec) revealed that the ring-shaped decamer is composed of pentamerized SelA dimers, with two SelA dimers arranged to collaboratively interact with one Ser-tRNA(Sec). The SelA catalytic site is close to the dimer-dimer interface, but the significance of the dimer pentamerization in the catalytic site formation remained elusive. In the present study, we examined the quaternary interactions and demonstrated their importance for SelA activity by systematic mutagenesis. Furthermore, we determined the crystal structures of "depentamerized" SelA variants with mutations at the dimer-dimer interface that prevent pentamerization. These dimeric SelA variants formed a distorted and inactivated catalytic site and confirmed that the pentamer interactions are essential for productive catalytic site formation. Intriguingly, the conformation of the non-functional active site of dimeric SelA shares structural features with other fold-type-I pyridoxal 5'-phosphate-dependent enzymes with native dimer or tetramer (dimer-of-dimers) quaternary structures. PMID:24456689

  18. The Effect of Ethylene and Propylene Pulses on Respiration, Ripening Advancement, Ethylene-Forming Enzyme, and 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Avocado Fruit.

    Science.gov (United States)

    Starrett, D A; Laties, G G

    1991-03-01

    When early-season avocado fruit (Persea americana Mill. cv Hass) were treated with ethylene or propylene for 24 hours immediately on picking, the time to the onset of the respiratory climacteric, i.e. the lag period, remained unchanged compared with that in untreated fruit. When fruit were pulsed 24 hours after picking, on the other hand, the lag period was shortened. In both cases, however, a 24 hour ethylene or propylene pulse induced a transient increase in respiration, called the pulse-peak, unaccompanied by ethylene production (IL Eaks [1980] Am Soc Hortic Sci 105: 744-747). The pulse also caused a sharp rise in ethylene-forming enzyme activity in both cases, without any increase in the low level of 1-aminocyclopropane-1-carboxylic acid synthase activity. Thus, the shortening of the lag period by an ethylene pulse is not due to an effect of ethylene on either of the two key enzymes in ethylene biosynthesis. A comparison of two-dimensional polyacrylamide gel electrophoresis polypeptide profiles of in vitro translation products of poly(A(+)) mRNA from control and ethylene-pulsed fruit showed both up- and down-regulation in response to ethylene pulsing of a number of genes expressed during the ripening syndrome. It is proposed that the pulse-peak or its underlying events reflect an intrinsic element in the ripening process that in late-season or continuously ethylene-treated fruit may be subsumed in the overall climacteric response. A computerized system that allows continuous readout of multiple samples has established that the continued presentation of exogeneous ethylene or propylene to preclimacteric fruit elicits a dual respiration response comprising the merged pulse-peak and climacteric peak in series. The sequential removal of cores from a single fruit has proven an unsatisfactory sampling procedure inasmuch as coring induces wound ethylene, evokes a positive respiration response, and advances ripening.

  19. Galactinol synthase enzyme activity influences raffinose family oligosaccharides (RFO) accumulation in developing chickpea (Cicer arietinum L.) seeds.

    Science.gov (United States)

    Gangola, Manu P; Jaiswal, Sarita; Kannan, Udhaya; Gaur, Pooran M; Båga, Monica; Chibbar, Ravindra N

    2016-05-01

    To understand raffinose family oligosaccharides (RFO) metabolism in chickpea (Cicer arietinum L.) seeds, RFO accumulation and corresponding biosynthetic enzymes activities were determined during seed development of chickpea genotypes with contrasting RFO concentrations. RFO concentration in mature seeds was found as a facilitator rather than a regulating step of seed germination. In mature seeds, raffinose concentrations ranged from 0.38 to 0.68 and 0.75 to 0.99 g/100 g, whereas stachyose concentrations varied from 0.79 to 1.26 and 1.70 to 1.87 g/100 g indicating significant differences between low and high RFO genotypes, respectively. Chickpea genotypes with high RFO concentration accumulated higher concentrations of myo-inositol and sucrose during early seed developmental stages suggesting that initial substrate concentrations may influence RFO concentration in mature seeds. High RFO genotypes showed about two to three-fold higher activity for all RFO biosynthetic enzymes compared to those with low RFO concentrations. RFO biosynthetic enzymes activities correspond with accumulation of individual RFO during seed development. PMID:26953100

  20. Endothelial nitric oxide synthase (NOS) deficiency affects energy metabolism pattern in murine oxidative skeletal muscle.

    Science.gov (United States)

    Momken, Iman; Fortin, Dominique; Serrurier, Bernard; Bigard, Xavier; Ventura-Clapier, Renée; Veksler, Vladimir

    2002-01-01

    Oxidative capacity of muscles correlates with capillary density and with microcirculation, which in turn depend on various regulatory factors, including NO generated by endothelial nitric oxide synthase (eNOS). To determine the role of eNOS in patterns of regulation of energy metabolism in various muscles, we studied mitochondrial respiration in situ in saponin-permeabilized fibres as well as the energy metabolism enzyme profile in the cardiac, soleus (oxidative) and gastrocnemius (glycolytic) muscles isolated from mice lacking eNOS (eNOS(-/-)). In soleus muscle, the absence of eNOS induced a marked decrease in both basal mitochondrial respiration without ADP (-32%; P <0.05) and maximal respiration in the presence of ADP (-29%; P <0.05). Furthermore, the eNOS(-/-) soleus muscle showed a decrease in total creatine kinase (-29%; P <0.05), citrate synthase (-31%; P <0.01), adenylate kinase (-27%; P <0.05), glyceraldehyde-3-phosphate dehydrogenase (-43%; P <0.01) and pyruvate kinase (-26%; P <0.05) activities. The percentage of myosin heavy chains I (slow isoform) was significantly increased from 24.3+/-1.5% in control to 30.1+/-1.1% in eNOS(-/-) soleus muscle ( P <0.05) at the expense of a slight non-significant decrease in the three other (fast) isoforms. Besides, eNOS(-/-) soleus showed a 28% loss of weight. Interestingly, we did not find differences in any parameters in cardiac and gastrocnemius muscles compared with respective controls. These results show that eNOS knockout has an important effect on muscle oxidative capacity as well on the activities of energy metabolism enzymes in oxidative (soleus) muscle. The absence of such effects in cardiac and glycolytic (gastrocnemius) muscle suggests a specific role for eNOS-produced NO in oxidative skeletal muscle. PMID:12123418

  1. Critical aspartic acid residues in pseudouridine synthases.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  2. Regional age-related changes in neuronal nitric oxide synthase (nNOS, messenger RNA levels and activity in SAMP8 brain

    Directory of Open Access Journals (Sweden)

    Guidon Gérard

    2006-12-01

    Full Text Available Abstract Background Nitric oxide (NO is a multifunctional molecule synthesized by three isozymes of the NO synthase (NOSs acting as a messenger/modulator and/or a potential neurotoxin. In rodents, the role of NOSs in sleep processes and throughout aging is now well established. For example, sleep parameters are highly deteriorated in senescence accelerated-prone 8 (SAMP8 mice, a useful animal model to study aging or age-associated disorders, while the inducible form of NOS (iNOS is down-regulated within the cortex and the sleep-structures of the brainstem. Evidence is now increasing for a role of iNOS and resulting oxidative stress but not for the constitutive expressed isozyme (nNOS. To better understand the role of nNOS in the behavioural impairments observed in SAMP8 versus SAMR1 (control animals, we evaluated age-related variations occurring in the nNOS expression and activity and nitrites/nitrates (NOx- levels, in three brain areas (n = 7 animals in each group. Calibrated reverse transcriptase (RT and real-time polymerase chain reaction (PCR and biochemical procedures were used. Results We found that the levels of nNOS mRNA decreased in the cortex and the hippocampus of 8- vs 2-month-old animals followed by an increase in 12-vs 8-month-old animals in both strains. In the brainstem, levels of nNOS mRNA decreased in an age-dependent manner in SAMP8, but not in SAMR1. Regional age-related changes were also observed in nNOS activity. Moreover, nNOS activity in hippocampus was found lower in 8-month-old SAMP8 than in SAMR1, while in the cortex and the brainstem, nNOS activities increased at 8 months and afterward decreased with age in SAMP8 and SAMR1. NOx- levels showed profiles similar to nNOS activities in the cortex and the brainstem but were undetectable in the hippocampus of SAMP8 and SAMR1. Finally, NOx- levels were higher in the cortex of 8 month-old SAMP8 than in age-matched SAMR1. Conclusion Concomitant variations occurring in NO levels

  3. 77 FR 24461 - Citric Acid and Certain Citrate Salts From Canada: Final Results of Antidumping Duty...

    Science.gov (United States)

    2012-04-24

    ... all grades and granulation sizes of citric acid, sodium citrate, and potassium citrate in their... blends of citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended form(s) of citric acid, sodium citrate, and potassium...

  4. 76 FR 5782 - Citric Acid and Certain Citrate Salts From Canada: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2011-02-02

    ... includes all grades and granulation sizes of citric acid, sodium citrate, and potassium citrate in their... blends of citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended form(s) of citric acid, sodium citrate, and potassium...

  5. 77 FR 6061 - Citric Acid and Certain Citrate Salts From Canada: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2012-02-07

    ... includes all grades and granulation sizes of citric acid, sodium citrate, and potassium citrate in their... blends of citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended form(s) of citric acid, sodium citrate, and potassium...

  6. [A case report of alverine-citrate-induced acute hepatitis].

    Science.gov (United States)

    Han, Jee Young; Lee, Jin Woo; Kim, Joon Mee; Joo, Kowoon; Chon, Ung; Lee, Jung Il; Jeong, Seok; Lee, Don Haeng; Kim, Young Soo; Min, Kyung Sun

    2010-03-01

    Alverine citrate is one of the most commonly used antispasmodic drugs for patients with irritable bowel syndrome. Alverine-citrate-induced hepatotoxicity is extremely rare, with only a few cases having been reported worldwide. We present a case of a 75-year-old female patient who experienced complicated jaundice and abdominal discomfort after taking alverine citrate. Other causes of hepatitis were ruled out and the results of the liver function test returned to normal after ceasing the drug. This is the first case report in Korea of alverine-citrate-induced hepatotoxicity. PMID:20375645

  7. Urinary Citrate: A view in Chronic Renal Failure

    Directory of Open Access Journals (Sweden)

    SANTHOSH KUMAR.N

    2013-12-01

    Full Text Available Aim & Objective: To evaluate the 24 hour urinary citrate levels in chronic renal failure and healthy controls and to define the role of urinary citrates in the chronic renal failures. Materials and Methods: The 24 hours urinary citrates, Blood urea, Serum creatinine, Na+, K+were evaluated in 25 chronic renal failure patients and25 healthy subjects taken as controls. In both groups participants were on their usual diet. In addition, none of the participant was taking any drugs that could interfere with the citrate excretion. Results: The mean 24 hour urinary citrate excretion in patients and healthy controls was 296.3 ± 8.543mg and 323.9 ± 4.304mg respectively. Using previously defined values of normal urinary citrates as more than 320 mg.The difference in 24 hour urinary citrateexcretion in all patients and healthy control was statistically significant (

    citrate excretion in recurrent renal failures and healthy controls. Uniformly low citrate excretion in patients indicates that low citrate levels may be a feature seen in predisposing factor for renal failure

  8. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3.

    Science.gov (United States)

    Zhou, Gaofeng; Pereira, Jorge F; Delhaize, Emmanuel; Zhou, Meixue; Magalhaes, Jurandir V; Ryan, Peter R

    2014-06-01

    Malate and citrate efflux from root apices is a mechanism of Al(3+) tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al(3+)-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approach to increase the Al(3+) tolerance of barley by transforming it with two MATE genes that encode citrate transporters: SbMATE is the major Al(3+)-tolerance gene from sorghum whereas FRD3 is involved with Fe nutrition in Arabidopsis. Independent transgenic and null T3 lines were generated for both transgenes. Lines expressing SbMATE showed Al(3+)-activated citrate efflux from root apices and greater tolerance to Al(3+) toxicity than nulls in hydroponic and short-term soil trials. Transgenic lines expressing FRD3 exhibited similar phenotypes except citrate release from roots occurred constitutively. The Al(3+) tolerance of these lines was compared with previously generated transgenic barley lines overexpressing the endogenous HvAACT1 gene and the TaALMT1 gene from wheat. Barley lines expressing TaALMT1 showed significantly greater Al(3+) tolerance than all lines expressing MATE genes. This study highlights the relative efficacy of different organic anion transport proteins for increasing the Al(3+) tolerance of an important crop species.

  9. Insulin-stimulated phosphorylation of ATP-citrate lyase in isolated hepatocytes. Stoichiometry and relation to the phosphoenzyme intermediate.

    Science.gov (United States)

    Alexander, M C; Palmer, J L; Pointer, R H; Kowaloff, E M; Koumjian, L L; Avruch, J

    1982-02-25

    We have estimated the insulin-stimulated phosphorylation of ATP-citrate lyase by two methods. Isolated hepatocytes incorporate extracellular 32P into [gamma-35P] ATP and immunoprecipitated ATP-citrate lyase to steady state levels by 1 h. The content of acid-stable 32P in hepatocyte ATP-citrate lyase at steady state is 0.33 +/- 0.038 mol of P/mol (tetrameric) holoenzyme. Insulin (1 milliunit/ml) increases the 32P content of immunoprecipitated lyase 2- to 3-fold in 10 min. Over 90% of acid-stable 32P on lyase is 32P-serine in enzyme isolated from both control and insulin-treated cells. ATP-citrate lyase isolated from hepatocytes contains 0.95 +/- 0.1 mol of alkali-labile phosphate/mol of holoenzyme. Insulin treatment of hepatocytes (1 milliunit/ml for 10 min) increases the alkali-labile P content by 45%. Evidence is presented which indicates that the insulin-stimulated phosphorylation does not arise by intramolecular migration from the catalytic phosphoenzyme intermediate. These observations support the conclusion that insulin-stimulated phosphorylation of ATP-citrate lyase is mediated either by an insulin-induced increase in the activity of lyase kinase and/or decrease in a lyase phosphatase. The functional role of the substoichiometric phosphorylation of ATP-citrate lyase remains unknown.

  10. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  11. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  12. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3

    Energy Technology Data Exchange (ETDEWEB)

    Ojo, Kayode K; Arakaki, Tracy L; Napuli, Alberto J; Inampudi, Krishna K; Keyloun, Katelyn R; Zhang, Li; Hol, Wim G.J.; Verlind, Christophe L.M.J.; Merritt, Ethan A; Van Voorhis, Wesley C [UWASH

    2012-04-24

    Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18_V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 Å resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3β (HsGSK-3β) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found.

  13. The activation by glucose of liver membrane nitric oxide synthase in the synthesis and translocation of glucose transporter-4 in the production of insulin in the mice hepatocytes.

    Directory of Open Access Journals (Sweden)

    Suman Bhattacharya

    Full Text Available INTRODUCTION: Glucose has been reported to have an essential role in the synthesis and secretion of insulin in hepatocytes. As the efflux of glucose is facilitated from the liver cells into the circulation, the mechanism of transportation of glucose into the hepatocytes for the synthesis of insulin was investigated. METHODS: Grated liver suspension (GLS was prepared by grating intact liver from adult mice by using a grater. Nitric oxide (NO was measured by methemoglobin method. Glucose transporter-4 (Glut-4 was measured by immunoblot technique using Glut-4 antibody. RESULTS: Incubation of GLS with different amounts of glucose resulted in the uptake of glucose by the suspension with increased NO synthesis due to the stimulation of a glucose activated nitric oxide synthase that was present in the liver membrane. The inhibition of glucose induced NO synthesis resulted in the inhibition of glucose uptake. Glucose at 0.02M that maximally increased NO synthesis in the hepatocytes led to the translocation and increased synthesis of Glut-4 by 3.3 fold over the control that was inhibited by the inhibition of NO synthesis. The glucose induced NO synthesis was also found to result in the synthesis of insulin, in the presence of glucose due to the expression of both proinsulin genes I and II in the liver cells. CONCLUSION: It was concluded that glucose itself facilitated its own transportation in the liver cells both via Glut-4 and by the synthesis of NO which had an essential role for insulin synthesis in the presence of glucose in these cells.

  14. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    Directory of Open Access Journals (Sweden)

    Mamaghani Shadi

    2009-04-01

    Full Text Available Abstract Background Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. Methods GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. Results GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-XL, and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. Conclusion GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard

  15. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    International Nuclear Information System (INIS)

    Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-XL, and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard chemotherapy agent gemcitabine. This lack of synergy might be context

  16. On-chip recalcification of citrated whole blood using a microfluidic herringbone mixer.

    Science.gov (United States)

    Lehmann, Marcus; Wallbank, Alison M; Dennis, Kimberly A; Wufsus, Adam R; Davis, Kara M; Rana, Kuldeepsinh; Neeves, Keith B

    2015-11-01

    In vitro assays of platelet function and coagulation are typically performed in the presence of an anticoagulant. The divalent cation chelator sodium citrate is among the most common because its effect on coagulation is reversible upon reintroduction of divalent cations. Adding divalent cations into citrated blood by batch mixing leads to platelet activation and initiation of coagulation after several minutes, thus limiting the time blood can be used before spontaneously clotting. In this work, we describe a herringbone microfluidic mixer to continuously introduce divalent cations into citrated blood. The mixing ratio, defined as the ratio of the volumetric flow rates of citrated blood and recalcification buffer, can be adjusted by changing the relative inlet pressures of these two solutions. This feature is useful in whole blood assays in order to account for differences in hematocrit, and thus viscosity. The recalcification process in the herringbone mixer does not activate platelets. The advantage of this continuous mixing approach is demonstrated in microfluidic vascular injury model in which platelets and fibrin accumulate on a collagen-tissue factor surface under flow. Continuous recalcification with the herringbone mixer allowed for flow assay times of up to 30 min, more than three times longer than the time achieved by batch recalcification. This continuous mixer allows for measurements of thrombus formation, remodeling, and fibrinolysis in vitro over time scales that are relevant to these physiological processes. PMID:26634014

  17. The role of VuMATE1 expression in aluminium-inducible citrate secretion in rice bean (Vigna umbellata) roots.

    Science.gov (United States)

    Liu, Mei Ya; Chen, Wei Wei; Xu, Jia Meng; Fan, Wei; Yang, Jian Li; Zheng, Shao Jian

    2013-04-01

    Aluminium (Al)-activated citrate secretion plays an important role in Al resistance in a number of plant species, such as rice bean (Vigna umbellata). This study further characterized the regulation of VuMATE1, an aluminium-activated citrate transporter. Al stress induced VuMATE1 expression, followed by the secretion of citrate. Citrate secretion was specific to Al stress, whereas VuMATE1 expression was not, which could be explained by a combined regulation of VuMATE1 expression and Al-specific activation of VuMATE1 protein. Pre-treatment with a protein translation inhibitor suppressed VuMATE1 expression, indicating that de novo biosynthesis of proteins is required for gene expression. Furthermore, post-treatment with a protein translation inhibitor inhibited citrate secretion, indicating that post-transcriptional regulation of VuMATE1 is critical for citrate secretion. Protein kinase and phosphatase inhibitor studies showed that reversible phosphorylation was important not only for transcriptional regulation of VuMATE1 expression but also for post-translational regulation of VuMATE1 protein activity. These results suggest that citrate secretion is dependent on both transcriptional and post-transcriptional regulation of VuMATE1. Additionally, VuMATE1 promoter-β-glucuronidase fusion lines revealed that VuMATE1 expression was restricted to the root apex and was entirely Al induced, indicating the presence of cis-acting elements regulating root tip-specific and Al-inducible gene expression, which will be an important resource for genetic improvement of plant Al resistance.

  18. [Four cases of aldosterone synthase deficiency in childhood].

    Science.gov (United States)

    Collinet, E; Pelissier, P; Richard, O; Gay, C; Pugeat, M; Morel, Y; Stephan, J-L

    2012-11-01

    Neonatal salt-wasting syndromes are rare but potentially serious conditions. Isolated hypoaldosteronism is an autosomal recessive inherited disorder of terminal aldosterone synthesis, leading to selective aldosterone deficiency. Two different biochemical forms of this disease have been described, called aldosterone synthase deficiency or corticosterone methyl oxydase, types I and II. In type I, there is no aldosterone synthase activity and the 18 hydroxycorticosterone (18 OHB) level is low, whereas in type II, a residual activity of aldosterone synthase persists and 18 OHB is overproduced. We report on four patients with isolated hypoaldosteronism. In 2 of them, who were recently diagnosed with aldosterone synthase deficit, we discuss the symptoms and treatment. The 2 other patients are now adults. We discuss the long-term outcome, the quality of adult life, aldosterone synthase deficits, as well as the pathophysiology and molecular analysis.

  19. Crystallization of Δ{sup 1}-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa

    Energy Technology Data Exchange (ETDEWEB)

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi [Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tamada, Taro; Adachi, Motoyasu; Kuroki, Ryota [Neutron Science Research Center, Japan Atomic Energy Research Institute, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Shoyama, Yukihiro; Morimoto, Satoshi, E-mail: morimoto@phar.kyushu-u.ac.jp [Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2005-08-01

    Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase from C. sativa was crystallized. The crystal diffracted to 2.7 Å resolution with sufficient quality for further structure determination. Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 M sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å{sup 3} Da{sup −1} assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively.

  20. The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity

    DEFF Research Database (Denmark)

    Gaster, Michael; Petersen, Ingrid; Højlund, Kurt;

    2002-01-01

    The most well-described defect in the pathophysiology of type 2 diabetes is reduced insulin-mediated glycogen synthesis in skeletal muscles. It is unclear whether this defect is primary or acquired secondary to dyslipidemia, hyperinsulinemia, or hyperglycemia. We determined the glycogen synthase...

  1. Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase.

    Directory of Open Access Journals (Sweden)

    Aleksandra Usenik

    Full Text Available As an important part of metabolism, metabolic flux through the glycolytic pathway is tightly regulated. The most complex control is exerted on 6-phosphofructo-1-kinase (PFK1 level; this control overrules the regulatory role of other allosteric enzymes. Among other effectors, citrate has been reported to play a vital role in the suppression of this enzyme's activity. In eukaryotes, amino acid residues forming the allosteric binding site for citrate are found both on the N- and the C-terminal region of the enzyme. These site has evolved from the phosphoenolpyruvate/ADP binding site of bacterial PFK1 due to the processes of duplication and tandem fusion of prokaryotic ancestor gene followed by the divergence of the catalytic and effector binding sites. Stricter inhibition of the PFK1 enzyme was needed during the evolution of multi-cellular organisms, and the most stringent control of PFK1 by citrate occurs in vertebrates. By substituting a single amino acid (K557R or K617A as a component of the allosteric binding site in the C-terminal region of human muscle type PFK-M with a residue found in the corresponding site of a fungal enzyme, the inhibitory effect of citrate was attenuated. Moreover, the proteins carrying these single mutations enabled growth of E. coli transformants encoding mutated human PFK-M in a glucose-containing medium that did not support the growth of E. coli transformed with native human PFK-M. Substitution of another residue at the citrate-binding site (D591V of human PFK-M resulted in the complete loss of activity. Detailed analyses revealed that the mutated PFK-M subunits formed dimers but were unable to associate into the active tetrameric holoenzyme. These results suggest that stricter control over glycolytic flux developed in metazoans, whose somatic cells are largely characterized by slow proliferation.

  2. Antitumor effect of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles on mice bearing breast cancer: a systemic toxicity assay.

    Science.gov (United States)

    Peixoto, Raphael Cândido Apolinário; Miranda-Vilela, Ana Luisa; de Souza Filho, José; Carneiro, Marcella Lemos' Brettas; Oliveira, Ricardo G S; da Silva, Matheus Oliveira; de Souza, Aparecido R; Báo, Sônia Nair

    2015-05-01

    Breast cancer is one of the most prevalent cancer types among women. The use of magnetic fluids for specific delivery of drugs represents an attractive platform for chemotherapy. In our previous studies, it was demonstrated that maghemite nanoparticles coated with rhodium (II) citrate (Magh-Rh2Cit) induced in vitro cytotoxicity and in vivo antitumor activity, followed by intratumoral administration in breast carcinoma cells. In this study, our aim was to follow intravenous treatment to evaluate the systemic antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. Female Balb/c mice were evaluated with regard to toxicity of intravenous treatments through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine and liver, kidney, and lung histology. The antitumor activity of rhodium (II) citrate (Rh2Cit), Magh-Rh2Cit, and maghemite nanoparticles coated with citrate (Magh-Cit), used as control, was evaluated by tumor volume reduction, histology, and morphometric analysis. Magh-Rh2Cit and Magh-Cit promoted a significant decrease in tumor area, and no experimental groups presented hematotoxic effects or increased levels of serum ALT and creatinine. This observation was corroborated by the histopathological examination of the liver and kidney of mice. Furthermore, the presence of nanoparticles was verified in lung tissue with no morphological changes, supporting the idea that our nanoformulations did not induce toxicity effects. No studies about the systemic action of rhodium (II) citrate-loaded maghemite nanoparticles have been carried out, making this report a suitable starting point for exploring the therapeutic potential of these compounds in treating breast cancer.

  3. Protein kinase A-dependent Neuronal Nitric Oxide Synthase Activation Mediates the Enhancement of Baroreflex Response by Adrenomedullin in the Nucleus Tractus Solitarii of Rats

    Directory of Open Access Journals (Sweden)

    Ho I-Chun

    2011-05-01

    Full Text Available Abstract Background Adrenomedullin (ADM exerts its biological functions through the receptor-mediated enzymatic mechanisms that involve protein kinase A (PKA, or neuronal nitric oxide synthase (nNOS. We previously demonstrated that the receptor-mediated cAMP/PKA pathway involves in ADM-enhanced baroreceptor reflex (BRR response. It remains unclear whether ADM may enhance BRR response via activation of nNOS-dependent mechanism in the nucleus tractus solitarii (NTS. Methods Intravenous injection of phenylephrine was administered to evoke the BRR before and at 10, 30, and 60 min after microinjection of the test agents into NTS of Sprague-Dawley rats. Western blotting analysis was used to measure the level and phosphorylation of proteins that involved in BRR-enhancing effects of ADM (0.2 pmol in NTS. The colocalization of PKA and nNOS was examined by immunohistochemical staining and observed with a laser confocal microscope. Results We found that ADM-induced enhancement of BRR response was blunted by microinjection of NPLA or Rp-8-Br-cGMP, a selective inhibitor of nNOS or protein kinase G (PKG respectively, into NTS. Western blot analysis further revealed that ADM induced an increase in the protein level of PKG-I which could be attenuated by co-microinjection with the ADM receptor antagonist ADM22-52 or NPLA. Moreover, we observed an increase in phosphorylation at Ser1416 of nNOS at 10, 30, and 60 min after intra-NTS administration of ADM. As such, nNOS/PKG signaling may also account for the enhancing effect of ADM on BRR response. Interestingly, biochemical evidence further showed that ADM-induced increase of nNOS phosphorylation was prevented by co-microinjection with Rp-8-Br-cAMP, a PKA inhibitor. The possibility of PKA-dependent nNOS activation was substantiated by immunohistochemical demonstration of co-localization of PKA and nNOS in putative NTS neurons. Conclusions The novel finding of this study is that the signal transduction cascade that

  4. 21 CFR 520.622b - Diethylcarbamazine citrate syrup.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diethylcarbamazine citrate syrup. 520.622b Section... Diethylcarbamazine citrate syrup. (a)(1) Specifications. Each milliliter of syrup contains 60 milligrams of... veterinarian. (b)(1) Specifications. Each milliliter of syrup contains 60 milligrams of...

  5. Citrate increases glass transition temperature of vitrified sucrose preparations

    NARCIS (Netherlands)

    Kets, E.P.W.; Lipelaar, P.J.; Hoekstra, F.A.; Vromans, H.

    2004-01-01

    The aim of this study was to investigate the effect of sodium citrate on the properties of dried amorphous sucrose glasses. Addition of sodium citrate to a sucrose solution followed by freeze-drying or convective drying resulted in a glass transition temperature (T-g) that was higher than the well-s

  6. Structural basis for norovirus inhibition and fucose mimicry by citrate.

    Science.gov (United States)

    Hansman, Grant S; Shahzad-Ul-Hussan, Syed; McLellan, Jason S; Chuang, Gwo-Yu; Georgiev, Ivelin; Shimoike, Takashi; Katayama, Kazuhiko; Bewley, Carole A; Kwong, Peter D

    2012-01-01

    Human noroviruses bind with their capsid-protruding domains to histo-blood-group antigens (HBGAs), an interaction thought to direct their entry into cells. Although human noroviruses are the major cause of gastroenteritis outbreaks, development of antivirals has been lacking, mainly because human noroviruses cannot be cultivated. Here we use X-ray crystallography and saturation transfer difference nuclear magnetic resonance (STD NMR) to analyze the interaction of citrate with genogroup II (GII) noroviruses. Crystals of citrate in complex with the protruding domain from norovirus GII.10 Vietnam026 diffracted to 1.4 Å and showed a single citrate bound at the site of HBGA interaction. The citrate interaction was coordinated with a set of capsid interactions almost identical to that involved in recognizing the terminal HBGA fucose, the saccharide which forms the primary conserved interaction between HBGAs and GII noroviruses. Citrate and a water molecule formed a ring-like structure that mimicked the pyranoside ring of fucose. STD NMR showed the protruding domain to have weak affinity for citrate (460 μM). This affinity, however, was similar to the affinities of the protruding domain for fucose (460 μM) and H type 2 trisaccharide (390 μM), an HBGA shown previously to be specifically recognized by human noroviruses. Importantly, competition STD NMR showed that citrate could compete with HBGA for norovirus binding. Together, the results suggest that citrate and other glycomimetics have the potential to block human noroviruses from binding to HBGAs.

  7. Structural Basis for Norovirus Inhibition and Fucose Mimicry by Citrate

    Energy Technology Data Exchange (ETDEWEB)

    Hansman, Grant S.; Shahzad-ul-Hussan, Syed; McLellan, Jason S.; Chuang, Gwo-Yu; Georgiev, Ivelin; Shimoike, Takashi; Katayama, Kazuhiko; Bewley, Carole A.; Kwong, Peter D. (NIAID)

    2012-01-20

    Human noroviruses bind with their capsid-protruding domains to histo-blood-group antigens (HBGAs), an interaction thought to direct their entry into cells. Although human noroviruses are the major cause of gastroenteritis outbreaks, development of antivirals has been lacking, mainly because human noroviruses cannot be cultivated. Here we use X-ray crystallography and saturation transfer difference nuclear magnetic resonance (STD NMR) to analyze the interaction of citrate with genogroup II (GII) noroviruses. Crystals of citrate in complex with the protruding domain from norovirus GII.10 Vietnam026 diffracted to 1.4 {angstrom} and showed a single citrate bound at the site of HBGA interaction. The citrate interaction was coordinated with a set of capsid interactions almost identical to that involved in recognizing the terminal HBGA fucose, the saccharide which forms the primary conserved interaction between HBGAs and GII noroviruses. Citrate and a water molecule formed a ring-like structure that mimicked the pyranoside ring of fucose. STD NMR showed the protruding domain to have weak affinity for citrate (460 {mu}M). This affinity, however, was similar to the affinities of the protruding domain for fucose (460 {mu}M) and H type 2 trisaccharide (390 {mu}M), an HBGA shown previously to be specifically recognized by human noroviruses. Importantly, competition STD NMR showed that citrate could compete with HBGA for norovirus binding. Together, the results suggest that citrate and other glycomimetics have the potential to block human noroviruses from binding to HBGAs.

  8. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Lee-Chun eSu

    2014-07-01

    Full Text Available Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate (POC showed approximately 70-80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers (CUPEs and biodegradable photoluminescent polymers (BPLPs also exhibited significant bacteria reduction of ~20% and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that they are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired.

  9. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Wu, Xinxin; Li, Ren; Shi, Jin; Wang, Jinfang; Sun, Qianqian; Zhang, Haijun; Xing, Yanxia; Qi, Yan; Zhang, Na; Guo, Yang-Dong

    2014-08-01

    The secretion of organic acid anions from roots is an important mechanism for plant aluminum (Al) tolerance. Here we report cloning and characterizing BoMATE (KF031944), a multidrug and toxic compound extrusion (MATE) family gene from cabbage (Brassica oleracea). The expression of BoMATE was more abundant in roots than in shoots, and it was highly induced by Al treatment. The (14)C-citrate efflux experiments in oocytes demonstrated that BoMATE is a citrate transporter. Electrophysiological analysis and SIET analysis of Xenopus oocytes expressing BoMATE indicated BoMATE is activated by Al. Transient expression of BoMATE in onion epidermal cells demonstrated that it localized to the plasma membrane. Compared with the wild-type Arabidopsis, the transgenic lines constitutively overexpressing BoMATE enhanced Al tolerance and increased citrate secretion. In addition, Arabidopsis transgenic lines had a lower K(+) efflux and higher H(+) efflux, in the presence of Al, than control wild type in the distal elongation zone (DEZ). This is the first direct evidence that MATE protein is involved in the K(+) and H(+) flux in response to Al treatment. Taken together, our results show that BoMATE is an Al-induced citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

  10. Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, J.C. [Departamento de Fisica Fundamental, Universidad de Salamanca, 37008 Salamanca (Spain); Blanco Rodriguez, P. [Natural Radioactivity Group, Universidad de Extremadura, Avda. Elvas s/n, 06071 Badajoz (Spain); Vera Tome, F., E-mail: fvt@unex.es [Natural Radioactivity Group, Universidad de Extremadura, Avda. Elvas s/n, 06071 Badajoz (Spain); Calvo, C. Prieto [Departamento de Fisica Fundamental, Universidad de Salamanca, 37008 Salamanca (Spain)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer The aim was to optimize uranium solubilization for the purposes of remediation. Black-Right-Pointing-Pointer The most important factor in uranium solubilization was found to be the pH. Black-Right-Pointing-Pointer Citrate treatment was the most efficient, with 63% of uranium solubilization. Black-Right-Pointing-Pointer The uranium extraction yield with EDDS amendment was greater than with EDTA. - Abstract: A systematic study was made of the effects of three soil amendments on the solubilization of uranium from a granitic soil. The aim was to optimize solubilization so as to enhance bioavailability for the purposes of remediation. The three amendments tested were with citrate, EDTA, and EDDS as chelating agents. The effects of pH, chelator concentration, and leaching time were studied. The most important factor in uranium solubilization was found to be the pH. In the absence of chelating agents, the greatest solubilization was obtained for alkaline conditions, with values representing about 15% of the total uranium activity in the bulk soil. There were major differences in uranium solubilization between the different amendments. The citrate treatment was the most efficient at acidic pH, particularly with the greatest concentration of citrate tested (50 mmol kg{sup -1}) after 6 days of treatment. Under these conditions, the uranium concentration in solution was greater by a factor of 356 than in the control suspension, and represented some 63% of the uranium concentration in the bulk soil. Under alkaline conditions, the EDTA and EDDS treatments gave the greatest uranium activity concentrations in solution, but these concentrations were much lower than those with the citrate amendment, and were not very different from the control results. The uranium extraction yield with EDDS amendment was greater than with EDTA.

  11. Crystal structure of riboflavin synthase

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  12. Hybrid polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  13. Calcium(II)(3) (3,5-Diisopropylsalicylate)(6)(H(2)O)(6) Activates Nitric Oxide Synthase: An Accounting for its Action in Decreasing Platelet Aggregation.

    Science.gov (United States)

    Donham, D C; Sorenson, J R

    2000-01-01

    Purposes of these studies were first; to determine whether or not Calcium(II)(3) (3,5- diisopropylsalicylate)(6)(H(2)O)(6) [Ca(II)(3)(3,5-DIPS)(6)], a lipophilic calcium complex, could decrease activated-platelet aggregation, and second; to determine whether or not it is plausible that Ca(II)(3)(3,5-DIPS)(6) decreases activated-platelet aggregation by facilitating the synthesis of Nitric Oxide (NO) by Nitric Oxide Synthase (NOS). The influence of Ca(II)(3)(3,5-DIPS)(6) on the initial rate of activated-platelet aggregation was determined by measuring the decrease in rate of increase in transmission at 550 nm for a suspension of Thrombin-CaCl(2) activated platelets following the addition of 0, 50, 100, 250, or 500 muM Ca(II)(3)(3,5-DIPS)(6). To establish that the Ca(lI)(3)(3,5- DIPS)(6)-mediated decrease in aggregation was due to activation of NOS, the effect of L-NMMA, an inhibitor of NOS, on the inhibition of platelet aggregation by Ca(II)(3)(3,5-DIPS)(6) was determined using a suspension of activated platelets contaimng 0 or 250 muM Ca(II)(3)(3,5-DIPS)(6) without or with 1 mM L-NMMA. An in vitro Bovine Brain NOS reaction mixture, containing CaCl(2) for the activation of Phosphodiesterase-3' ,5'-Cyclic Nucleotide Activator required for the activation of NOS, was used to determine whether or not Ca(II)(3)(3,5-DIPS)(6) could be used as a substitute for the addition of Ca. The decrease in absorbance at 340 nm, lambda maximum for NADPH, was measured to determine NOS activity following the addition of NOS to the complete reaction mixture containing either CaCl(2), Ca(II)(3)(3,5-DIPS)(6), or neither Ca compound. Increasing the concentration of Ca(II)(3)(3,5-DIPS)(6) caused a concentration related decrease in activated platelet aggregation. The addition of L-NMMA to activated platelets, in the absence of Ca(II)(3)(3,5-DIPS)(6), caused a 129% increase in initial rate of platelet aggregation. The initial rate of platelet aggregation decreased 74% with the addition of 250 mu

  14. Na/K citrate versus sodium bicarbonate in prevention of contrast-induced nephropathy.

    Science.gov (United States)

    Abouzeid, Sameh Mohamed; ElHossary, Hossam E

    2016-05-01

    Contrast-induced nephropathy (CIN) is one of the important complications of radiographic procedures, especially in patients with chronic kidney disease. It is also one of the common causes of acute kidney injury. The pathogenesis is postulated to be the effect of oxygen- free radicals and hyperosmolar stress on the renal medulla. It is reported that the production of superoxide is most active at acid environment. K/Na citrate is well known as a urine alkalinization medium, and this has been evaluated earlier with standard hydration for reduction of CIN and was stated to be efficient. We aimed to determine the efficacy of Na/K citrate in reducing the frequency of CIN in comparison to sodium bicarbonate in patients after coronary angiography. Two hundred and ten patients with renal dysfunction [estimated glomerular filtration rate (eGFR), 60 mL/min/1.73 m(2) or less] who underwent elective or emergency coronary angiography (CAG) with/without percutaneous coronary intervention (PCI) at our institution were enrolled into the study. The patients were randomized into two groups, Group 1-Taking Na/K citrate and Group 2-Taking sodium bicarbonate. Radiographic contrast agent iohexol was used. Change in creatinine, percent change in creatinine, percent change in eGFR, change in serum potassium, and urine pH were all compared between the two groups. There was no significant difference for prevention of CIN when comparing the Na/K citrate with sodium bicarbonate solution in patients exposed to CAG with or without PCI. Mean absolute change in eGFR after 48 h after administration of contrast between sodium bicarbonate group and Na/K citrate group was -0.60 ± 1.58 versus -0.71 ± 1.38. Serum potassium decreased postprocedure in the sodium bicarbonate group than in the citrate group (3.90 ± 0.33 vs. 4.14 ± 0.39). Both agents are equally effective in reducing the incidence of CIN, but the citrate would possibly be a safer option for patients at risk of hypokalemia. PMID:27215244

  15. Na/K citrate versus sodium bicarbonate in prevention of contrast-induced nephropathy.

    Science.gov (United States)

    Abouzeid, Sameh Mohamed; ElHossary, Hossam E

    2016-05-01

    Contrast-induced nephropathy (CIN) is one of the important complications of radiographic procedures, especially in patients with chronic kidney disease. It is also one of the common causes of acute kidney injury. The pathogenesis is postulated to be the effect of oxygen- free radicals and hyperosmolar stress on the renal medulla. It is reported that the production of superoxide is most active at acid environment. K/Na citrate is well known as a urine alkalinization medium, and this has been evaluated earlier with standard hydration for reduction of CIN and was stated to be efficient. We aimed to determine the efficacy of Na/K citrate in reducing the frequency of CIN in comparison to sodium bicarbonate in patients after coronary angiography. Two hundred and ten patients with renal dysfunction [estimated glomerular filtration rate (eGFR), 60 mL/min/1.73 m(2) or less] who underwent elective or emergency coronary angiography (CAG) with/without percutaneous coronary intervention (PCI) at our institution were enrolled into the study. The patients were randomized into two groups, Group 1-Taking Na/K citrate and Group 2-Taking sodium bicarbonate. Radiographic contrast agent iohexol was used. Change in creatinine, percent change in creatinine, percent change in eGFR, change in serum potassium, and urine pH were all compared between the two groups. There was no significant difference for prevention of CIN when comparing the Na/K citrate with sodium bicarbonate solution in patients exposed to CAG with or without PCI. Mean absolute change in eGFR after 48 h after administration of contrast between sodium bicarbonate group and Na/K citrate group was -0.60 ± 1.58 versus -0.71 ± 1.38. Serum potassium decreased postprocedure in the sodium bicarbonate group than in the citrate group (3.90 ± 0.33 vs. 4.14 ± 0.39). Both agents are equally effective in reducing the incidence of CIN, but the citrate would possibly be a safer option for patients at risk of hypokalemia.

  16. Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis.

    OpenAIRE

    Silverman, P M; Eoyang, L

    1987-01-01

    Acetohydroxyacid synthase I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo[2-14C]pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a ...

  17. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis

    OpenAIRE

    Omadjela, Okako; Narahari, Adishesh; Strumillo, Joanna; Mélida, Hugo; Mazur, Olga; Bulone, Vincent; Zimmer, Jochen

    2013-01-01

    Cellulose is the most abundant biopolymer on Earth, primarily formed by vascular plants, but also by some bacteria. Bacterial extracellular polysaccharides, such as cellulose and alginate, are an important component of biofilms, which are multicellular, usually sessile, aggregates of bacteria. Biofilms exhibit a greater resistance to antimicrobial treatments compared with isolated bacteria and thus are a particular concern to human health. Cellulose synthases synthesize cellulose by polymeriz...

  18. 76 FR 77206 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Final Results of...

    Science.gov (United States)

    2011-12-12

    ... grades and granulation sizes of citric acid, sodium citrate, and potassium citrate in their unblended... citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended ] form(s) of citric acid, sodium citrate, and potassium citrate constitute...

  19. 76 FR 77772 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Final Results of the...

    Science.gov (United States)

    2011-12-14

    ... granulation sizes of citric acid, sodium citrate, and potassium citrate in their unblended forms, whether dry..., sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended form(s) of citric acid, sodium citrate, and potassium citrate constitute 40 percent or more,...

  20. 77 FR 74171 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Final Results of...

    Science.gov (United States)

    2012-12-13

    ... sodium citrate, otherwise known as citric acid sodium salt, and the monohydrate and monopotassium forms of potassium citrate.\\5\\ Sodium citrate also includes both trisodium citrate and monosodium citrate... acid and sodium citrate are classifiable under 2918.14.0000 and 2918.15.1000 of the Harmonized...

  1. N-[3,4-dimethoxycinnamoyl]-anthranilic acid (tranilast) suppresses microglial inducible nitric oxide synthase (iNOS) expression and activity induced by interferon-γ (IFN-γ)

    OpenAIRE

    Platten, Michael; Wick, Wolfgang; Wischhusen, Jörg; WELLER, MICHAEL

    2001-01-01

    Microglial cells up-regulate inducible nitric oxide synthase (iNOS) expression in response to various pro-inflammatory stimuli including interferon-γ (IFN-γ), allowing for the release of nitric oxide (NO). Tranilast (N-[3,4-dimethoxycinnamoyl]-anthranilic acid) is an antiallergic compound with suppressive effects on the activation of monocytes.Here, we show that N9 murine microglial cells express iNOS mRNA and protein and release nitric oxide into the culture medium in response to IFN-γ (200 ...

  2. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line

    OpenAIRE

    Cruz, MT; Gonçalo, Margarida; A. Figueiredo; Carvalho, AP; Duarte, CB

    2004-01-01

    Nuclear factor kappa B (NF-kB) and activating protein-1 (AP-1) transcription factors are ubiquitously expressed signaling molecules known to regulate the transcription of a large number of genes involved in immune responses, namely the inducible isoform of nitric oxide synthase (iNOS). In this study, we demonstrate that a fetal skin-derived dendritic cell line (FSDC) produces nitric oxide (NO) in response to the contact sensitizer nickel sulfate (NiSO(4)) and increases the expression of the i...

  3. Gene identification and functional analysis of methylcitrate synthase in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2013-01-01

    Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity.

  4. Gene identification and functional analysis of methylcitrate synthase in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2013-01-01

    Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity. PMID:23832368

  5. Effect of S-adenosyl-L-methionine (SAM), an allosteric activator of cystathionine-β-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro.

    Science.gov (United States)

    Módis, Katalin; Coletta, Ciro; Asimakopoulou, Antonia; Szczesny, Bartosz; Chao, Celia; Papapetropoulos, Andreas; Hellmich, Mark R; Szabo, Csaba

    2014-09-15

    Recent data show that colon cancer cells selectively overexpress cystathionine-β-synthase (CBS), which produces hydrogen sulfide (H2S), to maintain cellular bioenergetics, support tumor growth and stimulate angiogenesis and vasorelaxation in the tumor microenvironment. The purpose of the current study was to investigate the effect of the allosteric CBS activator S-adenosyl-L-methionine (SAM) on the proliferation and bioenergetics of the CBS-expressing colon cancer cell line HCT116. The non-transformed, non-tumorigenic colon epithelial cell line NCM356 was used as control. For assessment of cell proliferation, the xCELLigence system was used. Bioenergetic function was measured by Extracellular Flux Analysis. Experiments using human recombinant CBS or HCT116 homogenates complemented the cell-based studies. SAM markedly enhanced CBS-mediated H2S production in vitro, especially when a combination of cysteine and homocysteine was used as substrates. Addition of SAM (0.1-3 mM) to HCT116 cells induced a concentration-dependent increase H2S production. SAM exerted time- and concentration-dependent modulatory effects on cell proliferation. At 0.1-1 mM SAM increased HCT116 proliferation between 0 and 12 h, while the highest SAM concentration (3 mM) inhibited proliferation. Over a longer time period (12-24 h), only the lowest concentration of SAM used (0.1 mM) stimulated cell proliferation; higher SAM concentrations produced a concentration-dependent inhibition. The short-term stimulatory effects of SAM were attenuated by the CBS inhibitor aminooxyacetic acid (AOAA) or by stable silencing of CBS. In contrast, the inhibitory effects of SAM on cell proliferation was unaffected by CBS inhibition or CBS silencing. In contrast to HCT116 cells, the lower rate of proliferation of the low-CBS expressor NCM356 cells was unaffected by SAM. Short-term (1 h) exposure of HCT116 cells to SAM induced a concentration-dependent increase in oxygen consumption and bioenergetic function at 0

  6. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  7. Human platelet nitric oxide synthase activity: an optimized method Atividade da óxido nítrico sintase em plaquetas humanas: um método otimizado

    Directory of Open Access Journals (Sweden)

    Elisa Mitiko Kawamato

    2002-09-01

    Full Text Available We investigated the kinetic analysis of human platelet Nitric Oxide Synthase (NOS activity by the rate of conversion of [³H] arginine to [³H]-citrulline in unstimulated fresh platelets. NOS activity was present in the membrane fraction and cytosol, and was Ca2+- and calmodulin dependent which is a characteristic of endothelial NOS. NOS activity was also dependent of NADPH since the omission of this cofactor induced an important decrease (85,2% in the enzyme activity. The kinetic varied with protein and arginine concentration but optimum concentrations were found up to 60 minutes, and up to 80 µg of protein at 120 nM of arginine and 0.5 µCi of ³H-arginine. NOS activity in the absence of FAD (flavin adenine dinucleotide, FMN (flavin mononucleotide and BH4 (tetrahydrobiopterin was only 2.8% of the activity measured in the presence of these three cofactors. The enzyme activity was completely inhibited by L-NAME (1 mM (98.1 % and EGTA (5 mM (98.8 %. Trifluoperazine (TFP caused 73.2% inhibition of the enzyme activity at 200 µM and 83.8 % at 500 µM. Under basal conditions, NOS Km for L-arginine was 0.84 ± 0.08 µM and mean Vmax values were 0.122 ± 0.025 pmol.mg-1.min-1. Mean human NOS platelet activity was 0.020 ± 0.010 pmol.mg-1.min-1. Results indicate that the eNOS in human platelet can be evaluated by conversion of [³H]-arginine to [³H]citrulline in an optimized method, which provide reproducible and accurate results with good sensitivity to clinical experiments involving neurological and psychiatric diseases.A análise cinética da atividade da óxido nítrico sintase (NOS plaquetária foi avaliada pela conversão de [³H]-arginina em [³H]-citrulina em plaquetas humanas frescas não estimuladas. A atividade da NOS foi detectada na fração citosólica e na membrana, além de ser dependente de Ca2+-calmodulina, que é uma característica da NOS endotelial (eNOS. A omissão de NADPH levou à diminuição da atividade da NOS dependente da

  8. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-{alpha}-dependent pathway in human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Takumi; Kobayashi-Hattori, Kazuo [Department of Nutritional Sciences, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502 (Japan); Oishi, Yuichi, E-mail: y3oishi@nodai.ac.jp [Department of Nutritional Sciences, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502 (Japan)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis along with an increase in HAS2 transcripts. Black-Right-Pointing-Pointer Adiponectin also increases the phosphorylation of AMPK. Black-Right-Pointing-Pointer A pharmacological activator of AMPK increases mRNA levels of PPAR{alpha} and HAS2. Black-Right-Pointing-Pointer Adiponectin-induced HAS2 mRNA expression is blocked by a PPAR{alpha} antagonist. Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis via an AMPK/PPAR{alpha}-dependent pathway. -- Abstract: Although adipocytokines affect the functions of skin, little information is available on the effect of adiponectin on the skin. In this study, we investigated the effect of adiponectin on hyaluronan synthesis and its regulatory mechanisms in human dermal fibroblasts. Adiponectin promoted hyaluronan synthesis along with an increase in the mRNA levels of hyaluronan synthase 2 (HAS2), which plays a primary role in hyaluronan synthesis. Adiponectin also increased the phosphorylation of AMP-activated protein kinase (AMPK). A pharmacological activator of AMPK, 5-aminoimidazole-4-carboxamide-1{beta}-ribofuranoside (AICAR), increased mRNA levels of peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}), which enhances the expression of HAS2 mRNA. In addition, AICAR increased the mRNA levels of HAS2. Adiponectin-induced HAS2 mRNA expression was blocked by GW6471, a PPAR{alpha} antagonist, in a concentration-dependent manner. These results show that adiponectin promotes hyaluronan synthesis along with increases in HAS2 transcripts through an AMPK/PPAR{alpha}-dependent pathway in human dermal fibroblasts. Thus, our study suggests that adiponectin may be beneficial for retaining moisture in the skin, anti-inflammatory activity, and the treatment of a variety of cutaneous diseases.

  9. Na/K citrate versus sodium bicarbonate in prevention of contrast-induced nephropathy

    OpenAIRE

    Sameh Mohamed Abouzeid; Hossam E ElHossary

    2016-01-01

    Contrast-induced nephropathy (CIN) is one of the important complications of radiographic procedures, especially in patients with chronic kidney disease. It is also one of the common causes of acute kidney injury. The pathogenesis is postulated to be the effect of oxygen- free radicals and hyperosmolar stress on the renal medulla. It is reported that the production of superoxide is most active at acid environment. K/Na citrate is well known as a urine alkalini- zation medium, and this has been...

  10. Effect of curcumin on nitric oxide synthase expression in Iipopolysaccharide-activated microglia cells and the anti-oxidative effect of curcumin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND:It has been demonstrated that curcumin can increase the activities of various anti-oxidase in blood and tissue,effectively eliminate various free radicals,reduce the production of peroxisome,and alleviate oxidative stress reaction.Whether it has the same effect on microglia? OBJECTIVE:To observe the effects of curcumin on the expressions of inducible nitric oxide synthase (iNOS),nuclear factor-κB(YF-κB),and superoxide dismutase (SOD) in microglial cell line BV stimulated by lipopolysaccharide(LPS).DESIGN:An observational comparative study.SETTING:Research Room of Biochemistry,Medical College of Nantong University.MATERIALS:Mice microglia cell line BV,iNOS and NF-κ B reporter gene plasmids were presented by Dr.Bhat.NR.from the Medical University of South Carolina(USA).Curcumin was produced by the Xi'an Branch of China Chengdu Scholar Bio-Tech.Co.,Ltd.;LPS (E.Coli 026:B6).anti-mice iNOS monoclonal antibody,horseradish peroxidase labeled goat-anti-mice IgG were the products of Sigma Company (USA).METHODS:The experiments were carried out in the Research Room of Biochemistry,Medical College of Nantong University from May 2006 to April 2007.①Detection of iNOS:The cells Were seeded onto 24-well plate at the density of 1*105,After the cells had adhered to the cover glasses,the cells were grouped as negative control group(the primary antibody was replaced by phosphate bufffered solution PBS);normal control group (the cells were normally cultured);LPS-treated group(the cells were treated with LPS for 24 hours);curcumin+LPS group(the cells were treated with curcumin for 1 hour and LPS for 24 hours).The expressions of iNOS protein were detected with immunocytochemical staining.②Detennination of iNOS and NF-κ B gene activities:According to the introduction of the kit for transfection,jNOS or NF-κ B report gene plasmids were transiently transfected with Lipofectamine TM 2000 liposomes into the cells in the 24-well plate for 24 hours.The cells were divided

  11. 76 FR 34044 - Citric Acid and Certain Citrate Salts From Canada: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-06-10

    ... Citrate Salts From Canada: Preliminary Results of Antidumping Duty Administrative Review, 76 FR 5782... The scope of this order includes all grades and granulation sizes of citric acid, sodium citrate, and.... The scope also includes blends of citric acid, sodium citrate, and potassium citrate; as well...

  12. Starvation for ilvB operon leader amino acids other than leucine or valine does not increase acetohydroxy acid synthase activity in Escherichia coli.

    OpenAIRE

    Tsui, P; Freundlich, M

    1985-01-01

    Eleven different amino acids are encoded in the ilvB leader mRNA. Starvation for leucine or valine, but not for any of the other nine amino acids, resulted in high levels of acetohydroxy acid synthase I. These results are discussed in terms of a report (C.A. Hauser and G.W. Hatfield, Proc. Natl. Acad. Sci. U.S.A. 81:76-79, 1984) which suggests that threonine and alanine, in addition to leucine and valine, are involved in the regulation of the ilvB operon.

  13. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 Synergistically Activate Transcription of Fatty-acid Synthase Gene (FASN)*S⃞

    OpenAIRE

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F.; Hur, Man-Wook

    2008-01-01

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of...

  14. Prenyldiphosphate synthases and gibberellin biosynthesis

    NARCIS (Netherlands)

    C.C.N. van Schie; M.A. Haring; R.C. Schuurink

    2013-01-01

    Gibberellins are derived from the diterpene precursor geranylgeranyl diphophosphate (GGPP). GGPP is converted to ent-kaurene, which contains the basic structure of gibberellins, in the plastids by the combined actions of copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). Generally, ge

  15. Role of cysteine residues in pseudouridine synthases of different families.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  16. Fluvoxamine alters the activity of energy metabolism enzymes in the brain

    Directory of Open Access Journals (Sweden)

    Gabriela K. Ferreira

    2014-09-01

    Full Text Available Objective: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Methods: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. Results: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. Conclusions: Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent.

  17. Competitive and cooperative adsorption of arsenate and citrate on goethite

    Institute of Scientific and Technical Information of China (English)

    SHI Rong; JIA Yongfeng; WANG Chengzhi

    2009-01-01

    The fate of arsenic in natural environments is influenced by adsorption onto metal (hydr)oxides. The extent of arsenic adsorption is strongly affected by coexisting dissolved natural organic acids. Recently, some studies reported that there existed competitive adsorption between arsenate and citrate on goethite. Humic acid is known to interact strongly with arsenate by forming complexes in aqueous solution, hence it is necessary to undertake a comprehensive study of the adsorption of arsenate/citrate onto goethite in the presence of one another. The results showed that at the arsenate concentrations used in this study (0.006--0.27 mmol/L), citrate decreased arsenate adsorption at acidic pH but no effect was observed at alkaline pH. In comparison, citrate adsorption was inhibited at acidic pH, but enhanced at alkaline pH by arsenate. This was probably due to the formation of complex between arsenate and citrate like the case of arsenate with humic acid. These results implied that the mechanism of the adsorption of arsenate and citrate onto goethite in the presence of one another involved not only competition for binding sites, but the cooperation between the two species at the water-goethite interface as well.

  18. Genetic organization of the cellulose synthase operon in Acetobacter xylinum.

    OpenAIRE

    Wong, H C; Fear, A L; Calhoon, R D; Eichinger, G H; Mayer, R; Amikam, D; Benziman, M; Gelfand, D H; Meade, J H; Emerick, A W

    1990-01-01

    An operon encoding four proteins required for bacterial cellulose biosynthesis (bcs) in Acetobacter xylinum was isolated via genetic complementation with strains lacking cellulose synthase activity. Nucleotide sequence analysis indicated that the cellulose synthase operon is 9217 base pairs long and consists of four genes. The four genes--bcsA, bcsB, bcsC, and bcsD--appear to be translationally coupled and transcribed as a polycistronic mRNA with an initiation site 97 bases upstream of the co...

  19. Two Predicted Transmembrane Domains Exclude Very Long Chain Fatty acyl-CoAs from the Active Site of Mouse Wax Synthase.

    Directory of Open Access Journals (Sweden)

    Steffen Kawelke

    Full Text Available Wax esters are used as coatings or storage lipids in all kingdoms of life. They are synthesized from a fatty alcohol and an acyl-CoA by wax synthases. In order to get insights into the structure-function relationships of a wax synthase from Mus musculus, a domain swap experiment between the mouse acyl-CoA:wax alcohol acyltransferase (AWAT2 and the homologous mouse acyl-CoA:diacylglycerol O-acyltransferase 2 (DGAT2 was performed. This showed that the substrate specificity of AWAT2 is partially determined by two predicted transmembrane domains near the amino terminus of AWAT2. Upon exchange of the two domains for the respective part of DGAT2, the resulting chimeric enzyme was capable of incorporating up to 20% of very long acyl chains in the wax esters upon expression in S. cerevisiae strain H1246. The amount of very long acyl chains in wax esters synthesized by wild type AWAT2 was negligible. The effect was narrowed down to a single amino acid position within one of the predicted membrane domains, the AWAT2 N36R variant. Taken together, we provide first evidence that two predicted transmembrane domains in AWAT2 are involved in determining its acyl chain length specificity.

  20. A dodecylamine derivative of cyanocobalamin potently inhibits the activities of cobalamin-dependent methylmalonyl-CoA mutase and methionine synthase of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Tomohiro Bito

    2014-01-01

    Full Text Available In this study, we showed that cyanocobalamin dodecylamine, a ribose 5′-carbamate derivative of cyanocobalamin, was absorbed and accumulated to significant levels by Caenorhabditis elegans and was not further metabolized. The levels of methylmalonic acid and homocysteine, which serve as indicators of cobalamin deficiency, were significantly increased in C. elegans treated with the dodecylamine derivative, indicating severe cobalamin deficiency. Kinetic studies show that the affinity of the cyanocobalamin dodecylamine derivative was greater for two cobalamin-dependent enzymes, methylmalonyl-CoA mutase and methionine synthase, compared with their respective coenzymes, suggesting that the dodecylamine derivative inactivated these enzymes. The dodecylamine derivative did not affect the levels of mRNAs encoding these enzymes or those of other proteins involved in intercellular cobalamin metabolism, including methylmalonyl-CoA mutase (mmcm-1, methylmalonic acidemia cobalamin A complementation group (mmaa-1, methylmalonic aciduria cblC type (cblc-1, and methionine synthase reductase (mtrr-1. In contrast, the level of the mRNAs encoding cob(Ialamin adenosyltransferase (mmab-1 was increased significantly and identical to that of cobalamin-deficient C. elegans. These results indicate that the cyanocobalamin-dodecylamine derivative acts as a potent inhibitor of cobalamin-dependent enzymes and induces severe cobalamin deficiency in C. elegans.

  1. Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer

    OpenAIRE

    Fukushima, Tatsuya; Sia, Allyson K.; Allred, Benjamin E.; Nichiporuk, Rita; Zhou, Zhongrui; Andersen, Ulla N.; Raymond, Kenneth N.

    2012-01-01

    Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the Gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated ...

  2. Nitric oxide synthase in the pineal gland

    OpenAIRE

    Lopez-Figueroa, M.O.; Moller, M.

    1996-01-01

    The recent discovery of nitric oxide (NO) as a biological messenger molecule with unique characteristics has opened a new field in pineal research. This free radical gas is synthesized by the enzyme nitric oxide synthase (NOS) from L-arginine. The activation of adrenoreceptors in the membrane of the pinealocytes mediates the increase in NO through a mechanism that involves G proteins. In the pinealocyte, NO stimulates guanylyl cyclase resulting in an increased ...

  3. Structure and Mechanism of the Diterpene Cyclase ent-Copalyl Diphosphate Synthase

    Science.gov (United States)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W.

    2011-01-01

    The structure of ent-copalyl diphosphate synthase (CPS) reveals three α-helical domains (α, β, γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in CPS but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions. PMID:21602811

  4. Electroretinography and immunohistochemistry of retina in rabbits treated with sildenafil citrate

    Directory of Open Access Journals (Sweden)

    A.V.C. Amaral

    2015-12-01

    Full Text Available Sildenafil citrate is a type-5 phosphodiesterase inhibitor (PDE-5, able to inhibit type-6 phosphodiesterase (PDE-6 as well, providing clinical benefits and paraeffects, some of them potentially related to the retina. The effects of the sildenafil on the retrobulbar and retinal circulation were studied in 27 adult male rabbits of the White New Zealand breed. The electric activity of the retina was evaluated before and at the end of the treatments, and immunohistochemistry studies were conducted. An amplitude increase of the b wave was found in the mixed response of cones and rods after 7 days of treatment with sildenafil citrate. However, in the other evaluations and periods, the values did not differ from the basal ones. Through immunohistochemistry, no significant decrease of the expression of PDE-5 and PDE-6 proteins was observed. Based on the results obtained, it is possible to admit that the sildenafil citrate did not change the expression of PDE-5 and PDE-6, neither the electroretinographic activity of the retina of male rabbits of the White New Zealand breed.

  5. Aroma compounds generation in citrate metabolism of Enterococcus faecium: Genetic characterization of type I citrate gene cluster.

    Science.gov (United States)

    Martino, Gabriela P; Quintana, Ingrid M; Espariz, Martín; Blancato, Victor S; Magni, Christian

    2016-02-01

    Enterococcus is one of the most controversial genera belonging to Lactic Acid Bacteria. Research involving this microorganism reflects its dual behavior as regards its safety. Although it has also been associated to nosocomial infections, natural occurrence of Enterococcus faecium in food contributes to the final quality of cheese. This bacterium is capable of fermenting citrate, which is metabolized to pyruvate and finally derives in the production of the aroma compounds diacetyl, acetoin and 2,3 butanediol. Citrate metabolism was studied in E. faecium but no data about genes related to these pathways have been described. A bioinformatic approach allowed us to differentiate cit(-) (no citrate metabolism genes) from cit(+) strains in E. faecium. Furthermore, we could classify them according to genes encoding for the transcriptional regulator, the oxaloacetate decarboxylase and the citrate transporter. Thus we defined type I organization having CitI regulator (DeoR family), CitM cytoplasmic soluble oxaloacetate decarboxylase (Malic Enzyme family) and CitP citrate transporter (2-hydroxy-carboxylate transporter family) and type II organization with CitO regulator (GntR family), OAD membrane oxaloacetate decarboxylase complex (Na(+)-transport decarboxylase enzyme family) and CitH citrate transporter (CitMHS family). We isolated and identified 17 E. faecium strains from regional cheeses. PCR analyses allowed us to classify them as cit(-) or cit(+). Within the latter classification we could differentiate type I but no type II organization. Remarkably, we came upon E. faecium GM75 strain which carries the insertion sequence IS256, involved in adaptative and evolution processes of bacteria related to Staphylococcus and Enterococcus genera. In this work we describe the differential behavior in citrate transport, metabolism and aroma generation of three strains and we present results that link citrate metabolism and genetic organizations in E. faecium for the first time.

  6. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion.

    Science.gov (United States)

    Desfougères, Thomas; Ferreira, Thierry; Bergès, Thierry; Régnacq, Matthieu

    2008-01-01

    The yeast Saccharomyces cerevisiae is a facultative anaerobic organism. Under anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of SFA (saturated fatty acid) is observed that induces significant modification of phospholipid profile [Ferreira, Régnacq, Alimardani, Moreau-Vauzelle and Bergès (2004) Biochem. J. 378, 899-908]. In the present paper, we focus on the role of SFH2/CSR1, a hypoxic gene related to SEC14 and its involvement in lipid metabolism upon haem depletion in the absence of oleic acid supplementation. We observed that inactivation of SFH2 results in enhanced accumulation of SFA and phospholipid metabolism alterations. It results in premature growth arrest and leads to an exacerbated sensitivity to exogenous SFA. This phenotype is suppressed in the presence of exogenous oleic acid, or by a controlled expression of FAS1, one of the two genes encoding FAS. We present several lines of evidence to suggest that Sfh2p and oleic acid regulate SFA synthase in yeast at different levels: whereas oleic acid acts on FAS2 at the transcriptional level, we show that Sfh2p inhibits fatty acid synthase activity in response to haem depletion. PMID:17803462

  7. Smoking cessation early in pregnancy and birth weight, length, head circumference, and endothelial nitric oxide synthase activity in umbilical and chorionic vessels: an observational study of healthy singleton pregnancies

    DEFF Research Database (Denmark)

    Andersen, Malene R; Simonsen, Ulf; Uldbjerg, Niels;

    2009-01-01

    BACKGROUND: Reduced production of the vasodilator nitric oxide (NO) in fetal vessels in pregnant smokers may lower the blood flow to the fetus and result in lower birth weight, length, and head circumference. The present study measured endothelial NO synthase (eNOS) activity in fetal umbilical...... and chorionic vessels from nonsmokers, smokers, and ex-smokers and related the findings to the fetal outcome. METHODS AND RESULTS: Of 266 healthy, singleton pregnancies, 182 women were nonsmokers, 43 were smokers, and 41 stopped smoking early in pregnancy. eNOS activity and concentration were quantified...... in endothelial cells of the fetal vessels. Cotinine, lipid profiles, estradiol, l-arginine, and dimethylarginines that may affect NO production were determined in maternal and fetal blood. Serum cotinine verified self-reported smoking. Newborns of smokers had a lower weight (P

  8. Rectal antinociceptive properties of alverine citrate are linked to antagonism at the 5-HT1A receptor subtype.

    Science.gov (United States)

    Coelho, A M; Jacob, L; Fioramonti, J; Bueno, L

    2001-10-01

    Serotonin (5-HT) is considered as a major mediator causing hyperalgesia and is involved in inflammatory reactions and irritable bowel syndrome. Alverine citrate may possess visceral antinociceptive properties in a rat model of rectal distension-induced abdominal contractions. This study was designed to evaluate the pharmacological properties of alverine citrate in a rat model of rectal hyperalgesia induced by 5-HTP (5-HT precursor) and by a selective 5-HT1A agonist (8-OH-DPAT) and to compare this activity with a reference 5-HT1A antagonist (WAY 100635). At 4 h after their administration, 5-HTP and 8-OH-DPAT increased the number of abdominal contractions in response to rectal distension at the lowest volume of distension (0.4 mL). When injected intraperitoneally before 8-OH-DPAT and 5-HTP, WAY 100635 (1 mg kg(-1)) blocked their nociceptive effect, but also reduced the response to the highest volume of distension (1.6 mL). Similarly, when injected intraperitoneally, alverine citrate (20 mg kg(-1)) suppressed the effect of 5-HTP, but not that of 8-OH-DPAT. However, when injected intracerebroventricularly (75 microg/rat) alverine citrate reduced 8-OH-DPAT-induced enhancement of rectal distension-induced abdominal contractions. In-vitro binding studies revealed that alverine citrate had a high affinity for 5-HT1A receptors and a weak affinity for 5-HT3 and 5-HT4 subtypes. These results suggest that 5-HTP-induced rectal hypersensitivity involves 5-TH1A receptors and that alverine citrate acts as a selective antagonist at the 5-HT1A receptor subtype to block both 5-HTP and 8-OH-DPAT-induced rectal hypersensitivity. PMID:11697552

  9. T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells.

    Science.gov (United States)

    Marigo, Ilaria; Zilio, Serena; Desantis, Giacomo; Mlecnik, Bernhard; Agnellini, Andrielly H R; Ugel, Stefano; Sasso, Maria Stella; Qualls, Joseph E; Kratochvill, Franz; Zanovello, Paola; Molon, Barbara; Ries, Carola H; Runza, Valeria; Hoves, Sabine; Bilocq, Amélie M; Bindea, Gabriela; Mazza, Emilia M C; Bicciato, Silvio; Galon, Jérôme; Murray, Peter J; Bronte, Vincenzo

    2016-09-12

    Effective cancer immunotherapy requires overcoming immunosuppressive tumor microenvironments. We found that local nitric oxide (NO) production by tumor-infiltrating myeloid cells is important for adoptively transferred CD8(+) cytotoxic T cells to destroy tumors. These myeloid cells are phenotypically similar to inducible nitric oxide synthase (NOS2)- and tumor necrosis factor (TNF)-producing dendritic cells (DC), or Tip-DCs. Depletion of immunosuppressive, colony stimulating factor 1 receptor (CSF-1R)-dependent arginase 1(+) myeloid cells enhanced NO-dependent tumor killing. Tumor elimination via NOS2 required the CD40-CD40L pathway. We also uncovered a strong correlation between survival of colorectal cancer patients and NOS2, CD40, and TNF expression in their tumors. Our results identify a network of pro-tumor factors that can be targeted to boost cancer immunotherapies.

  10. Preparation of lead titanate zirconate from metal citrates

    International Nuclear Information System (INIS)

    Lead titanate zirconate (PZT) preparation from its metal constituent citrates have been investigated. Metal citrates were obtained by forced precipitation using a dehydration alcohol mixture. Salt solutions of lead nitrate and octahydrated zirconyl chloride, and titanium tetrachloride were treated separately with citric acid and ammonium hydroxide. Zirconium, titanium and lead oxides resulted from thermal decomposition of corresponding citrates at 5000 C, 4500 C and 2500 C, respectively. Lead titanate (PT) and lead zirconate (P Z) were obtained by calcining at 4500 C and 5000 C, respectively, after adequate heating of citrates mechanically mixed in ethyl ether. PZT samples were obtained with different starting stoichiometry. Rhombohedral PZT-1 53/47 sample was prepared from co precipitating zirconyl ammonium and ammonium lead citrates in presence of ethanolic titanium oxide dispersion, and calcinating at 8000 C. Rhombohedral PZT-q 52/48 sample was obtained from heating at 5000 C for 2 hours a mixture of metal citrates coprecipitated by dehydration mixture of acetone-ethanol-formic acid (2:1:0,06). Tetragonal PZT-m stoichiometry 53/47 sample were obtained by calcining at after 6000 C for 2 hours after heating a mechanically mixed metal citrates. PT phase arose at 4000 C. PZT-m powders obtained in a range of 4000 C-8000 C were isostatically pressed, and sintered at 11000 C and 12000 C in saturated Pb O atmosphere. Rhombohedral sintered PZT was obtained with 7,78 g.cm-3 at 12000 C. (author). 123 refs, 53 figs, 32 tabs

  11. Alkali absorption and citrate excretion in calcium nephrolithiasis

    Science.gov (United States)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  12. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet.

    Science.gov (United States)

    Huang, Hsiu-Chen; Lin, Jen-Kun

    2012-02-01

    Although green tea extract has been reported to suppress hyperlipidemia, it is unclear how tea extracts prepared from green, oolong, black and pu-erh teas modulate fatty acid synthase expression in rats fed on a high-fructose diet. In this animal study, we evaluated the hypolipidemic and hypoleptinemia effect of these four different tea leaves fed to male Wistar rats for 12 weeks. The results showed that a fructose-rich diet significantly elevated serum triacylglycerols, cholesterol, insulin, and leptin concentrations, as compared with those in the control group. Interestingly, consuming tea leaves for 12 weeks almost normalized the serum triacylglycerols concentrations. Again, rats fed with fructose/green tea and fructose/pu-erh tea showed the greatest reduction in serum TG, cholesterol, insulin and leptin levels. In contrast, serum cholesterol and insulin concentrations of the fructose/oolong tea-fed rats did not normalize. The relative epididymal adipose tissue weight was lower in all rats supplemented with tea leaves than those fed with fructose alone. There was molecular evidence of improved lipid homeostasis according to fatty acid synthase (FAS) protein expression. Furthermore, supplementation of green, black, and pu-erh tea leaves significantly decreased hepatic FAS mRNA and protein levels, and increased AMPK phosphorylation, compared with those of rats fed with fructose only. These findings suggest that the intake of green, black, and pu-erh tea leaves ameliorated the fructose-induced hyperlipidemia and hyperleptinemia state in part through the suppression of FAS protein levels and increased AMPK phosphorylation.

  13. Selective induction and subcellular distribution of ACONITASE 3 reveal the importance of cytosolic citrate metabolism during lipid mobilization in Arabidopsis.

    Science.gov (United States)

    Hooks, Mark A; Allwood, J William; Harrison, Joanna K D; Kopka, Joachim; Erban, Alexander; Goodacre, Royston; Balk, Janneke

    2014-10-15

    Arabidopsis thaliana has three genes that encode distinct aconitases (ACO), but little is known about the function of each isoenzyme during plant development. In newly emerged seedlings of Arabidopsis, transcript and protein levels for ACO3 were selectively induced to yield more than 80% of total aconitase activity. Characterization of knockout mutants for each of the three ACOs suggests a major role for only ACO3 in citrate metabolism. The aco3 mutant showed delayed early seedling growth, altered assimilation of [14C]acetate feeding and elevated citrate levels, which were nearly 4-fold greater than in wild-type, aco1 or aco2. However, both ACO1 and ACO2 are active in seedlings as shown by inhibition of aco3 growth by the toxin monofluoroacetate, and altered [14C]acetate assimilation and metabolite levels in aco1 and aco2. Relative levels of fumarate and malate differed between aco2 and aco3, indicating metabolically isolated pools of these metabolites in seedlings. Our inability to enrich ACO protein through mitochondria isolation, and the reduced cytosolic ACO activity of the iron-sulfur centre assembly mutant atm3-1, indicated a cytosolic localization of ACO3 in 3-day-old seedlings. Subsequently, we determined that more than 90% of ACO3 was cytosolic. We conclude that ACO3 is cytosolic in young seedlings and functions in citrate catabolism consistent with the operation of the classic glyoxylate and not direct catabolism of citrate within mitochondria.

  14. Linking pseudouridine synthases to growth, development and cell competition.

    Science.gov (United States)

    Tortoriello, Giuseppe; de Celis, José F; Furia, Maria

    2010-08-01

    Eukaryotic pseudouridine synthases direct RNA pseudouridylation and bind H/ACA small nucleolar RNA (snoRNAs), which, in turn, may act as precursors of microRNA-like molecules. In humans, loss of pseudouridine synthase activity causes dyskeratosis congenita (DC), a complex systemic disorder characterized by cancer susceptibility, failures in ribosome biogenesis and telomere stability, and defects in stem cell formation. Considering the significant interest in deciphering the various molecular consequences of pseudouridine synthase failure, we performed a loss of function analysis of minifly (mfl), the pseudouridine synthase gene of Drosophila, in the wing disc, an advantageous model system for studies of cell growth and differentiation. In this organ, depletion of the mfl-encoded pseudouridine synthase causes a severe reduction in size by decreasing both the number and the size of wing cells. Reduction of cell number was mainly attributable to cell death rather than reduced proliferation, establishing that apoptosis plays a key role in the development of the loss of function mutant phenotype. Depletion of Mfl also causes a proliferative disadvantage in mosaic tissues that leads to the elimination of mutant cells by cell competition. Intriguingly, mfl silencing also triggered unexpected effects on wing patterning and cell differentiation, including deviations from normal lineage boundaries, mingling of cells of different compartments, and defects in the formation of the wing margin that closely mimic the phenotype of reduced Notch activity. These results suggest that a component of the pseudouridine synthase loss of function phenotype is caused by defects in Notch signalling.

  15. Cellulose synthase complexes: structure and regulation

    Directory of Open Access Journals (Sweden)

    Lei eLei

    2012-04-01

    Full Text Available This review is to update the most recent progress on characterization of the composition, regulation, and trafficking of cellulose synthase complexes. We will highlight proteins that interact with cellulose synthases, e.g. cellulose synthase-interactive protein 1 (CSI1. The potential regulation mechanisms by which cellulose synthase interact with cortical microtubules in primary cell walls will be discussed.

  16. Arsenic mobilization by citrate and malate from a red mud-treated contaminated soil.

    Science.gov (United States)

    Castaldi, Paola; Silvetti, Margherita; Mele, Elena; Garau, Giovanni; Deiana, Salvatore

    2013-01-01

    The mobility and bioavailability of As in the soil-plant system can be affected by a number of organic acids that originate from the activity of plants and microorganisms. In this study we evaluated the ability of citrate and malate anions to mobilize As in a polluted subacidic soil (UP soil) treated with red mud (RM soil). Both anions promoted the mobilization of As from UP and RM soils, with citrate being more effective than malate. The RM treatment induced a greater mobility of As. The amounts of As released in RM and UP soils treated with 3.0 mmol L citric acid solution were 2.78 and 1.83 μmol g respectively, whereas an amount equal to 1.73 and 1.06 μmol g was found after the treatment with a 3.0 mmol L malic acid solution. The release of As in both soils increased with increasing concentration of organic acids, and the co-release of Al and Fe in solution also increased. The sequential extraction showed that Fe/Al (oxi)hydroxides in RM were the main phases involved in As binding in RM soil. Two possible mechanisms could be responsible for As solubilization: (i) competition of the organic anions for As adsorption sites and (ii) partial dissolution of the adsorbents (e.g., dissolution of iron and aluminum oxi-hydroxides) induced by citrate or malate and formation of complexes between dissolved Fe and Al and organic anions. This is the first report on the effect of malate and citrate on the As mobility in a polluted soil treated with RM.

  17. Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer.

    Science.gov (United States)

    Fukushima, Tatsuya; Sia, Allyson K; Allred, Benjamin E; Nichiporuk, Rita; Zhou, Zhongrui; Andersen, Ulla N; Raymond, Kenneth N

    2012-10-16

    Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated that B. cereus ATCC 14579 takes up (55)Fe radiolabeled ferric citrate and that a protein, BC_3466 [renamed FctC (ferric citrate-binding protein C)], binds ferric citrate. The dissociation constant (K(d)) of FctC at pH 7.4 with ferric citrate (molar ratio 1:50) is 2.6 nM. This is the tightest binding observed of any B. cereus siderophore-binding protein. Nano electrospray ionization-mass spectrometry (nano ESI-MS) analysis of FctC and ferric citrate complexes or citrate alone show that FctC binds diferric di-citrate, and triferric tricitrate, but does not bind ferric di-citrate, ferric monocitrate, or citrate alone. Significantly, the protein selectively binds triferric tricitrate even though this species is naturally present at very low equilibrium concentrations.

  18. 77 FR 33167 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2012-06-05

    ... sizes of citric acid, sodium citrate, and potassium citrate in their unblended forms, whether dry or in solution, and regardless of packaging type. The scope also includes blends of citric acid, sodium citrate... form(s) of citric acid, sodium citrate, and potassium citrate constitute 40 percent or more, by...

  19. 76 FR 34048 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2011-06-10

    ... all grades and granulation sizes of citric acid, sodium citrate, and potassium citrate in their... blends of citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended form(s) of citric acid, sodium citrate, and potassium...

  20. 76 FR 33219 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2011-06-08

    ..., sodium citrate, and potassium citrate in their unblended forms, whether dry or in solution, and regardless of packaging type. The scope also includes blends of citric acid, sodium citrate, and potassium... acid, sodium citrate, and potassium citrate constitute 40 percent or more, by weight, of the blend....

  1. 77 FR 47370 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Intent To Rescind...

    Science.gov (United States)

    2012-08-08

    ..., sodium citrate, and potassium citrate in their unblended forms, whether dry or in solution, and regardless of packaging type. The scope also includes blends of citric acid, sodium citrate, and potassium... acid, sodium citrate, and potassium citrate constitute 40 percent or more, by weight, of the blend....

  2. Theoretical Study on Sulfur Dioxide Absorption with Citrate Solution

    Institute of Scientific and Technical Information of China (English)

    薛娟琴; 洪涛; 王召启; 李林波

    2006-01-01

    The citrate absorption of SO2 is currently one of the most successful and economic methods to harness sulfur dioxide pollution.In order to theoretically elucidate the mechanism of SO2 absorption by citrate solution and provide theoretical instruction for experiments and industrial process, the theory of multi-buffer solution, combined with computer numerical calculation methods, was applied to study the distribution parameters of the components of the citrate solution in the process of SO2 absorption and the following results were obtained: (1) HCi2- and H2Ci- in the citrate solution played the dominant role in the absorption and desorption processes; (2) Through the calculation for the buffer capacity of citrate solution, it was found that the pH of the absorption and desorption solution should be in the range of 2~8, while at pH=4.5 the buffer capacity reached its maximum. Some valuable parameters were obtained, which are instructive to the ensuing experiments and industrial design.

  3. Ectopic ATP synthase in endothelial cells: a novel cardiovascular therapeutic target.

    Science.gov (United States)

    Fu, Yi; Zhu, Yi

    2010-01-01

    Adenosine triphosphate (ATP) synthase produces ATP in cells and is found on the inner membrane of mitochondria or the cell plasma membrane (ectopic ATP synthase). Here, we summarize the functions of ectopic ATP synthase in vascular endothelial cells (ECs). Ectopic ATP synthase is involved in adenosine metabolism on the cell surface through its ATP generation or hydrolysis activity. The ATP/ADP generated by the enzyme on the plasma membrane can bind to P2X/P2Y receptors and activate the related signalling pathways to regulate endothelial function. The β-chain of ectopic ATP synthase on the EC surface can recruit inflammatory cells and activate cytotoxic activity to damage ECs and induce vascular inflammation. Angiostatin and other angiogenesis inhibitors can have anti-angiogenic functions by inhibiting ectopic ATP synthase on ECs. Moreover, ectopic ATP synthase on ECs is a receptor for apoA-I, the acceptor of cholesterol efflux, which implies that endothelial ectopic ATP synthase is involved in cholesterol metabolism. Coupling factor 6 (CF6), a part of ectopic ATP synthase, is released from ECs and can inhibit prostacyclin synthesis and promote nitric oxide (NO) degradation to enhance NO bioactivity. Because ATP/ADP generated by ectopic ATP synthase can induce NO production, substances such as CF6 can inhibit NO generation by inhibiting surface ATP/ADP production. Thus, the components of ectopic ATP synthase are associated with regulation of vascular tone. Through these functions, ectopic ATP synthase on ECs is considered a potential and novel therapeutic target for atherosclerosis, hypertension and lipid disorders. PMID:21247400

  4. Citrate anticoagulation in the ICU: the Leeds experience.

    Science.gov (United States)

    Trumper, Charlotte

    2016-09-01

    Continuous renal replacement therapy (CRRT) is widely used in the management of critically ill patients with acute kidney injury. It requires effective anticoagulation of the extracorporeal blood circuit. Although heparin is the most commonly prescribed anticoagulant, there are issues associated with heparin, and there has been increasing interest in regional citrate anticoagulation as an alternative. In 2013, The Leeds Teaching Hospitals NHS Trust switched from heparin to citrate anticoagulant for CRRT in intensive care units (ICUs) across the Trust. This article examines the reasons for the switch, the implementation of citrate and the impact of this quality-improvement project in terms of patient outcome data and feedback from the ICU nursing team. PMID:27615524

  5. Alkali absorption and citrate excretion in calcium nephrolithiasis

    Science.gov (United States)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  6. Strongly bound citrate stabilizes the apatite nanocrystals in bone

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y.-Y.; Rawal, A.; Schmidt-Rohr, K.

    2010-10-12

    Nanocrystals of apatitic calcium phosphate impart the organic-inorganic nanocomposite in bone with favorable mechanical properties. So far, the factors preventing crystal growth beyond the favorable thickness of ca. 3 nm have not been identified. Here we show that the apatite surfaces are studded with strongly bound citrate molecules, whose signals have been identified unambiguously by multinuclear magnetic resonance (NMR) analysis. NMR reveals that bound citrate accounts for 5.5 wt% of the organic matter in bone and covers apatite at a density of about 1 molecule per (2 nm){sup 2}, with its three carboxylate groups at distances of 0.3 to 0.45 nm from the apatite surface. Bound citrate is highly conserved, being found in fish, avian, and mammalian bone, which indicates its critical role in interfering with crystal thickening and stabilizing the apatite nanocrystals in bone

  7. Efficacy of preventing hemodialysis catheter infections with citrate lock.

    Science.gov (United States)

    Silva, Jorge; Antunes, Jorge; Carvalho, Telmo; Ponce, Pedro

    2012-10-01

    Prevalent use of tunneled dialysis catheters can reach 30%. Infection remains the most serious catheter-related problem. Catheter locks are increasingly used for prevention, but are not yet recommended either by the Food and Drug Association or European Medicines Agency, on the basis of increasing bacterial resistance or lock toxicity. The aim was to test safety and effectiveness of citrate. A prospective, interventional study was conducted to assess the safety and efficacy of a 30% citrate lock in preventing catheter-related bacteremia (CRB). A total of 157 prevalent tunneled catheters were locked with citrate and prospectively followed during a 1-year period. The primary endpoint was first CRB diagnosed according to two of the diagnostic criteria for Catheter Infection of Centers for Disease Control and Prevention (CDC), namely definite and probable infection. The CDC criterion of possible but not proved infection was not considered. This citrate lock cohort (n = 157) had 10 episodes of CRB. We observed 0.49 CRB episodes/1000 patient-days and the mean infection-free catheter day was 130.6 ± 100.9. No clinically relevant adverse events were observed. No proved tunnel or exit site infection was observed and no patients died because of CRB. Catheter obstruction episodes were reported on 69 occasions out of 14 catheters. These results were compared with an historical cohort from a previous study of catheter locking with low-dose gentamicin and did not show significant difference in efficacy. Citrate lock is effective in preventing CRB. No toxicity was observed. The use of citrate lock may have advantages over antibiotic locks: no reported bacterial resistance, lower industrial cost, and less manipulation. PMID:22515732

  8. Septal localization by membrane targeting sequences and a conserved sequence essential for activity at the COOH-terminus of Bacillus subtilis cardiolipin synthase.

    Science.gov (United States)

    Kusaka, Jin; Shuto, Satoshi; Imai, Yukiko; Ishikawa, Kazuki; Saito, Tomo; Natori, Kohei; Matsuoka, Satoshi; Hara, Hiroshi; Matsumoto, Kouji

    2016-04-01

    The acidic phospholipid cardiolipin (CL) is localized on polar and septal membranes and plays an important physiological role in Bacillus subtilis cells. ClsA, the enzyme responsible for CL synthesis, is also localized on septal membranes. We found that GFP fusion proteins of the enzyme with NH2-terminal and internal deletions retained septal localization. However, derivatives with deletions starting from the COOH-terminus (Leu482) ceased to localize to the septum once the deletion passed the Ile residue at 448, indicating that the sequence responsible for septal localization is confined within a short distance from the COOH-terminus. Two sequences, Ile436-Leu450 and Leu466-Leu478, are predicted to individually form an amphipathic α-helix. This configuration is known as a membrane targeting sequence (MTS) and we therefore refer to them as MTS2 and MTS1, respectively. Either one has the ability to affect septal localization, and each of these sequences by itself localizes to the septum. Membrane association of the constructs of this enzyme containing the MTSs was verified by subcellular fractionation of the cells. CL synthesis, in contrast, was abolished after deleting just the last residue, Leu482, in the COOH-terminal four amino acid residue sequence, Ser-Pro-Ile-Leu, which is highly conserved among bacterial CL synthases.

  9. Transcriptional activation of a geranylgeranyl diphosphate synthase gene, GGPPS2, isolated from Scoparia dulcis by treatment with methyl jasmonate and yeast extract.

    Science.gov (United States)

    Yamamura, Y; Mizuguchi, Y; Taura, F; Kurosaki, F

    2014-10-01

    A cDNA clone, designated SdGGPPS2, was isolated from young seedlings of Scoparia dulcis. The putative amino acid sequence of the translate of the gene showed high homology with geranylgeranyl diphosphate synthase (GGPPS) from various plant sources, and the N-terminal residues exhibited the characteristics of chloroplast targeting sequence. An appreciable increase in the transcriptional level of SdGGPPS2 was observed by exposure of the leaf tissues of S. dulcis to methyl jasmonate, yeast extract or Ca(2+) ionophore A23187. In contrast, SdGGPPS1, a homologous GGPPS gene of the plant, showed no or only negligible change in the expression level upon treatment with these stimuli. The truncated protein heterologously expressed in Escherichia coli in which the putative targeting domain was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to liberate geranylgeranyl diphosphate. These results suggested that SdGGPPS2 plays physiological roles in methyl jasmonate and yeast extract-induced metabolism in the chloroplast of S. dulcis cells. PMID:25027024

  10. Effect of sildenafil citrate on penile erection of rhesus macaques

    Institute of Scientific and Technical Information of China (English)

    Xun-BinHuang; Cheng-LiangXiong; Cheng-GaoYu; Jie-LingZhou; Ji-YunShen

    2004-01-01

    Aim: To examine the effect of sildenafil citrate on penile erection of male rhesus macaque. Methods:Twenty Macaca mulatta were divided into the sildenafil treated and the control groups of l0 animals each. The penile size, the corpus cavernosal electromyogram (EMG) and the intra-corpus cavernosal pressure (ICP) were determined. Results: The diameter of penis and the ICP were significantly increased and the corpus cavernosal EMG significantly reduced in the sildenafil group. Conclusion: Sildenafil citrate increases the penile size and ICP and reduces the corpus cavernosal EMG in male rhesus macaque. (Asian J Androl 2004 Sep; 6: 233-235)

  11. Hemodiafiltration using pre-dilutional on-line citrate dialysate: A new technique for regional citrate anticoagulation: A feasibility study

    Directory of Open Access Journals (Sweden)

    Radhouane Bousselmi

    2015-01-01

    Full Text Available A prospective, observational, feasibility study was carried out on four patients with end-stage renal failure undergoing bicarbonate hemodialysis to study the feasibility of an on-line hemodiafiltration technique using a citrate dialysate with pre-dilutional infusion of citrate as a technique for regional citrate anticoagulation. All patients had contraindication to systemic heparin anticoagulation. The dialysis technique consisted of an on-line hemodiafiltration with a citrate dialysate without calcium using a Fresenius 4008S dialysis machine and Fresenius Polysulfone F60 dialyzers. The infusion solution was procured directly from the dialysate and was infused into the arterial line. To avoid the risk of hypocalcemia, calcium gluconate was infused to the venous return line. The study was carried out in two stages. During the first stage, the citrate infusion rate was 80 mL/min and the calcium infusion rate was 9 mmol/h. At the second stage, the rates were 100 mL/min and 11 mmol/h, respectively. The primary endpoint of this study was the incidence of thrombosis in the extracorporeal blood circuit and/or the dialyzer. A total of 78 sessions were conducted. All the sessions were well tolerated clinically and there were no major incidents in any of the four patients. At the first stage of the study, there were five incidences of small clots in the venous blood chamber, an incidence of extracorporeal blood circuit thrombosis of 12.5%. At the second stage of the study, no cases of extracorporeal blood circuit or dialyzer thrombosis were noted. Hemodiafiltration with on-line citrate dialysate infusion to the arterial line is safe and allows an effective regional anticoagulation of the extracorporeal blood circuit without the need for systemic anticoagulation.

  12. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: Essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase

    International Nuclear Information System (INIS)

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10 μg/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase were enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.

  13. Heat shock protein 70 protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus via inhibition of nuclear factor-κB activation-induced nitric oxide synthase II expression.

    Science.gov (United States)

    Chang, Chiung-Chih; Chen, Shang-Der; Lin, Tsu-Kung; Chang, Wen-Neng; Liou, Chia-Wei; Chang, Alice Y W; Chan, Samuel H H; Chuang, Yao-Chung

    2014-02-01

    Status epilepticus induces subcellular changes that may eventually lead to neuronal cell death in the hippocampus. Based on an animal model of status epilepticus, our laboratory showed previously that sustained hippocampal seizure activity activates nuclear factor-κB (NF-κB) and upregulates nitric oxide synthase (NOS) II gene expression, leading to apoptotic neuronal cell death in the hippocampus. The present study examined the potential modulatory role of heat shock protein 70 (HSP70) on NF-κB signaling in the hippocampus following experimental status epilepticus. In Sprague-Dawley rats, kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 subfield to induce prolonged bilateral seizure activity. Expression of HSP70 was elevated as early as 1h after the elicitation of sustained seizure activity, followed by a progressive elevation that peaked at 24h. Pretreatment with an antisense oligonucleotide against hsp70 decreased the HSP70 expression, and significantly augmented IκB kinase (IKK) activity and phosphorylation of IκBα, alongside enhanced nuclear translocation and DNA binding activity of NF-κB in the hippocampal CA3 neurons and glial cells. These cellular events were followed by enhanced upregulation of NOS II and peroxynitrite expression 3h after sustained seizure activity that led to an increase of caspase-3 and DNA fragmentation in the hippocampal CA3 neurons 7days after experimental status epilepticus. We concluded that HSP70 protects against apoptotic cell death induced by NF-κB activation and NOS II-peroxynitrite signaling cascade in the hippocampal CA3 and glial cells following experimental status epilepticus via suppression of IKK activity and deactivation of IκBα.

  14. Bacterial phytoene synthase: molecular cloning, expression, and characterization of Erwinia herbicola phytoene synthase.

    Science.gov (United States)

    Iwata-Reuyl, Dirk; Math, Shivanand K; Desai, Shrivallabh B; Poulter, C Dale

    2003-03-25

    Phytoene synthase (PSase) catalyzes the condensation of two molecules of geranylgeranyl diphosphate (GGPP) to give prephytoene diphosphate (PPPP) and the subsequent rearrangement of the cyclopropylcarbinyl intermediate to phytoene. These reactions constitute the first pathway specific step in carotenoid biosynthesis. The crtB gene encoding phytoene synthase was isolated from a plasmid containing the carotenoid gene cluster in Erwinia herbicola and cloned into an Escherichia coli expression system. Upon induction, recombinant phytoene synthase constituted 5-10% of total soluble protein. To facilitate purification of the recombinant enzyme, the structural gene for PSase was modified by site-directed mutagenesis to incorporate a C-terminal Glu-Glu-Phe (EEF) tripepetide to allow purification by immunoaffinity chromatography on an immobilized monoclonal anti-alpha-tubulin antibody YL1/2 column. Purified recombinant PSase-EEF gave a band at 34.5 kDa upon SDS-PAGE. Recombinant PSase-EEF was then purified to >90% homogeneity in two steps by ion-exchange and immunoaffinity chromatography. The enzyme required Mn(2+) for activity, had a pH optimum of 8.2, and was strongly stimulated by detergent. The concentration of GGPP needed for half-maximal activity was approximately 35 microM, and a significant inhibition of activity was seen at GGPP concentrations above 100 microM. The sole product of the reaction was 15,15'-Z-phytoene. PMID:12641468

  15. Polymeric architectures of bismuth citrate based on dimeric building blocks

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Four bismuth complexes, (H2En)[Bi2(cit)2(H2O)4/3]·(H2O)x (1), (H2En)3[Bi2(cit)2Cl4]·(H2O)x (2), (HPy)2[Bi2(cit)2(H2O)8/5]·(H2O)x (3) and (H2En)[Bi2(cit)2](H2O)x (4) [cit = citrate4-; En = ethylenediamine; Py = pyridine] have been synthesized and crystallized. The crystal structures reveal that the basic building blocks in all of these complexes are bismuth citrate dimeric units which combine to form polymeric architectures. The embedded protonated ethylenediamine and pyridine moieties in the polymeric frameworks have been identified by X-ray crystallography and solid-state cross polarization/magic angle spinning (CP/MAS) 13C NMR. Based on the framework of complex 1, a structural model of a clinically used antiulcer drug, ranitidine bismuth citrate (RBC) was generated. The behavior of the protonated amine-bismuth citrate complexes in acidic aqueous solution has been studied by electrospray ionization-mass spectrometry (ESI-MS).

  16. Genetics of mesophilic citrate fermenting lactic acid bacteria.

    NARCIS (Netherlands)

    David, S.

    1992-01-01

    A prerequisite for the stabilization of important features, such as aroma production, in starter strains used in dairy fermentations, is an extensive knowledge of the genetic basis of these properties. In this thesis the genetic basis of citrate metabolism in Lactococcus lactis subsp. lactis var. di

  17. Enhanced citrate production through gene insertion in Aspergillus niger

    DEFF Research Database (Denmark)

    Jongh, Wian de; Nielsen, Jens

    2007-01-01

    The effect of inserting genes involved in the reductive branch of the tricarboxylic acid (TCA) cycle on citrate production by Aspergillus niger was evaluated. Several different genes were inserted individually and in combination, i.e. malate dehydrogenase (mdh2) from Saccharomyces cerevisiae, two...

  18. Tumour imaging using technetium-99m-citrate

    International Nuclear Information System (INIS)

    Sixteen patients with soft tissue malignancy or fibroadenoma of the breast (Group A) were imaged using 99mTc-citrate. Majority of the patients (n=14) has new untreated lesions. Appreciable skeletal uptake of the tracer was serendipitously noticed in all cases. One of these had widespread bone metastases seen almost identically in 99mTc-citrate and 99mTc-MDP studies. Accordingly, 10 patients (Group B) having more than 40 malignant lesions on the bone scan underwent 99mTc-citrate study. In group A, accumulation of the tracer was seen in all malignant breast nodules and axillary lymphnode mass (n=4), medullary carcinoma of the thyroid along with its metastasis and a carcinoid (n=4) and an ovarian malignancy. Uptake and outflow pattern could differentiate fibroadenoma (n=3) from carcinoma of the breast. No significant uptake was seen in liver secondaries (n>10), lymphoma lesions (n=5), papillary carcinoma of thyroid, renal cell and embryonal cell carcinoma. In group B patients, the radiotracer accumulated well in the metastatic lesions while there was distinctly lesser uptake in normal/degenerated joints compared to the bone scan. The study shows potential of the tracer in imaging soft tissue malignancies. Bone scanning with 99mTc-citrate is an interesting possibility since mechanism of its uptake appears to be different to 99mTc-MDP. (author)

  19. Ca2+-Citrate Uptake and Metabolism in Lactobacillus casei ATCC 334

    NARCIS (Netherlands)

    Mortera, Pablo; Pudlik, Agata; Magni, Christian; Alarcon, Sergio; Lolkema, Juke S.

    2013-01-01

    The putative citrate metabolic pathway in Lactobacillus casei ATCC 334 consists of the transporter CitH, a proton symporter of the citrate-divalent metal ion family of transporters CitMHS, citrate lyase, and the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Resting cells of Lactobacill

  20. 76 FR 19997 - Determination That FENTORA (Fentanyl Citrate) Buccal Tablet, 300 Micrograms, Was Not Withdrawn...

    Science.gov (United States)

    2011-04-11

    ... HUMAN SERVICES Food and Drug Administration Determination That FENTORA (Fentanyl Citrate) Buccal Tablet... determined that FENTORA (fentanyl citrate) buccal tablet, 300 micrograms (mcg), was not withdrawn from sale... drug applications (ANDAs) for fentanyl citrate buccal tablet, 300 mcg, if all other legal...

  1. Enzyme Basis for pH Regulation of Citrate and Pyruvate Metabolism by Leuconostoc oenos

    NARCIS (Netherlands)

    Ramos, Ana; Lolkema, Juke S.; Konings, Wilhelmus; Santos, Helena

    1995-01-01

    Citrate and pyruvate metabolism by nongrowing cells of Leuconostoc oenos was investigated. 13C nuclear magnetic resonance (NMR) spectroscopy was used to elucidate the pathway of citrate breakdown and to probe citrate or pyruvate utilization, noninvasively, in living cell suspensions. The utilization

  2. Atypical expression of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in subcutaneous adipose tissue of male rats.

    Science.gov (United States)

    Thumelin, S; Kohl, C; Girard, J; Pégorier, J P

    1999-06-01

    The mRNAs encoding mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mtHMG-CoA synthase), the rate limiting enzyme in ketone body production, are highly expressed in subcutaneous (SC) and, to a lesser extent, in peri-epididymal (PE) rat adipose tissues. This atypical mtHMG-CoA synthase gene expression is dependent on the age (from 9 weeks of age) and sex (higher in male than in female) of the rats. In contrast, the expression of mtHMG-CoA synthase in SC adipose deposit is independent of the nutritional state (fed versus starved) or of the thermic environment (24 degrees C versus 4 degrees C). The expression of mtHMG-CoA synthase is suppressed in SC fat pads of castrated male rats whereas treatment of castrated rats with testosterone restores a normal level of expression. Moreover, testosterone injection induces the expression mtHMG-CoA synthase in SC adipose tissue of age-matched females. The presence of the mtHMG-CoA synthase immunoreactive protein confers to mitochondria isolated from SC adipose deposits, the capacity to produce ketone bodies at a rate similar to that found in liver mitochondria (SC = 13.7 +/- 0.7, liver = 16.4 +/- 1.4 nmol/min/mg prot). mtHMG-CoA synthase is expressed in the stromal vascular fraction (SVF) whatever the adipose deposit considered. While acetyl-CoA carboxylase (ACC) is only expressed in mature adipocytes, the other lipogenic enzymes, fatty acid synthase (FAS) and citrate cleavage enzyme (CCE), are expressed both in SVF cells and mature adipocytes. The expression of lipogenic enzyme genes is markedly reduced in adipocytes but not in SVF cells isolated from 48-h starved male rats. When SVF is subfractionated, mtHMG-CoA synthase mRNAs are mainly recovered in two fractions containing poorly digested structures such as microcapillaries whereas the lowest expression is found in the pre-adipocyte fraction. Interestingly, FAS and CCE mRNAs co-segregate with mtHMG-CoA synthase mRNA. The possible physiological relevance of such

  3. Structure of the dimeric form of CTP synthase from Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Lauritsen, Iben; Willemoës, Martin; Jensen, Kaj Frank;

    2011-01-01

    CTP synthase catalyzes the last committed step in de novo pyrimidine-nucleotide biosynthesis. Active CTP synthase is a tetrameric enzyme composed of a dimer of dimers. The tetramer is favoured in the presence of the substrate nucleotides ATP and UTP; when saturated with nucleotide, the tetramer c...

  4. Characterisation of the tryptophan synthase alpha subunit in maize

    Directory of Open Access Journals (Sweden)

    Gierl Alfons

    2008-04-01

    Full Text Available Abstract Background In bacteria, such as Salmonella typhimurium, tryptophan is synthesized from indole-3-glycerole phosphate (IGP by a tryptophan synthase αββα heterotetramer. Plants have evolved multiple α (TSA and β (TSB homologs, which have probably diverged in biological function and their ability of subunit interaction. There is some evidence for a tryptophan synthase (TS complex in Arabidopsis. On the other hand maize (Zea mays expresses the TSA-homologs BX1 and IGL that efficiently cleave IGP, independent of interaction with TSB. Results In order to clarify, how tryptophan is synthesized in maize, two TSA homologs, hitherto uncharacterized ZmTSA and ZmTSAlike, were functionally analyzed. ZmTSA is localized in plastids, the major site of tryptophan biosynthesis in plants. It catalyzes the tryptophan synthase α-reaction (cleavage of IGP, and forms a tryptophan synthase complex with ZmTSB1 in vitro. The catalytic efficiency of the α-reaction is strongly enhanced upon complex formation. A 160 kD tryptophan synthase complex was partially purified from maize leaves and ZmTSA was identified as native α-subunit of this complex by mass spectrometry. ZmTSAlike, for which no in vitro activity was detected, is localized in the cytosol. ZmTSAlike, BX1, and IGL were not detectable in the native tryptophan synthase complex in leaves. Conclusion It was demonstrated in vivo and in vitro that maize forms a tryptophan synthase complex and ZmTSA functions as α-subunit in this complex.

  5. Properties of phosphorylated thymidylate synthase.

    Science.gov (United States)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr; Palmowski, Paweł; Rogowska-Wrzesinska, Adelina; Cieśla, Joanna; Zieliński, Zbigniew; Nizioł, Joanna; Jarmuła, Adam; Maj, Piotr; Gołos, Barbara; Wińska, Patrycja; Ostafil, Sylwia; Wałajtys-Rode, Elżbieta; Shugar, David; Rode, Wojciech

    2015-12-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent. PMID:26315778

  6. Effects of polymorphisms of methionine synthase and methionine synthase reductase on total plasma homocysteine in the NHLBI Family Heart Study.

    Science.gov (United States)

    Jacques, Paul F; Bostom, Andrew G; Selhub, Jacob; Rich, Sharron; Ellison, R Curtis; Eckfeldt, John H; Gravel, Roy A; Rozen, Rima

    2003-01-01

    The metabolism of homocysteine requires contributions of several enzymes and vitamin cofactors. Earlier studies identified a common polymorphism of methylenetetrahydrofolate reductase that was associated with mild hyperhomocysteinemia. Common variants of two other enzymes involved in homocysteine metabolism, methionine synthase and methionine synthase reductase, have also been identified. Methionine synthase catalyzes the remethylation of homocysteine to form methionine and methionine synthase reductase is required for the reductive activation of the cobalamin-dependent methionine synthase. The methionine synthase gene (MTR) mutation is an A to G substitution, 2756A-->G, which converts an aspartate to a glycine codon. The methionine synthase reductase gene (MTRR) mutation is an A to G substitution, 66A-->G, that converts an isoleucine to a methionine residue. To determine if these polymorphisms were associated with mild hyperhomocysteinemia, we investigated subjects from two of the NHLBI Family Heart Study field centers, Framingham and Utah. Total plasma homocysteine concentrations were determined after an overnight fast and after a 4-h methionine load test. MTR and MTRR genotype data were available for 677 and 562 subjects, respectively. The geometric mean fasting homocysteine was unrelated to the MTR or MTRR genotype categories (AA, AG, GG). After a methionine load, a weak positive association was observed between change in homocysteine after a methionine load and the number of mutant MTR alleles (P-trend=0.04), but this association was not statistically significant according to the overall F-statistic (P=0.12). There was no significant interaction between MTR and MTRR genotype or between these genotypes and any of the vitamins with respect to homocysteine concentrations. This study provides no evidence that these common MTR and MTRR mutations are associated with alterations in plasma homocysteine. PMID:12482550

  7. Hit Optimization of 5-Substituted-N-(piperidin-4-ylmethyl)-1H-indazole-3-carboxamides: Potent Glycogen Synthase Kinase-3 (GSK-3) Inhibitors with in Vivo Activity in Model of Mood Disorders.

    Science.gov (United States)

    Furlotti, Guido; Alisi, Maria Alessandra; Cazzolla, Nicola; Dragone, Patrizia; Durando, Lucia; Magarò, Gabriele; Mancini, Francesca; Mangano, Giorgina; Ombrato, Rosella; Vitiello, Marco; Armirotti, Andrea; Capurro, Valeria; Lanfranco, Massimiliano; Ottonello, Giuliana; Summa, Maria; Reggiani, Angelo

    2015-11-25

    Novel treatments for bipolar disorder with improved efficacy and broader spectrum of activity are urgently needed. Glycogen synthase kinase 3β (GSK-3β) has been suggested to be a key player in the pathophysiology of bipolar disorder. A series of novel GSK-3β inhibitors having the common N-[(1-alkylpiperidin-4-yl)methyl]-1H-indazole-3-carboxamide scaffold were prepared taking advantage of an X-ray cocrystal structure of compound 5 with GSK-3β. We probed different substitutions at the indazole 5-position and at the piperidine-nitrogen to obtain potent ATP-competitive GSK-3β inhibitors with good cell activity. Among the compounds assessed in the in vivo PK experiments, 14i showed, after i.p. dosing, encouraging plasma PK profile and brain exposure, as well as efficacy in a mouse model of mania. Compound 14i was selected for further in vitro/in vivo pharmacological evaluation, in order to elucidate the use of ATP-competitive GSK-3β inhibitors as new tools in the development of new treatments for mood disorders. PMID:26486317

  8. Metformin-clomiphene citrate vs. clomiphene citrate alone: Polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Aqueela Ayaz

    2013-01-01

    Full Text Available Background: Polycystic ovary syndrome (PCOS is the commonest endocrinopathy in women that is associated with reproductive and metabolic disorders. Objectives: We compared the ovulation and conception rates after the treatment with clomiphene citrate (CC alone and in combination with metformin in infertile patients presented with polycystic ovarian syndrome (PCOS. Materials and Methods: This randomized controlled trial of independent cases and controls was conducted at the Department of Obstetrics and Gynecology, Hera General Hospital, Makkah, Saudi Arabia from February 01 to December 31, 2008. The 42 subjects diagnosed as PCOS were divided into group A and B (21 subjects in each for management with CC + metformin and CC alone, respectively. Group A received 500 mg three times a day of metformin continuously from the first cycle for 6 months or till pregnancy was confirmed. In both groups CC was started at a dose of 50 mg from day-2 till day-6 of the menstrual cycle. The dose of CC was increased to 100 mg in second and 150 mg in third cycle, and then remained 150 mg for the remaining three cycles. With ovulation the dose of CC was unaltered in both groups. Data were analyzed using Statistical Package for the Social Sciences (SPSS version 16. Results: More than 50% females in both groups were had body mass index > 25. Group A achieved high rate of regular cycles, ovulation success, and conception than group B (71.4% vs. 38.1%; P = 0.03, (76.2% vs. 38.1%; P = 0.021, and (66.6% vs. 28.6%; P = 0.01, respectively. Conclusion: Management with metformin + CC increased the ovulation and conception rates.

  9. Regional citrate anticoagulation in critically ill patients during continuous blood purification

    Institute of Scientific and Technical Information of China (English)

    龚德华; 季大玺; 徐斌; 谢红浪; 刘云; 黎磊石

    2003-01-01

    Objectives To evaluate the safety and define the contraindication of regional citrate anticoagulation treatment on various critically ill patients being treated by continuous blood purification, who also had bleeding tendencies. Methods Forty critically ill patients being treated by continuous blood purification (CBP) were involved in this study. Due to their bleeding tendencies, regional citrate anticoagulation treatment was given to all of them. Those with hepatic function impairment (n=10) were classified as Group A, those with hypoxemia were classified as Group B (n=10), and the others as Group C (n=20). Blood samples were collected before treatment, and at 4, 12, 24, 36, and 48 hour intervals during CBP. These samples then were used arterial blood gas analysis, whole blood activated clotting time (WBACT) pre- and post-filter, and serum ionized calcium examination. Results WBACT pre-filter showed little fluctuant through the 48hr period of CBP, and WBACT post-filter showed obvious prolongation than that of the pre-filter (P<0.05) at all time points. Metabolic acidosis was found in Group A patients before CBP, and improved during CBP. Normal acid-base conditions of patients were disturbed and deteriorated in Group B during CBP, but not in Group C. Serum ionized calcium was maintained at a normal range during CBP in Group A and C patients, but declined significantly in Group B patients (vs. pre-treatment, P<0.05). Conclusions Regional citrate anticoagulation can be safely used in conjunction with CBP treatment for patients with hepatic function impairment , but may induce acidosis and a decline in serum ionized calcium when used with hypoxemic patients.

  10. Akt2 influences glycogen synthase activity in human skeletal muscle through regulation of NH2-terminal (sites 2+2a) phosphorylation

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Birk, Jesper Bratz; Richter, Erik;

    2013-01-01

    was positively associated with pAkt-T308 (P=0.01) and Akt2 activity (P=0.04), but not pAkt-S473 or IRS-1-PI3K activity. Furthermore, pAkt-T308 and Akt2 activity were negatively associated with NH(2)-terminal GS phosphorylation (P=0.001 for both), which in turn was negatively associated with insulin-stimulated GS...

  11. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    Science.gov (United States)

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  12. 77 FR 33399 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2012-06-06

    ... Certain Citrate Salts from Canada and the People's Republic of China: Antidumping Duty Orders, 74 FR 25703... Administrative Review, 77 FR 1455 (January 10, 2012). \\10\\ See Citric Acid and Certain Citrate Salts from the... acid, sodium citrate, and potassium citrate in their unblended forms, whether dry or in solution,...

  13. 77 FR 56188 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Notice of Rescission...

    Science.gov (United States)

    2012-09-12

    ... the order includes all grades and granulation sizes of citric acid, sodium citrate, and potassium... also includes blends of citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended form(s) of citric acid, sodium citrate,...

  14. 78 FR 34642 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2013-06-10

    ... dihydrate and anhydrous forms of sodium citrate, otherwise known as citric acid sodium salt, and the monohydrate and monopotassium forms of potassium citrate.\\1\\ Sodium citrate also includes both trisodium... monosodium salt, respectively. Citric acid and sodium citrate are classifiable under 2918.14.0000 and...

  15. Selective photothermal efficiency of citrate capped gold nanoparticles for destruction of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Raji, V. [Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala (India); Kumar, Jatish [Division of photochemistry and photobiology, National Institute for Interdisciplinary Sciences and Technology (CSIR), Thiruvananthapuram 695 019, Kerala (India); Rejiya, C.S.; Vibin, M.; Shenoi, Vinesh N. [Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala (India); Abraham, Annie, E-mail: annieab2@yahoo.co.in [Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala (India)

    2011-08-15

    Gold nanoparticles are recently having much attention because of their increased applications in biomedical fields. In this paper, we demonstrated the photothermal efficacy of citrate capped gold nanoparticles (AuNPs) for the destruction of A431 cancer cells. Citrate capped AuNPs were synthesized successfully and characterized by UV-visible-NIR spectrophotometry and High Resolution Transmission Electron Microscopy (HR-TEM). Further, AuNPs were conjugated with epidermal growth factor receptor antibody (anti-EGFR) and applied for the selective photothermal therapy (PTT) of human epithelial cancer cells, A431. PTT experiments were conducted in four groups, Group I-control cells, Group II-cells treated with laser light alone, Group III-cells treated with unconjugated AuNP and further laser irradiation and Group IV-anti-EGFR conjugated AuNP treated cells irradiated by laser light. After laser irradiation, cell morphology changes that were examined using phase contrast microscopy along with the relevant biochemical parameters like lactate dehydrogenase activity, reactive oxygen species generation and caspase-3 activity were studied for all the groups to determine whether cell death occurs due to necrosis or apoptosis. From these results we concluded that, these immunotargeted nanoparticles could selectively induce cell death via ROS mediated apoptosis when cells were exposed to a low power laser light.

  16. The promoter activities of sucrose phosphate synthase genes in rice, OsSPS1 and OsSPS11, are controlled by light and circadian clock, but not by sucrose

    Directory of Open Access Journals (Sweden)

    Madoka eYonekura

    2013-03-01

    Full Text Available Although sucrose plays a role in sugar sensing and its signaling pathway, little is known about the regulatory mechanisms of the expressions of plant sucrose-related genes. Our previous study on the expression of the sucrose phosphate synthase gene family in rice (OsSPSs suggested the involvement of sucrose sensing and/or circadian rhythm in the transcriptional regulation of OsSPS. To examine whether the promoters of OsSPSs can be controlled by sugars and circadian clock, we produced transgenic rice plants harboring a promoter–luciferase construct for OsSPS1 or OsSPS11 and analyzed the changes in the promoter activities by monitoring bioluminescence from intact transgenic plants in real time. Transgenic plants fed sucrose, glucose, or mannitol under continuous light conditions showed no changes in bioluminescence intensity; meanwhile, the addition of sucrose increased the concentration of sucrose in the plants, and the mRNA levels of OsSPS remained constant. These results suggest that these OsSPS promoters may not be regulated by sucrose levels in the tissues. Next, we investigated the changes in the promoter activities under 12-h light/12-h dark cycles and continuous light conditions. Under the light–dark cycle, both OsSPS1 and OsSPS11 promoter activities were low in the dark and increased rapidly after the beginning of the light period. When the transgenic rice plants were moved to the continuous light condition, both POsSPS1::LUC and POsSPS11::LUC reporter plants exhibited circadian bioluminescence rhythms; bioluminescence peaked during the subjective day with a 27-h period: in the early morning as for OsSPS1 promoter and midday for OsSPS11 promoter. These results indicate that these OsSPS promoters are controlled by both light illumination and circadian clock and that the regulatory mechanism of promoter activity differs between the 2 OsSPS genes.

  17. Subclinical abortions in patients treated with clomiphene citrate

    International Nuclear Information System (INIS)

    Using radioimmunoassay for human chorionic gonadotrophin beta-subunit, 39 treatment cycles of clomiphene citrate therapy were studied prospectively for incidence of subclinical abortions. Eight treatment cycles resulted in clinically recognizable pregnancies and three other treatment cycles ended up with subclinical abortions. The plasma progesterone levels in patients with subclinical abortions at the 13th day after ovulation were lower than those in patients with normal pregnancies. (author)

  18. Silver-YBCO composite through citrate gel decomposition

    International Nuclear Information System (INIS)

    Silver-YBCO composite containing upto 75% silver has been prepared by thermal decomposition of citrate gel. In this paper the morphological and structural changes taking place during the decomposition of the gel in the range 100--900 degrees C are presented. Heat treatment at 915 degrees C of the composite powder containing Ag2O above a critical limit has been found to impart superconductivity without any external oxygen annealing. The mechanical and microstructural features of the sintered composite are presented

  19. Electrodeposition of iron-molybdenum coatings from citrate electrolyte

    OpenAIRE

    Ved, M. V.; Sakhnenko, N. D.; Karakurkchi, A. V.; Zyubanova, S. I.

    2014-01-01

    Specifi c features of the electrodeposition of iron–molybdenum coatings from a citrate electrolyte based on iron(III) sulfate and sodium molybdate in dc and unipolar pulsed modes were studied. It was demonstrated that bright compact coatings with varied content of molybdenum can be produced by varying the relative concentrations of salts of the alloy-forming components and the solution pH. The current density ranges providing the high efficiency of the galvanostastic electrolysis were determi...

  20. Electrodeposition of iron-molybdenum-tungsten coatings from citrate electrolytes

    OpenAIRE

    Karakurkchi, A. V.; Ved, M. V.; Sakhnenko, N. D.; Yermolenko, I. Yu.

    2015-01-01

    Specific features of the electrodeposition of iron–molybdenum–tungsten coatings from citrate electrolytes based on iron(III) sulfate in the dc mode and with a unipolar pulsed current were studied. It was shown that varying the relative concentrations of salts of alloy-forming metals and the solution pH makes it possible to obtain lustrous compact coatings with low porosity and various contents of high-melting components. The effect of temperature on the coating composition and current efficie...

  1. Sildenafil citrate and uteroplacental perfusion in fetal growth restriction

    Directory of Open Access Journals (Sweden)

    Marzieh Vahid Dastjerdi

    2012-01-01

    Full Text Available Background: To determine whether the phosphodiesterase type 5 inhibitor, Sildenafil citrate, affects uteroplacental perfusion. Materials and Methods: Based on a randomized double-blinded and placebo-controlled trial, forty one pregnant women with documented intrauterine growth retardation at 24-37 weeks of gestation were evaluated for the effect of a single dose of Sildenafil citrate on uteroplacental circulation as determined by Doppler ultrasound study of the umbilical and middle cerebral arteries. Statistical analysis included χ2 -test to compare proportions, and independent-samples t-test and paired student′s t-test to compare continuous variables. Results: Sildenafil group fetuses demonstrated a significant decrease in systolic/diastolic ratios (0.60 [SD 0.40] [95% Cl 0.37-0.84], P=0.000, and pulsatility index (0.12 [SD 0.15] [95% Cl 0.02-0.22], P=0.019 for the umbilical artery and a significant increase in middle cerebral artery pulsatility index (MCA PI (0.51 [SD 0.60] [95% Cl 0.16-0.85], P=0.008. Conclusion: Doppler velocimetry index values reflect decreased placental bed vascular resistance after Sildenafil. Sildenafil citrate can improve fetoplacental perfusion in pregnancies complicated by intrauterine growth restriction. It could be a potential therapeutic strategy to improve uteroplacental blood flow in pregnancies with fetal growth restriction (FGR.

  2. Candesartan ameliorates acute myocardial infarction in rats through inducible nitric oxide synthase, nuclear factor‑κB, monocyte chemoattractant protein‑1, activator protein‑1 and restoration of heat shock protein 72.

    Science.gov (United States)

    Lin, Xuefeng; Wu, Min; Liu, Bo; Wang, Junkui; Guan, Gongchang; Ma, Aiqun; Zhang, Yong

    2015-12-01

    Candesartan, an angiotensin II type 1 receptor antagonist, has a variety of biological activities, including antioxidant, anti‑inflammatory and anticancer activities, with specific pharmacological effects. The present study investigated the mechanisms and protective effect of candesartan on acute myocardial infarction in rats. Male Wistar rats (8‑week‑old) were induced as a model of acute myocardial infarction and treated with candesartan (0.25 mg/kg) for 2 weeks. The present study first measured the activities of casein kinase (CK), the MB isoenzyme of creatine kinase (CK‑MB) and lactate dehydrogenase (LDH), the level of cardiac troponin T (cTnT) and infarct size. Subsequently, western blot analysis was performed to analyze the protein expression levels of inducible nitric oxide synthase (iNOS) and heat shock protein 72 (HSP72) in the rats. An enzyme linked immunosorbent assay was used to detect iNOS and nuclear factor‑κB (NF‑κB) activity. In addition, gene expression levels of monocyte chemotactic protein‑1 (MCP‑1) and activating protein‑1 (AP‑1) were determined using reverse transcription‑quantitative polymerase chain reaction analysis. Finally, the activities of caspase‑3 and caspase‑9 were examined using colorimetric assay kits. In the serum of the rat model of acute myocardial infarction, candesartan significantly increased the activities of CK, CK‑MB and LDH, and the level of cTnT. The infarction size was perfected by candesartan treatment. Candesartan significantly reduced the protein expression and activity of iNOS, the activity of NF‑κB p65, and the gene expression levels of MCP‑1 and AP‑1 in the rat model of acute myocardial infarction. Candesartan increased the protein expression of HSP‑72 in the acute myocardial infarction rat model. However, candesartan did not effect the levels of caspase‑3 or caspase‑9 in the rat model of acute myocardial infarction. These results suggested that candesartan ameliorates

  3. Candesartan ameliorates acute myocardial infarction in rats through inducible nitric oxide synthase, nuclear factor‑κB, monocyte chemoattractant protein‑1, activator protein‑1 and restoration of heat shock protein 72.

    Science.gov (United States)

    Lin, Xuefeng; Wu, Min; Liu, Bo; Wang, Junkui; Guan, Gongchang; Ma, Aiqun; Zhang, Yong

    2015-12-01

    Candesartan, an angiotensin II type 1 receptor antagonist, has a variety of biological activities, including antioxidant, anti‑inflammatory and anticancer activities, with specific pharmacological effects. The present study investigated the mechanisms and protective effect of candesartan on acute myocardial infarction in rats. Male Wistar rats (8‑week‑old) were induced as a model of acute myocardial infarction and treated with candesartan (0.25 mg/kg) for 2 weeks. The present study first measured the activities of casein kinase (CK), the MB isoenzyme of creatine kinase (CK‑MB) and lactate dehydrogenase (LDH), the level of cardiac troponin T (cTnT) and infarct size. Subsequently, western blot analysis was performed to analyze the protein expression levels of inducible nitric oxide synthase (iNOS) and heat shock protein 72 (HSP72) in the rats. An enzyme linked immunosorbent assay was used to detect iNOS and nuclear factor‑κB (NF‑κB) activity. In addition, gene expression levels of monocyte chemotactic protein‑1 (MCP‑1) and activating protein‑1 (AP‑1) were determined using reverse transcription‑quantitative polymerase chain reaction analysis. Finally, the activities of caspase‑3 and caspase‑9 were examined using colorimetric assay kits. In the serum of the rat model of acute myocardial infarction, candesartan significantly increased the activities of CK, CK‑MB and LDH, and the level of cTnT. The infarction size was perfected by candesartan treatment. Candesartan significantly reduced the protein expression and activity of iNOS, the activity of NF‑κB p65, and the gene expression levels of MCP‑1 and AP‑1 in the rat model of acute myocardial infarction. Candesartan increased the protein expression of HSP‑72 in the acute myocardial infarction rat model. However, candesartan did not effect the levels of caspase‑3 or caspase‑9 in the rat model of acute myocardial infarction. These results suggested that candesartan ameliorates

  4. Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: structural insights into the evolution of terpene synthase function.

    Science.gov (United States)

    Kampranis, Sotirios C; Ioannidis, Daphne; Purvis, Alan; Mahrez, Walid; Ninga, Ederina; Katerelos, Nikolaos A; Anssour, Samir; Dunwell, Jim M; Degenhardt, Jörg; Makris, Antonios M; Goodenough, Peter W; Johnson, Christopher B

    2007-06-01

    Terpene synthases are responsible for the biosynthesis of the complex chemical defense arsenal of plants and microorganisms. How do these enzymes, which all appear to share a common terpene synthase fold, specify the many different products made almost entirely from one of only three substrates? Elucidation of the structure of 1,8-cineole synthase from Salvia fruticosa (Sf-CinS1) combined with analysis of functional and phylogenetic relationships of enzymes within Salvia species identified active-site residues responsible for product specificity. Thus, Sf-CinS1 was successfully converted to a sabinene synthase with a minimum number of rationally predicted substitutions, while identification of the Asn side chain essential for water activation introduced 1,8-cineole and alpha-terpineol activity to Salvia pomifera sabinene synthase. A major contribution to product specificity in Sf-CinS1 appears to come from a local deformation within one of the helices forming the active site. This deformation is observed in all other mono- or sesquiterpene structures available, pointing to a conserved mechanism. Moreover, a single amino acid substitution enlarged the active-site cavity enough to accommodate the larger farnesyl pyrophosphate substrate and led to the efficient synthesis of sesquiterpenes, while alternate single substitutions of this critical amino acid yielded five additional terpene synthases. PMID:17557809

  5. The influence of ferric (III citrate on ATP-hydrolases of Desulfuromonas acetoxidans ІМV В-7384

    Directory of Open Access Journals (Sweden)

    O. Maslovska

    2013-02-01

    Full Text Available Desulfuromonas acetoxidans obtains energy for growth by the anaerobic oxidation of organic compounds with the carbon dioxide formation. It was found that ferrum and manganese are used as terminal electron acceptors in the processes of anaerobic respiration, such as dissimilative Fe3+- and Mn4+-reduction, carried out by these bacteria (Lovely, 1991. D. acetoxidans ІМV B-7384 can be used as anode biocatalyst in microbial fuel cell with high electron recovery through acetate oxidation to the electric current as a result of electron transfer to the anode or 3d-type transition metals, such as ferrum and manganese, in the process of their reduction. Investigation of biochemical changes of D. acetoxidans ІМV B-7384 under the influence of Fe (III compounds is important for optimization of the process of bacterial electricity generation. ATP-hydrolase is located in cytoplasmic membrane, and its subunits are exposed to both the cytoplasm and the external environment. Therefore, the changes of that enzyme activity can be used as an indicator of various stress exposure. Presence of ferric iron ions in the bacterial growth medium could catalyze generation of organic reactive oxygen species, such as peroxyl (ROO- and alkoxyl (RO- radicals. Lipid peroxidation is one of the main reasons of cell damage and it’s following death under the influence of reactive oxygen metabolites. It is known that lipid peroxidation and membrane transport processes are somehow interrelated, but mechanisms of such interaction are still unidentified. In our previous researche we have shown the influence of ferric (III citrate on the intensity of lipid peroxidation of D. аcetoxidans ІМV В-7384. Significant increase of the content of lipid peroxidation products (lipid hydroperoxides, conjugated dienes and malondialdehyde in bacterial cells has been observed under the addition of ferric (III citrate into the cultural medium. The increase of the concentration of lipid

  6. Conservation and Role of Electrostatics in Thymidylate Synthase

    OpenAIRE

    Divita Garg; Stephane Skouloubris; Julien Briffotaux; Hannu Myllykallio; Wade, Rebecca C.

    2015-01-01

    International audience Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs fr...

  7. Polyhydroyxalkanoate Synthase Fusions as a Strategy for Oriented Enzyme Immobilisation

    Directory of Open Access Journals (Sweden)

    David O. Hooks

    2014-06-01

    Full Text Available Polyhydroxyalkanoate (PHA is a carbon storage polymer produced by certain bacteria in unbalanced nutrient conditions. The PHA forms spherical inclusions surrounded by granule associate proteins including the PHA synthase (PhaC. Recently, the intracellular formation of PHA granules with covalently attached synthase from Ralstonia eutropha has been exploited as a novel strategy for oriented enzyme immobilisation. Fusing the enzyme of interest to PHA synthase results in a bifunctional protein able to produce PHA granules and immobilise the active enzyme of choice to the granule surface. Functionalised PHA granules can be isolated from the bacterial hosts, such as Escherichia coli, and maintain enzymatic activity in a wide variety of assay conditions. This approach to oriented enzyme immobilisation has produced higher enzyme activities and product levels than non-oriented immobilisation techniques such as protein inclusion based particles. Here, enzyme immobilisation via PHA synthase fusion is reviewed in terms of the genetic designs, the choices of enzymes, the control of enzyme orientations, as well as their current and potential applications.

  8. TRANSPORT OF CITRATE CATALYZED BY THE SODIUM-DEPENDENT CITRATE CARRIER OF KLEBSIELLA-PNEUMONIAE IS OBLIGATORILY COUPLED TO THE TRANSPORT OF 2 SODIUM-IONS

    NARCIS (Netherlands)

    LOLKEMA, JS; ENEQUIST, H; VANDERREST, ME

    1994-01-01

    Aerobically grown Escherichia coli GM48 harboring plasmid pKScitS that codes for the sodium-dependent citrate carrier from Klebsiella pneumoniae (CitS) allows initial-rate measurements of citrate uptake in whole cells. The cation stoichiometry and selectivity of CitS was studied using this experimen

  9. Transport of citrate catalyzed by the sodium-dependent citrate carrier of Klebsiella pneumoniae is obligatorily coupled to the transport of two sodium ions

    NARCIS (Netherlands)

    Lolkema, Juke S.; Enequist, Hans; Rest, Michel E. van der

    1994-01-01

    Aerobically grown Escherichia coli GM48 harboring plasmid pKScitS that codes for the sodium-dependent citrate carrier from Klebsiella pneumoniae (CitS) allows initial-rate measurements of citrate uptake in whole cells. The cation stoichiometry and selectivity of CitS was studied using this experimen

  10. Microsomal prostaglandin E2 synthase-1 is induced by conditional expression of RET/PTC in thyroid PCCL3 cells through the activation of the MEK-ERK pathway.

    Science.gov (United States)

    Puxeddu, Efisio; Mitsutake, Norisato; Knauf, Jeffrey A; Moretti, Sonia; Kim, Hei W; Seta, Karen A; Brockman, Diane; Myatt, Leslie; Millhorn, David E; Fagin, James A

    2003-12-26

    RET/PTC rearrangements are believed to be tumor-initiating events in papillary thyroid carcinomas. We identified microsomal prostaglandin E2 synthase-1 (mPGES-1) as a RET/PTC-inducible gene through subtraction hybridization cloning and expression profiling with custom microarrays. The inducible prostaglandin E2 (PGE2) biosynthetic enzymes cyclooxygenase-2 (COX-2) and mPGES-1 are up-regulated in many cancers. COX-2 is overexpressed in thyroid malignancies compared with benign nodules and normal thyroid tissues. Eicosanoids may promote tumorigenesis through effects on tumor cell growth, immune surveillance, and angiogenesis. Conditional RET/PTC1 or RET/PTC3 expression in PCCL3 thyroid cells markedly induced mPGES-1 and COX-2. PGE2 was the principal prostanoid and up-regulated (by approximately 60-fold), whereas hydroxyeicosatetraenoic acid metabolites were decreased, consistent with shunting of prostanoid biosynthesis toward PGE2 by coactivation of the two enzymes. RET/PTC activated mPGES-1 gene transcription. Based on experiments with kinase inhibitors, with PCCL3 cell lines with doxycycline-inducible expression of RET/PTC mutants with substitutions of critical tyrosine residues in the kinase domain, and lines with inducible expression of activated mutants of H-RAS and MEK1, RET/PTC was found to regulate mPGES-1 through Shc-RAS-MEK-ERK. These data show a direct relationship between activation of a tyrosine kinase receptor oncogene and regulation of PGE2 biosynthesis. As enzymes involved in prostanoid biosynthesis can be targeted with pharmacological inhibitors, these findings may have therapeutic implications. PMID:14555660

  11. Evolution and function of phytochelatin synthases.

    Science.gov (United States)

    Clemens, Stephan

    2006-02-01

    Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy against metal excess is the expression of high-affinity binding sites to suppress uncontrolled binding of metal ions to physiologically important functional groups. The synthesis of phytochelatins, glutathione-derived metal binding peptides, represents the major detoxification mechanism for cadmium and arsenic in plants and an unknown range of other organisms. A few years ago genes encoding phytochelatin synthases (PCS) were cloned from plants, fungi and nematodes. Since then it has become apparent that PCS genes are far more widespread than ever anticipated. Searches in sequence databases indicate PCS expression in representatives of all eukaryotic kingdoms and the presence of PCS-like proteins in several prokaryotes. The almost ubiquitous presence in the plant kingdom and beyond as well as the constitutive expression of PCS genes and PCS activity in all major plant tissues are still mysterious. It is unclear, how the extremely rare need to cope with an excess of cadmium or arsenic ions could explain the evolution and distribution of PCS genes. Possible answers to this question are discussed. Also, the molecular characterization of phytochelatin synthases and our current knowledge about the enzymology of phytochelatin synthesis are reviewed.

  12. Expression, crystallization and structure elucidation of γ-terpinene synthase from Thymus vulgaris.

    Science.gov (United States)

    Rudolph, Kristin; Parthier, Christoph; Egerer-Sieber, Claudia; Geiger, Daniel; Muller, Yves A; Kreis, Wolfgang; Müller-Uri, Frieder

    2016-01-01

    The biosynthesis of γ-terpinene, a precursor of the phenolic isomers thymol and carvacrol found in the essential oil from Thymus sp., is attributed to the activitiy of γ-terpinene synthase (TPS). Purified γ-terpinene synthase from T. vulgaris (TvTPS), the Thymus species that is the most widely spread and of the greatest economical importance, is able to catalyze the enzymatic conversion of geranyl diphosphate (GPP) to γ-terpinene. The crystal structure of recombinantly expressed and purified TvTPS is reported at 1.65 Å resolution, confirming the dimeric structure of the enzyme. The putative active site of TvTPS is deduced from its pronounced structural similarity to enzymes from other species of the Lamiaceae family involved in terpenoid biosynthesis: to (+)-bornyl diphosphate synthase and 1,8-cineole synthase from Salvia sp. and to (4S)-limonene synthase from Mentha spicata. PMID:26750479

  13. The muscle-specific protein phosphatase PP1G/R(GL)(G(M))is essential for activation of glycogen synthase by exercise

    DEFF Research Database (Denmark)

    Aschenbach, W G; Suzuki, Y; Breeden, K;

    2001-01-01

    that was originally postulated to mediate insulin control of glycogen metabolism. However, we recently showed (Suzuki, Y., Lanner, C., Kim, J.-H., Vilardo, P. G., Zhang, H., Jie Yang, J., Cooper, L. D., Steele, M., Kennedy, A., Bock, C., Scrimgeour, A., Lawrence, J. C. Jr., L., and DePaoli-Roach, A. A. (2001) Mol....... Cell. Biol. 21, 2683-2694) that insulin activates GS in muscle of R(GL)(G(M)) knockout (KO) mice similarly to the wild type (WT). To determine whether PP1G is involved in glycogen metabolism during muscle contractions, R(GL) KO and overexpressors (OE) were subjected to two models of contraction...... basal glycogen levels, exhibited impaired maximal exercise capacity, but contraction-induced activation of glucose transport was unaffected. The R(GL) OE mice are characterized by enhanced GS activity ratio and an approximately 3-4-fold increase in glycogen content in skeletal muscle. These animals were...

  14. Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli.

    Science.gov (United States)

    Del Campo, M; Kaya, Y; Ofengand, J

    2001-11-01

    There are 10 known putative pseudouridine synthase genes in Escherichia coli. The products of six have been previously assigned, one to formation of the single pseudouridine in 16S RNA, three to the formation of seven pseudouridines in 23S RNA, and three to the formation of three pseudouridines in tRNA (one synthase makes pseudouridine in 23S RNA and tRNA). Here we show that the remaining four putative synthase genes make bona fide pseudouridine synthases and identify which pseudouridines they make. RluB (formerly YciL) and RluE (formerly YmfC) make pseudouridine2605 and pseudouridine2457, respectively, in 23S RNA. RluF (formerly YjbC) makes the newly discovered pseudouridine2604 in 23S RNA, and TruC (formerly YqcB) makes pseudouridine65 in tRNA(Ile1) and tRNA(Asp). Deletion of each of these synthase genes individually had no effect on exponential growth in rich media at 25 degrees C, 37 degrees C, or 42 degrees C. A strain lacking RluB and RluF also showed no growth defect under these conditions. Mutation of a conserved aspartate in a common sequence motif, previously shown to be essential for the other six E. coli pseudouridine synthases and several yeast pseudouridine synthases, also caused a loss of in vivo activity in all four of the synthases studied in this work.

  15. [Heme oxygenase activity in the tissues of the vessels and heart of rats under co-administration of NO-synthase inhibitor and hemin chloride].

    Science.gov (United States)

    Kaliman, P A; Filimonenko, V P; Nikitchenko, I V

    2008-01-01

    The administration of hemin chloride in a dose of 1.5 mg/100 g of the body weight was found to cause accumulation of the total heme and TBA-reactive products in the rat blood serum and vessels. Pretreatment by N(omega)-nitro-L-arginine (0.5 h before hemin chloride administration) did not affect the dynamics of the total heme and TBA-reacting products accumulation. The increase of heme oxygenase activity was observed in the vessels after hemin chloride administration. This effect was strengthened by N(omega)-nitro-L-arginine pretreatment. The changes of heme oxygenase activity and the total heme level in heart were not observed at any periods studied. The increase of the TBA-reactive products level in the heart after exogenous hemin injection was accompanied by an increase of nitrites content and blocked by pretreatment of NOS inhibitor. The N(omega)-nitro-L-arginine alone caused the accumulation of the total heme, TBA-reacting products and the increase of heme oxygenase activity in the vessels. The role of heme and NO in regulation of the heme oxygenase activity is discussed. PMID:18819384

  16. Detailed characterization of the substrate specificity of mouse wax synthase.

    Science.gov (United States)

    Miklaszewska, Magdalena; Kawiński, Adam; Banaś, Antoni

    2013-01-01

    Wax synthases are membrane-associated enzymes catalysing the esterification reaction between fatty acyl-CoA and a long chain fatty alcohol. In living organisms, wax esters function as storage materials or provide protection against harmful environmental influences. In industry, they are used as ingredients for the production of lubricants, pharmaceuticals, and cosmetics. Currently the biological sources of wax esters are limited to jojoba oil. In order to establish a large-scale production of desired wax esters in transgenic high-yielding oilseed plants, enzymes involved in wax esters synthesis from different biological resources should be characterized in detail taking into consideration their substrate specificity. Therefore, this study aims at determining the substrate specificity of one of such enzymes -- the mouse wax synthase. The gene encoding this enzyme was expressed heterologously in Saccharomyces cerevisiae. In the in vitro assays (using microsomal fraction from transgenic yeast), we evaluated the preferences of mouse wax synthase towards a set of combinations of 11 acyl-CoAs with 17 fatty alcohols. The highest activity was observed for 14:0-CoA, 12:0-CoA, and 16:0-CoA in combination with medium chain alcohols (up to 5.2, 3.4, and 3.3 nmol wax esters/min/mg microsomal protein, respectively). Unsaturated alcohols longer than 18°C were better utilized by the enzyme in comparison to the saturated ones. Combinations of all tested alcohols with 20:0-CoA, 22:1-CoA, or Ric-CoA were poorly utilized by the enzyme, and conjugated acyl-CoAs were not utilized at all. Apart from the wax synthase activity, mouse wax synthase also exhibited a very low acyl-CoA:diacylglycerol acyltransferase activity. However, it displayed neither acyl-CoA:monoacylglycerol acyltransferase, nor acyl-CoA:sterol acyltransferase activity.

  17. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis.

    Science.gov (United States)

    Li, Guojing; Meng, Xiangzong; Wang, Ruigang; Mao, Guohong; Han, Ling; Liu, Yidong; Zhang, Shuqun

    2012-06-01

    Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.

  18. 柠檬酸铅在柠檬酸钠溶液中溶解行为%Dissolution behavior of lead citrate in sodium citrate solution

    Institute of Scientific and Technical Information of China (English)

    何东升; 李巧双; 杨典奇; 杨聪; 王贤晨; 杨家宽

    2014-01-01

    Lead citrate was prepared by the reaction of lead oxide and citrate. The effects of dissolution time, dissolution tempera-ture, sodium citrate concentration, and the addition amount of citric acid on the dissolution rate of lead citrate in sodium citrate solution were investigated. Experimental results show that, dissolution temperature, sodium citrate concentration, and the addition amount of citric acid are the main influencing factors. Increasing the dissolution temperature or the sodium citrate concentration can significantly improve the dissolution rate of lead citrate. The dissolution rate of lead citrate has a positive linear relation with the dissolution tempera-ture, and the fitted linear equation is Y=0.76+0.63T. Adding citric acid can inhibit the dissolution of lead citrate.%通过氧化铅与柠檬酸反应制备了柠檬酸铅,考察了溶解时间、溶解温度、柠檬酸钠浓度和柠檬酸加入量对柠檬酸铅在柠檬酸钠溶液中溶解率的影响.结果表明:温度、柠檬酸钠浓度及柠檬酸加入量是主要影响因素,升高温度和提高柠檬酸钠浓度可显著提高柠檬酸铅溶解率;温度和溶解率呈正线性关系,拟合的线性方程为Y=0.76+0.63T;加入柠檬酸则对柠檬酸铅溶解有抑制作用.

  19. Inhibition of lipopolysaccharide-inducible nitric oxide synthase and IL-1beta through suppression of NF-kappaB activation by 3-(1'-1'-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin isolated from Ruta graveolens L.

    Science.gov (United States)

    Raghav, Sunil Kumar; Gupta, Bhawna; Shrivastava, Anju; Das, Hasi Rani

    2007-03-29

    The Ruta graveolens L. plant is used in traditional medicine to treat a large number of diseases. The methanol (50%) extract of the whole plant was observed to inhibit the expression of inducible nitric oxide synthase (iNOS) and the cycloxygenase-2 (COX-2) gene in lipopolysaccharide (LPS)-induced macrophage cells (J774A.1, [Raghav, S.K., Gupta, B., Agrawal, C., Goswami, K., Das, H.R., 2006b. Anti-inflammatory effect of Ruta graveolens L. in murine macrophage cells. J. Ethnopharmacol. 104, 234-239]). The effect of whole plant extract on the expression of other pro-inflammatory genes such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-12, interferon-gamma (IFN-gamma) and the activation of nuclear factor-kB (NF-kappaB) were investigated in LPS stimulated macrophage cells. An active compound was isolated from this methanol extract by further solvent fractionation and reverse phase high performance liquid chromatography (RP-HPLC). The purified compound was identified as 3-(1'-1'-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin having IUPAC nomenclature of 6-hydroxy-7-methoxy-3-(2-methyl but-3-en-2yl)-2H-chromen-2-one by ESI-MS, MALDI, FT-IR and NMR. Effect of this purified compound was assessed on iNOS, COX-2 and various pro-inflammatory cytokine genes and was observed to inhibit both the protein and mRNA expression of iNOS and IL-1beta in LPS challenged macrophages. Electrophoretic mobility shift assay (EMSA) and Western blot analyses indicated that the plant extract and the isolated active compound blocked the LPS-induced activation of NF-kappaB through the prevention of inhibitor-kB (IkB) degradation. The purified compound also showed the anti-oxidant activity. The active compound at a dose of 40 mg/kg body weight was observed to inhibit the iNOS and IL-1beta gene expression significantly in endotoxin-induced inflammatory model of BALB/c mice. The low level of nitric oxide production was also observed in the sera of compound treated mice

  20. A new member of the chalcone synthase (CHS family in sugarcane

    Directory of Open Access Journals (Sweden)

    Contessotto Miriam G.G.

    2001-01-01

    Full Text Available Sequences from the sugarcane expressed sequence tag (SUCEST database were analyzed based on their identities to genes encoding chalcone-synthase-like enzymes. The sorghum (Sorghum bicolor chalcone-synthase (CHS, EC 2.3.1.74 protein sequence (gi|12229613 was used to search the SUCEST database for clusters of sequencing reads that were most similar to chalcone synthase. We found 121 reads with homology to sorghum chalcone synthase, which we were then able to sort into 14 clusters which themselves were divided into two groups (group 1 and group 2 based on the similarity of their deduced amino acid sequences. Clusters in group 1 were more similar to the sorghum enzyme than those in group 2, having the consensus sequence of the active site of chalcone and stilbene synthase. Analysis of gene expression (based on the number of reads from a specific library present in each group indicated that most of the group 1 reads were from sugarcane flower and root libraries. Group 2 clusters were more similar to the amino acid sequence of an uncharacterized pathogen-induced protein (PI1, gi|9855801 from the S. bicolor expressed sequence tag (EST database. The group 2 clusters sequences and PI1 proteins are 90% identical, having two amino acid changes at the chalcone and stilbene synthase consensi but conserving the cysteine residue at the active site. The PI1 EST has not been previously associated with chalcone synthase and has a different consensus sequence from the previously described chalcone synthase of sorghum. Most of the group 2 reads were from libraries prepared from sugarcane roots and plants infected with Herbaspirillum rubrisubalbicans and Gluconacetobacter diazotroficans. Our results indicate that we have identified a sugarcane chalcone synthase similar to the pathogen-induced PI1 protein found in the sorghum cDNA libraries, and it appears that both proteins represent new members of the chalcone and stilbene synthase super-family.

  1. 百合鳞茎蔗糖合成酶活性检测体系的建立%Establishment of Detection System for Sucrose Synthase Activity in Lily Bulb

    Institute of Scientific and Technical Information of China (English)

    孙红梅; 王微微; 何玲; 王春夏; 李天来

    2011-01-01

    为了建立富含多糖的百合鳞茎蔗糖合成酶(sucrose synthase,EC2.4.1.13,SuSy)活性检测体系,深入研究其蔗糖代谢机制,以兰州百合(Lilium davidii var.unicolor)鳞茎外层鳞片为试材,分别研究了提取缓冲液种类及pH值、反应温度、底物浓度以及缓冲液pH值对SuSy合成和分解方向活性的影响.结果表明:SuSy合成方向活性检测的最适提取缓冲液是pH值为7.8的TrisHCl,最适反应温度为50℃,底物果糖最适浓度为50 mmol· L-1,UDPG最适浓度为5 mmol·L-1,反应缓冲液Tris-HCl最适pH值为7.5;SuSy分解方向活性检测的最适提取缓冲液为pH值7.8的Hepes-NaOH,最适反应温度为40℃,底物蔗糖最适浓度为10mmol· L-1,UDP最适浓度为7 mmol·L-1,反应缓冲液Mes-NaOH最适pH值为4.5.%This investigation was designed to establish the detection system for sucrose synthase (EC 2.4.1.13, SuSy) activities in lily bulb enriched with polysaccharides, which provided a detection method for the further research on the mechanism of sucrose metabolism. The effects of extracting buffer types, pH, reaction temperature, substrate concentrations, pH of the reaction buffer on the SuSy activities in both synthesis and decomposition direction were respectively studied by using the exterior scales of Lilium davidii var. Unicolor at planting stage as materials. And the results showed that the optimum extraction buffer was Tris-HCl of pH7.8, the appropriate temperature was 50 ℃, the preferential substrate concentration of fructose was 50 mmol·L-1, the preferential substrate concentration of UDPG was 5 mmol·L-1, and the suitable pH for reaction buffer Tris-HCI was 7.5 in the detection of SuSy synthesis activities. In the detection of SuSy decomposition activities, the optimum extraction buffer was Hepes-NaOH of pH7.8, the appropriate temperature was 40 X!, the adequate substrate concentration of sucrose was 10 mmol·L-1, the adequate substrate concentration of UDP was 7 mmol·L-1

  2. Cleavage of the Carboxyl-Terminus of LEACS2, a Tomato 1-Aminocycl opropane-1-Carboxylic Acid Synthase Isomer, by a 64-kDa Tomato Metalloprotease Produces a Truncated but Active Enzyme

    Institute of Scientific and Technical Information of China (English)

    Jian-Feng LI; Robert QI; Liang-Hu QU; Autar K Mattoo; Ning LI

    2005-01-01

    l-Aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) is the principal enzyme in phytohormone ethylene biosynthesis. Previous studies have shown that the hypervariable C-terminus of ACS is proteolytically processed in vivo. However, the protease responsible for this has not yet been identified. In the present study, we investigated the processing of the 55-kDa full-length tomato ACS (LeACS2) into 52-, 50- and 49-kDa truncated isoforms in ripening tomato (Lycopersicon esculentum Mill. cv.Cooperation 903) fruit using the sodium dodecyl sulfate-boiling method. Meanwhile, an LeACS2-processing protease was purified via multi-step column chromatography from tomato fruit. Subsequent biochemical analysis of the 64-kDa purified protease revealed that it is a metalloprotease active at multiple cleavage sites within the hypervariable C-terminus of LeACS2. N-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight analysis indicated that the LeACS2-processing metalloprotease cleaves at the C-terminal sites Lys438, Glu447, Lys448, Asn456, Ser460, Ser462, Lys463, and Leu474, but does not cleave the Nterminus of LeACS2. Four C-terminus-deleted (26-50 amino acids) LeACS2 fusion proteins were overproduced and subjected to proteolysis by this metalloprotease to identify the multiple cleavage sites located on the N-terminal side of the phosphorylation site Ser460. The results indisputably confirmed the presence of cleavage sites within the region between the α-helix domain (H14) and Ser460 for this metalloprotease.Furhermore, the resulting C-terminally truncated LeACS2 isoforms were active enzymatically. Because this protease could produce LeACS2 isoforms in vitro similar to those detected in vivo, it is proposed that this metalloprotease may be involved in the proteolysis of LeACS2 in vivo.

  3. Changes in the level of cytosolic calcium, nitric oxide and nitric oxide synthase activity during platelet aggregation: an in vitro study in platelets from normal subjects and those with cirrhosis

    Indian Academy of Sciences (India)

    Sam Annie-JeyachristYn; Arumugam Geetha; Rajagopal Surendran

    2008-03-01

    Variceal bleeding due to abnormal platelet function is a well-known complication of cirrhosis. Nitric oxide-related stress has been implicated in the pathogenesis of liver cirrhosis. In the present investigation, we evaluated the level of platelet aggregation and concomitant changes in the level of platelet cytosolic calcium (Ca2+), nitric oxide (NO) and NO synthase (NOS) activity in liver cirrhosis. The aim of the present study was to investigate whether the production of NO by NOS and level of cytosolic Ca2+ influence the aggregation of platelets in patients with cirrhosis of the liver. Agonist-induced aggregation and the simultaneous changes in the level of cytosolic Ca2+, NO and NOS were monitored in platelets of patients with cirrhosis. Platelet aggregation was also measured in the presence of the eNOS inhibitor, diphenylene iodinium chloride (DIC). The level of agonist-induced platelet aggregation was significantly low in the platelets of patients with cirrhosis compared with that in platelets from normal subjects. During the course of platelet aggregation, concomitant elevation in the level of cytosolic Ca2+ was observed in normal samples, whereas the elevation was not significant in platelets of patients with cirrhosis. A parallel increase was observed in the levels of NO and NOS activity. In the presence of the eNOS inhibitor, platelet aggregation was enhanced and accompanied by an elevated calcium level. The inhibition of platelet aggregation in liver cirrhosis might be partly due to greater NO formation by eNOS. Defective Ca2+ release from the internal stores to the cytosol may account for inhibition of aggregation of platelets in cirrhosis. The NO-related defective aggregation of platelets in patients with cirrhosis found in our study is of clinical importance, and the underlying mechanism of such changes suggests a possible therapeutic strategy with cell-specific NO blockers.

  4. A particular phenotype in a girl with aldosterone synthase deficiency.

    Science.gov (United States)

    Williams, Tracy A; Mulatero, Paolo; Bosio, Maurizio; Lewicka, Sabina; Palermo, Mario; Veglio, Franco; Armanini, Decio

    2004-07-01

    Aldosterone synthase deficiency (ASD) usually presents in infancy as a life-threatening electrolyte imbalance. A 4-wk-old child of unrelated parents was examined for failure to thrive and salt-wasting. Notable laboratory findings were hyperkalemia, high plasma renin, and low-normal aldosterone levels. Urinary metabolite ratios of corticosterone/18-hydroxycorticosterone and 18-hydroxycorticosterone/aldosterone were intermediate between ASD type I and type II. Sequence analysis of CYP11B2, the gene encoding aldosterone synthase (P450c11AS), revealed that the patient was a compound heterozygote carrying a previously described mutation located in exon 4 causing a premature stop codon (E255X) and a further, novel mutation in exon 5 that also causes a premature stop codon (Q272X). The patient's unaffected father was a heterozygous carrier of the E255X mutation, whereas the unaffected mother was a heterozygous carrier of the Q272X mutation. Therefore, the patient's CYP11B2 encodes two truncated forms of aldosterone synthase predicted to be inactive because they lack critical active site residues as well as the heme-binding site. This case of ASD is of particular interest because despite the apparent lack of aldosterone synthase activity, the patient displays low-normal aldosterone levels, thus raising the question of its source. PMID:15240589

  5. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Guojing Li

    2012-06-01

    Full Text Available Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs. The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.

  6. Differential behaviour of four plant polysaccharide synthases in the presence of organic solvents.

    Science.gov (United States)

    Kerry, M E; Gregory, A C; Bolwell, G P

    2001-08-01

    The behaviour of four membrane-bound glycosyl transferases involved in cell wall polysaccharide synthesis has been studied in relation to the effects of a graded series of organic solvents on their activity and type of product formed. Relative enzyme inhibition observed for some solvents was in direct relationship to the hydrophilicity of the product. This was in the order of arabinan synthase > callose synthase> xylan synthase > beta-1,4-glucan synthase. The former two were always inhibited, the xylan synthase rather less so. However, the beta-1,4-glucan synthase showed significant increases in substrate incorporation in the presence of solvents. A graded series of primary alcohols were much more effective in enhancing activity than acetone, ethyl acetate and dimethyl formamide. In the presence of the most effective solvent, methanol, there was considerable activation of beta-1,4-glucan production. This reciprocal nature of the behaviour of the beta-1,4- and beta-1,3-glucan synthases in organic solvent is supportive of recent molecular data that the two types of glucans are catalysed by separate enzyme systems. However, the results reported here do not totally negate the proposition that either enzyme is capable of synthesising the other linkage in minor amounts in vitro. PMID:11430978

  7. In vitro biochemical characterization of all barley endosperm starch synthases

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian;

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS...... classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes....... Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results...

  8. Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, P.M.; Eoyang, L.

    1987-06-01

    Acetohyroxyacid synthease I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo(2-/sup 14/C)pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a sodium dodecyl sulfate-polyacrylamide gel; less than 5% coelectrophoresed with the 11.2-kilodalton IlvN subunit. The stoichiometry of incorporation at nearly complete inactivation was 1 mol of /sup 14/C per mol of IlvB polypeptide. These data indicate that bromopyruvate inactivates AHAS I by alkylating an amino acid at or near a single active site located in the IlvB subunit of the enzyme. The authors confirmed that this alkylation inactivated both AHAS reactions normally catalyzed by AHAS I. These results provide the first direct evidence that AHAS I catalyzes both acetohydroxybutyrate and acetolactate synthesis from the same active site.

  9. Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis

    International Nuclear Information System (INIS)

    Acetohyroxyacid synthease I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo[2-14C]pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a sodium dodecyl sulfate-polyacrylamide gel; less than 5% coelectrophoresed with the 11.2-kilodalton IlvN subunit. The stoichiometry of incorporation at nearly complete inactivation was 1 mol of 14C per mol of IlvB polypeptide. These data indicate that bromopyruvate inactivates AHAS I by alkylating an amino acid at or near a single active site located in the IlvB subunit of the enzyme. The authors confirmed that this alkylation inactivated both AHAS reactions normally catalyzed by AHAS I. These results provide the first direct evidence that AHAS I catalyzes both acetohydroxybutyrate and acetolactate synthesis from the same active site

  10. Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved.

    Science.gov (United States)

    Li, Yuanjing; Tian, Chunjie; Tian, Hua; Zhang, Jiliang; He, Xin; Ping, Wenxiang; Lei, Hong

    2012-12-01

    Nowadays, bacterial cellulose has played more and more important role as new biological material for food industry and medical and industrial products based on its unique properties. However, it is still a difficult task to improve the production of bacterial cellulose, especially a large number of byproducts are produced in the metabolic biosynthesis processes. To improve bacterial cellulose production, ethanol and sodium citrate are added into the medium during the fermentation, and the activities of key enzymes and concentration of extracellular metabolites are measured to assess the changes of the metabolic flux of the hexose monophosphate pathway (HMP), the Embden-Meyerhof-Parnas pathway (EMP), and the tricarboxylic acid cycle (TCA). Our results indicate that ethanol functions as energy source for ATP generation at the early stage of the fermentation in the HMP pathway and the supplementation of ethanol significantly reduces glycerol generation (a major byproduct). While in the EMP pathway, sodium citrate plays a key role, and its supplementation results in the byproducts (mainly acetic acid and pyruvic acid) entering the gluconeogenesis pathway for cellulose synthesis. Furthermore, by adding ethanol and sodium citrate, the main byproduct citric acid in the TCA cycle is also reduced significantly. It is concluded that bacterial cellulose production can be improved by increasing energy metabolism and reducing the formation of metabolic byproducts through the metabolic regulations of the bypasses.

  11. Antibacterial properties and mode of action of new triaryl butene citrate compounds.

    Science.gov (United States)

    El Arbi, Mehdi; Théolier, Jérémie; Pigeon, Pascal; Jellali, Karim; Trigui, Fatma; Top, Siden; Aifa, Sami; Fliss, Ismail; Jaouen, Gérard; Hammami, Riadh

    2014-04-01

    The aim of this study was to evaluate the antibacterial activity of newly synthesized triaryl butene analogues of tamoxifen. Several compounds were synthesized and converted to citrate salts to ensure greater solubility. Four compounds showed significant antibacterial activity at micromolar concentrations against Gram-positive and Gram-negative foodborne pathogens including Listeria monocytogenes, Listeria ivanovii, Enterococcus faecalis, Staphylococcus aureus and Escherichia coli. Two compounds at 50 μM, caused only 7.8 and 11% hemolysis. One of these as well as the remaining two caused high K(+) and Na(+) efflux from bacterial cells. Ultrastructural alterations were also visible using transmission electron microscopy, which revealed severe damage of the inner or outer membrane of E. coli. L. ivanovii showed swelling, corrugations and similar damage indicating a loss of cell-wall integrity. Organometallic compounds may offer interesting opportunities for the design of novel classes of antimicrobial compounds. PMID:24602786

  12. Reduced plasma adiponectin concentrations may contribute to impaired insulin activation of glycogen synthase in skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, K.; Frystyk, J.; Levin, K.;

    2006-01-01

    AIMS/HYPOTHESIS: Circulating levels of adiponectin are negatively associated with multiple indices of insulin resistance, and the concentration is reduced in humans with insulin resistance and type 2 diabetes. However, the mechanisms by which adiponectin improves insulin sensitivity remain unclear...... (ten lean, 21 obese and 20 with type 2 diabetes). RESULTS: Plasma adiponectin was significantly reduced in type 2 diabetic compared with obese and lean subjects. In lean and obese subjects, insulin significantly reduced plasma adiponectin, but this response was blunted in patients with type 2 diabetes...... by improving the capacity to switch from lipid to glucose oxidation and to store glucose as glycogen in response to insulin, and that low adiponectin may contribute to impaired insulin activation of GS in skeletal muscle of patients with type 2 diabetes....

  13. Forsterite Carbonation in Wet Supercritical CO2 and Sodium Citrate

    Science.gov (United States)

    Qiu, L.; Schaef, T.; Wang, Z.; Miller, Q.; McGrail, P.

    2013-12-01

    Lin Qiu1*, Herbert T. Schaef2, Zhengrong Wang1, Quin R.S. Miller3, BP McGrail2 1. Yale University, New Haven, CT, USA 2. Pacific Northwest National Laboratory, Richland, WA, USA 3. University of Wyoming, Laramie, WY, USA Geologic reservoirs for managing carbon emissions (mostly CO2) have expanded over the last 5 years to include unconventional formations including basalts and fractured shales. Recently, ~1000 metric tons of CO2 was injected into the Columbia River Basalt (CRB) in Eastern Washington as part of the Wallula Pilot Project, Big Sky Regional Carbon Partnership. Based on reservoir conditions, the injected CO2 is present as a supercritical fluid that dissolves into the formation water over time, and reacts with basalt components to form carbonate minerals. In this paper, we discuss mineral transformation reactions occurring when the forsterite (Mg2SiO4) is exposed to wet scCO2 in equilibrium with pure water and sodium citrate solutions. Forsterite was selected as it is an important olivine group mineral present in igneous and mafic rocks. Citrate was selected as it has been shown to enhance mineral dissolution and organic ligands are possible degradation products of the microbial communities present in the formational waters of the CRB. For the supercritical phase, transformation reactions were examined by in situ high pressure x-ray diffraction (HXRD) in the presence of supercritical carbon dioxide (scCO2) in contact with water and sodium citrate solutions at conditions relevant to carbon sequestration. Experimental results show close-to-complete dissolution of forsterite in contact with scCO2 equilibrated with pure water for 90 hours (90 bar and 50°C). Under these conditions, thin films of water coated the mineral surface, providing a mechanism for silicate dissolution and transport of cations necessary for carbonate formation. The primary crystalline component initially detected with in situ HXRD was the hydrated magnesium carbonate, nesquehonite [Mg