WorldWideScience

Sample records for cited3 homologs gccited3a

  1. Cited3 activates Mef2c to control muscle cell differentiation and survival.

    Science.gov (United States)

    Devakanmalai, Gnanapackiam Sheela; Zumrut, Hasan E; Ozbudak, Ertuğrul M

    2013-05-15

    Vertebrate muscle development occurs through sequential differentiation of cells residing in somitic mesoderm - a process that is largely governed by transcriptional regulators. Our recent spatiotemporal microarray study in zebrafish has identified functionally uncharacterized transcriptional regulators that are expressed at the initial stages of myogenesis. cited3 is one such novel gene encoding a transcriptional coactivator, which is expressed in the precursors of oxidative slow-twitch myofibers. Our experiments placed cited3 into a gene regulatory network, where it acts downstream of Hedgehog signaling and myoD/myf5 but upstream of mef2c. Knockdown of expression of cited3 by antisense morpholino oligonucleotides impaired muscle cell differentiation and growth, caused muscle cell death and eventually led to total immotility. Transplantation experiments demonstrated that Cited3 cell-autonomously activates the expression of mef2c in slow myofibers, while it non-cell-autonomously regulates expression of structural genes in fast myofibers. Restoring expression of cited3 or mef2c rescued all the cited3 loss-of-function phenotypes. Protein truncation experiments revealed the functional necessity of C-terminally conserved domain of Cited3, which is known to mediate interactions of Cited-family proteins with histone acetylases. Our findings demonstrate that Cited3 is a critical transcriptional coactivator functioning during muscle differentiation and its absence leads to defects in terminal differentiation and survival of muscle cells.

  2. Directed homology

    DEFF Research Database (Denmark)

    Fahrenberg, Uli

    2004-01-01

    We introduce a new notion of directed homology for semicubical sets. We show that it respects directed homotopy and is functorial, and that it appears to enjoy some good algebraic properties. Our work has applications to higher-dimensional automata.......We introduce a new notion of directed homology for semicubical sets. We show that it respects directed homotopy and is functorial, and that it appears to enjoy some good algebraic properties. Our work has applications to higher-dimensional automata....

  3. Intersection homology Betti numbers

    CERN Document Server

    Durfee, A H

    1993-01-01

    A generalization of the formula of Fine and Rao for the ranks of the intersection homology groups of a complex algebraic variety is given. The proof uses geometric properties of intersection homology and mixed Hodge theory.

  4. Combinatorial Floer Homology

    CERN Document Server

    de Silva, Vin; Salamon, Dietmar

    2012-01-01

    We define combinatorial Floer homology of a transverse pair of noncontractibe nonisotopic embedded loops in an oriented 2-manifold without boundary, prove that it is invariant under isotopy, and prove that it is isomorphic to the original Lagrangian Floer homology.

  5. Lectures on functor homology

    CERN Document Server

    Touzé, Antoine

    2015-01-01

    This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems. In the lectures by Aurélien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djament’s theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenko’s unpublished results. The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbert’s fourteenth problem and its solution to the context of cohomology. The focus here is o...

  6. Sutures and contact homology I

    OpenAIRE

    Colin, Vincent; Ghiggini, Paolo; Honda, Ko; Hutchings, Michael

    2010-01-01

    We define a relative version of contact homology for contact manifolds with convex boundary, and prove basic properties of this relative contact homology. Similar considerations also hold for embedded contact homology.

  7. Braid Floer homology

    Science.gov (United States)

    van den Berg, J. B.; Ghrist, R.; Vandervorst, R. C.; Wójcik, W.

    2015-09-01

    Area-preserving diffeomorphisms of a 2-disc can be regarded as time-1 maps of (non-autonomous) Hamiltonian flows on R / Z ×D2. The periodic flow-lines define braid (conjugacy) classes, up to full twists. We examine the dynamics relative to such braid classes and define a new invariant for such classes, the BRAID FLOER HOMOLOGY. This refinement of Floer homology, originally used for the Arnol'd Conjecture, yields a Morse-type forcing theory for periodic points of area-preserving diffeomorphisms of the 2-disc based on braiding. Contributions of this paper include (1) a monotonicity lemma for the behavior of the nonlinear Cauchy-Riemann equations with respect to algebraic lengths of braids; (2) establishment of the topological invariance of the resulting braid Floer homology; (3) a shift theorem describing the effect of twisting braids in terms of shifting the braid Floer homology; (4) computation of examples; and (5) a forcing theorem for the dynamics of Hamiltonian disc maps based on braid Floer homology.

  8. Pseudocycles and Integral Homology

    OpenAIRE

    Zinger, Aleksey

    2006-01-01

    We describe a natural isomorphism between the set of equivalence classes of pseudocycles and the integral homology groups of a smooth manifold. Our arguments generalize to settings well-suited for applications in enumerative algebraic geometry and for construction of the virtual fundamental class in the Gromov-Witten theory.

  9. Gorenstein homological dimensions

    DEFF Research Database (Denmark)

    Holm, Henrik Granau

    2004-01-01

    In basic homological algebra, the projective, injective and 2at dimensions of modules play an important and fundamental role. In this paper, the closely related Gorenstein projective, Gorenstein injective and Gorenstein 2at dimensions are studied. There is a variety of nice results about Gorenste...

  10. Algebra V homological algebra

    CERN Document Server

    Shafarevich, I

    1994-01-01

    This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.

  11. 2-categories and cyclic homology

    OpenAIRE

    Slevin, Paul

    2016-01-01

    The topic of this thesis is the application of distributive laws between comonads to the theory of cyclic homology. Explicitly, our main aims are: 1) To study how the cyclic homology of associative algebras and of Hopf algebras in the original sense of Connes and Moscovici arises from a distributive law, and to clarify the role of different notions of bimonad in this generalisation. 2) To extend the procedure of twisting the cyclic homology of a unital associative algebra to any duplicial obj...

  12. The Geometry of Homological Triangles

    CERN Document Server

    Smarandache, Florentin

    2012-01-01

    This book is addressed to students, professors and researchers of geometry, who will find herein many interesting and original results. The originality of the book The Geometry of Homological Triangles consists in using the homology of triangles as a "filter" through which remarkable notions and theorems from the geometry of the triangle are unitarily passed. Our research is structured in seven chapters, the first four are dedicated to the homology of the triangles, while the last ones to their applications.

  13. Matrix Factorizations and Kauffman Homology

    CERN Document Server

    Gukov, S; Gukov, Sergei; Walcher, Johannes

    2005-01-01

    The topological string interpretation of homological knot invariants has led to several insights into the structure of the theory in the case of sl(N). We study possible extensions of the matrix factorization approach to knot homology for other Lie groups and representations. In particular, we introduce a new triply graded theory categorifying the Kauffman polynomial, test it, and predict the Kauffman homology for several simple knots.

  14. Homology of L_{\\infty}-Algebras and Cyclic Homology

    OpenAIRE

    Khalkhali, Masoud

    1998-01-01

    A classical result of Loday-Quillen and Tsygan states that the Lie algebra homology of the algebra of stable matrices over an associative algebra is isomorphic, as a Hopf algebra, to the exterior algebra of the cyclic homology of the algebra. In this paper we develop the necessary tools needed to extend extend this result to the category of L_{\\infty} algebras.

  15. K-Kolmogorov homology groups

    International Nuclear Information System (INIS)

    In the present work we use the idea of the K-groups to define the K-Kolmogorov homology groups, and their induced homomorphisms and boundary operators for the case of a pair of discrete coefficient groups, where K denotes a locally-finite simplicial complex. Moreover, we prove that our homology construction is exact. (author)

  16. Mod two homology and cohomology

    CERN Document Server

    Hausmann, Jean-Claude

    2014-01-01

    Cohomology and homology modulo 2 helps the reader grasp more readily the basics of a major tool in algebraic topology. Compared to a more general approach to (co)homology this refreshing approach has many pedagogical advantages: It leads more quickly to the essentials of the subject, An absence of signs and orientation considerations simplifies the theory, Computations and advanced applications can be presented at an earlier stage, Simple geometrical interpretations of (co)chains. Mod 2 (co)homology was developed in the first quarter of the twentieth century as an alternative to integral homology, before both became particular cases of (co)homology with arbitrary coefficients. The first chapters of this book may serve as a basis for a graduate-level introductory course to (co)homology. Simplicial and singular mod 2 (co)homology are introduced, with their products and Steenrod squares, as well as equivariant cohomology. Classical applications include Brouwer's fixed point theorem, Poincaré duality, Borsuk-Ula...

  17. Compositional Homology and Creative Thinking

    Directory of Open Access Journals (Sweden)

    Salvatore Tedesco

    2015-05-01

    Full Text Available The concept of homology is the most solid theoretical basis elaborated by the morphological thinking during its history. The enucleation of some general criteria for the interpretation of homology is today a fundamental tool for life sciences, and for restoring their own opening to the question of qualitative innovation that arose so powerfully in the original Darwinian project. The aim of this paper is to verify the possible uses of the concept of compositional homology in order to provide of an adequate understanding of the dynamics of creative thinking.

  18. Fivebranes and 3-manifold homology

    CERN Document Server

    Gukov, Sergei; Vafa, Cumrun

    2016-01-01

    Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that fivebrane compactifications provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N=2 theory T[M_3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categorification of Chern-Simons partition function. Some of the new key elements include the explicit form of the S-transform and a novel connection between categorification and a previously mysterious role of Eichler integrals in Chern-Simons theory.

  19. Object-oriented persistent homology

    Science.gov (United States)

    Wang, Bao; Wei, Guo-Wei

    2016-01-01

    Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a

  20. Localization theorems in topological Hochschild homology and topological cyclic homology

    CERN Document Server

    Blumberg, Andrew J

    2008-01-01

    We construct localization cofiber sequences for the topological Hochschild homology (THH) and topological cyclic homology (TC) of spectral categories. Using a ``global'' construction of the THH and TC of a scheme in terms of the perfect complexes in a spectrally enriched version of the category of unbounded complexes, the sequences specialize to localization cofiber sequences associated to the inclusion of an open subscheme. These are the targets of the cyclotomic trace from the localization sequence of Thomason-Trobaugh in K-theory. We also deduce a version of Thomason's blow-up formula for THH and TC.

  1. Homology group on manifolds and their foldings

    Directory of Open Access Journals (Sweden)

    M. Abu-Saleem

    2010-03-01

    Full Text Available In this paper, we introduce the definition of the induced unfolding on the homology group. Some types of conditional foldings restricted on the elements of the homology groups are deduced. The effect of retraction on the homology group of a manifold is dicussed. The unfolding of variation curvature of manifolds on their homology group are represented. The relations between homology group of the manifold and its folding are deduced.

  2. Grid diagrams and Khovanov homology

    DEFF Research Database (Denmark)

    Droz, Jean-Marie; Wagner, Emmanuel

    2009-01-01

    We explain how to compute the Jones polynomial of a link from one of its grid diagrams and we observe a connection between Bigelow’s homological definition of the Jones polynomial and Kauffman’s definition of the Jones polynomial. Consequently, we prove that the Maslov grading on the Seidel–Smith...

  3. Sutured Floer homology and hypergraphs

    CERN Document Server

    Juhász, András; Rasmussen, Jacob

    2011-01-01

    By applying Seifert's algorithm to a special alternating diagram of a link L, one obtains a Seifert surface F of L. We show that the support of the sutured Floer homology of the sutured manifold complementary to F is affine isomorphic to the set of lattice points given as hypertrees in a certain hypergraph that is naturally associated to the diagram. This implies that the Floer groups in question are supported in a set of Spin^c structures that are the integer lattice points of a convex polytope. This property has an immediate extension to Seifert surfaces arising from homogeneous link diagrams (including all alternating and positive diagrams). In another direction, together with work in progress of the second author and others, our correspondence suggests a method for computing the "top" coefficients of the HOMFLY polynomial of a special alternating link from the sutured Floer homology of a Seifert surface complement for a certain dual link.

  4. Representation theory and homological stability

    CERN Document Server

    Church, Thomas

    2010-01-01

    We introduce the idea of *representation stability* (and several variations) for a sequence of representations V_n of groups G_n. One main goal is to expand the important and well-studied concept of homological stability so that it applies to a much broader variety of examples. Representation stability also provides a framework in which to find and to predict patterns, from classical representation theory (Littlewood--Richardson and Murnaghan rules, stability of Schur functors), to cohomology of groups (pure braid, Torelli and congruence groups), to Lie algebras and their homology, to the (equivariant) cohomology of flag and Schubert varieties, to combinatorics (the (n+1)^(n-1) conjecture). The majority of this paper is devoted to exposing this phenomenon through examples. In doing this we obtain applications, theorems, and conjectures. Beyond the discovery of new phenomena, the viewpoint of representation stability can be useful in solving problems outside the theory. In addition to the applications given in...

  5. Persistent Homology of Collaboration Networks

    Directory of Open Access Journals (Sweden)

    C. J. Carstens

    2013-01-01

    Full Text Available Over the past few decades, network science has introduced several statistical measures to determine the topological structure of large networks. Initially, the focus was on binary networks, where edges are either present or not. Thus, many of the earlier measures can only be applied to binary networks and not to weighted networks. More recently, it has been shown that weighted networks have a rich structure, and several generalized measures have been introduced. We use persistent homology, a recent technique from computational topology, to analyse four weighted collaboration networks. We include the first and second Betti numbers for the first time for this type of analysis. We show that persistent homology corresponds to tangible features of the networks. Furthermore, we use it to distinguish the collaboration networks from similar random networks.

  6. Weak homology of elliptical galaxies

    CERN Document Server

    Bertin, G; Principe, M D

    2002-01-01

    We start by studying a small set of objects characterized by photometric profiles that have been pointed out to deviate significantly from the standard R^{1/4} law. For these objects we confirm that a generic R^{1/n} law, with n a free parameter, can provide superior fits (the best-fit value of n can be lower than 2.5 or higher than 10), better than those that can be obtained by a pure R^{1/4} law, by an R^{1/4}+exponential model, and by other dynamically justified self--consistent models. Therefore, strictly speaking, elliptical galaxies should not be considered homologous dynamical systems. Still, a case for "weak homology", useful for the interpretation of the Fundamental Plane of elliptical galaxies, could be made if the best-fit parameter n, as often reported, correlates with galaxy luminosity L, provided the underlying dynamical structure also follows a systematic trend with luminosity. We demonstrate that this statement may be true even in the presence of significant scatter in the correlation n(L). Pr...

  7. Link homology and equivariant gauge theory

    OpenAIRE

    Poudel, Prayat; Saveliev, Nikolai

    2015-01-01

    The singular instanton Floer homology was defined by Kronheimer and Mrowka in connection with their proof that the Khovanov homology is an unknot detector. We study this theory for knots and two-component links using equivariant gauge theory on their double branched covers. We show that the special generator in the singular instanton Floer homology of a knot is graded by the knot signature mod 4, thereby providing a purely topological way of fixing the absolute grading in the theory. Our appr...

  8. Homology in Electromagnetic Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Matti Pellikka

    2010-01-01

    Full Text Available We discuss how homology computation can be exploited in computational electromagnetism. We represent various cellular mesh reduction techniques, which enable the computation of generators of homology spaces in an acceptable time. Furthermore, we show how the generators can be used for setting up and analysis of an electromagnetic boundary value problem. The aim is to provide a rationale for homology computation in electromagnetic modeling software.

  9. Including Biological Literature Improves Homology Search

    OpenAIRE

    Chang, Jeffrey T.; Raychaudhuri, Soumya; Altman, Russ B

    2001-01-01

    Annotating the tremendous amount of sequence information being generated requires accurate automated methods for recognizing homology. Although sequence similarity is only one of many indicators of evolutionary homology, it is often the only one used. Here we find that supplementing sequence similarity with information from biomedical literature is successful in increasing the accuracy of homology search results. We modified the PSI-BLAST algorithm to use literature similarity in each iterati...

  10. Buoyancy instability of homologous implosions

    Science.gov (United States)

    Johnson, Bryan

    2015-11-01

    Hot spot turbulence is a potential contributor to yield degradation in inertial confinement fusion (ICF) capsules, although its origin, if present, remains unclear. In this work, a perturbation analysis is performed of an analytical homologous solution that mimics the hot spot and surrounding cold fuel during the late stages of an ICF implosion. It is shown that the flow is governed by the Schwarzschild criterion for buoyant stability, and that during stagnation, short wavelength entropy and vorticity fluctuations amplify by a factor exp (π |N0 | ts) , where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. This amplification factor is exponentially sensitive to mean flow gradients and varies from 103-107 for realistic gradients. Comparisons are made with a Lagrangian hydrodynamics code, and it is found that a numerical resolution of ~ 30 zones per wavelength is required to capture the evolution of vorticity accurately. This translates to an angular resolution of ~(12 / l) ∘ , or ~ 0 .1° to resolve the fastest growing modes (Legendre mode l > 100).

  11. Stability of p53 homologs.

    Directory of Open Access Journals (Sweden)

    Tobias Brandt

    Full Text Available Most proteins have not evolved for maximal thermal stability. Some are only marginally stable, as for example, the DNA-binding domains of p53 and its homologs, whose kinetic and thermodynamic stabilities are strongly correlated. Here, we applied high-throughput methods using a real-time PCR thermocycler to study the stability of several full-length orthologs and paralogs of the p53 family of transcription factors, which have diverse functions, ranging from tumour suppression to control of developmental processes. From isothermal denaturation fluorimetry and differential scanning fluorimetry, we found that full-length proteins showed the same correlation between kinetic and thermodynamic stability as their isolated DNA-binding domains. The stabilities of the full-length p53 orthologs were marginal and correlated with the temperature of their organism, paralleling the stability of the isolated DNA-binding domains. Additionally, the paralogs p63 and p73 were significantly more stable and long-lived than p53. The short half-life of p53 orthologs and the greater persistence of the paralogs may be biologically relevant.

  12. Homotopic Chain Maps Have Equal s-Homology and d-Homology

    Directory of Open Access Journals (Sweden)

    M. Z. Kazemi-Baneh

    2016-01-01

    Full Text Available The homotopy of chain maps on preabelian categories is investigated and the equality of standard homologies and d-homologies of homotopic chain maps is established. As a special case, if X and Y are the same homotopy type, then their nth d-homology R-modules are isomorphic, and if X is a contractible space, then its nth d-homology R-modules for n≠0 are trivial.

  13. Why do bacteria engage in homologous recombination?

    NARCIS (Netherlands)

    Vos, M.

    2009-01-01

    Microbiologists have long recognized that the uptake and incorporation of homologous DNA from outside the cell is a common feature of bacteria, with important implications for their evolution. However, the exact reasons why bacteria engage in homologous recombination remain elusive. This Opinion art

  14. Detecting atmospheric rivers using persistent homology

    OpenAIRE

    Alfsvåg, Kristian Stusdal

    2015-01-01

    This master's thesis is a first investigation on the problem of seeing whether it is possible to detect atmospheric rivers using persistent homology. Two different computations are done and a basic analysis is made. In addition an implementation of persistent homology made during the thesis is described.

  15. Relative K-homology and normal operators

    DEFF Research Database (Denmark)

    Manuilov, Vladimir; Thomsen, Klaus

    2009-01-01

    -term exact sequence which generalizes the excision six-term exact sequence in the first variable of KK-theory. Subsequently we investigate the relative K-homology which arises from the group of relative extensions by specializing to abelian $C^*$-algebras. It turns out that this relative K-homology carries...

  16. Threading homology through algebra selected patterns

    CERN Document Server

    Boffi, Giandomenico

    2006-01-01

    Aimed at graduate students and researchers in mathematics, this book takes homological themes, such as Koszul complexes and their generalizations, and shows how these can be used to clarify certain problems in selected parts of algebra, as well as their success in solving a number of them. - ;Threading Homology through Algebra takes homological themes (Koszul complexes and their variations, resolutions in general) and shows how these affect the perception of certain problems in selected parts of algebra, as well as their success in solving a number of them. The text deals with regular local ri

  17. Exceptional cosmetic surgeries on homology spheres

    OpenAIRE

    Ravelomanana, Huygens C.

    2016-01-01

    We investigate the cosmetic surgery conjecture for hyperbolic knots in integer homology spheres, focusing on exceptional surgeries. We give some restrictions on the slopes of exceptional truly cosmetic surgeries according to the type of surgery.

  18. Superconformal field theories and cyclic homology

    CERN Document Server

    Eager, Richard

    2015-01-01

    One of the predictions of the AdS/CFT correspondence is the matching of protected operators between a superconformal field theory and its holographic dual. We review the spectrum of protected operators in quiver gauge theories that flow to superconformal field theories at low energies. The spectrum is determined by the cyclic homology of an algebra associated to the quiver gauge theory. Identifying the spectrum of operators with cyclic homology allows us to apply the Hochschild-Kostant-Rosenberg theorem to relate the cyclic homology groups to deRham cohomology groups. The map from cyclic homology to deRham cohomology can be viewed as a mathematical avatar of the passage from open to closed strings under the AdS/CFT correspondence.

  19. Cylindrical contact homology and topological entropy

    OpenAIRE

    Alves, Marcelo R. R.

    2014-01-01

    We establish a relation between the growth of the cylindrical contact homology of a contact manifold and the topological entropy of Reeb flows on this manifold. We show that if a contact manifold $(M,\\xi)$ admits a hypertight contact form $\\lambda_0$ for which the cylindrical contact homology has exponential homotopical growth rate, then the Reeb flow of every contact form on $(M,\\xi)$ has positive topological entropy. Using this result, we provide numerous new examples of contact 3-manifolds...

  20. Dualities in Persistent (Co)Homology

    Energy Technology Data Exchange (ETDEWEB)

    de Silva, Vin; Morozov, Dmitriy; Vejdemo-Johansson, Mikael

    2011-09-16

    We consider sequences of absolute and relative homology and cohomology groups that arise naturally for a filtered cell complex. We establishalgebraic relationships between their persistence modules, and show that they contain equivalent information. We explain how one can use the existingalgorithm for persistent homology to process any of the four modules, and relate it to a recently introduced persistent cohomology algorithm. Wepresent experimental evidence for the practical efficiency of the latter algorithm.

  1. Preserved irradiated homologous cartilage for orbital reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Linberg, J.V.; Anderson, R.L.; Edwards, J.J.; Panje, W.R.; Bardach, J.

    1980-07-01

    Human costal cartilage is an excellent implant material for orbital and periorbital reconstruction because of its light weight, strength, homogeneous consistency and the ease with which it can be carved. Its use has been limited by the necessity of a separate surgical procedure to obtain the material. Preserved irradiated homologous cartilage has been shown to have almost all the autogenous cartilage and is convenient to use. Preserved irradiated homologous cartilage transplants do not elicit rejection reactions, resist infection and rarely undergo absorption.

  2. On the hodological criterion for homology

    Science.gov (United States)

    Faunes, Macarena; Francisco Botelho, João; Ahumada Galleguillos, Patricio; Mpodozis, Jorge

    2015-01-01

    Owen's pre-evolutionary definition of a homolog as “the same organ in different animals under every variety of form and function” and its redefinition after Darwin as “the same trait in different lineages due to common ancestry” entail the same heuristic problem: how to establish “sameness.”Although different criteria for homology often conflict, there is currently a generalized acceptance of gene expression as the best criterion. This gene-centered view of homology results from a reductionist and preformationist concept of living beings. Here, we adopt an alternative organismic-epigenetic viewpoint, and conceive living beings as systems whose identity is given by the dynamic interactions between their components at their multiple levels of composition. We posit that there cannot be an absolute homology criterion, and instead, homology should be inferred from comparisons at the levels and developmental stages where the delimitation of the compared trait lies. In this line, we argue that neural connectivity, i.e., the hodological criterion, should prevail in the determination of homologies between brain supra-cellular structures, such as the vertebrate pallium. PMID:26157357

  3. A Khovanov Type Link Homology with Geometric Interpretation

    Institute of Scientific and Technical Information of China (English)

    Mei Li ZHANG; Feng Chun LEI

    2016-01-01

    We study a Khovanov type homology close to the original Khovanov homology theory from Frobenius system. The homology is an invariant for oriented links up to isotopy by applying a tautological functor on the geometric complex. The homology has also geometric descriptions by introducing the genus generating operations. We prove that Jones Polynomial is equal to a suitable Euler characteristic of the homology groups. As an application, we compute the homology groups of (2, k)-torus knots for every k∈N.

  4. Investigating homology between proteins using energetic profiles.

    Directory of Open Access Journals (Sweden)

    James O Wrabl

    2010-03-01

    Full Text Available Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved

  5. On the hodological criterion for homology

    Directory of Open Access Journals (Sweden)

    Macarena eFaunes

    2015-06-01

    Full Text Available Owen’s pre-evolutionary definition of a homologue as the same organ in different animals under every variety of form and function and its redefinition after Darwin as the same trait in different lineages due to common ancestry entail the same heuristic problem: how to establish sameness. Although different criteria for homology often conflict, there is currently a generalized acceptance of gene expression as the best criterion. This gene-centered view of homology results from a reductionist and preformationist concept of living beings. Here, we adopt an alternative organismic-epigenetic viewpoint, and conceive living beings as systems whose identity is given by the dynamic interactions between their components at their multiple levels of composition. We posit that there cannot be an absolute homology criterion, and instead, homology should be inferred from comparisons at the levels and developmental stages where the delimitation of the compared trait lies. In this line, we argue that neural connectivity, i.e., the hodological criterion, should prevail in the determination of homologies between brain supra-cellular structures, such as the vertebrate pallium.

  6. Homological stability for oriented configuration spaces

    CERN Document Server

    Palmer, Martin

    2011-01-01

    We prove homological stability for sequences of "oriented configuration spaces" as the number of points in the configuration goes to infinity. These are spaces of configurations of n points in a connected manifold M of dimension at least 2 which 'admits a boundary', with labels in a path-connected space X, and with an orientation: an ordering of the points up to even permutations. They are double covers of the corresponding unordered configuration spaces, where the points do not have this orientation. To prove our result we adapt methods from a paper of Randal-Williams, which proves homological stability in the unordered case. Interestingly the oriented configuration spaces stabilise more slowly than the unordered ones: the stability slope we obtain is one-third, compared to one-half in the unordered case (these are the best possible slopes in their respective cases). This result can also be interpreted as homological stability for unordered configuration spaces with certain twisted coefficients.

  7. Crystal structure of an archaeal actin homolog.

    Science.gov (United States)

    Roeben, Annette; Kofler, Christine; Nagy, István; Nickell, Stephan; Hartl, F Ulrich; Bracher, Andreas

    2006-04-21

    Prokaryotic homologs of the eukaryotic structural protein actin, such as MreB and ParM, have been implicated in determination of bacterial cell shape, and in the segregation of genomic and plasmid DNA. In contrast to these bacterial actin homologs, little is known about the archaeal counterparts. As a first step, we expressed a predicted actin homolog of the thermophilic archaeon Thermoplasma acidophilum, Ta0583, and determined its crystal structure at 2.1A resolution. Ta0583 is expressed as a soluble protein in T.acidophilum and is an active ATPase at physiological temperature. In vitro, Ta0583 forms sheets with spacings resembling the crystal lattice, indicating an inherent propensity to form filamentous structures. The fold of Ta0583 contains the core structure of actin and clearly belongs to the actin/Hsp70 superfamily of ATPases. Ta0583 is approximately equidistant from actin and MreB on the structural level, and combines features from both eubacterial actin homologs, MreB and ParM. The structure of Ta0583 co-crystallized with ADP indicates that the nucleotide binds at the interface between the subdomains of Ta0583 in a manner similar to that of actin. However, the conformation of the nucleotide observed in complex with Ta0583 clearly differs from that in complex with actin, but closely resembles the conformation of ParM-bound nucleotide. On the basis of sequence and structural homology, we suggest that Ta0583 derives from a ParM-like actin homolog that was once encoded by a plasmid and was transferred into a common ancestor of Thermoplasma and Ferroplasma. Intriguingly, both genera are characterized by the lack of a cell wall, and therefore Ta0583 could have a function in cellular organization.

  8. Flare build-up study: Homologous flares group - Interim report

    Science.gov (United States)

    Woodgate, B. E.

    1982-01-01

    When homologous flares are broadly defined as having footpoint structures in common, it is found that a majority of flares fall into homologous sets. Filament eruptions and mass ejection in members of an homologous flare set show that maintainance of the magnetic structure is not a necessary condition for homology.

  9. Homological and homotopical Dehn functions are different

    CERN Document Server

    Abrams, Aaron; Dani, Pallavi; Young, Robert

    2012-01-01

    The homological and homotopical Dehn functions are different ways of measuring the difficulty of filling a closed curve inside a group or a space. The homological Dehn function measures fillings of cycles by chains, while the homotopical Dehn function measures fillings of curves by disks. Since the two definitions involve different sorts of boundaries and fillings, there is no a priori relationship between the two functions, but prior to this work there were no known examples of finitely-presented groups for which the two functions differ. This paper gives the first such examples, constructed by amalgamating a free-by-cyclic group with several Bestvina-Brady groups.

  10. Sheaves on Graphs and Their Homological Invariants

    OpenAIRE

    Friedman, Joel

    2011-01-01

    We introduce a notion of a sheaf of vector spaces on a graph, and develop the foundations of homology theories for such sheaves. One sheaf invariant, its "maximum excess," has a number of remarkable properties. It has a simple definition, with no reference to homology theory, that resembles graph expansion. Yet it is a "limit" of Betti numbers, and hence has a short/long exact sequence theory and resembles the $L^2$ Betti numbers of Atiyah. Also, the maximum excess is defined via a supermodul...

  11. New mesogenic homologous series of -methylcinnamates

    Indian Academy of Sciences (India)

    R A Vora; A K Prajapati

    2001-04-01

    Compounds of a new smectogenic homologous series of -methylcinnamates were prepared by condensing different 4--alkoxybenzoyl chloride with methoxyethyl trans-4-hydroxy- -methylcinnamate. In this series, the first six members are non-mesogenic. -Heptyloxy derivative exhibits monotropic smectic A phase whereas rest of the members exhibit enantiotropic smectic A mesophase. The compounds are characterized by combination of elemental analysis and spectroscopic techniques. Enthalpies of few homologues are measured by DSC techniques. Fluorescent properties are also observed. The thermal stabilities of the present series are compared with those of other structurally related mesogenic homologous series.

  12. Relative Derived Equivalences and Relative Homological Dimensions

    Institute of Scientific and Technical Information of China (English)

    Sheng Yong PAN

    2016-01-01

    Let A be a small abelian category. For a closed subbifunctor F of Ext1A (−,−), Buan has generalized the construction of Verdier’s quotient category to get a relative derived category, where he localized with respect to F-acyclic complexes. In this paper, the homological properties of relative derived categories are discussed, and the relation with derived categories is given. For Artin algebras, using relative derived categories, we give a relative version on derived equivalences induced by F-tilting complexes. We discuss the relationships between relative homological dimensions and relative derived equivalences.

  13. Sutured Floer homology distinguishes between Seifert surfaces

    CERN Document Server

    Altman, Irida

    2010-01-01

    In this note we exhibit the first example of a knot in the three-sphere with a pair of minimal genus Seifert surfaces that can be distinguished using the sutured Floer homology of their complementary manifolds together with the Spin^c-grading. This answers a question of Juh\\'asz. More precisely, we show that the Euler characteristic of the sutured Floer homology of the complementary manifolds distinguishes between the two surfaces, and we exhibit an infinite family of knots with pairs of Seifert surfaces that can be distinguished in such a way.

  14. Betti numbers and stability for configuration spaces via factorization homology

    OpenAIRE

    Knudsen, Ben

    2014-01-01

    Using factorization homology, we realize the rational homology of the unordered configuration spaces of an arbitrary manifold $M$, possibly with boundary, as the homology of a Lie algebra constructed from the compactly supported cohomology of $M$. By locating the homology of each configuration space within the Chevalley-Eilenberg complex of this Lie algebra, we extend theorems of B\\"{o}digheimer-Cohen-Taylor and F\\'{e}lix-Thomas and give a new, combinatorial proof of the homological stability...

  15. Einstein Metrics on Rational Homology Spheres

    OpenAIRE

    Boyer, Charles P.; Galicki, Krzysztof

    2003-01-01

    We prove the existence of Sasakian-Einstein metrics on infinitely many rational homology spheres in all odd dimensions greater than 3. In dimension 5 we obain somewhat sharper results. There are examples where the number of effective parameters in the Einstein metric grows exponentially with dimension.

  16. Homological Perturbation Theory and Mirror Symmetry

    Institute of Scientific and Technical Information of China (English)

    Jian ZHOU

    2003-01-01

    We explain how deformation theories of geometric objects such as complex structures,Poisson structures and holomorphic bundle structures lead to differential Gerstenhaber or Poisson al-gebras. We use homological perturbation theory to construct A∞ algebra structures on the cohomology,and their canonically defined deformations. Such constructions are used to formulate a version of A∞algebraic mirror symmetry.

  17. Gorenstein Homological Dimensions and Change of Rings

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan YANG

    2012-01-01

    In this paper,we shall be concerned with what happens of Gorenstein homological dimensions when certain modifications are made to a ring. The five structural operations addressed later are the formation of excellent extensions,localizations,Morita equivalences,polynomial extensions and power series extensions.

  18. Homological stability for unordered configuration spaces

    CERN Document Server

    Randal-Williams, Oscar

    2011-01-01

    This paper consists of two related parts. In the first part we give a self-contained proof of homological stability for the spaces C_n(M;X) of configurations of n unordered points in a connected open manifold M with labels in a path-connected space X, with the best possible integral stability range of 2* \\leq n. Along the way we give a new proof of the high connectivity of the complex of injective words. If the manifold has dimension at least three, we show that in rational homology the stability range may be improved to * \\leq n. In the second part we study to what extent the homology of the spaces C_n(M) can be considered stable when M is a closed manifold. In this case there are no stabilisation maps, but one may still ask if the dimensions of the homology groups over some field stabilise with n. We prove that this is true when M is odd-dimensional, or when the field is F_2 or Q. It is known to be false in the remaining cases.

  19. Homological stability for configuration spaces of manifolds

    CERN Document Server

    Church, Thomas

    2011-01-01

    Let C_n(M) be the configuration space of n distinct ordered points in M. We prove that if M is any connected orientable manifold (closed or open), the homology groups H_i(C_n(M); Q) are representation stable in the sense of [Church-Farb]. Applying this to the trivial representation, we obtain as a corollary that the unordered configuration space B_n(M) satisfies classical homological stability: for each i, H_i(B_n(M); Q) is isomorphic to H_i(B_{n+1}(M); Q) for n > i. This improves on results of McDuff, Segal, and others for open manifolds. Applied to closed manifolds, this provides natural examples where rational homological stability holds even though integral homological stability fails. To prove the main theorem, we introduce the notion of monotonicity for a sequence of S_n--representations, which is of independent interest. Sequences that are both monotone and uniformly representation stable form an abelian category. Monotonicity provides a new mechanism for proving representation stability using spectral...

  20. Planar open books and Floer homology

    OpenAIRE

    Ozsvath, Peter; Stipsicz, Andras I.; Szabo, Zoltan

    2005-01-01

    Giroux has described a correspondence between open book decompositions on a 3--manifold and contact structures. In this paper we use Heegaard Floer homology to give restrictions on contact structures which correspond to open book decompositions with planar pages, generalizing a recent result of Etnyre.

  1. Khovanov-Rozansky homology and Directed Cycles

    OpenAIRE

    Wu, Hao

    2015-01-01

    We determine the cycle packing number of a directed graph using elementary projective algebraic geometry. Our idea is rooted in the Khovanov-Rozansky theory. In fact, using the Khovanov-Rozansky homology of a graph, we also obtain algebraic methods of detecting directed and undirected cycles containing a particular vertex or edge.

  2. Homological aperiodic tilings of 3-dimensional geometries

    CERN Document Server

    Nowak, Piotr W

    2012-01-01

    We construct the first aperiodic tiles for two amenable 3-dimensional Lie groups: Sol and the Heisenberg group. Our construction relies on the use of higher-dimensional uniformly finite homology. In particular, we settle completely the existence of aperiodic tiles for all of the non-compact geometries of 3-manifolds appearing in the geometrization conjecture.

  3. Cell biology of homologous recombination in yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Rothstein, Rodney; Lisby, Michael

    2011-01-01

    Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces cerevi...

  4. Parametric representation of centrifugal pump homologous curves

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, Marcelo A.; Mattos, Joao R.L. de, E-mail: velosom@cdtn.br, E-mail: jrmattos@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Essential for any mathematical model designed to simulate flow transient events caused by pump operations is the pump performance data. The performance of a centrifugal pump is characterized by four basic quantities: the rotational speed, the volumetric flow rate, the dynamic head, and the hydraulic torque. The curves showing the relationships between these four variables are called the pump characteristic curves. The characteristic curves are empirically developed by the pump manufacturer and uniquely describe head and torque as functions of volumetric flow rate and rotation speed. Because of comprising a large amount of points, this configuration is not suitable for computational purposes. However, it can be converted to a simpler form by the development of the homologous curves, in which dynamic head and hydraulic torque ratios are expressed as functions of volumetric flow and rotation speed ratios. The numerical use of the complete set of homologous curves requires specification of sixteen partial curves, being eight for the dynamic head and eight for the hydraulic torque. As a consequence, the handling of homologous curves is still somewhat complicated. In solving flow transient problems that require the pump characteristic data for all the operation zones, the parametric form appears as the simplest way to deal with the homologous curves. In this approach, the complete characteristics of a pump can be described by only two closed curves, one for the dynamic head and other for the hydraulic torque, both in function of a single angular coordinate defined adequately in terms of the quotient between volumetric flow ratio and rotation speed ratio. The usefulness and advantages of this alternative method are demonstrated through a practical example in which the homologous curves for a pump of the type used in the main coolant loops of a pressurized water reactor (PWR) are transformed to the parametric form. (author)

  5. Homological stability for unordered configuration spaces

    DEFF Research Database (Denmark)

    Randal-Williams, Oscar

    2013-01-01

    This paper consists of two related parts. In the first part we give a self-contained proof of homological stability for the spaces C_n(M;X) of configurations of n unordered points in a connected open manifold M with labels in a path-connected space X, with the best possible integral stability range...... of the spaces C_n(M) can be considered stable when M is a closed manifold. In this case there are no stabilisation maps, but one may still ask if the dimensions of the homology groups over some field stabilise with n. We prove that this is true when M is odd-dimensional, or when the field is F_2 or Q...

  6. Homological mirror symmetry and tropical geometry

    CERN Document Server

    Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia

    2014-01-01

    The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Ge...

  7. Homological Pisot Substitutions and Exact Regularity

    CERN Document Server

    Barge, Marcy; Jones, Leslie; Sadun, Lorenzo

    2010-01-01

    We consider one-dimensional substitution tiling spaces where the dilatation (stretching factor) is a degree d Pisot number, and where the first rational Cech cohomology is d-dimensional. We construct examples of such "homological Pisot" substitutions that do not have pure discrete spectra. These examples are not unimodular, and we conjecture that the coincidence rank must always divide a power of the norm of the dilatation. To support this conjecture, we show that homological Pisot substitutions exhibit an Exact Regularity Property (ERP), in which the number of occurrences of a patch for a return length is governed strictly by the length. The ERP puts strong constraints on the measure of any cylinder set in the corresponding tiling space.

  8. Recombineering Homologous Recombination Constructs in Drosophila

    OpenAIRE

    Carreira-Rosario, Arnaldo; Scoggin, Shane; Shalaby, Nevine A.; Williams, Nathan David; Hiesinger, P. Robin; Buszczak, Michael

    2013-01-01

    The continued development of techniques for fast, large-scale manipulation of endogenous gene loci will broaden the use of Drosophila melanogaster as a genetic model organism for human-disease related research. Recent years have seen technical advancements like homologous recombination and recombineering. However, generating unequivocal null mutations or tagging endogenous proteins remains a substantial effort for most genes. Here, we describe and demonstrate techniques for using recombineeri...

  9. Hochschild homology, lax codescent, and duplicial structure

    OpenAIRE

    Garner, Richard; Lack, Stephen; Slevin, Paul

    2015-01-01

    We study the duplicial objects of Dwyer and Kan, which generalize the cyclic objects of Connes. We describe duplicial objects in terms of the decalage comonads, and we give a conceptual account of the construction of duplicial objects due to Bohm and Stefan. This is done in terms of a 2-categorical generalization of Hochschild homology. We also study duplicial structure on nerves of categories, bicategories, and monoidal categories.

  10. On the definition of homological critical value

    OpenAIRE

    Govc, Dejan

    2013-01-01

    We point out that there is a problem with the definition of homological critical value (as defined in the widely cited paper \\cite{stability} by Cohen-Steiner, Edelsbrunner and Harer). Under that definition, the critical value lemma of \\cite{stability} in fact fails. We provide several counterexamples and a definition (due to Bubenik and Scott \\cite{categorification}) we feel should be preferred and under which the critical value lemma does indeed hold. One of the counterexamples we have foun...

  11. Nash equilibria via duality and homological selection

    Indian Academy of Sciences (India)

    Arnab Basu; Samik Basu; Mahan MJ

    2014-11-01

    Given a multifunction from to the -fold symmetric product Sym$_{k}(X)$, we use the Dold–Thom theorem to establish a homological selection theorem. This is used to establish existence of Nash equilibria. Cost functions in problems concerning the existence of Nash equilibria are traditionally multilinear in the mixed strategies. The main aim of this paper is to relax the hypothesis of multilinearity. We use basic intersection theory, Poincaré duality in addition to the Dold–Thom theorem.

  12. Persistent Homology and Partial Similarity of Shapes

    OpenAIRE

    Di Fabio, Barbara; Landi, Claudia

    2011-01-01

    The ability to perform shape retrieval based not only on full similarity, but also partial similarity is a key property for any content-based search engine. We prove that persistence diagrams can reveal a partial similarity between two shapes by showing a common subset of points. This can be explained using the Mayer-Vietoris formulas that we develop for ordinary, relative and extended persistent homology. An experiment outlines the potential of persistence diagrams as shape descriptors in re...

  13. Dental homologies in lamniform sharks (Chondrichthyes: Elasmobranchii).

    Science.gov (United States)

    Shimada, Kenshu

    2002-01-01

    The dentitions of lamniform sharks are said to exhibit a unique heterodonty called the "lamnoid tooth pattern." The presence of an inflated hollow "dental bulla" on each jaw cartilage allows the recognition of homologous teeth across most modern macrophagous lamniforms based on topographic correspondence through the "similarity test." In most macrophagous lamniforms, three tooth rows are supported by the upper dental bulla: two rows of large anterior teeth followed by a row of small intermediate teeth. The lower tooth row occluding between the two rows of upper anterior teeth is the first lower anterior tooth row. Like the first and second lower anterior tooth rows, the third lower tooth row is supported by the dental bulla and may be called the first lower intermediate tooth row. The lower intermediate tooth row occludes between the first and second upper lateral tooth rows situated distal to the upper dental bulla, and the rest of the upper and lower tooth rows, all called lateral tooth rows, occlude alternately. Tooth symmetry cannot be used to identify their dental homology. The presence of dental bullae can be regarded as a synapomorphy of Lamniformes and this character is more definable than the "lamnoid tooth pattern." The formation of the tooth pattern appears to be related to the evolution of dental bullae. This study constitutes the first demonstration of supraspecific tooth-to-tooth dental homologies in nonmammalian vertebrates.

  14. Irradiated homologous costal cartilage for augmentation rhinoplasty

    Energy Technology Data Exchange (ETDEWEB)

    Lefkovits, G. (Lenox Hill Hospital, New York, NY (USA))

    1990-10-01

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed.

  15. Tocopherol and tocotrienol homologs in parenteral lipid emulsions

    OpenAIRE

    Xu, Zhidong; Harvey, Kevin A.; Pavlina, Thomas M; Zaloga, Gary P.; Siddiqui, Rafat A.

    2014-01-01

    Parenteral lipid emulsions, which are made of oils from plant and fish sources, contain different types of tocopherols and tocotrienols (vitamin E homologs). The amount and types of vitamin E homologs in various lipid emulsions vary considerably and are not completely known. The objective of this analysis was to develop a quantitative method to determine levels of all vitamin E homologs in various lipid emulsions. An HPLC system was used to measure vitamin E homologs using a Pinnacle DB Silic...

  16. Computing Small 1-Homological Models for Commutative Differential Graded Algebras

    OpenAIRE

    Alvarez, Victor; Armario, Jose Andres; Frau, Maria Dolores; Gonzalez-Diaz, Rocio; Jimenez, Maria Jose; Real, Pedro; Silva, Beatriz

    2001-01-01

    We use homological perturbation machinery specific for the algebra category [P. Real. Homological Perturbation Theory and Associativity. Homology, Homotopy and Applications vol. 2, n. 5 (2000) 51-88] to give an algorithm for computing the differential structure of a small 1--homological model for commutative differential graded algebras (briefly, CDGAs). The complexity of the procedure is studied and a computer package in Mathematica is described for determining such models.

  17. Equivariant geometric K-homology for compact Lie group actions

    CERN Document Server

    Baum, Paul; Schick, Thomas

    2009-01-01

    Let G be a compact Lie-group, X a compact G-CW-complex. We define equivariant geometric K-homology groups K^G_*(X), using an obvious equivariant version of the (M,E,f)-picture of Baum-Douglas for K-homology. We define explicit natural transformations to and from equivariant K-homology defined via KK-theory (the "official" equivariant K-homology groups) and show that these are isomorphism.

  18. Duality and products in algebraic (co)homology theories

    OpenAIRE

    Kowalzig, N.; Kraehmer, U.

    2008-01-01

    The origin and interplay of products and dualities in algebraic (co)homology theories is ascribed to a ×A-Hopf algebra structure on the relevant universal enveloping algebra. This provides a unified treatment for example of results by Van den Bergh about Hochschild (co)homology and by Huebschmann about Lie–Rinehart (co)homology.

  19. A PHF8 homolog in C. elegans promotes DNA repair via homologous recombination.

    Directory of Open Access Journals (Sweden)

    Changrim Lee

    Full Text Available PHF8 is a JmjC domain-containing histone demethylase, defects in which are associated with X-linked mental retardation. In this study, we examined the roles of two PHF8 homologs, JMJD-1.1 and JMJD-1.2, in the model organism C. elegans in response to DNA damage. A deletion mutation in either of the genes led to hypersensitivity to interstrand DNA crosslinks (ICLs, while only mutation of jmjd-1.1 resulted in hypersensitivity to double-strand DNA breaks (DSBs. In response to ICLs, JMJD-1.1 did not affect the focus formation of FCD-2, a homolog of FANCD2, a key protein in the Fanconi anemia pathway. However, the dynamic behavior of RPA-1 and RAD-51 was affected by the mutation: the accumulations of both proteins at ICLs appeared normal, but their subsequent disappearance was retarded, suggesting that later steps of homologous recombination were defective. Similar changes in the dynamic behavior of RPA-1 and RAD-51 were seen in response to DSBs, supporting a role of JMJD-1.1 in homologous recombination. Such a role was also supported by our finding that the hypersensitivity of jmjd-1.1 worms to ICLs was rescued by knockdown of lig-4, a homolog of Ligase 4 active in nonhomologous end-joining. The hypersensitivity of jmjd-1.1 worms to ICLs was increased by rad-54 knockdown, suggesting that JMJD-1.1 acts in parallel with RAD-54 in modulating chromatin structure. Indeed, the level of histone H3 Lys9 tri-methylation, a marker of heterochromatin, was higher in jmjd-1.1 cells than in wild-type cells. We conclude that the histone demethylase JMJD-1.1 influences homologous recombination either by relaxing heterochromatin structure or by indirectly regulating the expression of multiple genes affecting DNA repair.

  20. L^2-homology for compact quantum groups

    OpenAIRE

    Kyed, David

    2006-01-01

    A notion of L^2-homology for compact quantum groups is introduced, generalizing the classical notion for countable, discrete groups. If the compact quantum group in question has tracial Haar state, it is possible to define its L^2-Betti numbers and Novikov-Shubin invariants/capacities. It is proved that these L^2-Betti numbers vanish for the Gelfand dual of a compact Lie group and that the zeroth Novikov-Shubin invariant equals the dimension of the underlying Lie group. Finally, we relate our...

  1. Homology of lipoprotein lipase to pancreatic lipase.

    OpenAIRE

    Ben-Avram, C M; Ben-Zeev, O; Lee, T.D. (Taunia D.); Haaga, K; Shively, J. E.; Goers, J; Pedersen, M.E; Reeve, J R; Schotz, M C

    1986-01-01

    Bovine milk lipoprotein lipase was subjected to amino acid sequence analysis. The first 19 amino-terminal residues were Asp-Arg-Ile-Thr-Gly-Gly-Lys-Asp-Phe-Arg-Asp-Ile-Glu-Ser-Lys-Phe-Ala-Leu- Arg. In addition, reversed-phase high-performance liquid chromatography of a tryptic digest of reduced and alkylated lipase resolved a number of peptides, five of which contained cysteine. Sequence analysis of the tryptic peptides revealed in most instances a close homology to porcine pancreatic lipase....

  2. Fukaya categories as categorical Morse homology

    CERN Document Server

    Nadler, David

    2011-01-01

    The Fukaya category of a Weinstein manifold is an intricate symplectic invariant of high interest in mirror symmetry and geometric representation theory. We show in analogy with Morse homology that the Fukaya category can be obtained by gluing together Fukaya categories of Weinstein cells. Our main technical result is a d\\'evissage pattern for Lagrangian branes parallel to that for constructible sheaves. As an application, we exhibit the Fukaya category as the global sections of a sheaf on the conic topology of the Weinstein manifold. This can be viewed as a symplectic analogue of the well-known algebraic and topological theories of (micro)localization.

  3. Railway vehicle performance optimisation using virtual homologation

    Science.gov (United States)

    Magalhães, H.; Madeira, J. F. A.; Ambrósio, J.; Pombo, J.

    2016-09-01

    Unlike regular automotive vehicles, which are designed to travel in different types of roads, railway vehicles travel mostly in the same route during their life cycle. To accept the operation of a railway vehicle in a particular network, a homologation process is required according to local standard regulations. In Europe, the standards EN 14363 and UIC 518, which are used for railway vehicle acceptance, require on-track tests and/or numerical simulations. An important advantage of using virtual homologation is the reduction of the high costs associated with on-track tests by studying the railway vehicle performance in different operation conditions. This work proposes a methodology for the improvement of railway vehicle design with the objective of its operation in selected railway tracks by using optimisation. The analyses required for the vehicle improvement are performed under control of the optimisation method global and local optimisation using direct search. To quantify the performance of the vehicle, a new objective function is proposed, which includes: a Dynamic Performance Index, defined as a weighted sum of the indices obtained from the virtual homologation process; the non-compensated acceleration, which is related to the operational velocity; and a penalty associated with cases where the vehicle presents an unacceptable dynamic behaviour according to the standards. Thus, the optimisation process intends not only to improve the quality of the vehicle in terms of running safety and ride quality, but also to increase the vehicle availability via the reduction of the time for a journey while ensuring its operational acceptance under the standards. The design variables include the suspension characteristics and the operational velocity of the vehicle, which are allowed to vary in an acceptable range of variation. The results of the optimisation lead to a global minimum of the objective function in which the suspensions characteristics of the vehicle are

  4. Periodic cyclic homology of affine Hecke algebras

    CERN Document Server

    Solleveld, Maarten

    2009-01-01

    This is the author's PhD-thesis, which was written in 2006. The version posted here is identical to the printed one. Instead of an abstract, the short list of contents: Preface 5 1 Introduction 9 2 K-theory and cyclic type homology theories 13 3 Affine Hecke algebras 61 4 Reductive p-adic groups 103 5 Parameter deformations in affine Hecke algebras 129 6 Examples and calculations 169 A Crossed products 223 Bibliography 227 Index 237 Samenvatting 245 Curriculum vitae 253

  5. Exponential growth of colored HOMFLY-PT homology

    CERN Document Server

    Wedrich, Paul

    2016-01-01

    We define reduced colored sl(N) link homologies and use deformation spectral sequences to characterize their dependence on color and rank. We then define reduced colored HOMFLY-PT homologies and prove that they arise as large N limits of sl(N) homologies. Together, these results allow proofs of many aspects of the physically conjectured structure of the family of type A link homologies. In particular, we verify a conjecture of Gorsky, Gukov and Sto\\v{s}i\\'c about the growth of colored HOMFLY-PT homologies.

  6. Excluded volume effect enhances the homology pairing of model chromosomes

    CERN Document Server

    Takamiya, Kazunori; Isami, Shuhei; Nishimori, Hiraku; Awazu, Akinori

    2015-01-01

    To investigate the structural dynamics of the homology pairing of polymers, we mod- eled the scenario of homologous chromosome pairings during meiosis in Schizosaccharomyces pombe, one of the simplest model organisms of eukaryotes. We consider a simple model consist- ing of pairs of homologous polymers with the same structures that are confined in a cylindrical container, which represents the local parts of chromosomes contained in an elongated nucleus of S. pombe. Brownian dynamics simulations of this model showed that the excluded volume effects among non-homological chromosomes and the transitional dynamics of nuclear shape serve to enhance the pairing of homologous chromosomes.

  7. The Homology Groups of a Partial Trace Monoid Action

    CERN Document Server

    Husainov, Ahmet A

    2011-01-01

    The aim of this paper is to investigate the homology groups of mathematical models of concurrency. We study the Baues-Wirsching homology groups of a small category associated with a partial monoid action on a set. We prove that these groups can be reduced to the Leech homology groups of the monoid. For a trace monoid with an action on a set, we will build a cubical complex of free Abelian groups with homology groups isomorphic to the integral homology groups of the action category. It allows us to solve the problem posed by the author in 2004 of the constructing an algorithm for computing homology groups of the CE nets. We describe the algorithm and give examples of calculating the homology groups.

  8. Detailed assessment of homology detection using different substitution matrices

    Institute of Scientific and Technical Information of China (English)

    LI Jing; WANG Wei

    2006-01-01

    Homology detection plays a key role in bioinformatics, whereas substitution matrix is one of the most important components in homology detection. Thus, besides the improvement of alignment algorithms, another effective way to enhance the accuracy of homology detection is to use proper substitution matrices or even construct new matrices.A study on the features of various matrices and on the comparison of the performances between different matrices in homology detection enable us to choose the most proper or optimal matrix for some specific applications. In this paper, by taking BLOSUM matrices as an example, some detailed features of matrices in homology detection are studied by calculating the distributions of numbers of recognized proteins over different sequence identities and sequence lengths. Our results clearly showed that different matrices have different preferences and abilities to the recognition of remote homologous proteins. Furthermore, detailed features of the various matrices can be used to improve the accuracy of homology detection.

  9. Sheaves on Graphs and Their Homological Invariants

    CERN Document Server

    Friedman, Joel

    2011-01-01

    We introduce a notion of a sheaf of vector spaces on a graph, and develop the foundations of homology theories for such sheaves. One sheaf invariant, its "maximum excess," has a number of remarkable properties. It has a simple definition, with no reference to homology theory, that resembles graph expansion. Yet it is a "limit" of Betti numbers, and hence has a short/long exact sequence theory and resembles the $L^2$ Betti numbers of Atiyah. Also, the maximum excess is defined via a supermodular function, which gives the maximum excess much stronger properties than one has of a typical Betti number. The maximum excess gives a simple interpretation of an important graph invariant, which will be used to study the Hanna Neumann Conjecture in a future paper. Our sheaf theory can be viewed as a vast generalization of algebraic graph theory: each sheaf has invariants associated to it---such as Betti numbers and Laplacian matrices---that generalize those in classical graph theory.

  10. Role of discs large homolog 5

    Institute of Scientific and Technical Information of China (English)

    Frauke Friedrichs; Monika Stoll

    2006-01-01

    In 2004, an association of genetic variation in the discs large homolog 5 (DLG5) gene with inflammatory bowel disease (IBD) was described in two large European study samples[1]. The initial report of DLG5 as a novel IBD susceptibility gene sparked a multitude of studies investigating its effect on CD and IBD, respectively,leading to controversial findings and ongoing discussions concerning the validity of the initial association finding and its role in the aetiology of Crohn disease. This review aims to summarize the current state of knowledge and to place the reported findings in the context of current concepts of complex diseases. This includes aspects of statistical power, phenotype differences and genetic heterogeneity between different populations as well as gene-gene and gene-environment interactions.

  11. Regulation of Homologous Recombination by SUMOylation

    DEFF Research Database (Denmark)

    Pinela da Silva, Sonia Cristina

    factors such as the homologous recombination (HR) machinery. HR constitutes the main DSB repair pathway in Saccharomyces cerevisiae and despite being largely considered an error-free process and essential for genome stability, uncontrolled recombination can lead to loss of heterozygosity, translocations....... In this study I present new insights for the role of SUMOylation in regulating HR by dissecting the role of SUMO in the interaction between the central HR-mediator protein Rad52 and its paralogue Rad59 and the outcome of recombination. This data provides evidence for the importance of SUMO in promoting protein......-protein interactions at the sites of repair, enabling effective Rad51-mediated recombination through the concerted action of the Rad52-Rad59 complex and the helicase Srs2. In addition, I also peer into the role of Rad52 SUMOylation in the context of persistent DSBs and telomere homeostasis. Furthermore, I characterize...

  12. A roadmap for the computation of persistent homology

    CERN Document Server

    Otter, Nina; Tillmann, Ulrike; Grindrod, Peter; Harrington, Heather A

    2015-01-01

    Persistent homology is a method used in topological data analysis to study qualitative features of data, which is robust to perturbations, dimension independent and provides statistical summaries of the outputs. Despite recent progress, the computation of persistent homology for large data sets remains an open problem. We investigate the challenges of computing persistent homology and navigate through the different algorithms and data structures. Specifically, we evaluate the (currently available) open source implementations of persistent homology computations on a wide range of synthetic and real-world data sets, and indicate which algorithms and implementations are best suited to these data. We provide guidelines for the computation of persistent homology, make our own implementations used in this study available, and put forward measures to quantify the challenges of the computation of persistent homology.

  13. Variants of equivariant Seiberg-Witten Floer homology

    OpenAIRE

    Marcolli, M.; Wang, B-L

    2005-01-01

    For a rational homology 3-sphere Y with a Spin c structure s, we show that simple algebraic manipulations of our construction of equivariant Seiberg-Witten Floer homology in lead to a collection of variants, which are all topological invariants. We establish a long exact sequence relating them and we show that they satisfy a duality under orientation reversal. We explain their relation to the equivariant Seiberg-Witten Floer (co)homologies introduced in [loc. cit.]. We conjecture the equivale...

  14. Gene prediction by pattern recognition and homology search

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Uberbacher, E.C.

    1996-05-01

    This paper presents an algorithm for combining pattern recognition-based exon prediction and database homology search in gene model construction. The goal is to use homologous genes or partial genes existing in the database as reference models while constructing (multiple) gene models from exon candidates predicted by pattern recognition methods. A unified framework for gene modeling is used for genes ranging from situations with strong homology to no homology in the database. To maximally use the homology information available, the algorithm applies homology on three levels: (1) exon candidate evaluation, (2) gene-segment construction with a reference model, and (3) (complete) gene modeling. Preliminary testing has been done on the algorithm. Test results show that (a) perfect gene modeling can be expected when the initial exon predictions are reasonably good and a strong homology exists in the database; (b) homology (not necessarily strong) in general helps improve the accuracy of gene modeling; (c) multiple gene modeling becomes feasible when homology exists in the database for the involved genes.

  15. On the geography and botany of knot Floer homology

    OpenAIRE

    Hedden, Matthew; Watson, Liam

    2014-01-01

    This note explores two questions: (1) Which bigraded groups arise as the knot Floer homology of a knot in the three-sphere? (2) Given a knot, how many distinct knots share its Floer homology? Regarding the first, we show there exist bigraded groups satisfying all previously known constraints of knot Floer homology which do not arise as the invariant of a knot. This leads to a new constraint for knots admitting lens space surgeries, as well as a proof that the rank of knot Floer homology detec...

  16. Homologous recombination: from model organisms to human disease

    NARCIS (Netherlands)

    M. Modesti (Mauro); R. Kanaar (Roland)

    2001-01-01

    textabstractRecent experiments show that properly controlled recombination between homologous DNA molecules is essential for the maintenance of genome stability and for the prevention of tumorigenesis.

  17. A cytohesin homolog in Dictyostelium amoebae.

    Directory of Open Access Journals (Sweden)

    Maria Christina Shina

    Full Text Available BACKGROUND: Dictyostelium, an amoeboid motile cell, harbors several paralogous Sec7 genes that encode members of three distinct subfamilies of the Sec7 superfamily of Guanine nucleotide exchange factors. Among them are proteins of the GBF/BIG family present in all eukaryotes. The third subfamily represented with three members in D. discoideum is the cytohesin family that has been thought to be metazoan specific. Cytohesins are characterized by a Sec7 PH tandem domain and have roles in cell adhesion and migration. PRINCIPAL FINDINGS: Dictyostelium SecG exhibits highest homologies to the cytohesins. It harbors at its amino terminus several ankyrin repeats that are followed by the Sec7 PH tandem domain. Mutants lacking SecG show reduced cell-substratum adhesion whereas cell-cell adhesion that is important for development is not affected. Accordingly, multicellular development proceeds normally in the mutant. During chemotaxis secG(- cells elongate and migrate in a directed fashion towards cAMP, however speed is moderately reduced. SIGNIFICANCE: The data indicate that SecG is a relevant factor for cell-substrate adhesion and reveal the basic function of a cytohesin in a lower eukaryote.

  18. An adelic resolution for homology sheaves

    Energy Technology Data Exchange (ETDEWEB)

    Gorchinskii, S O [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2008-12-31

    We propose a generalization of the ordinary idele group by constructing certain adelic complexes for sheaves of K-groups on schemes. Such complexes are defined for any abelian sheaf on a scheme. We focus on the case when the sheaf is associated with the presheaf of a homology theory with certain natural axioms satisfied, in particular, by K-theory. In this case it is proved that the adelic complex provides a flabby resolution for this sheaf on smooth varieties over an infinite perfect field and that the natural morphism to the Gersten complex is a quasi-isomorphism. The main advantage of the new adelic resolution is that it is contravariant and multiplicative. In particular, this enables us to reprove that the intersection in Chow groups coincides (up to a sign) with the natural product in the corresponding K-cohomology groups. Also, we show that the Weil pairing can be expressed as a Massey triple product in K-cohomology groups with certain indices.

  19. Circular Ribbon Flares and Homologous Jets

    CERN Document Server

    Wang, Haimin

    2012-01-01

    Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), and this has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a closed circular ribbon have rarely been reported, although it is expected in the fan--spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence \\ha blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory (BBSO). In all the events, a central parasitic magnetic field is encompassed by the opposite magnetic polarity, forming a circular PIL that is also traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons bright...

  20. Cylindrical contact homology of subcritical Stein-fillable contact manifolds

    OpenAIRE

    Yau, Mei-Lin

    2004-01-01

    We use contact handle decompositions and a stabilization process to compute the cylindrical contact homology of a subcritical Stein-fillable contact manifold with vanishing first Chern class, and show that it is completely determined by the homology of a subcritical Stein-filling of the contact manifold.

  1. CBH1 homologs and varian CBH1 cellulase

    Energy Technology Data Exchange (ETDEWEB)

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2014-07-01

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  2. Cycles in the chamber homology of GL(3)

    OpenAIRE

    Aubert, Anne-Marie; Hasan, Samir; Plymen, Roger

    2004-01-01

    Let F be a nonarchimedean local field and let GL(N) = GL(N,F). We prove the existence of parahoric types for GL(N). We construct representative cycles in all the homology classes of the chamber homology of GL(3).

  3. A configuration space for equivariant connective K-homology

    CERN Document Server

    Velasquez, Mario

    2012-01-01

    Following ideas of Graeme Segal we construct a configuration space that represents equivariant connective K-homology for group actions of finite groups and furthermore we describe explicitly the complex homology of this configuration space as a Hopf algebra. As a consequence of this work we obtain models of representing spaces for equivariant K-theory.

  4. Regulation of homologous recombination at telomeres in budding yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine; Lisby, Michael

    2010-01-01

    Homologous recombination is suppressed at normal length telomere sequences. In contrast, telomere recombination is allowed when telomeres erode in the absence of telomerase activity or as a consequence of nucleolytic degradation or incomplete replication. Here, we review the mechanisms...... that contribute to regulating mitotic homologous recombination at telomeres and the role of these mechanisms in signalling short telomeres in the budding yeast Saccharomyces cerevisiae....

  5. Flare build-up study - Homologous flares group. I

    Science.gov (United States)

    Martres, M.-J.; Mein, N.; Mouradian, Z.; Rayrole, J.; Schmieder, B.; Simon, G.; Soru-Escaut, I.; Woodgate, B. E.

    1984-01-01

    Solar Maximum Mission observations have been used to study the origin and amount of energy, mechanism of storage and release, and conditions for the occurrence of solar flares, and some results of these studies as they pertain to homologous flares are briefly discussed. It was found that every set of flares produced 'rafales' of homologous flares, i.e., two, three, four, or more flares separated in time by an hour or less. No great changes in macroscopic photospheric patterns were observed during these flaring periods. A quantitative brightness parameter of the relation between homologous flares is defined. Scale changes detected in the dynamic spectrum of flare sites are in good agreement with a theoretical suggestion by Sturrock. Statistical results for different homologous flare active regions show the existence in homologous flaring areas of a 'pivot' of previous filaments interpreted as a signature of an anomaly in the solar rotation.

  6. Peridinialean dinoflagellate plate patterns, labels and homologies

    Science.gov (United States)

    Edwards, L.E.

    1990-01-01

    Tabulation patterns for peridinialean dinoflagellate thecae and cysts have been traditionally expressed using a plate labelling system described by C.A. Kofoid in the early 1900's. This system can obscure dinoflagellate plate homologies and has not always been strictly applied. The plate-labelling system presented here introduces new series labels but incorporates key features and ideas from the more recently proposed systems of G.L. Eaton and F.J.R. Taylor, as modified by W.R. Evitt. Plate-series recognition begins with the cingulum (C-series) and proceeds from the cingulum toward the apex for the three series of the epitheca/epicyst and proceeds from the cingulum toward the antapex for the two series of the hypotheca/hypocyst. The epithecal/epicystal model consists of eight plates that touch the anterior margin of the cingulum (E-series: plates E1-E7, ES), seven plates toward the apex that touch the E-series plates (M-series: R, M1-M6), and up to seven plates near the apex that do not touch E-series plates (D-series: Dp-Dv). The hypothecal/hypocystal model consists of eight plates that touch the posterior margin of the cingulum (H-series: H1-H6,HR,HS) and three plates toward the antapex (T1-T3). Epithecal/epicystal tabulation patterns come in both 8- and 7- models, corresponding to eight and seven plates, respectively, in the E-series. Hypothecal/hypocystal tabulation patterns also come in both 8- and 7-models, corresponding to eight and seven plates, respectively, in the H-series. By convention, the 7-model epitheca/epicyst has no plates E1 and M1; the 7-model hypotheca/hypocyst has no plate H6. Within an 8-model or 7-model, the system emphasizes plates that are presumed to be homologous by giving them identical labels. I introduce the adjectives "monothigmate", "dithigmate," and "trithigmate" to designate plates touching one, two, and three plates, respectively, of the adjacent series. The term "thigmation" applies to the analysis of plate contacts between

  7. Productive homologous and non-homologous recombination of hepatitis C virus in cell culture.

    Directory of Open Access Journals (Sweden)

    Troels K H Scheel

    2013-03-01

    Full Text Available Genetic recombination is an important mechanism for increasing diversity of RNA viruses, and constitutes a viral escape mechanism to host immune responses and to treatment with antiviral compounds. Although rare, epidemiologically important hepatitis C virus (HCV recombinants have been reported. In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a lacking functional envelope genes and strain J6 (2a, which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13-36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6 sequence from the 5' end to the NS2-NS3 region followed by JFH1 sequence from Core to the 3' end. These recombinants carried duplicated sequence of up to 2400 nucleotides. HCV replication was not required for recombination, as recombinants were observed in most experiments even when two replication incompetent genomes were co-transfected. Reverse genetic studies verified the viability of representative recombinants. After serial passage, subsequent recombination events reducing or eliminating the duplicated region were observed for some but not all recombinants. Furthermore, we found that inter-genotypic recombination could occur, but at a lower frequency than intra-genotypic recombination. Productive recombination of attenuated HCV genomes depended on expression of all HCV proteins and tolerated duplicated sequence. In general, no strong site specificity was observed. Non-homologous recombination was observed in most cases, while few homologous events were identified. A better understanding of HCV recombination could help identification of natural

  8. Gentle masking of low-complexity sequences improves homology search.

    Directory of Open Access Journals (Sweden)

    Martin C Frith

    Full Text Available Detection of sequences that are homologous, i.e. descended from a common ancestor, is a fundamental task in computational biology. This task is confounded by low-complexity tracts (such as atatatatatat, which arise frequently and independently, causing strong similarities that are not homologies. There has been much research on identifying low-complexity tracts, but little research on how to treat them during homology search. We propose to find homologies by aligning sequences with "gentle" masking of low-complexity tracts. Gentle masking means that the match score involving a masked letter is min(0,S, where S is the unmasked score. Gentle masking slightly but noticeably improves the sensitivity of homology search (compared to "harsh" masking, without harming specificity. We show examples in three useful homology search problems: detection of NUMTs (nuclear copies of mitochondrial DNA, recruitment of metagenomic DNA reads to reference genomes, and pseudogene detection. Gentle masking is currently the best way to treat low-complexity tracts during homology search.

  9. Importing the homology concept from biology into developmental psychology.

    Science.gov (United States)

    Moore, David S

    2013-01-01

    To help introduce the idea of homology into developmental psychology, this article presents some of the concepts, distinctions, and guidelines biologists and philosophers of biology have devised to study homology. Some unresolved issues related to this idea are considered as well. Because homology reflects continuity across time, developmental scientists should find this concept to be useful in the study of psychological/behavioral development, just as biologists have found it essential in the study of the evolution and development of morphological and other characteristics.

  10. What is "homology thinking" and what is it for?

    Science.gov (United States)

    Wagner, Günter P

    2016-01-01

    In this paper I examine the thesis by Marc Ereshefsky that, in evolutionary biology, there is a third style of thinking, besides the well-known "population thinking" and "tree thinking." Ereshefsky proposes "homology thinking" as a third approach, focused on the transformation of organismal phenotypes. In this short commentary, I aim at identifying the underlying biological assumptions for homology thinking and how they can be put to work in a research program within evolutionary biology. I propose that homology thinking is based on three insights: 1) multicellular organisms consist of developmentally individualized parts (sub-systems); 2) that developmental individuation entails evolutionary individuation, that is, variational quasi-independence; and 3) these individuated body parts are inherited, though indirectly, and form lineages that are recognized as homologies. These facts support a research program focused on the modification and origination of individuated body parts that supplements and puts into perspective the population genetic and phylogenetic approaches to the study of evolution. PMID:26486321

  11. Homologous prominence non-radial eruptions: A case study

    CERN Document Server

    Duchlev, P; Madjarska, M S; Dechev, M

    2016-01-01

    The present study provides important details on homologous eruptions of a solar prominence that occurred in active region NOAA 10904 on 2006 August 22. We report on the preeruptive phase of the homologous feature as well as the kinematics and the morphology of a forth from a series of prominence eruptions that is critical in defining the nature of the previous consecutive eruptions. The evolution of the overlying coronal field during homologous eruptions is discussed and a new observational criterion for homologous eruptions is provided. We find a distinctive sequence of three activation periods each of them containing preeruptive precursors such as a brightening and enlarging of the prominence body followed by small surge- like ejections from its southern end observed in the radio 17 GHz. We analyse a fourth eruption that clearly indicates a full reformation of the prominence after the third eruption. The fourth eruption although occurring 11 hrs later has an identical morphology, the same angle of propagati...

  12. Homological Dimensions of the Extension Algebras of Monomial Algebras

    Institute of Scientific and Technical Information of China (English)

    Hong Bo SHI

    2015-01-01

    The main objective of this paper is to study the dimension trees and further the homo-logical dimensions of the extension algebras — dual and trivially twisted extensions — with a unified combinatorial approach using the two combinatorial algorithms — Topdown and Bottomup. We first present a more complete and clearer picture of a dimension tree, with which we are then able, on the one hand, to sharpen some results obtained before and furthermore reveal a few more hidden sub-tle homological phenomenons of or connections between the involved algebras; on the other hand, to provide two more effi cient combinatorial algorithms for computing dimension trees, and consequently the homological dimensions as an application. We believe that the more refined complete structural information on dimension trees will be useful to study other homological properties of this class of extension algebras.

  13. Productive homologous and non-homologous recombination of hepatitis C virus in cell culture

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Galli, Andrea; Li, Yi-Ping;

    2013-01-01

    . In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a...... incompetent genomes were co-transfected. Reverse genetic studies verified the viability of representative recombinants. After serial passage, subsequent recombination events reducing or eliminating the duplicated region were observed for some but not all recombinants. Furthermore, we found that inter......-genotypic recombination could occur, but at a lower frequency than intra-genotypic recombination. Productive recombination of attenuated HCV genomes depended on expression of all HCV proteins and tolerated duplicated sequence. In general, no strong site specificity was observed. Non-homologous recombination was observed...

  14. The rational Khovanov homology of 3-strand pretzel links

    OpenAIRE

    Manion, Andrew

    2011-01-01

    The 3-strand pretzel knots and links are a well-studied source of examples in knot theory. However, while there have been computations of the Khovanov homology of some sub-families of 3-strand pretzel knots, no general formula has been given for all of them. We give a general formula for the unreduced Khovanov homology of all 3-strand pretzel links, over the rational numbers.

  15. Exact Sequences for the Homology of the Matching Complex

    CERN Document Server

    Jonsson, Jakob

    2012-01-01

    Building on work by Bouc and by Shareshian and Wachs, we provide a toolbox of long exact sequences for the reduced simplicial homology of the matching complex $M_n$, which is the simplicial complex of matchings in the complete graph $K_n$. Combining these sequences in different ways, we prove several results about the 3-torsion part of the homology of $M_n$. First, we demonstrate that there is nonvanishing 3-torsion in $H_d(M_n;Z)$ whenever $\

  16. Metagenomic gene annotation by a homology-independent approach

    Energy Technology Data Exchange (ETDEWEB)

    Froula, Jeff; Zhang, Tao; Salmeen, Annette; Hess, Matthias; Kerfeld, Cheryl A.; Wang, Zhong; Du, Changbin

    2011-06-02

    Fully understanding the genetic potential of a microbial community requires functional annotation of all the genes it encodes. The recently developed deep metagenome sequencing approach has enabled rapid identification of millions of genes from a complex microbial community without cultivation. Current homology-based gene annotation fails to detect distantly-related or structural homologs. Furthermore, homology searches with millions of genes are very computational intensive. To overcome these limitations, we developed rhModeller, a homology-independent software pipeline to efficiently annotate genes from metagenomic sequencing projects. Using cellulases and carbonic anhydrases as two independent test cases, we demonstrated that rhModeller is much faster than HMMER but with comparable accuracy, at 94.5percent and 99.9percent accuracy, respectively. More importantly, rhModeller has the ability to detect novel proteins that do not share significant homology to any known protein families. As {approx}50percent of the 2 million genes derived from the cow rumen metagenome failed to be annotated based on sequence homology, we tested whether rhModeller could be used to annotate these genes. Preliminary results suggest that rhModeller is robust in the presence of missense and frameshift mutations, two common errors in metagenomic genes. Applying the pipeline to the cow rumen genes identified 4,990 novel cellulases candidates and 8,196 novel carbonic anhydrase candidates.In summary, we expect rhModeller to dramatically increase the speed and quality of metagnomic gene annotation.

  17. Multiscale analysis of nonlinear systems using computational homology

    Energy Technology Data Exchange (ETDEWEB)

    Konstantin Mischaikow; Michael Schatz; William Kalies; Thomas Wanner

    2010-05-24

    This is a collaborative project between the principal investigators. However, as is to be expected, different PIs have greater focus on different aspects of the project. This report lists these major directions of research which were pursued during the funding period: (1) Computational Homology in Fluids - For the computational homology effort in thermal convection, the focus of the work during the first two years of the funding period included: (1) A clear demonstration that homology can sensitively detect the presence or absence of an important flow symmetry, (2) An investigation of homology as a probe for flow dynamics, and (3) The construction of a new convection apparatus for probing the effects of large-aspect-ratio. (2) Computational Homology in Cardiac Dynamics - We have initiated an effort to test the use of homology in characterizing data from both laboratory experiments and numerical simulations of arrhythmia in the heart. Recently, the use of high speed, high sensitivity digital imaging in conjunction with voltage sensitive fluorescent dyes has enabled researchers to visualize electrical activity on the surface of cardiac tissue, both in vitro and in vivo. (3) Magnetohydrodynamics - A new research direction is to use computational homology to analyze results of large scale simulations of 2D turbulence in the presence of magnetic fields. Such simulations are relevant to the dynamics of black hole accretion disks. The complex flow patterns from simulations exhibit strong qualitative changes as a function of magnetic field strength. Efforts to characterize the pattern changes using Fourier methods and wavelet analysis have been unsuccessful. (4) Granular Flow - two experts in the area of granular media are studying 2D model experiments of earthquake dynamics where the stress fields can be measured; these stress fields from complex patterns of 'force chains' that may be amenable to analysis using computational homology. (5) Microstructure

  18. Multiscale analysis of nonlinear systems using computational homology

    Energy Technology Data Exchange (ETDEWEB)

    Konstantin Mischaikow, Rutgers University/Georgia Institute of Technology, Michael Schatz, Georgia Institute of Technology, William Kalies, Florida Atlantic University, Thomas Wanner,George Mason University

    2010-05-19

    This is a collaborative project between the principal investigators. However, as is to be expected, different PIs have greater focus on different aspects of the project. This report lists these major directions of research which were pursued during the funding period: (1) Computational Homology in Fluids - For the computational homology effort in thermal convection, the focus of the work during the first two years of the funding period included: (1) A clear demonstration that homology can sensitively detect the presence or absence of an important flow symmetry, (2) An investigation of homology as a probe for flow dynamics, and (3) The construction of a new convection apparatus for probing the effects of large-aspect-ratio. (2) Computational Homology in Cardiac Dynamics - We have initiated an effort to test the use of homology in characterizing data from both laboratory experiments and numerical simulations of arrhythmia in the heart. Recently, the use of high speed, high sensitivity digital imaging in conjunction with voltage sensitive fluorescent dyes has enabled researchers to visualize electrical activity on the surface of cardiac tissue, both in vitro and in vivo. (3) Magnetohydrodynamics - A new research direction is to use computational homology to analyze results of large scale simulations of 2D turbulence in the presence of magnetic fields. Such simulations are relevant to the dynamics of black hole accretion disks. The complex flow patterns from simulations exhibit strong qualitative changes as a function of magnetic field strength. Efforts to characterize the pattern changes using Fourier methods and wavelet analysis have been unsuccessful. (4) Granular Flow - two experts in the area of granular media are studying 2D model experiments of earthquake dynamics where the stress fields can be measured; these stress fields from complex patterns of 'force chains' that may be amenable to analysis using computational homology. (5) Microstructure

  19. Primary homologies of the circumorbital bones of snakes.

    Science.gov (United States)

    Palci, Alessandro; Caldwell, Michael W

    2013-09-01

    Some snakes have two circumorbital ossifications that in the current literature are usually referred to as the postorbital and supraorbital. We review the arguments that have been proposed to justify this interpretation and provide counter-arguments that reject those conjectures of primary homology based on the observation of 32 species of lizards and 81 species of snakes (both extant and fossil). We present similarity arguments, both topological and structural, for reinterpretation of the primary homologies of the dorsal and posterior orbital ossifications of snakes. Applying the test of similarity, we conclude that the posterior orbital ossification of snakes is topologically consistent as the homolog of the lacertilian jugal, and that the dorsal orbital ossification present in some snakes (e.g., pythons, Loxocemus, and Calabaria) is the homolog of the lacertilian postfrontal. We therefore propose that the terms postorbital and supraorbital should be abandoned as reference language for the circumorbital bones of snakes, and be replaced with the terms jugal and postfrontal, respectively. The primary homology claim for the snake "postorbital" fails the test of similarity, while the term "supraorbital" is an unnecessary and inaccurate application of the concept of a neomorphic ossification, for an element that passes the test of similarity as a postfrontal. This reinterpretation of the circumorbital bones of snakes is bound to have important repercussions for future phylogenetic analyses and consequently for our understanding of the origin and evolution of snakes.

  20. Homology modeling a fast tool for drug discovery: Current perspectives

    Directory of Open Access Journals (Sweden)

    V K Vyas

    2012-01-01

    Full Text Available Major goal of structural biology involve formation of protein-ligand complexes; in which the protein molecules act energetically in the course of binding. Therefore, perceptive of protein-ligand interaction will be very important for structure based drug design. Lack of knowledge of 3D structures has hindered efforts to understand the binding specificities of ligands with protein. With increasing in modeling software and the growing number of known protein structures, homology modeling is rapidly becoming the method of choice for obtaining 3D coordinates of proteins. Homology modeling is a representation of the similarity of environmental residues at topologically corresponding positions in the reference proteins. In the absence of experimental data, model building on the basis of a known 3D structure of a homologous protein is at present the only reliable method to obtain the structural information. Knowledge of the 3D structures of proteins provides invaluable insights into the molecular basis of their functions. The recent advances in homology modeling, particularly in detecting and aligning sequences with template structures, distant homologues, modeling of loops and side chains as well as detecting errors in a model contributed to consistent prediction of protein structure, which was not possible even several years ago. This review focused on the features and a role of homology modeling in predicting protein structure and described current developments in this field with victorious applications at the different stages of the drug design and discovery.

  1. Quantization of gauge fields, graph polynomials and graph homology

    Energy Technology Data Exchange (ETDEWEB)

    Kreimer, Dirk, E-mail: kreimer@physik.hu-berlin.de [Humboldt University, 10099 Berlin (Germany); Sars, Matthias [Humboldt University, 10099 Berlin (Germany); Suijlekom, Walter D. van [Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands)

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology. -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.

  2. Homologous flares and the evolution of NOAA Active Region 2372

    International Nuclear Information System (INIS)

    A detailed record of the evolution of NOAA Active Region 2372 has been compiled by the FBS Homology Study Group. It was one of the most prolific flare-producing regions observed by SMM. The flares occurred in distinct stages which corresponded to particular evolutionary phases in the development of the active region magnetic field. By comparison with a similar but less productive active region, it is found that the activity seems to be related to the magnetic complexity of the region and the amount of shear in the field. Further, the soft X-ray emission in the quiescent active region is related to its flare rate. Within the broader definition of homology adopted, there was a degree of homology between the events within each stage of evolution of AR2372

  3. Data bank homology search algorithm with linear computation complexity.

    Science.gov (United States)

    Strelets, V B; Ptitsyn, A A; Milanesi, L; Lim, H A

    1994-06-01

    A new algorithm for data bank homology search is proposed. The principal advantages of the new algorithm are: (i) linear computation complexity; (ii) low memory requirements; and (iii) high sensitivity to the presence of local region homology. The algorithm first calculates indicative matrices of k-tuple 'realization' in the query sequence and then searches for an appropriate number of matching k-tuples within a narrow range in database sequences. It does not require k-tuple coordinates tabulation and in-memory placement for database sequences. The algorithm is implemented in a program for execution on PC-compatible computers and tested on PIR and GenBank databases with good results. A few modifications designed to improve the selectivity are also discussed. As an application example, the search for homology of the mouse homeotic protein HOX 3.1 is given. PMID:7922689

  4. The tedious task of finding homologous noncoding RNA genes

    DEFF Research Database (Denmark)

    Menzel, Karl Peter; Gorodkin, Jan; Stadler, Peter F

    2009-01-01

    , and as we argue here, dominating issue is the dependence on good curated (secondary) structural alignments of the RNAs. These are often hard to obtain, not so much because of an inherent limitation in the available data, but because they require substantial manual curation, an effort that is rarely......: BLAST still works better or equally good as other methods unless extensive expert knowledge on the RNA family is included. However, when good curated data are available the recent development yields further improvements in finding remote homologs. Homology search beyond the reach of BLAST hence...

  5. K-homology and Fredholm operators I: Dirac Operators

    OpenAIRE

    Baum, Paul; van Erp, Erik

    2016-01-01

    This is an expository paper which gives a proof of the Atiyah-Singer index theorem for Dirac operators, presenting the theorem as a computation of the K-homology of a point. This paper and its follow up ("K-homology and index theory II: Elliptic Operators") was written to clear up basic points about index theory that are generally accepted as valid, but for which no proof has been published. Some of these points are needed for the solution of the Heisenberg-elliptic index problem in our paper...

  6. Homological Dimension of Crossed Products of Hopf Algebras

    Institute of Scientific and Technical Information of China (English)

    王志玺; 武艳辉

    2004-01-01

    Let H be a finite dimensional cocommutative Hopf algebra and A an H-module algebra, ln this paper, we characterize the projectivity (injectivity) of M as a left A#σ H-module when it is projective (injective) as a left A-module. The sufficient and necessary condition for A#σ H, the crossed product, to have finite global homological dimension is given, in terms of the global homological dimension of A and the surjectivity of trace maps, provided that H is cocommutative and A is commutative.

  7. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family

    OpenAIRE

    Di Sole, Francesca; Vadnagara, Komal; MOE, ORSON W.; Babich, Victor

    2012-01-01

    The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca2+-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca2+-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural motifs (calcium-binding regions composed of two helixes, E and F, joined by a loop), the myristoylation, a...

  8. RNA Structural Homology Search with a Succinct Stochastic Grammar Model

    Institute of Scientific and Technical Information of China (English)

    Ying-Lei Song; Ji-Zhen Zhao; Chun-Mei Liu; Kan Liu; Russell Malmberg; Li-Ming Cai

    2005-01-01

    An increasing number of structural homology search tools, mostly based on profile stochastic context-free grammars (SCFGs) have been recently developed for the non-coding RNA gene identification. SCFGs can include statistical biases that often occur in RNA sequences, necessary to profile specific RNA structures for structural homology search. In this paper, a succinct stochastic grammar model is introduced for RNA that has competitive search effectiveness. More importantly, the profiling model can be easily extended to include pseudoknots, structures that are beyond the capability of profile SCFGs. In addition, the model allows heuristics to be exploited, resulting in a significant speed-up for the CYK algorithm-based search.

  9. Phenylbutyrate inhibits homologous recombination induced by camptothecin and methyl methanesulfonate

    DEFF Research Database (Denmark)

    Kaiser, Gitte Schalck; Germann, Susanne Manuela; Westergaard, Tine;

    2011-01-01

    Homologous recombination is accompanied by extensive changes to chromatin organization at the site of DNA damage. Some of these changes are mediated through acetylation/deacetylation of histones. Here, we show that recombinational repair of DNA damage induced by the anti-cancer drug camptothecin...

  10. Vanishing of the contact homology of overtwisted contact 3--manifolds

    OpenAIRE

    Yau, Mei-Lin

    2004-01-01

    We give a proof of, for the case of contact structures defined by global contact 1-forms, a Theorem stated by Eliashberg that for any overtwisted contact structure on a closed 3-manifold, its contact homology is 0. A different proof is also outlined in the appendix by Yakov Eliashberg.

  11. Action of the cork twist on Floer homology

    CERN Document Server

    Akbulut, Selman

    2011-01-01

    We utilize the Ozsvath-Szabo contact invariant to detect the action of involutions on certain homology spheres that are surgeries on symmetric links, generalizing a previous result of Akbulut and Durusoy. Potentially this may be useful to detect different smooth structures on 4-manifolds by cork twisting operation.

  12. The homological content of the Jones representations at $q = -1$

    DEFF Research Database (Denmark)

    Egsgaard, Jens Kristian; Fuglede Jørgensen, Søren

    We generalize a discovery of Kasahara and show that the Jones representations of braid groups, when evaluated at $q = -1$, are related to the action on homology of a branched double cover of the underlying punctured disk. As an application, we prove for a large family of pseudo-Anosov mapping...

  13. Multiresolution persistent homology for excessively large biomolecular datasets

    Science.gov (United States)

    Xia, Kelin; Zhao, Zhixiong; Wei, Guo-Wei

    2015-10-01

    Although persistent homology has emerged as a promising tool for the topological simplification of complex data, it is computationally intractable for large datasets. We introduce multiresolution persistent homology to handle excessively large datasets. We match the resolution with the scale of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-rigidity index to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able to focus the topological lens on the scale of interest. The proposed multiresolution topological analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks, and graphs.

  14. On the Homology of Congruence Subgroups and K3(Z)

    Science.gov (United States)

    Lee, Ronnie; Szczarba, R. H.

    1975-01-01

    Let Γ(n;p) be the congruence subgroup of SL(n;Z) of level p. We study the homology and cohomology of Γ(n;p) as modules over SL(n;Fp) and apply our results to obtain an upper bound for the order of K3(Z). PMID:16592224

  15. Disruption of an ADE6 Homolog of Ustilago maydis

    Science.gov (United States)

    Ustilago maydis secretes iron-binding compounds during times of iron depletion. A putative homolog of the Sacharromyces cereviseae ADE6 and Escherichia coli purL genes was identified near a multigenic complex, which contains two genes sid1 and sid2 involved in a siderophore biosynthetic pathway. The...

  16. K-homology and index theory on contact manifolds

    CERN Document Server

    Baum, Paul F

    2011-01-01

    Let X be a closed connected contact manifold. On X there is a naturally arising class of hypoelliptic (but not elliptic) operators which are Fredholm. In this paper we solve the index problem for this class of operators. The solution is achieved by combining Van Erp's earlier partial result with the Baum-Douglas isomorphism of analytic and geometric K-homology.

  17. Multiresolution persistent homology for excessively large biomolecular datasets

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Kelin; Zhao, Zhixiong [Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-10-07

    Although persistent homology has emerged as a promising tool for the topological simplification of complex data, it is computationally intractable for large datasets. We introduce multiresolution persistent homology to handle excessively large datasets. We match the resolution with the scale of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-rigidity index to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able to focus the topological lens on the scale of interest. The proposed multiresolution topological analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks, and graphs.

  18. Real bundle gerbes, orientifolds and twisted KR-homology

    CERN Document Server

    Hekmati, Pedram; Szabo, Richard J; Vozzo, Raymond F

    2016-01-01

    We introduce a notion of Real bundle gerbes on manifolds equipped with an involution. We elucidate their relation to Jandl gerbes and prove that they are classified by their Real Dixmier-Douady class in Grothendieck's equivariant sheaf cohomology. We show that the Grothendieck group of Real bundle gerbe modules is isomorphic to twisted KR-theory for a torsion Real Dixmier-Douady class. Building on the Baum-Douglas model for K-homology and the orientifold construction in string theory, we introduce geometric cycles for twisted KR-homology groups using Real bundle gerbe modules. We prove that this defines a real-oriented generalised homology theory dual to twisted KR-theory for Real closed manifolds, and more generally for Real finite CW-complexes, for any Real Dixmier-Douady class. This is achieved by defining an explicit natural transformation to analytic twisted KR-homology and proving that it is an isomorphism. Our constructions give a new framework for the classification of orientifolds in string theory, p...

  19. Remote homology and the functions of metagenomic dark matter

    Directory of Open Access Journals (Sweden)

    Briallen eLobb

    2015-07-01

    Full Text Available Predicted open reading frames (ORFs that lack detectable homology to known proteins are termed ORFans. Despite their prevalence in metagenomes, the extent to which ORFans encode real proteins, the degree to which they can be annotated, and their functional contributions, remain unclear. To gain insights into these questions, we applied sensitive remote-homology detection methods to functionally analyze ORFans from soil, marine, and human gut metagenome collections. ORFans were identified, clustered into sequence families, and annotated through profile-profile comparison to proteins of known structure.We found that a considerable number of metagenomic ORFans (73,896 of 484,121, 15.3% exhibit significant remote homology to structurally characterized proteins, providing a means for ORFan functional profiling. The extent of detected remote homology significantly exceeds that obtained for artificial protein families (1.4%. In addition, predicted ORFan functions show significant functional consistency with their gene neighbors (p < 0.001 as expected for real genes. Compared to genes annotated through standard homology searches, ORFans have intriguing functional differences such as an enrichment of virus-related functions and biological processes associated with extreme sequence diversity. Each environment also possesses many unique ORFan families that likely play important community roles such as identified ORFan polysaccharide degradation genes unique to the human gut metagenome. Lastly, ORFans are a valuable resource for finding novel enzymes of interest, as we demonstrate by identifying hundreds of ORFan metalloproteases that conserve a catalytic site despite a lack of overall sequence similarity to known proteins. Our ORFan functional predictions are a valuable resource for discovering novel protein families and exploring the boundaries of protein sequence space. Our resource of annotated metagenomic ORFans is available at http://doxey.uwaterloo.ca.

  20. Illustrating and homology modeling the proteins of the Zika virus

    Science.gov (United States)

    Ekins, Sean; Liebler, John; Neves, Bruno J.; Lewis, Warren G.; Coffee, Megan; Bienstock, Rachelle; Southan, Christopher; Andrade, Carolina H.

    2016-01-01

    The Zika virus (ZIKV) is a flavivirus of the family Flaviviridae, which is similar to dengue virus, yellow fever and West Nile virus. Recent outbreaks in South America, Latin America, the Caribbean and in particular Brazil have led to concern for the spread of the disease and potential to cause Guillain-Barré syndrome and microcephaly. Although ZIKV has been known of for over 60 years there is very little in the way of knowledge of the virus with few publications and no crystal structures. No antivirals have been tested against it either in vitro or in vivo. ZIKV therefore epitomizes a neglected disease. Several suggested steps have been proposed which could be taken to initiate ZIKV antiviral drug discovery using both high throughput screens as well as structure-based design based on homology models for the key proteins. We now describe preliminary homology models created for NS5, FtsJ, NS4B, NS4A, HELICc, DEXDc, peptidase S7, NS2B, NS2A, NS1, E stem, glycoprotein M, propeptide, capsid and glycoprotein E using SWISS-MODEL. Eleven out of 15 models pass our model quality criteria for their further use. While a ZIKV glycoprotein E homology model was initially described in the immature conformation as a trimer, we now describe the mature dimer conformer which allowed the construction of an illustration of the complete virion. By comparing illustrations of ZIKV based on this new homology model and the dengue virus crystal structure we propose potential differences that could be exploited for antiviral and vaccine design. The prediction of sites for glycosylation on this protein may also be useful in this regard. While we await a cryo-EM structure of ZIKV and eventual crystal structures of the individual proteins, these homology models provide the community with a starting point for structure-based design of drugs and vaccines as well as a for computational virtual screening. PMID:27746901

  1. [Rule of homology and morbid anatomy (author's transl)].

    Science.gov (United States)

    Doerr, W

    1979-07-27

    1. According to J.W. Goethe, morphology is a theory of evolution, H. Braus defined it as a theory of historic incidents, and according to D. Starck morphology is the role of shapes of the organisms. 2. The term homology was coined by morphologic researchers. Of course, it is used nowadays also in mathematics, chemistry, and linguistics and other logic matters. 3. Homologies have a special position in Goethe's work on the theory of types. Goethe's morphologic research and Schiller's aesthetic speculations are considered to be the origin of a 'typologic point of view.' 4. Coherences of Platon's theory of ideas and Goethe's theory of types are scrutinized. The theory of shapes ('Gestalt theory') is inconceivable without Platon's theory, and scientic morphology is inconceivable without shapes, either, and according to C. v. Ehrenfels "Gestaltphilosophie" could not exist without the shapes of Platon's theory. 5. It is shown that without Gestalt philosophy one cannot comprehend the following coherences: Gestalt (shape) as an idea, idea as a type of Goethe's rule, type as an element of the theory of homologies and even of constitution. 6. Homology will be constituted using certain criterions: a) detection of an equal descent, b) equal position of organismic structures in individuals, c) evidence of interpositions, and d) certain qualities of parts which are compared with each other. Homologous structures may be dissimilar in their architecture. 7. The term homology is explained a) by giving an analysis of morphologic and teratologic lines, b) by scrutinizing froms of symmetry, and c) by presenting the histopathology of topographical diverse but according to the morphogenetic mode coinciding tumours which are resembling each other in their microscopic patterns. 8. The application of the rule of homology in the morphologic investigation of diseases proves to be a) valuable from a heuristic point of view, b) an instrument of communication to characterize comparable matters

  2. The endless tale of non-homologous end-joining

    Institute of Scientific and Technical Information of China (English)

    Eric Weterings; David J Chen

    2008-01-01

    DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addi-tion, they are commonly generated during V(D)J recombination, an essential aspect of the developing immune system. Failure to effectively repair these DSBs can result in chromosome breakage, cell death, onset of cancer, and defects in the immune system of higher vertebrates. Fortunately, all mammalian cells possess two enzymatic pathways that mediate the repair of DSBs: homologous recombination and non-homologous end-joining (NHEJ). The NHEJ process utilizes enzymes that capture both ends of the broken DNA molecule, bring them together in a synaptic DNA-protein complex, and finally repair the DNA break. In this review, all the known enzymes that play a role in the NHEJ process are discussed and a working model for the co-operation of these enzymes during DSB repair is presented.

  3. Homology and isomorphism: Bourdieu in conversation with New Institutionalism.

    Science.gov (United States)

    Wang, Yingyao

    2016-06-01

    Bourdieusian Field Theory (BFT) provided decisive inspiration for the early conceptual formulation of New Institutionalism (NI). This paper attempts to reinvigorate the stalled intellectual dialogue between NI and BFT by comparing NI's concept of isomorphism with BFT's notion of homology. I argue that Bourdieu's understanding of domination-oriented social action, transposable habitus, and a non-linear causality, embodied in his neglected concept of homology, provides an alternative theorization of field-level convergence to New Institutionalism's central idea of institutional isomorphism. To showcase how BFT can be useful for organizational research, I postulate a habitus-informed and field-conditioned theory of transference to enrich NI's spin-off thesis of 'diffusion'. I propose that while NI can benefit from BFT's potential of bringing social structure back into organizational research, BFT can enrich its social analysis by borrowing from NI's elaboration of the symbolic system of organizations.

  4. Phylogeny and Homologous Recombination in Japanese Encephalitis Viruses

    Institute of Scientific and Technical Information of China (English)

    Li Xiao-xue; Cong Ying-ying; Wang Xin; Ren Yu-dong; Ren Xiao-feng; Lu Ai-guo; Li Guang-xing

    2015-01-01

    Japanese encephalitis virus (JEV) is a significant causative agent of arthropod-borne encephalitis and what is less clear that the factors cause the virus wide spread. The objective was to confirm whether the homologous recombination imposed on JEV. The phylogenetic and homologous recombination analyses were performed based on 163 complete JEV genomes which were recently isolated. They were still separated into five genotypes (GI-GV) and the most of recently isolated JEVs were GI rather than GIII in Asian areas including mainland China. Two recombinant events were identified in JEV and the evidence of the recombination was observed between China and Japan isolates that partitioned into two distinct subclades, but still the same genotype (GIII). Our data further suggested that most of the nucleotides in JEV genome were under negative selection; however, changes within codon 2 316 (amino acid NS4b-44) showed an evidence of the positive selection.

  5. Back-Translation for Discovering Distant Protein Homologies

    Science.gov (United States)

    Gîrdea, Marta; Noé, Laurent; Kucherov, Gregory

    Frameshift mutations in protein-coding DNA sequences produce a drastic change in the resulting protein sequence, which prevents classic protein alignment methods from revealing the proteins’ common origin. Moreover, when a large number of substitutions are additionally involved in the divergence, the homology detection becomes difficult even at the DNA level. To cope with this situation, we propose a novel method to infer distant homology relations of two proteins, that accounts for frameshift and point mutations that may have affected the coding sequences. We design a dynamic programming alignment algorithm over memory-efficient graph representations of the complete set of putative DNA sequences of each protein, with the goal of determining the two putative DNA sequences which have the best scoring alignment under a powerful scoring system designed to reflect the most probable evolutionary process. This allows us to uncover evolutionary information that is not captured by traditional alignment methods, which is confirmed by biologically significant examples.

  6. Molecular evolution of a Drosophila homolog of human BRCA2.

    Science.gov (United States)

    Bennett, Sarah M; Noor, Mohamed A F

    2009-11-01

    The human cancer susceptibility gene, BRCA2, functions in double-strand break repair by homologous recombination, and it appears to function via interaction of a repetitive region ("BRC repeats") with RAD-51. A putatively simpler homolog, dmbrca2, was identified in Drosophila melanogaster recently and also affects mitotic and meiotic double-strand break repair. In this study, we examined patterns of repeat variation both within Drosophila pseudoobscura and among available Drosophila genome sequences. We identified extensive variation within and among closely related Drosophila species in BRC repeat number, to the extent that variation within this genus recapitulates the extent of variation found across the entire animal kingdom. We describe patterns of evolution across species by documenting recent repeat expansions (sometimes in tandem arrays) and homogenizations within available genome sequences. Overall, we have documented patterns and modes of evolution in a new model system of a gene which is important to human health.

  7. Homological algebra of Novikov-Shubin invariants and Morse inequalities

    CERN Document Server

    Farber, M

    1996-01-01

    It is shown that the topological phenomenon "zero in the continuous spectrum", discovered by S.P.Novikov and M.A.Shubin, can be explained in terms of a homology theory on the category of finite polyhedra with values in certain abelian category. This approach implies homotopy invariance of the Novikov-Shubin invariants. Its main advantage is that it allows to use the standard homological techniques, such as spectral sequences, derived functors, universal coefficients etc., while studying the Novikov-Shubin invariants. It also leads to some new quantitative invariants, measuring the Novikov-Shubin phenomenon in a different way, which are used in order to strengthen the Morse type inequalities of Novikov and Shubin.

  8. Homology and isomorphism: Bourdieu in conversation with New Institutionalism.

    Science.gov (United States)

    Wang, Yingyao

    2016-06-01

    Bourdieusian Field Theory (BFT) provided decisive inspiration for the early conceptual formulation of New Institutionalism (NI). This paper attempts to reinvigorate the stalled intellectual dialogue between NI and BFT by comparing NI's concept of isomorphism with BFT's notion of homology. I argue that Bourdieu's understanding of domination-oriented social action, transposable habitus, and a non-linear causality, embodied in his neglected concept of homology, provides an alternative theorization of field-level convergence to New Institutionalism's central idea of institutional isomorphism. To showcase how BFT can be useful for organizational research, I postulate a habitus-informed and field-conditioned theory of transference to enrich NI's spin-off thesis of 'diffusion'. I propose that while NI can benefit from BFT's potential of bringing social structure back into organizational research, BFT can enrich its social analysis by borrowing from NI's elaboration of the symbolic system of organizations. PMID:27218878

  9. Intermediaries in Bredon (Co)homology and Classifying Spaces

    CERN Document Server

    Dembegioti, Fotini; Talelli, Olympia

    2011-01-01

    For certain contractible G-CW-complexes and F a family of subgroups of G, we construct a spectral sequence converging to the F-Bredon cohomology of G with E1-terms given by the F-Bredon cohomology of the stabilizer subgroups. As applications, we obtain several corollaries concerning the cohomological and geometric dimensions of the classifying space for the family F. We also introduce a hierarchically defined class of groups which contains all countable elementary amenable groups and countable linear groups of characteristic zero, and show that if a group G is in this class, then G has finite F-Bredon (co)homological dimension if and only if G has jump F-Bredon (co)homology.

  10. Topological Hochschild homology and the Bass trace conjecture

    OpenAIRE

    Berrick, A. J.; Hesselholt, Lars

    2013-01-01

    We use the methods of topological Hochschild homology to shed new light on the groups satisfying the Bass trace conjecture. We show that the factorization of the Hattori-Stallings rank map through the Bokstedt-Hsiang-Madsen cyclotomic trace map leads to Linnell's restriction on such groups. As a new consequence of this restriction, we show that the conjecture holds for any group G with the property that every subgroup that is isomorphic to the additive group of rational numbers has nontrivial...

  11. Amifostine Metabolite WR-1065 Disrupts Homologous Recombination in Mammalian Cells

    OpenAIRE

    Dziegielewski, Jaroslaw; Goetz, Wilfried; Murley, Jeffrey S.; David J Grdina; Morgan, William F.; Janet E. Baulch

    2010-01-01

    Repair of DNA damage through homologous recombination (HR) pathways plays a crucial role in maintaining genome stability. However, overstimulation of HR pathways in response to genotoxic stress may abnormally elevate recombination frequencies, leading to increased mutation rates and delayed genomic instability. Radiation-induced genomic instability has been detected after exposure to both low- and high-linear energy transfer (LET) radiations, but the mechanisms responsible for initiating or p...

  12. A Smale Type Result and Applications to Contact Homology

    Directory of Open Access Journals (Sweden)

    Vittorio Martino

    2014-12-01

    Full Text Available In this note we will show that the injection of a suitable subspace of the space of Legendrian loops into the full loop space is an S1-equivariant homotopy equivalence. Moreover, since the smaller space is the space of variations of a given action functional, we will compute the relative Contact Homology of a family of tight contact forms on the three-dimensional torus.

  13. Cosmetic Surgery in Integral Homology $L$-Spaces

    CERN Document Server

    Wu, Zhongtao

    2009-01-01

    Let $K$ be a non-trivial knot in $S^3$, and let $r$ and $r'$ be two distinct rational numbers of same sign, allowing $r$ to be infinite; we prove that there is no orientation-preserving homeomorphism between the manifolds $S^3_r(K)$ and $S^3_{r'}(K)$. We further generalize this uniqueness result to knots in arbitrary integral homology L-spaces.

  14. GHOSTM: a GPU-accelerated homology search tool for metagenomics.

    Directory of Open Access Journals (Sweden)

    Shuji Suzuki

    Full Text Available BACKGROUND: A large number of sensitive homology searches are required for mapping DNA sequence fragments to known protein sequences in public and private databases during metagenomic analysis. BLAST is currently used for this purpose, but its calculation speed is insufficient, especially for analyzing the large quantities of sequence data obtained from a next-generation sequencer. However, faster search tools, such as BLAT, do not have sufficient search sensitivity for metagenomic analysis. Thus, a sensitive and efficient homology search tool is in high demand for this type of analysis. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new, highly efficient homology search algorithm suitable for graphics processing unit (GPU calculations that was implemented as a GPU system that we called GHOSTM. The system first searches for candidate alignment positions for a sequence from the database using pre-calculated indexes and then calculates local alignments around the candidate positions before calculating alignment scores. We implemented both of these processes on GPUs. The system achieved calculation speeds that were 130 and 407 times faster than BLAST with 1 GPU and 4 GPUs, respectively. The system also showed higher search sensitivity and had a calculation speed that was 4 and 15 times faster than BLAT with 1 GPU and 4 GPUs. CONCLUSIONS: We developed a GPU-optimized algorithm to perform sensitive sequence homology searches and implemented the system as GHOSTM. Currently, sequencing technology continues to improve, and sequencers are increasingly producing larger and larger quantities of data. This explosion of sequence data makes computational analysis with contemporary tools more difficult. We developed GHOSTM, which is a cost-efficient tool, and offer this tool as a potential solution to this problem.

  15. Persistent Homology Transform for Modeling Shapes and Surfaces

    OpenAIRE

    Turner, Katharine; Mukherjee, Sayan; Doug M Boyer

    2013-01-01

    In this paper we introduce a statistic, the persistent homology transform (PHT), to model surfaces in $\\mathbb{R}^3$ and shapes in $\\mathbb{R}^2$. This statistic is a collection of persistence diagrams - multiscale topological summaries used extensively in topological data analysis. We use the PHT to represent shapes and execute operations such as computing distances between shapes or classifying shapes. We prove the map from the space of simplicial complexes in $\\mathbb{R}^3$ into the space ...

  16. Optimizing the design of oligonucleotides for homology directed gene targeting.

    Directory of Open Access Journals (Sweden)

    Judith Miné-Hattab

    Full Text Available BACKGROUND: Gene targeting depends on the ability of cells to use homologous recombination to integrate exogenous DNA into their own genome. A robust mechanistic model of homologous recombination is necessary to fully exploit gene targeting for therapeutic benefit. METHODOLOGY/PRINCIPAL FINDINGS: In this work, our recently developed numerical simulation model for homology search is employed to develop rules for the design of oligonucleotides used in gene targeting. A Metropolis Monte-Carlo algorithm is used to predict the pairing dynamics of an oligonucleotide with the target double-stranded DNA. The model calculates the base-alignment between a long, target double-stranded DNA and a probe nucleoprotein filament comprised of homologous recombination proteins (Rad51 or RecA polymerized on a single strand DNA. In this study, we considered different sizes of oligonucleotides containing 1 or 3 base heterologies with the target; different positions on the probe were tested to investigate the effect of the mismatch position on the pairing dynamics and stability. We show that the optimal design is a compromise between the mean time to reach a perfect alignment between the two molecules and the stability of the complex. CONCLUSION AND SIGNIFICANCE: A single heterology can be placed anywhere without significantly affecting the stability of the triplex. In the case of three consecutive heterologies, our modeling recommends using long oligonucleotides (at least 35 bases in which the heterologous sequences are positioned at an intermediate position. Oligonucleotides should not contain more than 10% consecutive heterologies to guarantee a stable pairing with the target dsDNA. Theoretical modeling cannot replace experiments, but we believe that our model can considerably accelerate optimization of oligonucleotides for gene therapy by predicting their pairing dynamics with the target dsDNA.

  17. Chimpanzee chromosome 13 is homologous to human chromosome 2p

    Energy Technology Data Exchange (ETDEWEB)

    Sun, N. C.; Sun, C. R.Y.; Ho, T.

    1977-01-01

    Similarities between human and chimpanzee chromosomes are shown by chromosome banding techniques and somatic cell hybridization techniques. Cell hybrids were obtained from the chimpanzee lymphocyte LE-7, and the Chinese hamster mutant cell, Gal-2. Experiments showed that the ACPL, MDHs, and Gal-Act genes could be assigned to chimpanzee chromosome 13, and since these genes have been assigned to human chromosme 2p, it is suggested that chimpanzee chromosome 13 is homologous to human chromosome 2p. (HLW)

  18. The many facets of homologous recombination at telomeres

    OpenAIRE

    Clémence Claussin; Michael Chang

    2015-01-01

    The ends of linear chromosomes are capped by nucleoprotein structures called telomeres. A dysfunctional telomere may resemble a DNA double-strand break (DSB), which is a severe form of DNA damage. The presence of one DSB is sufficient to drive cell cycle arrest and cell death. Therefore cells have evolved mechanisms to repair DSBs such as homologous recombination (HR). HR-mediated repair of telomeres can lead to genome instability, a hallmark of cancer cells, wh...

  19. Preserved irradiated homologous cartilage implants in canine eyelids

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, W.; Linberg, J.V.; McCormick, S. (West Virginia Univ. School of Medicine, Morgantown (USA))

    1985-01-01

    Preserved irradiated homologous costal cartilage implants were placed in six canine lower lids for a period of 7-12 weeks. The three implants placed under a covering of conjunctiva simulating current clinical technique were well tolerated and demonstrated little change. Exposed implants produced obvious clinical inflammation and two of three exposed grafts disappeared during the 4- to 5-week interval. The single exposed implant that was retained demonstrated partial epithelialization but suffered extensive absorption and remodeling.

  20. Identification of New Herpesvirus Gene Homologs in the Human Genome

    OpenAIRE

    Holzerlandt, Ria; Orengo, Christine; Kellam, Paul; Albà, M. Mar

    2002-01-01

    Viruses are intracellular parasites that use many cellular pathways during their replication. Large DNA viruses, such as herpesviruses, have captured a repertoire of cellular genes to block or mimic host immune responses, apoptosis regulation, and cell-cycle control mechanisms. We have conducted a systematic search for all homologs of herpesvirus proteins in the human genome using position-specific scoring matrices representing herpesvirus protein sequence domains, and pair-wise sequence comp...

  1. Detection of homologous horizontal gene transfer in SNP data

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-23

    We study the detection of mutations, sequencing errors, and homologous horizontal gene transfers (HGT) in a set of closely related microbial genomes. We base the model on single nucleotide polymorphisms (SNP's) and break the genomes into blocks to handle the rearrangement problem. Then we apply a synamic programming algorithm to model whether changes within each block are likely a result of mutations, sequencing errors, or HGT.

  2. FastBLAST: homology relationships for millions of proteins.

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    Full Text Available BACKGROUND: All-versus-all BLAST, which searches for homologous pairs of sequences in a database of proteins, is used to identify potential orthologs, to find new protein families, and to provide rapid access to these homology relationships. As DNA sequencing accelerates and data sets grow, all-versus-all BLAST has become computationally demanding. METHODOLOGY/PRINCIPAL FINDINGS: We present FastBLAST, a heuristic replacement for all-versus-all BLAST that relies on alignments of proteins to known families, obtained from tools such as PSI-BLAST and HMMer. FastBLAST avoids most of the work of all-versus-all BLAST by taking advantage of these alignments and by clustering similar sequences. FastBLAST runs in two stages: the first stage identifies additional families and aligns them, and the second stage quickly identifies the homologs of a query sequence, based on the alignments of the families, before generating pairwise alignments. On 6.53 million proteins from the non-redundant Genbank database ("NR", FastBLAST identifies new families 25 times faster than all-versus-all BLAST. Once the first stage is completed, FastBLAST identifies homologs for the average query in less than 5 seconds (8.6 times faster than BLAST and gives nearly identical results. For hits above 70 bits, FastBLAST identifies 98% of the top 3,250 hits per query. CONCLUSIONS/SIGNIFICANCE: FastBLAST enables research groups that do not have supercomputers to analyze large protein sequence data sets. FastBLAST is open source software and is available at http://microbesonline.org/fastblast.

  3. HLA-Modeler: Automated Homology Modeling of Human Leukocyte Antigens

    Directory of Open Access Journals (Sweden)

    Shinji Amari

    2013-01-01

    Full Text Available The three-dimensional (3D structures of human leukocyte antigen (HLA molecules are indispensable for the studies on the functions at molecular level. We have developed a homology modeling system named HLA-modeler specialized in the HLA molecules. Segment matching algorithm is employed for modeling and the optimization of the model is carried out by use of the PFROSST force field considering the implicit solvent model. In order to efficiently construct the homology models, HLA-modeler uses a local database of the 3D structures of HLA molecules. The structure of the antigenic peptide-binding site is important for the function and the 3D structure is highly conserved between various alleles. HLA-modeler optimizes the use of this structural motif. The leave-one-out cross-validation using the crystal structures of class I and class II HLA molecules has demonstrated that the rmsds of nonhydrogen atoms of the sites between homology models and crystal structures are less than 1.0 Å in most cases. The results have indicated that the 3D structures of the antigenic peptide-binding sites can be reproduced by HLA-modeler at the level almost corresponding to the crystal structures.

  4. HLA-Modeler: Automated Homology Modeling of Human Leukocyte Antigens.

    Science.gov (United States)

    Amari, Shinji; Kataoka, Ryoichi; Ikegami, Takashi; Hirayama, Noriaki

    2013-01-01

    The three-dimensional (3D) structures of human leukocyte antigen (HLA) molecules are indispensable for the studies on the functions at molecular level. We have developed a homology modeling system named HLA-modeler specialized in the HLA molecules. Segment matching algorithm is employed for modeling and the optimization of the model is carried out by use of the PFROSST force field considering the implicit solvent model. In order to efficiently construct the homology models, HLA-modeler uses a local database of the 3D structures of HLA molecules. The structure of the antigenic peptide-binding site is important for the function and the 3D structure is highly conserved between various alleles. HLA-modeler optimizes the use of this structural motif. The leave-one-out cross-validation using the crystal structures of class I and class II HLA molecules has demonstrated that the rmsds of nonhydrogen atoms of the sites between homology models and crystal structures are less than 1.0 Å in most cases. The results have indicated that the 3D structures of the antigenic peptide-binding sites can be reproduced by HLA-modeler at the level almost corresponding to the crystal structures.

  5. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    Science.gov (United States)

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702

  6. Homologous recombination in DNA repair and DNA damage tolerance

    Institute of Scientific and Technical Information of China (English)

    Xuan Li; Wolf-Dietrich Heyer

    2008-01-01

    Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical sup-port for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modaUties of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.

  7. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    Science.gov (United States)

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  8. Xenogeneic homologous genes, molecular evolution and cancer therapy

    Institute of Scientific and Technical Information of China (English)

    田聆; 魏于全

    2001-01-01

    Cancer is one of the main causes for death of human beings to date, and cancer biotherapy (mainlyimmunotherapy and gene therapy) has become the most promising approach after surgical therapy, radiotherapy andchemotherapy. However, there are still many limitations on cancer immunotherapy and gene therapy; therefore great ef-fort is being made to develop new strategies. It has been known that, in the process of evolution, a number of genes, theso-called xenogeneic homologous genes, are well-conserved and show the structural and/or functional similarity betweenvarious species to some degree. The nucleotide changes between various xenogeneic homologous genes are derived frommutation, and most of them are neutral mutations. Considering that the subtle differences in xenogeneic homologousgenes can break immune tolerance, enhance the immunogenicity and induce autologous immune response so as to elimi-nate tumor cells, we expect that a strategy of inducing autoimmune response using the property of xenogeneic homologousgenes will become a new therapy for cancer. Moreover, this therapy can also be used in the treatment of other diseases,such as autoimmune diseases and AIDS. This article will discuss the xenogeneic homologous genes, molecular evolutionand cancer therapy.

  9. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    Directory of Open Access Journals (Sweden)

    Marc Lenoir

    2015-10-01

    Full Text Available The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH and Tec homology (TH domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  10. Identification of a human src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew.

    OpenAIRE

    Freeman, R. M.; Plutzky, J; Neel, B G

    1992-01-01

    src homology 2 (SH2) domains direct binding to specific phosphotyrosyl proteins. Recently, SH2-containing protein-tyrosine-phosphatases (PTPs) were identified. Using degenerate oligonucleotides and the PCR, we have cloned a cDNA for an additional PTP, SH-PTP2, which contains two SH2 domains and is expressed ubiquitously. When expressed in Escherichia coli, SH-PTP2 displays tyrosine-specific phosphatase activity. Strong sequence similarity between SH-PTP2 and the Drosophila gene corkscrew (csw...

  11. Homology for higher-rank graphs and twisted C*-algebras

    OpenAIRE

    Kumjian, Alex; Pask, David; Sims, Aidan

    2011-01-01

    We introduce a homology theory for k-graphs and explore its fundamental properties. We establish connections with algebraic topology by showing that the homology of a k-graph coincides with the homology of its topological realisation as described by Kaliszewski et al. We exhibit combinatorial versions of a number of standard topological constructions, and show that they are compatible, from a homological point of view, with their topological counterparts. We show how to twist the C*-algebra o...

  12. New Proposal of Setal Homology in Schizomida and Revision of Surazomus (Hubbardiidae) from Ecuador

    OpenAIRE

    Osvaldo Villarreal Manzanilla; Gustavo Silva de Miranda; Alessandro Ponce de Leão Giupponi

    2016-01-01

    The homology of three somatic systems in Schizomida is studied yielding the following results: (1) proposal of homology and chaetotaxy of abdominal setae in Surazomus; (2) revision of the cheliceral chaetotaxy in Schizomida, with suggestion of new homology scheme between Hubbardiidae and Protoschizomidae, description of a new group of setae in Hubbardiinae (G7), and division of setae group 5 in two subgroups, G5A and G5B; (3) proposal of segmental homology between trimerous and tetramerous fe...

  13. Genetic selection and DNA sequences of 4.5S RNA homologs

    DEFF Research Database (Denmark)

    Brown, S; Thon, G; Tolentino, E

    1989-01-01

    A general strategy for cloning the functional homologs of an Escherichia coli gene was used to clone homologs of 4.5S RNA from other bacteria. The genes encoding these homologs were selected by their ability to complement a deletion of the gene for 4.5S RNA. DNA sequences of the regions encoding...

  14. On mathematical arbitrariness of some papers on the potential homologous linear rule investigation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The history of homologous linear rule investigation is reviewed simply. The author puts forward a problem worth paying attention to in the recent potential homologous linear rule investigation, especially some mistakes made in these investigations on mathematical foundations. The author also exposes the mathematical arbitrariness of some papers on their potential homologous linear rule investigation.

  15. μ-Opioid receptor desensitization: homologous or heterologous?

    Science.gov (United States)

    Llorente, Javier; Lowe, Janet D; Sanderson, Helen S; Tsisanova, Elena; Kelly, Eamonn; Henderson, Graeme; Bailey, Chris P

    2012-12-01

    There is considerable controversy over whether μ-opioid receptor (MOPr) desensitization is homologous or heterologous and over the mechanisms underlying such desensitization. In different cell types MOPr desensitization has been reported to involve receptor phosphorylation by various kinases, including G-protein-coupled receptor kinases (GRKs), second messenger and other kinases as well as perturbation of the MOPr effector pathway by GRK sequestration of G protein βγ subunits or ion channel modulation. Here we report that in brainstem locus coeruleus (LC) neurons prepared from relatively mature rats (5-8 weeks old) rapid MOPr desensitization induced by the high-efficacy opioid peptides methionine enkephalin and DAMGO was homologous and not heterologous to α(2)-adrenoceptors and somatostatin SST(2) receptors. Given that these receptors all couple through G proteins to the same set of G-protein inwardly rectifying (GIRK) channels it is unlikely therefore that in mature neurons MOPr desensitization involves G protein βγ subunit sequestration or ion channel modulation. In contrast, in slices from immature animals (less than postnatal day 20), MOPr desensitization was observed to be heterologous and could be downstream of the receptor. Heterologous MOPr desensitization was not dependent on protein kinase C or c-Jun N-terminal kinase activity, but the change from heterologous to homologous desensitization with age was correlated with a decrease in the expression levels of GRK2 in the LC and other brain regions. The observation that the mechanisms underlying MOPr desensitization change with neuronal development is important when extrapolating to the mature brain results obtained from experiments on expression systems, cell lines and immature neuronal preparations.

  16. The PIKE homolog Centaurin gamma regulates developmental timing in Drosophila.

    Directory of Open Access Journals (Sweden)

    Anna Lisa Gündner

    Full Text Available Phosphoinositide-3-kinase enhancer (PIKE proteins encoded by the PIKE/CENTG1 gene are members of the gamma subgroup of the Centaurin superfamily of small GTPases. They are characterized by their chimeric protein domain architecture consisting of a pleckstrin homology (PH domain, a GTPase-activating (GAP domain, Ankyrin repeats as well as an intrinsic GTPase domain. In mammals, three PIKE isoforms with variations in protein structure and subcellular localization are encoded by the PIKE locus. PIKE inactivation in mice results in a broad range of defects, including neuronal cell death during brain development and misregulation of mammary gland development. PIKE -/- mutant mice are smaller, contain less white adipose tissue, and show insulin resistance due to misregulation of AMP-activated protein kinase (AMPK and insulin receptor/Akt signaling. here, we have studied the role of PIKE proteins in metabolic regulation in the fly. We show that the Drosophila PIKE homolog, ceng1A, encodes functional GTPases whose internal GAP domains catalyze their GTPase activity. To elucidate the biological function of ceng1A in flies, we introduced a deletion in the ceng1A gene by homologous recombination that removes all predicted functional PIKE domains. We found that homozygous ceng1A mutant animals survive to adulthood. In contrast to PIKE -/- mouse mutants, genetic ablation of Drosophila ceng1A does not result in growth defects or weight reduction. Although metabolic pathways such as insulin signaling, sensitivity towards starvation and mobilization of lipids under high fed conditions are not perturbed in ceng1A mutants, homozygous ceng1A mutants show a prolonged development in second instar larval stage, leading to a late onset of pupariation. In line with these results we found that expression of ecdysone inducible genes is reduced in ceng1A mutants. Together, we propose a novel role for Drosophila Ceng1A in regulating ecdysone signaling-dependent second to

  17. Building multiclass classifiers for remote homology detection and fold recognition

    Directory of Open Access Journals (Sweden)

    Karypis George

    2006-10-01

    Full Text Available Abstract Background Protein remote homology detection and fold recognition are central problems in computational biology. Supervised learning algorithms based on support vector machines are currently one of the most effective methods for solving these problems. These methods are primarily used to solve binary classification problems and they have not been extensively used to solve the more general multiclass remote homology prediction and fold recognition problems. Results We present a comprehensive evaluation of a number of methods for building SVM-based multiclass classification schemes in the context of the SCOP protein classification. These methods include schemes that directly build an SVM-based multiclass model, schemes that employ a second-level learning approach to combine the predictions generated by a set of binary SVM-based classifiers, and schemes that build and combine binary classifiers for various levels of the SCOP hierarchy beyond those defining the target classes. Conclusion Analyzing the performance achieved by the different approaches on four different datasets we show that most of the proposed multiclass SVM-based classification approaches are quite effective in solving the remote homology prediction and fold recognition problems and that the schemes that use predictions from binary models constructed for ancestral categories within the SCOP hierarchy tend to not only lead to lower error rates but also reduce the number of errors in which a superfamily is assigned to an entirely different fold and a fold is predicted as being from a different SCOP class. Our results also show that the limited size of the training data makes it hard to learn complex second-level models, and that models of moderate complexity lead to consistently better results.

  18. Homology of the open moduli space of curves

    DEFF Research Database (Denmark)

    Madsen, Ib Henning

    2012-01-01

    This is a survey on the proof of a generalized version of the Mumford conjecture obtained in joint work with M. Weiss stating that a certain map between some classifying spaces which a priori have different natures induces an isomorphism at the level of integral homology. We also discuss our proo...... of the original Mumford conjecture stating that the stable rational cohomology of the moduli space of Riemann surfaces is a certain polynomial algebra generated by the Mumford–Morita–Miller cohomology classes of even degrees....

  19. K-homology and Fredholm Operators II: Elliptic Operators

    OpenAIRE

    Baum, Paul; van Erp, Erik

    2016-01-01

    This is an expository paper which gives a proof of the Atiyah-Singer index theorem for elliptic operators. Specifcally, we compute the geometric K-cycle that corresponds to the analytic K-cycle determined by the operator. This paper and its companion ("K-homology and index theory II: Dirac Operators") was written to clear up basic points about index theory that are generally accepted as valid, but for which no proof has been published. Some of these points are needed for the solution of the H...

  20. Parallel Computation of Persistent Homology using the Blowup Complex

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Ryan [Stanford Univ., CA (United States); Morozov, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-04-27

    We describe a parallel algorithm that computes persistent homology, an algebraic descriptor of a filtered topological space. Our algorithm is distinguished by operating on a spatial decomposition of the domain, as opposed to a decomposition with respect to the filtration. We rely on a classical construction, called the Mayer--Vietoris blowup complex, to glue global topological information about a space from its disjoint subsets. We introduce an efficient algorithm to perform this gluing operation, which may be of independent interest, and describe how to process the domain hierarchically. We report on a set of experiments that help assess the strengths and identify the limitations of our method.

  1. Colored sl(N) link homology via matrix factorizations

    CERN Document Server

    Wu, Hao

    2011-01-01

    The Reshetikhin-Turaev sl(N) polynomial of links colored by wedge powers of the defining representation has been categorified via several different approaches. Here, we give a concise introduction to the categorification using matrix factorizations, which is a direct generalization of the Khovanov-Rozansky homology. Full details of the construction are given in [arXiv:0907.0695]. We also briefly review deformations and applications of this categorification given in [arXiv:1002.2662, arXiv:1011.2254, arXiv:1102.0586].

  2. The colocalization transition of homologous chromosomes at meiosis

    Science.gov (United States)

    Nicodemi, Mario; Panning, Barbara; Prisco, Antonella

    2008-06-01

    Meiosis is the specialized cell division required in sexual reproduction. During its early stages, in the mother cell nucleus, homologous chromosomes recognize each other and colocalize in a crucial step that remains one of the most mysterious of meiosis. Starting from recent discoveries on the system molecular components and interactions, we discuss a statistical mechanics model of chromosome early pairing. Binding molecules mediate long-distance interaction of special DNA recognition sequences and, if their concentration exceeds a critical threshold, they induce a spontaneous colocalization transition of chromosomes, otherwise independently diffusing.

  3. Immunological response to the Brucella abortus GroEL homolog.

    OpenAIRE

    Lin, J.; Adams, L G; Ficht, T A

    1996-01-01

    Western blot (immunoblot) analysis of sera from cattle vaccinated with Brucella abortus S19 exhibit an elevated serologic response to Hsp62, the GroEL homolog (BaGroEL). Serologic screening of individual cows vaccinated with B. abortus S19 revealed no correlation between the immune response to BaGroEL and protection against a challenge with virulent organisms. The humoral immune response to BaGroEL was restricted to a region of the mature protein which mapped to amino acids 317 to 355 and may...

  4. Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems

    Directory of Open Access Journals (Sweden)

    Michael A. Choma

    2011-05-01

    The physiology of the Drosophila melanogaster cardiovascular system remains poorly characterized compared with its vertebrate counterparts. Basic measures of physiological performance remain unknown. It also is unclear whether subtle physiological defects observed in the human cardiovascular system can be reproduced in D. melanogaster. Here we characterize the cardiovascular physiology of D. melanogaster in its pre-pupal stage by using high-speed dye angiography and optical coherence tomography. The heart has vigorous pulsatile contractions that drive intracardiac, aortic and extracellular-extravascular hemolymph flow. Several physiological measures, including weight-adjusted cardiac output, body-length-adjusted aortic velocities and intracardiac shear forces, are similar to those in the closed vertebrate cardiovascular systems, including that of humans. Extracellular-extravascular flow in the pre-pupal D. melanogaster circulation drives convection-limited fluid transport. To demonstrate homology in heart dysfunction, we showed that, at the pre-pupal stage, a troponin I mutant, held-up2 (hdp2, has impaired systolic and diastolic heart wall velocities. Impaired heart wall velocities occur in the context of a non-dilated phenotype with a mildly depressed fractional shortening. We additionally derive receiver operating characteristic curves showing that heart wall velocity is a potentially powerful discriminator of systolic heart dysfunction. Our results demonstrate physiological homology and support the use of D. melanogaster as an animal model of complex cardiovascular disease.

  5. Discovery of a Homolog of Siderophilin in a Plant

    Institute of Scientific and Technical Information of China (English)

    Yun-Biao FEI; Peng-Xiu CAO; Su-Qin GAO; Ling-Bo WEI; Bin WANG

    2005-01-01

    Members belonging to the siderophilin family are iron-binding and iron-transporting proteins,which includes transferrin and lactoferrin. They have only been found in animals previously. If siderophilin could be found in and isolated from a plant, its production and subsequent extensive application could be increased. The present study is the first to report the discovery of a homolog of siderophilin in a plant. In order to purify antifreeze proteins from Ammopiptanthus mongolicus (Maxim.) Cheng f., the authors processed the proteins from the leaves using techniques such as column chromatography using DEAE-Cellulose-52, gel filtration via Sephacryl S-100 HR medium, hydrophobic interaction chromatography, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mass spectroscopy was performed on the three proteins purified and the sequence of one of the proteins (containing 32 amino acids) was found to have 97%homology with the corresponding part of one type of human lactoferrin. Moreover, one of the two peptides belongs to an iron-binding domain. So, it is possible that siderophilin also exists in plants and plays a role as an antibacterial and antifungal, among other actions.

  6. Gimeracil sensitizes cells to radiation via inhibition of homologous recombination

    International Nuclear Information System (INIS)

    Background and purpose: 5-Chloro-2,4-dihydroxypyridine (Gimeracil) is a component of an oral fluoropyrimidine derivative S-1. Gimeracil is originally added to S-1 to yield prolonged 5-FU concentrations in tumor tissues by inhibiting dihydropyrimidine dehydrogenase, which degrades 5-FU. We found that Gimeracil by itself had the radiosensitizing effect. Methods and materials: We used various cell lines deficient in non-homologous end-joining (NHEJ) or homologous recombination (HR) as well as DLD-1 and HeLa in clonogenic assay. γ-H2AX focus formation and SCneo assay was performed to examine the effects of Gimeracil on DNA double strand break (DSB) repair mechanisms. Results: Results of γ-H2AX focus assay indicated that Gimeracil inhibited DNA DSB repair. It did not sensitize cells deficient in HR but sensitized those deficient in NHEJ. In SCneo assay, Gimeracil reduced the frequency of neo-positive clones. Additionally, it sensitized the cells in S-phase more than in G0/G1. Conclusions: Gimeracil inhibits HR. Because HR plays key roles in the repair of DSBH caused by radiotherapy, Gimeracil may enhance the efficacy of radiotherapy through the suppression of HR-mediated DNA repair pathways.

  7. Open-closed field theories, string topology, and Hochschild homology

    CERN Document Server

    Blumberg, Andrew J; Teleman, Constantin

    2009-01-01

    In this expository paper we discuss a project regarding the string topology of a manifold, that was inspired by recent work of Moore-Segal, Costello, and Hopkins and Lurie, on "open-closed topological conformal field theories". Given a closed, oriented manifold M, we describe the "string topology category" S_M, which is enriched over chain complexes over a fixed field k. The objects of S_M are connected, closed, oriented submanifolds N of M, and the complex of morphisms between N_1 and N_2 is a chain complex homotopy equivalent to the singular chains C_*(P_{N_1, N_2}), where C_*(P_{N_1, N_2}) is the space of paths in M that start in N_1 and end in N_2. The composition pairing in this category is a chain model for the open string topology operations of Sullivan and expanded upon by Harrelson, and Ramirez. We will describe a calculation yielding that the Hochschild homology of the category S_M is the homology of the free loop space, LM. Another part of the project is to calculate the Hochschild cohomology of th...

  8. Non-homologous end joining: advances and frontiers.

    Science.gov (United States)

    Yang, Kai; Guo, Rong; Xu, Dongyi

    2016-07-01

    DNA double-strand breaks (DSBs) are the most serious form of DNA damage. In human cells, non-homologous end joining (NHEJ) is the major pathway for the repair of DSBs. Different types of DSBs result in different subsets of NHEJ repair strategies. These variations in NHEJ repair strategies depend on numerous elements, such as the flexible recruitment of NHEJ-related proteins, the complexity of the DSB ends, and the spatial- and temporal-ordered formation of the multi-protein complex. On the one hand, current studies of DNA DSBs repair focus on the repair pathway choices between homologous recombination and classic or alternative NHEJ. On the other hand, increasing researches have also deepened the significance and dug into the cross-links between the NHEJ pathway and the area of genome organization and aging. Although remarkable progress has been made in elucidating the underlying principles during the past decades, the detailed mechanism of action in response to different types of DSBs remains largely unknown and needs further evaluation in the future study. PMID:27217473

  9. Change of gene structure and function by non-homologous end-joining, homologous recombination, and transposition of DNA.

    Directory of Open Access Journals (Sweden)

    Wolfgang Goettel

    2009-06-01

    Full Text Available An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to

  10. Homologous recombination and non-homologous end-joining repair pathways in bovine embryos with different developmental competence

    International Nuclear Information System (INIS)

    This study investigated the expression of genes controlling homologous recombination (HR), and non-homologous end-joining (NHEJ) DNA-repair pathways in bovine embryos of different developmental potential. It also evaluated whether bovine embryos can respond to DNA double-strand breaks (DSBs) induced with ultraviolet irradiation by regulating expression of genes involved in HR and NHEJ repair pathways. Embryos with high, intermediate or low developmental competence were selected based on the cleavage time after in vitro insemination and were removed from in vitro culture before (36 h), during (72 h) and after (96 h) the expected period of embryonic genome activation. All studied genes were expressed before, during and after the genome activation period regardless the developmental competence of the embryos. Higher mRNA expression of 53BP1 and RAD52 was found before genome activation in embryos with low developmental competence. Expression of 53BP1, RAD51 and KU70 was downregulated at 72 h and upregulated at 168 h post-insemination in response to DSBs induced by ultraviolet irradiation. In conclusion, important genes controlling HR and NHEJ DNA-repair pathways are expressed in bovine embryos, however genes participating in these pathways are only regulated after the period of embryo genome activation in response to ultraviolet-induced DSBs.

  11. Homologous recombination and non-homologous end-joining repair pathways in bovine embryos with different developmental competence

    Energy Technology Data Exchange (ETDEWEB)

    Henrique Barreta, Marcos [Universidade Federal de Santa Catarina, Campus Universitario de Curitibanos, Curitibanos, SC (Brazil); Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Garziera Gasperin, Bernardo; Braga Rissi, Vitor; Cesaro, Matheus Pedrotti de [Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Ferreira, Rogerio [Centro de Educacao Superior do Oeste-Universidade do Estado de Santa Catarina, Chapeco, SC (Brazil); Oliveira, Joao Francisco de; Goncalves, Paulo Bayard Dias [Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Bordignon, Vilceu, E-mail: vilceu.bordignon@mcgill.ca [Department of Animal Science, McGill University, Ste-Anne-De-Bellevue, QC (Canada)

    2012-10-01

    This study investigated the expression of genes controlling homologous recombination (HR), and non-homologous end-joining (NHEJ) DNA-repair pathways in bovine embryos of different developmental potential. It also evaluated whether bovine embryos can respond to DNA double-strand breaks (DSBs) induced with ultraviolet irradiation by regulating expression of genes involved in HR and NHEJ repair pathways. Embryos with high, intermediate or low developmental competence were selected based on the cleavage time after in vitro insemination and were removed from in vitro culture before (36 h), during (72 h) and after (96 h) the expected period of embryonic genome activation. All studied genes were expressed before, during and after the genome activation period regardless the developmental competence of the embryos. Higher mRNA expression of 53BP1 and RAD52 was found before genome activation in embryos with low developmental competence. Expression of 53BP1, RAD51 and KU70 was downregulated at 72 h and upregulated at 168 h post-insemination in response to DSBs induced by ultraviolet irradiation. In conclusion, important genes controlling HR and NHEJ DNA-repair pathways are expressed in bovine embryos, however genes participating in these pathways are only regulated after the period of embryo genome activation in response to ultraviolet-induced DSBs.

  12. Future trypanosomatid phylogenies: refined homologies, supertrees and networks

    Directory of Open Access Journals (Sweden)

    Stothard JR

    2000-01-01

    Full Text Available There has been good progress in inferring the evolutionary relationships within trypanosomes from DNA data as until relatively recently, many relationships have remained rather speculative. Ongoing molecular studies have provided data that have adequately shown Trypanosoma to be monophyletic and, rather surprisingly, that there are sharply contrasting levels of genetic variation within and between the major trypanosomatid groups. There are still, however, areas of research that could benefit from further development and resolution that broadly fall upon three questions. Are the current statements of evolutionary homology within ribosomal small sub-unit genes in need of refinement? Can the published phylograms be expanded upon to form `supertrees' depicting further relationships? Does a bifurcating tree structure impose an untenable dogma upon trypanosomatid phylogeny where hybridisation or reticulate evolutionary steps have played a part? This article briefly addresses these three questions and, in so doing, hopes to stimulate further interest in the molecular evolution of the group.

  13. Homology Models of Melatonin Receptors: Challenges and Recent Advances

    Directory of Open Access Journals (Sweden)

    Silvia Rivara

    2013-04-01

    Full Text Available Melatonin exerts many of its actions through the activation of two G protein-coupled receptors (GPCRs, named MT1 and MT2. So far, a number of different MT1 and MT2 receptor homology models, built either from the prototypic structure of rhodopsin or from recently solved X-ray structures of druggable GPCRs, have been proposed. These receptor models differ in the binding modes hypothesized for melatonin and melatonergic ligands, with distinct patterns of ligand-receptor interactions and putative bioactive conformations of ligands. The receptor models will be described, and they will be discussed in light of the available information from mutagenesis experiments and ligand-based pharmacophore models. The ability of these ligand-receptor complexes to rationalize structure-activity relationships of known series of melatonergic compounds will be commented upon.

  14. Sequence analysis and homology modeling of laccase from Pycnoporus cinnabarinus.

    Science.gov (United States)

    Meshram, Rohan J; Gavhane, Aj; Gaikar, Rb; Bansode, Ts; Maskar, Au; Gupta, Ak; Sohni, Sk; Patidar, Ma; Pandey, Tr; Jangle, Sn

    2010-09-20

    Industrial effluents of textile, paper, and leather industries contain various toxic dyes as one of the waste material. It imparts major impact on human health as well as environment. The white rot fungus Pycnoporus cinnabarinus Laccase is generally used to degrade these toxic dyes. In order to decipher the mechanism of process by which Laccase degrade dyes, it is essential to know its 3D structure. Homology modeling was performed in presented work, by satisfying Spatial restrains using Modeller Program, which is considered as standard in this field, to generate 3D structure of Laccase in unison, SWISSMODEL web server was also utilized to generate and verify the alternative models. We observed that models created using Modeller stands better on structure evaluation tests. This study can further be used in molecular docking techniques, to understand the interaction of enzyme with its mediators like 2, 2-azinobis (3-ethylbenzthiazoline-6-sulfonate) (ABTS) and Vanillin that are known to enhance the Laccase activity.

  15. Homological mirror symmetry on noncommutative two-tori

    CERN Document Server

    Kajiura, H

    2004-01-01

    Homological mirror symmetry is a conjecture that a category constructed in the A-model and a category constructed in the B-model are equivalent in some sense. We construct a cyclic differential graded (DG) category of holomorphic vector bundles on noncommutative two-tori as a category in the B-model side. We define the corresponding Fukaya's category in the A-model side, and prove the equivalence of the two categories at the level of cyclic categories. We further write down explicitly Feynman rules for higher Massey products derived from the cyclic DG category. As a background of these arguments, a physical explanation of the mirror symmetry for noncommutative two-tori is also given.

  16. Quota Complexes, Persistant Homology and the Goldbach Conjecture

    CERN Document Server

    Pakianathan, Jonathan

    2011-01-01

    In this paper we introduce the concept of a quota complex and study how the topology of these quota complexes changes as the quota is changed. This problem is a simple "linear" version of the general question in Morse Theory of how the topology of a space varies with a parameter. We give examples of natural and basic quota complexes where this problem codifies questions about the distribution of primes, squares and divisors in number theory and as an example provide natural topological formulations of the prime number theorem, the twin prime conjecture, Goldbach's conjecture, Lehmer's conjecture, the Riemann Hypothesis and the existance of odd perfect numbers among other things. We also consider random quota complexes associated to sequences of independent random variables and show that various formulas for expected topological quantities give L-series and Euler product analogs of interest. Keywords: Quota system, persistant homology, Goldbach conjecture, Riemann Hypothesis, random complexes.

  17. Two Lectures On The Jones Polynomial And Khovanov Homology

    CERN Document Server

    Witten, Edward

    2014-01-01

    In the first of these two lectures, I describe a gauge theory approach to understanding quantum knot invariants as Laurent polynomials in a complex variable q. The two main steps are to reinterpret three-dimensional Chern-Simons gauge theory in four dimensional terms and then to apply electric-magnetic duality. The variable q is associated to instanton number in the dual description in four dimensions. In the second lecture, I describe how Khovanov homology can emerge upon adding a fifth dimension. (Based on lectures presented at the Clay Research Conference at Oxford University, and also at the Galileo Galilei Institute in Florence, the University of Milan, Harvard University, and the University of Pennsylvania.)

  18. Homological interpretation of extensions and biextensions of 1-motives

    OpenAIRE

    Bertolin, Cristiana

    2008-01-01

    Let k be a separably closed field. Let K_i=[A_i \\to B_i] (for i=1,2,3) be three 1-motives defined over k. We define the geometrical notions of extension of K_1 by K_3 and of biextension of (K_1,K_2) by K_3. We then compute the homological interpretation of these new geometrical notions: namely, the group Biext^0(K_1,K_2;K_3) of automorphisms of any biextension of (K_1,K_2) by K_3 is canonically isomorphic to the cohomology group Ext^0(K_1 \\otimes K_2,K_3), and the group Biext^1(K_1,K_2;K_3) o...

  19. On the homology of the shoulder girdle in turtles.

    Science.gov (United States)

    Nagashima, Hiroshi; Sugahara, Fumiaki; Takechi, Masaki; Sato, Noboru; Kuratani, Shigeru

    2015-05-01

    The shoulder girdle in turtles is encapsulated in the shell and has a triradiate morphology. Due to its unique configuration among amniotes, many theories have been proposed about the skeletal identities of the projections for the past two centuries. Although the dorsal ramus represents the scapular blade, the ventral two rami remain uncertain. In particular, the ventrorostral process has been compared to a clavicle, an acromion, and a procoracoid based on its morphology, its connectivity to the rest of the skeleton and to muscles, as well as with its ossification center, cell lineage, and gene expression. In making these comparisons, the shoulder girdle skeleton of anurans has often been used as a reference. This review traces the history of the debate on the homology of the shoulder girdle in turtles. And based on the integrative aspects of developmental biology, comparative morphology, and paleontology, we suggest acromion and procoracoid identities for the two ventral processes.

  20. Homological finiteness properties of monoids, their ideals and maximal subgroups

    CERN Document Server

    Gray, Robert

    2010-01-01

    We consider the general question of how the homological finiteness property left-FPn holding in a monoid influences, and conversely depends on, the property holding in the substructures of that monoid. In particular we show that left-FPn is inherited by the maximal subgroups in a completely simple minimal ideal, in the case that the minimal ideal has finitely many left ideals. For completely simple semigroups we prove the converse, and as a corollary show that a completely simple semigroup is of type left- and right-FPn if and only if it has finitely many left and right ideals and all of its maximal subgroups are of type FPn. Also, given an ideal of a monoid, we show that if the ideal has a two-sided identity element then the containing monoid is of type left-FPn if and only if the ideal is of type left-FPn.

  1. Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants

    International Nuclear Information System (INIS)

    Study of the chemistry of the heaviest elements, Z >= 104, poses a unique challenge due to their low production cross-sections and short half-lives. Chemistry also must be studied on the one-atom-at-a-time scale, requiring automated, fast, and very efficient chemical schemes. Recent studies of the chemical behavior of copernicium (Cn, element 112) and flerovium (Fl, element 114) together with the discovery of isotopes of these elements with half-lives suitable for chemical studies have spurred a renewed interest in the development of rapid systems designed to study the chemical properties of elements with Z >= 114. This dissertation explores both extraction chromatography and solvent extraction as methods for development of a rapid chemical separation scheme for the homologs of flerovium (Pb, Sn, Hg) and element 115 (Bi, Sb), with the goal of developing a chemical scheme that, in the future, can be applied to on-line chemistry of both Fl and element 115. Carrier-free radionuclides, used in these studies, of the homologs of Fl and element 115 were obtained by proton activation of high-purity metal foils at the Lawrence Livermore National Laboratory (LLNL) Center for Accelerator Mass Spectrometry (CAMS): natIn(p,n)113Sn, natSn(p,n)124Sb, and Au(p,n)197m,gHg. The carrier-free activity was separated from the foils by novel separation schemes based on ion exchange and extraction chromatography techniques. Carrier-free Pb and Bi isotopes were obtained from development of a novel generator based on cation exchange chromatography using the 232U parent to generate 212Pb and 212Bi. Macrocyclic extractants, specifically crown ethers and their derivatives, were chosen for these studies; crown ethers show high selectivity for metal ions. Finally. a potential chemical system for Fl was established based on the Eichrom Pb resin, and insight to an improved system based on thiacrown ethers is presented.

  2. A quality metric for homology modeling: the H-factor

    Directory of Open Access Journals (Sweden)

    di Luccio Eric

    2011-02-01

    Full Text Available Abstract Background The analysis of protein structures provides fundamental insight into most biochemical functions and consequently into the cause and possible treatment of diseases. As the structures of most known proteins cannot be solved experimentally for technical or sometimes simply for time constraints, in silico protein structure prediction is expected to step in and generate a more complete picture of the protein structure universe. Molecular modeling of protein structures is a fast growing field and tremendous works have been done since the publication of the very first model. The growth of modeling techniques and more specifically of those that rely on the existing experimental knowledge of protein structures is intimately linked to the developments of high resolution, experimental techniques such as NMR, X-ray crystallography and electron microscopy. This strong connection between experimental and in silico methods is however not devoid of criticisms and concerns among modelers as well as among experimentalists. Results In this paper, we focus on homology-modeling and more specifically, we review how it is perceived by the structural biology community and what can be done to impress on the experimentalists that it can be a valuable resource to them. We review the common practices and provide a set of guidelines for building better models. For that purpose, we introduce the H-factor, a new indicator for assessing the quality of homology models, mimicking the R-factor in X-ray crystallography. The methods for computing the H-factor is fully described and validated on a series of test cases. Conclusions We have developed a web service for computing the H-factor for models of a protein structure. This service is freely accessible at http://koehllab.genomecenter.ucdavis.edu/toolkit/h-factor.

  3. Dynamic evolution of rht-1 homologous regions in grass genomes.

    Directory of Open Access Journals (Sweden)

    Jing Wu

    Full Text Available Hexaploid bread wheat contains A, B, and D three subgenomes with its well-characterized ancestral genomes existed at diploid and tetraploid levels, making the wheat act as a good model species for studying evolutionary genomic dynamics. Here, we performed intra- and inter-species comparative analyses of wheat and related grass genomes to examine the dynamics of homologous regions surrounding Rht-1, a well-known "green revolution" gene. Our results showed that the divergence of the two A genomes in the Rht-1 region from the diploid and tetraploid species is greater than that from the tetraploid and hexaploid wheat. The divergence of D genome between diploid and hexaploid is lower than those of A genome, suggesting that D genome diverged latter than others. The divergence among the A, B and D subgenomes was larger than that among different ploidy levels for each subgenome which mainly resulted from genomic structural variation of insertions and, perhaps deletions, of the repetitive sequences. Meanwhile, the repetitive sequences caused genome expansion further after the divergence of the three subgenomes. However, several conserved non-coding sequences were identified to be shared among the three subgenomes of wheat, suggesting that they may have played an important role to maintain the homolog of three subgenomes. This is a pilot study on evolutionary dynamics across the wheat ploids, subgenomes and differently related grasses. Our results gained new insights into evolutionary dynamics of Rht-1 region at sequence level as well as the evolution of wheat during the plolyploidization process.

  4. Generation of helper-dependent adenoviral vectors by homologous recombination.

    Science.gov (United States)

    Toietta, Gabriele; Pastore, Lucio; Cerullo, Vincenzo; Finegold, Milton; Beaudet, Arthur L; Lee, Brendan

    2002-02-01

    Helper-dependent adenoviral vectors (HD-Ad) represent a potentially valuable tool for safe and prolonged gene expression in vivo. The current approach for generating these vectors is based on ligation of the expression cassette into large plasmids containing the viral inverted terminal repeats flanking "stuffer" DNA to maintain a final size above the lower limit for efficient packaging into the adenovirus capsid (approximately 28 kb). The ligation to produce the viral plasmid is generally very inefficient. Similar problems in producing first-generation adenoviral (FG-Ad) vectors were circumvented with the development of a system taking advantage of efficient homologous recombination between a shuttle plasmid containing the expression cassette and a FG-Ad vector backbone in the Escherichia coli strain BJ5183. Here we describe a method for fast and efficient generation of HD-Ad vector plasmids that can accommodate expression cassettes of any size up to 35 kb. To validate the system, we generated a HD-Ad vector expressing the fusion protein between beta-galactosidase and neomycin resistance genes under the control of the SR alpha promoter, and one expressing the enhanced green fluorescent protein under the control of the cytomegalovirus promoter. The viruses were rescued and tested in vitro and for in vivo expression in mice. The data collected indicate the possibility for achieving a high level of hepatocyte transduction using HD-Ad vectors derived from plasmids obtained by homologous recombination in E. coli, with no significant alteration of liver enzymes and a less severe, transient thrombocytopenia in comparison with previous reports with similar doses of a FG-Ad vector. PMID:11829528

  5. A rat homolog of the mouse deafness mutant jerker (je).

    Science.gov (United States)

    Truett, G E; Walker, J A; Brock, J W

    1996-05-01

    An autosomal recessive deafness mutant was discovered in our colony of Zucker (ZUC) rats. These mutants behave like shaker-waltzer deafness mutants, and their inner ear pathology classifies them among neuroepithelial degeneration type of deafness mutants. To determine whether this rat deafness mutation (-) defines a unique locus or one that has been previously described, we mapped its chromosomal location. F2 progeny of (Pbrc:ZUC x BN/Crl) A/a B/b H/h +/- F1 rats were scored for coat color and behavioral phenotypes. Segregation analysis indicated that the deafness locus might be loosely linked with B on rat Chromosome (Chr) 5 (RNO5). Therefore, 40 -/- rats were scored for BN and ZUC alleles at four additional loci, D5Mit11, D5Mit13, Oprd1, and Gnb1, known to map to RNO5 or its homolog, mouse Chr 4 (MMU4). Linkage analysis established the gene order (cM distance) as D5Mit11-(19.3)-B-(17.9)-D5Mit13-(19. 2)-Oprd1-(21.5) - (1.2) Gnb1, placing the deafness locus on distal RNO5. The position of the deafness locus on RNO5 is similar to that ofjerker (je) on MMU4; the phenotypes and patterns of inheritance of the deafness mutation and je are also similar. It seems likely that the mutation affects the rat homolog of je. The rat deafness locus should, therefore, be named jerker and assigned the gene symbol Je. PMID:8661723

  6. Which way up? Recognition of homologous DNA segments in parallel and antiparallel alignment

    CERN Document Server

    Lee, Dominic J; Albrecht, Tim; Kornyshev, Alexei A

    2014-01-01

    Homologous gene shuffling between DNA promotes genetic diversity and is an important pathway for DNA repair. For this to occur, homologous genes need to find and recognize each other. However, despite its central role in homologous recombination, the mechanism of homology recognition is still an unsolved puzzle. While specific proteins are known to play a role at later stages of recombination, an initial coarse grained recognition step has been proposed. This relies on the sequence dependence of the DNA structural parameters, such as twist and rise, mediated by intermolecular interactions, in particular electrostatic ones. In this proposed mechanism, sequences having the same base pair text, or are homologous, have lower interaction energy than those sequences with uncorrelated base pair texts; the difference termed the recognition energy. Here, we probe how the recognition energy changes when one DNA fragment slides past another, and consider, for the first time, homologous sequences in antiparallel alignmen...

  7. Cubical homology and the Leech dimension of free partially commutative monoids

    International Nuclear Information System (INIS)

    The paper is devoted to problems arising when applying homological algebra to computer science. It is proved that the Leech dimension of a free partially commutative monoid is equal to the least upper bound of the cardinalities of finite subsets of pairwise commuting generators of the monoid. For an arbitrary free partially commutative monoid M(E,I) in which every subset of pairwise commuting generators is finite and for any contravariant natural system F on M(E,I) we construct a semicubical set T(E,I) with a homological system F-bar on this set such that the Leech homology groups Hn(M(E,I),F) are isomorphic to the cubical homology groups H-n(T(E,I),F-bar). Complexes of Abelian groups are also constructed enabling one to obtain (under additional finiteness conditions) algorithms for computing the Leech homology groups and homology groups with coefficients in right M(E,I)-modules. Bibliography: 16 titles.

  8. Cubical homology and the Leech dimension of free partially commutative monoids

    Science.gov (United States)

    Khusainov, Akhmet A.

    2008-12-01

    The paper is devoted to problems arising when applying homological algebra to computer science. It is proved that the Leech dimension of a free partially commutative monoid is equal to the least upper bound of the cardinalities of finite subsets of pairwise commuting generators of the monoid. For an arbitrary free partially commutative monoid M(E,I) in which every subset of pairwise commuting generators is finite and for any contravariant natural system F on M(E,I) we construct a semicubical set T(E,I) with a homological system \\overline F on this set such that the Leech homology groups H_n(M(E,I),F) are isomorphic to the cubical homology groups H_n(T(E,I),\\overline F). Complexes of Abelian groups are also constructed enabling one to obtain (under additional finiteness conditions) algorithms for computing the Leech homology groups and homology groups with coefficients in right M(E,I)-modules. Bibliography: 16 titles.

  9. Equidistribution of geodesics on homology classes and analogues for free groups

    DEFF Research Database (Denmark)

    Petridis, Y.N.; Risager, Morten

    2005-01-01

    We investigate how often geodesics have homology in a fixed set of the homology lattice of a compact Riemann surface. We prove that closed geodesics are equidistributed on a random set of homology classes and certain arithmetic sets. We explain the analogues for free groups, conjugacy classes and...... and discrete logarithms, in particular, we investigate the density of conjugacy classes with relatively prime discrete logarithms....

  10. Azotobacter vinelandii nifD- and nifE-encoded polypeptides share structural homology

    OpenAIRE

    Dean, Dennis R.; Brigle, Kevin E.

    1985-01-01

    The Azotobacter vinelandii nifE gene was isolated and its complete nucleotide sequence was determined. The amino acid sequences deduced from the A. vinelandii nifE and nifD gene sequences were compared and found to share striking primary sequence homology. This homology implies a functional and possibly an evolutionary relationship between these two gene products. The structural homology is discussed with regard to the potential FeMo cofactor binding properties of these polypeptides and the p...

  11. Genetic probing of homologous recombination and non-homologous end joining during meiotic prophase in irradiated mouse spermatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Emad A. [Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Philippens, Marielle E.P.; Kal, Henk B. [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Rooij, Dirk G. de, E-mail: d.g.derooij@uu.nl [Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam (Netherlands); Boer, Peter de [Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen (Netherlands)

    2010-06-01

    This study was designed to obtain a better insight into the relative contribution of homologous recombination (HR) and non-homologous end joining (NHEJ) to the repair of radiation-induced DNA double-strand breaks (DSBs) at first meiotic prophase. Early and late pachytene and early diplotene spermatocytes that had completed crossing over were sampled. We studied the kinetics of {gamma}-H2AX chromatin foci removal after irradiation of mice deficient for HR and mice deficient for NHEJ. Analyzing {gamma}-H2AX signals in unirradiated RAD54/RAD54B deficient spermatocytes indicated incomplete meiotic recombination repair due to the pronounced increase of {gamma}-H2AX foci in late prophase primary spermatocytes. In these mice, 8 h after irradiation, early pachytene spermatocytes showed a reduction of the numbers of {gamma}-H2AX foci by 52% compared to 82% in the wild type, the difference being significant. However, after crossing over (in late pachytene and early diplotene), no effect of RAD54/RAD54B deficiency on the reduction of irradiation-induced foci was observed. In NHEJ deficient SCID mice, repair kinetics in early spermatocytes were similar to those in wild type mice. However, 1 h after irradiation in late pachytene and early diplotene spermatocytes 1.7 times more foci were found than in wild type mice. This difference might be related to the absence of a DNA-PKcs dependent fast repair component in SCID mice. As subsequent repair is normal, HR likely is taking over. Taken together, the results obtained in RAD54/RAD54B deficient mice and in SCID mice indicate that DSB repair in early pachytene spermatocytes is mainly carried out through HR. In late spermatocytes (late pachytenes and early diplotenes) NHEJ is active. However, probably there is an interplay between these repair pathways and when in late spermatocytes the NHEJ pathway is compromised HR may take over.

  12. Introduction to 'Homology and convergence in nervous system evolution'.

    Science.gov (United States)

    Strausfeld, Nicholas J; Hirth, Frank

    2016-01-01

    The origin of brains and central nervous systems (CNSs) is thought to have occurred before the Palaeozoic era 540 Ma. Yet in the absence of tangible evidence, there has been continued debate whether today's brains and nervous systems derive from one ancestral origin or whether similarities among them are due to convergent evolution. With the advent of molecular developmental genetics and genomics, it has become clear that homology is a concept that applies not only to morphologies, but also to genes, developmental processes, as well as to behaviours. Comparative studies in phyla ranging from annelids and arthropods to mammals are providing evidence that corresponding developmental genetic mechanisms act not only in dorso-ventral and anterior-posterior axis specification but also in segmentation, neurogenesis, axogenesis and eye/photoreceptor cell formation that appear to be conserved throughout the animal kingdom. These data are supported by recent studies which identified Mid-Cambrian fossils with preserved soft body parts that present segmental arrangements in brains typical of modern arthropods, and similarly organized brain centres and circuits across phyla that may reflect genealogical correspondence and control similar behavioural manifestations. Moreover, congruence between genetic and geological fossil records support the notion that by the 'Cambrian explosion' arthropods and chordates shared similarities in brain and nervous system organization. However, these similarities are strikingly absent in several sister- and outgroups of arthropods and chordates which raises several questions, foremost among them: what kind of natural laws and mechanisms underlie the convergent evolution of such similarities? And, vice versa: what are the selection pressures and genetic mechanisms underlying the possible loss or reduction of brains and CNSs in multiple lineages during the course of evolution? These questions were addressed at a Royal Society meeting to discuss

  13. Introduction to 'Homology and convergence in nervous system evolution'.

    Science.gov (United States)

    Strausfeld, Nicholas J; Hirth, Frank

    2016-01-01

    The origin of brains and central nervous systems (CNSs) is thought to have occurred before the Palaeozoic era 540 Ma. Yet in the absence of tangible evidence, there has been continued debate whether today's brains and nervous systems derive from one ancestral origin or whether similarities among them are due to convergent evolution. With the advent of molecular developmental genetics and genomics, it has become clear that homology is a concept that applies not only to morphologies, but also to genes, developmental processes, as well as to behaviours. Comparative studies in phyla ranging from annelids and arthropods to mammals are providing evidence that corresponding developmental genetic mechanisms act not only in dorso-ventral and anterior-posterior axis specification but also in segmentation, neurogenesis, axogenesis and eye/photoreceptor cell formation that appear to be conserved throughout the animal kingdom. These data are supported by recent studies which identified Mid-Cambrian fossils with preserved soft body parts that present segmental arrangements in brains typical of modern arthropods, and similarly organized brain centres and circuits across phyla that may reflect genealogical correspondence and control similar behavioural manifestations. Moreover, congruence between genetic and geological fossil records support the notion that by the 'Cambrian explosion' arthropods and chordates shared similarities in brain and nervous system organization. However, these similarities are strikingly absent in several sister- and outgroups of arthropods and chordates which raises several questions, foremost among them: what kind of natural laws and mechanisms underlie the convergent evolution of such similarities? And, vice versa: what are the selection pressures and genetic mechanisms underlying the possible loss or reduction of brains and CNSs in multiple lineages during the course of evolution? These questions were addressed at a Royal Society meeting to discuss

  14. Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants

    Energy Technology Data Exchange (ETDEWEB)

    Despotopulos, John D. [Univ. of Nevada, Las Vegas, NV (United States)

    2015-03-12

    Study of the chemistry of the heaviest elements, Z ≥ 104, poses a unique challenge due to their low production cross-sections and short half-lives. Chemistry also must be studied on the one-atom-at-a-time scale, requiring automated, fast, and very efficient chemical schemes. Recent studies of the chemical behavior of copernicium (Cn, element 112) and flerovium (Fl, element 114) together with the discovery of isotopes of these elements with half-lives suitable for chemical studies have spurred a renewed interest in the development of rapid systems designed to study the chemical properties of elements with Z ≥ 114. This dissertation explores both extraction chromatography and solvent extraction as methods for development of a rapid chemical separation scheme for the homologs of flerovium (Pb, Sn, Hg) and element 115 (Bi, Sb), with the goal of developing a chemical scheme that, in the future, can be applied to on-line chemistry of both Fl and element 115. Carrier-free radionuclides, used in these studies, of the homologs of Fl and element 115 were obtained by proton activation of high-purity metal foils at the Lawrence Livermore National Laboratory (LLNL) Center for Accelerator Mass Spectrometry (CAMS): natIn(p,n)113Sn, natSn(p,n)124Sb, and Au(p,n)197m,gHg. The carrier-free activity was separated from the foils by novel separation schemes based on ion exchange and extraction chromatography techniques. Carrier-free Pb and Bi isotopes were obtained from development of a novel generator based on cation exchange chromatography using the 232U parent to generate 212Pb and 212Bi. Macrocyclic extractants, specifically crown ethers and their derivatives, were chosen for these studies; crown ethers show high selectivity for metal ions. Finally. a potential chemical system for Fl was established based on the Eichrom Pb resin, and insight to an improved system based on thiacrown ethers is

  15. Transcription-coupled homologous recombination after oxidative damage.

    Science.gov (United States)

    Wei, Leizhen; Levine, Arthur Samuel; Lan, Li

    2016-08-01

    Oxidative DNA damage induces genomic instability and may lead to mutagenesis and carcinogenesis. As severe blockades to RNA polymerase II (RNA POLII) during transcription, oxidative DNA damage and the associated DNA strand breaks have a profoundly deleterious impact on cell survival. To protect the integrity of coding regions, high fidelity DNA repair at a transcriptionally active site in non-dividing somatic cells, (i.e., terminally differentiated and quiescent/G0 cells) is necessary to maintain the sequence integrity of transcribed regions. Recent studies indicate that an RNA-templated, transcription-associated recombination mechanism is important to protect coding regions from DNA damage-induced genomic instability. Here, we describe the discovery that G1/G0 cells exhibit Cockayne syndrome (CS) B (CSB)-dependent assembly of homologous recombination (HR) factors at double strand break (DSB) sites within actively transcribed regions. This discovery is a challenge to the current dogma that HR occurs only in S/G2 cells where undamaged sister chromatids are available as donor templates. PMID:27233112

  16. Homology among tet determinants in conjugative elements of streptococci

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.D.; Hazum, S.; Guild, W.R.

    1981-10-01

    A mutation to tetracycline sensitivity in a resistant strain of Streptococcus pneumoniae was shown by several criteria to be due to a point mutation in the conjugative o(cat-tet) element found in the chromosomes of strains derived from BM6001, a clinical strain resistant to tetracycline and chloramphenicol. Strains carrying the mutation were transformed back to tetracycline resistance with the high efficiency of a point marker by donor deoxyribonucleic acids from its ancestral strain and from nine other clinical isolates of pneumococcus and by deoxyribonucleic acids from Group D Streptococcus faecalis and Group B Streptococcus agalactiae strains that also carry conjugative tet elements in their chromosomes. It was not transformed to resistance by tet plasmid deoxyribonucleic acids from either gram-negative or gram-positive species, except for one that carried transposon TN916, the conjugative tet element present in the chromosomes of some S. faecalis strains. The results showed that the tet determinants in conjugative elements of several streptococcal species share a high degree of deoxyribonucleic acid sequence homology and suggested that they differ from other tet genes.

  17. Failure of homologous synapsis and sex-specific reproduction problems

    Directory of Open Access Journals (Sweden)

    Hiroki eKurahashi

    2012-06-01

    Full Text Available The prophase of meiosis I ensures the correct segregation of chromosomes to each daughter cell. This includes the pairing, synapsis and recombination of homologous chromosomes. A subset of chromosomal abnormalities, including translocation and inversion, disturbs these processes, resulting in the failure to complete synapsis. This activates the meiotic pachytene checkpoint, and the gametes are fated to undergo cell cycle arrest and subsequent apoptosis. Spermatogenic cells appear to be more vulnerable to the pachytene checkpoint, and male carriers of chromosomal abnormalities are more susceptible to infertility. In contrast, oocytes tend to bypass the checkpoint and instead generate other problems, such as chromosome imbalance that often leads to recurrent pregnancy loss in female carriers. Recent advances in genetic manipulation technologies have increased our knowledge about the pachytene checkpoint and surveillance systems that detect chromosomal synapsis. This review focuses on the consequences of synapsis failure in humans and provides an overview of the mechanisms involved. We also discuss the sexual dimorphism of the involved pathways that leads to the differences in reproductive outcomes between males and females.

  18. Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis.

    Science.gov (United States)

    Shima, Yoko; Fujisawa, Masaki; Kitagawa, Mamiko; Nakano, Toshitsugu; Kimbara, Junji; Nakamura, Nobutaka; Shiina, Takeo; Sugiyama, Junichi; Nakamura, Toshihide; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    Certain MADS-box transcription factors play central roles in regulating fruit ripening. RIPENING INHIBITOR (RIN), a tomato MADS-domain protein, acts as a global regulator of ripening, affecting the climacteric rise of ethylene, pigmentation changes, and fruit softening. Previously, we showed that two MADS-domain proteins, the FRUITFULL homologs FUL1 and FUL2, form complexes with RIN. Here, we characterized the FUL1/FUL2 loss-of-function phenotype in co-suppressed plants. The transgenic plants produced ripening-defective fruits accumulating little or no lycopene. Unlike a previous study on FUL1/FUL2 suppressed tomatoes, our transgenic fruits showed very low levels of ethylene production, and this was associated with suppression of the genes for 1-aminocyclopropane-1-carboxylic acid synthase, a rate-limiting enzyme in ethylene synthesis. FUL1/FUL2 suppression also caused the fruit to soften in a manner independent of ripening, possibly due to reduced cuticle thickness in the peel of the suppressed tomatoes.

  19. Homologous radioimmunoassay for human epidermal growth factor (urogastrone)

    International Nuclear Information System (INIS)

    Epidermal growth factor (EGF), a polypeptide hormone originally discovered in the mouse submaxillary gland, stimulates growth in a variety of tissues in several species. This hormone has recently been identified in human urine. A homologous RIA for human EGF (RIA-hEGF) has been developed. In general, levels were similar to those recently reported using a heterologous RIA system. Twenty-four-hour urinary excretion of RIA-hEGF by normal adult males and females was 63.0 +- 3.0 and 52.0 +- 3.5 (mean +- SE) μg/total vol, or 29.7 +- 1.1 and 39.8 +- 1.7 μg/g creatinine, respectively. Excretion by females taking oral contraceptives was significantly greater (60.1 +- 2.7 μg/g creatinine; P 0.05). Several of those with very low values had histories of alcohol abuse. Excretion by patients with Cushing's syndrome was normal. Patients with psoriasis or recovering from major burns excreted both abnormally high and abnormally low levels of RIA-hEGF, with no obvious correlation to their clinical condition. There was no apparent diurnal or postprandial variation in urinary RIA-hEGF excretion by normal subjects. An excellent linear correlation was observed between RIA-hEGF and creatinine concentrations in each urine sample for each subject, suggesting that RIA-hEGF concentration in a random urine sample provides a valid index of 24-h RIA-hEGF excretion

  20. Characterization of a Canine Homolog of Human Aichivirus▿

    Science.gov (United States)

    Kapoor, Amit; Simmonds, Peter; Dubovi, Edward J.; Qaisar, Natasha; Henriquez, Jose A.; Medina, Jan; Shields, Shelly; Lipkin, W. Ian

    2011-01-01

    Many of our fatal “civilization” infectious diseases have arisen from domesticated animals. Although picornaviruses infect most mammals, infection of a companion animal is not known. Here we describe the identification and genomic characterization of the first canine picornavirus. Canine kobuvirus (CKoV), identified in stool samples from dogs with diarrhea, has a genomic organization typical of a picornavirus and encodes a 2,469-amino-acid polyprotein flanked by 5′ and 3′ untranslated regions. Comparative phylogenetic analysis using various structural and nonstructural proteins of CKoV confirmed it as the animal virus homolog most closely related to human Aichivirus (AiV). Bayesian Markov chain Monte Carlo analysis suggests a mean recent divergence time of CKoV and AiV within the past 20 to 50 years, well after the domestication of canines. The discovery of CKoV provides new insights into the origin and evolution of AiV and the species specificity and pathogenesis of kobuviruses. PMID:21880761

  1. Characterization of a canine homolog of human Aichivirus.

    Science.gov (United States)

    Kapoor, Amit; Simmonds, Peter; Dubovi, Edward J; Qaisar, Natasha; Henriquez, Jose A; Medina, Jan; Shields, Shelly; Lipkin, W Ian

    2011-11-01

    Many of our fatal "civilization" infectious diseases have arisen from domesticated animals. Although picornaviruses infect most mammals, infection of a companion animal is not known. Here we describe the identification and genomic characterization of the first canine picornavirus. Canine kobuvirus (CKoV), identified in stool samples from dogs with diarrhea, has a genomic organization typical of a picornavirus and encodes a 2,469-amino-acid polyprotein flanked by 5' and 3' untranslated regions. Comparative phylogenetic analysis using various structural and nonstructural proteins of CKoV confirmed it as the animal virus homolog most closely related to human Aichivirus (AiV). Bayesian Markov chain Monte Carlo analysis suggests a mean recent divergence time of CKoV and AiV within the past 20 to 50 years, well after the domestication of canines. The discovery of CKoV provides new insights into the origin and evolution of AiV and the species specificity and pathogenesis of kobuviruses. PMID:21880761

  2. Sunspot Waves and Triggering of Homologous Active Region Jets

    CERN Document Server

    Chandra, Ramesh; Mulay, Sargam; Tripathi, Durgesh

    2014-01-01

    We present and discuss multi-wavelength observations of five homologous recurrent solar jets that occurred in active region NOAA 11133 on 11 December, 2010. These jets were well observed by the Solar Dynamic observatory (SDO) with high spatial and temporal resolution. The speed of the jets ranged between 86 and 267 km/s. A type III radio burst was observed in association with all the five jets. The investigation of the over all evolution of magnetic field in the source regions suggested that the flux was continuously emerging on longer term. However, all the jets but J5 were triggered during a local dip in the magnetic flux, suggesting the launch of the jets during localised submergence of magnetic flux. Additionally, using the PFSS modelling of the photospheric magnetic field, we found that all the jets were ejected in the direction of open field lines. We also traced sunspot oscillations from the sunspot interior to foot-point of jets and found presence of ~ 3 minute oscillations in all the SDO/AIA passband...

  3. The many facets of homologous recombination at telomeres

    Directory of Open Access Journals (Sweden)

    Clémence Claussin

    2015-07-01

    Full Text Available The ends of linear chromosomes are capped by nucleoprotein structures called telomeres. A dysfunctional telomere may resemble a DNA double-strand break (DSB, which is a severe form of DNA damage. The presence of one DSB is sufficient to drive cell cycle arrest and cell death. Therefore cells have evolved mechanisms to repair DSBs such as homologous recombination (HR. HR-mediated repair of telomeres can lead to genome instability, a hallmark of cancer cells, which is why such repair is normally inhibited. However, some HR-mediated processes are required for proper telomere function. The need for some recombination activities at telomeres but not others necessitates careful and complex regulation, defects in which can lead to catastrophic consequences. Furthermore, some cell types can maintain telomeres via telomerase-independent, recombination-mediated mechanisms. In humans, these mechanisms are called alternative lengthening of telomeres (ALT and are used in a subset of human cancer cells. In this review, we summarize the different recombination activities occurring at telomeres and discuss how they are regulated. Much of the current knowledge is derived from work using yeast models, which is the focus of this review, but relevant studies in mammals are also included.

  4. Identification of rodent homologs of hepatitis C virus and pegiviruses

    DEFF Research Database (Denmark)

    Kapoor, Amit; Simmonds, Peter; Scheel, Troels K H;

    2013-01-01

    UNLABELLED: Hepatitis C virus (HCV) and human pegivirus (HPgV or GB virus C) are globally distributed and infect 2 to 5% of the human population. The lack of tractable-animal models for these viruses, in particular for HCV, has hampered the study of infection, transmission, virulence, immunity, a...... of small-animal models for HCV, the most common infectious cause of liver failure and hepatocellular carcinoma after hepatitis B virus, and help to explore the health relevance of the highly prevalent human pegiviruses.......UNLABELLED: Hepatitis C virus (HCV) and human pegivirus (HPgV or GB virus C) are globally distributed and infect 2 to 5% of the human population. The lack of tractable-animal models for these viruses, in particular for HCV, has hampered the study of infection, transmission, virulence, immunity...... to those found in human hepaciviruses and pegiviruses suggests the potential for the development of new animal systems with which to model HCV pathogenesis, vaccine design, and treatment. IMPORTANCE: The genetic and biological characterization of animal homologs of human viruses provides insights...

  5. Glutamate receptor homologs in plants: Functions and Evolutionary Origins

    Directory of Open Access Journals (Sweden)

    Michelle Beth Price

    2012-10-01

    Full Text Available The plant glutamate receptors (GLRs are homologs of mammalian ionotropic glutamate receptors (iGluRs which were discovered more than 10 years ago, and are hypothesized to be potential amino acid sensors in plants. Although initial progress on this gene family has been hampered by gene redundancy and technical issues such as gene toxicity; genetic, pharmacological, and electrophysiological approaches are starting to uncover the functions of this protein family. In parallel, there has been tremendous progress in elucidating the structure of animal glutamate receptors (iGluRs, which in turn will help understanding of the molecular mechanisms of plant GLR functions.In this review, we will summarize recent progress on the plant GLRs. Emerging evidence implicates plant GLRs in various biological processes in and beyond N sensing, and implies that there is some overlap in the signaling mechanisms of amino acids between plants and animals. Phylogenteic analysis using glutamate receptors from metazoans, plants and bacteria showed that the plant GLRs are no more closely related to metazoan iGluRs as they are to bacterial glutamate receptors, indicating the separation of plant, eukaryotic, and bacterial GLRs might have happened as early on as the last universal common ancestor. Structural similarities and differences with animal iGluRs, and the implication thereof, are also discussed.

  6. Pharmacokinetics of the dimethylheptyl homolog of cannabidiol in dogs.

    Science.gov (United States)

    Samara, E; Bialer, M

    1988-01-01

    Cannabidiol (CBD) is one of the major nonpsychoactive cannabinoids produced by Cannabis sativa L. Recent studies have shown that a dimethylheptyl homolog (DMH) of CBD is more active as an anticonvulsant than is the naturally occurring CBD. In considering DMH as a potential antiepileptic agent, its pharmacokinetics was studied in dogs (N = 8) after both iv (20 mg) and oral (80 mg) administration. After iv administration, DMH was rapidly distributed. DMH has a mean terminal half-life of 2 hr, its plasma levels decline in a biphasic fashion, and its total body clearance is 8.3 liters/hr. This clearance value, after being normalized to blood clearance by the use of mathematical equations, was less than one half of the value of the hepatic blood flow and its extraction ratio (E) by the liver is 0.39, DMH was observed to have a mean volume of distribution of 10 liters (or 0.5 liters/kg). In four of the eight dogs studied, DMH could not be detected in the plasma after oral administration. In the other four, the oral bioavailability was 3, 21, 39, and 43%, respectively. After oral administration, DMH has a low and variable bioavailability, due to a liver first-pass effect and incomplete absorption from the gastrointestinal tract. In comparison with CBD, DMH has a shorter half-life and lower clearance and volume of distribution values, and its liver extraction ratio is about one half that of CBD. PMID:2907468

  7. Stimulation of homology-directed gene targeting at an endogenous human locus by a nicking endonuclease

    NARCIS (Netherlands)

    G.P. van Nierop (Gijsbert); A.A.F. de Vries (Antoine); M. Holkers (Maarten); K.R. Vrijsen (Krijn); M.A.F.V. Gonçalves (Manuel)

    2009-01-01

    textabstractHomologous recombination (HR) is a highly accurate mechanism of DNA repair that can be exploited for homology-directed gene targeting. Since in most cell types HR occurs very infrequently (̃10.-6to 10.-8), its practical application has been largely restricted to specific experimental sys

  8. Assembly and sorting of homologous BAC contigs in allotetraploid cotton genomes

    Science.gov (United States)

    Upland cotton (G. hirsutum) is a diploidized allopolyploid species containing At and Dt sub-genomes that have partial homology. Assembly and sorting of homologous BAC contigs into their subgenomes and further to individual chromosomes are of both great interest and great challenge for genome-wide i...

  9. Homologous Recombination as a Replication Fork Escort: Fork-Protection and Recovery

    Directory of Open Access Journals (Sweden)

    Audrey Costes

    2012-12-01

    Full Text Available Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.

  10. The good pants homology and a proof of the Ehrenpreis conjecture

    CERN Document Server

    Kahn, Jeremy

    2011-01-01

    We develop the notion of the good pants homology and show that it agrees with the standard homology on closed surfaces (the good pants are pairs of pants whose cuffs have the length nearly equal to some large number R). Combined with our previous work on the Surface Subgroup Theorem, this yields a proof of the Ehrenpreis conjecture.

  11. Twisted homological stability for extensions and automorphism groups of free nilpotent groups

    DEFF Research Database (Denmark)

    Szymik, Markus

    2014-01-01

    We prove twisted homological stability with polynomial coefficients for automorphism groups of free nilpotent groups of any given class. These groups interpolate between two extremes for which homological stability was known before, the general linear groups over the integers and the automorphism...

  12. On The Torsion Homology of Non-Arithmetic Hyperbolic Tetrahedral Groups

    CERN Document Server

    Sengun, Mehmet Haluk

    2010-01-01

    Numerical data concerning the growth of torsion in the first homology of non-arithmetic hyperbolic tetrahedral groups are collected. The data provide support the speculations of Bergeron and Venkatesh on the growth of torsion homology and the regulators for lattices in SL(2,C).

  13. Three Approaches in Computational Geometry and Topology : Persistent Homology, Discrete Differential Geometry and Discrete Morse Theory

    OpenAIRE

    Botnan, Magnus Bakke

    2011-01-01

    We study persistent homology, methods in discrete differential geometry and discrete Morse theory. Persistent homology is applied to computational biology and range image analysis. Theory from differential geometry is used to define curvature estimates of triangulated hypersurfaces. In particular, a well-known method for triangulated surfacesis generalised to hypersurfaces of any dimension. The thesis concludesby discussing a discrete analogue of Morse theory.

  14. Homology for higher-rank graphs and twisted C*-algebras

    CERN Document Server

    Kumjian, Alex; Sims, Aidan

    2011-01-01

    We introduce a homology theory for k-graphs and explore its fundamental properties. We establish connections with algebraic topology by showing that the homology of a k-graph coincides with the homology of its topological realisation as described by Kaliszewski et al. We exhibit combinatorial versions of a number of standard topological constructions, and show that they are compatible, from a homological point of view, with their topological counterparts. We show how to twist the C*-algebra of a k-graph by a T-valued 2-cocycle and demonstrate that examples include all noncommutative tori. In the appendices, we construct a cubical set \\tilde{Q}(\\Lambda) from a k-graph {\\Lambda} and demonstrate that the homology and topological realisation of {\\Lambda} coincide with those of \\tilde{Q}(\\Lambda) as defined by Grandis.

  15. A cohesin-based structural platform supporting homologous chromosome pairing in meiosis.

    Science.gov (United States)

    Ding, Da-Qiao; Haraguchi, Tokuko; Hiraoka, Yasushi

    2016-08-01

    The pairing and recombination of homologous chromosomes during the meiotic prophase is necessary for the accurate segregation of chromosomes in meiosis. However, the mechanism by which homologous chromosomes achieve this pairing has remained an open question. Meiotic cohesins have been shown to affect chromatin compaction; however, the impact of meiotic cohesins on homologous pairing and the fine structures of cohesion-based chromatin remain to be determined. A recent report using live-cell imaging and super-resolution microscopy demonstrated that the lack of meiotic cohesins alters the chromosome axis structures and impairs the pairing of homologous chromosomes. These results suggest that meiotic cohesin-based chromosome axis structures are crucial for the pairing of homologous chromosomes. PMID:26856595

  16. Intraspecies biodiversity of the genetically homologous species Brucella microti.

    Science.gov (United States)

    Al Dahouk, Sascha; Hofer, Erwin; Tomaso, Herbert; Vergnaud, Gilles; Le Flèche, Philippe; Cloeckaert, Axel; Koylass, Mark S; Whatmore, Adrian M; Nöckler, Karsten; Scholz, Holger C

    2012-03-01

    Brucellosis is one of the major bacterial zoonoses worldwide. In the past decade, an increasing number of atypical Brucella strains and species have been described. Brucella microti in particular has attracted attention, because this species not only infects mammalian hosts but also persists in soil. An environmental reservoir may pose a new public health risk, leading to the reemergence of brucellosis. In a polyphasic approach, comprising conventional microbiological techniques and extensive biochemical and molecular techniques, all currently available Brucella microti strains were characterized. While differing in their natural habitats and host preferences, B. microti isolates were found to possess identical 16S rRNA, recA, omp2a, and omp2b gene sequences and identical multilocus sequence analysis (MLSA) profiles at 21 different genomic loci. Only highly variable microsatellite markers of multiple-locus variable-number tandem repeat (VNTR) analysis comprising 16 loci (MLVA-16) showed intraspecies discriminatory power. In contrast, biotyping demonstrated striking differences within the genetically homologous species. The majority of the mammalian isolates agglutinated only with monospecific anti-M serum, whereas soil isolates agglutinated with anti-A, anti-M, and anti-R sera. Bacteria isolated from animal sources were lysed by phages F1, F25, Tb, BK2, Iz, and Wb, whereas soil isolates usually were not. Rough strains of environmental origin were lysed only by phage R/C. B. microti exhibited high metabolic activities similar to those of closely related soil organisms, such as Ochrobactrum spp. Each strain was tested with 93 different substrates and showed an individual metabolic profile. In summary, the adaptation of Brucella microti to a specific habitat or host seems to be a matter of gene regulation rather than a matter of gene configuration.

  17. Ab initio Study of Naptho-Homologated DNA Bases

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Vazquez-Mayagoitia, Alvaro [ORNL; Huertas, Oscar [Universitat de Barcelona; Fuentes-Cabrera, Miguel A [ORNL; Orozco, Modesto [Institut de Recerca Biomedica, Parc Cientific de Barcelona, Barcelona, Spain; Luque, Javier [Universitat de Barcelona

    2008-01-01

    Naptho-homologated DNA bases have been recently used to build a new type of size expanded DNA known as yyDNA. We have used theoretical techniques to investigate the structure, tautomeric preferences, base-pairing ability, stacking interactions, and HOMO-LUMO gaps of the naptho-bases. The structure of these bases is found to be similar to that of the benzo-fused predecessors (y-bases) with respect to the planarity of the aromatic rings and amino groups. Tautomeric studies reveal that the canonical-like form of naptho-thymine (yyT) and naptho-adenine (yyA) are the most stable tautomers, leading to hydrogen-bonded dimers with the corresponding natural nucleobases that mimic the Watson-Crick pairing. However, the canonical-like species of naptho-guanine (yyG) and naptho-cytosine (yyC) are not the most stable tautomers, and the most favorable hydrogen-bonded dimers involve wobble-like pairings. The expanded size of the naphto-bases leads to stacking interactions notably larger than those found for the natural bases, and they should presumably play a dominant contribution in modulating the structure of yyDNA duplexes. Finally, the HOMO-LUMO gap of the naptho-bases is smaller than that of their benzo-base counterparts, indicating that size-expansion of DNA bases is an efficient way of reducing their HOMO-LUMO gap. These results are examined in light of the available experimental evidence reported for yyT and yyC.

  18. Mammalian X homolog acts as sex chromosome in lacertid lizards.

    Science.gov (United States)

    Rovatsos, M; Vukić, J; Kratochvíl, L

    2016-07-01

    Among amniotes, squamate reptiles are especially variable in their mechanisms of sex determination; however, based largely on cytogenetic data, some lineages possess highly evolutionary stable sex chromosomes. The still very limited knowledge of the genetic content of squamate sex chromosomes precludes a reliable reconstruction of the evolutionary history of sex determination in this group and consequently in all amniotes. Female heterogamety with a degenerated W chromosome typifies the lizards of the family Lacertidae, the widely distributed Old World clade including several hundreds of species. From the liver transcriptome of the lacertid Takydromus sexlineatus female, we selected candidates for Z-specific genes as the loci lacking single-nucleotide polymorphisms. We validated the candidate genes through the comparison of the copy numbers in the female and male genomes of T. sexlineatus and another lacertid species, Lacerta agilis, by quantitative PCR that also proved to be a reliable technique for the molecular sexing of the studied species. We suggest that this novel approach is effective for the detection of Z-specific and X-specific genes in lineages with degenerated W, respectively Y chromosomes. The analyzed gene content of the Z chromosome revealed that lacertid sex chromosomes are not homologous with those of other reptiles including birds, but instead the genes have orthologs in the X-conserved region shared by viviparous mammals. It is possible that this part of the vertebrate genome was independently co-opted for the function of sex chromosomes in viviparous mammals and lacertids because of its content of genes involved in gonad differentiation. PMID:26980341

  19. Relative antidipsogenic potencies of six homologous natriuretic peptides in eels.

    Science.gov (United States)

    Miyanishi, Hiroshi; Nobata, Shigenori; Takei, Yoshio

    2011-10-01

    Atrial natriuretic peptide (ANP) exhibits a potent antidipsogenic effect in seawater (SW) eels to limit excess Na(+) uptake, thereby effectively promoting SW adaptation. Recently, cardiac ANP, BNP and VNP and brain CNP1, 3 and 4, have been identified in eels. We examined the antidipsogenic effect of all homologous NPs using conscious, cannulated eels in both FW and SW together with parameters that affect drinking. A dose-response study (0.01-1 nmol/kg) in SW eels showed the relative potency of the antidipsogenic effect was in the order ANP ≥ VNP > BNP = CNP3 > CNP1 ≥ CNP4, while the order was ANP = VNP = BNP > CNP3 = CNP1 = CNP4 for the vasodepressor effect. The minimum effective dose of ANP for the antidipsogenic effect is much lower than that in mammals. ANP, BNP and VNP at 0.3 nmol/kg decreased drinking, plasma Na(+) concentration and aortic pressure and increased hematocrit in SW eels. The cardiac NPs induced similar changes in drinking, aortic pressure and hematocrit in FW eels, but aside from BNP no change in plasma Na(+) concentration. CNPs had no effect on drinking, plasma Na(+) concentration and hematocrit but induced mild hypotension in both FW and SW eels, except for CNP3 that inhibited drinking in SW eels. These results show that ANP, BNP and VNP are potent antidipsogenic hormones in eels in spite of other regulatory factors working to induce drinking, and that CNPs are without effects on drinking except for the ancestor of the cardiac NPs, CNP3. PMID:21967218

  20. Homologous radioimmunoassay for human epidermal growth factor (urogastrone)

    Energy Technology Data Exchange (ETDEWEB)

    Dailey, G.E.; Kraus, J.W.; Orth, D.N.

    1978-06-01

    Epidermal growth factor (EGF), a polypeptide hormone originally discovered in the mouse submaxillary gland, stimulates growth in a variety of tissues in several species. This hormone has recently been identified in human urine. A homologous RIA for human EGF (RIA-hEGF) has been developed. In general, levels were similar to those recently reported using a heterologous RIA system. Twenty-four-hour urinary excretion of RIA-hEGF by normal adult males and females was 63.0 +- 3.0 and 52.0 +- 3.5 (mean +- SE) ..mu..g/total vol, or 29.7 +- 1.1 and 39.8 +- 1.7 ..mu..g/g creatinine, respectively. Excretion by females taking oral contraceptives was significantly greater (60.1 +- 2.7 ..mu..g/g creatinine; P < 0.01) than that by females who were not. Recent evidence suggests the probable identity of hEGF and ..beta..-urogastrone, a potent inhibitor of gastric acid secretion. Adult males with active peptic ulcer disease appeared to have lower urinary RIA-hEGF excretion (22.9 +- 2.6 ..mu..g/g creatinine) than normal men, but this was not significant (P > 0.05). Several of those with very low values had histories of alcohol abuse. Excretion by patients with Cushing's syndrome was normal. Patients with psoriasis or recovering from major burns excreted both abnormally high and abnormally low levels of RIA-hEGF, with no obvious correlation to their clinical condition. There was no apparent diurnal or postprandial variation in urinary RIA-hEGF excretion by normal subjects. An excellent linear correlation was observed between RIA-hEGF and creatinine concentrations in each urine sample for each subject, suggesting that RIA-hEGF concentration in a random urine sample provides a valid index of 24-h RIA-hEGF excretion.

  1. Retroviral vectors for homologous recombination provide efficient cloning and expression in mammalian cells.

    Science.gov (United States)

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Horii, Masae; Hamana, Hiroshi; Nagai, Terumi; Muraguchi, Atsushi

    2014-02-14

    Homologous recombination technologies enable high-throughput cloning and the seamless insertion of any DNA fragment into expression vectors. Additionally, retroviral vectors offer a fast and efficient method for transducing and expressing genes in mammalian cells, including lymphocytes. However, homologous recombination cannot be used to insert DNA fragments into retroviral vectors; retroviral vectors contain two homologous regions, the 5'- and 3'-long terminal repeats, between which homologous recombination occurs preferentially. In this study, we have modified a retroviral vector to enable the cloning of DNA fragments through homologous recombination. To this end, we inserted a bacterial selection marker in a region adjacent to the gene insertion site. We used the modified retroviral vector and homologous recombination to clone T-cell receptors (TCRs) from single Epstein Barr virus-specific human T cells in a high-throughput and comprehensive manner and to efficiently evaluate their function by transducing the TCRs into a murine T-cell line through retroviral infection. In conclusion, the modified retroviral vectors, in combination with the homologous recombination method, are powerful tools for the high-throughput cloning of cDNAs and their efficient functional analysis. PMID:24462869

  2. Physicochemical property distributions for accurate and rapid pairwise protein homology detection

    Directory of Open Access Journals (Sweden)

    Oehmen Christopher S

    2010-03-01

    Full Text Available Abstract Background The challenge of remote homology detection is that many evolutionarily related sequences have very little similarity at the amino acid level. Kernel-based discriminative methods, such as support vector machines (SVMs, that use vector representations of sequences derived from sequence properties have been shown to have superior accuracy when compared to traditional approaches for the task of remote homology detection. Results We introduce a new method for feature vector representation based on the physicochemical properties of the primary protein sequence. A distribution of physicochemical property scores are assembled from 4-mers of the sequence and normalized based on the null distribution of the property over all possible 4-mers. With this approach there is little computational cost associated with the transformation of the protein into feature space, and overall performance in terms of remote homology detection is comparable with current state-of-the-art methods. We demonstrate that the features can be used for the task of pairwise remote homology detection with improved accuracy versus sequence-based methods such as BLAST and other feature-based methods of similar computational cost. Conclusions A protein feature method based on physicochemical properties is a viable approach for extracting features in a computationally inexpensive manner while retaining the sensitivity of SVM protein homology detection. Furthermore, identifying features that can be used for generic pairwise homology detection in lieu of family-based homology detection is important for applications such as large database searches and comparative genomics.

  3. Analysis of genetic homology and genotyping in Carbapenems-resistant Klebsiella pneumonia

    Institute of Scientific and Technical Information of China (English)

    杨丽君

    2013-01-01

    Objective To investigate genotyping and homology of Carbapenems-resistant Klebsiella pneumonia isolated from clinical specimens.Methods A total of 175 clinical isolates of Carbapenemsresistant Klebsiella pneumoniae were isolated from clinical specimens from January 2011 to June 2012

  4. On the Homology of Configuration Spaces Associated to Centers of Mass

    CERN Document Server

    Tamaki, Dai

    2010-01-01

    The aim of this paper is to make sample computations with the Salvetti complex of the "center of mass" arrangement introduced in [arXiv:math/0611732] by Cohen and Kamiyama. We compute the homology of the Salvetti complex of these arrangements with coefficients in the sign representation of symmetric groups on F_p in the case of four particles. We show, when p is an odd prime, the homology is isomorphic to the homology of the configuration space F(C,4) of distinct four points in the complex plane with the same coefficients. When p=2, we show the homology is different from that of F(C,4), hence obtain an alternative and more direct proof of a theorem of Cohen and Kamiyama in [arXiv:math/0611732].

  5. On Quillen homology and a homotopy completion tower for algebras over operads

    CERN Document Server

    Harper, John E

    2011-01-01

    We describe and study a (homotopy) completion tower for algebras and left modules over operads in symmetric spectra. We prove that a weak equivalence on topological Quillen homology induces a weak equivalence on homotopy completion, and that for $0$-connected algebras and modules over a $-1$-connected operad, the homotopy completion tower interpolates between topological Quillen homology and the identity functor. By an explicit calculation of its layers, we show that the homotopy completion tower is the precise analog---in the context of algebras and modules over operads---of the Goodwillie tower of the identity functor. As easy consequences of the strong convergence properties of the homotopy completion tower, we prove a Whitehead theorem and a Hurewicz theorem for topological Quillen homology. We also prove a relative Hurewicz theorem that provides conditions under which topological Quillen homology detects $n$-connected maps. We prove a finiteness theorem relating finiteness properties of topological Quill...

  6. A structural and functional homolog supports a general role for frataxin in cellular iron chemistry.

    Science.gov (United States)

    Qi, Wenbin; Cowan, J A

    2010-02-01

    Bacillus subtilis YdhG lacks sequence homology, but demonstrates structural and functional similarity to the frataxin family, supporting a general cellular role for frataxin-type proteins in cellular iron homeostasis.

  7. CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole;

    2010-01-01

    CPHmodels-3.0 is a web server predicting protein 3D structure by use of single template homology modeling. The server employs a hybrid of the scoring functions of CPHmodels-2.0 and a novel remote homology-modeling algorithm. A query sequence is first attempted modeled using the fast CPHmodels-2.......0 profile-profile scoring function suitable for close homology modeling. The new computational costly remote homology-modeling algorithm is only engaged provided that no suitable PDB template is identified in the initial search. CPHmodels-3.0 was benchmarked in the CASP8 competition and produced models.......3 A. These performance values place the CPHmodels-3.0 method in the group of high performing 3D prediction tools. Beside its accuracy, one of the important features of the method is its speed. For most queries, the response time of the server is...

  8. Equidistribution of geodesics on homology classes and analogues for free groups

    DEFF Research Database (Denmark)

    Risager, Morten S.

    2008-01-01

    We investigate how often geodesics have homology in a fixed set of the homology lattice of a compact Riemann surface. We prove that closed geodesics are equidistributed on any set with asymptotic density with respect to a specific norm. We explain the analogues for free groups, conjugacy classes ...... and discrete logarithms, in particular, we investigate the density of conjugacy classes with relatively prime discrete logarithms....

  9. Optimal Cloning of PCR Fragments by Homologous Recombination in Escherichia coli

    OpenAIRE

    Jacobus, Ana Paula; Gross, Jeferson

    2015-01-01

    PCR fragments and linear vectors containing overlapping ends are easily assembled into a propagative plasmid by homologous recombination in Escherichia coli. Although this gap-repair cloning approach is straightforward, its existence is virtually unknown to most molecular biologists. To popularize this method, we tested critical parameters influencing the efficiency of PCR fragments cloning into PCR-amplified vectors by homologous recombination in the widely used E. coli strain DH5α. We found...

  10. Homology equivalences inducing an epimorphism on the fundamental group and Quillen's plus construction

    OpenAIRE

    Rodriguez, Jose L.; Scevenels, Dirk

    2003-01-01

    Quillen's plus construction is a topological construction that kills the maximal perfect subgroup of the fundamental group of a space without changing the integral homology of the space. In this paper we show that there is a topological construction that, while leaving the integral homology of a space unaltered, kills even the intersection of the transfinite lower central series of its fundamental group. Moreover, we show that this is the maximal subgroup that can be factored out of the funda...

  11. The σ enigma: Bacterial σ factors, archaeal TFB and eukaryotic TFIIB are homologs

    OpenAIRE

    Burton, Samuel P; Burton, Zachary F.

    2014-01-01

    Structural comparisons of initiating RNA polymerase complexes and structure-based amino acid sequence alignments of general transcription initiation factors (eukaryotic TFIIB, archaeal TFB and bacterial σ factors) show that these proteins are homologs. TFIIB and TFB each have two-five-helix cyclin-like repeats (CLRs) that include a C-terminal helix-turn-helix (HTH) motif (CLR/HTH domains). Four homologous HTH motifs are present in bacterial σ factors that are relics of CLR/HTH domains. Sequen...

  12. Gene Disruption by Homologous Recombination in the Xylella fastidiosa Citrus Variegated Chlorosis Strain

    Science.gov (United States)

    Gaurivaud, Patrice; Souza, Leonardo C. A.; Virgílio, Andrea C. D.; Mariano, Anelise G.; Palma, Renê R.; Monteiro, Patrícia B.

    2002-01-01

    Mutagenesis by homologous recombination was evaluated in Xylella fastidiosa by using the bga gene, coding for β-galactosidase, as a model. Integration of replicative plasmids by homologous recombination between the cloned truncated copy of bga and the endogenous gene was produced by one or two crossover events leading to β-galactosidase mutants. A promoterless chloramphenicol acetyltransferase gene was used to monitor the expression of the target gene and to select a cvaB mutant. PMID:12200328

  13. DNA synaptase: an enzyme that fuses DNA molecules at a region of homology.

    OpenAIRE

    Potter, H; Dressler, D

    1980-01-01

    This paper describes an enzyme from Escherichia coli, and its purification to apparent homogeneity. The protein, which we call "DNA synaptase" and which may be representative of a class of enzymes, fuses double-stranded DNA molecules at a region of homology. In addition, the purified enzyme is able to catalyze the association of single-stranded DNA with homologous duplex DNA. The genome fusion reaction catalyzed by the purified enzyme occurs in the presence of Mg2+, spermidine, and 2-mercapto...

  14. Evolutionarily different alphoid repeat DNA on homologous chromosomes in human and chimpanzee.

    OpenAIRE

    Jørgensen, A L; Laursen, H B; Jones, C; Bak, A L

    1992-01-01

    Centromeric alphoid DNA in primates represents a class of evolving repeat DNA. In humans, chromosomes 13 and 21 share one subfamily of alphoid DNA while chromosomes 14 and 22 share another subfamily. We show that similar pairwise homogenizations occur in the chimpanzee (Pan troglodytes), where chromosomes 14 and 22, homologous to human chromosomes 13 and 21, share one partially homogenized alphoid DNA subfamily and chromosomes 15 and 23, homologous to human chromosomes 14 and 22, share anothe...

  15. Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling

    OpenAIRE

    Oviedo, Néstor J.; Pearson, Bret J.; Levin, Michael; Sánchez Alvarado, Alejandro

    2008-01-01

    We have identified two genes, Smed-PTEN-1 and Smed-PTEN-2, capable of regulating stem cell function in the planarian Schmidtea mediterranea. Both genes encode proteins homologous to the mammalian tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Inactivation of Smed-PTEN-1 and -2 by RNA interference (RNAi) in planarians disrupts regeneration, and leads to abnormal outgrowths in both cut and uncut animals followed soon after by death (lysis). The resulting pheno...

  16. Effect of chromosome homology an plasmid transformation and plasmid conjugal transfer in Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Balganesh, M.; Setlow, J.K.

    1984-05-14

    The pairing between plasmid and the homologous part of the chromosome associated with plasmid establishment may differ from the pairing which results from integration of a homologous region of the plasmid into the chromosome. Thus the rate of novobiocin transformation decreases with duplication of the chromosomal portion in pMB2, but the rate of establishment of the plasmid increases with this duplication. A model to explain these data is given. 17 references, 5 figures, 4 tables.

  17. Studying RNA Homology and Conservation with Infernal: From Single Sequences to RNA Families.

    Science.gov (United States)

    Barquist, Lars; Burge, Sarah W; Gardner, Paul P

    2016-01-01

    Emerging high-throughput technologies have led to a deluge of putative non-coding RNA (ncRNA) sequences identified in a wide variety of organisms. Systematic characterization of these transcripts will be a tremendous challenge. Homology detection is critical to making maximal use of functional information gathered about ncRNAs: identifying homologous sequence allows us to transfer information gathered in one organism to another quickly and with a high degree of confidence. ncRNA presents a challenge for homology detection, as the primary sequence is often poorly conserved and de novo secondary structure prediction and search remain difficult. This unit introduces methods developed by the Rfam database for identifying "families" of homologous ncRNAs starting from single "seed" sequences, using manually curated sequence alignments to build powerful statistical models of sequence and structure conservation known as covariance models (CMs), implemented in the Infernal software package. We provide a step-by-step iterative protocol for identifying ncRNA homologs and then constructing an alignment and corresponding CM. We also work through an example for the bacterial small RNA MicA, discovering a previously unreported family of divergent MicA homologs in genus Xenorhabdus in the process. © 2016 by John Wiley & Sons, Inc. PMID:27322404

  18. Evidence of protein-free homology recognition in magnetic bead force–extension experiments

    Science.gov (United States)

    (O’) Lee, D. J.; Danilowicz, C.; Rochester, C.; Prentiss, M.

    2016-01-01

    Earlier theoretical studies have proposed that the homology-dependent pairing of large tracts of dsDNA may be due to physical interactions between homologous regions. Such interactions could contribute to the sequence-dependent pairing of chromosome regions that may occur in the presence or the absence of double-strand breaks. Several experiments have indicated the recognition of homologous sequences in pure electrolytic solutions without proteins. Here, we report single-molecule force experiments with a designed 60 kb long dsDNA construct; one end attached to a solid surface and the other end to a magnetic bead. The 60 kb constructs contain two 10 kb long homologous tracts oriented head to head, so that their sequences match if the two tracts fold on each other. The distance between the bead and the surface is measured as a function of the force applied to the bead. At low forces, the construct molecules extend substantially less than normal, control dsDNA, indicating the existence of preferential interaction between the homologous regions. The force increase causes no abrupt but continuous unfolding of the paired homologous regions. Simple semi-phenomenological models of the unfolding mechanics are proposed, and their predictions are compared with the data. PMID:27493568

  19. Homology Priority Task Scheduling in μC/OS-Ⅱ Real-Time Kernel

    Institute of Scientific and Technical Information of China (English)

    WANG Xibo; ZHOU Benhai; YU Ge; LI Qian

    2007-01-01

    μC/OS- Ⅱ is an open source real-time kernel adopting priority preemptive schedule strategy. Aiming at the problem of μC/OS-Ⅱ failing to support homology priority tasks scheduling,an approach for solution is proposed. The basic idea is adding round-robin scheduling strategy in its original scheduler in order to schedule homology priority tasks through time slice roundrobin. Implementation approach is given in detail. Firstly, the Task Control Block (TCB) is extended. And then, a new priority index table is created, in which each index pointer points to a set of homology priority tasks. Eventually, on the basis of reconstructing μC/OS-Ⅱ real-time kernel, task scheduling module is rewritten.Otherwise, schedulability of homology task supported by modified kernel had been analyzed, and deadline formula of created homology tasks is given. By theoretical analysis and experiment verification, the modified kernel can support homology priority tasks scheduling, meanwhile, it also remains preemptive property of original μC/OS- Ⅱ.

  20. RecA bundles mediate homology pairing between distant sisters during DNA break repair

    Science.gov (United States)

    Lesterlin, Christian; Ball, Graeme; Schermelleh, Lothar; Sherratt, David J.

    2014-02-01

    DNA double-strand break (DSB) repair by homologous recombination has evolved to maintain genetic integrity in all organisms. Although many reactions that occur during homologous recombination are known, it is unclear where, when and how they occur in cells. Here, by using conventional and super-resolution microscopy, we describe the progression of DSB repair in live Escherichia coli. Specifically, we investigate whether homologous recombination can occur efficiently between distant sister loci that have segregated to opposite halves of an E. coli cell. We show that a site-specific DSB in one sister can be repaired efficiently using distant sister homology. After RecBCD processing of the DSB, RecA is recruited to the cut locus, where it nucleates into a bundle that contains many more RecA molecules than can associate with the two single-stranded DNA regions that form at the DSB. Mature bundles extend along the long axis of the cell, in the space between the bulk nucleoid and the inner membrane. Bundle formation is followed by pairing, in which the two ends of the cut locus relocate at the periphery of the nucleoid and together move rapidly towards the homology of the uncut sister. After sister locus pairing, RecA bundles disassemble and proteins that act late in homologous recombination are recruited to give viable recombinants 1-2-generation-time equivalents after formation of the initial DSB. Mutated RecA proteins that do not form bundles are defective in sister pairing and in DSB-induced repair. This work reveals an unanticipated role of RecA bundles in channelling the movement of the DNA DSB ends, thereby facilitating the long-range homology search that occurs before the strand invasion and transfer reactions.

  1. An efficient method of constructing homologous recom binant baculovirus with PCR-amplified fragments

    Institute of Scientific and Technical Information of China (English)

    HOU; Songwang; (侯松旺); CHEN; Xinwen; (陈新文); WANG; Hanzhong; (王汉中); HU; Zhihong; (胡志红)

    2003-01-01

    This paper describes a rapid method of constructing homologous recombinant baculovirus in E. coli with PCR-amplified fragments. By using this method, the traditional steps of constructing transfer vector are omitted. The method is based on phage λ red system which can promote the recombination between the homologous fragments with the length above 36 bp. Taking HaSNPV as an example, this paper describes the rapid recombination process by using chloramphenicol resistance gene (CmR) to replace orf135 in HaSNPV genome. A pair of primers with length of 60 bp was synthesized, in which 40 bp was homologous to the each end sequence of orf135, and the rest 20 bp was homologous to the each end sequence of CmR. By using these primers, a linear fragment containing the complete CmR gene between 40 bp of homologous arms of orf135 was generated by PCR with the plasmid pKD3 which contains CmR as the template. By transforming the linear fragment into the E. coli containing the bacterial artificial chromosome of HaSNPV and with the help of a plasmid expressing λ recombinase, the recombinants on which the homologue replacement had taken place were selected by chloramphenicol resistance. This method greatly shortens the process of constructing recombinant baculovirus since the process was performed in E. coli and does not need to construct transfer vectors. It can be further used for gene replacement and gene deletion of other large viral genomes.

  2. Cloning of human papilloma virus genomic DNAs and analysis of homologous polynucleotide sequences.

    Science.gov (United States)

    Heilman, C A; Law, M F; Israel, M A; Howley, P M

    1980-11-01

    The complete DNA genomes of four distinct human papilloma viruses (human papilloma virus subtype 1a [HPV-1a], HPV-1b, HPV-2a, and HPV-4) were molecularly cloned in Escherichia coli, using the certified plasmid vector pBR322. The restriction endonuclease patterns of the cloned HPV-1a and HPV-1b DNAs were similar to those already published for uncloned DNAs. Physical maps were constructed for HPV-2a DNA and HPV-4 DNA, since these viral DNAs had not been previously mapped. By using the cloned DNAs, the genomes of HPV-1a, HPV-2a, and HPV-4 were analyzed for nucleotide sequence homology. Under standard hybridization conditions (Tm = --28 degrees C), no homology was detectable among the genomes of these papilloma viruses, in agreement with previous reports. However, under less stringent conditions (i.e., Tm = --50 degrees C), stable DNA hybrids could be detected between these viral DNAs, indicating homologous segments in the genomes with approximately 30% base mismatch. By using specific DNA fragments immobilized on nitrocellulose filters, these regions of homology were mapped. Hybridization experiments between radiolabeled bovine papilloma virus type 1 (BPV-1) DNA and the unlabeled HPV-1a, HPV-2a, or HPV-4 DNA restriction fragments under low-stringency conditions indicated that the regions of homology among the HPV DNAs are also conserved in the BPV-1 genome with approximately the same degree of base mismatch. PMID:6253665

  3. Randomly dividing homologous samples leads to overinflated accuracies for emotion recognition.

    Science.gov (United States)

    Liu, Shuang; Zhang, Di; Xu, Minpeng; Qi, Hongzhi; He, Feng; Zhao, Xin; Zhou, Peng; Zhang, Lixin; Ming, Dong

    2015-04-01

    There are numerous studies measuring the brain emotional status by analyzing EEGs under the emotional stimuli that have occurred. However, they often randomly divide the homologous samples into training and testing groups, known as randomly dividing homologous samples (RDHS), despite considering the impact of the non-emotional information among them, which would inflate the recognition accuracy. This work proposed a modified method, the integrating homologous samples (IHS), where the homologous samples were either used to build a classifier, or to be tested. The results showed that the classification accuracy was much lower for the IHS than for the RDHS. Furthermore, a positive correlation was found between the accuracy and the overlapping rate of the homologous samples. These findings implied that the overinflated accuracy did exist in those previous studies where the RDHS method was employed for emotion recognition. Moreover, this study performed a feature selection for the IHS condition based on the support vector machine-recursive feature elimination, after which the average accuracies were greatly improved to 85.71% and 77.18% in the picture-induced and video-induced tasks, respectively.

  4. Stratified fiber bundles, Quinn homology and brane stability of hyperbolic orbifolds

    International Nuclear Information System (INIS)

    We revisit the problem of stability of string vacua involving hyperbolic orbifolds using methods from homotopy theory and K-homology. We propose a definition of Type II string theory on such backgrounds that further carry stratified systems of fiber bundles, which generalize the more conventional orbifold and symmetric string backgrounds, together with a classification of wrapped branes by a suitable generalized homology theory. For spaces stratified fibered over hyperbolic orbifolds we use the algebraic K-theory of their fundamental groups and Quinn homology to derive criteria for brane stability in terms of an Atiyah–Hirzebruch type spectral sequence with its lift to K-homology. Stable D-branes in this setting carry stratified charges which induce new additive structures on the corresponding K-homology groups. We extend these considerations to backgrounds which support H-flux, where we use K-groups of twisted group algebras of the fundamental groups to analyze stability of locally symmetric spaces with K-amenable isometry groups, and derive stability conditions for branes wrapping the fibers of an Eilenberg–MacLane spectrum functor. (paper)

  5. Stratified Fiber Bundles, Quinn Homology and Brane Stability of Hyperbolic Orbifolds

    CERN Document Server

    Bytsenko, Andrey A; Tureanu, Anca

    2015-01-01

    We revisit the problem of stability of string vacua involving hyperbolic orbifolds using methods from homotopy theory and K-homology. We propose a definition of Type II string theory on such backgrounds that further carry stratified systems of fiber bundles, which generalise the more conventional orbifold and symmetric string backgrounds, together with a classification of wrapped branes by a suitable generalized homology theory. For spaces stratified fibered over hyperbolic orbifolds we use the algebraic K-theory of their fundamental groups and Quinn homology to derive criteria for brane stability in terms of an Atiyah-Hirzebruch type spectral sequence with its lift to K-homology. Stable D-branes in this setting carry stratified charges which induce new additive structures on the corresponding K-homology groups. We extend these considerations to backgrounds which support H-flux, where we use K-groups of twisted group algebras of the fundamental groups to analyse stability of locally symmetric spaces with K-am...

  6. Stratified fiber bundles, Quinn homology and brane stability of hyperbolic orbifolds

    Science.gov (United States)

    Bytsenko, Andrey A.; Szabo, Richard J.; Tureanu, Anca

    2016-04-01

    We revisit the problem of stability of string vacua involving hyperbolic orbifolds using methods from homotopy theory and K-homology. We propose a definition of Type II string theory on such backgrounds that further carry stratified systems of fiber bundles, which generalize the more conventional orbifold and symmetric string backgrounds, together with a classification of wrapped branes by a suitable generalized homology theory. For spaces stratified fibered over hyperbolic orbifolds we use the algebraic K-theory of their fundamental groups and Quinn homology to derive criteria for brane stability in terms of an Atiyah-Hirzebruch type spectral sequence with its lift to K-homology. Stable D-branes in this setting carry stratified charges which induce new additive structures on the corresponding K-homology groups. We extend these considerations to backgrounds which support H-flux, where we use K-groups of twisted group algebras of the fundamental groups to analyze stability of locally symmetric spaces with K-amenable isometry groups, and derive stability conditions for branes wrapping the fibers of an Eilenberg-MacLane spectrum functor.

  7. Syntenic assignment of human chromosome 1 homologous loci in the bovine.

    Science.gov (United States)

    Threadgill, D S; Threadgill, D W; Moll, Y D; Weiss, J A; Zhang, N; Davey, H W; Wildeman, A G; Womack, J E

    1994-08-01

    Three mouse chromosomes (MMU 1, 3, and 4) carry homologs of human chromosome 1 (HSA 1) genes. A similar situation is found in the bovine, where five bovine chromosomes (BTA 2, 3, 5, 16, and unassigned syntenic group U25) contain homologs of HSA 1 loci. To evaluate further the syntenic relationship of HSA 1 homologs in cattle, 10 loci have been physically mapped through segregation analysis in bovine-rodent hybrid somatic cells. These loci, chosen for their location on HSA 1, are antithrombin 3 (AT3), renin (REN), complement component receptor 2 (CR2), phosphofructokinase muscle type (PFKM), Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog (FGR), alpha fucosidase (FUCA1), G-protein beta 1 subunit (GNB1), alpha 1A amylase, (AMY1), the neuroblastoma RAS viral (v-ras) oncogene homolog (NRAS), and alpha skeletal actin (ACTA1). AT3, REN, CR2, and GNB1 mapped to BTA 16, PFKM to BTA 5, AMY1A and NRAS to BTA 3, FGR and FUCA1 to BTA 2, and ACTA1 to BTA 28. PMID:8001974

  8. A homolog of the RPS2 disease resistance gene is constitutively expressed in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    Malvas Celia C.

    2003-01-01

    Full Text Available In this study, we identified disease resistance gene homologs in Brassica oleracea and assessed their expression in lines resistant and susceptible to Xanthomonas campestris pv. campestris (Xcc. Two DNA fragments of approximately 2.5 kb (BI-16/RPS2 and Lc201/RPS2 were amplified by PCR from two Brassica lines using primers based on an RPS2 homologous sequence previously described in the Brassica oleracea ecotype B117. The sequences of these fragments shared high similarity (95-98% with RPS2 homologs from various Brassica species. The digestion of these fragments with restriction enzymes revealed polymorphisms at the Xba I restriction sites. The length polymorphisms were used as a co-dominant marker in an F2 population developed to segregate for resistance to Xcc, the causal agent of black rot. Linkage analysis showed no significant association between the marker and quantitative trait loci for black rot. RT-PCR with specific primers yielded an expected 453 bp fragment that corresponded to the RPS2 homologs in both resistant and susceptible lines inoculated with the pathogen, as well as in non-inoculated control plants. These results suggest that these homologs are constitutively expressed in B. oleracea.

  9. Assembly and dynamics of the bacteriophage T4 homologous recombination machinery

    Directory of Open Access Journals (Sweden)

    Morrical Scott W

    2010-12-01

    Full Text Available Abstract Homologous recombination (HR, a process involving the physical exchange of strands between homologous or nearly homologous DNA molecules, is critical for maintaining the genetic diversity and genome stability of species. Bacteriophage T4 is one of the classic systems for studies of homologous recombination. T4 uses HR for high-frequency genetic exchanges, for homology-directed DNA repair (HDR processes including DNA double-strand break repair, and for the initiation of DNA replication (RDR. T4 recombination proteins are expressed at high levels during T4 infection in E. coli, and share strong sequence, structural, and/or functional conservation with their counterparts in cellular organisms. Biochemical studies of T4 recombination have provided key insights on DNA strand exchange mechanisms, on the structure and function of recombination proteins, and on the coordination of recombination and DNA synthesis activities during RDR and HDR. Recent years have seen the development of detailed biochemical models for the assembly and dynamics of presynaptic filaments in the T4 recombination system, for the atomic structure of T4 UvsX recombinase, and for the roles of DNA helicases in T4 recombination. The goal of this chapter is to review these recent advances and their implications for HR and HDR mechanisms in all organisms.

  10. The fate of linear DNA in Saccharomyces cerevisiae and Candida glabrata: the role of homologous and non-homologous end joining.

    Directory of Open Access Journals (Sweden)

    Mary W Corrigan

    Full Text Available In vivo assembly of plasmids has become an increasingly used process, as high throughput studies in molecular biology seek to examine gene function. In this study, we investigated the plasmid construction technique called gap repair cloning (GRC in two closely related species of yeast - Saccharomyces cerevisiae and Candida glabrata. GRC utilizes homologous recombination (HR activity to join a linear vector and a linear piece of DNA that contains base pair homology. We demonstrate that a minimum of 20 bp of homology on each side of the linear DNA is required for GRC to occur with at least 10% efficiency. Between the two species, we determine that S. cerevisiae is slightly more efficient at performing GRC. GRC is less efficient in rad52 deletion mutants, which are defective in HR in both species. In dnl4 deletion mutants, which perform less non-homologous end joining (NHEJ, the frequency of GRC increases in C. glabrata, whereas GRC frequency only minimally increases in S. cerevisiae, suggesting that NHEJ is more prevalent in C. glabrata. Our studies allow for a model of the fate of linear DNA when transformed into yeast cells. This model is not the same for both species. Most significantly, during GRC, C. glabrata performs NHEJ activity at a detectable rate (>5%, while S. cerevisiae does not. Our model suggests that S. cerevisiae is more efficient at HR because NHEJ is less prevalent than in C. glabrata. This work demonstrates the determinants for GRC and that while C. glabrata has a lower efficiency of GRC, this species still provides a viable option for GRC.

  11. A developmental approach to homology and brain evolution Un enfoque embriológico a la homología y la evolución cerebral

    OpenAIRE

    FRANCISCO ABOITIZ

    2010-01-01

    Although homology is central to evolutionary interpretations, establishing it has become a highly disputed issue in some instances. Here I argüe for a developmental understanding of evolution, where modifications of the developmental programs are a key source of evolutionary novelty. Although this perspective is not new, in comparative neurobiology it has remained controversial. Specifically, the evolutionary origin of the mammalian neocortex has been a particularly debated point. I propose a...

  12. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Asselman, Jana, E-mail: jana.asselman@ugent.be [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium); Shaw, Joseph R.; Glaholt, Stephen P. [The School of Public and Environmental Affairs, Indiana University, Bloomington, IN (United States); Colbourne, John K. [School of Biosciences, The University of Birmingham, Birmingham (United Kingdom); De Schamphelaere, Karel A.C. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium)

    2013-10-15

    Highlights: •Transcription patterns of 4 metallothionein isoforms in Daphnia pulex. •Under cadmium and copper stress these patterns are time-dependent. •Under cadmium and copper stress these patterns are homolog-dependent. •The results stress the complex regulation of metallothioneins. -- Abstract: Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species.

  13. Symplectic geometry of the moduli space of projective structures in homological coordinates

    CERN Document Server

    Bertola, Marco; Norton, Chaya

    2015-01-01

    We introduce a natural symplectic structure on the moduli space of quadratic differentials with simple zeros and describe its Darboux coordinate systems in terms of so-called homological coordinates. We then show that this structure coincides with the canonical Poisson structure on the cotangent bundle of the moduli space of Riemann surfaces, and therefore the homological coordinates provide a new system of Darboux coordinates. We define a natural family of commuting "homological flows" on the moduli space of quadratic differentials and find the corresponding action-angle variables. The space of projective structures over the moduli space can be identified with the cotangent bundle upon selection of a reference projective connection that varies holomorphically and thus can be naturally endowed with a symplectic structure. Different choices of projective connections of this kind (Bergman, Schottky, Wirtinger) give rise to equivalent symplectic structures on the space of projective connections but different sym...

  14. Identification of a mammalian mitochondrial homolog of ribosomal protein S7.

    Science.gov (United States)

    Cavdar Koc, E; Blackburn, K; Burkhart, W; Spremulli, L L

    1999-12-01

    Bovine mitochondrial small subunit ribosomal proteins were separated by two-dimensional electrophoresis. The region containing the most basic protein(s) was excised and the protein(s) present subjected to in-gel digestion with trypsin. Electrospray tandem mass spectrometry was used to provide sequence information on some of the peptide products. Searches of the human EST database using the sequence of the longest peptide analyzed indicated that this peptide was from the mammalian mitochondrial homolog of prokaryotic ribosomal protein S7 (MRP S7(human)). MRP S7(human) is a 28-kDa protein with a pI of 10. Significant homology to bacterial S7 is observed especially in the C-terminal half of the protein. Surprisingly, MRP S7(human) shows less homology to the corresponding mitochondrial proteins from plants and fungi than to bacterial S7.

  15. Use of RecA protein to enrich for homologous genes in a genomic library

    Energy Technology Data Exchange (ETDEWEB)

    Taidi-Laskowski, B.; Grumet, F.C. (Stanford Univ. School of Medicine, CA (USA)); Tyan, D. (Univ. of California, Los Angeles (USA)); Honigberg, S.M.; Radding, C.R. (Yale Univ. School of Medicine, New Haven, CT (USA))

    1988-08-25

    RecA protein-coated probe has been utilized to enrich genomic digests for desired genes in order to facilitate cloning from genomic libraries. Using a previously cloned HLA-B27 gene as the recA-coated enrichment probe, the authors obtained a mean 108x increase in the ratio of specific to nonspecific plaques in lambda libraries screened for B27 variant alleles of estimated 99% homology to the probe. Class I genes of lesser homology were less enriched. Loss of genomic DNA during the enrichment procedure can, however, restrict application of this technique whenever starting genomic DNA is very limited. Nevertheless, the impressive reduction in cloning effort and material makes recA enrichment a useful new tool for cloning homologous genes from genomic DNA.

  16. Mutagenesis and homologous recombination in Drosophila cell lines using CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Andrew R. Bassett

    2013-12-01

    We have applied the CRISPR/Cas9 system to Drosophila S2 cells to generate targeted genetic mutations in more than 85% of alleles. By targeting a constitutive exon of the AGO1 gene, we demonstrate homozygous mutation in up to 82% of cells, thereby allowing the study of genetic knockouts in a Drosophila cell line for the first time. We have shown that homologous gene targeting is possible at 1–4% efficiency using this system, allowing for the construction of defined insertions and deletions. We demonstrate that a 1 kb homology arm length is optimal for integration by homologous gene targeting, and demonstrate its efficacy by tagging the endogenous AGO1 protein. This technology enables controlled genetic manipulation in Drosophila cell lines, and its simplicity offers the opportunity to study cellular phenotypes genome-wide.

  17. Oral region homologies in paleozoic crinoids and other plesiomorphic pentaradial echinoderms.

    Directory of Open Access Journals (Sweden)

    Thomas W Kammer

    Full Text Available The phylogenetic relationships between major groups of plesiomorphic pentaradial echinoderms, the Paleozoic crinoids, blastozoans, and edrioasteroids, are poorly understood because of a lack of widely recognized homologies. Here, we present newly recognized oral region homologies, based on the Universal Elemental Homology model for skeletal plates, in a wide range of fossil taxa. The oral region of echinoderms is mainly composed of the axial, or ambulacral, skeleton, which apparently evolved more slowly than the extraxial skeleton that forms the majority of the body. Recent phylogenetic hypotheses have focused on characters of the extraxial skeleton, which may have evolved too rapidly to preserve obvious homologies across all these groups. The axial skeleton conserved homologous suites of characters shared between various edrioasteroids and specific blastozoans, and between other blastozoans and crinoids. Although individual plates can be inferred as homologous, no directly overlapping suites of characters are shared between edrioasteroids and crinoids. Six different systems of mouth (peristome plate organization (Peristomial Border Systems are defined. These include four different systems based on the arrangement of the interradially-positioned oral plates and their peristomial cover plates, where PBS A1 occurs only in plesiomorphic edrioasteroids, PBS A2 occurs in plesiomorphic edrioasteroids and blastozoans, and PBS A3 and PBS A4 occur in blastozoans and crinoids. The other two systems have radially-positioned uniserial oral frame plates in construction of the mouth frame. PBS B1 has both orals and uniserial oral frame plates and occurs in edrioasterid and possibly edrioblastoid edrioasteroids, whereas PBS B2 has exclusively uniserial oral frame plates and is found in isorophid edrioasteroids and imbricate and gogiid blastozoans. These different types of mouth frame construction offer potential synapomorphies to aid in parsimony

  18. Long-term use and follow-up of autologous and homologous cartilage graft in rhinoplasty

    Directory of Open Access Journals (Sweden)

    Ghasemali Khorasani

    2016-05-01

    Full Text Available Background: Cartilage grafting is used in rhinoplasty and reconstructive surgeries. Autologous rib and nasal septum cartilage (auto graft is the preferred source of graft material in rhinoplasty, however, homologous cartilage (allograft has been extensively used to correct the nasal framework in nasal deformities. Autologous cartilage graft usage is restricted with complication of operation and limiting availability of tissue for extensive deformities. Alternatively, preserved costal cartilage allograft represents a readily available and easily contoured material. The current study was a formal systematic review of complications associated with autologous versus homologous cartilage grafting in rhinoplasty patients. Methods: In this cohort retrospective study, a total of 124 patients undergone primary or revision rhinoplasty using homologous or autologus grafts with postoperative follow-up ranging from 6 to 60 months were studied. The types of grafts and complications related to the grafts were evaluated. This included evaluation for warping, infection, resorption, mobility and fracture. Results: The total complications related to the cartilage grafts were 7 cases, which included 1 warped in auto graft group, three cases of graft displacement (two in allograft group and one in auto graft group and three fractures in allograft group. No infection and resorption was recorded. Complication rate (confidence interval 0.95 in autologous and homologous group were 1.25(0.4-3.88 and 2.08(0.78-5.55 in 1000 months follow up. There was no statistically significant difference between autologous and homologous group complications. Onset of complication in autologous and homologous group were 51.23(49.27-53.19 and 58.7(54.51-62.91 month respectively (P=0.81. Conclusion: The allograft cartilage has the advantage of avoiding donor-site scar. Moreover, it provides the same benefits as autologous costal cartilage with comparable complication rate. Therefore, it

  19. Towards representation stability for the second homology of the Torelli group

    CERN Document Server

    Boldsen, Søren K

    2011-01-01

    We show for g > 6 that the second homology group of the Torelli group of a surface of genus g and 1 boundary component is generated as an Sp(2g,Z)-module by the image under the stabilization map of the second homology group of the Torelli group of a surface of genus 6 and 1 boundary component. In the process we also show that the quotient of the complex of arcs with identity permutation by the Torelli group is (g-2)-connected, for one or two boundary components.

  20. Interaction between non-homologous portuguese isolates of Albugo candida and Brassica oleracea

    OpenAIRE

    Jorge, Lurdes; Dias, João Silva

    2000-01-01

    The interaction of five non-homologous portuguese isolates of A. candida (four isolated from B. rapa – Ac506, Ac508, Ac509 and Ac510, and one from Raphanus sativus) in forty B. oleracea accessions from different geographic origins was evaluated at the cotyledonar stage. Some accessions presented susceptibility to the non-homologous isolates of B. rapa, mainly head cabbage ‘Large Blood Red’ and savoy cabbage ‘Brusselse Winter’. These accessions exhibited mean levels of infection higher than 20...

  1. Homologous recombination repairs secondary replication induced DNA double-strand breaks after ionizing radiation

    OpenAIRE

    Groth, Petra; Orta, Manuel Luís; Elvers, Ingegerd; Majumder, Muntasir Mamun; Lagerqvist, Anne; Helleday, Thomas

    2012-01-01

    Ionizing radiation (IR) produces direct two-ended DNA double-strand breaks (DSBs) primarily repaired by non-homologous end joining (NHEJ). It is, however, well established that homologous recombination (HR) is induced and required for repair of a subset of DSBs formed following IR. Here, we find that HR induced by IR is drastically reduced when post-DNA damage replication is inhibited in mammalian cells. Both IR-induced RAD51 foci and HR events in the hprt gene are reduced in the presence of ...

  2. Relation between the equalized molecular chemical potential and the ionization potential of organic homologs

    Institute of Scientific and Technical Information of China (English)

    曹晨忠

    1995-01-01

    The ionization potential of organic homologs can be expressed as I_p=(∑X_i)/(a+bn).Here,X_i is the electronegativity(the average energy of valence electrons in a ground-state free atom)of the ith atomin an organic homologous molecule;n,the number of repeating units in the molecule;and(a+bn),the electronmoving range in the molecule orbit.The results of linear regression analysis show that the correlationcoefficients r are all "excellent"(r>0.990)for the 146 sets of photo electron spectroscopy data of 42 organichomologous series.

  3. Sheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture

    OpenAIRE

    Friedman, Joel

    2011-01-01

    In this paper we establish some foundations regarding sheaves of vector spaces on graphs and their invariants, such as homology groups and their limits. We then use these ideas to prove the Hanna Neumann Conjecture of the 1950's; in fact, we prove a strengthened form of the conjecture. We introduce a notion of a sheaf of vector spaces on a graph, and develop the foundations of homology theories for such sheaves. One sheaf invariant, its "maximum excess," has a number of remarkable properties....

  4. Rad51 Paralogs Remodel Pre-synaptic Rad51 Filaments to Stimulate Homologous Recombination

    OpenAIRE

    Taylor, Martin R.G.; Špírek, Mário; Chaurasiya, Kathy R.; Ward, Jordan D.; Carzaniga, Raffaella; Yu, Xiong; Egelman, Edward H.; Collinson, Lucy M.; Rueda, David; Krejci, Lumir; Boulton, Simon J.

    2015-01-01

    Summary Repair of DNA double strand breaks by homologous recombination (HR) is initiated by Rad51 filament nucleation on single-stranded DNA (ssDNA), which catalyzes strand exchange with homologous duplex DNA. BRCA2 and the Rad51 paralogs are tumor suppressors and critical mediators of Rad51. To gain insight into Rad51 paralog function, we investigated a heterodimeric Rad51 paralog complex, RFS-1/RIP-1, and uncovered the molecular basis by which Rad51 paralogs promote HR. Unlike BRCA2, which ...

  5. Chromosomal localization of the human apolipoprotein B gene and detection of homologous RNA in monkey intestine

    Energy Technology Data Exchange (ETDEWEB)

    Deeb, S.S.; Disteche, C.; Motulsky, A.G.; Lebo, R.V.; Kan, Y.W.

    1986-01-01

    A cDNA clone of the human apolipoprotein B-100 was used as a hybridization probe to detect homologous sequences in both flow-sorted and in situ metaphase chromosomes. The results indicate that the gene encoding this protein is on the distal end of the short arm of chromosome 2 (2p23-2p24). RNA isolated from monkey small intestine contained sequences (6.5 and 18 kilobases) homologous to the cDNA of apolipoprotein B-100. These results are consistent with the hypothesis that one gene codes for both the intestinal (B-48) and the hepatic (B-100) forms.

  6. Evolution of homologous sequences on the human X and Y chromosomes, outside of the meiotic pairing segment.

    OpenAIRE

    Bickmore, W A; Cooke, H. J.

    1987-01-01

    A sequence isolated from the long arm of the human Y chromosome detects a highly homologous locus on the X. This homology extends over at least 50 kb of DNA and is postulated to be the result of a transposition event between the X and Y chromosomes during recent human evolution, since homologous sequences are shown to be present on the X chromosome alone in the chimpanzee and gorilla.

  7. Single-Molecule Imaging of DNA Pairing by RecA Reveals a 3-Dimensional Homology Search

    OpenAIRE

    Forget, Anthony L.; Kowalczykowski, Stephen C.

    2012-01-01

    DNA breaks can be repaired with high-fidelity by homologous recombination. A ubiquitous protein that is essential for this DNA template-directed repair is RecA 1 . After resection of broken DNA to produce single-stranded DNA (ssDNA), RecA assembles on this ssDNA into a filament with the unique capacity to search and find DNA sequences in double-stranded DNA (dsDNA) that are homologous to the ssDNA. This homology search is vital to recombinational DNA repair, and results in homologous pairing ...

  8. Homological evolutionary vector fields in Korteweg-de Vries, Liouville, Maxwell, and several other models

    NARCIS (Netherlands)

    Kiselev, Arthemy V.

    2012-01-01

    We review the construction of homological evolutionary vector fields on infinite jet spaces and partial differential equations. We describe the applications of this concept in three tightly inter-related domains: the variational Poisson formalism (e.g., for equations of Korteweg-de Vries type), geom

  9. Detecting Sequence Homology at the Gene Cluster Level with MultiGeneBlast

    NARCIS (Netherlands)

    Medema, Marnix H.; Takano, Eriko; Breitling, Rainer; Nowick, Katja

    2013-01-01

    The genes encoding many biomolecular systems and pathways are genomically organized in operons or gene clusters. With MultiGeneBlast, we provide a user-friendly and effective tool to perform homology searches with operons or gene clusters as basic units, instead of single genes. The contextualizatio

  10. Contact homology and homotopy groups of the space of contact structures

    OpenAIRE

    Bourgeois, Frédéric

    2004-01-01

    Using contact homology, we reobtain some recent results of Geiges and Gonzalo about the fundamental group of the space of contact structures on some 3-manifolds. We show that our techniques can be used to study higher dimensional contact manifolds and higher order homotopy groups.

  11. Modification of human beta-globin locus PAC clones by homologous recombination in Escherichia coli

    NARCIS (Netherlands)

    G.P. Patrinos (George); M. de Krom (Mariken); S. Bottardi; R.J. Janssens; E. Katsantoni (Eleni); A.W. Wai; D.J. Sherratt; F.G. Grosveld (Frank); A.M.A. Imam (Ali)

    2000-01-01

    textabstractWe report here modifications of human beta-globin PAC clones by homologous recombination in Escherichia coli DH10B, utilising a plasmid temperature sensitive for replication, the recA gene and a wild-type copy of the rpsL gene which allows for an efficient selection for

  12. The C. elegans Crumbs family contains a CRB3 homolog and is not essential for viability.

    NARCIS (Netherlands)

    Waaijers, S.; Ramalho, J.J.; Koorman, T.; Kruse, E.; Boxem, M.

    2015-01-01

    Crumbs proteins are important regulators of epithelial polarity. In C. elegans, no essential role for the two described Crumbs homologs has been uncovered. Here, we identify and characterize an additional Crumbs family member in C. elegans, which we termed CRB-3 based on its similarity in size and s

  13. "药食同源"源流探讨%Theoretical Origination of Medicine and Food Homology

    Institute of Scientific and Technical Information of China (English)

    朱建平; 邓文祥; 吴彬才; 向茗; 贺妍; 黄惠勇; 谢梦洲

    2015-01-01

    The theory of medicine and food homology was put forward between 1920s and 1930s, whereas, the formation of its theory was a very long course. The origination and development on theory of medicine and food homology of dietary therapy, medicated food and food prevention from ancient China to people's republic of China were reviewed by searching some history materials. It explicated the theoretical components of homology of medicine and food, providing the theoretical foundation for developing functional food of homology of medicine and food.%本文通过对历史文献的挖掘,简述从上古时期到新中国成立之间,食养、食疗、药膳等"药食同源"理论核心内容的起源与发展,梳理"药食同源"理论的形成基础,明确"药食同源"理论的组成,为开发药食同源功能性食品提供理论依据.

  14. A work stealing based approach for enabling scalable optimal sequence homology detection

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Jeffrey A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kalyanaraman, Anantharaman [Washington State Univ., Pullman, WA (United States); Krishnamoorthy, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vishnu, Abhinav [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-01

    Sequence homology detection is central to a number of bioinformatics applications including genome sequencing and protein family characterization. Given millions of sequences, the goal is to identify all pairs of sequences that are highly similar (or “homologous”) on the basis of alignment criteria. While there are optimal alignment algorithms to compute pairwise homology, their deployment for large-scale is currently not feasible; instead, heuristic methods are used at the expense of quality. Here, we present the design and evaluation of a parallel implementation for conducting optimal homology detection on distributed memory supercomputers. Our approach uses a combination of techniques from asynchronous load balancing (viz. work stealing, dynamic task counters), data replication, and exact-matching filters to achieve homology detection at scale. Results for 2.56M sequences on up to 8K cores show parallel efficiencies of ~ 75-100%, a time-to-solution of 33s, and a rate of ~ 2.0M alignments per second.

  15. Requirements for homologation, legislation and test cycles of vehicles with advanced powertrains

    NARCIS (Netherlands)

    Riemersma, I.J.; Hendriksen, P.; Gense, N.L.J.; Smokers, R.T.M.

    2000-01-01

    Traditionally, In-Use Compliance testing is closely related to homologation legislation, as in most cases the IUC test is a derivative from the type approval test. As it is the aim of this paper to explore the future of IUC testing, this can be studied best on the basis of expectations for future ho

  16. New Proposal of Setal Homology in Schizomida and Revision of Surazomus (Hubbardiidae from Ecuador.

    Directory of Open Access Journals (Sweden)

    Osvaldo Villarreal Manzanilla

    Full Text Available The homology of three somatic systems in Schizomida is studied yielding the following results: (1 proposal of homology and chaetotaxy of abdominal setae in Surazomus; (2 revision of the cheliceral chaetotaxy in Schizomida, with suggestion of new homology scheme between Hubbardiidae and Protoschizomidae, description of a new group of setae in Hubbardiinae (G7, and division of setae group 5 in two subgroups, G5A and G5B; (3 proposal of segmental homology between trimerous and tetramerous female flagellum in Hubbardiinae with association of segment III of tri-segmented species to segments III + IV of tetra-segmented species. Considerations about the dorsal microsetae on the male flagellum are made. The genus Surazomus in Ecuador is revised. The sympatric species Surazomus palenque sp. nov. and S. kitu sp. nov. (Ecuador, Pichincha are described and illustrated. The female of S. cuenca (Rowland and Reddell, 1979 is described, with two new distributional records for the species. Surazomus cumbalensis (Kraus, 1957 is recorded for the first time from Ecuador (Pichincha.

  17. New Proposal of Setal Homology in Schizomida and Revision of Surazomus (Hubbardiidae) from Ecuador.

    Science.gov (United States)

    Manzanilla, Osvaldo Villarreal; de Miranda, Gustavo Silva; Giupponi, Alessandro Ponce de Leão

    2016-01-01

    The homology of three somatic systems in Schizomida is studied yielding the following results: (1) proposal of homology and chaetotaxy of abdominal setae in Surazomus; (2) revision of the cheliceral chaetotaxy in Schizomida, with suggestion of new homology scheme between Hubbardiidae and Protoschizomidae, description of a new group of setae in Hubbardiinae (G7), and division of setae group 5 in two subgroups, G5A and G5B; (3) proposal of segmental homology between trimerous and tetramerous female flagellum in Hubbardiinae with association of segment III of tri-segmented species to segments III + IV of tetra-segmented species. Considerations about the dorsal microsetae on the male flagellum are made. The genus Surazomus in Ecuador is revised. The sympatric species Surazomus palenque sp. nov. and S. kitu sp. nov. (Ecuador, Pichincha) are described and illustrated. The female of S. cuenca (Rowland and Reddell, 1979) is described, with two new distributional records for the species. Surazomus cumbalensis (Kraus, 1957) is recorded for the first time from Ecuador (Pichincha). PMID:26863017

  18. Germline Chromothripsis Driven by L1-Mediated Retrotransposition and Alu/Alu Homologous Recombination

    DEFF Research Database (Denmark)

    Nazaryan-Petersen, Lusine; Bertelsen, Birgitte; Bak, Mads;

    2016-01-01

    L1-endonuclease potential target sites in other breakpoints. In addition, we found four Alu elements flanking the 110-kb deletion and associated with an inversion. We suggest that chromatin looping mediated by homologous Alu elements may have brought distal DNA regions into close proximity...

  19. Boundaries of the homologous phases in Sb–Te and Bi–Te binary alloy systems

    Energy Technology Data Exchange (ETDEWEB)

    Kifune, K., E-mail: k.kifune.yw@cc.it-hiroshima.ac.jp [Hiroshima Institute of Technology, Research Center for Condensed Matter Physics, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193 (Japan); Tachizawa, T.; Kanaya, H.; Kubota, Y. [Osaka Prefecture University, Graduate School of Science, Osaka 599-8531 (Japan); Yamada, N. [Kyoto University, Department of Materials Science & Engineering, Kyoto 606-8501 (Japan); Matsunaga, T. [Panasonic Corporation, Advanced Research Division, Osaka 571-8501 (Japan)

    2015-10-05

    Highlights: • Phase boundary of the homologous phase in Sb–Te is fixed at Sb{sub 20}Te{sub 3} compound. • Crystal structure of Sb{sub 20}Te{sub 3} is refined by the 4D structure analysis. • Phase boundary of the homologous phase in Bi–Te is fixed at Bi{sub 8}Te{sub 3} compound. • Crystal structure of Bi{sub 8}Te{sub 3} is refined by the 4D structure analysis. • Difference between Sb–Te and Bi–Te systems are proposed. - Abstract: Sb–Te and Bi–Te binary systems have long-period stacking structures called homologous phases. Within these structures, two types of fundamental structural units change their numbers according to their composition, and the stacking periods also change systematically. X-ray powder diffraction data on bulk specimens with different compositions reveal both the phase boundaries of the homologous phases and the structures of the boundary phases. The boundary phases are Sb{sub 20}Te{sub 3} in the Sb–Te system and Bi{sub 8}Te{sub 3} in the Bi–Te system.

  20. Mimicking the folding pathway to improve homology-free protein structure prediction

    Science.gov (United States)

    Freed, Karl; Debartolo, Joe; Colubri, Andres; Jha, Abhishek; Fitzgerald, James; Sosnick, Tobin

    2010-03-01

    Since demonstrating that a protein's sequence encodes its structure, the prediction of structure from sequence remains an outstanding problem that impacts numerous scientific disciplines including many genome projects. By iteratively fixing secondary structure assignments of residues during Monte Carlo simulations of folding, our coarse grained model without information concerning homology or explicit side chains outperforms current homology-based secondary structure prediction methods for many proteins. The computationally rapid algorithm using only single residue (phi, psi) dihedral angle moves also generates tertiary structures of comparable accuracy to existing all-atom methods for many small proteins, particularly ones with low homology. Hence, given appropriate search strategies and scoring functions, reduced representations can be used for accurately predicting secondary structure as well as providing three-dimensional structures, thereby increasing the size of proteins approachable by homology-free methods and the accuracy of template methods whose accuracy depends on the quality of the input secondary structure. Inclusion of information from evolutionarily related sequences enhances the statistics and the accuracy of the predictions.

  1. Refinement of homology-based protein structures by molecular dynamics simulation techniques

    NARCIS (Netherlands)

    Fan, H; Mark, AE

    2004-01-01

    The use of classical molecular dynamics simulations, performed in explicit water, for the refinement of structural models of proteins generated ab initio or based on homology has been investigated. The study involved a test set of 15 proteins that were previously used by Baker and coworkers to asses

  2. Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination

    DEFF Research Database (Denmark)

    Gao, Min; Wei, Wei; Li, Ming Hua;

    2014-01-01

    (Ago) proteins and play an important role in DSB repair, though the mechanism through which they act remains unclear. Here, we report that the role of diRNAs in DSB repair is restricted to repair by homologous recombination (HR) and that it specifically relies on the effector protein Ago2 in mammalian...... to facilitate repair by HR....

  3. Homology modeling of the serotonin transporter: Insights into the primary escitalopram-binding Site

    DEFF Research Database (Denmark)

    Jørgensen, Anne Marie; Tagmose, L.; Jørgensen, A.M.M.;

    2007-01-01

    -ray structure of the closely related amino acid transporter, Aquifex aeolicus leucine transporter (LeuT), provides an opportunity to develop a three-dimensional model of the structure of SERT. We present herein a homology model of SERT using LeuT as the template and containing escitalopram as a bound ligand...

  4. An RNA secondary structure bias for non-homologous reverse transcriptase-mediated deletions in vivo

    DEFF Research Database (Denmark)

    Duch, Mogens; Carrasco, Maria L; Jespersen, Thomas;

    2004-01-01

    result from template switching during first-strand cDNA synthesis and that the choice of acceptor sites for non-homologous recombination are guided by non-paired regions. Our results may have implications for recombination events taking place within structured regions of retroviral RNA genomes......, especially in the absence of longer stretches of sequence similarity....

  5. Impact of template choice on homology model efficiency in virtual screening.

    Science.gov (United States)

    Rataj, Krzysztof; Witek, Jagna; Mordalski, Stefan; Kosciolek, Tomasz; Bojarski, Andrzej J

    2014-06-23

    Homology modeling is a reliable method of predicting the three-dimensional structures of proteins that lack NMR or X-ray crystallographic data. It employs the assumption that a structural resemblance exists between closely related proteins. Despite the availability of many crystal structures of possible templates, only the closest ones are chosen for homology modeling purposes. To validate the aforementioned approach, we performed homology modeling of four serotonin receptors (5-HT1AR, 5-HT2AR, 5-HT6R, 5-HT7R) for virtual screening purposes, using 10 available G-Protein Coupled Receptors (GPCR) templates with diverse evolutionary distances to the targets, with various approaches to alignment construction and model building. The resulting models were further validated in two steps by means of ligand docking and enrichment calculation, using Glide software. The final quality of the models was determined in virtual screening-like experiments by the AUROC score of the resulting ROC curves. The outcome of this research showed that no correlation between sequence identity and model quality was found, leading to the conclusion that the closest phylogenetic relative is not always the best template for homology modeling.

  6. A recurrent translocation is mediated by homologous recombination between HERV-H elements

    Directory of Open Access Journals (Sweden)

    Hermetz Karen E

    2012-01-01

    Full Text Available Abstract Background Chromosome rearrangements are caused by many mutational mechanisms; of these, recurrent rearrangements can be particularly informative for teasing apart DNA sequence-specific factors. Some recurrent translocations are mediated by homologous recombination between large blocks of segmental duplications on different chromosomes. Here we describe a recurrent unbalanced translocation casued by recombination between shorter homologous regions on chromosomes 4 and 18 in two unrelated children with intellectual disability. Results Array CGH resolved the breakpoints of the 6.97-Megabase (Mb loss of 18q and the 7.30-Mb gain of 4q. Sequencing across the translocation breakpoints revealed that both translocations occurred between 92%-identical human endogenous retrovirus (HERV elements in the same orientation on chromosomes 4 and 18. In addition, we find sequence variation in the chromosome 4 HERV that makes one allele more like the chromosome 18 HERV. Conclusions Homologous recombination between HERVs on the same chromosome is known to cause chromosome deletions, but this is the first report of interchromosomal HERV-HERV recombination leading to a translocation. It is possible that normal sequence variation in substrates of non-allelic homologous recombination (NAHR affects the alignment of recombining segments and influences the propensity to chromosome rearrangement.

  7. Are Homologous Radio Bursts Driven by Solar Post-Flare Loops?

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three particularly complex radio bursts (2001 October 19, 2001 April 10 and 2003 October 26) obtained with the spectrometers (0.65-7.6 GHz) at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC, Beijing and Yunnan) and other instruments (NoRH, TRACE and SXT) are presented. They each have two groups of peaks occurring in different frequency ranges (broad-band microwave and narrow-band decimeter wavelengths). We stress that the second group of burst peaks that occurred in the late phase of the flares and associated with post-flare loops may be homologous radio bursts. We think that they are driven by the post-flare loops. In contrast to the time profiles of the radio bursts and the images of coronal magnetic polarities, we are able to find that the three events are caused by the active regions including main single-bipole magnetic structures, which are associated with multipole magnetic structures during the flare evolutions. In particular, we point out that the later decimetric radio bursts are possibly the radio counterparts of the homologous flares (called "homologous radio bursts" by us), which are also driven by the single-bipole magnetic structures. By examining the evolutions of the magnetic polarities of sources (17 GHz),we could presume that the drivers of the homologous radio bursts are new and/or recurring appearances/disappearances of the magnetic polarities of radio sources, and that the triggers are the magnetic reconnections of single-bipole configurations.

  8. CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles.

    Science.gov (United States)

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole; Petersen, Thomas Nordahl

    2010-07-01

    CPHmodels-3.0 is a web server predicting protein 3D structure by use of single template homology modeling. The server employs a hybrid of the scoring functions of CPHmodels-2.0 and a novel remote homology-modeling algorithm. A query sequence is first attempted modeled using the fast CPHmodels-2.0 profile-profile scoring function suitable for close homology modeling. The new computational costly remote homology-modeling algorithm is only engaged provided that no suitable PDB template is identified in the initial search. CPHmodels-3.0 was benchmarked in the CASP8 competition and produced models for 94% of the targets (117 out of 128), 74% were predicted as high reliability models (87 out of 117). These achieved an average RMSD of 4.6 A when superimposed to the 3D structure. The remaining 26% low reliably models (30 out of 117) could superimpose to the true 3D structure with an average RMSD of 9.3 A. These performance values place the CPHmodels-3.0 method in the group of high performing 3D prediction tools. Beside its accuracy, one of the important features of the method is its speed. For most queries, the response time of the server is web server is available at http://www.cbs.dtu.dk/services/CPHmodels/.

  9. Homology and repair of UV-irradiated plasmid DNA in Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Cabrea-Juarez, E.; Setlow, J.K.

    1983-02-01

    UV-irradiated plasmid pNov1 containing a cloned fragment of chromosomal DNA could be repaired by excision, but plasmid p2265 without homology to the chromosome could not. Establishment of pNov1 was more UV resistant in Rec/sup -/ than in Rec/sup +/ cells. 19 references, 2 figures.

  10. Increasing coverage of transcription factor position weight matrices through domain-level homology.

    Directory of Open Access Journals (Sweden)

    Brady Bernard

    Full Text Available Transcription factor-DNA interactions, central to cellular regulation and control, are commonly described by position weight matrices (PWMs. These matrices are frequently used to predict transcription factor binding sites in regulatory regions of DNA to complement and guide further experimental investigation. The DNA sequence preferences of transcription factors, encoded in PWMs, are dictated primarily by select residues within the DNA binding domain(s that interact directly with DNA. Therefore, the DNA binding properties of homologous transcription factors with identical DNA binding domains may be characterized by PWMs derived from different species. Accordingly, we have implemented a fully automated domain-level homology searching method for identical DNA binding sequences.By applying the domain-level homology search to transcription factors with existing PWMs in the JASPAR and TRANSFAC databases, we were able to significantly increase coverage in terms of the total number of PWMs associated with a given species, assign PWMs to transcription factors that did not previously have any associations, and increase the number of represented species with PWMs over an order of magnitude. Additionally, using protein binding microarray (PBM data, we have validated the domain-level method by demonstrating that transcription factor pairs with matching DNA binding domains exhibit comparable DNA binding specificity predictions to transcription factor pairs with completely identical sequences.The increased coverage achieved herein demonstrates the potential for more thorough species-associated investigation of protein-DNA interactions using existing resources. The PWM scanning results highlight the challenging nature of transcription factors that contain multiple DNA binding domains, as well as the impact of motif discovery on the ability to predict DNA binding properties. The method is additionally suitable for identifying domain-level homology mappings to

  11. Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts

    KAUST Repository

    Huang, Chao-Li

    2015-03-15

    Background: Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. Results: Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. Conclusion: Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification. © Huang et al.

  12. Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia).

    Science.gov (United States)

    Newcomb, James M; Sakurai, Akira; Lillvis, Joshua L; Gunaratne, Charuni A; Katz, Paul S

    2012-06-26

    How neural circuit evolution relates to behavioral evolution is not well understood. Here the relationship between neural circuits and behavior is explored with respect to the swimming behaviors of the Nudipleura (Mollusca, Gastropoda, Opithobranchia). Nudipleura is a diverse monophyletic clade of sea slugs among which only a small percentage of species can swim. Swimming falls into a limited number of categories, the most prevalent of which are rhythmic left-right body flexions (LR) and rhythmic dorsal-ventral body flexions (DV). The phylogenetic distribution of these behaviors suggests a high degree of homoplasy. The central pattern generator (CPG) underlying DV swimming has been well characterized in Tritonia diomedea and in Pleurobranchaea californica. The CPG for LR swimming has been elucidated in Melibe leonina and Dendronotus iris, which are more closely related. The CPGs for the categorically distinct DV and LR swimming behaviors consist of nonoverlapping sets of homologous identified neurons, whereas the categorically similar behaviors share some homologous identified neurons, although the exact composition of neurons and synapses in the neural circuits differ. The roles played by homologous identified neurons in categorically distinct behaviors differ. However, homologous identified neurons also play different roles even in the swim CPGs of the two LR swimming species. Individual neurons can be multifunctional within a species. Some of those functions are shared across species, whereas others are not. The pattern of use and reuse of homologous neurons in various forms of swimming and other behaviors further demonstrates that the composition of neural circuits influences the evolution of behaviors. PMID:22723353

  13. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes.

    Directory of Open Access Journals (Sweden)

    Bekim Sadikovic

    Full Text Available Mitochondrial DNA (mtDNA deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM, progressive external ophthalmoplegia (PEO, and Kearns-Sayre syndrome (KSS, to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (<6 years old showed a diffused pattern of deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41. Only 15% (3/20 of the young patients (<6 years old carry the 5 kb common deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17 exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier

  14. CjbHLH1 homologs regulate sanguinarine biosynthesis in Eschscholzia californica cells.

    Science.gov (United States)

    Yamada, Yasuyuki; Motomura, Yukiya; Sato, Fumihiko

    2015-05-01

    Isoquinoline alkaloids (IQAs), terpenoid indole alkaloid and nicotine are some of the most studied alkaloids. Recently, several groups have reported that the biosynthesis of these alkaloids is regulated by basic helix-loop-helix (bHLH) transcription factors. Whereas the biosyntheses of nicotine and terpenoid indole alkaloid in Nicotiana plants and Catharanthus roseus are directly or indirectly regulated by Arabidopsis thaliana MYC2 homologs, a non-MYC2-type bHLH transcription factor, CjbHLH1, comprehensively regulates berberine biosynthesis in Coptis japonica. Interestingly, CjbHLH1 homologous genes were found in many IQA-producing plant species, which suggests that non-MYC2-type CjbHLH homologs are specifically associated with IQA biosynthesis. To test whether CjbHLH1 homologs are involved in the biosynthesis of IQA in a plant other than C. japonica, we isolated two genes homologous to CjbHLH1, i.e. EcbHLH1-1 and EcbHLH1-2, from Eschscholzia californica (California poppy). Stable transformants in which the expression levels of EcbHLH1 genes were constitutively suppressed by RNA interference (RNAi) showed a reduced expression of some IQA biosynthetic enzyme genes. A metabolite analysis confirmed that the suppression of EcbHLH1, particularly EcbHLH1-2, caused a decrease in sanguinarine accumulation in transgenic cultured cells. These results indicate that non-MYC2-type EcbHLH1s regulate IQA biosynthesis in California poppy like CjbHLH1 in C. japonica. PMID:25713177

  15. A family of cell-adhering peptides homologous to fibrinogen C-termini

    International Nuclear Information System (INIS)

    Research highlights: → Cell-adhesive sequences homologous to fibrinogen C-termini exist in other proteins. → The extended homologous cell-adhesive C-termini peptides family is termed Haptides. → In membrane-like environment random coiled Haptides adopt a helical conformation. → Replacing positively charged residues with alanine reduces Haptides activity. -- Abstract: A family of cell-adhesive peptides homologous to sequences on different chains of fibrinogen was investigated. These homologous peptides, termed Haptides, include the peptides Cβ, preCγ, and CαE, corresponding to sequences on the C-termini of fibrinogen chains β, γ, and αE, respectively. Haptides do not affect cell survival and rate of proliferation of the normal cell types tested. The use of new sensitive assays of cell adhesion clearly demonstrated the ability of Haptides, bound to inert matrices, to mediate attachment of different matrix-dependent cell types including normal fibroblasts, endothelial, and smooth muscle cells. Here we present new active Haptides bearing homologous sequences derived from the C-termini of other proteins, such as angiopoietin 1 and 2, tenascins C and X, and microfibril-associated glycoprotein-4. The cell adhesion properties of all the Haptides were found to be associated mainly with their 11 N-terminal residues. Mutated preCγ peptides revealed that positively charged residues account for their attachment effect. These results suggest a mechanism of direct electrostatic interaction of Haptides with the cell membrane. The extended Haptides family may be applied in modulating adhesion of cells to scaffolds for tissue regeneration and for enhancement of nanoparticulate transfection into cells.

  16. Illustrating and homology modeling the proteins of the Zika virus [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2016-09-01

    Full Text Available The Zika virus (ZIKV is a flavivirus of the family Flaviviridae, which is similar to dengue virus, yellow fever and West Nile virus. Recent outbreaks in South America, Latin America, the Caribbean and in particular Brazil have led to concern for the spread of the disease and potential to cause Guillain-Barré syndrome and microcephaly. Although ZIKV has been known of for over 60 years there is very little in the way of knowledge of the virus with few publications and no crystal structures. No antivirals have been tested against it either in vitro or in vivo. ZIKV therefore epitomizes a neglected disease. Several suggested steps have been proposed which could be taken to initiate ZIKV antiviral drug discovery using both high throughput screens as well as structure-based design based on homology models for the key proteins. We now describe preliminary homology models created for NS5, FtsJ, NS4B, NS4A, HELICc, DEXDc, peptidase S7, NS2B, NS2A, NS1, E stem, glycoprotein M, propeptide, capsid and glycoprotein E using SWISS-MODEL. Eleven out of 15 models pass our model quality criteria for their further use. While a ZIKV glycoprotein E homology model was initially described in the immature conformation as a trimer, we now describe the mature dimer conformer which allowed the construction of an illustration of the complete virion. By comparing illustrations of ZIKV based on this new homology model and the dengue virus crystal structure we propose potential differences that could be exploited for antiviral and vaccine design. The prediction of sites for glycosylation on this protein may also be useful in this regard. While we await a cryo-EM structure of ZIKV and eventual crystal structures of the individual proteins, these homology models provide the community with a starting point for structure-based design of drugs and vaccines as well as a for computational virtual screening.

  17. Characterization of homologous and heterologous adaptive immune responses in porcine reproductive and respiratory syndrome virus infection

    Directory of Open Access Journals (Sweden)

    Díaz Ivan

    2012-04-01

    Full Text Available Abstract The present study characterized the homologous and heterologous immune response in type-I porcine reproductive and respiratory syndrome virus (PRRSV infection. Two experiments were conducted: in experiment 1, eight pigs were inoculated with PRRSV strain 3262 and 84 days post-inoculation (dpi they were challenged with either strain 3262 or strain 3267 and followed for the next 14 days (98 dpi. In experiment 2, eight pigs were inoculated with strain 3267 and challenged at 84 dpi as above. Clinical course, viremia, humoral response (neutralizing and non-neutralizing antibodies, NA and virus-specific IFN-γ responses (ELISPOT were evaluated all throughout the study. Serum levels of IL-1, IL-6, IL-8, TNF-α and TGF-β were determined (ELISA after the second challenge. In experiment 1 primo-inoculation with strain 3262 induced viremia of ≤ 28 days, low titres of homologous NA but strong IFN-γ responses. In contrast, strain 3267 induced longer viremias (up to 56 days, higher NA titres (≤ 6 log2 and lower IFN-γ responses. Inoculation with 3267 produced higher serum IL-8 levels. After the re-challenge at 84 dpi, pigs in experiment 1 developed mostly a one week viremia regardless of the strain used. In experiment 2, neither the homologous nor the heterologous challenge resulted in detectable viremia although PRRSV was present in tonsils of some animals. Homologous re-inoculation with 3267 produced elevated TGF-β levels in serum for 7–14 days but this did not occur with the heterologous re-inoculation. In conclusion, inoculation with different PRRSV strains result in different virological and immunological outcomes and in different degrees of homologous and heterologous protection.

  18. The role of Deinococcus radiodurans RecFOR proteins in homologous recombination.

    Science.gov (United States)

    Satoh, Katsuya; Kikuchi, Masahiro; Ishaque, Abu M; Ohba, Hirofumi; Yamada, Mitsugu; Tejima, Kouhei; Onodera, Takefumi; Narumi, Issay

    2012-04-01

    Deinococcus radiodurans exhibits extraordinary resistance to the lethal effect of DNA-damaging agents, a characteristic attributed to its highly proficient DNA repair capacity. Although the D. radiodurans genome is clearly devoid of recBC and addAB counterparts as RecA mediators, the genome possesses all genes associated with the RecFOR pathway. In an effort to gain insights into the role of D. radiodurans RecFOR proteins in homologous recombination, we generated recF, recO and recR disruptant strains and characterized the disruption effects. All the disruptant strains exhibited delayed growth relative to the wild-type, indicating that the RecF, RecO and RecR proteins play an important role in cell growth under normal growth conditions. A slight reduction in transformation efficiency was observed in the recF and recO disruptant strains compared to the wild-type strain. Interestingly, disruption of recR resulted in severe reduction of the transformation efficiency. On the other hand, the recF disruptant strain was the most sensitive phenotype to γ rays, UV irradiation and mitomycin C among the three disruptants. In the recF disruptant strain, the intracellular level of the LexA1 protein did not decrease following γ irradiation, suggesting that a large amount of the RecA protein remains inactive despite being induced. These results demonstrate that the RecF protein plays a crucial role in the homologous recombination repair process by facilitating RecA activation in D. radiodurans. Thus, the RecF and RecR proteins are involved in the RecA activation and the stability of incoming DNA, respectively, during RecA-mediated homologous recombination processes that initiated the ESDSA pathway in D. radiodurans. Possible mechanisms that involve the RecFOR complex in homologous intermolecular recombination and homologous recombination repair processes are also discussed. PMID:22321371

  19. Non-homologous isofunctional enzymes: A systematic analysis of alternative solutions in enzyme evolution

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2010-04-01

    Full Text Available Abstract Background Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (nonhomologous relationships between proteins. Results We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. Conclusions These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity. Reviewers This article was reviewed by Andrei

  20. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level

    Science.gov (United States)

    Abascal, Federico; Ezkurdia, Iakes; Rodriguez-Rivas, Juan; Rodriguez, Jose Manuel; del Pozo, Angela; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L.

    2015-01-01

    Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved—all the homologous exons we identified evolved over 460 million years ago—and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles. PMID:26061177

  1. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level.

    Directory of Open Access Journals (Sweden)

    Federico Abascal

    2015-06-01

    Full Text Available Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved--all the homologous exons we identified evolved over 460 million years ago--and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles.

  2. An Improved Homologous Recombination Method for Rapid Cloning of the Antibody Heavy Chain Gene and Its Comparison with the Homologous Recombination and Traditional Cloning Methods

    OpenAIRE

    Masoumeh Hajirezaei; Mojtaba Darbouy; Manoochehr Rasouli; Bahram Kazemi

    2015-01-01

    Background: The homologous recombination (HR) is one of the conventional cloning methods for the production of recombinant DNA. It is a quick method for in vivo DNA cloning without using the high cost restriction enzymes. A few modifications in the cloning procedure can increase the efficiency of this method.Materials and Methods: In this study, effect of heating on the rate of the IgG1 heavy chain gene cloning was investigated in the HR method and then it was compared with HR method without ...

  3. Modeling Human Serum Albumin Tertiary Structure to Teach Upper-Division Chemistry Students Bioinformatics and Homology Modeling Basics

    Science.gov (United States)

    Petrovic, Dus?an; Zlatovic´, Mario

    2015-01-01

    A homology modeling laboratory experiment has been developed for an introductory molecular modeling course for upper-division undergraduate chemistry students. With this experiment, students gain practical experience in homology model preparation and assessment as well as in protein visualization using the educational version of PyMOL…

  4. Mutation of the BRCA1 SQ-cluster results in aberrant mitosis, reduced homologous recombination, and a compensatory increase in non-homologous end joining.

    Science.gov (United States)

    Beckta, Jason M; Dever, Seth M; Gnawali, Nisha; Khalil, Ashraf; Sule, Amrita; Golding, Sarah E; Rosenberg, Elizabeth; Narayanan, Aarthi; Kehn-Hall, Kylene; Xu, Bo; Povirk, Lawrence F; Valerie, Kristoffer

    2015-09-29

    Mutations in the breast cancer susceptibility 1 (BRCA1) gene are catalysts for breast and ovarian cancers. Most mutations are associated with the BRCA1 N- and C-terminal domains linked to DNA double-strand break (DSB) repair. However, little is known about the role of the intervening serine-glutamine (SQ) - cluster in the DNA damage response beyond its importance in regulating cell cycle checkpoints. We show that serine-to-alanine alterations at critical residues within the SQ-cluster known to be phosphorylated by ATM and ATR result in reduced homologous recombination repair (HRR) and aberrant mitosis. While a S1387A BRCA1 mutant - previously shown to abrogate S-phase arrest in response to radiation - resulted in only a modest decrease in HRR, S1387A together with an additional alteration, S1423A (BRCA12P), reduced HRR to vector control levels and similar to a quadruple mutant also including S1457A and S1524A (BRCA14P). These effects appeared to be independent of PALB2. Furthermore, we found that BRCA14P promoted a prolonged and struggling HRR late in the cell cycle and shifted DSB repair from HRR to non-homologous end joining which, in the face of irreparable chromosomal damage, resulted in mitotic catastrophe. Altogether, SQ-cluster phosphorylation is critical for allowing adequate time for completing normal HRR prior to mitosis and preventing cells from entering G1 prematurely resulting in gross chromosomal aberrations.

  5. Either non-homologous ends joining or homologous recombination is required to repair double-strand breaks in the genome of macrophage-internalized Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Anna Brzostek

    Full Text Available The intracellular pathogen Mycobacterium tuberculosis (Mtb is constantly exposed to a multitude of hostile conditions and is confronted by a variety of potentially DNA-damaging assaults in vivo, primarily from host-generated antimicrobial toxic radicals. Exposure to reactive nitrogen species and/or reactive oxygen species causes different types of DNA damage, including oxidation, depurination, methylation and deamination, that can result in single- or double-strand breaks (DSBs. These breaks affect the integrity of the whole genome and, when left unrepaired, can lead to cell death. Here, we investigated the role of the DSB repair pathways, homologous recombination (HR and non-homologous ends joining (NHEJ, in the survival of Mtb inside macrophages. To this end, we constructed Mtb strains defective for HR (ΔrecA, NHEJ [Δ(ku,ligD], or both DSB repair systems [Δ(ku,ligD,recA]. Experiments using these strains revealed that either HR or NHEJ is sufficient for the survival and propagation of tubercle bacilli inside macrophages. Inhibition of nitric oxide or superoxide anion production with L-NIL or apocynin, respectively, enabled the Δ(ku,ligD,recA mutant strain lacking both systems to survive intracellularly. Complementation of the Δ(ku,ligD,recA mutant with an intact recA or ku-ligD rescued the ability of Mtb to propagate inside macrophages.

  6. Carbamoylcholine homologs

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Frølund, Bente; Bräuner-Osborne, Hans;

    2003-01-01

    were introduced in the carbamate moiety of 7. In a [3H]epibatidine binding assay, the Ki values of 7 and its analogs at rat alpha2beta2, alpha4beta2, alpha2beta4, alpha3beta4, and alpha4beta4 nAChRs, stably expressed in mammalian cell lines, ranged from low nanomolar to midmicromolar concentrations...

  7. HomPPI: a class of sequence homology based protein-protein interface prediction methods

    Directory of Open Access Journals (Sweden)

    Dobbs Drena

    2011-06-01

    Full Text Available Abstract Background Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate. Results We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i NPS-HomPPI (Non partner-specific HomPPI, which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii PS-HomPPI (Partner-specific HomPPI, which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of

  8. Chromosome movements promoted by the mitochondrial protein SPD-3 are required for homology search during Caenorhabditis elegans meiosis.

    Directory of Open Access Journals (Sweden)

    Leticia Labrador

    2013-05-01

    Full Text Available Pairing of homologous chromosomes during early meiosis is essential to prevent the formation of aneuploid gametes. Chromosome pairing includes a step of homology search followed by the stabilization of homolog interactions by the synaptonemal complex (SC. These events coincide with dramatic changes in nuclear organization and rapid chromosome movements that depend on cytoskeletal motors and are mediated by SUN-domain proteins on the nuclear envelope, but how chromosome mobility contributes to the pairing process remains poorly understood. We show that defects in the mitochondria-localizing protein SPD-3 cause a defect in homolog pairing without impairing nuclear reorganization or SC assembly, which results in promiscuous installation of the SC between non-homologous chromosomes. Preventing SC assembly in spd-3 mutants does not improve homolog pairing, demonstrating that SPD-3 is required for homology search at the start of meiosis. Pairing center regions localize to SUN-1 aggregates at meiosis onset in spd-3 mutants; and pairing-promoting proteins, including cytoskeletal motors and polo-like kinase 2, are normally recruited to the nuclear envelope. However, quantitative analysis of SUN-1 aggregate movement in spd-3 mutants demonstrates a clear reduction in mobility, although this defect is not as severe as that seen in sun-1(jf18 mutants, which also show a stronger pairing defect, suggesting a correlation between chromosome-end mobility and the efficiency of pairing. SUN-1 aggregate movement is also impaired following inhibition of mitochondrial respiration or dynein knockdown, suggesting that mitochondrial function is required for motor-driven SUN-1 movement. The reduced chromosome-end mobility of spd-3 mutants impairs coupling of SC assembly to homology recognition and causes a delay in meiotic progression mediated by HORMA-domain protein HTP-1. Our work reveals how chromosome mobility impacts the different early meiotic events that promote

  9. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Larionov, V.; Kouprina, N. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States)]|[Institute of Cytology, St. Petersburg, (Russian Federation); Edlarov, M. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States)]|[Center of Bioengineering, Moscow, (Russian Federation); Perkins, E.; Porter, G.; Resnick, M.A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States)

    1993-12-31

    Rearrangement and deletion within plasmid DNA is commonly observed during transformation. We have examined the mechanisms of transformation-associated recombination in the yeast Saccharomyces cerevisiae using a plasmid system which allowed the effects of physical state and/or extent of homology on recombination to be studied. The plasmid contains homologous or diverged (19%) DNA repeats separated by a genetically detectable color marker. Recombination during transformation for covalently closed circular plasmids was over 100-fold more frequent than during mitotic growth. The frequency of recombination is partly dependent on the method of transformation in that procedures involving lithium acetate or spheroplasting yield higher frequencies than electroporation. When present in the repeats, unique single-strand breaks that are ligatable, as well as double-strand breaks, lead to high levels of recombination between diverged and identical repeats. The transformation-associated recombination between repeat DNA`s is under the influence of the RADS2, RADI and the RNCI genes,

  10. Interaction of Mouse Pem Protein and Cell Division Cycle 37 Homolog

    Institute of Scientific and Technical Information of China (English)

    Fen GUO; Yue-Qin LI; Shi-Qian LI; Zhi-Wen LUO; Xin ZHANG; Dong-Sheng TANG; Tian-Hong ZHOU

    2005-01-01

    Mouse Pem, a homeobox gene, encodes a protein consisting of 210 amino acid residues. To study the function of mouse Pem protein, we used the yeast two-hybrid system to screen the library of 7-day mouse embryo with full-length mouse Pem eDNA. Fifty-two colonies were obtained after 1.57×108 colonies were screened by nutrition limitation and β-galactosidase assay. Seven individual insert fragments were obtained from the library, and three of them were identified, one of which was confirmed to be the cell division cycle 37 (Cdc37) homolog gene by sequencing. The interaction between mouse Pem and Cdc37homolog was then confirmed by glutathione S-transferase pull-down assay, and the possible interaction model was suggested.

  11. Lithium Halomethylcarbenoids: Preparation and Use in the Homologation of Carbon Electrophiles.

    Science.gov (United States)

    Pace, Vittorio; Holzer, Wolfgang; De Kimpe, Norbert

    2016-08-01

    α-Halomethyllithium carbenoids are useful homologating reagents which - reacting under proper reaction conditions as carbanions - enable the installation via nucleophilic addition of a reactive halomethyl fragment onto a preformed carbon-heteroatom bond. The pronounced thermolability represented - since seminal studies by Köbrich - the Achilles' heel of these reagents: the use of Barbier-type methodologies (i.e., the electrophile should be present in the reaction mixture prior to the formation of the carbenoid) was pivotal in order to suppress decomposition through α-elimination processes. Nowadays, the use of low temperatures (-78 °C) guarantees reliable procedures and, significantly, the employment of microreactor technologies allows external trapping to be performed even at higher temperatures as reported by Luisi. We will discuss the α-halomethyllithium-mediated homologations of a series of carbon electrophiles such as carbonyl compounds, imines, esters, Weinreb amides, and isocyanates. PMID:27381551

  12. The σ enigma: bacterial σ factors, archaeal TFB and eukaryotic TFIIB are homologs.

    Science.gov (United States)

    Burton, Samuel P; Burton, Zachary F

    2014-01-01

    Structural comparisons of initiating RNA polymerase complexes and structure-based amino acid sequence alignments of general transcription initiation factors (eukaryotic TFIIB, archaeal TFB and bacterial σ factors) show that these proteins are homologs. TFIIB and TFB each have two-five-helix cyclin-like repeats (CLRs) that include a C-terminal helix-turn-helix (HTH) motif (CLR/HTH domains). Four homologous HTH motifs are present in bacterial σ factors that are relics of CLR/HTH domains. Sequence similarities clarify models for σ factor and TFB/TFIIB evolution and function and suggest models for promoter evolution. Commitment to alternate modes for transcription initiation appears to be a major driver of the divergence of bacteria and archaea. PMID:25483602

  13. Mutants of Streptomyces roseosporus that express enhanced recombination within partially homologous genes.

    Science.gov (United States)

    Hosted, T J; Baltz, R H

    1996-10-01

    Streptomyces roseosporus mutants that express enhanced recombination between partially homologous (homeologous) sequences were isolated by selection for recombination between the bacteriophage phi C31 derivative KC570 containing the Streptomyces coelicolor glucose kinase (glk) gene and the S. roseosporus chromosome. The frequencies of homeologous recombination in the ehr mutants were determined by measuring the chromosomal insertion frequencies of plasmids containing S. coelicolor glnA or whiG genes. S. roseosporus ehr mutants showed 10(2)- to 10(4)-fold increases in homeologous recombination relative to Ehr+ strains, but no increase in homologous recombination. Southern hybridization analysis revealed single unique sites for the insertion of each of the plasmids, and the crossovers occurred in frame and in proper translational register, yielding functional chimeric glnA and whiG genes.

  14. Schizosaccharomyces pombe Mms1 channels repair of perturbed replication into Rhp51 independent homologous recombination

    DEFF Research Database (Denmark)

    Vejrup-Hansen, Rasmus; Mizuno, Ken'Ichi; Miyabe, Izumi;

    2011-01-01

    In both Schizosaccharomyces pombe and Saccharomyces cerevisiae, Mms22 and Mms1 form a complex with important functions in the response to DNA damage, loss of which leads to perturbations during replication. Furthermore, in S. cerevisiae, Mms1 has been suggested to function in concert with a Cullin......-like protein, Rtt101/Cul8, a potential paralog of Cullin 4. We performed epistasis analysis between ¿mms1 and mutants of pathways with known functions in genome integrity, and measured the recruitment of homologous recombination proteins to blocked replication forks and recombination frequencies. We show that...... particularly important when a single strand break is converted into a double strand break during replication. Genetic data connect Mms1 to a Mus81 and Rad22(Rad52) dependent, but Rhp51 independent, branch of homologous recombination. This is supported by results demonstrating that Mms1 is recruited to a site...

  15. Chromosome sites play dual roles to establish homologous synapsisduring meiosis in C. elegans

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, Amy J.; Phillips, Carolyn M.; Bhalla, Needhi; Weiser,Pinky; Villeneuve, Anne M.; Dernburg, Abby F.

    2005-06-05

    required for accurate segregation of homologous chromosomesduring meiosisin C. elegans. We find that these sites play two distinctroles that contribute to proper segregation. Chromosomes lacking PCsusually fail to synapse and also lack a synapsis-independentstabilization activity. The presence of a PC on justone copy of achromosome pair promotes synapsis but does not supportsynapsis-independent pairing stabilization, indicating that thesefunctions are separable. Once initiated, synapsis is highly processive,even between non homologous chromosomes of disparate lengths, elucidatinghow translocations suppress meiotic recombination in C. elegans. Thesefindings suggest a multistep pathway for chromosome synapsis in which PCsimpart selectivity and efficiency through a kinetic proofreadingmechanism. We speculate that concentration of these activities at oneregion per chromosome may have co-evolved with the loss of a pointcentromere to safeguard karyotype stability.

  16. Thermodynamic Properties of Selected Homologous Series of Ionic Liquids Calculated Using Molecular Dynamics.

    Science.gov (United States)

    Červinka, Ctirad; Pádua, Agilio A H; Fulem, Michal

    2016-03-10

    This work presents a molecular dynamics simulation study concerning the thermodynamic data of ionic liquids (ILs) including phase change enthalpies, liquid phase densities, radial and spatial distribution functions, and diffusive properties. Three homologous series of ILs were selected for this study, namely, 1-alkyl-3-methylimidazolium tetrafluoroborates, hexafluorophosphates, and 1,1,2,2-tetrafluoroethanesulfonates, so that properties of 36 ILs are calculated in total. The trends of calculated properties are compared to available experimental data and thoroughly discussed in context of the homologous series. The calculated trends of the vaporization enthalpies within the series are supported by analyzing the structural properties of the ILs. An excellent agreement of calculated structural properties (liquid phase density) with the experimental counterparts is reached. The calculated enthalpic properties are overestimated considerably; thus, further development of the force fields for ILs is required. PMID:26848831

  17. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs.

    Directory of Open Access Journals (Sweden)

    Zita Nagy

    2016-02-01

    Full Text Available DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR, a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1 is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ and Homologous Recombination (HR repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose Polymerases (PARPs TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation.

  18. Endogenous hepatitis C virus homolog fragments in European rabbit and hare genomes replicate in cell culture.

    Directory of Open Access Journals (Sweden)

    Eliane Silva

    Full Text Available Endogenous retroviruses, non-retroviral RNA viruses and DNA viruses have been found in the mammalian genomes. The origin of Hepatitis C virus (HCV, the major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma in humans, remains unclear since its discovery. Here we show that fragments homologous to HCV structural and non-structural (NS proteins present in the European rabbit (Oryctolagus cuniculus and hare (Lepus europaeus genomes replicate in bovine cell cultures. The HCV genomic homolog fragments were demonstrated by RT-PCR, PCR, mass spectrometry, and replication in bovine cell cultures by immunofluorescence assay (IFA and immunogold electron microscopy (IEM using specific MAbs for HCV NS3, NS4A, and NS5 proteins. These findings may lead to novel research approaches on the HCV origin, genesis, evolution and diversity.

  19. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs.

    Science.gov (United States)

    Nagy, Zita; Kalousi, Alkmini; Furst, Audrey; Koch, Marc; Fischer, Benoit; Soutoglou, Evi

    2016-02-01

    DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR), a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1) is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs) by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose) Polymerases (PARPs) TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation. PMID:26845027

  20. Approximating cycles in a shortest basis of the first homology group from point data

    International Nuclear Information System (INIS)

    Inference of topological and geometric attributes of a hidden manifold from its point data is a fundamental problem arising in many scientific studies and engineering applications. In this paper, we present an algorithm to compute a set of cycles from a point data that presumably sample a smooth manifold M subset of Rd. These cycles approximate a shortest basis of the first homology group H1(M) over coefficients in the finite field Z2. Previous results addressed the issue of computing the rank of the homology groups from point data, but there is no result on approximating the shortest basis of a manifold from its point sample. In arriving at our result, we also present a polynomial time algorithm for computing a shortest basis of H1(K) for any finite simplicial complex K whose edges have non-negative weights. (paper)

  1. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs

    Science.gov (United States)

    Furst, Audrey; Koch, Marc; Fischer, Benoit; Soutoglou, Evi

    2016-01-01

    DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR), a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1) is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs) by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose) Polymerases (PARPs) TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation. PMID:26845027

  2. A homological multi-information fusion method for processing gastric tumor tissue pathological images

    Institute of Scientific and Technical Information of China (English)

    LI Tian-gang; WANG Su-pin; QIN Chen

    2005-01-01

    A homological multi-information image fusion method was introduced for recognition of the gastric tumor pathological tissue images. The main purpose is that fewer procedures are used to provide more information and the result images could be easier to be understood than any other methods. First,multi-scale wavelet transform was used to extract edge feature ,and then watershed morphology was used to form multi-threshold grayscale contours. The research laid emphasis upon the homological tissue image fusion based on extended Bayesian algorithm ,which fusion result images of linear weighted algorithm was used to compare with the ones of extended Bayesian algorithm. The final fusion images are shown in Fig 5.The final image evaluation was made by information entropy,information correlativity and statistics methods. It is indicated that this method has more advantages for clinical application.

  3. The role of RecQ helicases in non-homologous end-joining

    DEFF Research Database (Denmark)

    Keijzers, Guido; Maynard, Scott; Shamanna, Raghavendra A;

    2014-01-01

    Abstract DNA double-strand breaks are highly toxic DNA lesions that cause genomic instability, if not efficiently repaired. RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in several DNA repair pathways, including DNA double......-strand break repair. Double-strand breaks can be repaired by homologous recombination (HR) using sister chromatids as templates to facilitate precise DNA repair, or by an HR-independent mechanism known as non-homologous end-joining (NHEJ) (error-prone). NHEJ is a non-templated DNA repair process, in which DNA...... termini are directly ligated. Canonical NHEJ requires DNA-PKcs and Ku70/80, while alternative NHEJ pathways are DNA-PKcs and Ku70/80 independent. This review discusses the role of RecQ helicases in NHEJ, alternative (or back-up) NHEJ (B-NHEJ) and microhomology-mediated end-joining (MMEJ) in V...

  4. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining.

    Directory of Open Access Journals (Sweden)

    Richard Bowater

    2006-02-01

    Full Text Available DNA double-strand breaks (DSBs are one of the most dangerous forms of DNA lesion that can result in genomic instability and cell death. Therefore cells have developed elaborate DSB-repair pathways to maintain the integrity of genomic DNA. There are two major pathways for the repair of DSBs in eukaryotes: homologous recombination and non-homologous end-joining (NHEJ. Until very recently, the NHEJ pathway had been thought to be restricted to the eukarya. However, an evolutionarily related NHEJ apparatus has now been identified and characterized in the prokarya. Here we review the recent discoveries concerning bacterial NHEJ and discuss the possible origins of this repair system. We also examine the insights gained from the recent cellular and biochemical studies of this DSB-repair process and discuss the possible cellular roles of an NHEJ pathway in the life-cycle of prokaryotes and phages.

  5. Accumulation of plastic strain in Zircaloy-4 at low homologous temperature

    Science.gov (United States)

    Matsunaga, Tetsuya; Satoh, Yuhki; Abe, Hiroaki

    2015-10-01

    Time-dependent strain accumulation in Zircaloy-4 was evaluated at 294 K, i.e., homologous temperature (T/Tm, where Tm is the melting temperature) of 0.14, to ascertain the mechanical response in fuel cladding material, even at the time of storage. Although diffusion processes are suppressed, considerable strain accumulation was observed at less than 0.2% offset stress. Transmission electron microscopy and electron backscattered diffraction analyses were used to investigate the dominant microstructural mechanism. Results showed that the heterogeneous dislocation structure generated strain accumulation, where straightly aligned dislocation arrays on the prismatic plane move freely and few deformation twins were formed in the grain interior. Furthermore, few dislocation tangles were observed because the slip systems were limited to one. Therefore, Zircaloy-4 shows weak work-hardening at the low homologous temperature because of the fewer interactions among dislocations, leading to unexpected strain accumulation under constant load conditions.

  6. Construction of the glucose isomerase deficient strain of Streptomyces M1033 by homologous recombination

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    After the establishment of the transformation conditions of Streptomyces diastaticus No.7 Strain M1033,the integration plasmid pXW for homologous recombination,which contains a 600 bp fragment of incomplete GI (G138P.G247D) gene,has been constructed in order to realize the stable overexpression of the GI (G138P.G247D) which is valuable for large-scale industrial production.The Gigene's disruption has been realized by pXW's integration into M1033 chromosomes via homologous recombination and GI deficient strain of Streptomyces M1033 has been obtained.The reliability of introduction of mutation has been proved by analysis of recombinant fragment and affirmance of existence of the mutation,as well as detection of the stability of the deficient strain.

  7. Partition functions for quantum gravity, black holes, elliptic genera and Lie algebra homologies

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, L., E-mail: bonora@sissa.it [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Bytsenko, A.A., E-mail: abyts@uel.br [Departamento de Fisica, Universidade Estadual de Londrina, Caixa Postal 6001, Londrina (Brazil)

    2011-11-11

    There is a remarkable connection between quantum generating functions of field theory and formal power series associated with dimensions of chains and homologies of suitable Lie algebras. We discuss the homological aspects of this connection with its applications to partition functions of the minimal three-dimensional gravities in the space-time asymptotic to AdS{sub 3}, which also describe the three-dimensional Euclidean black holes, the pure N=1 supergravity, and a sigma model on N-fold generalized symmetric products. We also consider in the same context elliptic genera of some supersymmetric sigma models. These examples can be considered as a straightforward application of the machinery of modular forms and spectral functions (with values in the congruence subgroup of SL(2,Z)) to partition functions represented by means of formal power series that encode Lie algebra properties.

  8. Comments On The Two-Dimensional Landau-Ginzburg Approach To Link Homology

    CERN Document Server

    Galakhov, Dmitry

    2016-01-01

    We describe rules for computing a homology theory of knots and links in $\\mathbb{R}^3$. It is derived from the theory of framed BPS states bound to domain walls separating two-dimensional Landau-Ginzburg models with (2,2) supersymmetry. We illustrate the rules with some sample computations, obtaining results consistent with Khovanov homology. We show that of the two Landau-Ginzburg models discussed in this context by Gaiotto and Witten one, (the so-called Yang-Yang-Landau-Ginzburg model) does not lead to topological invariants of links while the other, based on a model with target space equal to the universal cover of the moduli space of $SU(2)$ magnetic monopoles, will indeed produce a topologically invariant theory of knots and links.

  9. Homologization of the flight musculature of zygoptera (insecta: odonata and neoptera (insecta.

    Directory of Open Access Journals (Sweden)

    Sebastian Büsse

    Full Text Available Among the winged insects (Pterygota the Dragonflies and Damselflies (Odonata are unique for several reasons. Behaviourally they are aerial predators that hunt and catch their prey in flight, only. Morphologically the flight apparatus of Odonata is significantly different from what is found in the remaining Pterygota. However, to understand the phylogenetic relationships of winged insects and the origin and evolution of insect flight in general, it is essential to know how the elements of the odonatan flight apparatus relate to those of the other Pterygota. Here we present a comprehensive, comparative morphological investigation of the thoracic flight musculature of damselflies (Zygoptera. Based on our new data we propose a homologization scheme for the thoracic musculature throughout Pterygota. The new homology hypotheses will allow for future comparative work and especially for phylogenetic analyses using characters of the thoracic musculature throughout all winged insects. This will contribute to understand the early evolution of pterygote insects and their basal phylogenetic relationship.

  10. Genes homologous to glycopeptide resistance vanA are widespread in soil microbial communities

    DEFF Research Database (Denmark)

    Guardabassi, L.; Agersø, Yvonne

    2006-01-01

    The occurrence of D-Ala : D-Lac ligase genes homologous to glycopeptide resistance vanA was studied in samples of agricultural (n=9) and garden (n=3) soil by culture-independent methods. Cloning and sequencing of nested degenerate PCR products obtained from soil DNA revealed the occurrence of D......-Ala : D-Ala ligase genes unrelated to vanA. In order to enhance detection of vanA-homologous genes, a third PCR step was added using primers targeting vanA in soil Paenibacillus. Sequencing of 25 clones obtained by this method allowed recovery of 23 novel sequences having 86-100% identity with van......A in enterococci. Such sequences were recovered from all agricultural samples as well as from two garden samples with no history of organic fertilization. The results indicated that soil is a rich and assorted reservoir of genes closely related to those conferring glycopeptide resistance in clinical bacteria....

  11. Rescue of end fragments of yeast artificial chromosomes by homologous recombination in yeast.

    OpenAIRE

    Hermanson, G G; Hoekstra, M F; McElligott, D. L.; Evans, G A

    1991-01-01

    Yeast artificial chromosomes (YACs) provide a powerful tool for the isolation and mapping of large regions of mammalian chromosomes. We developed a rapid and efficient method for the isolation of DNA fragments representing the extreme ends of YAC clones by the insertion of a rescue plasmid into the YAC vector by homologous recombination. Two rescue vectors were constructed containing a yeast LYS2 selectable gene, a bacterial origin of replication, an antibiotic resistance gene, a polylinker c...

  12. A universal cloning method based on yeast homologous recombination that is simple, efficient, and versatile

    OpenAIRE

    Joska, Tammy M.; Mashruwala, Ameya; Boyd, Jeffrey M.; Belden, William J.

    2014-01-01

    Cloning by homologous recombination (HR) in Saccharomyces cerevisiae is an extremely efficient and cost-effective alternative to other methods of recombinant DNA technologies. Unfortunately, it is incompatible with all the various specialized plasmids currently used in microbiology and biomedical research laboratories, and is therefore, not widely adopted. In an effort to dramatically improve the versatility of yeast gap-repair cloning and make it compatible with any DNA plasmid, we demonstra...

  13. Defining the minimal length of sequence homology required for selective gene isolation by TAR cloning

    OpenAIRE

    Noskov, V. N.; Koriabine, M.; Solomon, G.; Randolph, M; Barrett, J C; Leem, S.-H.; Stubbs, L; Kouprina, N; Larionov, V.

    2001-01-01

    The transformation-associated recombination (TAR) cloning technique allows selective and accurate isolation of chromosomal regions and genes from complex genomes. The technique is based on in vivo recombination between genomic DNA and a linearized vector containing homologous sequences, or hooks, to the gene of interest. The recombination occurs during transformation of yeast spheroplasts that results in the generation of a yeast artificial chromosome (YAC) contain...

  14. Uncoupling of sexual reproduction from homologous recombination in homozygous Oenothera species

    OpenAIRE

    Rauwolf, U; Greiner, S; Mráček, J; Rauwolf, M; Golczyk, H.; Mohler, V; Herrmann, R. G.; Meurer, J

    2011-01-01

    Salient features of the first meiotic division are independent segregation of chromosomes and homologous recombination (HR). In non-sexually reproducing, homozygous species studied to date HR is absent. In this study, we constructed the first linkage maps of homozygous, bivalent-forming Oenothera species and provide evidence that HR was exclusively confined to the chromosome ends of all linkage groups in our population. Co-segregation of complementary DNA-based markers with the major group of...

  15. Molecular cloning of the transcription factor TFIIB homolog from Sulfolobus shibatae.

    OpenAIRE

    Qureshi, S A; Khoo, B; Baumann, P; Jackson, S P

    1995-01-01

    The Archaea (archaebacteria) constitute a group of prokaryotes that are phylogenetically distinct from Eucarya (eukaryotes) and Bacteria (eubacteria). Although Archaea possess only one RNA polymerase, evidence suggests that their transcriptional apparatus is similar to that of Eucarya. For example, Archaea contain a homolog of the TATA-binding protein which interacts with the TATA-box like A-box sequence upstream of many archaeal genes. Here, we report the cloning of a Sulfolobus shibatae gen...

  16. Production of p53 gene knockout rats by homologous recombination in embryonic stem cells

    OpenAIRE

    Tong, Chang; Li, Ping; Wu, Nancy L; Yan, Youzhen; Ying, Qi-Long

    2010-01-01

    The use of homologous recombination to modify genes in embryonic stem (ES) cells provides a powerful means to elucidate gene function and create disease models1. Application of this technology to engineer genes in rats has previously been impossible in the absence of germline competent ES cells in this species. We have recently established authentic rat ES cells2, 3. Here we report the generation of the first gene knockout rats using the ES cell-based gene targeting technology. We designed a ...

  17. Identification and Partial Characterization of Potential FtsL and FtsQ Homologs of Chlamydia

    Directory of Open Access Journals (Sweden)

    Scot P Ouellette

    2015-11-01

    Full Text Available Chlamydia is amongst the rare bacteria that lack the critical cell division protein FtsZ. By annotation, Chlamydia also lacks several other essential cell division proteins including the FtsLBQ complex that links the early (e.g. FtsZ and late (e.g. FtsI/Pbp3 components of the division machinery. Here, we report chlamydial FtsL and FtsQ homologs. Ct271 aligned well with E. coli FtsL and shared sequence homology with it, including a predicted leucine-zipper like motif. Based on in silico modeling, we show that Ct764 has structural homology to FtsQ in spite of little sequence similarity. Importantly, ct271/ftsL and ct764/ftsQ are present within all sequenced chlamydial genomes and are expressed during the replicative phase of the chlamydial developmental cycle, two key characteristics for a chlamydial cell division gene. GFP-Ct764 localized to the division septum of dividing transformed chlamydiae, and, importantly, over-expression inhibited chlamydial development. Using a bacterial two-hybrid approach, we show that Ct764 interacted with other components of the chlamydial division apparatus. However, Ct764 was not capable of complementing an E. coli FtsQ depletion strain in spite of its ability to interact with many of the same division proteins as E. coli FtsQ, suggesting that chlamydial FtsQ may function differently. We previously proposed that Chlamydia uses MreB and other rod-shape determining proteins as an alternative system for organizing the division site and its apparatus. Chlamydial FtsL and FtsQ homologs expand the number of identified chlamydial cell division proteins and suggest that Chlamydia has likely kept the late components of the division machinery while substituting the Mre system for the early components.

  18. Previous homologous and heterologous stress exposure induces tolerance development to pulsed light in Listeria monocytogenes

    OpenAIRE

    Victoria eHeinrich; Marija eZunabovic; Alice ePetschnig; Horst eMüller; Andrea eLassenberger; Erik eReimhult; Wolfgang eKneifel

    2016-01-01

    As one of the emerging non-thermal technologies, pulsed light (PL) facilitates rapid, mild and residue-free microbial surface decontamination of food and food contact materials. While notable progress has been made in the characterization of the inactivation potential of PL, experimental data available on the tolerance development to the same (homologous) stress or to different (heterologous) stresses commonly applied in food manufacturing (e.g. acid, heat, salt) is rather controversial. The ...

  19. Previous Homologous and Heterologous Stress Exposure Induces Tolerance Development to Pulsed Light in Listeria monocytogenes

    OpenAIRE

    Heinrich, Victoria; Zunabovic, Marija; Petschnig, Alice; Müller, Horst; Lassenberger, Andrea; Reimhult, Erik; Kneifel, Wolfgang

    2016-01-01

    As one of the emerging non-thermal technologies, pulsed light (PL) facilitates rapid, mild and residue-free microbial surface decontamination of food and food contact materials. While notable progress has been made in the characterization of the inactivation potential of PL, experimental data available on the tolerance development to the same (homologous) stress or to different (heterologous) stresses commonly applied in food manufacturing (e.g., acid, heat, salt) is rather controversial. The...

  20. Ancient and Recent Adaptive Evolution of Primate Non-Homologous End Joining Genes

    OpenAIRE

    Ann Demogines; Alysia M East; Ji-Hoon Lee; Grossman, Sharon R.; Sabeti, Pardis C.; Paull, Tanya T.; Sawyer, Sara L.

    2010-01-01

    In human cells, DNA double-strand breaks are repaired primarily by the non-homologous end joining (NHEJ) pathway. Given their critical nature, we expected NHEJ proteins to be evolutionarily conserved, with relatively little sequence change over time. Here, we report that while critical domains of these proteins are conserved as expected, the sequence of NHEJ proteins has also been shaped by recurrent positive selection, leading to rapid sequence evolution in other protein domains. In order to...

  1. RecA bundles mediate homology pairing between distant sisters during DNA break repair

    OpenAIRE

    Lesterlin, Christian; Ball, Graeme; Schermelleh, Lothar; Sherratt, David J.

    2013-01-01

    DNA double-strand break (DSB) repair by homologous recombination (HR) has evolved to maintain genetic integrity in all organisms 1 . Although many reactions that occur during HR are known 1-3 , it is unclear where, when and how they occur in cells is lacking. Here, by using conventional and super-resolution microscopy we describe the progression of DSB repair in live Escherichia coli. Specifically, we investigate whether HR can occur efficiently between distant sister loci that have segregate...

  2. Gene Targeting Using Homologous Recombination in Embryonic Stem Cells: The Future for Behavior Genetics?

    OpenAIRE

    Gerlai, Robert

    2016-01-01

    Gene targeting with homologous recombination in embryonic stem cells created a revolution in the analysis of the function of genes in behavioral brain research. The technology allowed unprecedented precision with which one could manipulate genes and study the effect of this manipulation on the central nervous system. With gene targeting, the uncertainty inherent in psychopharmacology regarding whether a particular compound would act only through a specific target was removed. Thus, gene targe...

  3. Introduction to ‘Homology and convergence in nervous system evolution’

    OpenAIRE

    Strausfeld, Nicholas J; Hirth, Frank

    2016-01-01

    The origin of brains and central nervous systems (CNSs) is thought to have occurred before the Palaeozoic era 540 Ma. Yet in the absence of tangible evidence, there has been continued debate whether today's brains and nervous systems derive from one ancestral origin or whether similarities among them are due to convergent evolution. With the advent of molecular developmental genetics and genomics, it has become clear that homology is a concept that applies not only to morphologies, but also t...

  4. Homologous Versus Antithetic Alternation of Generations and the Origin of Sporophytes

    OpenAIRE

    Haig, David Addison

    2008-01-01

    The late-nineteenth/early-twentieth century debate over homologous versus antithetic alternation of generations is reviewed. Supporters of both theories, at first, used Coleochaete as a model for the origin of land-plant life cycles. The early debate focused on the morphological interpretation of the sporophyte and on whether vascular cryptogams had bryophyte-like ancestors. The terms of the debate shifted after the discovery that the alternation of morphological generations was accompanie...

  5. USE OF CORTICAL STRUCTURAL HOMOLOGOUS BONE GRAFT IN FEMORAL RECONSTRUCTIVE SURGERY

    OpenAIRE

    Roos, Milton Valdomiro; Roos, Bruno Dutra; Giora, Taís Stedile Busin; Taglietti, Thiago Martins

    2015-01-01

    To perform a clinical and radiographic assessment of patients undergoing surgical treatment using a cortical structural homologous bone graft for femoral reconstruction following mechanical failure of total hip arthroplasty and periprosthetic fractures. Methods: A retrospective study was conducted on 27 patients who underwent surgical treatment for femoral reconstruction following mechanical failure of total hip arthroplasty (12 cases) and periprosthetic fractures (15 cases), using a cortical...

  6. DNA Ligases I and III Cooperate in Alternative Non-Homologous End-Joining in Vertebrates

    OpenAIRE

    Katja Paul; Minli Wang; Emil Mladenov; Alena Bencsik-Theilen; Theresa Bednar; Wenqi Wu; Hiroshi Arakawa; George Iliakis

    2013-01-01

    Biochemical and genetic studies suggest that vertebrates remove double-strand breaks (DSBs) from their genomes predominantly by two non-homologous end joining (NHEJ) pathways. While canonical NHEJ depends on the well characterized activities of DNA-dependent protein kinase (DNA-PK) and LIG4/XRCC4/XLF complexes, the activities and the mechanisms of the alternative, backup NHEJ are less well characterized. Notably, the contribution of LIG1 to alternative NHEJ remains conjectural and although bi...

  7. Multi-Homologous Recombination-Based Gene Manipulation in the Rice Pathogen Fusarium fujikuroi

    OpenAIRE

    Hwang, In Sun; Ahn, Il-Pyung

    2016-01-01

    Gene disruption by homologous recombination is widely used to investigate and analyze the function of genes in Fusarium fujikuroi, a fungus that causes bakanae disease and root rot symptoms in rice. To generate gene deletion constructs, the use of conventional cloning methods, which rely on restriction enzymes and ligases, has had limited success due to a lack of unique restriction enzyme sites. Although strategies that avoid the use of restriction enzymes have been employed to overcome this ...

  8. A Holomorphic 0-Surgery Model for Open Books with Application to Cylindrical Contact Homology

    OpenAIRE

    Yau, Mei-Lin

    2004-01-01

    We give a simple model in the complex plane of the 0-surgery along a fibered knot of a closed 3-manifold M to yield a mapping torus M'. This model allows explicit relations between pseudoholomorphic curves in the symplectizations of M and M'. As an application we use it to compute the cylindrical contact homology of open books resulting from a positive Dehn twist on a torus with boundary.

  9. Expression,Imprinting,and Evolution of Rice Homologs of the Polycomb Group Genes

    Institute of Scientific and Technical Information of China (English)

    Ming Luo; Damien Platten; Abed Chaudhury; W.J.Peacock; Elizabeth S.Dennis

    2009-01-01

    Polycomb group proteins (PcG) play important roles in epigenetic regulation of gene expression.Some core PcG proteins,such as Enhancer of Zeste (E(z)),Suppressor of Zeste (12) (Su(z)12),and Extra Sex Combs (ESC),are conserved in plants.The rice genome contains two E(z)-like genes,OsiEZ1 and OsCLF,two homologs of Su(z)12,OsEMF2a and OsEMF2b,and two ESC-like genes,OsFIE1 and OsFIE2.OsFIE1 is expressed only in endosperm;the maternal copy is expressed while the paternal copy is not active.Other rice PcG genes are expressed in a wide range of tissues and are not imprinted in the endosperm.The two E(z)-like genes appear to have duplicated before the separation of the dicots and monocots;the two homologs of Su(z)12 possibly duplicated during the evolution of the Gramineae and the two ESC-like genes are likely to have duplicated in the ancestor of the grasses.No homologs of the Arabidopsis seed-expressed PeG genes MEA and FIS2 were identified in the rice genome.We have isolated T-DNA insertion lines in the rice homologs of three PcG genes.There is no autonomous endosperm development in these T-DNA insertion lines.One line with a T-DNA insertion in OsEMF2b displays pleiotropic phenotypes including altered flowering time and abnormal flower organs,suggesting important roles in rice development for this gene.

  10. Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates.

    Science.gov (United States)

    Keyamura, Kenji; Arai, Kota; Hishida, Takashi

    2016-07-01

    Homologous recombination is an evolutionally conserved mechanism that promotes genome stability through the faithful repair of double-strand breaks and single-strand gaps in DNA, and the recovery of stalled or collapsed replication forks. Saccharomyces cerevisiae ATP-dependent DNA helicase Srs2 (a member of the highly conserved UvrD family of helicases) has multiple roles in regulating homologous recombination. A mutation (srs2K41A) resulting in a helicase-dead mutant of Srs2 was found to be lethal in diploid, but not in haploid, cells. In diploid cells, Srs2K41A caused the accumulation of inter-homolog joint molecule intermediates, increased the levels of spontaneous Rad52 foci, and induced gross chromosomal rearrangements. Srs2K41A lethality and accumulation of joint molecules were suppressed by inactivating Rad51 or deleting the Rad51-interaction domain of Srs2, whereas phosphorylation and sumoylation of Srs2 and its interaction with sumoylated proliferating cell nuclear antigen (PCNA) were not required for lethality. The structure-specific complex of crossover junction endonucleases Mus81 and Mms4 was also required for viability of diploid, but not haploid, SRS2 deletion mutants (srs2Δ), and diploid srs2Δ mus81Δ mutants accumulated joint molecule intermediates. Our data suggest that Srs2 and Mus81-Mms4 have critical roles in preventing the formation of (or in resolving) toxic inter-homolog joint molecules, which could otherwise interfere with chromosome segregation and lead to genetic instability. PMID:27390022

  11. Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates.

    Directory of Open Access Journals (Sweden)

    Kenji Keyamura

    2016-07-01

    Full Text Available Homologous recombination is an evolutionally conserved mechanism that promotes genome stability through the faithful repair of double-strand breaks and single-strand gaps in DNA, and the recovery of stalled or collapsed replication forks. Saccharomyces cerevisiae ATP-dependent DNA helicase Srs2 (a member of the highly conserved UvrD family of helicases has multiple roles in regulating homologous recombination. A mutation (srs2K41A resulting in a helicase-dead mutant of Srs2 was found to be lethal in diploid, but not in haploid, cells. In diploid cells, Srs2K41A caused the accumulation of inter-homolog joint molecule intermediates, increased the levels of spontaneous Rad52 foci, and induced gross chromosomal rearrangements. Srs2K41A lethality and accumulation of joint molecules were suppressed by inactivating Rad51 or deleting the Rad51-interaction domain of Srs2, whereas phosphorylation and sumoylation of Srs2 and its interaction with sumoylated proliferating cell nuclear antigen (PCNA were not required for lethality. The structure-specific complex of crossover junction endonucleases Mus81 and Mms4 was also required for viability of diploid, but not haploid, SRS2 deletion mutants (srs2Δ, and diploid srs2Δ mus81Δ mutants accumulated joint molecule intermediates. Our data suggest that Srs2 and Mus81-Mms4 have critical roles in preventing the formation of (or in resolving toxic inter-homolog joint molecules, which could otherwise interfere with chromosome segregation and lead to genetic instability.

  12. Escherichia coli F41 adhesin: genetic organization, nucleotide sequence, and homology with the K88 determinant.

    OpenAIRE

    1988-01-01

    The genetic organization of the polypeptides required for the biosynthesis of the F41 adhesin of enterotoxigenic Escherichia coli strains was investigated. Maxicell analysis demonstrated that a recombinant plasmid which mediated mannose-resistant hemagglutination and F41 antigen production encoded four polypeptides of 29, 30, 32, and 86 kilodaltons. The 29-kilodalton protein was identified as the F41 antigen, and the nucleotide sequence of the gene was determined. Extensive homology was obser...

  13. Extending Hypothesis Testing with Persistence Homology to Three or More Groups

    OpenAIRE

    Cericola, Christopher; Johnson, Inga; Kiers, Joshua; Krock, Mitchell; Purdy, Jordan; Torrence, Johanna

    2016-01-01

    We extend the work of Robinson and Turner to use hypothesis testing with persistence homology to test for measurable differences in shape between point clouds from three or more groups. Using samples of point clouds from three distinct groups, we conduct a large-scale simulation study to validate our proposed extension. We consider various combinations of groups, samples sizes and measurement errors in the simulation study, providing for each combination the percentage of $p$-values below an ...

  14. Identification and characterization of functional homologs of nitrogenase cofactor biosynthesis protein NifB from methanogens

    OpenAIRE

    Fay, Aaron W.; Wiig, Jared A.; Lee, Chi Chung; Hu, Yilin

    2015-01-01

    Nitrogenase biosynthesis protein NifB catalyzes the radical S-adenosyl-L-methionine (SAM)-dependent insertion of carbide into the nitrogenase cofactor, M cluster, in a chemically unprecedented and biologically important reaction. The observation that two naturally “truncated” NifB homologs from Methanosarcina acetivorans (NifBMa) and Methanobacterium thermoautotrophicum (NifBMt) are functional equivalents of NifB from the diazotrophic organism, Azotobacter vinelandii, establishes the minimum ...

  15. Dothistroma pini, a Forest Pathogen, Contains Homologs of Aflatoxin Biosynthetic Pathway Genes

    OpenAIRE

    Bradshaw, Rosie E.; Bhatnagar, Deepak; Ganley, Rebecca J.; Gillman, Carmel J.; Brendon J. Monahan; Seconi, Janet M.

    2002-01-01

    Homologs of aflatoxin biosynthetic genes have been identified in the pine needle pathogen Dothistroma pini. D. pini produces dothistromin, a difuranoanthraquinone toxin with structural similarity to the aflatoxin precursor versicolorin B. Previous studies with purified dothistromin suggest a possible role for this toxin in pathogenicity. By using an aflatoxin gene as a hybridization probe, a genomic D. pini clone was identified that contained four dot genes with similarity to genes in aflatox...

  16. Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps

    Science.gov (United States)

    van Roy, Peter; Daley, Allison C.; Briggs, Derek E. G.

    2015-06-01

    Exceptionally preserved fossils from the Palaeozoic era provide crucial insights into arthropod evolution, with recent discoveries bringing phylogeny and character homology into sharp focus. Integral to such studies are anomalocaridids, a clade of stem arthropods whose remarkable morphology illuminates early arthropod relationships and Cambrian ecology. Although recent work has focused on the anomalocaridid head, the nature of their trunk has been debated widely. Here we describe new anomalocaridid specimens from the Early Ordovician Fezouata Biota of Morocco, which not only show well-preserved head appendages providing key ecological data, but also elucidate the nature of anomalocaridid trunk flaps, resolving their homology with arthropod trunk limbs. The new material shows that each trunk segment bears a separate dorsal and ventral pair of flaps, with a series of setal blades attached at the base of the dorsal flaps. Comparisons with other stem lineage arthropods indicate that anomalocaridid ventral flaps are homologous with lobopodous walking limbs and the endopod of the euarthropod biramous limb, whereas the dorsal flaps and associated setal blades are homologous with the flaps of gilled lobopodians (for example, Kerygmachela kierkegaardi, Pambdelurion whittingtoni) and exites of the `Cambrian biramous limb'. This evidence shows that anomalocaridids represent a stage before the fusion of exite and endopod into the `Cambrian biramous limb', confirming their basal placement in the euarthropod stem, rather than in the arthropod crown or with cycloneuralian worms. Unlike other anomalocaridids, the Fezouata taxon combines head appendages convergently adapted for filter-feeding with an unprecedented body length exceeding 2 m, indicating a new direction in the feeding ecology of the clade. The evolution of giant filter-feeding anomalocaridids may reflect the establishment of highly developed planktic ecosystems during the Great Ordovician Biodiversification Event.

  17. Homology of Lie algebra of supersymmetries and of super Poincare Lie algebra

    Energy Technology Data Exchange (ETDEWEB)

    Movshev, M.V. [Department of Mathematics, Stony Brook University, Stony Brook, NY 11794-3651 (United States); Schwarz, A., E-mail: schwarz@math.ucdavis.edu [Department of Mathematics, University of California, Davis, CA 95616 (United States); Xu, Renjun [Department of Physics, University of California, Davis, CA 95616 (United States)

    2012-01-11

    We study the homology and cohomology groups of super Lie algebras of supersymmetries and of super Poincare Lie algebras in various dimensions. We give complete answers for (non-extended) supersymmetry in all dimensions {<=}11. For dimensions D=10,11 we describe also the cohomology of reduction of supersymmetry Lie algebra to lower dimensions. Our methods can be applied to extended supersymmetry Lie algebras.

  18. Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1.

    OpenAIRE

    van Veen, Hendrik W.; Venema, Koen; Bolhuis, Henk; Oussenko, Irina; Kok, Jan; Poolman, Bert; Driessen, Arnold J. M.; Konings, Wil N.

    1996-01-01

    Resistance of Lactococcus lactis to cytotoxic compounds shares features with the multidrug resistance phenotype of mammalian tumor cells. Here, we report the gene cloning and functional characterization in Escherichia coli of LmrA, a lactococcal structural and functional homolog of the human multidrug resistance P-glycoprotein MDR1. LmrA is a 590-aa polypeptide that has a putative topology of six alpha-helical transmembrane segments in the N-terminal hydrophobic domain, followed by a hydrophi...

  19. BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species.

    Science.gov (United States)

    Patel, Rohan V; Nahal, Hardeep K; Breit, Robert; Provart, Nicholas J

    2012-09-01

    Large numbers of sequences are now readily available for many plant species, allowing easy identification of homologous genes. However, orthologous gene identification across multiple species is made difficult by evolutionary events such as whole-genome or segmental duplications. Several developmental atlases of gene expression have been produced in the past couple of years, and it may be possible to use these transcript abundance data to refine ortholog predictions. In this study, clusters of homologous genes between seven plant species - Arabidopsis, soybean, Medicago truncatula, poplar, barley, maize and rice - were identified. Following this, a pipeline to rank homologs within gene clusters by both sequence and expression profile similarity was devised by determining equivalent tissues between species, with the best expression profile match being termed the 'expressolog'. Five electronic fluorescent pictograph (eFP) browsers were produced as part of this effort, to aid in visualization of gene expression data and to complement existing eFP browsers at the Bio-Array Resource (BAR). Within the eFP browser framework, these expression profile similarity rankings were incorporated into an Expressolog Tree Viewer to allow cross-species homolog browsing by both sequence and expression pattern similarity. Global analyses showed that orthologs with the highest sequence similarity do not necessarily exhibit the highest expression pattern similarity. Other orthologs may show different expression patterns, indicating that such genes may require re-annotation or more specific annotation. Ultimately, it is envisaged that this pipeline will aid in improvement of the functional annotation of genes and translational plant research.

  20. The dynamics of homologous pairing during mating type interconversion in budding yeast.

    Directory of Open Access Journals (Sweden)

    Peter L Houston

    2006-06-01

    Full Text Available Cells repair most double-strand breaks (DSBs that arise during replication or by environmental insults through homologous recombination, a high-fidelity process critical for maintenance of genomic integrity. However, neither the detailed mechanism of homologous recombination nor the specific roles of critical components of the recombination machinery-such as Bloom and Werner syndrome proteins-have been resolved. We have taken a novel approach to examining the mechanism of homologous recombination by tracking both a DSB and the template from which it is repaired during the repair process in individual yeast cells. The two loci were labeled with arrays of DNA binding sites and visualized in live cells expressing green fluorescent protein-DNA binding protein chimeras. Following induction of an endonuclease that introduces a DSB next to one of the marked loci, live cells were imaged repeatedly to determine the relative positions of the DSB and the template locus. We found a significant increase in persistent associations between donor and recipient loci following formation of the DSB, demonstrating DSB-induced pairing between donor and template. However, such associations were transient and occurred repeatedly in every cell, a result not predicted from previous studies on populations of cells. Moreover, these associations were absent in sgs1 or srs2 mutants, yeast homologs of the Bloom and Werner syndrome genes, but were enhanced in a rad54 mutant, whose protein product promotes efficient strand exchange in vitro. Our results indicate that a DSB makes multiple and reversible contacts with a template during the repair process, suggesting that repair could involve interactions with multiple templates, potentially creating novel combinations of sequences at the repair site. Our results further suggest that both Sgs1 and Srs2 are required for efficient completion of recombination and that Rad54 may serve to dissociate such interactions. Finally, these

  1. Phylogenetic Analysis of Homologous Proteins Encoded by UL2 and UL23 genes of Herpesviridae

    Institute of Scientific and Technical Information of China (English)

    Long-ding LIU; Wen-juan WU; Min HONG; Hai-jing SHI; Shao-hui MA; Jing-jing WANG; Hong-ling ZHAO; Yun LIAO; Qi-han LI

    2007-01-01

    The proteins encoded by the Herpesviridae β-gene play a critical role in the replication stage of the virus. In this paper, phylogenetic analyses provided evidence that someβ-gene products, such as UL2 and UL23 from HSV1, have their homologous genes in its family, and also exist in prokaryotic organisms, indicating that these viruses appear to have been assembled over evolutionary time by numerous independent events of horizontal gene transfer.

  2. Expression of the CD36 homolog (FAT) in fibroblast cells: effects on fatty acid transport.

    OpenAIRE

    Ibrahimi, A.; Sfeir, Z; Magharaie, H; Amri, E Z; Grimaldi, P.; Abumrad, N A

    1996-01-01

    An adipocyte membrane glycoprotein, (FAT), homologous to human CD36, has been previously implicated in the binding/transport of long-chain fatty acids. It bound reactive derivatives of long-chain fatty acids and binding was specific and associated with significant inhibition of fatty acid uptake. Tissue distribution of the protein and regulation of its expression were also consistent with its postulated role. In this report, we have examined the effects of FAT expression on rates and properti...

  3. Involvement of phosphatase and tensin homolog deleted from chromosome 10 in rodent model of neuropathic pain

    OpenAIRE

    Huang, Shi-Ying; Sung, Chun-Sung; Chen, Wu-Fu; Chen, Chun-Hong; Feng, Chien-Wei; Yang, San-Nan; Hung, Han-Chun; Chen, Nan-Fu; Lin, Pey-Ru; Chen, San-Cher; Wang, Hui-Min David; Chu, Tian-Huei; Tai, Ming-Hong; Wen, Zhi-Hong

    2015-01-01

    Background Many cancer research studies have extensively examined the phosphatase and tensin homolog deleted from chromosome 10 (PTEN) pathway. There are only few reports that suggest that PTEN might affect pain; however, there is still a lack of evidence to show the role of PTEN for modulating pain. Here, we report a role for PTEN in a rodent model of neuropathic pain. Results We found that chronic constriction injury (CCI) surgery in rats could elicit downregulation of spinal PTEN as well a...

  4. Conservation and co-option in developmental programmes: the importance of homology relationships

    Directory of Open Access Journals (Sweden)

    Becker May-Britt

    2005-10-01

    Full Text Available Abstract One of the surprising insights gained from research in evolutionary developmental biology (evo-devo is that increasing diversity in body plans and morphology in organisms across animal phyla are not reflected in similarly dramatic changes at the level of gene composition of their genomes. For instance, simplicity at the tissue level of organization often contrasts with a high degree of genetic complexity. Also intriguing is the observation that the coding regions of several genes of invertebrates show high sequence similarity to those in humans. This lack of change (conservation indicates that evolutionary novelties may arise more frequently through combinatorial processes, such as changes in gene regulation and the recruitment of novel genes into existing regulatory gene networks (co-option, and less often through adaptive evolutionary processes in the coding portions of a gene. As a consequence, it is of great interest to examine whether the widespread conservation of the genetic machinery implies the same developmental function in a last common ancestor, or whether homologous genes acquired new developmental roles in structures of independent phylogenetic origin. To distinguish between these two possibilities one must refer to current concepts of phylogeny reconstruction and carefully investigate homology relationships. Particularly problematic in terms of homology decisions is the use of gene expression patterns of a given structure. In the future, research on more organisms other than the typical model systems will be required since these can provide insights that are not easily obtained from comparisons among only a few distantly related model species.

  5. Meiotic recombination at the Lmp2 hotspot tolerates minor sequence divergence between homologous chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Masayasu; Sagai, Tomoko; Shiroishi, Toshihiko [National Institute of Genetics, Mishima (Japan)] [and others

    1996-06-01

    Recombination is widely considered to linearly depend on the length of the homologous sequences. An 11% mismatch decreases the rate of phage-plasmid recombination 240-fold. Two single nucleotide mismatches, which reduce the longest uninterrupted stretch of similarity from 232 base pairs (bp) to 134 bp, reduce gene conversion in mouse L cells 20-fold. The efficiency of gene targeting through homologous recombination in mouse embryonic stem cells can be increased by using an isogenic, rather than a non-isogenic, DNA construct. In this study we asked whether a high degree of sequence identity between homologous mouse chromosomes enhances meiotic recombination at a hotspot. Sites of meiotic recombination in the mouse major histocompatibility complex (MHC) class II region are not randomly distributed but are almost all clustered within short segments known as recombinational hotspots. The wm7 MHC haplotype, derived from Japanese wild mice Mus musculus molossinus, enhances meiotic recombination at a hotspot near the Lmp2 gene. Heterozygotes between the wm7 haplotype and the b or k haplotypes have yielded a high frequency of recombination (2.1%) in 1.3 kilobase kb segment of this hotspot. 20 refs., 2 figs.

  6. BCL2L13 is a mammalian homolog of the yeast mitophagy receptor Atg32.

    Science.gov (United States)

    Otsu, Kinya; Murakawa, Tomokazu; Yamaguchi, Osamu

    2015-01-01

    Although Atg32 is essential for mitophagy in yeast, no mammalian homolog has been identified. Here, we demonstrate that BCL2L13 (BCL2-like 13 [apoptosis facilitator]) is a functional mammalian homolog of Atg32. First, we hypothesized that a mammalian mitophagy receptor will share certain molecular features with Atg32. Using the molecular profile of Atg32 as a search tool, we screened public databases for novel Atg32 functional homologs and identified BCL2L13. BCL2L13 induces mitochondrial fragmentation and mitophagy in HEK293 cells. In BCL2L13, the BH domains are important for fragmentation, whereas the WXXI motif, an LC3 interacting region, is needed for mitophagy. BCL2L13 induces mitochondrial fragmentation and mitophagy even in the absence of DNM1L/Drp1 and PARK2/Parkin, respectively. BCL2L13 is indispensable for mitochondrial damage-induced fragmentation and mitophagy. Furthermore, BCL2L13 induces mitophagy in Atg32-deficient yeast. Induction and/or phosphorylation of BCL2L13 may regulate its activity. Our findings thus open a new chapter in mitophagy research. PMID:26506896

  7. Sequence, expression divergence, and complementation of homologous ALCATRAZ loci in Brassica napus.

    Science.gov (United States)

    Hua, Shuijin; Shamsi, Imran Haider; Guo, Yuan; Pak, Haksong; Chen, Mingxun; Shi, Congguang; Meng, Huabing; Jiang, Lixi

    2009-08-01

    The genomic era provides new perspectives in understanding polyploidy evolution, mostly on the genome-wide scale. In this paper, we show the sequence and expression divergence between the homologous ALCATRAZ (ALC) loci in Brassica napus, responsible for silique dehiscence. We cloned two homologous ALC loci, namely BnaC.ALC.a and BnaA.ALC.a in B. napus. Driven by the 35S promoter, both the loci complemented to the alc mutation of Arabidopsis thaliana, yet only the expression of BnaC.ALC.a was detectable in the siliques of B. napus. Sequence alignment indicated that BnaC.ALC.a and BolC.ALC.a, or BnaA.ALC.a and BraA.ALC.a, possess a high level of similarity. The understanding of the sequence and expression divergence among homologous loci of a gene is of due importance for an effective gene manipulation and TILLING (or ECOTILLING) analysis for the allelic DNA variation at a given locus. PMID:19504267

  8. Ion transport and structural dynamics in homologous ammonium and phosphonium-based room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Philip J., E-mail: pgrif@seas.upenn.edu [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Holt, Adam P. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Tsunashima, Katsuhiko [Department of Materials Science, National Institute of Technology, Wakayama College, 77 Noshima, Nada-cho, Gobo, Wakayama 644-0023 (Japan); Sangoro, Joshua R. [Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Kremer, Friedrich [Institute of Experimental Physics I, University of Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Sokolov, Alexei P. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996 (United States); Chemical Sciences Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37830 (United States)

    2015-02-28

    Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphonium IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range—indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.

  9. Different roles for homologous interneurons in species exhibiting similar rhythmic behaviors.

    Science.gov (United States)

    Sakurai, Akira; Newcomb, James M; Lillvis, Joshua L; Katz, Paul S

    2011-06-21

    It is often assumed that similar behaviors in related species are produced by similar neural mechanisms. To test this, we examined the neuronal basis of a simple swimming behavior in two nudibranchs (Mollusca, Opisthobranchia), Melibe leonina and Dendronotus iris. The side-to-side swimming movements of Dendronotus [1] strongly resemble those of Melibe [2, 3]. In Melibe, it was previously shown that the central pattern generator (CPG) for swimming is composed of two bilaterally symmetric pairs of identified interneurons, swim interneuron 1 (Si1) and swim interneuron 2 (Si2), which are electrically coupled ipsilaterally and mutually inhibit both contralateral counterparts [2, 4]. We identified homologs of Si1 and Si2 in Dendronotus. (Henceforth, homologous neurons in each species will be distinguished by the subscripts (Den) and (Mel).) We found that Si2(Den) and Si2(Mel) play similar roles in generating the swim motor pattern. However, unlike Si1(Mel), Si1(Den) was not part of the swim CPG, was not strongly coupled to the ipsilateral Si2(Den), and did not inhibit the contralateral neurons. Thus, species differences exist in the neuronal organization of the swim CPGs despite the similarity of the behaviors. Therefore, similarity in species-typical behavior is not necessarily predictive of common neural mechanisms, even for homologous neurons in closely related species. PMID:21620707

  10. Evidence for homologous peptidergic neurons in the buccal ganglia of diverse nudibranch mollusks.

    Science.gov (United States)

    Watson, W H; Willows, A O

    1992-03-01

    The buccal ganglia of seven nudibranches (Aeolidia papillosa, Armina californica, Dirona albolineata, D. picta, Hermissenda crassicornis, Melibe leonina, and Tritonia diomedea) were examined to explore possible homologies between large cells that reacted with antibodies directed against small cardioactive peptide B (SCPB). The buccal ganglion of each species possessed a pair of large, dorsal-lateral, whitish neurons that contained an SCPB-like peptide. We refer to these neurons as the SLB (SCPB-immunoreactive Large Buccal) cells. In all species examined, the SLB cells project out the gastroesophageal nerves and appear to innervate the esophagus. In each species, an apparent rhythmic feeding motor program (FMP) was observed by intracellular recording from both SLB neurons and other neurons in isolated preparations of the buccal ganglia. SLB cells often fire at a high frequency, and usually burst in a specific phase relation to the FMP activity. Stimulation of SLB cells enhances expression of the feeding motor program, either by potentiating existing activity or eliciting the FMP in quiescent preparations. Finally, perfusion of isolated buccal ganglia with SCPB excites the SLB cells and activates FMPs. Thus, both the immunohistochemical and electrophysiological data suggest that the SLB cells within three suborders of the opisthobranchia (Dendronotacea, Arminacea, and Aeolidacea) are homologous. A comparison of our data with previously published studies indicates that SLB cell homologs may exist in other gastropods as well. PMID:1527526

  11. Detection of sequences homologous to human retroviral DNA in multiple sclerosis by gene amplification

    International Nuclear Information System (INIS)

    Twenty-one patients with multiple sclerosis, chronic progressive type, were examined for DNA sequences homologous to a human retrovirus. Genomic DNA from peripheral blood mononuclear cells was analyzed for the presence of homologous sequences to the human T-cell leukemia/lymphoma virus type I (HTLV-I) long terminal repeat, 3' gag, pol, and env domains by the enzymatic in vitro gene amplification technique, polymerase chain reaction. Positive identification of homologous pol sequences was made in the amplified DNA from six of these patients (29%). Three of these six patients (14%) also tested positive for the env region, but not for the other regions tested. In contrast, none of the samples from 35 normal individuals studied was positive when amplified and tested with the same primers and probes. Comparison of patterns obtained from controls and from patients with adult T-cell leukemia or tropical spastic paraparesis suggests that the DNA sequences identified are exogenous to the human genome and may correspond to a human retroviral species. The data support the detection of a human retroviral agent in some patients with multiple sclerosis

  12. The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link

    CERN Document Server

    Oblomkov, Alexei; Shende, Vivek

    2012-01-01

    We conjecture an expression for the dimensions of the Khovanov-Rozansky HOMFLY homology groups of the link of a plane curve singularity in terms of the weight polynomials of Hilbert schemes of points scheme-theoretically supported on the singularity. The conjecture specializes to our previous conjecture relating the HOMFLY polynomial to the Euler numbers of the same spaces upon setting t = -1. By generalizing results of Piontkowski on the structure of compactified Jacobians to the case of Hilbert schemes of points, we give an explicit prediction of the HOMFLY homology of a (k, n) torus knot as a certain sum over diagrams. The Hilbert scheme series corresponding to the summand of the HOMFLY homology with minimal "a" grading can be recovered from the perverse filtration on the cohomology of the compactified Jacobian. In the case of (k,n) torus knots, this space furnishes the unique finite dimensional simple representation of the rational spherical Cherednik algebra with central character k/n. Up to a conjectura...

  13. A novel mutation in TFL1 homolog affecting determinacy in cowpea (Vigna unguiculata).

    Science.gov (United States)

    Dhanasekar, P; Reddy, K S

    2015-02-01

    Mutations in the widely conserved Arabidopsis Terminal Flower 1 (TFL1) gene and its homologs have been demonstrated to result in determinacy across genera, the knowledge of which is lacking in cowpea. Understanding the molecular events leading to determinacy of apical meristems could hasten development of cowpea varieties with suitable ideotypes. Isolation and characterization of a novel mutation in cowpea TFL1 homolog (VuTFL1) affecting determinacy is reported here for the first time. Cowpea TFL1 homolog was amplified using primers designed based on conserved sequences in related genera and sequence variation was analysed in three gamma ray-induced determinate mutants, their indeterminate parent "EC394763" and two indeterminate varieties. The analyses of sequence variation exposed a novel SNP distinguishing the determinate mutants from the indeterminate types. The non-synonymous point mutation in exon 4 at position 1,176 resulted from transversion of cytosine (C) to adenine (A) leading to an amino acid change (Pro-136 to His) in determinate mutants. The effect of the mutation on protein function and stability was predicted to be detrimental using different bioinformatics/computational tools. The functionally significant novel substitution mutation is hypothesized to affect determinacy in the cowpea mutants. Development of suitable regeneration protocols in this hitherto recalcitrant crop and subsequent complementation assay in mutants or over-expressing assay in parents could decisively conclude the role of the SNP in regulating determinacy in these cowpea mutants. PMID:25146839

  14. Sequence Analysis of the Protein Structure Homology Modeling of Growth Hormone Gene from Salmo trutta caspius

    Directory of Open Access Journals (Sweden)

    Abolhasan Rezaei

    2012-03-01

    Full Text Available In view of the growth hormone protein investigated and characterized from Salmo trutta caspius. Growth hormone gene in the Salmo trutta caspius have six exons in the full length that is translated into a Molecular Weight (kDa: ssDNA: 64.98 and dsDNA: 129.6. There are also 210 amino acid residue. The assembled full length of DNA contains open reading frame of growth hormone gene that contains 15 sequences in the full length. The average GC content is 47% and AT content is 53%. This protein multiple alignment has shown that this peptide is 100% identical to the corresponding homologous protein in the growth hormone protein which including Salmo salar (Accession number: AAA49558.1 and Rainbow trout (Salmo trutta (Accession number: AAA49555.1" sequences. The sequence of protein had deposited in Gene Bank, Accession number: AEK70940. Also we were analyzed second and third structure between sequences reported in Gene Bank Network system. The results are shown, there are homology between second structure in three sequences including: Salmo trutta caspius, Salmo salar and Rainbow trout. Regarding third structure, Salmo trutta caspius and Salmo salar are same type, but Rainbow trout has different homology with Salmo trutta caspius and Salmo salar. However, the sequences were observed three parallel " helix and in second structure there were almost same percent β sheet.

  15. Bidirectional gene sequences with similar homology to functional proteins of alkane degrading bacterium pseudomonas fredriksbergensis DNA

    International Nuclear Information System (INIS)

    The potential for two overlapping fragments of DNA from a clone of newly isolated alkanes degrading bacterium Pseudomonas frederiksbergensis encoding sequences with similar homology to two parts of functional proteins is described. One strand contains a sequence with high homology to alkanes monooxygenase (alkB), a member of the alkanes hydroxylase family, and the other strand contains a sequence with some homology to alcohol dehydrogenase gene (alkJ). Overlapping of the genes on opposite strands has been reported in eukaryotic species, and is now reported in a bacterial species. The sequence comparisons and ORFS results revealed that the regulation and the genes organization involved in alkane oxidation represented in Pseudomonas frederiksberghensis varies among the different known alkane degrading bacteria. The alk gene cluster containing homologues to the known alkane monooxygenase (alkB), and rubredoxin (alkG) are oriented in the same direction, whereas alcohol dehydrogenase (alkJ) is oriented in the opposite direction. Such genomes encode messages on both strands of the DNA, or in an overlapping but different reading frames, of the same strand of DNA. The possibility of creating novel genes from pre-existing sequences, known as overprinting, which is a widespread phenomenon in small viruses. Here, the origin and evolution of the gene overlap to bacteriophages belonging to the family Microviridae have been investigated. Such a phenomenon is most widely described in extremely small genomes such as those of viruses or small plasmids, yet here is a unique phenomenon. (author)

  16. Protein conformation and disease : pathological consequences of analogous mutations in homologous proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, F. J.; Pokkuluri, P. R.; Schiffer, M.; Biosciences Division

    2000-12-19

    The antibody light chain variable domain (V{sub L}){sup 1} and myelin protein zero (MPZ) are representatives of the functionally diverse immunoglobulin superfamily. The V{sub L} is a subunit of the antigen-binding component of antibodies, while MPZ is the major membrane-linked constituent of the myelin sheaths that coat peripheral nerves. Despite limited amino acid sequence homology, the conformations of the core structures of the two proteins are largely superimposable. Amino acid variations in V{sub L} account for various conformational disease outcomes, including amyloidosis. However, the specific amino acid changes in V{sub L} that are responsible for disease have been obscured by multiple concurrent primary structure alterations. Recently, certain demyelination disorders have been linked to point mutations and single amino acid polymorphisms in MPZ. We demonstrate here that some pathogenic variations in MPZ correspond to changes suspected of determining amyloidosis in V{sub L}. This unanticipated observation suggests that studies of the biophysical origin of conformational disease in one member of a superfamily of homologous proteins may have implications throughout the superfamily. In some cases, findings may account for overt disease; in other cases, due to the natural repertoire of inherited polymorphisms, variations in a representative protein may predict subclinical impairment of homologous proteins.

  17. Cloning and functional characterization of the intersex homologous gene in the pest lepidopteron Maruca vitrata.

    Science.gov (United States)

    Cavaliere, Daniela; Di Cara, Francesca; Polito, Lino C; Digilio, Filomena Anna

    2009-01-01

    The intersex (ix) gene works in concert with doublesex (dsx) at the bottom of the sex-determination hierarchy to control somatic sexual differentiation in Drosophila melanogaster females. Here we report the isolation and characterization of the Drosophila intersex (ix) homologue in the pest lepidopteron Maruca vitrata (Mvix). The Mvix gene exhibits major complexity with respect to the Drosophila homolog. It is expressed in males and females and its pre-mRNA is subject to differential splicing events which affect both the protein coding and the non-coding regions. Moreover, Northern blot experiments revealed the presence of a female-specific transcript in pupae RNA, which appears to be the first described sex specific transcript of ix homologs characterized to date. The expression of Mvix cDNA in D.melanogaster transgenic flies indicates that the MvIX product, which shares a relatively high degree of homology with the D.melanogaster IX protein, is able to partially rescues the Drosophila mutant phenotype.

  18. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins.

    Science.gov (United States)

    Fujisawa, Masaki; Shima, Yoko; Nakagawa, Hiroyuki; Kitagawa, Mamiko; Kimbara, Junji; Nakano, Toshitsugu; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening.

  19. Germline progenitors escape the widespread phenomenon of homolog pairing during Drosophila development.

    Directory of Open Access Journals (Sweden)

    Eric F Joyce

    Full Text Available Homolog pairing, which plays a critical role in meiosis, poses a potential risk if it occurs in inappropriate tissues or between nonallelic sites, as it can lead to changes in gene expression, chromosome entanglements, and loss-of-heterozygosity due to mitotic recombination. This is particularly true in Drosophila, which supports organismal-wide pairing throughout development. Discovered over a century ago, such extensive pairing has led to the perception that germline pairing in the adult gonad is an extension of the pairing established during embryogenesis and, therefore, differs from the mechanism utilized in most species to initiate pairing specifically in the germline. Here, we show that, contrary to long-standing assumptions, Drosophila meiotic pairing in the gonad is not an extension of pairing established during embryogenesis. Instead, we find that homologous chromosomes are unpaired in primordial germ cells from the moment the germline can be distinguished from the soma in the embryo and remain unpaired even in the germline stem cells of the adult gonad. We further establish that pairing originates immediately after the stem cell stage. This pairing occurs well before the initiation of meiosis and, strikingly, continues through the several mitotic divisions preceding meiosis. These discoveries indicate that the spatial organization of the Drosophila genome differs between the germline and the soma from the earliest moments of development and thus argue that homolog pairing in the germline is an active process as versus a passive continuation of pairing established during embryogenesis.

  20. A non-canonical DNA structure enables homologous recombination in various genetic systems.

    Science.gov (United States)

    Masuda, Tokiha; Ito, Yutaka; Terada, Tohru; Shibata, Takehiko; Mikawa, Tsutomu

    2009-10-30

    Homologous recombination, which is critical to genetic diversity, depends on homologous pairing (HP). HP is the switch from parental to recombinant base pairs, which requires expansion of inter-base pair spaces. This expansion unavoidably causes untwisting of the parental double-stranded DNA. RecA/Rad51-catalyzed ATP-dependent HP is extensively stimulated in vitro by negative supercoils, which compensates for untwisting. However, in vivo, double-stranded DNA is relaxed by bound proteins and thus is an unfavorable substrate for RecA/Rad51. In contrast, Mhr1, an ATP-independent HP protein required for yeast mitochondrial homologous recombination, catalyzes HP without the net untwisting of double-stranded DNA. Therefore, we questioned whether Mhr1 uses a novel strategy to promote HP. Here, we found that, like RecA, Mhr1 induced the extension of bound single-stranded DNA. In addition, this structure was induced by all evolutionarily and structurally distinct HP proteins so far tested, including bacterial RecO, viral RecT, and human Rad51. Thus, HP includes the common non-canonical DNA structure and uses a common core mechanism, independent of the species of HP proteins. We discuss the significance of multiple types of HP proteins. PMID:19729448

  1. Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling.

    Science.gov (United States)

    Oviedo, Néstor J; Pearson, Bret J; Levin, Michael; Sánchez Alvarado, Alejandro

    2008-01-01

    We have identified two genes, Smed-PTEN-1 and Smed-PTEN-2, capable of regulating stem cell function in the planarian Schmidtea mediterranea. Both genes encode proteins homologous to the mammalian tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Inactivation of Smed-PTEN-1 and -2 by RNA interference (RNAi) in planarians disrupts regeneration, and leads to abnormal outgrowths in both cut and uncut animals followed soon after by death (lysis). The resulting phenotype is characterized by hyperproliferation of neoblasts (planarian stem cells), tissue disorganization and a significant accumulation of postmitotic cells with impaired differentiation capacity. Further analyses revealed that rapamycin selectively prevented such accumulation without affecting the normal neoblast proliferation associated with physiological turnover and regeneration. In animals in which PTEN function is abrogated, we also detected a significant increase in the number of cells expressing the planarian Akt gene homolog (Smed-Akt). However, functional abrogation of Smed-Akt in Smed-PTEN RNAi-treated animals does not prevent cell overproliferation and lethality, indicating that functional abrogation of Smed-PTEN is sufficient to induce abnormal outgrowths. Altogether, our data reveal roles for PTEN in the regulation of planarian stem cells that are strikingly conserved to mammalian models. In addition, our results implicate this protein in the control of stem cell maintenance during the regeneration of complex structures in planarians. PMID:19048075

  2. On the serial homology of the pectoral and pelvic girdles of tetrapods.

    Science.gov (United States)

    Sears, Karen E; Capellini, Terence D; Diogo, Rui

    2015-10-01

    While fore- and hindlimbs are commonly assumed to be serially homologous, the serial homology of the pectoral and pelvic girdles is more ambiguous. We investigate the degree to which a common history, developmental program, and gene network are shared between the girdles relative to the rest of the appendicular skeleton. Paleontological data indicate that pectoral appendages arose millions of years before pelvic appendages. Recent embryological and genetic data suggest that the anatomical similarity between the fore- and hindlimbs arose through the sequential, derived deployment of similar developmental programs and gene networks, and is therefore not due to ancestral serial homology. Much less developmental work has however been published about the girdles. Here, we provide the first detailed review of the developmental programs and gene networks of the pectoral and pelvic girdles. Our review shows that, with respect to these programs and networks, there are fewer similarities between pelvic and pectoral girdles than there are between the limbs. The available data therefore support recent hypotheses that the anatomical similarities between the fore- and hindlimbs arose during the fin-to-limb transition through the derived co-option of similar developmental mechanisms, while the phylogenetically older pectoral and pelvic girdles have remained more distinct since their evolutionary origin. PMID:26374500

  3. The C. elegans Crumbs family contains a CRB3 homolog and is not essential for viability

    Directory of Open Access Journals (Sweden)

    Selma Waaijers

    2015-02-01

    Full Text Available Crumbs proteins are important regulators of epithelial polarity. In C. elegans, no essential role for the two described Crumbs homologs has been uncovered. Here, we identify and characterize an additional Crumbs family member in C. elegans, which we termed CRB-3 based on its similarity in size and sequence to mammalian CRB3. We visualized CRB-3 subcellular localization by expressing a translational GFP fusion. CRB-3::GFP was expressed in several polarized tissues in the embryo and larval stages, and showed apical localization in the intestine and pharynx. To identify the function of the Crumbs family in C. elegans development, we generated a triple Crumbs deletion mutant by sequentially removing the entire coding sequence for each crumbs homolog using a CRISPR/Cas9-based approach. Remarkably, animals lacking all three Crumbs homologs are viable and show normal epithelial polarity. Thus, the three C. elegans Crumbs family members do not appear to play an essential role in epithelial polarity establishment.

  4. Confusing dinosaurs with mammals: tetrapod phylogenetics and anatomical terminology in the world of homology.

    Science.gov (United States)

    Harris, Jerald D

    2004-12-01

    At present, three different systems of anatomical nomenclature are available to researchers describing new tetrapod taxa: a nonstandardized traditional system erected in part by Sir Richard Owen and subsequently elaborated by Alfred Romer; a standardized system created for avians, the Nomina Anatomica Avium (NAA); and a standardized system for extant (crown-group) mammals, the Nomina Anatomica Veterinaria (NAV). Conserved homologous structures widely distributed within the Tetrapoda are often granted different names in each system. The recent shift toward a phylogenetic system based on homology requires a concomitant shift toward a single nomenclatural system also based on both evolutionary and functional morphological homology. Standardized terms employed in the NAA and NAV should be perpetuated as far as possible basally in their respective phylogenies. Thus, NAA terms apply to nonavian archosaurs (or even all diapsids) and NAV terms apply to noncrown-group mammals and more basal synapsids. Taxa equally distant from both avians and crown-group mammals may maintain the traditional nonstandardized terminology until a universal anatomical nomenclature for all tetrapods is constructed.

  5. The Arabidopsis MutS homolog AtMSH5 is required for normal meiosis

    Institute of Scientific and Technical Information of China (English)

    Xiaoduo Lu; Xiaolin Liu; Lizhe An; Wei Zhang; Jian Sun; Huijuan Pei; Hongyan Meng; Yunliu Fan; Chunyi Zhang

    2008-01-01

    MSH5,a member of the MutS homolog DNA mismatch repair protein family,has been shown to be required for proper homologous chromosome recombination in diverse organisms such as mouse,budding yeast and Caenorhabditis elegans.In this paper,we show that a mutant Arabidopsis plant carrying the putative disrupted AtMSH5 gene exhibits defects during meiotic division,producing a proportion of nonviable pollen grains and abnormal embryo sacs,and thereby leading to a decrease in fertility.AtMSH5 expression is confined to meiotic floral buds,which is consistent with a possible role during meiosis.Cytological analysis of male meiosis revealed the presence of numerous univalents from diplotene to metaphase I,which were associated with a great reduction in chiasma frequencies.The average number of residual chiasmata in the mutant is reduced to 2.54 per meiocyte,which accounts for~25% of the amount in the wild type.Here,quantitative cytogenetical analysis reveals that the residual chiasmata in Atmsh5 mutants are randomly distributed among meiocytes,suggesting that AtMSH5 has an essential role during interferencesensitive chiasma formation.Taken together,the evidence indicates that AtMSH5 promotes homologous recombination through facilitating chiasma formation during prophase I in Arabidopsis.

  6. Using structure to explore the sequence alignment space of remote homologs.

    Directory of Open Access Journals (Sweden)

    Andrew Kuziemko

    2011-10-01

    Full Text Available Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.

  7. Modeling of high homologous temperature deformation behavior for stress and life-time analyses

    Energy Technology Data Exchange (ETDEWEB)

    Krempl, E. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1997-12-31

    Stress and lifetime analyses need realistic and accurate constitutive models for the inelastic deformation behavior of engineering alloys at low and high temperatures. Conventional creep and plasticity models have fundamental difficulties in reproducing high homologous temperature behavior. To improve the modeling capabilities {open_quotes}unified{close_quotes} state variable theories were conceived. They consider all inelastic deformation rate-dependent and do not have separate repositories for creep and plasticity. The viscoplasticity theory based on overstress (VBO), one of the unified theories, is introduced and its properties are delineated. At high homologous temperature where secondary and tertiary creep are observed modeling is primarily accomplished by a static recovery term and a softening isotropic stress. At low temperatures creep is merely a manifestation of rate dependence. The primary creep modeled at low homologous temperature is due to the rate dependence of the flow law. The model is unaltered in the transition from low to high temperature except that the softening of the isotropic stress and the influence of the static recovery term increase with an increase of the temperature.

  8. Resolving RAD51C function in late stages of homologous recombination

    Directory of Open Access Journals (Sweden)

    Kuznetsov Sergey G

    2007-06-01

    Full Text Available Abstract DNA double strand breaks are efficiently repaired by homologous recombination. One of the last steps of this process is resolution of Holliday junctions that are formed at the sites of genetic exchange between homologous DNA. Although various resolvases with Holliday junctions processing activity have been identified in bacteriophages, bacteria and archaebacteria, eukaryotic resolvases have been elusive. Recent biochemical evidence has revealed that RAD51C and XRCC3, members of the RAD51-like protein family, are involved in Holliday junction resolution in mammalian cells. However, purified recombinant RAD51C and XRCC3 proteins have not shown any Holliday junction resolution activity. In addition, these proteins did not reveal the presence of a nuclease domain, which raises doubts about their ability to function as a resolvase. Furthermore, oocytes from infertile Rad51C mutant mice exhibit precocious separation of sister chromatids at metaphase II, a phenotype that reflects a defect in sister chromatid cohesion, not a lack of Holliday junction resolution. Here we discuss a model to explain how a Holliday junction resolution defect can lead to sister chromatid separation in mouse oocytes. We also describe other recent in vitro and in vivo evidence supporting a late role for RAD51C in homologous recombination in mammalian cells, which is likely to be resolution of the Holliday junction.

  9. Real-time immuno-PCR for ultrasensitive detection of pyrene and other homologous PAHs.

    Science.gov (United States)

    Meng, X Y; Li, Y S; Zhou, Y; Zhang, Y Y; Qiao, B; Sun, Y; Yang, L; Hu, P; Lu, S Y; Ren, H L; Zhang, J H; Wang, X R; Liu, Z S

    2015-08-15

    Polycyclic aromatic hydrocarbons (PAHs) are significant environmental pollutant that can lead to cancer and endocrine system disrupting. Here we developed a real-time immuno-PCR (RT-IPCR) assay based on a biotinylated reporter DNA system for ultrasensitive detection of pyrene (PYR) and homologous PAHs in water. The PAHs in sample compete with PYR-OVA coated on PCR plate to bind with monoclonal antibody (McAb). The biotinylated goat anti-mouse IgG (Bio-IgG) can be captured by the McAb bound with PYR-OVA. Then streptavidin is bound with biotin on Bio-IgG. Finally biotinylated reporter DNA is captured by the streptavidin and quantified by real-time PCR using FastStart universal SYBR Green Master (ROX) kit. The linear range of the assay was from 500 fmol L(-1) to 5 nmol L(-)) with a detection limit of 450 fmol L(-1). The average recoveries of PYR and homologous PAHs from lake water, tap water and commercial mineral water were 96.8%, 101.4% and 99.6% respectively, indicating that water samples had little interfere with the assay. The results demonstrated that the developed RT-IPCR might be a potential method for ultrasensitive detection of PYR and homologous PAHs in drinking and environment water sample. PMID:25791466

  10. Expression and purification of the modification-dependent restriction enzyme BisI and its homologous enzymes.

    Science.gov (United States)

    Xu, Shuang-Yong; Klein, Pernelle; Degtyarev, Sergey Kh; Roberts, Richard J

    2016-01-01

    The methylation-dependent restriction endonuclease (REase) BisI (G(m5)C ↓ NGC) is found in Bacillus subtilis T30. We expressed and purified the BisI endonuclease and 34 BisI homologs identified in bacterial genomes. 23 of these BisI homologs are active based on digestion of (m5)C-modified substrates. Two major specificities were found among these BisI family enzymes: Group I enzymes cut GCNGC containing two to four (m5)C in the two strands, or hemi-methylated sites containing two (m5)C in one strand; Group II enzymes only cut GCNGC sites containing three to four (m5)C, while one enzyme requires all four cytosines to be modified for cleavage. Another homolog, Esp638I cleaves GCS ↓ SGC (relaxed specificity RCN ↓ NGY, containing at least four (m5)C). Two BisI homologs show degenerate specificity cleaving unmodified DNA. Many homologs are small proteins ranging from 150 to 190 amino acid (aa) residues, but some homologs associated with mobile genetic elements are larger and contain an extra C-terminal domain. More than 156 BisI homologs are found in >60 bacterial genera, indicating that these enzymes are widespread in bacteria. They may play an important biological function in restricting pre-modified phage DNA.

  11. Trypanosoma brucei translation initiation factor homolog EIF4E6 forms a tripartite cytosolic complex with EIF4G5 and a capping enzyme homolog.

    Science.gov (United States)

    Freire, Eden R; Malvezzi, Amaranta M; Vashisht, Ajay A; Zuberek, Joanna; Saada, Edwin A; Langousis, Gerasimos; Nascimento, Janaína D F; Moura, Danielle; Darzynkiewicz, Edward; Hill, Kent; de Melo Neto, Osvaldo P; Wohlschlegel, James A; Sturm, Nancy R; Campbell, David A

    2014-07-01

    Trypanosomes lack the transcriptional control characteristic of the majority of eukaryotes that is mediated by gene-specific promoters in a one-gene-one-promoter arrangement. Rather, their genomes are transcribed in large polycistrons with no obvious functional linkage. Posttranscriptional regulation of gene expression must thus play a larger role in these organisms. The eIF4E homolog TbEIF4E6 binds mRNA cap analogs in vitro and is part of a complex in vivo that may fulfill such a role. Knockdown of TbEIF4E6 tagged with protein A-tobacco etch virus protease cleavage site-protein C to approximately 15% of the normal expression level resulted in viable cells that displayed a set of phenotypes linked to detachment of the flagellum from the length of the cell body, if not outright flagellum loss. While these cells appeared and behaved as normal under stationary liquid culture conditions, standard centrifugation resulted in a marked increase in flagellar detachment. Furthermore, the ability of TbEIF4E6-depleted cells to engage in social motility was reduced. The TbEIF4E6 protein forms a cytosolic complex containing a triad of proteins, including the eIF4G homolog TbEIF4G5 and a hypothetical protein of 70.3 kDa, referred to as TbG5-IP. The TbG5-IP analysis revealed two domains with predicted secondary structures conserved in mRNA capping enzymes: nucleoside triphosphate hydrolase and guanylyltransferase. These complex members have the potential for RNA interaction, either via the 5' cap structure for TbEIF4E6 and TbG5-IP or through RNA-binding domains in TbEIF4G5. The associated proteins provide a signpost for future studies to determine how this complex affects capped RNA molecules. PMID:24839125

  12. Chromhome: A rich internet application for accessing comparative chromosome homology maps

    Directory of Open Access Journals (Sweden)

    Cox Tony

    2008-03-01

    Full Text Available Abstract Background Comparative genomics has become a significant research area in recent years, following the availability of a number of sequenced genomes. The comparison of genomes is of great importance in the analysis of functionally important genome regions. It can also be used to understand the phylogenetic relationships of species and the mechanisms leading to rearrangement of karyotypes during evolution. Many species have been studied at the cytogenetic level by cross species chromosome painting. With the large amount of such information, it has become vital to computerize the data and make them accessible worldwide. Chromhome http://www.chromhome.org is a comprehensive web application that is designed to provide cytogenetic comparisons among species and to fulfil this need. Results The Chromhome application architecture is multi-tiered with an interactive client layer, business logic and database layers. Enterprise java platform with open source framework OpenLaszlo is used to implement the Rich Internet Chromhome Application. Cross species comparative mapping raw data are collected and the processed information is stored into MySQL Chromhome database. Chromhome Release 1.0 contains 109 homology maps from 51 species. The data cover species from 14 orders and 30 families. The homology map displays all the chromosomes of the compared species as one image, making comparisons among species easier. Inferred data also provides maps of homologous regions that could serve as a guideline for researchers involved in phylogenetic or evolution based studies. Conclusion Chromhome provides a useful resource for comparative genomics, holding graphical homology maps of a wide range of species. It brings together cytogenetic data of many genomes under one roof. Inferred painting can often determine the chromosomal homologous regions between two species, if each has been compared with a common third species. Inferred painting greatly reduces the need to

  13. Phosphorylation of an envelope-associated Hsp70 homolog in amyloplasts isolated from cultured cells of sycamore (Acer pseudoplatanus L.).

    Science.gov (United States)

    Checa, S K; Viale, A M

    1998-09-01

    The presence of Hsp70 and Hsp60 molecular chaperones in amyloplasts isolated from cultured sycamore cells was analyzed by immunoblotting. Hsp70 homologs were located in both amyloplast envelope and stromal fractions, but no Hsp60 homologs were detected in any of the different suborganellar fractions. Incubation of whole amyloplasts or their envelope fraction with Mg2+ gamma-32P-ATP resulted in a rapid phosphorylation of the envelope-associated Hsp70 homolog, which constitutes a major target of phosphorylation in these plastids.

  14. Homologous recombinatorial cloning without the creation of single-stranded ends: exonuclease and ligation-independent cloning (ELIC).

    Science.gov (United States)

    Koskela, Essi V; Frey, Alexander D

    2015-03-01

    We describe a new type of molecular cloning that complements the available strategies for homologous recombinatorial cloning. Purified, linear double-stranded DNA molecules with homologous ends are simply mixed in water and they transform readily into E. coli. Insert and linear vector need as few as ten base pairs of homologous sequence at their ends and essentially no incubation or enzyme treatments are needed for creating recombinants from linear fragments. Our method outcompetes most existing cloning methods in simplicity and affordability and is well-suited for high-throughput applications. PMID:25370826

  15. Cluster based on sequence comparison of homologous proteins of 95 organism species - Gclust Server | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available Gclust Server Cluster based on sequence comparison of homologous proteins of 95 organism species Data detail... Data name Cluster based on sequence comparison of homologous proteins of 95 organism species Description of...e History of This Database Site Policy | Contact Us Cluster based on sequence comparison of homologous proteins of 95 organism species - Gclust Server | LSDB Archive ...

  16. A developmental approach to homology and brain evolution Un enfoque embriológico a la homología y la evolución cerebral

    Directory of Open Access Journals (Sweden)

    FRANCISCO ABOITIZ

    2010-12-01

    Full Text Available Although homology is central to evolutionary interpretations, establishing it has become a highly disputed issue in some instances. Here I argüe for a developmental understanding of evolution, where modifications of the developmental programs are a key source of evolutionary novelty. Although this perspective is not new, in comparative neurobiology it has remained controversial. Specifically, the evolutionary origin of the mammalian neocortex has been a particularly debated point. I propose a perspective that could help reconcile a long standing controversy: either the mammalian neocortex corresponds as a whole to the dorsal hemisphere of reptiles and birds, or alternatively its lateral aspect corresponds to the lateral cerebral hemisphere and is partly homologous to the dorsal ventricular ridge (DVR, a brain mass that receives the bulk of sensory input in reptiles and birds. Genetic and embryonic evidence strongly favor a dorsal origin for the whole neocortex, while the DVR derives from the lateral hemisphere. Nevertheless, the phylogenetically new elements of both the neocortex and the avian DVR derive largely from intermediate progenitor cells located in the embryonic subventricular zone (SVZ, a zone of late proliferating activity located deep to the ventral, the lateral and the dorsal hemisphere. I suggest that, despite originating in different embryonic regions (lateral vs. dorsal hemisphere, the evolutionary new cellular elements in both the avian brain and in the mammalian neocortex derive from the activation of a similar genetic pathway, possibly activated by the gene Pax-6, that induces the late proliferation of embryonic neural progenitors. This pathway can be ancestral to amniotes, reflecting genetic homology. In mammals and birds independently, this precursor proliferative activity differentiated into an SVZ, recruiting neuronal precursors from different parts of the cerebral hemisphere in each group, to contribute to brain

  17. Homology of the jaw muscles in lizards and snakes-a solution from a comparative gnathostome approach.

    Science.gov (United States)

    Johnston, Peter

    2014-03-01

    Homology or shared evolutionary origin of jaw adductor muscles in lizards and snakes has been difficult to establish, although snakes clearly arose within the lizard radiation. Lizards typically have temporal adductors layered lateral to medial, and in snakes the muscles are arranged in a rostral to caudal pattern. Recent work has suggested that the jaw adductor group in gnathostomes is arranged as a folded sheet; when this theory is applied to snakes, homology with lizard morphology can be seen. This conclusion revisits the work of S.B. McDowell, J Herpetol 1986; 20:353-407, who proposed that homology involves identity of m. levator anguli oris and the loss of m. adductor mandibulae externus profundus, at least in "advanced" (colubroid) snakes. Here I advance the folded sheet hypothesis across the whole snake tree using new and literature data, and provide a solution to this homology problem.

  18. Ciprofloxacin non-susceptible Streptococcus pyogenes due to mutations in parC gene and its homology analysis

    Institute of Scientific and Technical Information of China (English)

    张晓飞

    2013-01-01

    Objective To investigate the resistant mechanism of Streptococcus pyogenes to ciprofloxacin and its homology.Methods Forty-eight isolates of Streptococcus pyogenes were collected from patients diagnosed with scarflet fever

  19. A Pyrococcus homolog of the leucine-responsive regulatory protein, LrpA, inhibits transcription by abrogating RNA polymerase recruitment

    OpenAIRE

    Dahlke, Isabell; Thomm, Michael

    2002-01-01

    The genomes of Archaea harbor homologs of the global bacterial regulator leucine-responsive regulatory protein (Lrp). Archaeal Lrp homologs are helix–turn–helix DNA-binding proteins that specifically repress the transcription of their own genes in vitro. Here, we analyze the interaction of Pyrococcus LrpA with components of the archaeal transcriptional machinery at the lrpA promoter. DNA–protein complexes can be isolated by electrophoretic mobility shift assays that contain both LrpA and the ...

  20. Activities of wildtype and mutant p53 in suppression of homologous recombination as measured by a retroviral vector system

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xiongbin; Lozano, Guillermina; Donehower, Lawrence A

    2003-01-28

    DNA repair of double strand breaks, interstrand DNA cross-links, and other types of DNA damage utilizes the processes of homologous recombination and non-homologous end joining to repair the damage. Aberrant homologous recombination is likely to be responsible for a significant fraction of chromosomal deletions, duplications, and translocations that are observed in cancer cells. To facilitate measurement of homologous recombination frequencies in normal cells, mutant cells, and cancer cells, we have developed a high titer retroviral vector containing tandem repeats of mutant versions of a GFP-Zeocin resistance fusion gene and an intact neomycin resistance marker. Recombination between the tandem repeats regenerates a functional GFP-Zeo{sup R} marker that can be easily scored. This retroviral vector was used to assess homologous recombination frequencies in human cancer cells and rodent fibroblasts with differing dosages of wild type or mutant p53. Absence of wild type p53 stimulated spontaneous and ionizing radiation-induced homologous recombination, confirming previous studies. Moreover, p53{sup +/-} mouse fibroblasts show elevated levels of homologous recombination compared to their p53{sup +/+} counterparts following retroviral vector infection, indicating that p53 is haploinsufficient for suppression of homologous recombination. Transfection of vector-containing p53 null Saos-2 cells with various human cancer-associated p53 mutants revealed that these altered p53 proteins retain some recombination suppression function despite being totally inactive for transcriptional transactivation. The retroviral vector utilized in these studies may be useful in performing recombination assays on a wide array of cell types, including those not readily transfected by normal vectors.

  1. MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes.

    Science.gov (United States)

    Kobayashi, Kosuke; Suzuki, Toshiya; Iwata, Eriko; Magyar, Zoltán; Bögre, László; Ito, Masaki

    2015-01-01

    Plant MYB3R transcription factors, homologous to Myb oncoproteins, regulate the genes expressed at G2 and M phases in the cell cycle. Recent studies showed that MYB3Rs constitute multiprotein complexes that may correspond to animal complexes known as DREAM or dREAM. Discovery of the putative homologous complex in plants uncovered their significant varieties in structure, function, dynamics, and heterogeneity, providing insight into conserved and diversified aspects of cell cycle-regulated gene transcription.

  2. WeederH: an algorithm for finding conserved regulatory motifs and regions in homologous sequences

    Directory of Open Access Journals (Sweden)

    Pesole Graziano

    2007-02-01

    Full Text Available Abstract Background This work addresses the problem of detecting conserved transcription factor binding sites and in general regulatory regions through the analysis of sequences from homologous genes, an approach that is becoming more and more widely used given the ever increasing amount of genomic data available. Results We present an algorithm that identifies conserved transcription factor binding sites in a given sequence by comparing it to one or more homologs, adapting a framework we previously introduced for the discovery of sites in sequences from co-regulated genes. Differently from the most commonly used methods, the approach we present does not need or compute an alignment of the sequences investigated, nor resorts to descriptors of the binding specificity of known transcription factors. The main novel idea we introduce is a relative measure of conservation, assuming that true functional elements should present a higher level of conservation with respect to the rest of the sequence surrounding them. We present tests where we applied the algorithm to the identification of conserved annotated sites in homologous promoters, as well as in distal regions like enhancers. Conclusion Results of the tests show how the algorithm can provide fast and reliable predictions of conserved transcription factor binding sites regulating the transcription of a gene, with better performances than other available methods for the same task. We also show examples on how the algorithm can be successfully employed when promoter annotations of the genes investigated are missing, or when regulatory sites and regions are located far away from the genes.

  3. Optimal cloning of PCR fragments by homologous recombination in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ana Paula Jacobus

    Full Text Available PCR fragments and linear vectors containing overlapping ends are easily assembled into a propagative plasmid by homologous recombination in Escherichia coli. Although this gap-repair cloning approach is straightforward, its existence is virtually unknown to most molecular biologists. To popularize this method, we tested critical parameters influencing the efficiency of PCR fragments cloning into PCR-amplified vectors by homologous recombination in the widely used E. coli strain DH5α. We found that the number of positive colonies after transformation increases with the length of overlap between the PCR fragment and linear vector. For most practical purposes, a 20 bp identity already ensures high-cloning yields. With an insert to vector ratio of 2:1, higher colony forming numbers are obtained when the amount of vector is in the range of 100 to 250 ng. An undesirable cloning background of empty vectors can be minimized during vector PCR amplification by applying a reduced amount of plasmid template or by using primers in which the 5' termini are separated by a large gap. DpnI digestion of the plasmid template after PCR is also effective to decrease the background of negative colonies. We tested these optimized cloning parameters during the assembly of five independent DNA constructs and obtained 94% positive clones out of 100 colonies probed. We further demonstrated the efficient and simultaneous cloning of two PCR fragments into a vector. These results support the idea that homologous recombination in E. coli might be one of the most effective methods for cloning one or two PCR fragments. For its simplicity and high efficiency, we believe that recombinational cloning in E. coli has a great potential to become a routine procedure in most molecular biology-oriented laboratories.

  4. Eye evolution at high resolution: the neuron as a unit of homology.

    Science.gov (United States)

    Erclik, Ted; Hartenstein, Volker; McInnes, Roderick R; Lipshitz, Howard D

    2009-08-01

    Based on differences in morphology, photoreceptor-type usage and lens composition it has been proposed that complex eyes have evolved independently many times. The remarkable observation that different eye types rely on a conserved network of genes (including Pax6/eyeless) for their formation has led to the revised proposal that disparate complex eye types have evolved from a shared and simpler prototype. Did this ancestral eye already contain the neural circuitry required for image processing? And what were the evolutionary events that led to the formation of complex visual systems, such as those found in vertebrates and insects? The recent identification of unexpected cell-type homologies between neurons in the vertebrate and Drosophila visual systems has led to two proposed models for the evolution of complex visual systems from a simple prototype. The first, as an extension of the finding that the neurons of the vertebrate retina share homologies with both insect (rhabdomeric) and vertebrate (ciliary) photoreceptor cell types, suggests that the vertebrate retina is a composite structure, made up of neurons that have evolved from two spatially separate ancestral photoreceptor populations. The second model, based largely on the conserved role for the Vsx homeobox genes in photoreceptor-target neuron development, suggests that the last common ancestor of vertebrates and flies already possessed a relatively sophisticated visual system that contained a mixture of rhabdomeric and ciliary photoreceptors as well as their first- and second-order target neurons. The vertebrate retina and fly visual system would have subsequently evolved by elaborating on this ancestral neural circuit. Here we present evidence for these two cell-type homology-based models and discuss their implications. PMID:19467226

  5. LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa.

    Science.gov (United States)

    Chugani, Sudha; Greenberg, Everett Peter

    2010-06-01

    Pseudomonas aeruginosa quorum control of gene expression involves three LuxR-type signal receptors LasR, RhlR, and QscR that respond to the LasI- and RhlI-generated acyl-homoserine lactone (acyl-HSL) signals 3OC12-HSL and C4-HSL. We found that a LasR-RhlR-QscR triple mutant responds to acyl-HSLs by regulating at least 37 genes. LuxR homolog-independent activation of the representative genes antA and catB also occurs in the wild type. Expression of antA was influenced the most by C10-HSL and to a lesser extent by other acyl-HSLs, including the P. aeruginosa 3OC12-HSL and C4-HSL signals. The ant and cat operons encode enzymes for the degradation of anthranilate to tricarboxylic acid cycle intermediates. Our results indicate that LuxR homolog-independent acyl-HSL control of the ant and cat operons occurs via regulation of antR, which codes for the transcriptional activator of the ant operon. Although P. aeruginosa has multiple pathways for anthranilate synthesis, one pathway-the kynurenine pathway for tryptophan degradation-is required for acyl-HSL activation of the ant operon. The kynurenine pathway is also the critical source of anthranilate for energy metabolism via the antABC gene products, as well as the source of anthranilate for synthesis of the P. aeruginosa quinolone signal. Our discovery of LuxR homolog-independent responses to acyl-HSLs provides insight into acyl-HSL signaling. PMID:20498077

  6. Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans.

    Science.gov (United States)

    McClendon, T Brooke; Sullivan, Meghan R; Bernstein, Kara A; Yanowitz, Judith L

    2016-05-01

    Homologous recombination (HR) repairs cytotoxic DNA double-strand breaks (DSBs) with high fidelity. Deficiencies in HR result in genome instability. A key early step in HR is the search for and invasion of a homologous DNA template by a single-stranded RAD-51 nucleoprotein filament. The Shu complex, composed of a SWIM domain-containing protein and its interacting RAD51 paralogs, promotes HR by regulating RAD51 filament dynamics. Despite Shu complex orthologs throughout eukaryotes, our understanding of its function has been most extensively characterized in budding yeast. Evolutionary analysis of the SWIM domain identified Caenorhabditis elegans sws-1 as a putative homolog of the yeast Shu complex member Shu2. Using a CRISPR-induced nonsense allele of sws-1, we show that sws-1 promotes HR in mitotic and meiotic nuclei. sws-1 mutants exhibit sensitivity to DSB-inducing agents and fail to form mitotic RAD-51 foci following treatment with camptothecin. Phenotypic similarities between sws-1 and the two RAD-51 paralogs rfs-1 and rip-1 suggest that they function together. Indeed, we detect direct interaction between SWS-1 and RIP-1 by yeast two-hybrid assay that is mediated by the SWIM domain in SWS-1 and the Walker B motif in RIP-1 Furthermore, RIP-1 bridges an interaction between SWS-1 and RFS-1, suggesting that RIP-1 facilitates complex formation with SWS-1 and RFS-1 We propose that SWS-1, RIP-1, and RFS-1 compose a C. elegans Shu complex. Our work provides a new model for studying Shu complex disruption in the context of a multicellular organism that has important implications as to why mutations in the human RAD51 paralogs are associated with genome instability. PMID:26936927

  7. Articular soft tissue anatomy of the archosaur hip joint: Structural homology and functional implications.

    Science.gov (United States)

    Tsai, Henry P; Holliday, Casey M

    2015-06-01

    Archosaurs evolved a wide diversity of locomotor postures, body sizes, and hip joint morphologies. The two extant archosaurs clades (birds and crocodylians) possess highly divergent hip joint morphologies, and the homologies and functions of their articular soft tissues, such as ligaments, cartilage, and tendons, are poorly understood. Reconstructing joint anatomy and function of extinct vertebrates is critical to understanding their posture, locomotor behavior, ecology, and evolution. However, the lack of soft tissues in fossil taxa makes accurate inferences of joint function difficult. Here, we describe the soft tissue anatomies and their osteological correlates in the hip joint of archosaurs and their sauropsid outgroups, and infer structural homology across the extant taxa. A comparative sample of 35 species of birds, crocodylians, lepidosaurs, and turtles ranging from hatchling to skeletally mature adult were studied using dissection, imaging, and histology. Birds and crocodylians possess topologically and histologically consistent articular soft tissues in their hip joints. Epiphyseal cartilages, fibrocartilages, and ligaments leave consistent osteological correlates. The archosaur acetabulum possesses distinct labrum and antitrochanter structures on the supraacetabulum. The ligamentum capitis femoris consists of distinct pubic- and ischial attachments, and is homologous with the ventral capsular ligament of lepidosaurs. The proximal femur has a hyaline cartilage core attached to the metaphysis via a fibrocartilaginous sleeve. This study provides new insight into soft tissue structures and their osteological correlates (e.g., the antitrochanter, the fovea capitis, and the metaphyseal collar) in the archosaur hip joint. The topological arrangement of fibro- and hyaline cartilage may provide mechanical support for the chondroepiphysis. The osteological correlates identified here will inform systematic and functional analyses of archosaur hindlimb evolution and

  8. Chemical Inhibitors of Non-Homologous End Joining Increase Targeted Construct Integration in Cryptococcus neoformans.

    Science.gov (United States)

    Arras, Samantha D M; Fraser, James A

    2016-01-01

    The development of a biolistic transformation protocol for Cryptococcus neoformans over 25 years ago ushered in a new era of molecular characterization of virulence in this previously intractable fungal pathogen. However, due to the low rate of homologous recombination in this species, the process of creating targeted gene deletions using biolistic transformation remains inefficient. To overcome the corresponding difficulty achieving molecular genetic modifications, members of the Cryptococcus community have investigated the use of specific genetic backgrounds or construct design strategies aimed at reducing ectopic construct integration via non-homologous end joining (NHEJ). One such approach involves deletion of components of the NHEJ-associated Ku heterodimer. While this strategy increases homologous recombination to nearly 100%, it also restricts strain generation to a ku80Δ genetic background and requires subsequent complex mating procedures to reestablish wild-type DNA repair. In this study, we have investigated the ability of known inhibitors of mammalian NHEJ to transiently phenocopy the C. neoformans Ku deletion strains. Testing of eight candidate inhibitors revealed a range of efficacies in C. neoformans, with the most promising compound (W7) routinely increasing the rate of gene deletion to over 50%. We have successfully employed multiple inhibitors to reproducibly enhance the deletion rate at multiple loci, demonstrating a new, easily applied methodology to expedite acquisition of precise genetic alterations in C. neoformans. Based on this success, we anticipate that the use of these inhibitors will not only become widespread in the Cryptococcus community, but may also find use in other fungal species as well. PMID:27643854

  9. Scientific and forensic standards for homologous blood transfusion anti-doping analyses.

    Science.gov (United States)

    Giraud, Sylvain; Robinson, Neil; Mangin, Patrice; Saugy, Martial

    2008-07-18

    Since the introduction in 2001 of a urine-based detection method for recombinant erythropoietin (rHuEPO), transfusion-doping practices have regained interest. To address this problem, an efficient antidoping test designed to obtain direct proof of allogeneic blood transfusion was developed and validated. This test, based on flow cytometry analysis of red blood cell (RBCs) phenotypes, was used to determine the absence or the presence of numerous RBCs populations in a blood sample. A such, it may constitute a direct proof of an abnormal blood population resulting from homologous transfusion. Single-blind and single-site studies were carried out to validate this method as a forensic quality standard analysis and to allow objective interpretation of real cases. The analysis of 140 blood samples containing different percentages (0-5%) of a minor RBCs population were carried on by four independent analysts. Robustness, sensitivity, specificity, precision and stability were assessed. ISO-accredited controls samples were used to demonstrate that the method was robust, stable and precise. No false positive results were observed, resulting in a 100% specificity of the method. Most samples containing a 1.5% minor RBCs population were unambiguously detected, yielding a 78.1% sensitivity. These samples mimicked blood collected from an athlete 3 months after a homologous blood transfusion event where 10% of the total RBCs present in the recipient originated in the donor. The observed false negative results could be explained by differences in antigen expression between the donor and the recipient. False negatives were more numerous with smaller minor RBCs populations. The method described here fulfils the ISO-17025 accreditation and validation requirements. The controls and the methodology are solid enough to determine with certainty whether a sample contains one or more RBCs populations. This variable is currently the best indicator for homologous blood transfusion doping.

  10. DockoMatic 2.0: high throughput inverse virtual screening and homology modeling.

    Science.gov (United States)

    Bullock, Casey; Cornia, Nic; Jacob, Reed; Remm, Andrew; Peavey, Thomas; Weekes, Ken; Mallory, Chris; Oxford, Julia T; McDougal, Owen M; Andersen, Timothy L

    2013-08-26

    DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly graphical user interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to (1) conduct high throughput inverse virtual screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELER programs and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education.

  11. Cohesin Is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes.

    Directory of Open Access Journals (Sweden)

    Shay Covo

    2010-07-01

    Full Text Available Double-strand break (DSB repair through homologous recombination (HR is an evolutionarily conserved process that is generally error-free. The risk to genome stability posed by nonallelic recombination or loss-of-heterozygosity could be reduced by confining HR to sister chromatids, thereby preventing recombination between homologous chromosomes. Here we show that the sister chromatid cohesion complex (cohesin is a limiting factor in the control of DSB repair and genome stability and that it suppresses DNA damage-induced interactions between homologues. We developed a gene dosage system in tetraploid yeast to address limitations on various essential components in DSB repair and HR. Unlike RAD50 and RAD51, which play a direct role in HR, a 4-fold reduction in the number of essential MCD1 sister chromatid cohesion subunit genes affected survival of gamma-irradiated G(2/M cells. The decreased survival reflected a reduction in DSB repair. Importantly, HR between homologous chromosomes was strongly increased by ionizing radiation in G(2/M cells with a single copy of MCD1 or SMC3 even at radiation doses where survival was high and DSB repair was efficient. The increased recombination also extended to nonlethal doses of UV, which did not induce DSBs. The DNA damage-induced recombinants in G(2/M cells included crossovers. Thus, the cohesin complex has a dual role in protecting chromosome integrity: it promotes DSB repair and recombination between sister chromatids, and it suppresses damage-induced recombination between homologues. The effects of limited amounts of Mcd1and Smc3 indicate that small changes in cohesin levels may increase the risk of genome instability, which may lead to genetic diseases and cancer.

  12. Progress of LEAFY Homologous Gene Study%LEAFY同源基因研究进展

    Institute of Scientific and Technical Information of China (English)

    吕玲玲; 孙光明; 刘玉革; 魏长宾; 刘胜辉; 段俊

    2011-01-01

    LEAFY(LFY)同源基因存在于所有的陆生植物中,在植物花发育早期表达,并在花发育过程中抑制茎端分生组织的营养生长,调控花分生组织和花器官的形成,使转LFY基因植株提前开花,LFY同源基因与其上下游基因共同调控花发育过程.LFY同源基因的蛋白质结构在不同物种间保守性很高,但它们的表达部位差异很大.该文总结了近年来国内外已经克隆到的LFY同源基因的表达、功能及其在果树、花卉、粮食作物上的应用,以期为植物花发育的深入研究提供参考.%LEAFY( LFY) homologous genes were found throughout terrestrial plants. They are the earliest flower meristem identity expressed genes. During the floral development,they could prohibit the vegetative growth of shoot apical meristem and are responsible for the regulation of floral meristem and floral organ development. Analyses of LFY transgenic plants indicated that it could make plants flower earlier. LFY homologous genes regulate the floral development with their upstream genes and downstream genes. A lot of studies suggested that the function of LFYs was conserved among angiosperm species. However, their expression patterns are significantly different. In this paper, expression and function of LFY homologous genes already cloned were summarized. Their application in fruit trees, flowers and crops were also discussed. The information is helpful for better understanding of the mechanisms of plant flowering.

  13. Homologous Jet-driven Coronal Mass Ejections from Solar Active Region 12192

    Science.gov (United States)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-05-01

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (∼200–300 km s‑1) was slower-moving than most CMEs, with angular widths (20°–50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.

  14. Synaptonemal complex components persist at centromeres and are required for homologous centromere pairing in mouse spermatocytes.

    Directory of Open Access Journals (Sweden)

    C Gaston Bisig

    2012-06-01

    Full Text Available Recent studies in simple model organisms have shown that centromere pairing is important for ensuring high-fidelity meiotic chromosome segregation. However, this process and the mechanisms regulating it in higher eukaryotes are unknown. Here we present the first detailed study of meiotic centromere pairing in mouse spermatogenesis and link it with key events of the G2/metaphase I transition. In mouse we observed no evidence of the persistent coupling of centromeres that has been observed in several model organisms. We do however find that telomeres associate in non-homologous pairs or small groups in B type spermatogonia and pre-leptotene spermatocytes, and this association is disrupted by deletion of the synaptonemal complex component SYCP3. Intriguingly, we found that, in mid prophase, chromosome synapsis is not initiated at centromeres, and centromeric regions are the last to pair in the zygotene-pachytene transition. In late prophase, we first identified the proteins that reside at paired centromeres. We found that components of the central and lateral element and transverse filaments of the synaptonemal complex are retained at paired centromeres after disassembly of the synaptonemal complex along diplotene chromosome arms. The absence of SYCP1 prevents centromere pairing in knockout mouse spermatocytes. The localization dynamics of SYCP1 and SYCP3 suggest that they play different roles in promoting homologous centromere pairing. SYCP1 remains only at paired centromeres coincident with the time at which some kinetochore proteins begin loading at centromeres, consistent with a role in assembly of meiosis-specific kinetochores. After removal of SYCP1 from centromeres, SYCP3 then accumulates at paired centromeres where it may promote bi-orientation of homologous centromeres. We propose that, in addition to their roles as synaptonemal complex components, SYCP1 and SYCP3 act at the centromeres to promote the establishment and/or maintenance of

  15. [Enzymatic control of homologous recombination in Escherichia coli cells and hyper-recombination].

    Science.gov (United States)

    Bakhlanova, I V; Dudkina, A V; Baĭtin, D M

    2013-01-01

    The RecA protein is a major enzyme of homologous recombination in bacterial cell. Forming a right-handed helical filament on ssDNA, it provides a homology search between two DNA molecules and homologous strand exchange. The RecA protein not only defends the cell from exposure to ionizing radiation and UV-irradiation, but also ensures the recombination process in the course of normal cell growth. A number of wild-type or mutant RecA proteins demonstrate increased recombinogenic properties in vitro and in vivo as compared with the wild-type RecA protein from Escherichia coli, which leads to hyper-recombination. The hyper-rec activity of RecA proteins during the recombination process in many depends on the filamentation dynamics on ssDNA and DNA-transferase properties. Changes in filamentation and DNA-transferase abilities of RecA protein may be the result of not only specific amino-acid substitutions, but also the functioning of the cell enzymatic apparatus, including such proteins as RecO, RecR, RecF, RecX, DinI, SSB, PsiB. To date, the function of each of these proteins is identified at the molecular level. However, the role of some of them in the cell metabolism remains to be seen. Increase in recombination in vivo is not always useful for a cell and faces various limitations. Moreover, in the bacterial cell some mechanisms are activated, that cause genomic reorganization, directed to suppress the expression of hyper-active RecA protein. The ways of hyper-active RecA protein regulation are very interesting, and they are studied in different model systems. PMID:23808153

  16. The homology of odontodes in gnathostomes: insights from Dlx gene expression in the dogfish, Scyliorhinus canicula

    Directory of Open Access Journals (Sweden)

    Bourrat Franck

    2011-10-01

    Full Text Available Abstract Background Teeth and tooth-like structures, together named odontodes, are repeated organs thought to share a common evolutionary origin. These structures can be found in gnathostomes at different locations along the body: oral teeth in the jaws, teeth and denticles in the oral-pharyngeal cavity, and dermal denticles on elasmobranch skin. We, and other colleagues, had previously shown that teeth in any location were serially homologous because: i pharyngeal and oral teeth develop through a common developmental module; and ii the expression patterns of the Dlx genes during odontogenesis were highly divergent between species but almost identical between oral and pharyngeal dentitions within the same species. Here we examine Dlx gene expression in oral teeth and dermal denticles in order to test the hypothesis of serial homology between these odontodes. Results We present a detailed comparison of the first developing teeth and dermal denticles (caudal primary scales of the dogfish (Scyliorhinus canicula and show that both odontodes develop through identical stages that correspond to the common stages of oral and pharyngeal odontogenesis. We identified six Dlx paralogs in the dogfish and found that three showed strong transcription in teeth and dermal denticles (Dlx3, Dlx4 and Dlx5 whereas a weak expression was detected for Dlx1 in dermal denticles and teeth, and for Dlx2 in dermal denticles. Very few differences in Dlx expression patterns could be detected between tooth and dermal denticle development, except for the absence of Dlx2 expression in teeth. Conclusions Taken together, our histological and expression data strongly suggest that teeth and dermal denticles develop from the same developmental module and under the control of the same set of Dlx genes. Teeth and dermal denticles should therefore be considered as serial homologs developing through the initiation of a common gene regulatory network (GRN at several body locations. This

  17. Chemical Inhibitors of Non-Homologous End Joining Increase Targeted Construct Integration in Cryptococcus neoformans.

    Science.gov (United States)

    Arras, Samantha D M; Fraser, James A

    2016-01-01

    The development of a biolistic transformation protocol for Cryptococcus neoformans over 25 years ago ushered in a new era of molecular characterization of virulence in this previously intractable fungal pathogen. However, due to the low rate of homologous recombination in this species, the process of creating targeted gene deletions using biolistic transformation remains inefficient. To overcome the corresponding difficulty achieving molecular genetic modifications, members of the Cryptococcus community have investigated the use of specific genetic backgrounds or construct design strategies aimed at reducing ectopic construct integration via non-homologous end joining (NHEJ). One such approach involves deletion of components of the NHEJ-associated Ku heterodimer. While this strategy increases homologous recombination to nearly 100%, it also restricts strain generation to a ku80Δ genetic background and requires subsequent complex mating procedures to reestablish wild-type DNA repair. In this study, we have investigated the ability of known inhibitors of mammalian NHEJ to transiently phenocopy the C. neoformans Ku deletion strains. Testing of eight candidate inhibitors revealed a range of efficacies in C. neoformans, with the most promising compound (W7) routinely increasing the rate of gene deletion to over 50%. We have successfully employed multiple inhibitors to reproducibly enhance the deletion rate at multiple loci, demonstrating a new, easily applied methodology to expedite acquisition of precise genetic alterations in C. neoformans. Based on this success, we anticipate that the use of these inhibitors will not only become widespread in the Cryptococcus community, but may also find use in other fungal species as well.

  18. Adiponectin and plant-derived mammalian adiponectin homolog exert a protective effect in murine colitis

    KAUST Repository

    Arsenescu, Violeta

    2011-04-11

    Background: Hypoadiponectinemia has been associated with states of chronic inflammation in humans. Mesenteric fat hypertrophy and low adiponectin have been described in patients with Crohn\\'s disease. We investigated whether adiponectin and the plant-derived homolog, osmotin, are beneficial in a murine model of colitis. Methods: C57BL/6 mice were injected (i.v.) with an adenoviral construct encoding the full-length murine adiponectin gene (AN+DSS) or a reporter-LacZ (Ctr and V+DSS groups) prior to DSS colitis protocol. In another experiment, mice with DSS colitis received either osmotin (Osm+DSS) or saline (DSS) via osmotic pumps. Disease progression and severity were evaluated using body weight, stool consistency, rectal bleeding, colon lengths, and histology. In vitro experiments were carried out in bone marrow-derived dendritic cells. Results: Mice overexpressing adiponectin had lower expression of proinflammatory cytokines (TNF, IL-1β), adipokines (angiotensin, osteopontin), and cellular stress and apoptosis markers. These mice had higher levels of IL-10, alternative macrophage marker, arginase 1, and leukoprotease inhibitor. The plant adiponectin homolog osmotin similarly improved colitis outcome and induced robust IL-10 secretion. LPS induced a state of adiponectin resistance in dendritic cells that was reversed by treatment with PPARγ agonist and retinoic acid. Conclusion: Adiponectin exerted protective effects during murine DSS colitis. It had a broad activity that encompassed cytokines, chemotactic factors as well as processes that assure cell viability during stressful conditions. Reducing adiponectin resistance or using plant-derived adiponectin homologs may become therapeutic options in inflammatory bowel disease. © 2011 Springer Science+Business Media, LLC.

  19. USE OF CORTICAL STRUCTURAL HOMOLOGOUS BONE GRAFT IN FEMORAL RECONSTRUCTIVE SURGERY

    Science.gov (United States)

    Roos, Milton Valdomiro; Roos, Bruno Dutra; Giora, Taís Stedile Busin; Taglietti, Thiago Martins

    2015-01-01

    To perform a clinical and radiographic assessment of patients undergoing surgical treatment using a cortical structural homologous bone graft for femoral reconstruction following mechanical failure of total hip arthroplasty and periprosthetic fractures. Methods: A retrospective study was conducted on 27 patients who underwent surgical treatment for femoral reconstruction following mechanical failure of total hip arthroplasty (12 cases) and periprosthetic fractures (15 cases), using a cortical structural homologous bone graft and cemented implants, between June 1999 and February 2008. Of these, 21 fulfilled all the criteria required for this study. The patients underwent pre and postoperative clinical assessments using the Harris Hip Score. Preoperative, immediate postoperative and late postoperative radiographs were also evaluated, with comparisons of fracture consolidation, radiographic signs of graft consolidation, changes to the bone stock and femoral bone quality, and femoral alignment. Results: Nine patients (42.9%) underwent femoral reconstruction following mechanical failure of total hip arthroplasty and 12 cases (57.1%) underwent femoral reconstruction following periprosthetic fracture. Regarding the postoperative clinical classification, the results were considered satisfactory in 85.7% of the cases and unsatisfactory in 14.3%. Radiographic signs of graft consolidation were seen in all cases. There was an increase in bone stock in 90.5% of the hip reconstructions, as measured by the cortical index. Furthermore, the changes to femoral bone quality were considered good in 66.7% of the cases. Conclusion: The use of cortical structural homologous bone grafts for both femoral reconstructive surgery on total hip arthroplasty and periprosthetic fractures is a good treatment option for selected cases, enabling satisfactory clinical and radiographic results. PMID:27026955

  20. Multiple evolutionary events involved in maintaining homologs of Resistance to Powdery Mildew 8 in Brassica napus

    Directory of Open Access Journals (Sweden)

    Qin Li

    2016-07-01

    Full Text Available The Resistance to Powdery Mildew 8 (RPW8 locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs in Brassica rapa and three in B. oleracea (BoHRs. B. napus (Bn is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs. It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane (EHM encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  1. Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus

    Science.gov (United States)

    Li, Qin; Li, Jing; Sun, Jin-Long; Ma, Xian-Feng; Wang, Ting-Ting; Berkey, Robert; Yang, Hui; Niu, Ying-Ze; Fan, Jing; Li, Yan; Xiao, Shunyuan; Wang, Wen-Ming

    2016-01-01

    The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants. PMID:27493652

  2. Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus.

    Science.gov (United States)

    Li, Qin; Li, Jing; Sun, Jin-Long; Ma, Xian-Feng; Wang, Ting-Ting; Berkey, Robert; Yang, Hui; Niu, Ying-Ze; Fan, Jing; Li, Yan; Xiao, Shunyuan; Wang, Wen-Ming

    2016-01-01

    The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants. PMID:27493652

  3. HOMOLOGY MODELLING AND SEQUENCE ANALYSIS OF anxC3.1

    Directory of Open Access Journals (Sweden)

    Patchikolla Sateesh

    2010-05-01

    Full Text Available During the last two decades, the number of sequence known proteins has increased rapidly. In contrast, the corresponding increment of structure known protein is much slower. The unbalanced situation has critically limited our ability to understand the molecular mechanism of protein and conduct structure based drug design timely by using updated information of newly found sequences. Therefore it is highly desired to model 3D structure of protein by using structural bioinformatics approach by homology modeling. In this study homology modelling approach was utilized to develop 3D structure of spergillus fumigatusAf293(anxc3.1. An annexin, (anxC3.1, was isolated and characterized from the industrially important filamentousfungus Aspergillus niger. anxC3.1 is a single copy gene encoding a 506 amino acid predicted protein which contains four annexin repeats. AnxC3.1 expression was found to be unaltered under a variety of conditions such as increased secretion, altered nitrogen source, heat shock, and decreased Ca2+ levels, indicating that anxC3.1 is constitutively expressed. This is the first reported functional characterization of a fungal annexin. So it highly desired to developmodel to this protein. Pair wise sequence alignment program like LAST was employed to study the influence of matrix on sequence alignment. Blosum 62 matrix by BLAST program revealed a clear evolutionary relationship, and this analysis displayed( 30% identity with the PDB protein 1M9IA. Homology derived, model is generated usinggeno3d and the model with lowest energy( -14401.90 kcal/mol, MSD(0.9843A was considered as the best optimized and superimposed model, and the structure was validated by using prochek analysis.

  4. PXA1, a putative S. cerevisiae homolog of the human adrenoleukyodystrophy gene

    Energy Technology Data Exchange (ETDEWEB)

    Shani, N.; Watkins, P.A.; Valle, D. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)

    1994-09-01

    The adrenoleukodystrophy protein (ALDP) and the 70 kD peroxisomal membrane protein (PMP70) are ATP-binding cassette transporters in the peroxisome membrane. The former is defective in X-linked adrenoleukodystrophy (ALD), a neurodegenerative disorder with defective peroxisome oxidation of very long chain fatty acids; the latter is implicated in Zellweger syndrome, a defect in peroxisome biogenesis. The functions and interactions of ALDP and PMP70 in the peroxisomal membrane are not known. To develop a system in which these questions could be addressed, we sought to clone their yeast homologs. Using RT/PCR with degenerate primers and oleic acid (C18:1) induced yeast RNA as template, we amplified a cDNA segment corresponding to a conserved region of ALDP and PMP70. By sequencing amplified products, we found one with homology to both proteins and used it to clone the corresponding full length yeast gene (PXA1). PXA1 encodes a 758 amino acid protein with 28% and 21% overall identity to ALDP and PMP70, respectively which increases to 47% and 39% in a C terminal region of 178 amino acids. The PXA1 protein precipitates with peroxisomes as shown by immunoblot analysis of cell fractionation gradients. Disruption of PXA1 by homologous recombination results in impaired growth on oleic acid and reduced ability to oxidize oleate. The growth phenotype can be corrected by expression of the wild type PXA1 in the mutant strain. Peroxisomes in the PXA1 mutant yeast strain are intact as judged by catalase distribution and electron microscopy. Given the amino acid similarity, fatty acid oxidation defect and lack of an effect on peroxisomal integrity, we hypothesize that PXA1 may be the yeast ortholog of ALDP. Complementation studies to examine this hypothesis are in progress.

  5. Lif1 SUMOylation and its role in non-homologous end-joining

    OpenAIRE

    Vigasova, Dana; Sarangi, Prabha; Kolesar, Peter; Vlasáková, Danuša; Slezakova, Zuzana; Altmannova, Veronika; Nikulenkov, Fedor; Anrather, Dorothea; Gith, Rainer; Zhao, Xiaolan; Chovanec, Miroslav; Krejci, Lumir

    2013-01-01

    Non-homologous end-joining (NHEJ) repairs DNA double-strand breaks by tethering and ligating the two DNA ends. The mechanisms regulating NHEJ efficiency and interplay between its components are not fully understood. Here, we identify and characterize the SUMOylation of budding yeast Lif1 protein, which is required for the ligation step in NHEJ. We show that Lif1 SUMOylation occurs throughout the cell cycle and requires the Siz SUMO ligases. Single-strand DNA, but not double-strand DNA or the ...

  6. The spatial organization of non-homologous end joining: From bridging to end joining

    OpenAIRE

    Ochi, Takashi; Wu, Qian; Blundell, Tom L

    2014-01-01

    Non-homologous end joining (NHEJ) repairs DNA double-strand breaks generated by DNA damage and also those occurring in V(D)J recombination in immunoglobulin and T cell receptor production in the immune system. In NHEJ DNA-PKcs assembles with Ku heterodimer on the DNA ends at double-strand breaks, in order to bring the broken ends together and to assemble other proteins, including DNA ligase IV (LigIV), required for DNA repair. Here we focus on structural aspects of the interactions of LigIV w...

  7. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation

    DEFF Research Database (Denmark)

    Lombard, David B; Alt, Frederick W; Cheng, Hwei-Ling;

    2007-01-01

    Homologs of the Saccharomyces cerevisiae Sir2 protein, sirtuins, promote longevity in many organisms. Studies of the sirtuin SIRT3 have so far been limited to cell culture systems. Here, we investigate the localization and function of SIRT3 in vivo. We show that endogenous mouse SIRT3 is a soluble......, a process previously suggested to involve SIRT3. Overall, our results extend the recent finding of lysine acetylation of mitochondrial proteins and demonstrate that SIRT3 has evolved to control reversible lysine acetylation in this organelle....

  8. FBH1 influences DNA replication fork stability and homologous recombination through ubiquitylation of RAD51

    DEFF Research Database (Denmark)

    Chu, Wai Kit; Payne, Miranda J; Beli, Petra;

    2015-01-01

    leads to hyperrecombination, as well as several phenotypes indicative of an altered response to DNA replication stress. These effects are likely to be mediated by the enhanced nuclear matrix association of the ubiquitylation-resistant RAD51. These data are consistent with FBH1 acting as a negative......Unscheduled homologous recombination (HR) can lead to genomic instability, which greatly increases the threat of neoplastic transformation in humans. The F-box DNA helicase 1 (FBH1) is a 3'-5' DNA helicase with a putative function as a negative regulator of HR. It is the only known DNA helicase to...

  9. Retinoblastoma family proteins: New players in DNA repair by non-homologous end-joining.

    Science.gov (United States)

    Huang, Paul H; Cook, Rebecca; Zoumpoulidou, Georgia; Luczynski, Maciej T; Mittnacht, Sibylle

    2016-03-01

    Loss of retinoblastoma protein (RB1) function is a major driver in cancer development. We have recently reported that, in addition to its well-documented functions in cell cycle and fate control, RB1 and its paralogs have a novel role in regulating DNA repair by non-homologous end joining (NHEJ). Here we summarize our findings and present mechanistic hypotheses on how RB1 may support the DNA repair process and the therapeutic implications for patients who harbor RB1-negative cancers. PMID:27308588

  10. Fibroblast growth factor homologous factors in the heart: a potential locus for cardiac arrhythmias.

    Science.gov (United States)

    Wei, Eric Q; Barnett, Adam S; Pitt, Geoffrey S; Hennessey, Jessica A

    2011-10-01

    The four fibroblast growth factor homologous factors (FHFs; FGF11-FGF14) are intracellular proteins that bind and modulate voltage-gated sodium channels (VGSCs). Although FHFs have been well studied in neurons and implicated in neurologic disease, their role in cardiomyocytes was unclear until recently. This review discusses the expression profile and function of FHFs in mouse and rat ventricular cardiomyocytes. Recent data show that FGF13 is the predominant FHF in the murine heart, directly binds the cardiac VGSC α subunit, and is essential for normal cardiac conduction. FHF loss-of-function mutations may be unrecognized causes of cardiac arrhythmias, such as long QT and Brugada syndromes.

  11. The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu

    OpenAIRE

    Shanmugam, R; Aklujkar, M.; Schaefer, M.; Reinhardt, R; Nickel, O.; Reuter, G; Lovley, D.; Ehrenhofer-Murray, A.; Nelle, W.; Ankri, S; Helm, M.; Jurkowski, T.; Jeltsch, A.

    2014-01-01

    Dnmt2 enzymes are conserved in eukaryotes, where they methylate C38 of tRNA-Asp with high activity. Here, the activity of one of the very few prokaryotic Dnmt2 homologs from Geobacter species (GsDnmt2) was investigated. GsDnmt2 was observed to methylate tRNA-Asp from flies and mice. Unexpectedly, it had only a weak activity toward its matching Geobacter tRNA-Asp, but methylated Geobacter tRNA-Glu with good activity. In agreement with this result, we show that tRNA-Glu is methylated in Geobact...

  12. 53BP1 fosters fidelity of homology-directed DNA repair

    DEFF Research Database (Denmark)

    Ochs, Fena; Somyajit, Kumar; Altmeyer, Matthias;

    2016-01-01

    Repair of DNA double-strand breaks (DSBs) in mammals is coordinated by the ubiquitin-dependent accumulation of 53BP1 at DSB-flanking chromatin. Owing to its ability to limit DNA-end processing, 53BP1 is thought to promote nonhomologous end-joining (NHEJ) and to suppress homology-directed repair...... (HDR). Here, we show that silencing 53BP1 or exhausting its capacity to bind damaged chromatin changes limited DSB resection to hyper-resection and results in a switch from error-free gene conversion by RAD51 to mutagenic single-strand annealing by RAD52. Thus, rather than suppressing HDR, 53BP1...

  13. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages

    OpenAIRE

    Pearson, Bret J.; Alvarado, Alejandro Sánchez

    2010-01-01

    The functions of adult stem cells and tumor suppressor genes are known to intersect. However, when and how tumor suppressors function in the lineages produced by adult stem cells is unknown. With a large population of stem cells that can be manipulated and studied in vivo, the freshwater planarian is an ideal system with which to investigate these questions. Here, we focus on the tumor suppressor p53, homologs of which have no known role in stem cell biology in any invertebrate examined thus ...

  14. Expression and Clinicopathologic Significance of Human Achaete-scute Homolog 1 in Pulmonary Neuroendocrine Tumors

    OpenAIRE

    Donghan ZHENG; Wang, Lijun; Huang, Heyu; Li, Rui; Zhong, Zhiyong; Li, Fei; Daorong ZHANG

    2010-01-01

    Background and objective Human achaete-scute homolog 1 (hASH1) gene plays a critical role in development of the central nervous system, automatic nervous system, adrenal medullary chromaffin cells, thyroid C cells and pulmonary neuroendocrine cells. The aim of this study is to determine hASH1 gene expression in the normal lung tissue and various types of lung tumors, to analyze whether its expression correlated with pulmonary neuroendocrine markers, and to explore the possibility of hASH1 as ...

  15. Diagonal complexes and the integral homology of the automorphism group of a free product

    OpenAIRE

    Griffin, James

    2010-01-01

    The main goal of this paper is a calculation of the integral (co)homology of the group of symmetric automorphisms of a free product. We proceed by giving a geometric interpretation of symmetric automorphisms via a moduli space of certain diagrams, which we name cactus products. To describe this moduli space a theory of diagonal complexes is introduced. This offers a generalisation of the theory of right-angled Artin groups in that each diagonal complex defines what we call a diagonal right-an...

  16. Targeting of human aFGF gene into silkworm, Bombyx mori L.Through homologous recombination

    Institute of Scientific and Technical Information of China (English)

    吴小锋; 曹翠平

    2004-01-01

    The long-arm and short-arm genes of fibroin light chain (L-chain) of silkworm, Bombyx Mori L., and the gene of human acidic fibroblast growth factor were cloned respectively and subsequently inserted into a transfer vector pVL1392 used as a tool to target the L-chain region of the silkworm genome. Genomic DNA from their offsprings was extracted and the expected targeting was detected using polymerase chain reaction and DNA sequencing, as well as protein analysis. The results showed that positive events occurred and that the FGF gene was integrated into the L-chain locus through homologous recombination.

  17. Extracellular Disulfide Bridges Serve Different Purposes in Two Homologous Chemokine Receptors, CCR1 and CCR5

    DEFF Research Database (Denmark)

    Rummel, Pia Cwarzko; Thiele, Stefanie; Hansen, Laerke Smidt;

    2013-01-01

    chemokine receptors, high affinity CCL3 chemokine binding was maintained in the absence of either bridge. In CCR5, the closest homolog to CCR1, a completely different dependency was observed as neither chemokine activation nor binding was retained in the absence of either bridge. In contrast, both bridges...... where dispensable for small-molecule activation. This indicates that CCR5 activity is independent of extracellular regions, whereas in CCR1, preserved folding of ECL2 is necessary for activation. These results indicate that conserved structural features in a receptor subgroup, does not necessarily...

  18. A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins

    OpenAIRE

    Cammue, Bruno; Thevissen, Karin; Hendriks, M.; Eggermont, Kristel; Goderis, I. J.; Proost, Paul; Van Damme, Jozef; Osborn, R W; Guerbette, F.; Kader, J. C.; Broekaert, Willem

    1995-01-01

    An antimicrobial protein of about 10 kD, called Ace-AMP1, was isolated from onion (Allium cepa L.) seeds. Based on the near-complete amino acid sequence of this protein, oligonucleotides were designed for polymerase chain reaction-based cloning of the corresponding cDNA. The mature protein is homologous to plant nonspecific lipid transfer proteins (nsLTPs), but it shares only 76% of the residues that are conserved among all known plant nsLTPs and is unusually rich in arginine. Ace-AMP1 inhibi...

  19. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    OpenAIRE

    Patricia Marie Legler; Susanne eBoisvert; Compton, Jaimee R.; Millard, Charles B.

    2014-01-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucl...

  20. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    OpenAIRE

    Legler, Patricia M.; Boisvert, Susanne M.; Compton, Jaimee R.; Millard, Charles B.

    2014-01-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleo...

  1. Liver receptor homolog 1 transcriptionally regulates human bile salt export pump expression*

    OpenAIRE

    Song, Xiulong; Kaimal, Rajani; Yan, Bingfang; Deng, Ruitang

    2008-01-01

    The metabolic conversion of cholesterol into bile acids in liver is initiated by the rate-limiting cholesterol 7α-hydroxylase (CYP7A1), whereas the bile salt export pump (BSEP) is responsible for the canalicular secretion of bile acids. Liver receptor homolog 1 (LRH-1) is a key transcriptional factor required for the hepatic expression of CYP7A1. We hypothesized that LRH-1 was also involved in the transcriptional regulation of BSEP. In support of our hypothesis, we found that overexpression o...

  2. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair

    DEFF Research Database (Denmark)

    Sørensen, Claus Storgaard; Hansen, Lasse Tengbjerg; Dziegielewski, Jaroslaw;

    2005-01-01

    The essential checkpoint kinase Chk1 is required for cell-cycle delays after DNA damage or blocked DNA replication. However, it is unclear whether Chk1 is involved in the repair of damaged DNA. Here we establish that Chk1 is a key regulator of genome maintenance by the homologous recombination......, the essential recombination repair protein RAD51 is recruited to DNA repair foci performing a vital role in correct HRR. We demonstrate that Chk1 interacts with RAD51, and that RAD51 is phosphorylated on Thr 309 in a Chk1-dependent manner. Consistent with a functional interplay between Chk1 and RAD51...

  3. Prediction of the three-dimensional structure of human interleukin-7 by homology modeling.

    Science.gov (United States)

    Kroemer, R T; Doughty, S W; Robinson, A J; Richards, W G

    1996-06-01

    The three-dimensional structure of human interleukin (IL)-7 has been predicted based on homology to human IL-2, IL-4, granulocyte-macrophage colony stimulating factor and growth hormone. The model has a topology common to other cytokines and displays a unique disulfide pattern. Knowledge of the tertiary structure of IL-7 has implications for analysis of key binding regions, suggestions for mutagenesis experiments and design of (ant)agonists. In this context, the model is discussed and compared with other cytokine structures. PMID:8862549

  4. Partial primary structure of human pregnancy zone protein: extensive sequence homology with human alpha 2-macroglobulin.

    OpenAIRE

    Sottrup-Jensen, L; Folkersen, J; T. Kristensen; Tack, B F

    1984-01-01

    Human pregnancy zone protein (PZP) is a major pregnancy-associated protein. Its quaternary structure (two covalently bound 180-kDa subunits, which are further non-covalently assembled into a tetramer of 720 kDa) is similar to that of human alpha 2-macroglobulin (alpha 2M). Here we show, from the results of complete or partial sequence determination of a random selection of 38 tryptic peptides covering 685 residues of the subunit of PZP, that PZP and alpha 2M indeed are extensively homologous....

  5. Microwave accelerated synthesis of isoxazole hydrazide inhibitors of the system xc- transporter: Initial homology model.

    Science.gov (United States)

    Matti, Afnan A; Mirzaei, Joseph; Rudolph, John; Smith, Stephen A; Newell, Jayme L; Patel, Sarjubhai A; Braden, Michael R; Bridges, Richard J; Natale, Nicholas R

    2013-11-01

    Microwave accelerated reaction system (MARS) technology provided a good method to obtain selective and open isoxazole ligands that bind to and inhibit the Sxc- antiporter. The MARS provided numerous advantages, including: shorter time, better yield and higher purity of the product. Of the newly synthesized series of isoxazoles the salicyl hydrazide 6 exhibited the highest level of inhibitory activity in the transport assay. A homology model has been developed to summarize the SAR results to date, and provide a working hypothesis for future studies.

  6. Early days of DNA repair: discovery of nucleotide excision repair and homology-dependent recombinational repair.

    Science.gov (United States)

    Rupp, W Dean

    2013-12-13

    The discovery of nucleotide excision repair in 1964 showed that DNA could be repaired by a mechanism that removed the damaged section of a strand and replaced it accurately by using the remaining intact strand as the template. This result showed that DNA could be actively metabolized in a process that had no precedent. In 1968, experiments describing postreplication repair, a process dependent on homologous recombination, were reported. The authors of these papers were either at Yale University or had prior Yale connections. Here we recount some of the events leading to these discoveries and consider the impact on further research at Yale and elsewhere.

  7. Tolerance to the Substitution of Buried Apolar Residues by Charged Residues in the Homologous Protein Structures

    OpenAIRE

    Balaji, S.; Aruna, S.; N. Srinivasan

    2003-01-01

    Occurrence and accommodation of charged amino acid residues in proteins that are structurally equivalent to buried non-polar residues in homologues have been investigated. Using a dataset of 1,852 homologous pairs of crystal structures of proteins available at 2A or better resolution, 14,024 examples of apolar residues in the structurally conserved regions replaced by charged residues in homologues have been identified. Out of 2,530 cases of buried apolar residues, 1,677 of the equivalent cha...

  8. An Improved Homologous Recombination Method for Rapid Cloning of the Antibody Heavy Chain Gene and Its Comparison with the Homologous Recombination and Traditional Cloning Methods

    Directory of Open Access Journals (Sweden)

    Masoumeh Hajirezaei

    2015-10-01

    Full Text Available Background: The homologous recombination (HR is one of the conventional cloning methods for the production of recombinant DNA. It is a quick method for in vivo DNA cloning without using the high cost restriction enzymes. A few modifications in the cloning procedure can increase the efficiency of this method.Materials and Methods: In this study, effect of heating on the rate of the IgG1 heavy chain gene cloning was investigated in the HR method and then it was compared with HR method without heating and traditional cloning method. For doing this comparison, three cloning methods including HR, HR with the heat treatment, and traditional cloning were used to clone the human IgG1 heavy chain into the pcDNA3.1(+ plasmid.Results: The results showed that adding heat in the HR method converts insert and vector from the double strand DNA to the single strand DNA. This allows them to copulate with each other better and faster than the two other methods. The heat addition also helps the cell enzyme system for a faster and easier recombination and moreover it increases the cloning efficiency of the HR method in case of in vitro processing.Conclusion: The results showed that giving heat in the HR method increases cloning rate 7.5% and this increase reaches 10% in comparison with the traditional method. 

  9. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Larionov, V.; Kouprina, N. [National Institute of Environmental Health Sciences (NIH), Research Triangle Park, NC (United States)]|[Institute of Cytology, St. Petersburg (Russian Federation); Eldarov, M. [National Institute of Environmental Health Sciences (NIH), Research Triangle Park, NC (United States)]|[Center for Bioengineering, Moscow (Russian Federation); Perkins, E.; Porter, G.; Resnick, M.A. [National Institute of Environmental Health Sciences (NIH), Research Triangle Park, NC (United States)

    1994-10-01

    Rearrangement and deletion within plasmid DNA is commonly observed during transformation. We have examined the mechanisms of transformation-associated recombination in the yeast Saccharomyces cerevisiae using a plasmid system which allowed the effects of physical state and/or extent of homology on recombination to be studied. The plasmid contains homologous or diverged (19%) DNA repeats separated by a genetically detectable color marker. Recombination during transformation for covalently closed circular plasmids was over 100-fold more frequent than during mitotic-growth. The frequency of recombination is partly dependent on the method of transformation In that procedures involving lithium acetate or spheroplasting yield higher frequencies than electroporation. When present in the repeats, unique single-strand breaks that are ligatable, as well as double-strand breaks, lead to high levels of recombination between diverged and identical repeats. The transformation-associated recombination between repeat DNA`s is under the influence of the RAD52, RAD1 and the RNC1 genes.

  10. Polynomial-time homology for simplicial Eilenberg-MacLane spaces

    CERN Document Server

    Krcal, Marek; Sergeraert, Francis

    2012-01-01

    In an earlier paper of Cadek, Vokrinek, Wagner, and the present authors, we investigated an algorithmic problem in computational algebraic topology, namely, the computation of all possible homotopy classes of maps between two topological spaces, under suitable restriction on the spaces. We aim at showing that, if the dimensions of the considered spaces are bounded by a constant, then the computations can be done in polynomial time. In this paper we make a significant technical step towards this goal: we show that the Eilenberg-MacLane space K(Z,1), represented as a simplicial group, can be equipped with polynomial-time homology (this is a polynomial-time version of effective homology considered in previous works of the third author and co-workers). To this end, we construct a suitable discrete vector field, in the sense of Forman's discrete Morse theory, on K(Z,1). The construction is purely combinatorial and it can be understood as a certain procedure for reducing finite sequences of integers, without any re...

  11. On-line gas chromatographic studies of rutherfordium (Element 104), hahnium (Element 105), and homologs

    International Nuclear Information System (INIS)

    Gas-phase isothermal chromatogaphy is a method by which volatile compounds of different chemical elements can be separated according to their volatilities. The technique, coupled with theoretical modeling of the processes occurring in the chromatogaphy column, provides accurate determination of thermodynamic properties (e.g., adsorption enthalpies) for compounds of elements, such as the transactinides, which can only be produced on an atom-at-a-time basis. In addition, the chemical selectivity of the isothermal chromatogaphy technique provides the decontamination from interfering activities necessary for the determination of the nuclear decay properties of isotopes of the transactinide elements. Volatility measurements were performed on chloride species of Rf and its group 4 homologs, Zr and Hf, as well as Ha and its group 5 homologs, Nb and Ta. Adsorption enthalpies were calculated for all species using a Monte Carlo code simulation based on a microscopic model for gas thermochromatography in open columns with laminar flow of the carrier gas. Preliminary results are presented for Zr- and Nb-bromides

  12. Construction of a novel kind of expression plasmid by homologous recombination in Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xiangling

    2005-01-01

    [1]Brunelli, J. P., Pall, M. L., A series of yeast vectors for expression of cDNAs and other DNA sequences, Yeast, 1993, 9: 1299―1308.[2]Sikorski, R. S., Hieter, P., A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, 1989, 122: 19―27.[3]Bonneaud, N., Ozier-Kalogerogoulos, O., Li, G. et al., A family of low and high copy replicative, integrative and single-stranded S. cerevisiae /E. coli shuttle vector, Yeast, 1991, 7: 609―615.[4]Huo, K. K., Yu, L. L., Chen, X. J., Li, Y. Y., A stable vector for high-level expression and secretion of human interferon alpha A in yeast, Science in China, Ser. B, 1993, 36(5): 557―567.[5]Zhou, Z. X., Yuan, H. Y., He, W. et al., Expression of the modified HBsAg gene SA-28 directed by a constitutive promoter, Journal of Fudan university (Natural Science), 2000, 39(3): 264―268.[6]Paques, F., Haber, J. E., Multiple pathways of recombination induces by double-strand breaks in Saccharomyces cerevisiae, Microbiology and Molecular Biology Reviews, 1999, 63(2): 349―404.[7]Martin, K., Damage-induced recombination in the yeast Saccharomyces cerevisiae, Mutation Research, 2000, 451: 91―105.[8]Alira, S., Tomoko, O., Homologous recombination and the roles of double-strand breaks, TIBS, 1995, 20: 387―391.[9]Patrick, S., Kelly, M. T., Stephen, V. K., Recombination factor of Saccharomyces cerevisiae, Mutation Research, 2000, 451: 257―275.[10]Manivasakam, P., Weber, S. C., McElver, J., Schiestl, R. H., Micro-homology mediated PCR targeting in Saccharomyces cerevisiae, Nucleic Acids Res., 1995, 23(14): 2799―2800.[11]Baudin, A., Lacroute, F., Cullin, C., A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae, Nucleic Acids Res., 1993, 21(14): 3329―3330.[12]Hua, S. B., Qiu, M., Chan, E., Zhu, L., Luo, Y., Minimum length of sequence homology required for in vivo cloning by homolo-gous recombination in yeast, Plasmid, 1997, 38

  13. Rapid pairing and resegregation of distant homologous loci enables double-strand break repair in bacteria.

    Science.gov (United States)

    Badrinarayanan, Anjana; Le, Tung B K; Laub, Michael T

    2015-08-01

    Double-strand breaks (DSBs) can lead to the loss of genetic information and cell death. Although DSB repair via homologous recombination has been well characterized, the spatial organization of this process inside cells remains poorly understood, and the mechanisms used for chromosome resegregation after repair are unclear. In this paper, we introduced site-specific DSBs in Caulobacter crescentus and then used time-lapse microscopy to visualize the ensuing chromosome dynamics. Damaged loci rapidly mobilized after a DSB, pairing with their homologous partner to enable repair, before being resegregated to their original cellular locations, independent of DNA replication. Origin-proximal regions were resegregated by the ParABS system with the ParA structure needed for resegregation assembling dynamically in response to the DSB-induced movement of an origin-associated ParB away from one cell pole. Origin-distal regions were resegregated in a ParABS-independent manner and instead likely rely on a physical, spring-like force to segregate repaired loci. Collectively, our results provide a mechanistic basis for the resegregation of chromosomes after a DSB. PMID:26240183

  14. Homologs of SCAR/WAVE complex components are required for epidermal cell morphogenesis in rice.

    Science.gov (United States)

    Zhou, Wenqi; Wang, Yuchuan; Wu, Zhongliang; Luo, Liang; Liu, Ping; Yan, Longfeng; Hou, Suiwen

    2016-07-01

    Filamentous actins (F-actins) play a vital role in epidermal cell morphogenesis. However, a limited number of studies have examined actin-dependent leaf epidermal cell morphogenesis events in rice. In this study, two recessive mutants were isolated: less pronounced lobe epidermal cell2-1 (lpl2-1) and lpl3-1, whose leaf and stem epidermis developed a smooth surface, with fewer serrated pavement cell (PC) lobes, and decreased papillae. The lpl2-1 also exhibited irregular stomata patterns, reduced plant height, and short panicles and roots. Molecular genetic studies demonstrated that LPL2 and LPL3 encode the PIROGI/Specifically Rac1-associated protein 1 (PIR/SRA1)-like and NCK-associated protein 1 (NAP1)-like proteins, respectively, two components of the suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein-family verprolin-homologous protein (SCAR/WAVE) regulatory complex involved in actin nucleation and function. Epidermal cells exhibited abnormal arrangement of F-actins in both lpl2 and lpl3 expanding leaves. Moreover, the distorted trichomes of Arabidopsis pir could be partially restored by an overexpression of LPL2 A yeast two-hybrid assay revealed that LPL2 can directly interact with LPL3 in vitro Collectively, the results indicate that LPL2 and LPL3 are two functionally conserved homologs of the SCAR/WAVE complex components, and that they play an important role in controlling epidermal cell morphogenesis in rice by organising F-actin.

  15. Transcriptional coactivator CIITA, a functional homolog of TAF1, has kinase activity.

    Science.gov (United States)

    Soe, Katherine C; Devaiah, Ballachanda N; Singer, Dinah S

    2013-11-01

    The Major Histocompatibility Complex (MHC) class II transactivator (CIITA) mediates activated immune responses and its deficiency results in the Type II Bare Lymphocyte Syndrome. CIITA is a transcriptional co-activator that regulates γ-interferon-activated transcription of MHC class I and class II genes. It is also a functional homolog of TAF1, a component of the general transcription factor complex TFIID. TAF1 and CIITA both possess intrinsic acetyltransferase (AT) activity that is required for transcription initiation. In response to induction by γ-interferon, CIITA and it's AT activity bypass the requirement for TAF1 AT activity. TAF1 also has kinase activity that is essential for its function. However, no similar activity has been identified for CIITA thus far. Here we report that CIITA, like TAF1, is a serine-threonine kinase. Its substrate specificity parallels, but does not duplicate, that of TAF1 in phosphorylating the TFIID component TAF7, the RAP74 subunit of the general transcription factor TFIIF and histone H2B. Like TAF1, CIITA autophosphorylates, affecting its interaction with TAF7. Additionally, CIITA phosphorylates histone H2B at Ser36, a target of TAF1 that is required for transcription during cell cycle progression and stress response. However, unlike TAF1, CIITA also phosphorylates all the other histones. The identification of this novel kinase activity of CIITA further clarifies its role as a functional homolog of TAF1 which may operate during stress and γ-IFN activated MHC gene transcription.

  16. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis

    KAUST Repository

    Zhang, Yanxia

    2014-10-26

    Strigolactones (SLs) are a class of phytohormones and rhizosphere signaling compounds with high structural diversity. Three enzymes, carotenoid isomerase DWARF27 and carotenoid cleavage dioxygenases CCD7 and CCD8, were previously shown to convert all-trans-β-carotene to carlactone (CL), the SL precursor. However, how CL is metabolized to SLs has remained elusive. Here, by reconstituting the SL biosynthetic pathway in Nicotiana benthamiana, we show that a rice homolog of Arabidopsis More Axillary Growth 1 (MAX1), encodes a cytochrome P450 CYP711 subfamily member that acts as a CL oxidase to stereoselectively convert CL into ent-2\\'-epi-5-deoxystrigol (B-C lactone ring formation), the presumed precursor of rice SLs. A protein encoded by a second rice MAX1 homolog then catalyzes the conversion of ent-2\\'-epi-5-deoxystrigol to orobanchol. We therefore report that two members of CYP711 enzymes can catalyze two distinct steps in SL biosynthesis, identifying the first enzymes involved in B-C ring closure and a subsequent structural diversification step of SLs.

  17. Characterization of three loci for homologous gene targeting and transgene expression.

    Science.gov (United States)

    Eyquem, Justin; Poirot, Laurent; Galetto, Roman; Scharenberg, Andrew M; Smith, Julianne

    2013-08-01

    Integrative gene transfer is widely used for bioproduction, drug screening, and therapeutic applications but usual viral methods lead to random and multicopy insertions, contribute to unstable transgene expression and can disturb endogenous gene expression. Homologous targeting of an expression cassette using rare-cutting endonucleases is a potential solution; however the number of studied loci remains limited. Furthermore, the behavior and performance of various types of gene cassettes following gene targeting is poorly defined. Here we have evaluated three loci for gene targeting, including one locus compatible with the proposed Safe Harbor criteria for human translational applications. Using optimized conditions for homologous gene targeting, reporter genes under the control of different promoters were efficiently inserted at each locus in both sense and antisense orientations. Sustainable expression was achieved at all three loci without detectable disturbance of flanking gene expression. However, the promoter, the integration locus and the cassette orientation have a strong impact on transgene expression. Finally, single targeted integrations exhibited greatly improved transgene expression stability versus multicopy or random integration. Taken together, our data suggest a potential set of loci for site-specific transgene integration, suitable for a variety of biotechnological applications.

  18. Previous Homologous and Heterologous Stress Exposure Induces Tolerance Development to Pulsed Light in Listeria monocytogenes.

    Science.gov (United States)

    Heinrich, Victoria; Zunabovic, Marija; Petschnig, Alice; Müller, Horst; Lassenberger, Andrea; Reimhult, Erik; Kneifel, Wolfgang

    2016-01-01

    As one of the emerging non-thermal technologies, pulsed light (PL) facilitates rapid, mild and residue-free microbial surface decontamination of food and food contact materials. While notable progress has been made in the characterization of the inactivation potential of PL, experimental data available on the tolerance development to the same (homologous) stress or to different (heterologous) stresses commonly applied in food manufacturing (e.g., acid, heat, salt) is rather controversial. The findings of the present study clearly indicate that both the homologous tolerance development against PL as well as the heterologous tolerance development from heat to PL can be triggered in Listeria monocytogenes. Further, conducted kinetic analysis confirmed that the conventionally applied log-linear model is not well suited to describe the inactivation of L. monocytogenes, when exposed to PL. Instead, the Weibull model as well as the log-linear + tail model were identified as suitable models. Transmission electron microscopic (TEM) approaches allow suggestions on the morphological alterations in L. monocytogenes cells after being subjected to PL. PMID:27092137

  19. Previous homologous and heterologous stress exposure induces tolerance development to pulsed light in Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Victoria eHeinrich

    2016-04-01

    Full Text Available As one of the emerging non-thermal technologies, pulsed light (PL facilitates rapid, mild and residue-free microbial surface decontamination of food and food contact materials. While notable progress has been made in the characterization of the inactivation potential of PL, experimental data available on the tolerance development to the same (homologous stress or to different (heterologous stresses commonly applied in food manufacturing (e.g. acid, heat, salt is rather controversial. The findings of the present study clearly indicate that both the homologous tolerance development against PL as well as the heterologous tolerance development from heat to PL can be triggered in Listeria monocytogenes. Further, conducted kinetic analysis confirmed that the conventionally applied log-linear model is not well suited to describe the inactivation of L. monocytogenes, when exposed to PL. Instead, the Weibull model as well as the log-linear + tail model were identified as suitable models. Transmission Electron Microscopic (TEM approaches allow suggestions on the morphological alterations in L. monocytogenes cells after being subjected to PL.

  20. Revisiting the homology modeling of G-protein coupled receptors: β1-adrenoceptor as an example.

    Science.gov (United States)

    Zhu, Mengyuan; Li, Minyong

    2012-06-01

    G-protein coupled receptors (GPCRs) are recognized to constitute the largest family of membrane proteins. Due to the disproportion in the quantity of crystal structures and their amino acid sequences, homology modeling contributes a reasonable and feasible approach to GPCR theoretical coordinates. With the brand new crystal structures resolved recently, herein we deliberated how to designate them as templates to carry out homology modeling in four aspects: (1) various sequence alignment methods; (2) protein weight matrix; (3) different sets of multiple templates; (4) active and inactive state of templates. The accuracy of models was evaluated by comparing the similarity of stereo conformation and molecular docking results between models and the experimental structure of Meleagris gallopavo β(1)-adrenergic receptor (Mg_Adrb1) that we desired to develop as an example. Our results proposed that: (1) Cobalt and MAFFT, two algorithms of sequence alignment, were suitable for single- and multiple-template modeling, respectively; (2) Blosum30 is applicable to align sequences in the case of low sequence identity; (3) multiple-template modeling is not always better than single-template one; (4) the state of template is an influential factor in simulating the GPCR structures as well. PMID:22454032

  1. A Serum Response Factor homolog is required for spore differentiation in Dictyostelium.

    Science.gov (United States)

    Escalante, R; Sastre, L

    1998-10-01

    A homolog of the Serum Response Factor (SRF) has been isolated from Dictyostelium discoideum and its function studied by analyzing the consequences of its gene disruption. The MADS-box region of Dictyostelium SRF (DdSRF) is highly conserved with those of the human, Drosophila and yeast homologs. srfA is a developmentally regulated gene expressed in prespore and spore cells. This gene plays an essential role in sporulation as its disruption leads to abnormal spore morphology and loss of viability. The mutant spores were round and cellulose deposition seemed to be partially affected. Initial prestalk and prespore cell differentiation did not seem to be compromised in the mutant since the expression of several cell-type-specific markers were found to be unaffected. However, the mRNA level of the spore marker spiA was greatly reduced. Activation of the cAMP-dependent protein kinase (PKA) by 8-Br-cAMP was not able to fully bypass the morphological defects of srfA- mutant spores, although this treatment induced spiA mRNA expression. Our results suggest that DdSRF is required for full maturation of spores and participates in the regulation of the expression of the spore-coat marker spiA and probably other maturation genes necessary for proper spore cell differentiation. PMID:9729488

  2. Colour pattern homology and evolution in Vanessa butterflies (Nymphalidae: Nymphalini): eyespot characters.

    Science.gov (United States)

    Abbasi, R; Marcus, J M

    2015-11-01

    Ocelli are serially repeated colour patterns on the wings of many butterflies. Eyespots are elaborate ocelli that function in predator avoidance and deterrence as well as in mate choice. A phylogenetic approach was used to study ocelli and eyespot evolution in Vanessa butterflies, a genus exhibiting diverse phenotypes among these serial homologs. Forty-four morphological characters based on eyespot number, arrangement, shape and the number of elements in each eyespot were defined and scored. Ocelli from eight wing cells on the dorsal and ventral surfaces of the forewing and hindwing were evaluated. The evolution of these characters was traced over a phylogeny of Vanessa based on 7750 DNA base pairs from 10 genes. Our reconstruction predicts that the ancestral Vanessa had 5 serially arranged ocelli on all four wing surfaces. The ancestral state on the dorsal forewing and ventral hindwing was ocelli arranged in two heterogeneous groups. On the dorsal hindwing, the ancestral state was either homogenous or ocelli arranged in two heterogeneous groups. On the ventral forewing, we determined that the ancestral state was organized into three heterogeneous groups. In Vanessa, almost all ocelli are individuated and capable of independent evolution relative to other colour patterns except for the ocelli in cells -1 and 0 on the dorsal and ventral forewings, which appear to be constrained to evolve in parallel. The genus Vanessa is a good model system for the study of serial homology and the interaction of selective forces with developmental architecture to produce diversity in butterfly colour patterns.

  3. Transcriptional analysis of Rickettsia prowazekii invasion gene homolog (invA) during host cell infection.

    Science.gov (United States)

    Gaywee, Jariyanart; Radulovic, Suzana; Higgins, James A; Azad, Abdu F

    2002-11-01

    An invasion gene homolog, invA, of Rickettsia prowazekii has recently been identified to encode a member of the Nudix hydrolase subfamily which acts specifically on dinucleoside oligophosphates (Np(n)N; n >/= 5), a group of cellular signaling molecules known as alarmones. InvA is thought to enhance intracellular survival by regulating stress-induced toxic nucleotide levels during rickettsial infection. To further characterize the physiological function of InvA, the gene expression pattern during various stages of rickettsial intracellular growth was investigated. Using semiquantitative reverse transcription-PCR (RT-PCR) and real-time fluorescent probe-based quantitative RT-PCR, a differential expression profile of invA during rickettsial host cell infection was examined. The invA transcript temporarily increased during the early period of infection. Expression of rickettsial groEL, a molecular indicator of cellular stresses, was also shown to be upregulated during the early period of infection. Furthermore, invA was cotranscribed in a polycistronic message with rrp, a gene encoding the response regulator protein homolog, which is a part of a two-component signal transduction system. These results support our earlier findings that under such stress conditions dinucleoside oligophosphate pyrophosphatase may function as a buffer, enhancing rickettsial survival within the cytoplasm of a eukaryotic cell. The expression of rickettsial dinucleoside oligophosphate pyrophosphatase may be regulated by a part of the two-component signal transduction system similar to that described for response regulators in other bacterial systems.

  4. Homologous Comparisons of Photosynthetic System 1 Genes among Cyanobacteria and Chloroplasts

    Institute of Scientific and Technical Information of China (English)

    Jie Yu; Pei-Jun Ma; Ding-Ji Shi; Shi-Ming Li; Chang-Lu Wang

    2008-01-01

    It has now believed that chloroplasts arose from cyanobacteria,however,during endosymbiosis,the photosynthetic genes in chloroplasts have been reduced.How these changes occurred during plant evolution was the focus of the present study.Beginning with photosystem Ⅰ (PSI) genes,a homologous comparison of amino acid sequences of 18 subunits of PSI from 10 species of cyanobacteria,chloroplasts in 12 species of eucaryotic algae,and 28 species of plants (including bryophytes,pteridophytes,gymnospermae,dicotyledon and monocotyledon) was undertaken.The data showed that 18 genes of PSIcan be divided into two groups: Part Ⅰ including seven genes (psaA,psaB,psaC,psaI,psaJ,yct3 and ycf4) shared both by cyanobacteria and plant chloroplasts;Part Ⅱ containing another 11 genes (psaD,psaE,psaF,psaK,psaL,psaM,btpA,ycf37,psaG,psaH and psaN) appeared to have diversified in different plant groups.Among Part I genes,psaC,psaA and psaB had higher homology in all species of cyanobacteria and chloroplasts.Among Part II genes,only psaG,psaH and psaN emerged in seed plants.

  5. Identification and Characterization of FaFT1: A Homolog of FLOWERING LOCUS T from Strawberry

    Directory of Open Access Journals (Sweden)

    Hengjiu Lei

    2015-05-01

    Full Text Available FLOWERING LOCUS T(FT -like genes play crucial roles in flowering transition in several plant species. In this study, a homolog of FT, designated as FaFT1, was isolated and characterized from strawberry. The open reading frame of FaFT1 was 531 bp, encoding a protein of 176 amino acids. Phylogenetic and sequence analysis showed that the FaFT1 protein contained the conservation of Tyr84 and Gln139, as well as the highly conserved amino acid sequences LGRQTVYAPGWRQN and LYN and that it was a member of the FT-like genes of dicots. Subcellular localization analysis revealed that the FaFT1 protein mainly localized in the nuclei of the Arabidopsis protoplasts. FaFT1 was highly expressed in strawberry mature leaves and its expression level decreased under floral induction conditions. Additionally, FaFT1 expression exhibited diurnal circadian rhythm both under SD and LD conditions. Over expression of FaFT1 in wild-type Arabidopsis caused early flowering. Taken together, these results indicate that FaFT1 is a putative FT homolog in strawberry, acting as a floral promoter in Arabidopsis.

  6. Gene Targeting Using Homologous Recombination in Embryonic Stem Cells: The Future for Behavior Genetics?

    Science.gov (United States)

    Gerlai, Robert

    2016-01-01

    Gene targeting with homologous recombination in embryonic stem cells created a revolution in the analysis of the function of genes in behavioral brain research. The technology allowed unprecedented precision with which one could manipulate genes and study the effect of this manipulation on the central nervous system. With gene targeting, the uncertainty inherent in psychopharmacology regarding whether a particular compound would act only through a specific target was removed. Thus, gene targeting became highly popular. However, with this popularity came the realization that like other methods, gene targeting also suffered from some technical and principal problems. For example, two decades ago, issues about compensatory changes and about genetic linkage were raised. Since then, the technology developed, and its utility has been better delineated. This review will discuss the pros and cons of the technique along with these advancements from the perspective of the neuroscientist user. It will also compare and contrast methods that may represent novel alternatives to the homologous recombination based gene targeting approach, including the TALEN and the CRISPR/Cas9 systems. The goal of the review is not to provide detailed recipes, but to attempt to present a short summary of these approaches a behavioral geneticist or neuroscientist may consider for the analysis of brain function and behavior. PMID:27148349

  7. Homology modeling of dopamine D2 and D3 receptors: molecular dynamics refinement and docking evaluation.

    Directory of Open Access Journals (Sweden)

    Chiara Bianca Maria Platania

    Full Text Available Dopamine (DA receptors, a class of G-protein coupled receptors (GPCRs, have been targeted for drug development for the treatment of neurological, psychiatric and ocular disorders. The lack of structural information about GPCRs and their ligand complexes has prompted the development of homology models of these proteins aimed at structure-based drug design. Crystal structure of human dopamine D(3 (hD(3 receptor has been recently solved. Based on the hD(3 receptor crystal structure we generated dopamine D(2 and D(3 receptor models and refined them with molecular dynamics (MD protocol. Refined structures, obtained from the MD simulations in membrane environment, were subsequently used in molecular docking studies in order to investigate potential sites of interaction. The structure of hD(3 and hD(2L receptors was differentiated by means of MD simulations and D(3 selective ligands were discriminated, in terms of binding energy, by docking calculation. Robust correlation of computed and experimental K(i was obtained for hD(3 and hD(2L receptor ligands. In conclusion, the present computational approach seems suitable to build and refine structure models of homologous dopamine receptors that may be of value for structure-based drug discovery of selective dopaminergic ligands.

  8. Back-translation for discovering distant protein homologies in the presence of frameshift mutations

    Directory of Open Access Journals (Sweden)

    Noé Laurent

    2010-01-01

    Full Text Available Abstract Background Frameshift mutations in protein-coding DNA sequences produce a drastic change in the resulting protein sequence, which prevents classic protein alignment methods from revealing the proteins' common origin. Moreover, when a large number of substitutions are additionally involved in the divergence, the homology detection becomes difficult even at the DNA level. Results We developed a novel method to infer distant homology relations of two proteins, that accounts for frameshift and point mutations that may have affected the coding sequences. We design a dynamic programming alignment algorithm over memory-efficient graph representations of the complete set of putative DNA sequences of each protein, with the goal of determining the two putative DNA sequences which have the best scoring alignment under a powerful scoring system designed to reflect the most probable evolutionary process. Our implementation is freely available at http://bioinfo.lifl.fr/path/. Conclusions Our approach allows to uncover evolutionary information that is not captured by traditional alignment methods, which is confirmed by biologically significant examples.

  9. An Approach for Predicting Essential Genes Using Multiple Homology Mapping and Machine Learning Algorithms

    Science.gov (United States)

    Hua, Hong-Li; Zhang, Fa-Zhan; Labena, Abraham Alemayehu; Dong, Chuan; Jin, Yan-Ting

    2016-01-01

    Investigation of essential genes is significant to comprehend the minimal gene sets of cell and discover potential drug targets. In this study, a novel approach based on multiple homology mapping and machine learning method was introduced to predict essential genes. We focused on 25 bacteria which have characterized essential genes. The predictions yielded the highest area under receiver operating characteristic (ROC) curve (AUC) of 0.9716 through tenfold cross-validation test. Proper features were utilized to construct models to make predictions in distantly related bacteria. The accuracy of predictions was evaluated via the consistency of predictions and known essential genes of target species. The highest AUC of 0.9552 and average AUC of 0.8314 were achieved when making predictions across organisms. An independent dataset from Synechococcus elongatus, which was released recently, was obtained for further assessment of the performance of our model. The AUC score of predictions is 0.7855, which is higher than other methods. This research presents that features obtained by homology mapping uniquely can achieve quite great or even better results than those integrated features. Meanwhile, the work indicates that machine learning-based method can assign more efficient weight coefficients than using empirical formula based on biological knowledge.

  10. Construction of a novel kind of expression plasmid by homologous recombination in Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiangling; YUAN Hanying; HE Wei; HU Xianghua; LU Hong; LI Yuyang

    2005-01-01

    Based on a previously used plasmid pHC11, a new plasmid pHC11R was constructed. Cutting plasmid pHC11R with proper restriction enzymes, the resulting larger DNA fragment pHC11R' was co-transformed with a PCR amplified expression cassette of human IFNα2b into yeast. By means of the homologous sequences at both ends of two DNA fragments, a novel expression plasmid pHC11R-IFNα2b was formed via homologous recombination in the yeast. Compared with pHC11-IFNα2b, the expression plasmid pHC11R-IFNα2b was smaller in size and in absence of antibiotic resistant gene. The stability and copy number of pHC11R- IFNα2b were greatly increased and the expression level of heterologous protein was improved. As the derivatives of pHC11R, a series of recombination expression vectors pHRs containing different combination of expression elements were developed. This led to a rapid and powerful method for cloning and expressing of different genes in yeast.

  11. Dpb11/TopBP1 contributes to genomicstability via homologous recombinationand checkpoint signaling

    DEFF Research Database (Denmark)

    Germann, Susanne Manuela

    Homologous recombination (HR) is essential for maintaining genome integrity and is a major pathway for repairing (DSBs). DPB11 is an essential gene conserved from yeast to human (TopBP1), which is involved in initiation of DNA replication and DNA checkpoint signaling. We found that Dpb11 forms foci...... signaling. Importantly, Dpb11 foci are independent of checkpoint kinases Mec1 and Tel1, as well as Rad9, further strengthening the upstream position of Dpb11 in the DNA damage checkpoint response. Moreover, dpb11-PF has a defect in S-phase checkpoint function, albeit to a lesser extent than dpb11-1. Altered...... rates of heteroallelic and direct repeat recombination implicate a role for Dpb11 in homologous recombination. Physical monitoring of mating-type switching as a model for DSB repair revealed that the repair kinetics of dpb11-PF are delayed. Finally, we found Dpb11 in budding yeast as well as TopBP1...

  12. Multiple regulation of Rad51-mediated homologous recombination by fission yeast Fbh1.

    Science.gov (United States)

    Tsutsui, Yasuhiro; Kurokawa, Yumiko; Ito, Kentaro; Siddique, Md Shahjahan P; Kawano, Yumiko; Yamao, Fumiaki; Iwasaki, Hiroshi

    2014-08-01

    Fbh1, an F-box helicase related to bacterial UvrD, has been proposed to modulate homologous recombination in fission yeast. We provide several lines of evidence for such modulation. Fbh1, but not the related helicases Srs2 and Rqh1, suppressed the formation of crossover recombinants from single HO-induced DNA double-strand breaks. Purified Fbh1 in complex with Skp1 (Fbh1-Skp1 complex) inhibited Rad51-driven DNA strand exchange by disrupting Rad51 nucleoprotein filaments in an ATP-dependent manner; this disruption was alleviated by the Swi5-Sfr1 complex, an auxiliary activator of Rad51. In addition, the reconstituted SCFFbh1 complex, composed of purified Fbh1-Skp1 and Pcu1-Rbx1, displayed ubiquitin-ligase E3 activity toward Rad51. Furthermore, Fbh1 reduced the protein level of Rad51 in stationary phase in an F-box-dependent, but not in a helicase domain-independent manner. These results suggest that Fbh1 negatively regulates Rad51-mediated homologous recombination via its two putative, unrelated activities, namely DNA unwinding/translocation and ubiquitin ligation. In addition to its anti-recombinase activity, we tentatively suggest that Fbh1 might also have a pro-recombination role in vivo, because the Fbh1-Skp1 complex stimulated Rad51-mediated strand exchange in vitro after strand exchange had been initiated. PMID:25165823

  13. Multiple regulation of Rad51-mediated homologous recombination by fission yeast Fbh1.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Tsutsui

    2014-08-01

    Full Text Available Fbh1, an F-box helicase related to bacterial UvrD, has been proposed to modulate homologous recombination in fission yeast. We provide several lines of evidence for such modulation. Fbh1, but not the related helicases Srs2 and Rqh1, suppressed the formation of crossover recombinants from single HO-induced DNA double-strand breaks. Purified Fbh1 in complex with Skp1 (Fbh1-Skp1 complex inhibited Rad51-driven DNA strand exchange by disrupting Rad51 nucleoprotein filaments in an ATP-dependent manner; this disruption was alleviated by the Swi5-Sfr1 complex, an auxiliary activator of Rad51. In addition, the reconstituted SCFFbh1 complex, composed of purified Fbh1-Skp1 and Pcu1-Rbx1, displayed ubiquitin-ligase E3 activity toward Rad51. Furthermore, Fbh1 reduced the protein level of Rad51 in stationary phase in an F-box-dependent, but not in a helicase domain-independent manner. These results suggest that Fbh1 negatively regulates Rad51-mediated homologous recombination via its two putative, unrelated activities, namely DNA unwinding/translocation and ubiquitin ligation. In addition to its anti-recombinase activity, we tentatively suggest that Fbh1 might also have a pro-recombination role in vivo, because the Fbh1-Skp1 complex stimulated Rad51-mediated strand exchange in vitro after strand exchange had been initiated.

  14. Synthetic peptide homologous to β protein from Alzheimer's disease forms amyloid-like fibrils in vitro

    International Nuclear Information System (INIS)

    Progressive amyloid deposition in senile plaques and cortical blood vessels may play a central role in the pathogenesis of Alzheimer's disease. The authors have used x-ray diffraction and electron microscopy to study the molecular organization and morphology of macromolecular assemblies formed by three synthetic peptides homologous to β protein of brain amyloid: β-(1-28), residues 1-28 of the β protein; [Ala1-β-(1-28), β-(1-28) with alanine substituted for lysine at position 16; and β-(18-28), residues 18-28 of the β protein. β-(1-28) readily formed fibrils in vitro that were similar in ultrastructure to the in vivo amyloid and aggregated into large bundles resembling those of senile plaque cores. X-ray patterns from partially dried, oriented pellets showed a cross-β-conformation. [Ala16]β-(1-28) formed β-pleated sheet assemblies that were dissimilar to in vivo fibrils. The width of the 10-A spacing indicated stacks of about six sheets. Thus, substitution of the uncharged alanine for the positively charged lysine in the β-strand region enhances the packing of the sheets and dramatically alters the type of macromolecular aggregate formed. Β-(18-28) formed assemblies that had even a greater number of stacked sheets. The findings on these homologous synthetic assemblies help to define the specific sequence that is required to form Alzheimer's-type amyloid fibrils, thus providing an in vitro model of age-related cerebral amyloidogenesis

  15. Homologous human milk supplement for very low birth weight preterm infant feeding

    Directory of Open Access Journals (Sweden)

    Thayana Regina de Souza Grance

    2015-03-01

    Full Text Available OBJECTIVE: To develop a homologous human milk supplement for very low-birth weight infant feeding, using an original and simplified methodology, to know the nutritional composition of human milk fortified with this supplement and to evaluate its suitability for feeding these infants. METHODS: For the production and analysis of human milk with the homologous additive, 25 human milk samples of 45mL underwent a lactose removal process, lyophilization and then were diluted in 50mL of human milk. Measurements of lactose, proteins, lipids, energy, sodium, potassium, calcium, phosphorus and osmolality were performed. RESULTS: The composition of the supplemented milk was: lactose 9.22±1.00g/dL; proteins 2.20±0.36g/dL; lipids 2.91±0.57g/dL; calories 71.93±8.69kcal/dL; osmolality 389.6±32.4mOsmol/kgH2O; sodium 2.04±0.45mEq/dL; potassium 1.42±0.15mEq/dL; calcium 43.44±2.98mg/dL; and phosphorus 23.69±1.24mg/dL. CONCLUSIONS: According to the nutritional contents analyzed, except for calcium and phosphorus, human milk with the proposed supplement can meet the nutritional needs of the very low-birth weight preterm infant.

  16. CasHRA (Cas9-facilitated Homologous Recombination Assembly) method of constructing megabase-sized DNA.

    Science.gov (United States)

    Zhou, Jianting; Wu, Ronghai; Xue, Xiaoli; Qin, Zhongjun

    2016-08-19

    Current DNA assembly methods for preparing highly purified linear subassemblies require complex and time-consuming in vitro manipulations that hinder their ability to construct megabase-sized DNAs (e.g. synthetic genomes). We have developed a new method designated 'CasHRA (Cas9-facilitated Homologous Recombination Assembly)' that directly uses large circular DNAs in a one-step in vivo assembly process. The large circular DNAs are co-introduced into Saccharomyces cerevisiae by protoplast fusion, and they are cleaved by RNA-guided Cas9 nuclease to release the linear DNA segments for subsequent assembly by the endogenous homologous recombination system. The CasHRA method allows efficient assembly of multiple large DNA segments in vivo; thus, this approach should be useful in the last stage of genome construction. As a proof of concept, we combined CasHRA with an upstream assembly method (Gibson procedure of genome assembly) and successfully constructed a 1.03 Mb MGE-syn1.0 (Minimal Genome of Escherichia coli) that contained 449 essential genes and 267 important growth genes. We expect that CasHRA will be widely used in megabase-sized genome constructions. PMID:27220470

  17. Investigating the Interplay between Sister Chromatid Cohesion and Homolog Pairing in Drosophila Nuclei.

    Science.gov (United States)

    Senaratne, T Niroshini; Joyce, Eric F; Nguyen, Son C; Wu, C-Ting

    2016-08-01

    Following DNA replication, sister chromatids must stay connected for the remainder of the cell cycle in order to ensure accurate segregation in the subsequent cell division. This important function involves an evolutionarily conserved protein complex known as cohesin; any loss of cohesin causes premature sister chromatid separation in mitosis. Here, we examined the role of cohesin in sister chromatid cohesion prior to mitosis, using fluorescence in situ hybridization (FISH) to assay the alignment of sister chromatids in interphase Drosophila cells. Surprisingly, we found that sister chromatid cohesion can be maintained in G2 with little to no cohesin. This capacity to maintain cohesion is widespread in Drosophila, unlike in other systems where a reduced dependence on cohesin for sister chromatid segregation has been observed only at specific chromosomal regions, such as the rDNA locus in budding yeast. Additionally, we show that condensin II antagonizes the alignment of sister chromatids in interphase, supporting a model wherein cohesin and condensin II oppose each other's functions in the alignment of sister chromatids. Finally, because the maternal and paternal homologs are paired in the somatic cells of Drosophila, and because condensin II has been shown to antagonize this pairing, we consider the possibility that condensin II-regulated mechanisms for aligning homologous chromosomes may also contribute to sister chromatid cohesion. PMID:27541002

  18. Human Cytomegalovirus Encoded Homologs of Cytokines, Chemokines and their Receptors: Roles in Immunomodulation

    Directory of Open Access Journals (Sweden)

    Brian P. McSharry

    2012-10-01

    Full Text Available Human cytomegalovirus (HCMV, the largest human herpesvirus, infects a majority of the world’s population. Like all herpesviruses, following primary productive infection, HCMV establishes a life-long latent infection, from which it can reactivate years later to produce new, infectious virus. Despite the presence of a massive and sustained anti-HCMV immune response, productively infected individuals can shed virus for extended periods of time, and once latent infection is established, it is never cleared from the host. It has been proposed that HCMV must therefore encode functions which help to evade immune mediated clearance during productive virus replication and latency. Molecular mimicry is a strategy used by many viruses to subvert and regulate anti-viral immunity and HCMV has hijacked/developed a range of functions that imitate host encoded immunomodulatory proteins. This review will focus on the HCMV encoded homologs of cellular cytokines/chemokines and their receptors, with an emphasis on how these virus encoded homologs may facilitate viral evasion of immune clearance.

  19. Pseudomonas aeruginosa Type III Secretory Toxin ExoU and Its Predicted Homologs

    Directory of Open Access Journals (Sweden)

    Teiji Sawa

    2016-10-01

    Full Text Available Pseudomonas aeruginosa ExoU, a type III secretory toxin and major virulence factor with patatin-like phospholipase activity, is responsible for acute lung injury and sepsis in immunocompromised patients. Through use of a recently updated bacterial genome database, protein sequences predicted to be homologous to Ps. aeruginosa ExoU were identified in 17 other Pseudomonas species (Ps. fluorescens, Ps. lundensis, Ps. weihenstephanensis, Ps. marginalis, Ps. rhodesiae, Ps. synxantha, Ps. libanensis, Ps. extremaustralis, Ps. veronii, Ps. simiae, Ps. trivialis, Ps. tolaasii, Ps. orientalis, Ps. taetrolens, Ps. syringae, Ps. viridiflava, and Ps. cannabina and 8 Gram-negative bacteria from three other genera (Photorhabdus, Aeromonas, and Paludibacterium. In the alignment of the predicted primary amino acid sequences used for the phylogenetic analyses, both highly conserved and nonconserved parts of the toxin were discovered among the various species. Further comparative studies of the predicted ExoU homologs should provide us with more detailed information about the unique characteristics of the Ps. aeruginosa ExoU toxin.

  20. A homology-based pipeline for global prediction of post-translational modification sites

    Science.gov (United States)

    Chen, Xiang; Shi, Shao-Ping; Xu, Hao-Dong; Suo, Sheng-Bao; Qiu, Jian-Ding

    2016-05-01

    The pathways of protein post-translational modifications (PTMs) have been shown to play particularly important roles for almost any biological process. Identification of PTM substrates along with information on the exact sites is fundamental for fully understanding or controlling biological processes. Alternative computational strategies would help to annotate PTMs in a high-throughput manner. Traditional algorithms are suited for identifying the common organisms and tissues that have a complete PTM atlas or extensive experimental data. While annotation of rare PTMs in most organisms is a clear challenge. In this work, to this end we have developed a novel homology-based pipeline named PTMProber that allows identification of potential modification sites for most of the proteomes lacking PTMs data. Cross-promotion E-value (CPE) as stringent benchmark has been used in our pipeline to evaluate homology to known modification sites. Independent-validation tests show that PTMProber achieves over 58.8% recall with high precision by CPE benchmark. Comparisons with other machine-learning tools show that PTMProber pipeline performs better on general predictions. In addition, we developed a web-based tool to integrate this pipeline at http://bioinfo.ncu.edu.cn/PTMProber/index.aspx. In addition to pre-constructed prediction models of PTM, the website provides an extensional functionality to allow users to customize models.