WorldWideScience

Sample records for cis-acting regulatory elements

  1. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.

    Science.gov (United States)

    Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2005-02-01

    cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.

  2. In silico analysis of cis-acting regulatory elements in 5' regulatory regions of sucrose transporter gene families in rice (Oryza sativa Japonica) and Arabidopsis thaliana.

    Science.gov (United States)

    Ibraheem, Omodele; Botha, Christiaan E J; Bradley, Graeme

    2010-12-01

    The regulation of gene expression involves a multifarious regulatory system. Each gene contains a unique combination of cis-acting regulatory sequence elements in the 5' regulatory region that determines its temporal and spatial expression. Cis-acting regulatory elements are essential transcriptional gene regulatory units; they control many biological processes and stress responses. Thus a full understanding of the transcriptional gene regulation system will depend on successful functional analyses of cis-acting elements. Cis-acting regulatory elements present within the 5' regulatory region of the sucrose transporter gene families in rice (Oryza sativa Japonica cultivar-group) and Arabidopsis thaliana, were identified using a bioinformatics approach. The possible cis-acting regulatory elements were predicted by scanning 1.5kbp of 5' regulatory regions of the sucrose transporter genes translational start sites, using Plant CARE, PLACE and Genomatix Matinspector professional databases. Several cis-acting regulatory elements that are associated with plant development, plant hormonal regulation and stress response were identified, and were present in varying frequencies within the 1.5kbp of 5' regulatory region, among which are; A-box, RY, CAT, Pyrimidine-box, Sucrose-box, ABRE, ARF, ERE, GARE, Me-JA, ARE, DRE, GA-motif, GATA, GT-1, MYC, MYB, W-box, and I-box. This result reveals the probable cis-acting regulatory elements that possibly are involved in the expression and regulation of sucrose transporter gene families in rice and Arabidopsis thaliana during cellular development or environmental stress conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. PlantCARE, a plant cis-acting regulatory element database

    OpenAIRE

    Rombauts, Stephane; Déhais, Patrice; Van Montagu, Marc; Rouzé, Pierre

    1999-01-01

    PlantCARE is a database of plant cis- acting regulatory elements, enhancers and repressors. Besides the transcription motifs found on a sequence, it also offers a link to the EMBL entry that contains the full gene sequence as well as a description of the conditions in which a motif becomes functional. The information on these sites is given by matrices, consensus and individual site sequences on particular genes, depending on the available information. PlantCARE is a relational database avail...

  4. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences

    OpenAIRE

    Lescot, Magali; Déhais, Patrice; Thijs, Gert; Marchal, Kathleen; Moreau, Yves; Van de Peer, Yves; Rouzé, Pierre; Rombauts, Stephane

    2002-01-01

    PlantCARE is a database of plant cis-acting regulatory elements, enhancers and repressors. Regulatory elements are represented by positional matrices, consensus sequences and individual sites on particular promoter sequences. Links to the EMBL, TRANSFAC and MEDLINE databases are provided when available. Data about the transcription sites are extracted mainly from the literature, supplemented with an increasing number of in silico predicted data. Apart from a general description for specific t...

  5. Evolution of Cis-Regulatory Elements and Regulatory Networks in Duplicated Genes of Arabidopsis.

    Science.gov (United States)

    Arsovski, Andrej A; Pradinuk, Julian; Guo, Xu Qiu; Wang, Sishuo; Adams, Keith L

    2015-12-01

    Plant genomes contain large numbers of duplicated genes that contribute to the evolution of new functions. Following duplication, genes can exhibit divergence in their coding sequence and their expression patterns. Changes in the cis-regulatory element landscape can result in changes in gene expression patterns. High-throughput methods developed recently can identify potential cis-regulatory elements on a genome-wide scale. Here, we use a recent comprehensive data set of DNase I sequencing-identified cis-regulatory binding sites (footprints) at single-base-pair resolution to compare binding sites and network connectivity in duplicated gene pairs in Arabidopsis (Arabidopsis thaliana). We found that duplicated gene pairs vary greatly in their cis-regulatory element architecture, resulting in changes in regulatory network connectivity. Whole-genome duplicates (WGDs) have approximately twice as many footprints in their promoters left by potential regulatory proteins than do tandem duplicates (TDs). The WGDs have a greater average number of footprint differences between paralogs than TDs. The footprints, in turn, result in more regulatory network connections between WGDs and other genes, forming denser, more complex regulatory networks than shown by TDs. When comparing regulatory connections between duplicates, WGDs had more pairs in which the two genes are either partially or fully diverged in their network connections, but fewer genes with no network connections than the TDs. There is evidence of younger TDs and WGDs having fewer unique connections compared with older duplicates. This study provides insights into cis-regulatory element evolution and network divergence in duplicated genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. PROSPECT improves cis-acting regulatory element prediction by integrating expression profile data with consensus pattern searches

    Science.gov (United States)

    Fujibuchi, Wataru; Anderson, John S. J.; Landsman, David

    2001-01-01

    Consensus pattern and matrix-based searches designed to predict cis-acting transcriptional regulatory sequences have historically been subject to large numbers of false positives. We sought to decrease false positives by incorporating expression profile data into a consensus pattern-based search method. We have systematically analyzed the expression phenotypes of over 6000 yeast genes, across 121 expression profile experiments, and correlated them with the distribution of 14 known regulatory elements over sequences upstream of the genes. Our method is based on a metric we term probabilistic element assessment (PEA), which is a ranking of potential sites based on sequence similarity in the upstream regions of genes with similar expression phenotypes. For eight of the 14 known elements that we examined, our method had a much higher selectivity than a naïve consensus pattern search. Based on our analysis, we have developed a web-based tool called PROSPECT, which allows consensus pattern-based searching of gene clusters obtained from microarray data. PMID:11574681

  7. A method for selecting cis-acting regulatory sequences that respond to small molecule effectors

    Directory of Open Access Journals (Sweden)

    Allas Ülar

    2010-08-01

    Full Text Available Abstract Background Several cis-acting regulatory sequences functioning at the level of mRNA or nascent peptide and specifically influencing transcription or translation have been described. These regulatory elements often respond to specific chemicals. Results We have developed a method that allows us to select cis-acting regulatory sequences that respond to diverse chemicals. The method is based on the β-lactamase gene containing a random sequence inserted into the beginning of the ORF. Several rounds of selection are used to isolate sequences that suppress β-lactamase expression in response to the compound under study. We have isolated sequences that respond to erythromycin, troleandomycin, chloramphenicol, meta-toluate and homoserine lactone. By introducing synonymous and non-synonymous mutations we have shown that at least in the case of erythromycin the sequences act at the peptide level. We have also tested the cross-activities of the constructs and found that in most cases the sequences respond most strongly to the compound on which they were isolated. Conclusions Several selected peptides showed ligand-specific changes in amino acid frequencies, but no consensus motif could be identified. This is consistent with previous observations on natural cis-acting peptides, showing that it is often impossible to demonstrate a consensus. Applying the currently developed method on a larger scale, by selecting and comparing an extended set of sequences, might allow the sequence rules underlying the activity of cis-acting regulatory peptides to be identified.

  8. Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging.

    Science.gov (United States)

    Pocock, Ginger M; Zimdars, Laraine L; Yuan, Ming; Eliceiri, Kevin W; Ahlquist, Paul; Sherer, Nathan M

    2017-02-01

    Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include "burst" RNA nuclear export dynamics regulated by HIV-1's Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element-specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation. © 2017 Pocock et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Identification of cis-acting regulatory elements in the human oxytocin gene promoter.

    Science.gov (United States)

    Richard, S; Zingg, H H

    1991-12-01

    The expression of hormone-inducible genes is determined by the interaction of trans-acting factors with hormone-inducible elements and elements mediating basal and cell-specific expression. We have shown earlier that the gene encoding the hypothalamic nonapeptide oxytocin (OT) is under the control of an estrogen response element (ERE). The present study was aimed at identifying cis-acting elements mediating basal expression of the OT gene. A construct containing sequences -381 to +36 of the human OT gene was linked to a reporter gene and transiently transfected into a series of neuronal and nonneuronal cell lines. Expression of this construct was cell specific: it was highest in the neuroblastoma-derived cell line, Neuro-2a, and lowest in NIH 3T3 and JEG-3 cells. By 5' deletion analysis, we determined that a segment from -49 to +36 was capable of mediating cells-pecific promoter activity. Within this segment, we identified three proximal promoter elements (PPE-1, PPE-2, and PPE-3) that are each required for promoter activity. Most notably, mutation of a conserved purine-rich element (GAGAGA) contained within PPE-2 leads to a 10-fold decrease in promoter strength. Gel mobility shift analysis with three different double-stranded oligonucleotides demonstrated that each proximal promoter element binds distinct nuclear factors. In each case, only the homologous oligonucleotide, but neither of the oligonucleotides corresponding to adjacent elements, was able to act as a competitor. Thus, a different set of factors appears to bind independently to each element. By reinserting the homologous ERE or a heterologous glucocorticoid response element upstream of intact or altered proximal promoter segments we determined that removal or mutation of proximal promoter elements decreases basal expression, but does not abrogate the hormone responsiveness of the promoter. In conclusion, these results indicate that an important component of the transcriptional activity of the OT

  10. Dynamic SPR monitoring of yeast nuclear protein binding to a cis-regulatory element

    International Nuclear Information System (INIS)

    Mao, Grace; Brody, James P.

    2007-01-01

    Gene expression is controlled by protein complexes binding to short specific sequences of DNA, called cis-regulatory elements. Expression of most eukaryotic genes is controlled by dozens of these elements. Comprehensive identification and monitoring of these elements is a major goal of genomics. In pursuit of this goal, we are developing a surface plasmon resonance (SPR) based assay to identify and monitor cis-regulatory elements. To test whether we could reliably monitor protein binding to a regulatory element, we immobilized a 16 bp region of Saccharomyces cerevisiae chromosome 5 onto a gold surface. This 16 bp region of DNA is known to bind several proteins and thought to control expression of the gene RNR1, which varies through the cell cycle. We synchronized yeast cell cultures, and then sampled these cultures at a regular interval. These samples were processed to purify nuclear lysate, which was then exposed to the sensor. We found that nuclear protein binds this particular element of DNA at a significantly higher rate (as compared to unsynchronized cells) during G1 phase. Other time points show levels of DNA-nuclear protein binding similar to the unsynchronized control. We also measured the apparent association complex of the binding to be 0.014 s -1 . We conclude that (1) SPR-based assays can monitor DNA-nuclear protein binding and that (2) for this particular cis-regulatory element, maximum DNA-nuclear protein binding occurs during G1 phase

  11. A saturation screen for cis-acting regulatory DNA in the Hox genes of Ciona intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Keys, David N.; Lee, Byung-in; Di Gregorio, Anna; Harafuji, Naoe; Detter, Chris; Wang, Mei; Kahsai, Orsalem; Ahn, Sylvia; Arellano, Andre; Zhang, Quin; Trong, Stephan; Doyle, Sharon A.; Satoh, Noriyuki; Satou, Yutaka; Saiga, Hidetoshi; Christian, Allen; Rokhsar, Dan; Hawkins, Trevor L.; Levine, Mike; Richardson, Paul

    2005-01-05

    A screen for the systematic identification of cis-regulatory elements within large (>100 kb) genomic domains containing Hox genes was performed by using the basal chordate Ciona intestinalis. Randomly generated DNA fragments from bacterial artificial chromosomes containing two clusters of Hox genes were inserted into a vector upstream of a minimal promoter and lacZ reporter gene. A total of 222 resultant fusion genes were separately electroporated into fertilized eggs, and their regulatory activities were monitored in larvae. In sum, 21 separable cis-regulatory elements were found. These include eight Hox linked domains that drive expression in nested anterior-posterior domains of ectodermally derived tissues. In addition to vertebrate-like CNS regulation, the discovery of cis-regulatory domains that drive epidermal transcription suggests that C. intestinalis has arthropod-like Hox patterning in the epidermis.

  12. Human apolipoprotein CIII gene expression is regulated by positive and negative cis-acting elements and tissue-specific protein factors

    International Nuclear Information System (INIS)

    Reue, K.; Leff, T.; Breslow, J.L.

    1988-01-01

    Apolipoprotein CIII (apoCIII) is a major protein constituent of triglyceride-rich lipoproteins and is synthesized primarily in the liver. Cis-acting DNA elements required for liver-specific apoCIII gene transcription were identified with transient expression assays in the human hepatoma (HepG2) and epithelial carcinoma (HeLa) cell lines. In liver cells, 821 nucleotides of the human apoCIII gene 5'-flanking sequence were required for maximum levels of gene expression, while the proximal 110 nucleotides alone were sufficient. No expression was observed in similar studies with HeLa cells. The level of expression was modulated by a combination of positive and negative cis-acting sequences, which interact with distinct sets of proteins from liver and HeLa cell nuclear extracts. The proximal positive regulatory region shares homology with similarly located sequences of other genes strongly expressed in the liver, including α 1 -antitrypsin and other apolipoprotein genes. The negative regulatory region is striking homologous to the human β-interferon gene regulatory element. The distal positive region shares homology with some viral enhancers and has properties of a tissue-specific enhancer. The regulation of the apoCIII gene is complex but shares features with other genes, suggesting shuffling of regulatory elements as a common mechanism for cell type-specific gene expression

  13. Changes in cis-regulatory elements of a key floral regulator are associated with divergence of inflorescence architectures.

    Science.gov (United States)

    Kusters, Elske; Della Pina, Serena; Castel, Rob; Souer, Erik; Koes, Ronald

    2015-08-15

    Higher plant species diverged extensively with regard to the moment (flowering time) and position (inflorescence architecture) at which flowers are formed. This seems largely caused by variation in the expression patterns of conserved genes that specify floral meristem identity (FMI), rather than changes in the encoded proteins. Here, we report a functional comparison of the promoters of homologous FMI genes from Arabidopsis, petunia, tomato and Antirrhinum. Analysis of promoter-reporter constructs in petunia and Arabidopsis, as well as complementation experiments, showed that the divergent expression of leafy (LFY) and the petunia homolog aberrant leaf and flower (ALF) results from alterations in the upstream regulatory network rather than cis-regulatory changes. The divergent expression of unusual floral organs (UFO) from Arabidopsis, and the petunia homolog double top (DOT), however, is caused by the loss or gain of cis-regulatory promoter elements, which respond to trans-acting factors that are expressed in similar patterns in both species. Introduction of pUFO:UFO causes no obvious defects in Arabidopsis, but in petunia it causes the precocious and ectopic formation of flowers. This provides an example of how a change in a cis-regulatory region can account for a change in the plant body plan. © 2015. Published by The Company of Biologists Ltd.

  14. Retinal Expression of the Drosophila eyes absent Gene Is Controlled by Several Cooperatively Acting Cis-regulatory Elements

    Science.gov (United States)

    Neuman, Sarah D.; Bashirullah, Arash; Kumar, Justin P.

    2016-01-01

    The eyes absent (eya) gene of the fruit fly, Drosophila melanogaster, is a member of an evolutionarily conserved gene regulatory network that controls eye formation in all seeing animals. The loss of eya leads to the complete elimination of the compound eye while forced expression of eya in non-retinal tissues is sufficient to induce ectopic eye formation. Within the developing retina eya is expressed in a dynamic pattern and is involved in tissue specification/determination, cell proliferation, apoptosis, and cell fate choice. In this report we explore the mechanisms by which eya expression is spatially and temporally governed in the developing eye. We demonstrate that multiple cis-regulatory elements function cooperatively to control eya transcription and that spacing between a pair of enhancer elements is important for maintaining correct gene expression. Lastly, we show that the loss of eya expression in sine oculis (so) mutants is the result of massive cell death and a progressive homeotic transformation of retinal progenitor cells into head epidermis. PMID:27930646

  15. Multiple cis-regulatory elements are involved in the complex regulation of the sieve element-specific MtSEO-F1 promoter from Medicago truncatula.

    Science.gov (United States)

    Bucsenez, M; Rüping, B; Behrens, S; Twyman, R M; Noll, G A; Prüfer, D

    2012-09-01

    The sieve element occlusion (SEO) gene family includes several members that are expressed specifically in immature sieve elements (SEs) in the developing phloem of dicotyledonous plants. To determine how this restricted expression profile is achieved, we analysed the SE-specific Medicago truncatula SEO-F1 promoter (PMtSEO-F1) by constructing deletion, substitution and hybrid constructs and testing them in transgenic tobacco plants using green fluorescent protein as a reporter. This revealed four promoter regions, each containing cis-regulatory elements that activate transcription in SEs. One of these segments also contained sufficient information to suppress PMtSEO-F1 transcription in the phloem companion cells (CCs). Subsequent in silico analysis revealed several candidate cis-regulatory elements that PMtSEO-F1 shares with other SEO promoters. These putative sieve element boxes (PSE boxes) are promising candidates for cis-regulatory elements controlling the SE-specific expression of PMtSEO-F1. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Cis-regulatory elements in the primate brain: from functional specialization to neurodegeneration

    NARCIS (Netherlands)

    Vermunt, Marit W.

    2017-01-01

    Over the last decade, the noncoding part of the genome has been shown to harbour thousands of cis-regulatory elements, such as enhancers, that activate well-defined gene expression programs. Here, we charted active enhancers in a multiplicity of human brain regions to understand the role of

  17. [Analysis of cis-regulatory element distribution in gene promoters of Gossypium raimondii and Arabidopsis thaliana].

    Science.gov (United States)

    Sun, Gao-Fei; He, Shou-Pu; Du, Xiong-Ming

    2013-10-01

    Cotton genomic studies have boomed since the release of Gossypium raimondii draft genome. In this study, cis-regulatory element (CRE) in 1 kb length sequence upstream 5' UTR of annotated genes were selected and scanned in the Arabidopsis thaliana (At) and Gossypium raimondii (Gr) genomes, based on the database of PLACE (Plant cis-acting Regulatory DNA Elements). According to the definition of this study, 44 (12.3%) and 57 (15.5%) CREs presented "peak-like" distribution in the 1 kb selected sequences of both genomes, respectively. Thirty-four of them were peak-like distributed in both genomes, which could be further categorized into 4 types based on their core sequences. The coincidence of TATABOX peak position and their actual position ((-) -30 bp) indicated that the position of a common CRE was conservative in different genes, which suggested that the peak position of these CREs was their possible actual position of transcription factors. The position of a common CRE was also different between the two genomes due to stronger length variation of 5' UTR in Gr than At. Furthermore, most of the peak-like CREs were located in the region of -110 bp-0 bp, which suggested that concentrated distribution might be conductive to the interaction of transcription factors, and then regulate the gene expression in downstream.

  18. Bounded search for de novo identification of degenerate cis-regulatory elements

    Directory of Open Access Journals (Sweden)

    Khetani Radhika S

    2006-05-01

    Full Text Available Abstract Background The identification of statistically overrepresented sequences in the upstream regions of coregulated genes should theoretically permit the identification of potential cis-regulatory elements. However, in practice many cis-regulatory elements are highly degenerate, precluding the use of an exhaustive word-counting strategy for their identification. While numerous methods exist for inferring base distributions using a position weight matrix, recent studies suggest that the independence assumptions inherent in the model, as well as the inability to reach a global optimum, limit this approach. Results In this paper, we report PRISM, a degenerate motif finder that leverages the relationship between the statistical significance of a set of binding sites and that of the individual binding sites. PRISM first identifies overrepresented, non-degenerate consensus motifs, then iteratively relaxes each one into a high-scoring degenerate motif. This approach requires no tunable parameters, thereby lending itself to unbiased performance comparisons. We therefore compare PRISM's performance against nine popular motif finders on 28 well-characterized S. cerevisiae regulons. PRISM consistently outperforms all other programs. Finally, we use PRISM to predict the binding sites of uncharacterized regulons. Our results support a proposed mechanism of action for the yeast cell-cycle transcription factor Stb1, whose binding site has not been determined experimentally. Conclusion The relationship between statistical measures of the binding sites and the set as a whole leads to a simple means of identifying the diverse range of cis-regulatory elements to which a protein binds. This approach leverages the advantages of word-counting, in that position dependencies are implicitly accounted for and local optima are more easily avoided. While we sacrifice guaranteed optimality to prevent the exponential blowup of exhaustive search, we prove that the error

  19. Functional dissection of the promoter of the pollen-specific gene NTP303 reveals a novel pollen-specific, and conserved cis-regulatory element.

    Science.gov (United States)

    Weterings, K; Schrauwen, J; Wullems, G; Twell, D

    1995-07-01

    Regulatory elements within the promoter of the pollen-specific NTP303 gene from tobacco were analysed by transient and stable expression analyses. Analysis of precisely targeted mutations showed that the NTP303 promoter is not regulated by any of the previously described pollen-specific cis-regulatory elements. However, two adjacent regions from -103 to -86 bp and from -86 to -59 bp were shown to contain sequences which positively regulated the NTP303 promoter. Both of these regions were capable of driving pollen-specific expression from a heterologous promoter, independent of orientation and in an additive manner. The boundaries of the minimal, functional NTP303 promoter were determined to lie within the region -86 to -51 bp. The sequence AAATGA localized from -94 to -89 bp was identified as a novel cis-acting element, of which the TGA triplet was shown to comprise an active part. This element was shown to be completely conserved in the similarly regulated promoter of the Bp 10 gene from Brassica napus encoding a homologue of the NTP303 gene.

  20. A HLA class I cis-regulatory element whose activity can be modulated by hormones.

    Science.gov (United States)

    Sim, B C; Hui, K M

    1994-12-01

    To elucidate the basis of the down-regulation in major histocompatibility complex (MHC) class I gene expression and to identify possible DNA-binding regulatory elements that have the potential to interact with class I MHC genes, we have studied the transcriptional regulation of class I HLA genes in human breast carcinoma cells. A 9 base pair (bp) negative cis-regulatory element (NRE) has been identified using band-shift assays employing DNA sequences derived from the 5'-flanking region of HLA class I genes. This 9-bp element, GTCATGGCG, located within exon I of the HLA class I gene, can potently inhibit the expression of a heterologous thymidine kinase (TK) gene promoter and the HLA enhancer element. Furthermore, this regulatory element can exert its suppressive function in either the sense or anti-sense orientation. More interestingly, NRE can suppress dexamethasone-mediated gene activation in the context of the reported glucocorticoid-responsive element (GRE) in MCF-7 cells but has no influence on the estrogen-mediated transcriptional activation of MCF-7 cells in the context of the reported estrogen-responsive element (ERE). Furthermore, the presence of such a regulatory element within the HLA class I gene whose activity can be modulated by hormones correlates well with our observation that the level of HLA class I gene expression can be down-regulated by hormones in human breast carcinoma cells. Such interactions between negative regulatory elements and specific hormone trans-activators are novel and suggest a versatile form of transcriptional control.

  1. Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Weixiong; Ruan, Jianhua; Ho, Tuan-Hua David; You, Youngsook; Yu, Taotao; Quatrano, Ralph S

    2005-07-15

    A fundamental problem of computational genomics is identifying the genes that respond to certain endogenous cues and environmental stimuli. This problem can be referred to as targeted gene finding. Since gene regulation is mainly determined by the binding of transcription factors and cis-regulatory DNA sequences, most existing gene annotation methods, which exploit the conservation of open reading frames, are not effective in finding target genes. A viable approach to targeted gene finding is to exploit the cis-regulatory elements that are known to be responsible for the transcription of target genes. Given such cis-elements, putative target genes whose promoters contain the elements can be identified. As a case study, we apply the above approach to predict the genes in model plant Arabidopsis thaliana which are inducible by a phytohormone, abscisic acid (ABA), and abiotic stress, such as drought, cold and salinity. We first construct and analyze two ABA specific cis-elements, ABA-responsive element (ABRE) and its coupling element (CE), in A.thaliana, based on their conservation in rice and other cereal plants. We then use the ABRE-CE module to identify putative ABA-responsive genes in A.thaliana. Based on RT-PCR verification and the results from literature, this method has an accuracy rate of 67.5% for the top 40 predictions. The cis-element based targeted gene finding approach is expected to be widely applicable since a large number of cis-elements in many species are available.

  2. Identification of Cis-Acting Promoter Elements in Cold- and Dehydration-Induced Transcriptional Pathways in Arabidopsis, Rice, and Soybean

    Science.gov (United States)

    Maruyama, Kyonoshin; Todaka, Daisuke; Mizoi, Junya; Yoshida, Takuya; Kidokoro, Satoshi; Matsukura, Satoko; Takasaki, Hironori; Sakurai, Tetsuya; Yamamoto, Yoshiharu Y.; Yoshiwara, Kyouko; Kojima, Mikiko; Sakakibara, Hitoshi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2012-01-01

    The genomes of three plants, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max), have been sequenced, and their many genes and promoters have been predicted. In Arabidopsis, cis-acting promoter elements involved in cold- and dehydration-responsive gene expression have been extensively analysed; however, the characteristics of such cis-acting promoter sequences in cold- and dehydration-inducible genes of rice and soybean remain to be clarified. In this study, we performed microarray analyses using the three species, and compared characteristics of identified cold- and dehydration-inducible genes. Transcription profiles of the cold- and dehydration-responsive genes were similar among these three species, showing representative upregulated (dehydrin/LEA) and downregulated (photosynthesis-related) genes. All (46 = 4096) hexamer sequences in the promoters of the three species were investigated, revealing the frequency of conserved sequences in cold- and dehydration-inducible promoters. A core sequence of the abscisic acid-responsive element (ABRE) was the most conserved in dehydration-inducible promoters of all three species, suggesting that transcriptional regulation for dehydration-inducible genes is similar among these three species, with the ABRE-dependent transcriptional pathway. In contrast, for cold-inducible promoters, the conserved hexamer sequences were diversified among these three species, suggesting the existence of diverse transcriptional regulatory pathways for cold-inducible genes among the species. PMID:22184637

  3. cis- and trans-acting elements of the estrogen-regulated vitellogenin gene B1 of Xenopus laevis.

    Science.gov (United States)

    Wahli, W; Martinez, E; Corthésy, B; Cardinaux, J R

    1989-01-01

    Vitellogenin genes are expressed under strict estrogen control in the liver of female oviparous vertebrates. Gene transfer experiments using estrogen-responsive cells have shown that the 13 bp perfect palindromic element GGTCACTGTGACC found upstream of the Xenopus laevis vitellogenin gene A2 promoter mediates hormonal stimulation and thus, was called the estrogen-responsive element (ERE). In the Xenopus vitellogenin genes B1 and B2 there are two closely adjacent EREs with one or more base substitutions when compared to the consensus ERE GGTCANNNTGACC. On their own, these degenerated elements have only a low or no regulatory capacity at all but act together synergistically to form an estrogen-responsive unit (ERU) with the same strength as the perfect palindromic 13 bp element. Analysis of estrogen receptor binding to the gene B1 ERU revealed a cooperative interaction of receptor dimers to the two adjacent imperfect EREs which most likely explains the synergistic stimulation observed in vivo. Furthermore, a promoter activator element located between positions --113 and --42 of the gene B1 and functional in the human MCF-7 and the Xenopus B3.2 cells has been identified and shown to be involved in the high level of induced transcription activity when the ERE is placed at a distance from the promoter. Finally, a hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to characterize two additional novel cis-acting elements within the vitellogenin gene B1 promoter. One of them, a negative regulatory element (NRE), is responsible for repression of promoter activity in the absence of hormone. The second is related to the NF-I binding site and is required, together with the ERE, to mediate hormonal induction. Moreover, we detected three trans-acting activities in Xenopus liver nuclear extracts that interact with these regions and demonstrated that they participate in the regulation of the expression of the vitellogenin

  4. Microevolution of cis-regulatory elements: an example from the pair-rule segmentation gene fushi tarazu in the Drosophila melanogaster subgroup.

    Directory of Open Access Journals (Sweden)

    Mohammed Bakkali

    Full Text Available The importance of non-coding DNAs that control transcription is ever noticeable, but the characterization and analysis of the evolution of such DNAs presents challenges not found in the analysis of coding sequences. In this study of the cis-regulatory elements of the pair rule segmentation gene fushi tarazu (ftz I report the DNA sequences of ftz's zebra element (promoter and a region containing the proximal enhancer from a total of 45 fly lines belonging to several populations of the species Drosophila melanogaster, D. simulans, D. sechellia, D. mauritiana, D. yakuba, D. teissieri, D. orena and D. erecta. Both elements evolve at slower rate than ftz synonymous sites, thus reflecting their functional importance. The promoter evolves more slowly than the average for ftz's coding sequence while, on average, the enhancer evolves more rapidly, suggesting more functional constraint and effective purifying selection on the former. Comparative analysis of the number and nature of base substitutions failed to detect significant evidence for positive/adaptive selection in transcription-factor-binding sites. These seem to evolve at similar rates to regions not known to bind transcription factors. Although this result reflects the evolutionary flexibility of the transcription factor binding sites, it also suggests a complex and still not completely understood nature of even the characterized cis-regulatory sequences. The latter seem to contain more functional parts than those currently identified, some of which probably transcription factor binding. This study illustrates ways in which functional assignments of sequences within cis-acting sequences can be used in the search for adaptive evolution, but also highlights difficulties in how such functional assignment and analysis can be carried out.

  5. Characterization of a putative cis-regulatory element that controls transcriptional activity of the pig uroplakin II gene promoter

    International Nuclear Information System (INIS)

    Kwon, Deug-Nam; Park, Mi-Ryung; Park, Jong-Yi; Cho, Ssang-Goo; Park, Chankyu; Oh, Jae-Wook; Song, Hyuk; Kim, Jae-Hwan; Kim, Jin-Hoi

    2011-01-01

    Highlights: → The sequences of -604 to -84 bp of the pUPII promoter contained the region of a putative negative cis-regulatory element. → The core promoter was located in the 5F-1. → Transcription factor HNF4 can directly bind in the pUPII core promoter region, which plays a critical role in controlling promoter activity. → These features of the pUPII promoter are fundamental to development of a target-specific vector. -- Abstract: Uroplakin II (UPII) is a one of the integral membrane proteins synthesized as a major differentiation product of mammalian urothelium. UPII gene expression is bladder specific and differentiation dependent, but little is known about its transcription response elements and molecular mechanism. To identify the cis-regulatory elements in the pig UPII (pUPII) gene promoter region, we constructed pUPII 5' upstream region deletion mutants and demonstrated that each of the deletion mutants participates in controlling the expression of the pUPII gene in human bladder carcinoma RT4 cells. We also identified a new core promoter region and putative negative cis-regulatory element within a minimal promoter region. In addition, we showed that hepatocyte nuclear factor 4 (HNF4) can directly bind in the pUPII core promoter (5F-1) region, which plays a critical role in controlling promoter activity. Transient cotransfection experiments showed that HNF4 positively regulates pUPII gene promoter activity. Thus, the binding element and its binding protein, HNF4 transcription factor, may be involved in the mechanism that specifically regulates pUPII gene transcription.

  6. In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements.

    Science.gov (United States)

    Hossain, Reafa A; Dunham, Nicholas R; Enke, Raymond A; Berndsen, Christopher E

    2018-01-01

    DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of RHO , PDE6B, PAX6 , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human RHO regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human RHO and PDE6B genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the RHO promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within RHO regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.

  7. Implications of duplicated cis-regulatory elements in the evolution of metazoans: the DDI model or how simplicity begets novelty.

    Science.gov (United States)

    Jiménez-Delgado, Senda; Pascual-Anaya, Juan; Garcia-Fernàndez, Jordi

    2009-07-01

    The discovery that most regulatory genes were conserved among animals from distant phyla challenged the ideas that gene duplication and divergence of homologous coding sequences were the basis for major morphological changes in metazoan evolution. In recent years, however, the interest for the roles, conservation and changes of non-coding sequences grew-up in parallel with genome sequencing projects. Presently, many independent studies are highlighting the importance that subtle changes in cis-regulatory regions had in the evolution of morphology trough the Animal Kingdom. Here we will show and discuss some of these studies, and underscore the future of cis-Evo-Devo research. Nevertheless, we would also explore how gene duplication, which includes duplication of regulatory regions, may have been critical for spatial or temporal co-option of new regulatory networks, causing the deployment of new transcriptome scenarios, and how these induced morphological changes were critical for the evolution of new forms. Forty years after Susumu Ohno famous sentence 'natural selection merely modifies, while redundancy creates', we suggest the alternative: 'natural selection modifies, while redundancy of cis-regulatory elements innovates', and propose the Duplication-Degeneration-Innovation model to explain the increased evolvability of duplicated cis-regulatory regions. Paradoxically, making regulation simpler by subfunctionalization paved the path for future complexity or, in other words, 'to make it simple to make it complex'.

  8. The 3'-terminal 55 nucleotides of bovine coronavirus defective interfering RNA harbor cis-acting elements required for both negative- and positive-strand RNA synthesis.

    Directory of Open Access Journals (Sweden)

    Wei-Yu Liao

    Full Text Available The synthesis of the negative-strand [(--strand] complement of the ∼30 kilobase, positive-strand [(+-strand] coronaviral genome is a necessary early step for genome replication. The identification of cis-acting elements required for (--strand RNA synthesis in coronaviruses, however, has been hampered due to insufficiencies in the techniques used to detect the (--strand RNA species. Here, we employed a method of head-to-tail ligation and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR to detect and quantitate the synthesis of bovine coronavirus (BCoV defective interfering (DI RNA (- strands. Furthermore, using the aforementioned techniques along with Northern blot assay, we specifically defined the cis-acting RNA elements within the 3'-terminal 55 nucleotides (nts which function in the synthesis of (-- or (+-strand BCoV DI RNA. The major findings are as follows: (i nts from -5 to -39 within the 3'-terminal 55 nts are the cis-acting elements responsible for (--strand BCoV DI RNA synthesis, (ii nts from -3 to -34 within the 3'-terminal 55 nts are cis-acting elements required for (+-strand BCoV DI RNA synthesis, and (iii the nucleotide species at the 3'-most position (-1 is important, but not critical, for both (-- and (+-strand BCoV DI RNA synthesis. These results demonstrate that the 3'-terminal 55 nts in BCoV DI RNA harbor cis-acting RNA elements required for both (-- and (+-strand DI RNA synthesis and extend our knowledge on the mechanisms of coronavirus replication. The method of head-to-tail ligation and qRT-PCR employed in the study may also be applied to identify other cis-acting elements required for (--strand RNA synthesis in coronaviruses.

  9. ChIP-Seq-Annotated Heliconius erato Genome Highlights Patterns of cis-Regulatory Evolution in Lepidoptera

    Directory of Open Access Journals (Sweden)

    James J. Lewis

    2016-09-01

    Full Text Available Uncovering phylogenetic patterns of cis-regulatory evolution remains a fundamental goal for evolutionary and developmental biology. Here, we characterize the evolution of regulatory loci in butterflies and moths using chromatin immunoprecipitation sequencing (ChIP-seq annotation of regulatory elements across three stages of head development. In the process we provide a high-quality, functionally annotated genome assembly for the butterfly, Heliconius erato. Comparing cis-regulatory element conservation across six lepidopteran genomes, we find that regulatory sequences evolve at a pace similar to that of protein-coding regions. We also observe that elements active at multiple developmental stages are markedly more conserved than elements with stage-specific activity. Surprisingly, we also find that stage-specific proximal and distal regulatory elements evolve at nearly identical rates. Our study provides a benchmark for genome-wide patterns of regulatory element evolution in insects, and it shows that developmental timing of activity strongly predicts patterns of regulatory sequence evolution.

  10. Two cis-acting elements responsible for posttranscriptional trans-regulation of gene expression of human T-cell leukemia virus type I

    International Nuclear Information System (INIS)

    Seiki, Motoharu; Inoue, Junichiro; Hidaka, Makoto; Yoshida, Mitsuaki

    1988-01-01

    The pX sequence of human T-cell leukemia virus type I codes for two nuclear proteins, p40 tax and p27 rex and a cytoplasmic protein, p21 X-III . p40 tax activates transcription from the long terminal repeat (LTR), whereas p27 rex modulates posttranscriptional processing to accumulate gag and env mRNAs that retain intron sequences. In this paper, the authors identify two cis-acting sequence elements needed for regulation by p27 rex : a 5' splice signal and a specific sequence in the 3' LTR. These two sequence elements are sufficient for regulation by p27 rex ; expression of a cellular gene (metallothionein I) became sensitive to rex regulation when the LTR was inserted at the 3' end of this gene. The requirement for these two elements suggests and unusual regulatory mechanism of RNA processing in the nucleus

  11. Changes in Cis-regulatory Elements during Morphological Evolution

    Directory of Open Access Journals (Sweden)

    Yu-Lee Paul

    2012-10-01

    Full Text Available How have animals evolved new body designs (morphological evolution? This requires explanations both for simple morphological changes, such as differences in pigmentation and hair patterns between different Drosophila populations and species, and also for more complex changes, such as differences in the forelimbs of mice and bats, and the necks of amphibians and reptiles. The genetic changes and pathways involved in these evolutionary steps require identification. Many, though not all, of these events occur by changes in cis-regulatory (enhancer elements within developmental genes. Enhancers are modular, each affecting expression in only one or a few tissues. Therefore it is possible to add, remove or alter an enhancer without producing changes in multiple tissues, and thereby avoid widespread (pleiotropic deleterious effects. Ideally, for a given step in morphological evolution it is necessary to identify (i the change in phenotype, (ii the changes in gene expression, (iii the DNA region, enhancer or otherwise, affected, (iv the mutation involved, (v the nature of the transcription or other factors that bind to this site. In practice these data are incomplete for most of the published studies upon morphological evolution. Here, the investigations are categorized according to how far these analyses have proceeded.

  12. Cis-acting elements in the promoter region of the human aldolase C gene.

    Science.gov (United States)

    Buono, P; de Conciliis, L; Olivetta, E; Izzo, P; Salvatore, F

    1993-08-16

    We investigated the cis-acting sequences involved in the expression of the human aldolase C gene by transient transfections into human neuroblastoma cells (SKNBE). We demonstrate that 420 bp of the 5'-flanking DNA direct at high efficiency the transcription of the CAT reporter gene. A deletion between -420 bp and -164 bp causes a 60% decrease of CAT activity. Gel shift and DNase I footprinting analyses revealed four protected elements: A, B, C and D. Competition analyses indicate that Sp1 or factors sharing a similar sequence specificity bind to elements A and B, but not to elements C and D. Sequence analysis shows a half palindromic ERE motif (GGTCA), in elements B and D. Region D binds a transactivating factor which appears also essential to stabilize the initiation complex.

  13. In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa.

    Science.gov (United States)

    Kaur, Amritpreet; Pati, Pratap Kumar; Pati, Aparna Maitra; Nagpal, Avinash Kaur

    2017-01-01

    Pathogenesis related (PR) proteins are low molecular weight family of proteins induced in plants under various biotic and abiotic stresses. They play an important role in plant-defense mechanism. PRs have wide range of functions, acting as hydrolases, peroxidases, chitinases, anti-fungal, protease inhibitors etc. In the present study, an attempt has been made to analyze promoter regions of PR1, PR2, PR5, PR9, PR10 and PR12 of Arabidopsis thaliana and Oryza sativa. Analysis of cis-element distribution revealed the functional multiplicity of PRs and provides insight into the gene regulation. CpG islands are observed only in rice PRs, which indicates that monocot genome contains more GC rich motifs than dicots. Tandem repeats were also observed in 5' UTR of PR genes. Thus, the present study provides an understanding of regulation of PR genes and their versatile roles in plants.

  14. On the Concept of Cis-regulatory Information: From Sequence Motifs to Logic Functions

    Science.gov (United States)

    Tarpine, Ryan; Istrail, Sorin

    The regulatory genome is about the “system level organization of the core genomic regulatory apparatus, and how this is the locus of causality underlying the twin phenomena of animal development and animal evolution” (E.H. Davidson. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution, Academic Press, 2006). Information processing in the regulatory genome is done through regulatory states, defined as sets of transcription factors (sequence-specific DNA binding proteins which determine gene expression) that are expressed and active at the same time. The core information processing machinery consists of modular DNA sequence elements, called cis-modules, that interact with transcription factors. The cis-modules “read” the information contained in the regulatory state of the cell through transcription factor binding, “process” it, and directly or indirectly communicate with the basal transcription apparatus to determine gene expression. This endowment of each gene with the information-receiving capacity through their cis-regulatory modules is essential for the response to every possible regulatory state to which it might be exposed during all phases of the life cycle and in all cell types. We present here a set of challenges addressed by our CYRENE research project aimed at studying the cis-regulatory code of the regulatory genome. The CYRENE Project is devoted to (1) the construction of a database, the cis-Lexicon, containing comprehensive information across species about experimentally validated cis-regulatory modules; and (2) the software development of a next-generation genome browser, the cis-Browser, specialized for the regulatory genome. The presentation is anchored on three main computational challenges: the Gene Naming Problem, the Consensus Sequence Bottleneck Problem, and the Logic Function Inference Problem.

  15. BET Bromodomain Inhibition Releases the Mediator Complex from Select cis-Regulatory Elements.

    Science.gov (United States)

    Bhagwat, Anand S; Roe, Jae-Seok; Mok, Beverly Y L; Hohmann, Anja F; Shi, Junwei; Vakoc, Christopher R

    2016-04-19

    The bromodomain and extraterminal (BET) protein BRD4 can physically interact with the Mediator complex, but the relevance of this association to the therapeutic effects of BET inhibitors in cancer is unclear. Here, we show that BET inhibition causes a rapid release of Mediator from a subset of cis-regulatory elements in the genome of acute myeloid leukemia (AML) cells. These sites of Mediator eviction were highly correlated with transcriptional suppression of neighboring genes, which are enriched for targets of the transcription factor MYB and for functions related to leukemogenesis. A shRNA screen of Mediator in AML cells identified the MED12, MED13, MED23, and MED24 subunits as performing a similar regulatory function to BRD4 in this context, including a shared role in sustaining a block in myeloid maturation. These findings suggest that the interaction between BRD4 and Mediator has functional importance for gene-specific transcriptional activation and for AML maintenance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.

    Science.gov (United States)

    Mathelier, Anthony; Lefebvre, Calvin; Zhang, Allen W; Arenillas, David J; Ding, Jiarui; Wasserman, Wyeth W; Shah, Sohrab P

    2015-04-23

    With the rapid increase of whole-genome sequencing of human cancers, an important opportunity to analyze and characterize somatic mutations lying within cis-regulatory regions has emerged. A focus on protein-coding regions to identify nonsense or missense mutations disruptive to protein structure and/or function has led to important insights; however, the impact on gene expression of mutations lying within cis-regulatory regions remains under-explored. We analyzed somatic mutations from 84 matched tumor-normal whole genomes from B-cell lymphomas with accompanying gene expression measurements to elucidate the extent to which these cancers are disrupted by cis-regulatory mutations. We characterize mutations overlapping a high quality set of well-annotated transcription factor binding sites (TFBSs), covering a similar portion of the genome as protein-coding exons. Our results indicate that cis-regulatory mutations overlapping predicted TFBSs are enriched in promoter regions of genes involved in apoptosis or growth/proliferation. By integrating gene expression data with mutation data, our computational approach culminates with identification of cis-regulatory mutations most likely to participate in dysregulation of the gene expression program. The impact can be measured along with protein-coding mutations to highlight key mutations disrupting gene expression and pathways in cancer. Our study yields specific genes with disrupted expression triggered by genomic mutations in either the coding or the regulatory space. It implies that mutated regulatory components of the genome contribute substantially to cancer pathways. Our analyses demonstrate that identifying genomically altered cis-regulatory elements coupled with analysis of gene expression data will augment biological interpretation of mutational landscapes of cancers.

  17. Identification of putative cis-regulatory elements in Cryptosporidium parvum by de novo pattern finding

    Directory of Open Access Journals (Sweden)

    Kissinger Jessica C

    2007-01-01

    Full Text Available Abstract Background Cryptosporidium parvum is a unicellular eukaryote in the phylum Apicomplexa. It is an obligate intracellular parasite that causes diarrhea and is a significant AIDS-related pathogen. Cryptosporidium parvum is not amenable to long-term laboratory cultivation or classical molecular genetic analysis. The parasite exhibits a complex life cycle, a broad host range, and fundamental mechanisms of gene regulation remain unknown. We have used data from the recently sequenced genome of this organism to uncover clues about gene regulation in C. parvum. We have applied two pattern finding algorithms MEME and AlignACE to identify conserved, over-represented motifs in the 5' upstream regions of genes in C. parvum. To support our findings, we have established comparative real-time -PCR expression profiles for the groups of genes examined computationally. Results We find that groups of genes that share a function or belong to a common pathway share upstream motifs. Different motifs are conserved upstream of different groups of genes. Comparative real-time PCR studies show co-expression of genes within each group (in sub-sets during the life cycle of the parasite, suggesting co-regulation of these genes may be driven by the use of conserved upstream motifs. Conclusion This is one of the first attempts to characterize cis-regulatory elements in the absence of any previously characterized elements and with very limited expression data (seven genes only. Using de novo pattern finding algorithms, we have identified specific DNA motifs that are conserved upstream of genes belonging to the same metabolic pathway or gene family. We have demonstrated the co-expression of these genes (often in subsets using comparative real-time-PCR experiments thus establishing evidence for these conserved motifs as putative cis-regulatory elements. Given the lack of prior information concerning expression patterns and organization of promoters in C. parvum we

  18. Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs.

    Directory of Open Access Journals (Sweden)

    Christopher D Brown

    Full Text Available Genetic variants in cis-regulatory elements or trans-acting regulators frequently influence the quantity and spatiotemporal distribution of gene transcription. Recent interest in expression quantitative trait locus (eQTL mapping has paralleled the adoption of genome-wide association studies (GWAS for the analysis of complex traits and disease in humans. Under the hypothesis that many GWAS associations tag non-coding SNPs with small effects, and that these SNPs exert phenotypic control by modifying gene expression, it has become common to interpret GWAS associations using eQTL data. To fully exploit the mechanistic interpretability of eQTL-GWAS comparisons, an improved understanding of the genetic architecture and causal mechanisms of cell type specificity of eQTLs is required. We address this need by performing an eQTL analysis in three parts: first we identified eQTLs from eleven studies on seven cell types; then we integrated eQTL data with cis-regulatory element (CRE data from the ENCODE project; finally we built a set of classifiers to predict the cell type specificity of eQTLs. The cell type specificity of eQTLs is associated with eQTL SNP overlap with hundreds of cell type specific CRE classes, including enhancer, promoter, and repressive chromatin marks, regions of open chromatin, and many classes of DNA binding proteins. These associations provide insight into the molecular mechanisms generating the cell type specificity of eQTLs and the mode of regulation of corresponding eQTLs. Using a random forest classifier with cell specific CRE-SNP overlap as features, we demonstrate the feasibility of predicting the cell type specificity of eQTLs. We then demonstrate that CREs from a trait-associated cell type can be used to annotate GWAS associations in the absence of eQTL data for that cell type. We anticipate that such integrative, predictive modeling of cell specificity will improve our ability to understand the mechanistic basis of human

  19. Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord.

    Directory of Open Access Journals (Sweden)

    Diana S José-Edwards

    2015-12-01

    Full Text Available A main challenge of modern biology is to understand how specific constellations of genes are activated to differentiate cells and give rise to distinct tissues. This study focuses on elucidating how gene expression is initiated in the notochord, an axial structure that provides support and patterning signals to embryos of humans and all other chordates. Although numerous notochord genes have been identified, the regulatory DNAs that orchestrate development and propel evolution of this structure by eliciting notochord gene expression remain mostly uncharted, and the information on their configuration and recurrence is still quite fragmentary. Here we used the simple chordate Ciona for a systematic analysis of notochord cis-regulatory modules (CRMs, and investigated their composition, architectural constraints, predictive ability and evolutionary conservation. We found that most Ciona notochord CRMs relied upon variable combinations of binding sites for the transcription factors Brachyury and/or Foxa2, which can act either synergistically or independently from one another. Notably, one of these CRMs contains a Brachyury binding site juxtaposed to an (AC microsatellite, an unusual arrangement also found in Brachyury-bound regulatory regions in mouse. In contrast, different subsets of CRMs relied upon binding sites for transcription factors of widely diverse families. Surprisingly, we found that neither intra-genomic nor interspecific conservation of binding sites were reliably predictive hallmarks of notochord CRMs. We propose that rather than obeying a rigid sequence-based cis-regulatory code, most notochord CRMs are rather unique. Yet, this study uncovered essential elements recurrently used by divergent chordates as basic building blocks for notochord CRMs.

  20. Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord.

    Science.gov (United States)

    José-Edwards, Diana S; Oda-Ishii, Izumi; Kugler, Jamie E; Passamaneck, Yale J; Katikala, Lavanya; Nibu, Yutaka; Di Gregorio, Anna

    2015-12-01

    A main challenge of modern biology is to understand how specific constellations of genes are activated to differentiate cells and give rise to distinct tissues. This study focuses on elucidating how gene expression is initiated in the notochord, an axial structure that provides support and patterning signals to embryos of humans and all other chordates. Although numerous notochord genes have been identified, the regulatory DNAs that orchestrate development and propel evolution of this structure by eliciting notochord gene expression remain mostly uncharted, and the information on their configuration and recurrence is still quite fragmentary. Here we used the simple chordate Ciona for a systematic analysis of notochord cis-regulatory modules (CRMs), and investigated their composition, architectural constraints, predictive ability and evolutionary conservation. We found that most Ciona notochord CRMs relied upon variable combinations of binding sites for the transcription factors Brachyury and/or Foxa2, which can act either synergistically or independently from one another. Notably, one of these CRMs contains a Brachyury binding site juxtaposed to an (AC) microsatellite, an unusual arrangement also found in Brachyury-bound regulatory regions in mouse. In contrast, different subsets of CRMs relied upon binding sites for transcription factors of widely diverse families. Surprisingly, we found that neither intra-genomic nor interspecific conservation of binding sites were reliably predictive hallmarks of notochord CRMs. We propose that rather than obeying a rigid sequence-based cis-regulatory code, most notochord CRMs are rather unique. Yet, this study uncovered essential elements recurrently used by divergent chordates as basic building blocks for notochord CRMs.

  1. Nomadic enhancers: tissue-specific cis-regulatory elements of yellow have divergent genomic positions among Drosophila species.

    Directory of Open Access Journals (Sweden)

    Gizem Kalay

    2010-11-01

    Full Text Available cis-regulatory DNA sequences known as enhancers control gene expression in space and time. They are central to metazoan development and are often responsible for changes in gene regulation that contribute to phenotypic evolution. Here, we examine the sequence, function, and genomic location of enhancers controlling tissue- and cell-type specific expression of the yellow gene in six Drosophila species. yellow is required for the production of dark pigment, and its expression has evolved largely in concert with divergent pigment patterns. Using Drosophila melanogaster as a transgenic host, we examined the expression of reporter genes in which either 5' intergenic or intronic sequences of yellow from each species controlled the expression of Green Fluorescent Protein. Surprisingly, we found that sequences controlling expression in the wing veins, as well as sequences controlling expression in epidermal cells of the abdomen, thorax, and wing, were located in different genomic regions in different species. By contrast, sequences controlling expression in bristle-associated cells were located in the intron of all species. Differences in the precise pattern of spatial expression within the developing epidermis of D. melanogaster transformants usually correlated with adult pigmentation in the species from which the cis-regulatory sequences were derived, which is consistent with cis-regulatory evolution affecting yellow expression playing a central role in Drosophila pigmentation divergence. Sequence comparisons among species favored a model in which sequential nucleotide substitutions were responsible for the observed changes in cis-regulatory architecture. Taken together, these data demonstrate frequent changes in yellow cis-regulatory architecture among Drosophila species. Similar analyses of other genes, combining in vivo functional tests of enhancer activity with in silico comparative genomics, are needed to determine whether the pattern of

  2. Statistical significance of cis-regulatory modules

    Directory of Open Access Journals (Sweden)

    Smith Andrew D

    2007-01-01

    Full Text Available Abstract Background It is becoming increasingly important for researchers to be able to scan through large genomic regions for transcription factor binding sites or clusters of binding sites forming cis-regulatory modules. Correspondingly, there has been a push to develop algorithms for the rapid detection and assessment of cis-regulatory modules. While various algorithms for this purpose have been introduced, most are not well suited for rapid, genome scale scanning. Results We introduce methods designed for the detection and statistical evaluation of cis-regulatory modules, modeled as either clusters of individual binding sites or as combinations of sites with constrained organization. In order to determine the statistical significance of module sites, we first need a method to determine the statistical significance of single transcription factor binding site matches. We introduce a straightforward method of estimating the statistical significance of single site matches using a database of known promoters to produce data structures that can be used to estimate p-values for binding site matches. We next introduce a technique to calculate the statistical significance of the arrangement of binding sites within a module using a max-gap model. If the module scanned for has defined organizational parameters, the probability of the module is corrected to account for organizational constraints. The statistical significance of single site matches and the architecture of sites within the module can be combined to provide an overall estimation of statistical significance of cis-regulatory module sites. Conclusion The methods introduced in this paper allow for the detection and statistical evaluation of single transcription factor binding sites and cis-regulatory modules. The features described are implemented in the Search Tool for Occurrences of Regulatory Motifs (STORM and MODSTORM software.

  3. Network-directed cis-mediator analysis of normal prostate tissue expression profiles reveals downstream regulatory associations of prostate cancer susceptibility loci.

    Science.gov (United States)

    Larson, Nicholas B; McDonnell, Shannon K; Fogarty, Zach; Larson, Melissa C; Cheville, John; Riska, Shaun; Baheti, Saurabh; Weber, Alexandra M; Nair, Asha A; Wang, Liang; O'Brien, Daniel; Davila, Jaime; Schaid, Daniel J; Thibodeau, Stephen N

    2017-10-17

    Large-scale genome-wide association studies have identified multiple single-nucleotide polymorphisms associated with risk of prostate cancer. Many of these genetic variants are presumed to be regulatory in nature; however, follow-up expression quantitative trait loci (eQTL) association studies have to-date been restricted largely to cis -acting associations due to study limitations. While trans -eQTL scans suffer from high testing dimensionality, recent evidence indicates most trans -eQTL associations are mediated by cis -regulated genes, such as transcription factors. Leveraging a data-driven gene co-expression network, we conducted a comprehensive cis -mediator analysis using RNA-Seq data from 471 normal prostate tissue samples to identify downstream regulatory associations of previously identified prostate cancer risk variants. We discovered multiple trans -eQTL associations that were significantly mediated by cis -regulated transcripts, four of which involved risk locus 17q12, proximal transcription factor HNF1B , and target trans -genes with known HNF response elements ( MIA2 , SRC , SEMA6A , KIF12 ). We additionally identified evidence of cis -acting down-regulation of MSMB via rs10993994 corresponding to reduced co-expression of NDRG1 . The majority of these cis -mediator relationships demonstrated trans -eQTL replicability in 87 prostate tissue samples from the Gene-Tissue Expression Project. These findings provide further biological context to known risk loci and outline new hypotheses for investigation into the etiology of prostate cancer.

  4. Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution

    DEFF Research Database (Denmark)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.

    2005-01-01

    years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences......We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each...... between the species-but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence...

  5. Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2004-04-01

    The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

  6. Characterization of Putative cis-Regulatory Elements in Genes Preferentially Expressed in Arabidopsis Male Meiocytes

    Directory of Open Access Journals (Sweden)

    Junhua Li

    2014-01-01

    Full Text Available Meiosis is essential for plant reproduction because it is the process during which homologous chromosome pairing, synapsis, and meiotic recombination occur. The meiotic transcriptome is difficult to investigate because of the size of meiocytes and the confines of anther lobes. The recent development of isolation techniques has enabled the characterization of transcriptional profiles in male meiocytes of Arabidopsis. Gene expression in male meiocytes shows unique features. The direct interaction of transcription factors (TFs with DNA regulatory sequences forms the basis for the specificity of transcriptional regulation. Here, we identified putative cis-regulatory elements (CREs associated with male meiocyte-expressed genes using in silico tools. The upstream regions (1 kb of the top 50 genes preferentially expressed in Arabidopsis meiocytes possessed conserved motifs. These motifs are putative binding sites of TFs, some of which share common functions, such as roles in cell division. In combination with cell-type-specific analysis, our findings could be a substantial aid for the identification and experimental verification of the protein-DNA interactions for the specific TFs that drive gene expression in meiocytes.

  7. In silico discovery of transcription regulatory elements in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Le Roch Karine G

    2008-02-01

    Full Text Available Abstract Background With the sequence of the Plasmodium falciparum genome and several global mRNA and protein life cycle expression profiling projects now completed, elucidating the underlying networks of transcriptional control important for the progression of the parasite life cycle is highly pertinent to the development of new anti-malarials. To date, relatively little is known regarding the specific mechanisms the parasite employs to regulate gene expression at the mRNA level, with studies of the P. falciparum genome sequence having revealed few cis-regulatory elements and associated transcription factors. Although it is possible the parasite may evoke mechanisms of transcriptional control drastically different from those used by other eukaryotic organisms, the extreme AT-rich nature of P. falciparum intergenic regions (~90% AT presents significant challenges to in silico cis-regulatory element discovery. Results We have developed an algorithm called Gene Enrichment Motif Searching (GEMS that uses a hypergeometric-based scoring function and a position-weight matrix optimization routine to identify with high-confidence regulatory elements in the nucleotide-biased and repeat sequence-rich P. falciparum genome. When applied to promoter regions of genes contained within 21 co-expression gene clusters generated from P. falciparum life cycle microarray data using the semi-supervised clustering algorithm Ontology-based Pattern Identification, GEMS identified 34 putative cis-regulatory elements associated with a variety of parasite processes including sexual development, cell invasion, antigenic variation and protein biosynthesis. Among these candidates were novel motifs, as well as many of the elements for which biological experimental evidence already exists in the Plasmodium literature. To provide evidence for the biological relevance of a cell invasion-related element predicted by GEMS, reporter gene and electrophoretic mobility shift assays

  8. Computational and molecular dissection of an X-box cis-Regulatory module

    OpenAIRE

    Warrington, Timothy Burton

    2015-01-01

    Ciliopathies are a class of human diseases marked by dysfunction of the cellular organelle, cilia. While many of the molecular components that make up cilia have been identified and studied, comparatively little is understood about the transcriptional regulation of genes encoding these components. The conserved transcription factor Regulatory Factor X (RFX)/DAF-19, which acts through binding to the cis-regulatory motif known as X-box, has been shown to regulate ciliary genes in many animals f...

  9. Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes

    Directory of Open Access Journals (Sweden)

    Allan Andrew C

    2008-07-01

    Full Text Available Abstract Background Transcription factors (TFs co-ordinately regulate target genes that are dispersed throughout the genome. This co-ordinate regulation is achieved, in part, through the interaction of transcription factors with conserved cis-regulatory motifs that are in close proximity to the target genes. While much is known about the families of transcription factors that regulate gene expression in plants, there are few well characterised cis-regulatory motifs. In Arabidopsis, over-expression of the MYB transcription factor PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT 1 leads to transgenic plants with elevated anthocyanin levels due to the co-ordinated up-regulation of genes in the anthocyanin biosynthetic pathway. In addition to the anthocyanin biosynthetic genes, there are a number of un-associated genes that also change in expression level. This may be a direct or indirect consequence of the over-expression of PAP1. Results Oligo array analysis of PAP1 over-expression Arabidopsis plants identified genes co-ordinately up-regulated in response to the elevated expression of this transcription factor. Transient assays on the promoter regions of 33 of these up-regulated genes identified eight promoter fragments that were transactivated by PAP1. Bioinformatic analysis on these promoters revealed a common cis-regulatory motif that we showed is required for PAP1 dependent transactivation. Conclusion Co-ordinated gene regulation by individual transcription factors is a complex collection of both direct and indirect effects. Transient transactivation assays provide a rapid method to identify direct target genes from indirect target genes. Bioinformatic analysis of the promoters of these direct target genes is able to locate motifs that are common to this sub-set of promoters, which is impossible to identify with the larger set of direct and indirect target genes. While this type of analysis does not prove a direct interaction between protein and DNA

  10. Identification of cis-acting elements on positive-strand subgenomic mRNA required for the synthesis of negative-strand counterpart in bovine coronavirus.

    Science.gov (United States)

    Yeh, Po-Yuan; Wu, Hung-Yi

    2014-07-30

    It has been demonstrated that, in addition to genomic RNA, sgmRNA is able to serve as a template for the synthesis of the negative-strand [(-)-strand] complement. However, the cis-acting elements on the positive-strand [(+)-strand] sgmRNA required for (-)-strand sgmRNA synthesis have not yet been systematically identified. In this study, we employed real-time quantitative reverse transcription polymerase chain reaction to analyze the cis-acting elements on bovine coronavirus (BCoV) sgmRNA 7 required for the synthesis of its (-)-strand counterpart by deletion mutagenesis. The major findings are as follows. (1) Deletion of the 5'-terminal leader sequence on sgmRNA 7 decreased the synthesis of the (-)-strand sgmRNA complement. (2) Deletions of the 3' untranslated region (UTR) bulged stem-loop showed no effect on (-)-strand sgmRNA synthesis; however, deletion of the 3' UTR pseudoknot decreased the yield of (-)-strand sgmRNA. (3) Nucleotides positioned from -15 to -34 of the sgmRNA 7 3'-terminal region are required for efficient (-)-strand sgmRNA synthesis. (4) Nucleotide species at the 3'-most position (-1) of sgmRNA 7 is correlated to the efficiency of (-)-strand sgmRNA synthesis. These results together suggest, in principle, that the 5'- and 3'-terminal sequences on sgmRNA 7 harbor cis-acting elements are critical for efficient (-)-strand sgmRNA synthesis in BCoV.

  11. Identification and characterization of promoters and cis-regulatory elements of genes involved in secondary metabolites production in hop (Humulus lupulus. L)

    Czech Academy of Sciences Publication Activity Database

    Duraisamy, Ganesh Selvaraj; Mishra, Ajay Kumar; Kocábek, Tomáš; Matoušek, Jaroslav

    2016-01-01

    Roč. 84, October (2016), s. 346-352 ISSN 1476-9271 R&D Projects: GA ČR GA13-03037S Institutional support: RVO:60077344 Keywords : Cis-acting elements * Gene regulation * Humulus lupulus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.331, year: 2016

  12. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.

    Science.gov (United States)

    Li, Yifeng; Shi, Wenqiang; Wasserman, Wyeth W

    2018-05-31

    In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide. Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome). The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations.

  13. CRX ChIP-seq reveals the cis-regulatory architecture of mouse photoreceptors

    NARCIS (Netherlands)

    J.C. Corbo (Joseph); K.A. Lawrence (Karen); M. Karlstetter (Marcus); C.A. Myers (Connie); M. Abdelaziz (Musa); W. Dirkes (William); K. Weigelt (Karin); M. Seifert (Martin); V. Benes (Vladimir); L.G. Fritsche (Lars); B.H.F. Weber (Bernhard); T. Langmann (Thomas)

    2010-01-01

    textabstractApproximately 98% of mammalian DNA is noncoding, yet we understand relatively little about the function of this enigmatic portion of the genome. The cis-regulatory elements that control gene expression reside in noncoding regions and can be identified by mapping the binding sites of

  14. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28.

    Science.gov (United States)

    Pla, M; Vilardell, J; Guiltinan, M J; Marcotte, W R; Niogret, M F; Quatrano, R S; Pagès, M

    1993-01-01

    The maize gene rab28 has been identified as ABA-inducible in embryos and vegetative tissues. It is also induced by water stress in young leaves. The proximal promoter region contains the conserved cis-acting element CCACGTGG (ABRE) reported for ABA induction in other plant genes. Transient expression assays in rice protoplasts indicate that a 134 bp fragment (-194 to -60 containing the ABRE) fused to a truncated cauliflower mosaic virus promoter (35S) is sufficient to confer ABA-responsiveness upon the GUS reporter gene. Gel retardation experiments indicate that nuclear proteins from tissues in which the rab28 gene is expressed can interact specifically with this 134 bp DNA fragment. Nuclear protein extracts from embryo and water-stressed leaves generate specific complexes of different electrophoretic mobility which are stable in the presence of detergent and high salt. However, by DMS footprinting the same guanine-specific contacts with the ABRE in both the embryo and leaf binding activities were detected. These results indicate that the rab28 promoter sequence CCACGTGG is a functional ABA-responsive element, and suggest that distinct regulatory factors with apparent similar affinity for the ABRE sequence may be involved in the hormone action during embryo development and in vegetative tissues subjected to osmotic stress.

  15. Identification of Cis-Acting Elements on Positive-Strand Subgenomic mRNA Required for the Synthesis of Negative-Strand Counterpart in Bovine Coronavirus

    Directory of Open Access Journals (Sweden)

    Po-Yuan Yeh

    2014-07-01

    Full Text Available It has been demonstrated that, in addition to genomic RNA, sgmRNA is able to serve as a template for the synthesis of the negative-strand [(−-strand] complement. However, the cis-acting elements on the positive-strand [(+-strand] sgmRNA required for (−-strand sgmRNA synthesis have not yet been systematically identified. In this study, we employed real-time quantitative reverse transcription polymerase chain reaction to analyze the cis-acting elements on bovine coronavirus (BCoV sgmRNA 7 required for the synthesis of its (−-strand counterpart by deletion mutagenesis. The major findings are as follows. (1 Deletion of the 5'-terminal leader sequence on sgmRNA 7 decreased the synthesis of the (−-strand sgmRNA complement. (2 Deletions of the 3' untranslated region (UTR bulged stem-loop showed no effect on (−-strand sgmRNA synthesis; however, deletion of the 3' UTR pseudoknot decreased the yield of (−-strand sgmRNA. (3 Nucleotides positioned from −15 to −34 of the sgmRNA 7 3'-terminal region are required for efficient (−-strand sgmRNA synthesis. (4 Nucleotide species at the 3'-most position (−1 of sgmRNA 7 is correlated to the efficiency of (−-strand sgmRNA synthesis. These results together suggest, in principle, that the 5'- and 3'-terminal sequences on sgmRNA 7 harbor cis-acting elements are critical for efficient (−-strand sgmRNA synthesis in BCoV.

  16. Cis-regulatory RNA elements that regulate specialized ribosome activity.

    Science.gov (United States)

    Xue, Shifeng; Barna, Maria

    2015-01-01

    Recent evidence has shown that the ribosome itself can play a highly regulatory role in the specialized translation of specific subpools of mRNAs, in particular at the level of ribosomal proteins (RP). However, the mechanism(s) by which this selection takes place has remained poorly understood. In our recent study, we discovered a combination of unique RNA elements in the 5'UTRs of mRNAs that allows for such control by the ribosome. These mRNAs contain a Translation Inhibitory Element (TIE) that inhibits general cap-dependent translation, and an Internal Ribosome Entry Site (IRES) that relies on a specific RP for activation. The unique combination of an inhibitor of general translation and an activator of specialized translation is key to ribosome-mediated control of gene expression. Here we discuss how these RNA regulatory elements provide a new level of control to protein expression and their implications for gene expression, organismal development and evolution.

  17. Deciphering Cis-Regulatory Element Mediated Combinatorial Regulation in Rice under Blast Infected Condition.

    Directory of Open Access Journals (Sweden)

    Arindam Deb

    Full Text Available Combinations of cis-regulatory elements (CREs present at the promoters facilitate the binding of several transcription factors (TFs, thereby altering the consequent gene expressions. Due to the eminent complexity of the regulatory mechanism, the combinatorics of CRE-mediated transcriptional regulation has been elusive. In this work, we have developed a new methodology that quantifies the co-occurrence tendencies of CREs present in a set of promoter sequences; these co-occurrence scores are filtered in three consecutive steps to test their statistical significance; and the significantly co-occurring CRE pairs are presented as networks. These networks of co-occurring CREs are further transformed to derive higher order of regulatory combinatorics. We have further applied this methodology on the differentially up-regulated gene-sets of rice tissues under fungal (Magnaporthe infected conditions to demonstrate how it helps to understand the CRE-mediated combinatorial gene regulation. Our analysis includes a wide spectrum of biologically important results. The CRE pairs having a strong tendency to co-occur often exhibit very similar joint distribution patterns at the promoters of rice. We couple the network approach with experimental results of plant gene regulation and defense mechanisms and find evidences of auto and cross regulation among TF families, cross-talk among multiple hormone signaling pathways, similarities and dissimilarities in regulatory combinatorics between different tissues, etc. Our analyses have pointed a highly distributed nature of the combinatorial gene regulation facilitating an efficient alteration in response to fungal attack. All together, our proposed methodology could be an important approach in understanding the combinatorial gene regulation. It can be further applied to unravel the tissue and/or condition specific combinatorial gene regulation in other eukaryotic systems with the availability of annotated genomic

  18. Barcoded DNA-tag reporters for multiplex cis-regulatory analysis.

    Directory of Open Access Journals (Sweden)

    Jongmin Nam

    Full Text Available Cis-regulatory DNA sequences causally mediate patterns of gene expression, but efficient experimental analysis of these control systems has remained challenging. Here we develop a new version of "barcoded" DNA-tag reporters, "Nanotags" that permit simultaneous quantitative analysis of up to 130 distinct cis-regulatory modules (CRMs. The activities of these reporters are measured in single experiments by the NanoString RNA counting method and other quantitative procedures. We demonstrate the efficiency of the Nanotag method by simultaneously measuring hourly temporal activities of 126 CRMs from 46 genes in the developing sea urchin embryo, otherwise a virtually impossible task. Nanotags are also used in gene perturbation experiments to reveal cis-regulatory responses of many CRMs at once. Nanotag methodology can be applied to many research areas, ranging from gene regulatory networks to functional and evolutionary genomics.

  19. Elements in the transcriptional regulatory region flanking herpes simplex virus type 1 oriS stimulate origin function.

    Science.gov (United States)

    Wong, S W; Schaffer, P A

    1991-05-01

    Like other DNA-containing viruses, the three origins of herpes simplex virus type 1 (HSV-1) DNA replication are flanked by sequences containing transcriptional regulatory elements. In a transient plasmid replication assay, deletion of sequences comprising the transcriptional regulatory elements of ICP4 and ICP22/47, which flank oriS, resulted in a greater than 80-fold decrease in origin function compared with a plasmid, pOS-822, which retains these sequences. In an effort to identify specific cis-acting elements responsible for this effect, we conducted systematic deletion analysis of the flanking region with plasmid pOS-822 and tested the resulting mutant plasmids for origin function. Stimulation by cis-acting elements was shown to be both distance and orientation dependent, as changes in either parameter resulted in a decrease in oriS function. Additional evidence for the stimulatory effect of flanking sequences on origin function was demonstrated by replacement of these sequences with the cytomegalovirus immediate-early promoter, resulting in nearly wild-type levels of oriS function. In competition experiments, cotransfection of cells with the test plasmid, pOS-822, and increasing molar concentrations of a competitor plasmid which contained the ICP4 and ICP22/47 transcriptional regulatory regions but lacked core origin sequences resulted in a significant reduction in the replication efficiency of pOS-822, demonstrating that factors which bind specifically to the oriS-flanking sequences are likely involved as auxiliary proteins in oriS function. Together, these studies demonstrate that trans-acting factors and the sites to which they bind play a critical role in the efficiency of HSV-1 DNA replication from oriS in transient-replication assays.

  20. A novel cis-acting element required for DNA damage-inducible expression of yeast DIN7

    International Nuclear Information System (INIS)

    Yoshitani, Ayako; Yoshida, Minoru; Ling Feng

    2008-01-01

    Din7 is a DNA damage-inducible mitochondrial nuclease that modulates the stability of mitochondrial DNA (mtDNA) in Saccharomyces cerevisiae. How DIN7 gene expression is regulated, however, has remained largely unclear. Using promoter sequence alignment, we found a highly conserved 19-bp sequence in the promoter regions of DIN7 and NTG1, which encodes an oxidative stress-inducible base-excision-repair enzyme. Deletion of the 19-bp sequence markedly reduced the hydroxyurea (HU)-enhanced DIN7 promoter activity. In addition, nuclear fractions prepared from HU-treated cells were used in in vitro band shift assays to reveal the presence of currently unidentified trans-acting factor(s) that preferentially bound to the 19-bp region. These results suggest that the 19-bp sequence is a novel cis-acting element that is required for the regulation of DIN7 expression in response to HU-induced DNA damage

  1. The MTP1 promoters from Arabidopsis halleri reveal cis-regulating elements for the evolution of metal tolerance.

    Science.gov (United States)

    Fasani, Elisa; DalCorso, Giovanni; Varotto, Claudio; Li, Mingai; Visioli, Giovanna; Mattarozzi, Monica; Furini, Antonella

    2017-06-01

    In the hyperaccumulator Arabidopsis halleri, the zinc (Zn) vacuolar transporter MTP1 is a key component of hypertolerance. Because protein sequences and functions are highly conserved between A. halleri and Arabidopsis thaliana, Zn tolerance in A. halleri may reflect the constitutively higher MTP1 expression compared with A. thaliana, based on copy number expansion and different cis regulation. Three MTP1 promoters were characterized in A. halleri ecotype I16. The comparison with the A. thaliana MTP1 promoter revealed different expression profiles correlated with specific cis-acting regulatory elements. The MTP1 5' untranslated region, highly conserved among A. thaliana, Arabidopsis lyrata and A. halleri, contains a dimer of MYB-binding motifs in the A. halleri promoters absent in the A. thaliana and A. lyrata sequences. Site-directed mutagenesis of these motifs revealed their role for expression in trichomes. A. thaliana mtp1 transgenic lines expressing AtMTP1 controlled by the native A. halleri promoter were more Zn-tolerant than lines carrying mutations on MYB-binding motifs. Differences in Zn tolerance were associated with different distribution of Zn among plant organs and in trichomes. The different cis-acting elements in the MTP1 promoters of A. halleri, particularly the MYB-binding sites, are probably involved in the evolution of Zn tolerance. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. n-Alkane and clofibrate, a peroxisome proliferator, activate transcription of ALK2 gene encoding cytochrome P450alk2 through distinct cis-acting promoter elements in Candida maltosa

    International Nuclear Information System (INIS)

    Kogure, Takahisa; Takagi, Masamichi; Ohta, Akinori

    2005-01-01

    The ALK2 gene, encoding one of the n-alkane-hydroxylating cytochromes P450 in Candida maltosa, is induced by n-alkanes and a peroxisome proliferator, clofibrate. Deletion analysis of this gene's promoter revealed two cis-acting elements-an n-alkane-responsive element (ARE2) and a clofibrate-responsive element (CRE2)-that partly overlap in sequence but have distinct functions. ARE2-mediated activation responded to n-alkanes but not to clofibrate and was repressed by glucose. CRE2-mediated activation responded to polyunsaturated fatty acids and steroid hormones as well as to peroxisome proliferators but not to n-alkanes, and it was not repressed by glucose. Both elements mediated activation by oleic acid. Mutational analysis demonstrated that three CCG sequences in CRE2 were critical to the activation by clofibrate as well as to the in vitro binding of a specific protein to this element. These findings suggest that ALK2 is induced by peroxisome proliferators and steroid hormones through a specific CRE2-mediated regulatory mechanism

  3. RNA regulatory elements and polyadenylation in plants

    Directory of Open Access Journals (Sweden)

    Arthur G. Hunt

    2012-01-01

    Full Text Available Alternative poly(A site choice (also known as alternative polyadenylation, or APA has the potential to affect gene expression in qualitative and quantitative ways. Alternative polyadenylation may affect as many as 82% of all expressed genes in a plant. The consequences of APA include the generation of transcripts with differing 3’-UTRs (and thus differing potential regulatory potential and of transcripts with differing protein-coding potential. Genome-wide studies of possible APA suggest a linkage with pre-mRNA splicing, and indicate a coincidence of and perhaps cooperation between RNA regulatory elements that affect splicing efficiency and the recognition of novel intronic poly(A sites. These studies also raise the possibility of the existence of a novel class of polyadenylation-related cis elements that are distinct from the well-characterized plant polyadenylation signal. Many potential APA events, however, have not been associated with identifiable cis elements. The present state of the field reveals a broad scope of APA, and also numerous opportunities for research into mechanisms that govern both choice and regulation of poly(A sites in plants.

  4. Using reporter gene assays to identify cis regulatory differences between humans and chimpanzees.

    Science.gov (United States)

    Chabot, Adrien; Shrit, Ralla A; Blekhman, Ran; Gilad, Yoav

    2007-08-01

    Most phenotypic differences between human and chimpanzee are likely to result from differences in gene regulation, rather than changes to protein-coding regions. To date, however, only a handful of human-chimpanzee nucleotide differences leading to changes in gene regulation have been identified. To hone in on differences in regulatory elements between human and chimpanzee, we focused on 10 genes that were previously found to be differentially expressed between the two species. We then designed reporter gene assays for the putative human and chimpanzee promoters of the 10 genes. Of seven promoters that we found to be active in human liver cell lines, human and chimpanzee promoters had significantly different activity in four cases, three of which recapitulated the gene expression difference seen in the microarray experiment. For these three genes, we were therefore able to demonstrate that a change in cis influences expression differences between humans and chimpanzees. Moreover, using site-directed mutagenesis on one construct, the promoter for the DDA3 gene, we were able to identify three nucleotides that together lead to a cis regulatory difference between the species. High-throughput application of this approach can provide a map of regulatory element differences between humans and our close evolutionary relatives.

  5. Genome-wide decoding of hierarchical modular structure of transcriptional regulation by cis-element and expression clustering.

    Science.gov (United States)

    Leyfer, Dmitriy; Weng, Zhiping

    2005-09-01

    A holistic approach to the study of cellular processes is identifying both gene-expression changes and regulatory elements promoting such changes. Cellular regulatory processes can be viewed as transcriptional modules (TMs), groups of coexpressed genes regulated by groups of transcription factors (TFs). We set out to devise a method that would identify TMs while avoiding arbitrary thresholds on TM sizes and number. Assuming that gene expression is determined by TFs that bind to the gene's promoter, clustering of genes based on TF binding sites (cis-elements) should create gene groups similar to those obtained by gene expression clustering. Intersections between the expression and cis-element-based gene clusters reveal TMs. Statistical significance assigned to each TM allows identification of regulatory units of any size. Our method correctly identifies the number and sizes of TMs on simulated datasets. We demonstrate that yeast experimental TMs are biologically relevant by comparing them with MIPS and GO categories. Our modules are in statistically significant agreement with TMs from other research groups. This work suggests that there is no preferential division of biological processes into regulatory units; each degree of partitioning exhibits a slice of biological network revealing hierarchical modular organization of transcriptional regulation.

  6. Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data

    Directory of Open Access Journals (Sweden)

    Yamaguchi-Shinozaki Kazuko

    2011-02-01

    Full Text Available Abstract Background Phytohormones organize plant development and environmental adaptation through cell-to-cell signal transduction, and their action involves transcriptional activation. Recent international efforts to establish and maintain public databases of Arabidopsis microarray data have enabled the utilization of this data in the analysis of various phytohormone responses, providing genome-wide identification of promoters targeted by phytohormones. Results We utilized such microarray data for prediction of cis-regulatory elements with an octamer-based approach. Our test prediction of a drought-responsive RD29A promoter with the aid of microarray data for response to drought, ABA and overexpression of DREB1A, a key regulator of cold and drought response, provided reasonable results that fit with the experimentally identified regulatory elements. With this succession, we expanded the prediction to various phytohormone responses, including those for abscisic acid, auxin, cytokinin, ethylene, brassinosteroid, jasmonic acid, and salicylic acid, as well as for hydrogen peroxide, drought and DREB1A overexpression. Totally 622 promoters that are activated by phytohormones were subjected to the prediction. In addition, we have assigned putative functions to 53 octamers of the Regulatory Element Group (REG that have been extracted as position-dependent cis-regulatory elements with the aid of their feature of preferential appearance in the promoter region. Conclusions Our prediction of Arabidopsis cis-regulatory elements for phytohormone responses provides guidance for experimental analysis of promoters to reveal the basis of the transcriptional network of phytohormone responses.

  7. Evolution of New cis-Regulatory Motifs Required for Cell-Specific Gene Expression in Caenorhabditis.

    Directory of Open Access Journals (Sweden)

    Michalis Barkoulas

    2016-09-01

    Full Text Available Patterning of C. elegans vulval cell fates relies on inductive signaling. In this induction event, a single cell, the gonadal anchor cell, secretes LIN-3/EGF and induces three out of six competent precursor cells to acquire a vulval fate. We previously showed that this developmental system is robust to a four-fold variation in lin-3/EGF genetic dose. Here using single-molecule FISH, we find that the mean level of expression of lin-3 in the anchor cell is remarkably conserved. No change in lin-3 expression level could be detected among C. elegans wild isolates and only a low level of change-less than 30%-in the Caenorhabditis genus and in Oscheius tipulae. In C. elegans, lin-3 expression in the anchor cell is known to require three transcription factor binding sites, specifically two E-boxes and a nuclear-hormone-receptor (NHR binding site. Mutation of any of these three elements in C. elegans results in a dramatic decrease in lin-3 expression. Yet only a single E-box is found in the Drosophilae supergroup of Caenorhabditis species, including C. angaria, while the NHR-binding site likely only evolved at the base of the Elegans group. We find that a transgene from C. angaria bearing a single E-box is sufficient for normal expression in C. elegans. Even a short 58 bp cis-regulatory fragment from C. angaria with this single E-box is able to replace the three transcription factor binding sites at the endogenous C. elegans lin-3 locus, resulting in the wild-type expression level. Thus, regulatory evolution occurring in cis within a 58 bp lin-3 fragment, results in a strict requirement for the NHR binding site and a second E-box in C. elegans. This single-cell, single-molecule, quantitative and functional evo-devo study demonstrates that conserved expression levels can hide extensive change in cis-regulatory site requirements and highlights the evolution of new cis-regulatory elements required for cell-specific gene expression.

  8. cisMEP: an integrated repository of genomic epigenetic profiles and cis-regulatory modules in Drosophila.

    Science.gov (United States)

    Yang, Tzu-Hsien; Wang, Chung-Ching; Hung, Po-Cheng; Wu, Wei-Sheng

    2014-01-01

    Cis-regulatory modules (CRMs), or the DNA sequences required for regulating gene expression, play the central role in biological researches on transcriptional regulation in metazoan species. Nowadays, the systematic understanding of CRMs still mainly resorts to computational methods due to the time-consuming and small-scale nature of experimental methods. But the accuracy and reliability of different CRM prediction tools are still unclear. Without comparative cross-analysis of the results and combinatorial consideration with extra experimental information, there is no easy way to assess the confidence of the predicted CRMs. This limits the genome-wide understanding of CRMs. It is known that transcription factor binding and epigenetic profiles tend to determine functions of CRMs in gene transcriptional regulation. Thus integration of the genome-wide epigenetic profiles with systematically predicted CRMs can greatly help researchers evaluate and decipher the prediction confidence and possible transcriptional regulatory functions of these potential CRMs. However, these data are still fragmentary in the literatures. Here we performed the computational genome-wide screening for potential CRMs using different prediction tools and constructed the pioneer database, cisMEP (cis-regulatory module epigenetic profile database), to integrate these computationally identified CRMs with genomic epigenetic profile data. cisMEP collects the literature-curated TFBS location data and nine genres of epigenetic data for assessing the confidence of these potential CRMs and deciphering the possible CRM functionality. cisMEP aims to provide a user-friendly interface for researchers to assess the confidence of different potential CRMs and to understand the functions of CRMs through experimentally-identified epigenetic profiles. The deposited potential CRMs and experimental epigenetic profiles for confidence assessment provide experimentally testable hypotheses for the molecular mechanisms

  9. A novel radiation responsive cis-acting element regulates gene induction and mediates tissue injury

    International Nuclear Information System (INIS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi; Kuchibahtla, Jaya

    1997-01-01

    containing binding domains for the transcription factors AP-1 and Ets. This DNA sequence (TGCCTCAGTTTCCC) is similar to antioxidant responsive element. X-ray- mediated transcriptional activation of the 5' regulatory region of ICAM-1 required the antioxidant responsive element (ARE). Electrophoretic mobility shift analysis of nuclear proteins from irradiated endothelial cells incubated with the ARE binding domain (5'-GCTGCTGCCTCAGTTTCCC-3') showed increased protein-DNA complexes at 60 and 120 minutes after irradiation. Conclusions: 1) ICAM induction in irradiated tissue occurs in the microvascular endothelium. 2) ICAM expression contributes to the pathogenesis of radiation-mediated tissue injury and the ICAM knockout serves as a model for the study of the pathogenesis of tissue injury. 3) ICAM expression is regulated by a novel radiation-inducible cis-acting element that has homology to previously identified antioxidant responsive elements

  10. Discovery of cis-elements between sorghum and rice using co-expression and evolutionary conservation

    Directory of Open Access Journals (Sweden)

    Haberer Georg

    2009-06-01

    Full Text Available Abstract Background The spatiotemporal regulation of gene expression largely depends on the presence and absence of cis-regulatory sites in the promoter. In the economically highly important grass family, our knowledge of transcription factor binding sites and transcriptional networks is still very limited. With the completion of the sorghum genome and the available rice genome sequence, comparative promoter analyses now allow genome-scale detection of conserved cis-elements. Results In this study, we identified thousands of phylogenetic footprints conserved between orthologous rice and sorghum upstream regions that are supported by co-expression information derived from three different rice expression data sets. In a complementary approach, cis-motifs were discovered by their highly conserved co-occurrence in syntenic promoter pairs. Sequence conservation and matches to known plant motifs support our findings. Expression similarities of gene pairs positively correlate with the number of motifs that are shared by gene pairs and corroborate the importance of similar promoter architectures for concerted regulation. This strongly suggests that these motifs function in the regulation of transcript levels in rice and, presumably also in sorghum. Conclusion Our work provides the first large-scale collection of cis-elements for rice and sorghum and can serve as a paradigm for cis-element analysis through comparative genomics in grasses in general.

  11. PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups

    Directory of Open Access Journals (Sweden)

    Huang Hsien-Da

    2008-11-01

    Full Text Available Abstract Background The elucidation of transcriptional regulation in plant genes is important area of research for plant scientists, following the mapping of various plant genomes, such as A. thaliana, O. sativa and Z. mays. A variety of bioinformatic servers or databases of plant promoters have been established, although most have been focused only on annotating transcription factor binding sites in a single gene and have neglected some important regulatory elements (tandem repeats and CpG/CpNpG islands in promoter regions. Additionally, the combinatorial interaction of transcription factors (TFs is important in regulating the gene group that is associated with the same expression pattern. Therefore, a tool for detecting the co-regulation of transcription factors in a group of gene promoters is required. Results This study develops a database-assisted system, PlantPAN (Plant Promoter Analysis Navigator, for recognizing combinatorial cis-regulatory elements with a distance constraint in sets of plant genes. The system collects the plant transcription factor binding profiles from PLACE, TRANSFAC (public release 7.0, AGRIS, and JASPER databases and allows users to input a group of gene IDs or promoter sequences, enabling the co-occurrence of combinatorial transcription factor binding sites (TFBSs within a defined distance (20 bp to 200 bp to be identified. Furthermore, the new resource enables other regulatory features in a plant promoter, such as CpG/CpNpG islands and tandem repeats, to be displayed. The regulatory elements in the conserved regions of the promoters across homologous genes are detected and presented. Conclusion In addition to providing a user-friendly input/output interface, PlantPAN has numerous advantages in the analysis of a plant promoter. Several case studies have established the effectiveness of PlantPAN. This novel analytical resource is now freely available at http://PlantPAN.mbc.nctu.edu.tw.

  12. Characterization of a Suppressive Cis-acting Element in the Epstein–Barr Virus LMP1 Promoter

    Directory of Open Access Journals (Sweden)

    Masahiro Yoshida

    2017-11-01

    Full Text Available Latent membrane protein 1 (LMP1 is a major oncogene encoded by Epstein–Barr virus (EBV and is essential for immortalization of B cells by the virus. Previous studies suggested that several transcription factors, such as PU.1, RBP-Jκ, NFκB, EBF1, AP-2 and STAT, are involved in LMP1 induction; however, the means by which the oncogene is negatively regulated remains unclear. Here, we introduced short mutations into the proximal LMP1 promoter that includes recognition sites for the E-box and Ikaros transcription factors in the context of EBV-bacterial artificial chromosome. Upon infection, the mutant exhibited increased LMP1 expression and EBV-mediated immortalization of B cells. However, single mutations of either the E-box or Ikaros sites had limited effects on LMP1 expression and transformation. Our results suggest that this region contains a suppressive cis-regulatory element, but other transcriptional repressors (apart from the E-box and Ikaros transcription factors may remain to be discovered.

  13. A single cis element maintains repression of the key developmental regulator Gata2.

    Directory of Open Access Journals (Sweden)

    Jonathan W Snow

    2010-09-01

    Full Text Available In development, lineage-restricted transcription factors simultaneously promote differentiation while repressing alternative fates. Molecular dissection of this process has been challenging as transcription factor loci are regulated by many trans-acting factors functioning through dispersed cis elements. It is not understood whether these elements function collectively to confer transcriptional regulation, or individually to control specific aspects of activation or repression, such as initiation versus maintenance. Here, we have analyzed cis element regulation of the critical hematopoietic factor Gata2, which is expressed in early precursors and repressed as GATA-1 levels rise during terminal differentiation. We engineered mice lacking a single cis element -1.8 kb upstream of the Gata2 transcriptional start site. Although Gata2 is normally repressed in late-stage erythroblasts, the -1.8 kb mutation unexpectedly resulted in reactivated Gata2 transcription, blocked differentiation, and an aberrant lineage-specific gene expression pattern. Our findings demonstrate that the -1.8 kb site selectively maintains repression, confers a specific histone modification pattern and expels RNA Polymerase II from the locus. These studies reveal how an individual cis element establishes a normal developmental program via regulating specific steps in the mechanism by which a critical transcription factor is repressed.

  14. Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing.

    Energy Technology Data Exchange (ETDEWEB)

    Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.

    2003-06-01

    OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally important for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.

  15. Close Sequence Comparisons are Sufficient to Identify Humancis-Regulatory Elements

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Shyam; Poulin, Francis; Shoukry, Malak; Afzal, Veena; Rubin, Edward M.; Couronne, Olivier; Pennacchio, Len A.

    2005-12-01

    Cross-species DNA sequence comparison is the primary method used to identify functional noncoding elements in human and other large genomes. However, little is known about the relative merits of evolutionarily close and distant sequence comparisons, due to the lack of a universal metric for sequence conservation, and also the paucity of empirically defined benchmark sets of cis-regulatory elements. To address this problem, we developed a general-purpose algorithm (Gumby) that detects slowly-evolving regions in primate, mammalian and more distant comparisons without requiring adjustment of parameters, and ranks conserved elements by P-value using Karlin-Altschul statistics. We benchmarked Gumby predictions against previously identified cis-regulatory elements at diverse genomic loci, and also tested numerous extremely conserved human-rodent sequences for transcriptional enhancer activity using reporter-gene assays in transgenic mice. Human regulatory elements were identified with acceptable sensitivity and specificity by comparison with 1-5 other eutherian mammals or 6 other simian primates. More distant comparisons (marsupial, avian, amphibian and fish) failed to identify many of the empirically defined functional noncoding elements. We derived an intuitive relationship between ancient and recent noncoding sequence conservation from whole genome comparative analysis, which explains some of these findings. Lastly, we determined that, in addition to strength of conservation, genomic location and/or density of surrounding conserved elements must also be considered in selecting candidate enhancers for testing at embryonic time points.

  16. Hepatitis B virus nuclear export elements: RNA stem-loop α and β, key parts of the HBV post-transcriptional regulatory element.

    Science.gov (United States)

    Lim, Chun Shen; Brown, Chris M

    2016-09-01

    Many viruses contain RNA elements that modulate splicing and/or promote nuclear export of their RNAs. The RNAs of the major human pathogen, hepatitis B virus (HBV) contain a large (~600 bases) composite cis-acting 'post-transcriptional regulatory element' (PRE). This element promotes expression from these naturally intronless transcripts. Indeed, the related woodchuck hepadnavirus PRE (WPRE) is used to enhance expression in gene therapy and other expression vectors. These PRE are likely to act through a combination of mechanisms, including promotion of RNA nuclear export. Functional components of both the HBV PRE and WPRE are 2 conserved RNA cis-acting stem-loop (SL) structures, SLα and SLβ. They are within the coding regions of polymerase (P) gene, and both P and X genes, respectively. Based on previous studies using mutagenesis and/or nuclear magnetic resonance (NMR), here we propose 2 covariance models for SLα and SLβ. The model for the 30-nucleotide SLα contains a G-bulge and a CNGG(U) apical loop of which the first and the fourth loop residues form a CG pair and the fifth loop residue is bulged out, as observed in the NMR structure. The model for the 23-nucleotide SLβ contains a 7-base-pair stem and a 9-nucleotide loop. Comparison of the models with other RNA structural elements, as well as similarity searches of human transcriptome and viral genomes demonstrate that SLα and SLβ are specific to HBV transcripts. However, they are well conserved among the hepadnaviruses of non-human primates, the woodchuck and ground squirrel.

  17. Identification of trans-acting factors regulating SamDC expression in Oryza sativa

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Supratim, E-mail: supratim_genetics@yahoo.co.in [Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 (United States); Division of Plant Biology, Bose Institute, Kolkata (India); Roychoudhury, Aryadeep [Post Graduate Department of Biotechnology, St. Xavier' s College (Autonomous), 30, Mother Teresa Sarani, Kolkata - 700016, West Bengal (India); Sengupta, Dibyendu N. [Division of Plant Biology, Bose Institute, Kolkata (India)

    2014-03-07

    Highlights: • Identification of cis elements responsible for SamDC expression by in silico analysis. • qPCR analysis of SamDC expression to abiotic and biotic stress treatments. • Detection of SamDC regulators using identified cis-elements as probe by EMSA. • Southwestern Blot analysis to predict the size of the trans-acting factors. - Abstract: Abiotic stress affects the growth and productivity of crop plants; to cope with the adverse environmental conditions, plants have developed efficient defense machinery comprising of antioxidants like phenolics and flavonoids, and osmolytes like polyamines. SamDC is a key enzyme in the polyamine biosynthesis pathway in plants. In our present communication we have done in silico analysis of the promoter region of SamDC to look for the presence of different cis-regulatory elements contributing to its expression. Based on the presence of different cis-regulatory elements we completed comparative analysis of SamDC gene expression in rice lamina of IR-29 and Nonabokra by qPCR in response to the abiotic stress treatments of salinity, drought, cold and the biotic stress treatments of ABA and light. Additionally, to explore the role of the cis-regulatory elements in regulating the expression of SamDC gene in plants we comparatively analyzed the binding of rice nuclear proteins prepared from IR-29 and Nonabokra undergoing various stress treatments. The intensity of the complex formed was low and inducible in IR-29 in contrast to Nonabokra. Southwestern blot analysis helped in predicting the size of the trans-acting factors binding to these cis-elements. To our knowledge this is the first report on the comprehensive analysis of SamDC gene expression in rice and identification of the trans-acting factors regulating its expression.

  18. Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function.

    Science.gov (United States)

    Osborne, Suzanne E; Walthers, Don; Tomljenovic, Ana M; Mulder, David T; Silphaduang, Uma; Duong, Nancy; Lowden, Michael J; Wickham, Mark E; Waller, Ross F; Kenney, Linda J; Coombes, Brian K

    2009-03-10

    The acquisition of DNA by horizontal gene transfer enables bacteria to adapt to previously unexploited ecological niches. Although horizontal gene transfer and mutation of protein-coding sequences are well-recognized forms of pathogen evolution, the evolutionary significance of cis-regulatory mutations in creating phenotypic diversity through altered transcriptional outputs is not known. We show the significance of regulatory mutation for pathogen evolution by mapping and then rewiring a cis-regulatory module controlling a gene required for murine typhoid. Acquisition of a binding site for the Salmonella pathogenicity island-2 regulator, SsrB, enabled the srfN gene, ancestral to the Salmonella genus, to play a role in pathoadaptation of S. typhimurium to a host animal. We identified the evolved cis-regulatory module and quantified the fitness gain that this regulatory output accrues for the bacterium using competitive infections of host animals. Our findings highlight a mechanism of pathogen evolution involving regulatory mutation that is selected because of the fitness advantage the new regulatory output provides the incipient clones.

  19. Using hexamers to predict cis-regulatory motifs in Drosophila

    Directory of Open Access Journals (Sweden)

    Kibler Dennis

    2005-10-01

    Full Text Available Abstract Background Cis-regulatory modules (CRMs are short stretches of DNA that help regulate gene expression in higher eukaryotes. They have been found up to 1 megabase away from the genes they regulate and can be located upstream, downstream, and even within their target genes. Due to the difficulty of finding CRMs using biological and computational techniques, even well-studied regulatory systems may contain CRMs that have not yet been discovered. Results We present a simple, efficient method (HexDiff based only on hexamer frequencies of known CRMs and non-CRM sequence to predict novel CRMs in regulatory systems. On a data set of 16 gap and pair-rule genes containing 52 known CRMs, predictions made by HexDiff had a higher correlation with the known CRMs than several existing CRM prediction algorithms: Ahab, Cluster Buster, MSCAN, MCAST, and LWF. After combining the results of the different algorithms, 10 putative CRMs were identified and are strong candidates for future study. The hexamers used by HexDiff to distinguish between CRMs and non-CRM sequence were also analyzed and were shown to be enriched in regulatory elements. Conclusion HexDiff provides an efficient and effective means for finding new CRMs based on known CRMs, rather than known binding sites.

  20. 5' Region of the human interleukin 4 gene: structure and potential regulatory elements

    Energy Technology Data Exchange (ETDEWEB)

    Eder, A; Krafft-Czepa, H; Krammer, P H

    1988-01-25

    The lymphokine Interleukin 4 (IL-4) is secreted by antigen or mitogen activated T lymphocytes. IL-4 stimulates activation and differentiation of B lymphocytes and growth of T lymphocytes and mast cells. The authors isolated the human IL-4 gene from a lambda EMBL3 genomic library. As a probe they used a synthetic oligonucleotide spanning position 40 to 79 of the published IL-4 cDNA sequence. The 5' promoter region contains several sequence elements which may have a cis-acting regulatory function for IL-4 gene expression. These elements include a TATA-box, three CCAAT-elements (two are on the non-coding strand) and an octamer motif. A comparison of the 5' flanking region of the human murine IL-4 gene (4) shows that the region between position -306 and +44 is highly conserved (83% homology).

  1. A 20 bp cis-acting element is both necessary and sufficient to mediate elicitor response of a maize PRms gene.

    Science.gov (United States)

    Raventós, D; Jensen, A B; Rask, M B; Casacuberta, J M; Mundy, J; San Segundo, B

    1995-01-01

    Transient gene expression assays in barley aleurone protoplasts were used to identify a cis-regulatory element involved in the elicitor-responsive expression of the maize PRms gene. Analysis of transcriptional fusions between PRms 5' upstream sequences and a chloramphenicol acetyltransferase reporter gene, as well as chimeric promoters containing PRms promoter fragments or repeated oligonucleotides fused to a minimal promoter, delineated a 20 bp sequence which functioned as an elicitor-response element (ERE). This sequence contains a motif (-246 AATTGACC) similar to sequences found in promoters of other pathogen-responsive genes. The analysis also indicated that an enhancing sequence(s) between -397 and -296 is required for full PRms activation by elicitors. The protein kinase inhibitor staurosporine was found to completely block the transcriptional activation induced by elicitors. These data indicate that protein phosphorylation is involved in the signal transduction pathway leading to PRms expression.

  2. BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements.

    Science.gov (United States)

    De Witte, Dieter; Van de Velde, Jan; Decap, Dries; Van Bel, Michiel; Audenaert, Pieter; Demeester, Piet; Dhoedt, Bart; Vandepoele, Klaas; Fostier, Jan

    2015-12-01

    The accurate discovery and annotation of regulatory elements remains a challenging problem. The growing number of sequenced genomes creates new opportunities for comparative approaches to motif discovery. Putative binding sites are then considered to be functional if they are conserved in orthologous promoter sequences of multiple related species. Existing methods for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which are difficult to obtain for more diverged species such as plants. As a consequence, misaligned regulatory elements often remain undetected. We present a novel algorithm that supports both alignment-free and alignment-based motif discovery in the promoter sequences of related species. Putative motifs are exhaustively enumerated as words over the IUPAC alphabet and screened for conservation using the branch length score. Additionally, a confidence score is established in a genome-wide fashion. In order to take advantage of a cloud computing infrastructure, the MapReduce programming model is adopted. The method is applied to four monocotyledon plant species and it is shown that high-scoring motifs are significantly enriched for open chromatin regions in Oryza sativa and for transcription factor binding sites inferred through protein-binding microarrays in O.sativa and Zea mays. Furthermore, the method is shown to recover experimentally profiled ga2ox1-like KN1 binding sites in Z.mays. BLSSpeller was written in Java. Source code and manual are available at http://bioinformatics.intec.ugent.be/blsspeller Klaas.Vandepoele@psb.vib-ugent.be or jan.fostier@intec.ugent.be. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  3. Human polyomavirus JCV late leader peptide region contains important regulatory elements

    International Nuclear Information System (INIS)

    Akan, Ilhan; Sariyer, Ilker Kudret; Biffi, Renato; Palermo, Victoria; Woolridge, Stefanie; White, Martyn K.; Amini, Shohreh; Khalili, Kamel; Safak, Mahmut

    2006-01-01

    Transcription is a complex process that relies on the cooperative interaction between sequence-specific factors and the basal transcription machinery. The strength of a promoter depends on upstream or downstream cis-acting DNA elements, which bind transcription factors. In this study, we investigated whether DNA elements located downstream of the JCV late promoter, encompassing the late leader peptide region, which encodes agnoprotein, play regulatory roles in the JCV lytic cycle. For this purpose, the entire coding region of the leader peptide was deleted and the functional consequences of this deletion were analyzed. We found that viral gene expression and replication were drastically reduced. Gene expression also decreased from a leader peptide point mutant but to a lesser extent. This suggested that the leader peptide region of JCV might contain critical cis-acting DNA elements to which transcription factors bind and regulate viral gene expression and replication. We analyzed the entire coding region of the late leader peptide by a footprinting assay and identified three major regions (region I, II and III) that were protected by nuclear proteins. Further investigation of the first two protected regions by band shift assays revealed a new band that appeared in new infection cycles, suggesting that viral infection induces new factors that interact with the late leader peptide region of JCV. Analysis of the effect of the leader peptide region on the promoter activity of JCV by transfection assays demonstrated that this region has a positive and negative effect on the large T antigen (LT-Ag)-mediated activation of the viral early and late promoters, respectively. Furthermore, a partial deletion analysis of the leader peptide region encompassing the protected regions I and II demonstrated a significant down-regulation of viral gene expression and replication. More importantly, these results were similar to that obtained from a complete deletion of the late leader

  4. Phylogeny based discovery of regulatory elements

    Directory of Open Access Journals (Sweden)

    Cohen Barak A

    2006-05-01

    Full Text Available Abstract Background Algorithms that locate evolutionarily conserved sequences have become powerful tools for finding functional DNA elements, including transcription factor binding sites; however, most methods do not take advantage of an explicit model for the constrained evolution of functional DNA sequences. Results We developed a probabilistic framework that combines an HKY85 model, which assigns probabilities to different base substitutions between species, and weight matrix models of transcription factor binding sites, which describe the probabilities of observing particular nucleotides at specific positions in the binding site. The method incorporates the phylogenies of the species under consideration and takes into account the position specific variation of transcription factor binding sites. Using our framework we assessed the suitability of alignments of genomic sequences from commonly used species as substrates for comparative genomic approaches to regulatory motif finding. We then applied this technique to Saccharomyces cerevisiae and related species by examining all possible six base pair DNA sequences (hexamers and identifying sequences that are conserved in a significant number of promoters. By combining similar conserved hexamers we reconstructed known cis-regulatory motifs and made predictions of previously unidentified motifs. We tested one prediction experimentally, finding it to be a regulatory element involved in the transcriptional response to glucose. Conclusion The experimental validation of a regulatory element prediction missed by other large-scale motif finding studies demonstrates that our approach is a useful addition to the current suite of tools for finding regulatory motifs.

  5. DMPD: Activation of lymphokine genes in T cells: role of cis-acting DNA elements thatrespond to T cell activation signals. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available thatrespond to T cell activation signals. Arai N, Naito Y, Watanabe M, Masuda ES, Yamaguchi-Iwai Y, Tsuboi A, Heike T,Matsud... in T cells: role of cis-acting DNA elements thatrespond to T cell activation signals. Authors Arai N, Naito Y, Watanabe M, Masud...a ES, Yamaguchi-Iwai Y, Tsuboi A, Heike T,Matsuda I, Yokota

  6. cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA.

    Science.gov (United States)

    Prats, A C; Roy, C; Wang, P A; Erard, M; Housset, V; Gabus, C; Paoletti, C; Darlix, J L

    1990-02-01

    The genetic material of all retroviruses examined so far consists of two identical RNA molecules joined at their 5' ends by the dimer linkage structure (DLS). Since the precise location of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analyzed the dimerization process of Moloney murine leukemia virus (MoMuLV) genomic RNA. For this purpose we derived an in vitro model for RNA dimerization. By using this model, murine leukemia virus RNA was shown to form dimeric molecules. Deletion mutagenesis in the 620-nucleotide leader of MoMuLV RNA showed that the dimer promoting sequences are located within the encapsidation element Psi between positions 215 and 420. Furthermore, hybridization assays in which DNA oligomers were used to probe monomer and dimer forms of MoMuLV RNA indicated that the DLS probably maps between positions 280 and 330 from the RNA 5' end. Also, retroviral nucleocapsid protein was shown to catalyze dimerization of MoMuLV RNA and to be tightly bound to genomic dimer RNA in virions. These results suggest that MoMuLV RNA dimerization and encapsidation are probably controlled by the same cis element, Psi, and trans-acting factor, nucleocapsid protein, and thus might be linked during virion formation.

  7. A unified architecture of transcriptional regulatory elements

    DEFF Research Database (Denmark)

    Andersson, Robin; Sandelin, Albin Gustav; Danko, Charles G.

    2015-01-01

    Gene expression is precisely controlled in time and space through the integration of signals that act at gene promoters and gene-distal enhancers. Classically, promoters and enhancers are considered separate classes of regulatory elements, often distinguished by histone modifications. However...... and enhancers are considered a single class of functional element, with a unified architecture for transcription initiation. The context of interacting regulatory elements and the surrounding sequences determine local transcriptional output as well as the enhancer and promoter activities of individual elements....

  8. Useful Bicistronic Reporter System for Studying Poly(A Site-Defining cis Elements and Regulation of Alternative Polyadenylation

    Directory of Open Access Journals (Sweden)

    Zhongyuan Deng

    2018-01-01

    Full Text Available The link between polyadenylation (pA and various biological, behavioral, and pathological events of eukaryotes underlines the need to develop in vivo polyadenylation assay methods for characterization of the cis-acting elements, trans-acting factors and environmental stimuli that affect polyadenylation efficiency and/or relative usage of two alternative polyadenylation (APA sites. The current protein-based CAT or luciferase reporter systems can measure the polyadenylation efficiency of a single pA site or candidate cis element but not the choice of two APA sites. To address this issue, we developed a set of four new bicistronic reporter vectors that harbor either two luciferase or fluorescence protein open reading frames connected with one Internal Ribosome Entry Site (IRES. Transfection of single or dual insertion constructs of these vectors into mammalian cells demonstrated that they could be utilized not only to quantify the strength of a single candidate pA site or cis element, but also to accurately measure the relative usage of two APA sites at both the mRNA (qRT-PCR and protein levels. This represents the first reporter system that can study polyadenylation efficiency of a single pA site or element and regulation of two APA sites at both the mRNA and protein levels.

  9. Creating and validating cis-regulatory maps of tissue-specific gene expression regulation

    Science.gov (United States)

    O'Connor, Timothy R.; Bailey, Timothy L.

    2014-01-01

    Predicting which genomic regions control the transcription of a given gene is a challenge. We present a novel computational approach for creating and validating maps that associate genomic regions (cis-regulatory modules–CRMs) with genes. The method infers regulatory relationships that explain gene expression observed in a test tissue using widely available genomic data for ‘other’ tissues. To predict the regulatory targets of a CRM, we use cross-tissue correlation between histone modifications present at the CRM and expression at genes within 1 Mbp of it. To validate cis-regulatory maps, we show that they yield more accurate models of gene expression than carefully constructed control maps. These gene expression models predict observed gene expression from transcription factor binding in the CRMs linked to that gene. We show that our maps are able to identify long-range regulatory interactions and improve substantially over maps linking genes and CRMs based on either the control maps or a ‘nearest neighbor’ heuristic. Our results also show that it is essential to include CRMs predicted in multiple tissues during map-building, that H3K27ac is the most informative histone modification, and that CAGE is the most informative measure of gene expression for creating cis-regulatory maps. PMID:25200088

  10. In silico analysis, mapping of regulatory elements and corresponding dna-protein interaction in polyphenol oxidase gene promoter from different rice varieties

    International Nuclear Information System (INIS)

    Mahmood, T.; Rehman, M.; Aziz, E.

    2015-01-01

    Polyphenol oxidase (PPO) is an important enzyme that has positive impact regarding plant resistance against different biotic and abiotic stresses. In the present study PPO promoter from six different rice varieties was amplified and then analyzed for cis- and trans-acting elements. The study revealed a total of 79 different cis-acting regulatory elements including 11 elements restricted to only one or other variety. Among six varieties Pakhal-Basmati had highest number (5) of these elements, whereas C-622 and Rachna-Basmati have no such sequences. Rachna-Basmati, IR-36-Basmati and Kashmir- Basmati had 1, 2 and 3 unique elements, respectively. Different elementsrelated to pathogen, salt and water stresses were found, which may be helpful in controlling PPO activity according to changing environment. Moreover, HADDOCK was used to understand molecular mechanism of PPO regulation and it was found that DNA-protein interactions are stabilized by many potential hydrogen bonds. Adenine and arginine were the most reactive residues in DNA and proteins respectively.Structural comparison of different protein-DNA complexes show that even a highly conserved transcriptional factor can adopt different conformations when they contact a different DNA binding sequence, however their stable interactions depend on the number of hydrogen bonds formed and distance. (author)

  11. Insulin increases transcription of rat gene 33 through cis-acting elements in 5[prime]-flanking DNA

    Energy Technology Data Exchange (ETDEWEB)

    Cadilla, C.; Isham, K.R.; Lee, K.L.; Ch' ang, L.Y.; Kenney, F.T. (Oak Ridge National Lab., TN (United States)); Johnson, A.C. (National Cancer Institute, Bethesda, MD (United States). Lab. of Molecular Biology)

    1992-01-01

    Gene 33 is a multihormonally-regulated rat gene whose transcription is rapidly and markedly enhanced by insulin in liver and cultured hepatoma cells. To examine the mechanism by which insulin regulates transcription, the authors have constructed chimeric plasmids in which expression of the bacterial cat gene, encoding chloramphenicol acetyltransferase (CAT), is governed by gene 33 promoter elements and contiguous sequence in DNA flanking the transcription start point (tsp). When transfected into H4IIE hepatoma cells, these constructs gave rise to stably transformed cell lines producing the bacterial CAT enzyme. This expression was increased by insulin treatment in a fashion resembling the effect of this hormone on transcription of the native gene. In vitro transcription assays in nuclear extracts also revealed increased transcription of the chimeric plasmids when the extracts were prepared from insulin-treated rat hepatoma cells. The results demonstrate that induction by insulin is mediated by cis-acting nucleotide sequences located between bp [minus]480 to +27 relative to the tsp.

  12. Identification of sparsely distributed clusters of cis-regulatory elements in sets of co-expressed genes

    OpenAIRE

    Kreiman, Gabriel

    2004-01-01

    Sequence information and high‐throughput methods to measure gene expression levels open the door to explore transcriptional regulation using computational tools. Combinatorial regulation and sparseness of regulatory elements throughout the genome allow organisms to control the spatial and temporal patterns of gene expression. Here we study the organization of cis‐regulatory elements in sets of co‐regulated genes. We build an algorithm to search for combinations of transcription factor binding...

  13. Both positive and negative regulatory elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia.

    Science.gov (United States)

    Castresana, C; Garcia-Luque, I; Alonso, E; Malik, V S; Cashmore, A R

    1988-01-01

    We have analyzed promoter regulatory elements from a photoregulated CAB gene (Cab-E) isolated from Nicotiana plumbaginifolia. These studies have been performed by introducing chimeric gene constructs into tobacco cells via Agrobacterium tumefaciens-mediated transformation. Expression studies on the regenerated transgenic plants have allowed us to characterize three positive and one negative cis-acting elements that influence photoregulated expression of the Cab-E gene. Within the upstream sequences we have identified two positive regulatory elements (PRE1 and PRE2) which confer maximum levels of photoregulated expression. These sequences contain multiple repeated elements related to the sequence-ACCGGCCCACTT-. We have also identified within the upstream region a negative regulatory element (NRE) extremely rich in AT sequences, which reduces the level of gene expression in the light. We have defined a light regulatory element (LRE) within the promoter region extending from -396 to -186 bp which confers photoregulated expression when fused to a constitutive nopaline synthase ('nos') promoter. Within this region there is a 132-bp element, extending from -368 to -234 bp, which on deletion from the Cab-E promoter reduces gene expression from high levels to undetectable levels. Finally, we have demonstrated for a full length Cab-E promoter conferring high levels of photoregulated expression, that sequences proximal to the Cab-E TATA box are not replaceable by corresponding sequences from a 'nos' promoter. This contrasts with the apparent equivalence of these Cab-E and 'nos' TATA box-proximal sequences in truncated promoters conferring low levels of photoregulated expression. Images PMID:2901343

  14. Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis.

    Science.gov (United States)

    Suzuki, Masaharu; Ketterling, Matthew G; McCarty, Donald R

    2005-09-01

    We have developed a simple quantitative computational approach for objective analysis of cis-regulatory sequences in promoters of coregulated genes. The program, designated MotifFinder, identifies oligo sequences that are overrepresented in promoters of coregulated genes. We used this approach to analyze promoter sequences of Viviparous1 (VP1)/abscisic acid (ABA)-regulated genes and cold-regulated genes, respectively, of Arabidopsis (Arabidopsis thaliana). We detected significantly enriched sequences in up-regulated genes but not in down-regulated genes. This result suggests that gene activation but not repression is mediated by specific and common sequence elements in promoters. The enriched motifs include several known cis-regulatory sequences as well as previously unidentified motifs. With respect to known cis-elements, we dissected the flanking nucleotides of the core sequences of Sph element, ABA response elements (ABREs), and the C repeat/dehydration-responsive element. This analysis identified the motif variants that may correlate with qualitative and quantitative differences in gene expression. While both VP1 and cold responses are mediated in part by ABA signaling via ABREs, these responses correlate with unique ABRE variants distinguished by nucleotides flanking the ACGT core. ABRE and Sph motifs are tightly associated uniquely in the coregulated set of genes showing a strict dependence on VP1 and ABA signaling. Finally, analysis of distribution of the enriched sequences revealed a striking concentration of enriched motifs in a proximal 200-base region of VP1/ABA and cold-regulated promoters. Overall, each class of coregulated genes possesses a discrete set of the enriched motifs with unique distributions in their promoters that may account for the specificity of gene regulation.

  15. Distinct cis regulatory elements govern the expression of TAG1 in embryonic sensory ganglia and spinal cord.

    Directory of Open Access Journals (Sweden)

    Yoav Hadas

    Full Text Available Cell fate commitment of spinal progenitor neurons is initiated by long-range, midline-derived, morphogens that regulate an array of transcription factors that, in turn, act sequentially or in parallel to control neuronal differentiation. Included among these are transcription factors that regulate the expression of receptors for guidance cues, thereby determining axonal trajectories. The Ig/FNIII superfamily molecules TAG1/Axonin1/CNTN2 (TAG1 and Neurofascin (Nfasc are co-expressed in numerous neuronal cell types in the CNS and PNS - for example motor, DRG and interneurons - both promote neurite outgrowth and both are required for the architecture and function of nodes of Ranvier. The genes encoding TAG1 and Nfasc are adjacent in the genome, an arrangement which is evolutionarily conserved. To study the transcriptional network that governs TAG1 and Nfasc expression in spinal motor and commissural neurons, we set out to identify cis elements that regulate their expression. Two evolutionarily conserved DNA modules, one located between the Nfasc and TAG1 genes and the second directly 5' to the first exon and encompassing the first intron of TAG1, were identified that direct complementary expression to the CNS and PNS, respectively, of the embryonic hindbrain and spinal cord. Sequential deletions and point mutations of the CNS enhancer element revealed a 130bp element containing three conserved E-boxes required for motor neuron expression. In combination, these two elements appear to recapitulate a major part of the pattern of TAG1 expression in the embryonic nervous system.

  16. A New Approach to Sequence Analysis Exemplified by Identification of cis-Elements in Abscisic Acid Inducible Promoters

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Hallin, Peter Fischer; Salomon, Jesper

    -regulatory elements. We have developed a method for identifying short, conserved motifs in biological sequences such as proteins, DNA and RNA5. This method was used for analysis of approximately 2000 Arabidopsis thaliana promoters that have been shown by DNA array analysis to be induced by abscisic acid6....... These promoters were compared to 28000 promoters that are not induced by abscisic acid. The analysis identified previously described ABA-inducible promoter elements such as ABRE, CE3 and CRT1 but also new cis-elements were found. Furthermore, the list of DNA elements could be used to predict ABA...

  17. Cis-regulatory control of the nuclear receptor Coup-TF gene in the sea urchin Paracentrotus lividus embryo.

    Directory of Open Access Journals (Sweden)

    Lamprini G Kalampoki

    Full Text Available Coup-TF, an orphan member of the nuclear receptor super family, has a fundamental role in the development of metazoan embryos. The study of the gene's regulatory circuit in the sea urchin embryo will facilitate the placement of this transcription factor in the well-studied embryonic Gene Regulatory Network (GRN. The Paracentrotus lividus Coup-TF gene (PlCoup-TF is expressed throughout embryonic development preferentially in the oral ectoderm of the gastrula and the ciliary band of the pluteus stage. Two overlapping λ genomic clones, containing three exons and upstream sequences of PlCoup-TF, were isolated from a genomic library. The transcription initiation site was determined and 5' deletions and individual segments of a 1930 bp upstream region were placed ahead of a GFP reporter cassette and injected into fertilized P.lividus eggs. Module a (-532 to -232, was necessary and sufficient to confer ciliary band expression to the reporter. Comparison of P.lividus and Strongylocentrotus purpuratus upstream Coup-TF sequences, revealed considerable conservation, but none within module a. 5' and internal deletions into module a, defined a smaller region that confers ciliary band specific expression. Putative regulatory cis-acting elements (RE1, RE2 and RE3 within module a, were specifically bound by proteins in sea urchin embryonic nuclear extracts. Site-specific mutagenesis of these elements resulted in loss of reporter activity (RE1 or ectopic expression (RE2, RE3. It is proposed that sea urchin transcription factors, which bind these three regulatory sites, are necessary for spatial and quantitative regulation of the PlCoup-TF gene at pluteus stage sea urchin embryos. These findings lead to the future identification of these factors and to the hierarchical positioning of PlCoup-TF within the embryonic GRN.

  18. Genetic mapping uncovers cis-regulatory landscape of RNA editing.

    Science.gov (United States)

    Ramaswami, Gokul; Deng, Patricia; Zhang, Rui; Anna Carbone, Mary; Mackay, Trudy F C; Li, Jin Billy

    2015-09-16

    Adenosine-to-inosine (A-to-I) RNA editing, catalysed by ADAR enzymes conserved in metazoans, plays an important role in neurological functions. Although the fine-tuning mechanism provided by A-to-I RNA editing is important, the underlying rules governing ADAR substrate recognition are not well understood. We apply a quantitative trait loci (QTL) mapping approach to identify genetic variants associated with variability in RNA editing. With very accurate measurement of RNA editing levels at 789 sites in 131 Drosophila melanogaster strains, here we identify 545 editing QTLs (edQTLs) associated with differences in RNA editing. We demonstrate that many edQTLs can act through changes in the local secondary structure for edited dsRNAs. Furthermore, we find that edQTLs located outside of the edited dsRNA duplex are enriched in secondary structure, suggesting that distal dsRNA structure beyond the editing site duplex affects RNA editing efficiency. Our work will facilitate the understanding of the cis-regulatory code of RNA editing.

  19. A cis-regulatory sequence driving metabolic insecticide resistance in mosquitoes: functional characterisation and signatures of selection.

    Science.gov (United States)

    Wilding, Craig S; Smith, Ian; Lynd, Amy; Yawson, Alexander Egyir; Weetman, David; Paine, Mark J I; Donnelly, Martin J

    2012-09-01

    Although cytochrome P450 (CYP450) enzymes are frequently up-regulated in mosquitoes resistant to insecticides, no regulatory motifs driving these expression differences with relevance to wild populations have been identified. Transposable elements (TEs) are often enriched upstream of those CYP450s involved in insecticide resistance, leading to the assumption that they contribute regulatory motifs that directly underlie the resistance phenotype. A partial CuRE1 (Culex Repetitive Element 1) transposable element is found directly upstream of CYP9M10, a cytochrome P450 implicated previously in larval resistance to permethrin in the ISOP450 strain of Culex quinquefasciatus, but is absent from the equivalent genomic region of a susceptible strain. Via expression of CYP9M10 in Escherichia coli we have now demonstrated time- and NADPH-dependant permethrin metabolism, prerequisites for confirmation of a role in metabolic resistance, and through qPCR shown that CYP9M10 is >20-fold over-expressed in ISOP450 compared to a susceptible strain. In a fluorescent reporter assay the region upstream of CYP9M10 from ISOP450 drove 10× expression compared to the equivalent region (lacking CuRE1) from the susceptible strain. Close correspondence with the gene expression fold-change implicates the upstream region including CuRE1 as a cis-regulatory element involved in resistance. Only a single CuRE1 bearing allele, identical to the CuRE1 bearing allele in the resistant strain, is found throughout Sub-Saharan Africa, in contrast to the diversity encountered in non-CuRE1 alleles. This suggests a single origin and subsequent spread due to selective advantage. CuRE1 is detectable using a simple diagnostic. When applied to C. quinquefasciatus larvae from Ghana we have demonstrated a significant association with permethrin resistance in multiple field sites (mean Odds Ratio = 3.86) suggesting this marker has relevance to natural populations of vector mosquitoes. However, when CuRE1 was excised

  20. Expression of the central growth regulator BIG BROTHER is regulated by multiple cis-elements

    Directory of Open Access Journals (Sweden)

    Breuninger Holger

    2012-03-01

    Full Text Available Abstract Background Much of the organismal variation we observe in nature is due to differences in organ size. The observation that even closely related species can show large, stably inherited differences in organ size indicates a strong genetic component to the control of organ size. Despite recent progress in identifying factors controlling organ growth in plants, our overall understanding of this process remains limited, partly because the individual factors have not yet been connected into larger regulatory pathways or networks. To begin addressing this aim, we have studied the upstream regulation of expression of BIG BROTHER (BB, a central growth-control gene in Arabidopsis thaliana that prevents overgrowth of organs. Final organ size and BB expression levels are tightly correlated, implying the need for precise control of its expression. BB expression mirrors proliferative activity, yet the gene functions to limit proliferation, suggesting that it acts in an incoherent feedforward loop downstream of growth activators to prevent over-proliferation. Results To investigate the upstream regulation of BB we combined a promoter deletion analysis with a phylogenetic footprinting approach. We were able to narrow down important, highly conserved, cis-regulatory elements within the BB promoter. Promoter sequences of other Brassicaceae species were able to partially complement the A. thaliana bb-1 mutant, suggesting that at least within the Brassicaceae family the regulatory pathways are conserved. Conclusions This work underlines the complexity involved in precise quantitative control of gene expression and lays the foundation for identifying important upstream regulators that determine BB expression levels and thus final organ size.

  1. Murine homeobox-containing gene, Msx-1: analysis of genomic organization, promoter structure, and potential autoregulatory cis-acting elements.

    Science.gov (United States)

    Kuzuoka, M; Takahashi, T; Guron, C; Raghow, R

    1994-05-01

    Detailed molecular organization of the coding and upstream regulatory regions of the murine homeodomain-containing gene, Msx-1, is reported. The protein-encoding portion of the gene is contained in two exons, 590 and 1214 bp in length, separated by a 2107-bp intron; the homeodomain is located in the second exon. The two-exon organization of the murine Msx-1 gene resembles a number of other homeodomain-containing genes. The 5'-(GTAAGT) and 3'-(CCCTAG) splicing junctions and the mRNA polyadenylation signal (UAUAA) of the murine Msx-1 gene are also characteristic of other vertebrate genes. By nuclease protection and primer extension assays, the start of transcription of the Msx-1 gene was located 256 bp upstream of the first AUG. Computer analysis of the promoter proximal 1280-bp sequence revealed a number of potentially important cis-regulatory sequences; these include the recognition elements for Ap-1, Ap-2, Ap-3, Sp-1, a possible binding site for RAR:RXR, and a number of TCF-1 consensus motifs. Importantly, a perfect reverse complement of (C/G)TTAATTG, which was recently shown to be an optimal binding sequence for the homeodomain of Msx-1 protein (K.M. Catron, N. Iler, and C. Abate (1993) Mol. Cell. Biol. 13:2354-2365), was also located in the murine Msx-1 promoter. Binding of bacterially expressed Msx-1 homeodomain polypeptide to Msx-1-specific oligonucleotide was experimentally demonstrated, raising a distinct possibility of autoregulation of this developmentally regulated gene.

  2. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus.

    Science.gov (United States)

    Chen, Zhi Chang; Yokosho, Kengo; Kashino, Miho; Zhao, Fang-Jie; Yamaji, Naoki; Ma, Jian Feng

    2013-10-01

    Yorkshire fog (Holcus lanatus), which belongs to the Poaceae family and is a close relative of the agronomic crop oat (Avena sativa), is a widely adaptable grass species that is able to grow on highly acidic soils with high levels of Al, but the mechanism underlying the high Al tolerance is unknown. Here, we characterized two accessions of H. lanatus collected from an acid plot (soil pH 3.6, HL-A) and a neutral plot (pH 7.1, HL-N) in terms of Al tolerance, organic acid anion secretion and related gene expression. In response to Al (pH 4.5), the HL-A roots secreted approximately twice as much malate as the HL-N roots, but there was no difference in citrate secretion. Cloning of the gene HlALMT1 responsible for malate secretion showed that the encoded amino acid sequence did not differ between two accessions, but the expression level in the outer cell layers of the HL-A roots was twice as high as in the HL-N roots. This difference was not due to the genomic copy number, but was due to the number of cis-acting elements for an Al-responsive transcription factor (HlART1) in the promoter region of HlALMT1, as demonstrated by both a yeast one-hybrid assay and a transient assay in tobacco protoplasts. Furthermore, introduction of HlALMT1 driven by the HL-A promoter into rice resulted in significantly more Al-induced malate secretion than introduction of HlALMT1 driven by the HL-N promoter. These findings indicate that the adaptation of H. lanatus to acidic soils may be achieved by increasing number of cis-acting elements for ART1 in the promoter region of the HlALMT1 gene, enhancing the expression of HlALMT1 and the secretion of malate. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  3. Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S.).

    Science.gov (United States)

    Yin, Tao; Wu, Hanying; Zhang, Shanglong; Lu, Hongyu; Zhang, Lingxiao; Xu, Yong; Chen, Daming; Liu, Jingmei

    2009-01-01

    A 1.8 kb 5'-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from -986 to -959 and from -472 to -424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative beta-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were approximately 10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves.

  4. Characterization of cis-Acting RNA Elements of Zika Virus by Using a Self-Splicing Ribozyme-Dependent Infectious Clone.

    Science.gov (United States)

    Liu, Zhong-Yu; Yu, Jiu-Yang; Huang, Xing-Yao; Fan, Hang; Li, Xiao-Feng; Deng, Yong-Qiang; Ji, Xue; Cheng, Meng-Li; Ye, Qing; Zhao, Hui; Han, Jian-Feng; An, Xiao-Ping; Jiang, Tao; Zhang, Bo; Tong, Yi-Gang; Qin, Cheng-Feng

    2017-11-01

    Zika virus (ZIKV) has caused significant outbreaks and epidemics in the Americas recently, raising global concern due to its ability to cause microcephaly and other neurological complications. A stable and efficient infectious clone of ZIKV is urgently needed. However, the instability and toxicity of flavivirus cDNA clones in Escherichia coli hosts has hindered the development of ZIKV infectious clones. Here, using a novel self-splicing ribozyme-based strategy, we generated a stable infectious cDNA clone of a contemporary ZIKV strain imported from Venezuela to China in 2016. The constructed clone contained a modified version of the group II self-splicing intron P.li.LSUI2 near the junction between the E and NS1 genes, which were removed from the RNA transcripts by an easy-to-establish in vitro splicing reaction. Transfection of the spliced RNAs into BHK-21 cells led to the production of infectious progeny virus that resembled the parental virus. Finally, potential cis -acting RNA elements in ZIKV genomic RNA were identified based on this novel reverse genetics system, and the critical role of 5'-SLA promoter and 5'-3' cyclization sequences were characterized by a combination of different assays. Our results provide another stable and reliable reverse genetics system for ZIKV that will help study ZIKV infection and pathogenesis, and the novel self-splicing intron-based strategy could be further expanded for the construction of infectious clones from other emerging and reemerging flaviviruses. IMPORTANCE The ongoing Zika virus (ZIKV) outbreaks have drawn global concern due to the unexpected causal link to fetus microcephaly and other severe neurological complications. The infectious cDNA clones of ZIKV are critical for the research community to study the virus, understand the disease, and inform vaccine design and antiviral screening. A panel of existing technologies have been utilized to develop ZIKV infectious clones. Here, we successfully generated a stable

  5. Dissection of cis-regulatory element architecture of the rice oleosin gene promoters to assess abscisic acid responsiveness in suspension-cultured rice cells.

    Science.gov (United States)

    Kim, Sol; Lee, Soo-Bin; Han, Chae-Seong; Lim, Mi-Na; Lee, Sung-Eun; Yoon, In Sun; Hwang, Yong-Sic

    2017-08-01

    Oleosins are the most abundant proteins in the monolipid layer surrounding neutral storage lipids that form oil bodies in plants. Several lines of evidence indicate that they are physiologically important for the maintenance of oil body structure and for mobilization of the lipids stored inside. Rice has six oleosin genes in its genome, the expression of all of which was found to be responsive to abscisic acid (ABA) in our examination of mature embryo and aleurone tissues. The 5'-flanking region of OsOle5 was initially characterized for its responsiveness to ABA through a transient expression assay system using the protoplasts from suspension-cultured rice cells. A series of successive deletions and site-directed mutations identified five regions critical for the hormonal induction of its promoter activity. A search for cis-acting elements in these regions deposited in a public database revealed that they contain various promoter elements previously reported to be involved in the ABA response of various genes. A gain-of-function experiment indicated that multiple copies of all five regions were sufficient to provide the minimal promoter with a distinct ABA responsiveness. Comparative sequence analysis of the short, but still ABA-responsive, promoters of OsOle genes revealed no common modular architecture shared by them, indicating that various distinct promoter elements and independent trans-acting factors are involved in the ABA responsiveness of rice oleosin multigenes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. A minimal murine Msx-1 gene promoter. Organization of its cis-regulatory motifs and their role in transcriptional activation in cells in culture and in transgenic mice.

    Science.gov (United States)

    Takahashi, T; Guron, C; Shetty, S; Matsui, H; Raghow, R

    1997-09-05

    To dissect the cis-regulatory elements of the murine Msx-1 promoter, which lacks a conventional TATA element, a putative Msx-1 promoter DNA fragment (from -1282 to +106 base pairs (bp)) or its congeners containing site-specific alterations were fused to luciferase reporter and introduced into NIH3T3 and C2C12 cells, and the expression of luciferase was assessed in transient expression assays. The functional consequences of the sequential 5' deletions of the promotor revealed that multiple positive and negative regulatory elements participate in regulating transcription of the Msx-1 gene. Surprisingly, however, the optimal expression of Msx-1 promoter in either NIH3T3 or C2C12 cells required only 165 bp of the upstream sequence to warrant detailed examination of its structure. Therefore, the functional consequences of site-specific deletions and point mutations of the cis-acting elements of the minimal Msx-1 promoter were systematically examined. Concomitantly, potential transcriptional factor(s) interacting with the cis-acting elements of the minimal promoter were also studied by gel electrophoretic mobility shift assays and DNase I footprinting. Combined analyses of the minimal promoter by DNase I footprinting, electrophoretic mobility shift assays, and super shift assays with specific antibodies revealed that 5'-flanking regions from -161 to -154 and from -26 to -13 of the Msx-1 promoter contains an authentic E box (proximal E box), capable of binding a protein immunologically related to the upstream stimulating factor 1 (USF-1) and a GC-rich sequence motif which can bind to Sp1 (proximal Sp1), respectively. Additionally, we observed that the promoter activation was seriously hampered if the proximal E box was removed or mutated, and the promoter activity was eliminated completely if the proximal Sp1 site was similarly altered. Absolute dependence of the Msx-1 minimal promoter on Sp1 could be demonstrated by transient expression assays in the Sp1-deficient

  7. PAA, WSH, and CIS Overview Self-Study #47656

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Rachel Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-14

    This course presents an overview of the Department of Energy’s (DOE’s) regulatory requirements relevant to the Price-Anderson Amendments Act (PAAA, also referred to as nuclear safety), worker safety and health (WSH), and classified information security (CIS) that are enforceable under the DOE enforcement program; describes the DOE enforcement process; and provides an overview of Los Alamos National Laboratory’s (LANL’s) internal compliance program relative to these DOE regulatory requirements. The LANL PAAA Program is responsible for maintaining LANL’s internal compliance program, which ensures the prompt identification, screening, and reporting of noncompliances to DOE regulatory requirements pertaining to nuclear safety, WSH, and CIS to build the strongest mitigation position for the Laboratory with respect to civil or other penalties.

  8. Coevolution within a transcriptional network by compensatory trans and cis mutations

    KAUST Repository

    Kuo, D.

    2010-10-26

    Transcriptional networks have been shown to evolve very rapidly, prompting questions as to how such changes arise and are tolerated. Recent comparisons of transcriptional networks across species have implicated variations in the cis-acting DNA sequences near genes as the main cause of divergence. What is less clear is how these changes interact with trans-acting changes occurring elsewhere in the genetic circuit. Here, we report the discovery of a system of compensatory trans and cis mutations in the yeast AP-1 transcriptional network that allows for conserved transcriptional regulation despite continued genetic change. We pinpoint a single species, the fungal pathogen Candida glabrata, in which a trans mutation has occurred very recently in a single AP-1 family member, distinguishing it from its Saccharomyces ortholog. Comparison of chromatin immunoprecipitation profiles between Candida and Saccharomyces shows that, despite their different DNA-binding domains, the AP-1 orthologs regulate a conserved block of genes. This conservation is enabled by concomitant changes in the cis-regulatory motifs upstream of each gene. Thus, both trans and cis mutations have perturbed the yeast AP-1 regulatory system in such a way as to compensate for one another. This demonstrates an example of “coevolution” between a DNA-binding transcription factor and its cis-regulatory site, reminiscent of the coevolution of protein binding partners.

  9. Cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1.

    Science.gov (United States)

    Darlix, J L; Gabus, C; Nugeyre, M T; Clavel, F; Barré-Sinoussi, F

    1990-12-05

    The retroviral genome consists of two identical RNA molecules joined at their 5' ends by the Dimer Linkage Structure (DLS). To study the mechanism of dimerization and the DLS of HIV-1 RNA, large amounts of bona fide HIV-1 RNA and of mutants have been synthesized in vitro. We report that HIV-1 RNA forms dimeric molecules and that viral nucleocapsid (NC) protein NCp15 greatly activates dimerization. Deletion mutagenesis in the RNA 5' 1333 nucleotides indicated that a small domain of 100 nucleotides, located between positions 311 to 415 from the 5' end, is necessary and sufficient to promote HIV-1 RNA dimerization. This dimerization domain encompasses an encapsidation element located between the 5' splice donor site and initiator AUG of gag and shows little sequence variations in different strains of HIV-1. Furthermore, cross-linking analysis of the interactions between NC and HIV-1 RNA (311 to 415) locates a major contact site in the encapsidation element of HIV-1 RNA. The genomic RNA dimer is tightly associated with nucleocapsid protein molecules in avian and murine retroviruses, and this ribonucleoprotein structure is believed to be the template for reverse transcription. Genomic RNA-protein interactions have been analyzed in human immunodeficiency virus (HIV) virions and results showed that NC protein molecules are tightly bound to the genomic RNA dimer. Since retroviral RNA dimerization and packaging appear to be under the control of the same cis element, the encapsidation sequences, and trans-acting factor, the NC protein, they are probably related events in the course of virion assembly.

  10. Identification of choriogenin cis-regulatory elements and production of estrogen-inducible, liver-specific transgenic Medaka.

    Science.gov (United States)

    Ueno, Tetsuro; Yasumasu, Shigeki; Hayashi, Shinji; Iuchi, Ichiro

    2004-07-01

    Choriogenins (chg-H, chg-L) are precursor proteins of egg envelope of medaka and synthesized in the spawning female liver in response to estrogen. We linked a gene construct chg-L1.5 kb/GFP (a 1.5 kb 5'-upstream region of the chg-L gene fused with a green fluorescence protein (GFP) gene) to another construct emgb/RFP (a cis-regulatory region of embryonic globin gene fused with an RFP gene), injected the double fusion gene construct into 1- or 2-cell-stage embryos, and selected embryos expressing the RFP in erythroid cells. From the embryos, we established two lines of chg-L1.5 kb/GFP-emgb/RFP-transgenic medaka. The 3-month-old spawning females and estradiol-17beta (E2)-exposed males displayed the liver-specific GFP expression. The E2-dependent GFP expression was detected in the differentiating liver of the stage 37-38 embryos. In addition, RT-PCR and whole-mount in situ hybridization showed that the E2-dependent chg expression was found in the liver of the stage 34 embryos of wild medaka, suggesting that such E2-dependency is achieved shortly after differentiation of the liver. Analysis using serial deletion mutants fused with GFP showed that the region -426 to -284 of the chg-L gene or the region -364 to -265 of the chg-H gene had the ability to promote the E2-dependent liver-specific GFP expression of its downstream gene. Further analyses suggested that an estrogen response element (ERE) at -309, an ERE half-site at -330 and a binding site for C/EBP at -363 of the chg-L gene played important roles in its downstream chg-L gene expression. In addition, this transgenic medaka may be useful as one of the test animals for detecting environmental estrogenic steroids.

  11. Combinatorial Cis-regulation in Saccharomyces Species

    Directory of Open Access Journals (Sweden)

    Aaron T. Spivak

    2016-03-01

    Full Text Available Transcriptional control of gene expression requires interactions between the cis-regulatory elements (CREs controlling gene promoters. We developed a sensitive computational method to identify CRE combinations with conserved spacing that does not require genome alignments. When applied to seven sensu stricto and sensu lato Saccharomyces species, 80% of the predicted interactions displayed some evidence of combinatorial transcriptional behavior in several existing datasets including: (1 chromatin immunoprecipitation data for colocalization of transcription factors, (2 gene expression data for coexpression of predicted regulatory targets, and (3 gene ontology databases for common pathway membership of predicted regulatory targets. We tested several predicted CRE interactions with chromatin immunoprecipitation experiments in a wild-type strain and strains in which a predicted cofactor was deleted. Our experiments confirmed that transcription factor (TF occupancy at the promoters of the CRE combination target genes depends on the predicted cofactor while occupancy of other promoters is independent of the predicted cofactor. Our method has the additional advantage of identifying regulatory differences between species. By analyzing the S. cerevisiae and S. bayanus genomes, we identified differences in combinatorial cis-regulation between the species and showed that the predicted changes in gene regulation explain several of the species-specific differences seen in gene expression datasets. In some instances, the same CRE combinations appear to regulate genes involved in distinct biological processes in the two different species. The results of this research demonstrate that (1 combinatorial cis-regulation can be inferred by multi-genome analysis and (2 combinatorial cis-regulation can explain differences in gene expression between species.

  12. Ultraviolet B (UVB) induction of the c-fos promoter is mediated by phospho-cAMP response element binding protein (CREB) binding to CRE and c-fos activator protein 1 site (FAP1) cis elements.

    Science.gov (United States)

    Gonzales, Melissa; Bowden, G Tim

    2002-06-26

    The ultraviolet B (UVB) portion (280-320 nm) of the ultraviolet spectrum has been shown to contribute to the development of non-melanoma skin cancer in humans. Research in the human keratinocyte cell line, HaCaT, revealed that UVB irradiation caused the upregulation of the transcription factor activator protein-1 (AP-1). The AP-1 complex formed in UVB-irradiated HaCaT cells is specifically composed of c-fos and Jun D. c-Fos expression was induced in a manner that correlated with the UVB-induced activation of AP-1. To investigate how c-fos expression is regulated by UVB irradiation, the role of each of four cis elements within the c-fos promoter was evaluated. Clustered point mutations at the sis inducible element (SIE), serum response element (SRE), c-fos AP-1 site (FAP1), or cyclic AMP response elements (CRE) significantly inhibited UVB induction of the c-fos promoter. This indicated that all four cis elements are required for maximum promoter activity. The CRE and FAP1 elements were the two most active cis elements that mediate the UVB transactivation of c-fos. Homodimers of phosphorylated cAMP response element binding protein (CREB) were induced by UVB irradiation to bind to each of these elements. Therefore, CREB may function as an important regulatory protein in the UVB-induced expression of c-fos.

  13. Conserved cis-regulatory regions in a large genomic landscape control SHH and BMP-regulated Gremlin1 expression in mouse limb buds

    Directory of Open Access Journals (Sweden)

    Zuniga Aimée

    2012-08-01

    Full Text Available Abstract Background Mouse limb bud is a prime model to study the regulatory interactions that control vertebrate organogenesis. Major aspects of limb bud development are controlled by feedback loops that define a self-regulatory signalling system. The SHH/GREM1/AER-FGF feedback loop forms the core of this signalling system that operates between the posterior mesenchymal organiser and the ectodermal signalling centre. The BMP antagonist Gremlin1 (GREM1 is a critical node in this system, whose dynamic expression is controlled by BMP, SHH, and FGF signalling and key to normal progression of limb bud development. Previous analysis identified a distant cis-regulatory landscape within the neighbouring Formin1 (Fmn1 locus that is required for Grem1 expression, reminiscent of the genomic landscapes controlling HoxD and Shh expression in limb buds. Results Three highly conserved regions (HMCO1-3 were identified within the previously defined critical genomic region and tested for their ability to regulate Grem1 expression in mouse limb buds. Using a combination of BAC and conventional transgenic approaches, a 9 kb region located ~70 kb downstream of the Grem1 transcription unit was identified. This region, termed Grem1 Regulatory Sequence 1 (GRS1, is able to recapitulate major aspects of Grem1 expression, as it drives expression of a LacZ reporter into the posterior and, to a lesser extent, in the distal-anterior mesenchyme. Crossing the GRS1 transgene into embryos with alterations in the SHH and BMP pathways established that GRS1 depends on SHH and is modulated by BMP signalling, i.e. integrates inputs from these pathways. Chromatin immunoprecipitation revealed interaction of endogenous GLI3 proteins with the core cis-regulatory elements in the GRS1 region. As GLI3 is a mediator of SHH signal transduction, these results indicated that SHH directly controls Grem1 expression through the GRS1 region. Finally, all cis-regulatory regions within the Grem1

  14. Isolation of Persicaria minor sesquiterpene synthase promoter and its deletions for transgenic Arabidopsis thaliana

    Science.gov (United States)

    Omar, Aimi Farehah; Ismail, Ismanizan

    2016-11-01

    Sesquiterpene synthase (SS) catalyzes the formation of sesquiterpenes from farnesyl diphosphate (FDP) via carbocation intermediates. In this study, the promoter region of sesquiterpene synthase was isolated from Persicaria minor to identify possible cis-acting elements in the promoter. The full-length PmSS promoter of P. minor is 1824-bp sequences. The sequence was analyzed and several putative cis-acting regulatory elements were identified. Three cis-acting regulatory elements were selected for deletion analysis which are cis-acting element involved in wound responsiveness (WUN), cis - acting element involved in defense and stress responsiveness (TC) and cis-acting element involved in ABA responsiveness (ABRE). Series of deletions were conducted to assess the promoter activity producing three truncated fragments promoter; Prom 2 1606-bp, Prom 3 1144- bp, and Prom 4 921-bp. The full-length promoter and its deletion series were cloned into the pBGWFS7 vector which contain β-glucuronidase (GUS) gene and green fluorescent protein (GFP) as the reporter gene. All constructs were successfully transformed into Arabidopsis thaliana based on PCR of positive BASTA resistance plants.

  15. Plasticity of the cis-regulatory input function of a gene.

    Directory of Open Access Journals (Sweden)

    Avraham E Mayo

    2006-04-01

    Full Text Available The transcription rate of a gene is often controlled by several regulators that bind specific sites in the gene's cis-regulatory region. The combined effect of these regulators is described by a cis-regulatory input function. What determines the form of an input function, and how variable is it with respect to mutations? To address this, we employ the well-characterized lac operon of Escherichia coli, which has an elaborate input function, intermediate between Boolean AND-gate and OR-gate logic. We mapped in detail the input function of 12 variants of the lac promoter, each with different point mutations in the regulator binding sites, by means of accurate expression measurements from living cells. We find that even a few mutations can significantly change the input function, resulting in functions that resemble Pure AND gates, OR gates, or single-input switches. Other types of gates were not found. The variant input functions can be described in a unified manner by a mathematical model. The model also lets us predict which functions cannot be reached by point mutations. The input function that we studied thus appears to be plastic, in the sense that many of the mutations do not ruin the regulation completely but rather result in new ways to integrate the inputs.

  16. Generation of an efficient artificial promoter of bovine skeletal muscle α-actin gene (ACTA1) through addition of cis-acting element.

    Science.gov (United States)

    Hu, Qian; Tong, Huili; Zhao, Dandan; Cao, Yunkao; Zhang, Weiwei; Chang, Shuwei; Yang, Yu; Yan, Yunqin

    2015-03-01

    The promoter of skeletal muscle α-actin gene (ACTA1) is highly muscle specific. The core of the bovine ACTA1 promoter extends from +29 to -233, about 262 base pairs (bp), which is sufficient to activate transcription in bovine muscle satellite cells. In this study, analysis by PCR site-specific mutagenesis showed that the cis-acting element SRE (serum response element binding factor) was processed as a transcriptional activator. In order to enhance the bovine ACTA1 promoter's activity, we used a strategy to modify it. We cloned a fragment containing three SREs from the promoter of ACTA1, and then one or two clones were linked upstream of the core promoter (262 bp) of ACTA1. One and two clones increased the activity of the ACTA1 promoter 3-fold and 10-fold, respectively, and maintained muscle tissue specificity. The modified promoter with two clones could increase the level of ACTA1 mRNA and protein 4-fold and 1.1-fold, respectively. Immunofluorescence results showed that green fluorescence of ACTA1 increased. Additionally, the number of total muscle microfilaments increased. These genetically engineered promoters might be useful for regulating gene expression in muscle cells and improving muscle mass in livestock.

  17. A New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Haitao Guo

    2017-01-01

    Full Text Available The discovery of cis-regulatory modules (CRMs is the key to understanding mechanisms of transcription regulation. Since CRMs have specific regulatory structures that are the basis for the regulation of gene expression, how to model the regulatory structure of CRMs has a considerable impact on the performance of CRM identification. The paper proposes a CRM discovery algorithm called ComSPS. ComSPS builds a regulatory structure model of CRMs based on HMM by exploring the rules of CRM transcriptional grammar that governs the internal motif site arrangement of CRMs. We test ComSPS on three benchmark datasets and compare it with five existing methods. Experimental results show that ComSPS performs better than them.

  18. A New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model

    Science.gov (United States)

    2017-01-01

    The discovery of cis-regulatory modules (CRMs) is the key to understanding mechanisms of transcription regulation. Since CRMs have specific regulatory structures that are the basis for the regulation of gene expression, how to model the regulatory structure of CRMs has a considerable impact on the performance of CRM identification. The paper proposes a CRM discovery algorithm called ComSPS. ComSPS builds a regulatory structure model of CRMs based on HMM by exploring the rules of CRM transcriptional grammar that governs the internal motif site arrangement of CRMs. We test ComSPS on three benchmark datasets and compare it with five existing methods. Experimental results show that ComSPS performs better than them. PMID:28497059

  19. MYC cis-Elements in PsMPT Promoter Is Involved in Chilling Response of Paeonia suffruticosa.

    Directory of Open Access Journals (Sweden)

    Yuxi Zhang

    Full Text Available The MPT transports Pi to synthesize ATP. PsMPT, a chilling-induced gene, was previously reported to promote energy metabolism during bud dormancy release in tree peony. In this study, the regulatory elements of PsMPT promoter involved in chilling response were further analyzed. The PsMPT transcript was detected in different tree peony tissues and was highly expressed in the flower organs, including petal, stigma and stamen. An 1174 bp of the PsMPT promoter was isolated by TAIL-PCR, and the PsMPT promoter::GUS transgenic Arabidopsis was generated and analyzed. GUS staining and qPCR showed that the promoter was active in mainly the flower stigma and stamen. Moreover, it was found that the promoter activity was enhanced by chilling, NaCl, GA, ACC and NAA, but inhibited by ABA, mannitol and PEG. In transgenic plants harboring 421 bp of the PsMPT promoter, the GUS gene expression and the activity were significantly increased by chilling treatment. When the fragment from -421 to -408 containing a MYC cis-element was deleted, the chilling response could not be observed. Further mutation analysis confirmed that the MYC element was one of the key motifs responding to chilling in the PsMPT promoter. The present study provides useful information for further investigation of the regulatory mechanism of PsMPT during the endo-dormancy release.

  20. A method of predicting changes in human gene splicing induced by genetic variants in context of cis-acting elements

    Directory of Open Access Journals (Sweden)

    Hicks Chindo

    2010-01-01

    Full Text Available Abstract Background Polymorphic variants and mutations disrupting canonical splicing isoforms are among the leading causes of human hereditary disorders. While there is a substantial evidence of aberrant splicing causing Mendelian diseases, the implication of such events in multi-genic disorders is yet to be well understood. We have developed a new tool (SpliceScan II for predicting the effects of genetic variants on splicing and cis-regulatory elements. The novel Bayesian non-canonical 5'GC splice site (SS sensor used in our tool allows inference on non-canonical exons. Results Our tool performed favorably when compared with the existing methods in the context of genes linked to the Autism Spectrum Disorder (ASD. SpliceScan II was able to predict more aberrant splicing isoforms triggered by the mutations, as documented in DBASS5 and DBASS3 aberrant splicing databases, than other existing methods. Detrimental effects behind some of the polymorphic variations previously associated with Alzheimer's and breast cancer could be explained by changes in predicted splicing patterns. Conclusions We have developed SpliceScan II, an effective and sensitive tool for predicting the detrimental effects of genomic variants on splicing leading to Mendelian and complex hereditary disorders. The method could potentially be used to screen resequenced patient DNA to identify de novo mutations and polymorphic variants that could contribute to a genetic disorder.

  1. Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees

    Directory of Open Access Journals (Sweden)

    Chen Xiaoyu

    2007-12-01

    Full Text Available Abstract Background In vertebrates, a large part of gene transcriptional regulation is operated by cis-regulatory modules. These modules are believed to be regulating much of the tissue-specificity of gene expression. Results We develop a Bayesian network approach for identifying cis-regulatory modules likely to regulate tissue-specific expression. The network integrates predicted transcription factor binding site information, transcription factor expression data, and target gene expression data. At its core is a regression tree modeling the effect of combinations of transcription factors bound to a module. A new unsupervised EM-like algorithm is developed to learn the parameters of the network, including the regression tree structure. Conclusion Our approach is shown to accurately identify known human liver and erythroid-specific modules. When applied to the prediction of tissue-specific modules in 10 different tissues, the network predicts a number of important transcription factor combinations whose concerted binding is associated to specific expression.

  2. Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria.

    Science.gov (United States)

    Sun, Eric I; Leyn, Semen A; Kazanov, Marat D; Saier, Milton H; Novichkov, Pavel S; Rodionov, Dmitry A

    2013-09-02

    In silico comparative genomics approaches have been efficiently used for functional prediction and reconstruction of metabolic and regulatory networks. Riboswitches are metabolite-sensing structures often found in bacterial mRNA leaders controlling gene expression on transcriptional or translational levels.An increasing number of riboswitches and other cis-regulatory RNAs have been recently classified into numerous RNA families in the Rfam database. High conservation of these RNA motifs provides a unique advantage for their genomic identification and comparative analysis. A comparative genomics approach implemented in the RegPredict tool was used for reconstruction and functional annotation of regulons controlled by RNAs from 43 Rfam families in diverse taxonomic groups of Bacteria. The inferred regulons include ~5200 cis-regulatory RNAs and more than 12000 target genes in 255 microbial genomes. All predicted RNA-regulated genes were classified into specific and overall functional categories. Analysis of taxonomic distribution of these categories allowed us to establish major functional preferences for each analyzed cis-regulatory RNA motif family. Overall, most RNA motif regulons showed predictable functional content in accordance with their experimentally established effector ligands. Our results suggest that some RNA motifs (including thiamin pyrophosphate and cobalamin riboswitches that control the cofactor metabolism) are widespread and likely originated from the last common ancestor of all bacteria. However, many more analyzed RNA motifs are restricted to a narrow taxonomic group of bacteria and likely represent more recent evolutionary innovations. The reconstructed regulatory networks for major known RNA motifs substantially expand the existing knowledge of transcriptional regulation in bacteria. The inferred regulons can be used for genetic experiments, functional annotations of genes, metabolic reconstruction and evolutionary analysis. The obtained genome

  3. Patterns of cis regulatory variation in diverse human populations.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    Full Text Available The genetic basis of gene expression variation has long been studied with the aim to understand the landscape of regulatory variants, but also more recently to assist in the interpretation and elucidation of disease signals. To date, many studies have looked in specific tissues and population-based samples, but there has been limited assessment of the degree of inter-population variability in regulatory variation. We analyzed genome-wide gene expression in lymphoblastoid cell lines from a total of 726 individuals from 8 global populations from the HapMap3 project and correlated gene expression levels with HapMap3 SNPs located in cis to the genes. We describe the influence of ancestry on gene expression levels within and between these diverse human populations and uncover a non-negligible impact on global patterns of gene expression. We further dissect the specific functional pathways differentiated between populations. We also identify 5,691 expression quantitative trait loci (eQTLs after controlling for both non-genetic factors and population admixture and observe that half of the cis-eQTLs are replicated in one or more of the populations. We highlight patterns of eQTL-sharing between populations, which are partially determined by population genetic relatedness, and discover significant sharing of eQTL effects between Asians, European-admixed, and African subpopulations. Specifically, we observe that both the effect size and the direction of effect for eQTLs are highly conserved across populations. We observe an increasing proximity of eQTLs toward the transcription start site as sharing of eQTLs among populations increases, highlighting that variants close to TSS have stronger effects and therefore are more likely to be detected across a wider panel of populations. Together these results offer a unique picture and resource of the degree of differentiation among human populations in functional regulatory variation and provide an estimate for

  4. Identification of unique cis-element pattern on simulated microgravity treated Arabidopsis by in silico and gene expression

    Science.gov (United States)

    Soh, Hyuncheol; Choi, Yongsang; Lee, Taek-Kyun; Yeo, Up-Dong; Han, Kyeongsik; Auh, Chungkyun; Lee, Sukchan

    2012-08-01

    Arabidopsis gene expression microarray (44 K) was used to detect genes highly induced under simulated microgravity stress (SMS). Ten SMS-inducible genes were selected from the microarray data and these 10 genes were found to be abundantly expressed in 3-week-old plants. Nine out of the 10 SMS-inducible genes were also expressed in response to the three abiotic stresses of drought, touch, and wounding in 3-week-old Arabidopsis plants respectively. However, WRKY46 was elevated only in response to SMS. Six other WRKY genes did not respond to SMS. To clarify the characteristics of the genes expressed at high levels in response to SMS, 20 cis-elements in the promoters of the 40 selected genes including the 10 SMS-inducible genes, the 6 WRKY genes, and abiotic stress-inducible genes were analyzed and their spatial positions on each promoter were determined. Four cis-elements (M/T-G-T-P from MYB1AT or TATABOX5, GT1CONSENSUS, TATABOX5, and POLASIG1) showed a unique spatial arrangement in most SMS-inducible genes including WRKY46. Therefore the M/T-G-T-P cis-element patterns identified in the promoter of WRKY46 may play important roles in regulating gene expression in response to SMS. The presences of the cis-element patterns suggest that the order or spatial positioning of certain groups of cis-elements is more important than the existence or numbers of specific cis-elements. Taken together, our data indicate that WRKY46 is a novel SMS inducible transcription factor and the unique spatial arrangement of cis-elements shown in WRKY46 promoter may play an important role for its response to SMS.

  5. Identification of a peroxisome proliferator responsive element (PPRE)-like cis-element in mouse plasminogen activator inhibitor-1 gene promoter

    International Nuclear Information System (INIS)

    Chen Jiegen; Li Xi; Huang Haiyan; Liu Honglei; Liu Deguo; Song Tanjing; Ma Chungu; Ma Duan; Song Houyan; Tang Qiqun

    2006-01-01

    PAI-1 is expressed and secreted by adipose tissue which may mediate the pathogenesis of obesity-associated cardiovascular complications. Evidence is presented in this report that PAI-1 is not expressed by preadipocyte, but significantly induced during 3T3-L1 adipocyte differentiation and the PAI-1 expression correlates with the induction of peroxisome proliferator-activated receptor γ (PPARγ). A peroxisome proliferator responsive element (PPRE)-like cis-element (-206TCCCCCATGCCCT-194) is identified in the mouse PAI-1 gene promoter by electrophoretic mobility shift assay (EMSA) combined with transient transfection experiments; the PPRE-like cis-element forms a specific DNA-protein complex only with adipocyte nuclear extracts, not with preadipocyte nuclear extracts; the DNA-protein complex can be totally competed away by non-labeled consensus PPRE, and can be supershifted with PPARγ antibody. Mutation of this PPRE-like cis-element can abolish the transactivation of mouse PAI-1 promoter mediated by PPARγ. Specific PPARγ ligand Pioglitazone can significantly induce the PAI-1 expression, and stimulate the secretion of PAI-1 into medium

  6. Computational exploration of cis-regulatory modules in rhythmic expression data using the "Exploration of Distinctive CREs and CRMs" (EDCC) and "CRM Network Generator" (CNG) programs.

    Science.gov (United States)

    Bekiaris, Pavlos Stephanos; Tekath, Tobias; Staiger, Dorothee; Danisman, Selahattin

    2018-01-01

    Understanding the effect of cis-regulatory elements (CRE) and clusters of CREs, which are called cis-regulatory modules (CRM), in eukaryotic gene expression is a challenge of computational biology. We developed two programs that allow simple, fast and reliable analysis of candidate CREs and CRMs that may affect specific gene expression and that determine positional features between individual CREs within a CRM. The first program, "Exploration of Distinctive CREs and CRMs" (EDCC), correlates candidate CREs and CRMs with specific gene expression patterns. For pairs of CREs, EDCC also determines positional preferences of the single CREs in relation to each other and to the transcriptional start site. The second program, "CRM Network Generator" (CNG), prioritizes these positional preferences using a neural network and thus allows unbiased rating of the positional preferences that were determined by EDCC. We tested these programs with data from a microarray study of circadian gene expression in Arabidopsis thaliana. Analyzing more than 1.5 million pairwise CRE combinations, we found 22 candidate combinations, of which several contained known clock promoter elements together with elements that had not been identified as relevant to circadian gene expression before. CNG analysis further identified positional preferences of these CRE pairs, hinting at positional information that may be relevant for circadian gene expression. Future wet lab experiments will have to determine which of these combinations confer daytime specific circadian gene expression.

  7. Nutritional control of gene expression in Drosophila larvae via TOR, Myc and a novel cis-regulatory element

    Directory of Open Access Journals (Sweden)

    Grewal Savraj S

    2010-01-01

    Full Text Available Abstract Background Nutrient availability is a key determinant of eukaryotic cell growth. In unicellular organisms many signaling and transcriptional networks link nutrient availability to the expression of metabolic genes required for growth. However, less is known about the corresponding mechanisms that operate in metazoans. We used gene expression profiling to explore this issue in developing Drosophila larvae. Results We found that starvation for dietary amino acids (AA's leads to dynamic changes in transcript levels of many metabolic genes. The conserved insulin/PI3K and TOR signaling pathways mediate nutrition-dependent growth in Drosophila and other animals. We found that many AA starvation-responsive transcripts were also altered in TOR mutants. In contrast, although PI3K overexpression induced robust changes in the expression of many metabolic genes, these changes showed limited overlap with the AA starvation expression profile. We did however identify a strong overlap between genes regulated by the transcription factor, Myc, and AA starvation-responsive genes, particularly those involved in ribosome biogenesis, protein synthesis and mitochondrial function. The consensus Myc DNA binding site is enriched in promoters of these AA starvation genes, and we found that Myc overexpression could bypass dietary AA to induce expression of these genes. We also identified another sequence motif (Motif 1 enriched in the promoters of AA starvation-responsive genes. We showed that Motif 1 was both necessary and sufficient to mediate transcriptional responses to dietary AA in larvae. Conclusions Our data suggest that many of the transcriptional effects of amino acids are mediated via signaling through the TOR pathway in Drosophila larvae. We also find that these transcriptional effects are mediated through at least two mechanisms: via the transcription factor Myc, and via the Motif 1 cis-regulatory element. These studies begin to elucidate a nutrient

  8. Positive- and negative-acting regulatory elements contribute to the tissue-specific expression of INNER NO OUTER, a YABBY-type transcription factor gene in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Simon Marissa K

    2012-11-01

    Full Text Available Abstract Background The INNER NO OUTER (INO gene, which encodes a YABBY-type transcription factor, specifies and promotes the growth of the outer integument of the ovule in Arabidopsis. INO expression is limited to the abaxial cell layer of the developing outer integument of the ovule and is regulated by multiple regions of the INO promoter, including POS9, a positive element that when present in quadruplicate can produce low-level expression in the normal INO pattern. Results Significant redundancy in activity between different regions of the INO promoter is demonstrated. For specific regulatory elements, multimerization or the addition of the cauliflower mosaic virus 35S general enhancer was able to activate expression of reporter gene constructs that were otherwise incapable of expression on their own. A new promoter element, POS6, is defined and is shown to include sufficient positive regulatory information to reproduce the endogenous pattern of expression in ovules, but other promoter regions are necessary to fully suppress expression outside of ovules. The full-length INO promoter, but not any of the INO promoter deletions tested, is able to act as an enhancer-blocking insulator to prevent the ectopic activation of expression by the 35S enhancer. Sequence conservation between the promoter regions of Arabidopsis thaliana, Brassica oleracea and Brassica rapa aligns closely with the functional definition of the POS6 and POS9 regions, and with a defined INO minimal promoter. The B. oleracea INO promoter is sufficient to promote a similar pattern and level of reporter gene expression in Arabidopsis to that observed for the Arabidopsis promoter. Conclusions At least two independent regions of the INO promoter contain sufficient regulatory information to direct the specific pattern but not the level of INO gene expression. These regulatory regions act in a partially redundant manner to promote the expression in a specific pattern in the ovule and

  9. Estrogen Receptor β (ERβ1) Transactivation Is Differentially Modulated by the Transcriptional Coregulator Tip60 in a cis-Acting Element-dependent Manner*

    Science.gov (United States)

    Lee, Ming-Tsung; Leung, Yuet-Kin; Chung, Irving; Tarapore, Pheruza; Ho, Shuk-Mei

    2013-01-01

    Estrogen receptor (ER) β1 and ERα have overlapping and distinct functions despite their common use of estradiol as the physiological ligand. These attributes are explained in part by their differential utilization of coregulators and ligands. Although Tip60 has been shown to interact with both receptors, its regulatory role in ERβ1 transactivation has not been defined. In this study, we found that Tip60 enhances transactivation of ERβ1 at the AP-1 site but suppresses its transcriptional activity at the estrogen-response element (ERE) site in an estradiol-independent manner. However, different estrogenic compounds can modify the Tip60 action. The corepressor activity of Tip60 at the ERE site is abolished by diarylpropionitrile, genistein, equol, and bisphenol A, whereas its coactivation at the AP-1 site is augmented by fulvestrant (ICI 182,780). GRIP1 is an important tethering mediator for ERs at the AP-1 site. We found that coexpression of GRIP1 synergizes the action of Tip60. Although Tip60 is a known acetyltransferase, it is unable to acetylate ERβ1, and its coregulatory functions are independent of its acetylation activity. In addition, we showed the co-occupancy of ERβ1 and Tip60 at ERE and AP-1 sites of ERβ1 target genes. Tip60 differentially regulates the endogenous expression of the target genes by modulating the binding of ERβ1 to the cis-regulatory regions. Thus, we have identified Tip60 as the first dual-function coregulator of ERβ1. PMID:23857583

  10. Estrogen receptor β (ERβ1) transactivation is differentially modulated by the transcriptional coregulator Tip60 in a cis-acting element-dependent manner.

    Science.gov (United States)

    Lee, Ming-Tsung; Leung, Yuet-Kin; Chung, Irving; Tarapore, Pheruza; Ho, Shuk-Mei

    2013-08-30

    Estrogen receptor (ER) β1 and ERα have overlapping and distinct functions despite their common use of estradiol as the physiological ligand. These attributes are explained in part by their differential utilization of coregulators and ligands. Although Tip60 has been shown to interact with both receptors, its regulatory role in ERβ1 transactivation has not been defined. In this study, we found that Tip60 enhances transactivation of ERβ1 at the AP-1 site but suppresses its transcriptional activity at the estrogen-response element (ERE) site in an estradiol-independent manner. However, different estrogenic compounds can modify the Tip60 action. The corepressor activity of Tip60 at the ERE site is abolished by diarylpropionitrile, genistein, equol, and bisphenol A, whereas its coactivation at the AP-1 site is augmented by fulvestrant (ICI 182,780). GRIP1 is an important tethering mediator for ERs at the AP-1 site. We found that coexpression of GRIP1 synergizes the action of Tip60. Although Tip60 is a known acetyltransferase, it is unable to acetylate ERβ1, and its coregulatory functions are independent of its acetylation activity. In addition, we showed the co-occupancy of ERβ1 and Tip60 at ERE and AP-1 sites of ERβ1 target genes. Tip60 differentially regulates the endogenous expression of the target genes by modulating the binding of ERβ1 to the cis-regulatory regions. Thus, we have identified Tip60 as the first dual-function coregulator of ERβ1.

  11. Multiple cis-acting elements involved in up-regulation of a cytochrome P450 gene conferring resistance to deltamethrin in smal brown planthopper, Laodelphax striatellus (Fallén).

    Science.gov (United States)

    Pu, Jian; Sun, Haina; Wang, Jinda; Wu, Min; Wang, Kangxu; Denholm, Ian; Han, Zhaojun

    2016-11-01

    As well as arising from single point mutations in binding sites or detoxifying enzymes, it is likely that insecticide resistance mechanisms are frequently controlled by multiple genetic factors, resulting in resistance being inherited as a quantitative trait. However, empirical evidence for this is still rare. Here we analyse the causes of up-regulation of CYP6FU1, a monoxygenase implicated in resistance to deltamethrin in the rice pest Laodelphax striatellus. The 5'-flanking region of this gene was cloned and sequenced from individuals of a susceptible and a resistant strain. A luminescent reporter assay was used to evaluate different 5'-flanking regions and their fragments for promoter activity. Mutations enhancing promoter activity in various fragments were characterized, singly and in combination, by site mutation recovery. Nucleotide diversity in flanking sequences was greatly reduced in deltamethrin-resistant insects compared to susceptible ones. Phylogenetic sequence analysis found that CYP6FU1 had five different types of 5'-flanking region. All five types were present in a susceptible strain but only a single type showing the highest promoter activity was present in a resistant strain. Four cis-acting elements were identified whose influence on up-regulation was much more pronounced in combination than when present singly. Of these, two were new transcription factor (TF) binding sites produced by mutations, another one was also a new TF binding site alternated from an existing one, and the fourth was a unique transcription start site. These results demonstrate that multiple cis-acting elements are involved in up-regulating CYP6FU1 to generate a resistance phenotype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cis-acting mutation and duplication: History of molecular evolution in a P450 haplotype responsible for insecticide resistance in Culex quinquefasciatus.

    Science.gov (United States)

    Itokawa, Kentaro; Komagata, Osamu; Kasai, Shinji; Masada, Masahiro; Tomita, Takashi

    2011-07-01

    A cytochrome P450 gene, Cyp9m10, is more than 200-fold overexpressed in a pyrethroid resistant strain of Culex quinquefasciatus, JPal-per. The haplotype of this strain contains two copies of Cyp9m10 resulted from recent tandem duplication. In this study, we discovered and isolated a Cyp9m10 haplotype closely related to this duplicated Cyp9m10 haplotype from JHB, a strain used for the recent genome project for this mosquito species. The isolated haplotype (JHB-NIID-B haplotype) shared the same insertion of a transposable element upstream of the coding region with JPal-per strain but not duplicated. The JHB-NIID-B haplotype was considered to have diverged from the JPal-per lineage just before the duplication event. Cyp9m10 was moderately overexpressed in larvae with the JHB-NIID-B haplotype. The overexpressions in JHB-NIID-B and JPal-per haplotypes were developmentally regulated in similar pattern indicating both haplotypes share a common cis-acting mutation responsible for the overexpressions. The isolated moderately overexpressed haplotype conferred resistance, however, its efficacy was relatively small. We hypothesized that the first cis-acting mutation modified the consequence of the subsequent duplication in JPal-per lineage to confer stronger phenotypic effect than that if it occurred before the first cis-acting mutation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. A system-level model for the microbial regulatory genome.

    Science.gov (United States)

    Brooks, Aaron N; Reiss, David J; Allard, Antoine; Wu, Wei-Ju; Salvanha, Diego M; Plaisier, Christopher L; Chandrasekaran, Sriram; Pan, Min; Kaur, Amardeep; Baliga, Nitin S

    2014-07-15

    Microbes can tailor transcriptional responses to diverse environmental challenges despite having streamlined genomes and a limited number of regulators. Here, we present data-driven models that capture the dynamic interplay of the environment and genome-encoded regulatory programs of two types of prokaryotes: Escherichia coli (a bacterium) and Halobacterium salinarum (an archaeon). The models reveal how the genome-wide distributions of cis-acting gene regulatory elements and the conditional influences of transcription factors at each of those elements encode programs for eliciting a wide array of environment-specific responses. We demonstrate how these programs partition transcriptional regulation of genes within regulons and operons to re-organize gene-gene functional associations in each environment. The models capture fitness-relevant co-regulation by different transcriptional control mechanisms acting across the entire genome, to define a generalized, system-level organizing principle for prokaryotic gene regulatory networks that goes well beyond existing paradigms of gene regulation. An online resource (http://egrin2.systemsbiology.net) has been developed to facilitate multiscale exploration of conditional gene regulation in the two prokaryotes. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Identifying cis-regulatory modules by combining comparative and compositional analysis of DNA.

    Science.gov (United States)

    Pierstorff, Nora; Bergman, Casey M; Wiehe, Thomas

    2006-12-01

    Predicting cis-regulatory modules (CRMs) in higher eukaryotes is a challenging computational task. Commonly used methods to predict CRMs based on the signal of transcription factor binding sites (TFBS) are limited by prior information about transcription factor specificity. More general methods that bypass the reliance on TFBS models are needed for comprehensive CRM prediction. We have developed a method to predict CRMs called CisPlusFinder that identifies high density regions of perfect local ungapped sequences (PLUSs) based on multiple species conservation. By assuming that PLUSs contain core TFBS motifs that are locally overrepresented, the method attempts to capture the expected features of CRM structure and evolution. Applied to a benchmark dataset of CRMs involved in early Drosophila development, CisPlusFinder predicts more annotated CRMs than all other methods tested. Using the REDfly database, we find that some 'false positive' predictions in the benchmark dataset correspond to recently annotated CRMs. Our work demonstrates that CRM prediction methods that combine comparative genomic data with statistical properties of DNA may achieve reasonable performance when applied genome-wide in the absence of an a priori set of known TFBS motifs. The program CisPlusFinder can be downloaded at http://jakob.genetik.uni-koeln.de/bioinformatik/people/nora/nora.html. All software is licensed under the Lesser GNU Public License (LGPL).

  15. A var gene promoter implicated in severe malaria nucleates silencing and is regulated by 3' untranslated region and intronic cis-elements.

    Science.gov (United States)

    Muhle, Rebecca A; Adjalley, Sophie; Falkard, Brie; Nkrumah, Louis J; Muhle, Michael E; Fidock, David A

    2009-11-01

    Questions surround the mechanism of mutually exclusive expression by which Plasmodium falciparum mediates activation and silencing of var genes. These encode PfEMP1 proteins, which function as cytoadherent and immunomodulatory molecules at the surface of parasitised erythrocytes. Current evidence suggests that promoter silencing by var introns might play a key role in var gene regulation. To evaluate the impact of cis-acting regulatory regions on var silencing, we generated P. falciparum lines in which luciferase was placed under the control of an UpsA var promoter. By utilising the Bxb1 integrase system, these reporter cassettes were targeted to a genomic region that was not in apposition to var subtelomeric domains. This eliminated possible effects from surrounding telomeric elements and removed the variability inherent in episomal systems. Studies with highly synchronised parasites revealed that the UpsA element possessed minimal activity in comparison with a heterologous (hrp3) promoter. This may result from the integrated UpsA promoter being largely silenced by the neighbouring cg6 promoter. Our analyses also revealed that the DownsA 3' untranslated region further decreased the luciferase activity from both cassettes, whereas the var A intron repressed the UpsA promoter specifically. By applying multivariate analysis over the entire cell cycle, we confirmed the significance of these cis-elements and found the parasite stage to be the major factor regulating UpsA-promoter activity. Additionally, we observed that the UpsA promoter was capable of nucleating reversible silencing that spread to a downstream promoter. We believe these studies are the first to analyse promoter activity of Group A var genes, which have been implicated in severe malaria, and support the model that var introns can further suppress var expression. These data also suggest an important suppressive role for the DownsA terminator. Our findings imply the existence of multiple levels of var

  16. Ancient Transposable Elements Transformed the Uterine Regulatory Landscape and Transcriptome during the Evolution of Mammalian Pregnancy

    Directory of Open Access Journals (Sweden)

    Vincent J. Lynch

    2015-02-01

    Full Text Available A major challenge in biology is determining how evolutionarily novel characters originate; however, mechanistic explanations for the origin of new characters are almost completely unknown. The evolution of pregnancy is an excellent system in which to study the origin of novelties because mammals preserve stages in the transition from egg laying to live birth. To determine the molecular bases of this transition, we characterized the pregnant/gravid uterine transcriptome from tetrapods to trace the evolutionary history of uterine gene expression. We show that thousands of genes evolved endometrial expression during the origins of mammalian pregnancy, including genes that mediate maternal-fetal communication and immunotolerance. Furthermore, thousands of cis-regulatory elements that mediate decidualization and cell-type identity in decidualized stromal cells are derived from ancient mammalian transposable elements (TEs. Our results indicate that one of the defining mammalian novelties evolved from DNA sequences derived from ancient mammalian TEs co-opted into hormone-responsive regulatory elements distributed throughout the genome.

  17. REDfly: a Regulatory Element Database for Drosophila.

    Science.gov (United States)

    Gallo, Steven M; Li, Long; Hu, Zihua; Halfon, Marc S

    2006-02-01

    Bioinformatics studies of transcriptional regulation in the metazoa are significantly hindered by the absence of readily available data on large numbers of transcriptional cis-regulatory modules (CRMs). Even the richly annotated Drosophila melanogaster genome lacks extensive CRM information. We therefore present here a database of Drosophila CRMs curated from the literature complete with both DNA sequence and a searchable description of the gene expression pattern regulated by each CRM. This resource should greatly facilitate the development of computational approaches to CRM discovery as well as bioinformatics analyses of regulatory sequence properties and evolution.

  18. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.

    Science.gov (United States)

    Narusaka, Yoshihiro; Nakashima, Kazuo; Shinwari, Zabta K; Sakuma, Yoh; Furihata, Takashi; Abe, Hiroshi; Narusaka, Mari; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2003-04-01

    Many abiotic stress-inducible genes contain two cis-acting elements, namely a dehydration-responsive element (DRE; TACCGACAT) and an ABA-responsive element (ABRE; ACGTGG/TC), in their promoter regions. We precisely analyzed the 120 bp promoter region (-174 to -55) of the Arabidopsis rd29A gene whose expression is induced by dehydration, high-salinity, low-temperature, and abscisic acid (ABA) treatments and whose 120 bp promoter region contains the DRE, DRE/CRT-core motif (A/GCCGAC), and ABRE sequences. Deletion and base substitution analyses of this region showed that the DRE-core motif functions as DRE and that the DRE/DRE-core motif could be a coupling element of ABRE. Gel mobility shift assays revealed that DRE-binding proteins (DREB1s/CBFs and DREB2s) bind to both DRE and the DRE-core motif and that ABRE-binding proteins (AREBs/ABFs) bind to ABRE in the 120 bp promoter region. In addition, transactivation experiments using Arabidopsis leaf protoplasts showed that DREBs and AREBs cumulatively transactivate the expression of a GUS reporter gene fused to the 120 bp promoter region of rd29A. These results indicate that DRE and ABRE are interdependent in the ABA-responsive expression of the rd29A gene in response to ABA in Arabidopsis.

  19. Structural and functional analysis of mouse Msx1 gene promoter: sequence conservation with human MSX1 promoter points at potential regulatory elements.

    Science.gov (United States)

    Gonzalez, S M; Ferland, L H; Robert, B; Abdelhay, E

    1998-06-01

    Vertebrate Msx genes are related to one of the most divergent homeobox genes of Drosophila, the muscle segment homeobox (msh) gene, and are expressed in a well-defined pattern at sites of tissue interactions. This pattern of expression is conserved in vertebrates as diverse as quail, zebrafish, and mouse in a range of sites including neural crest, appendages, and craniofacial structures. In the present work, we performed structural and functional analyses in order to identify potential cis-acting elements that may be regulating Msx1 gene expression. To this end, a 4.9-kb segment of the 5'-flanking region was sequenced and analyzed for transcription-factor binding sites. Four regions showing a high concentration of these sites were identified. Transfection assays with fragments of regulatory sequences driving the expression of the bacterial lacZ reporter gene showed that a region of 4 kb upstream of the transcription start site contains positive and negative elements responsible for controlling gene expression. Interestingly, a fragment of 130 bp seems to contain the minimal elements necessary for gene expression, as its removal completely abolishes gene expression in cultured cells. These results are reinforced by comparison of this region with the human Msx1 gene promoter, which shows extensive conservation, including many consensus binding sites, suggesting a regulatory role for them.

  20. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis.

    Science.gov (United States)

    Mikkelsen, Michael D; Thomashow, Michael F

    2009-10-01

    The plant transcriptome is dramatically altered in response to low temperature. The cis-acting DNA regulatory elements and trans-acting factors that regulate the majority of cold-regulated genes are unknown. Previous bioinformatic analysis has indicated that the promoters of cold-induced genes are enriched in the Evening Element (EE), AAAATATCT, a DNA regulatory element that has a role in circadian-regulated gene expression. Here we tested the role of EE and EE-like (EEL) elements in cold-induced expression of two Arabidopsis genes, CONSTANS-like 1 (COL1; At5g54470) and a gene encoding a 27-kDa protein of unknown function that we designated COLD-REGULATED GENE 27 (COR27; At5g42900). Mutational analysis indicated that the EE/EEL elements were required for cold induction of COL1 and COR27, and that their action was amplified through coupling with ABA response element (ABRE)-like (ABREL) motifs. An artificial promoter consisting solely of four EE motifs interspersed with three ABREL motifs was sufficient to impart cold-induced gene expression. Both COL1 and COR27 were found to be regulated by the circadian clock at warm growth temperatures and cold-induction of COR27 was gated by the clock. These results suggest that cold- and clock-regulated gene expression are integrated through regulatory proteins that bind to EE and EEL elements supported by transcription factors acting at ABREL sequences. Bioinformatic analysis indicated that the coupling of EE and EEL motifs with ABREL motifs is highly enriched in cold-induced genes and thus may constitute a DNA regulatory element pair with a significant role in configuring the low-temperature transcriptome.

  1. A var gene promoter implicated in severe malaria nucleates silencing and is regulated by 3’ untranslated region and intronic cis-elements

    Science.gov (United States)

    Muhle, Rebecca A.; Adjalley, Sophie; Falkard, Brie; Nkrumah, Louis J.; Muhle, Michael E.; Fidock, David A.

    2009-01-01

    Questions surround the mechanism of mutually exclusive expression by which Plasmodium falciparum mediates activation and silencing of var genes. These encode PfEMP1 proteins, which function as cytoadherent and immunomodulatory molecules at the surface of parasitized erythrocytes. Current evidence suggests that promoter silencing by var introns might play a key role in var gene regulation. To evaluate the impact of cis-acting regulatory regions on var silencing, we generated P. falciparum lines in which luciferase was placed under the control of an UpsA var promoter. By utilizing the Bxb1 integrase system, these reporter cassettes were targeted to a genomic region that was not in apposition to var sub-telomeric domains. This eliminated possible effects from surrounding telomeric elements and removed the variability inherent in episomal systems. Studies with highly synchronized parasites revealed that the UpsA element possessed minimal activity in comparison with a heterologous (hrp3) promoter. This may well result from the integrated UpsA promoter being largely silenced by the neighboring cg6 promoter. Our analyses also revealed that the DownsA 3’ untranslated region further decreased the luciferase activity from both cassettes, whereas the var A intron repressed the UpsA promoter specifically. By applying multivariate analysis over the entire cell cycle, we confirmed the significance of these cis-elements and found the parasite stage to be the major factor regulating UpsA promoter activity. Additionally, we observed that the UpsA promoter was capable of nucleating reversible silencing that spread to a downstream promoter. We believe these studies are the first to analyze promoter activity of Group A var genes which have been implicated in severe malaria, and support the model that var introns can further suppress var expression. These data also suggest an important suppressive role for the DownsA terminator. Our findings imply the existence of multiple levels of

  2. Preaxial polydactyly/triphalangeal thumb is associated with changed transcription factor-binding affinity in a family with a novel point mutation in the long-range cis-regulatory element ZRS

    DEFF Research Database (Denmark)

    Farooq, Muhammad; Troelsen, Jesper T; Boyd, Mette

    2010-01-01

    A cis-regulatory sequence also known as zone of polarizing activity (ZPA) regulatory sequence (ZRS) located in intron 5 of LMBR1 is essential for expression of sonic hedgehog (SHH) in the developing posterior limb bud mesenchyme. Even though many point mutations causing preaxial duplication defects...... demonstrated a marked difference between wild-type and the mutant probe, which uniquely bound one or several transcription factors extracted from Caco-2 cells. This finding supports a model in which ectopic anterior SHH expression in the developing limb results from abnormal binding of one or more...

  3. Nuclear Regulatory Authority Act, 2015 (Act 895)

    International Nuclear Information System (INIS)

    2015-04-01

    An Act to establish a Nuclear Regulatory Authority in Ghana. This Act provides for the regulation and management of activities and practices for the peaceful use of nuclear material or energy, and to provide for the protection of persons and the environment against the harmful effects of radiation; and to ensure the effective implementation of the country’s international obligations and for related matters. This Act replaced the Radiation Protection Instrument, of 1993 (LI 1559).

  4. Characterization of the Promoter Region of an Arabidopsis Gene for 9-cis-Epoxycarotenoid Dioxygenase Involved in Dehydration-Inducible Transcription

    Science.gov (United States)

    Behnam, Babak; Iuchi, Satoshi; Fujita, Miki; Fujita, Yasunari; Takasaki, Hironori; Osakabe, Yuriko; Yamaguchi-Shinozaki, Kazuko; Kobayashi, Masatomo; Shinozaki, Kazuo

    2013-01-01

    Plants respond to dehydration stress and tolerate water-deficit status through complex physiological and cellular processes. Many genes are induced by water deficit. Abscisic acid (ABA) plays important roles in tolerance to dehydration stress by inducing many stress genes. ABA is synthesized de novo in response to dehydration. Most of the genes involved in ABA biosynthesis have been identified, and they are expressed mainly in leaf vascular tissues. Of the products of such genes, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme in ABA biosynthesis. One of the five NCED genes in Arabidopsis, AtNCED3, is significantly induced by dehydration. To understand the regulatory mechanism of the early stages of the dehydration stress response, it is important to analyse the transcriptional regulatory systems of AtNCED3. In the present study, we found that an overlapping G-box recognition sequence (5′-CACGTG-3′) at −2248 bp from the transcriptional start site of AtNCED3 is an important cis-acting element in the induction of the dehydration response. We discuss the possible transcriptional regulatory system of dehydration-responsive AtNCED3 expression, and how this may control the level of ABA under water-deficit conditions. PMID:23604098

  5. Cooperative action of multiple cis-acting elements is required for N-myc expression in branchial arches: specific contribution of GATA3.

    Science.gov (United States)

    Potvin, Eric; Beuret, Laurent; Cadrin-Girard, Jean-François; Carter, Marcelle; Roy, Sophie; Tremblay, Michel; Charron, Jean

    2010-11-01

    The precise expression of the N-myc proto-oncogene is essential for normal mammalian development, whereas altered N-myc gene regulation is known to be a determinant factor in tumor formation. Using transgenic mouse embryos, we show that N-myc sequences from kb -8.7 to kb +7.2 are sufficient to reproduce the N-myc embryonic expression profile in developing branchial arches and limb buds. These sequences encompass several regulatory elements dispersed throughout the N-myc locus, including an upstream limb bud enhancer, a downstream somite enhancer, a branchial arch enhancer in the second intron, and a negative regulatory element in the first intron. N-myc expression in the limb buds is under the dominant control of the limb bud enhancer. The expression in the branchial arches necessitates the interplay of three regulatory domains. The branchial arch enhancer cooperates with the somite enhancer region to prevent an inhibitory activity contained in the first intron. The characterization of the branchial arch enhancer has revealed a specific role of the transcription factor GATA3 in the regulation of N-myc expression. Together, these data demonstrate that correct N-myc developmental expression is achieved via cooperation of multiple positive and negative regulatory elements.

  6. Cyclic adenosine 3',5'-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter.

    Science.gov (United States)

    Clem, Brian F; Hudson, Elizabeth A; Clark, Barbara J

    2005-03-01

    Steroidogenic acute regulatory protein (StAR) transcription is regulated through cAMP-protein kinase A-dependent mechanisms that involve multiple transcription factors including the cAMP-responsive element binding protein (CREB) family members. Classically, binding of phosphorylated CREB to cis-acting cAMP-responsive elements (5'-TGACGTCA-3') within target gene promoters leads to recruitment of the coactivator CREB binding protein (CBP). Herein we examined the extent of CREB family member phosphorylation on protein-DNA interactions and CBP recruitment with the StAR promoter. Immunoblot analysis revealed that CREB, cAMP-responsive element modulator (CREM), and activating transcription factor (ATF)-1 are expressed in MA-10 mouse Leydig tumor cells, yet only CREB and ATF-1 are phosphorylated. (Bu)2cAMP treatment of MA-10 cells increased CREB phosphorylation approximately 2.3-fold within 30 min but did not change total nuclear CREB expression levels. Using DNA-affinity chromatography, we now show that CREB and ATF-1, but not CREM, interact with the StAR promoter, and this interaction is dependent on the activator protein-1 (AP-1) cis-acting element within the cAMP-responsive region. In addition, (Bu)2cAMP-treatment increased phosphorylated CREB (P-CREB) association with the StAR promoter but did not influence total CREB interaction. In vivo chromatin immunoprecipitation assays demonstrated CREB binding to the StAR proximal promoter is independent of (Bu)2cAMP-treatment, confirming our in vitro analysis. However, (Bu)2cAMP-treatment increased P-CREB and CBP interaction with the StAR promoter, demonstrating for the first time the physical role of P-CREB:DNA interactions in CBP recruitment to the StAR proximal promoter.

  7. Detection of Weakly Conserved Ancestral Mammalian RegulatorySequences by Primate Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian-fei; Prabhakar, Shyam; Chanan, Sumita; Cheng,Jan-Fang; Rubin, Edward M.; Boffelli, Dario

    2006-06-01

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detectcryptic functional elements, which are too weakly conserved among mammalsto distinguish from nonfunctional DNA. To address this problem, weexplored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  8. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks.

    Science.gov (United States)

    Guo, Liyuan; Wang, Jing

    2018-01-04

    Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Two potential hookworm DAF-16 target genes, SNR-3 and LPP-1: gene structure, expression profile, and implications of a cis-regulatory element in the regulation of gene expression.

    Science.gov (United States)

    Gao, Xin; Goggin, Kevin; Dowling, Camille; Qian, Jason; Hawdon, John M

    2015-01-08

    Hookworms infect nearly 700 million people, causing anemia and developmental stunting in heavy infections. Little is known about the genomic structure or gene regulation in hookworms, although recent publication of draft genome assemblies has allowed the first investigations of these topics to be undertaken. The transcription factor DAF-16 mediates multiple developmental pathways in the free living nematode Caenorhabditis elegans, and is involved in the recovery from the developmentally arrested L3 in hookworms. Identification of downstream targets of DAF-16 will provide a better understanding of the molecular mechanism of hookworm infection. Genomic Fragment 2.23 containing a DAF-16 binding element (DBE) was used to identify overlapping complementary expressed sequence tags (ESTs). These sequences were used to search a draft assembly of the Ancylostoma caninum genome, and identified two neighboring genes, snr-3 and lpp-1, in a tail-to-tail orientation. Expression patterns of both genes during parasitic development were determined by qRT-PCR. DAF-16 dependent cis-regulatory activity of fragment 2.23 was investigated using an in vitro reporter system. The snr-3 gene spans approximately 5.6 kb in the genome and contains 3 exons and 2 introns, and contains the DBE in its 3' untranslated region. Downstream from snr-3 in a tail-to-tail arrangement is the gene lpp-1. The lpp-1 gene spans more than 6 kb and contains 10 exons and 9 introns. The A. caninum genome contains 2 apparent splice variants, but there are 7 splice variants in the A. ceylanicum genome. While the gene order is similar, the gene structures of the hookworm genes differ from their C. elegans orthologs. Both genes show peak expression in the late L4 stage. Using a cell culture based expression system, fragment 2.23 was found to have both DAF-16-dependent promoter and enhancer activity that required an intact DBE. Two putative DAF-16 targets were identified by genome wide screening for DAF-16 binding

  10. Identification of two evolutionarily conserved 5' cis-elements involved in regulating spatiotemporal expression of Nolz-1 during mouse embryogenesis.

    Directory of Open Access Journals (Sweden)

    Sunny Li-Yun Chang

    Full Text Available Proper development of vertebrate embryos depends not only on the crucial funtions of key evolutionarily conserved transcriptional regulators, but also on the precisely spatiotemporal expression of these transcriptional regulators. The mouse Nolz-1/Znf503/Zfp503 gene is a mammalian member of the conserved zinc-finger containing NET family. The expression pattern of Nolz-1 in mouse embryos is highly correlated with that of its homologues in different species. To study the spatiotemporal regulation of Nolz-1, we first identified two evolutionarily conserved cis-elements, UREA and UREB, in 5' upstream regions of mouse Nolz-1 locus. We then generated UREA-LacZ and UREB-LacZ transgenic reporter mice to characterize the putative enhancer activity of UREA and UREB. The results indicated that both UREA and UREB contained tissue-specific enhancer activity for directing LacZ expression in selective tissue organs during mouse embryogensis. UREA directed LacZ expression preferentially in selective regions of developing central nervous system, including the forebrain, hindbrain and spinal cord, whereas UREB directed LacZ expression mainly in other developing tissue organs such as the Nolz-1 expressing branchial arches and its derivatives, the apical ectodermal ridge of limb buds and the urogenital tissues. Both UREA and UREB directed strong LacZ expression in the lateral plate mesoderm where endogenous Nolz-1 was also expressed. Despite that the LacZ expression pattern did not full recapitulated the endogenous Nolz-1 expression and some mismatched expression patterns were observed, co-expression of LacZ and Nolz-1 did occur in many cells of selective tissue organs, such as in the ventrolateral cortex and ventral spinal cord of UREA-LacZ embryos, and the urogenital tubes of UREB-LacZ embryos. Taken together, our study suggests that UREA and UREB may function as evolutionarily conserved cis-regulatory elements that coordinate with other cis-elements to regulate

  11. 3'-coterminal subgenomic RNAs and putative cis-acting elements of Grapevine leafroll-associated virus 3 reveals 'unique' features of gene expression strategy in the genus Ampelovirus

    Directory of Open Access Journals (Sweden)

    Dawson William O

    2010-08-01

    Full Text Available Abstract Background The family Closteroviridae comprises genera with monopartite genomes, Closterovirus and Ampelovirus, and with bipartite and tripartite genomes, Crinivirus. By contrast to closteroviruses in the genera Closterovirus and Crinivirus, much less is known about the molecular biology of viruses in the genus Ampelovirus, although they cause serious diseases in agriculturally important perennial crops like grapevines, pineapple, cherries and plums. Results The gene expression and cis-acting elements of Grapevine leafroll-associated virus 3 (GLRaV-3; genus Ampelovirus was examined and compared to that of other members of the family Closteroviridae. Six putative 3'-coterminal subgenomic (sg RNAs were abundantly present in grapevine (Vitis vinifera infected with GLRaV-3. The sgRNAs for coat protein (CP, p21, p20A and p20B were confirmed using gene-specific riboprobes in Northern blot analysis. The 5'-termini of sgRNAs specific to CP, p21, p20A and p20B were mapped in the 18,498 nucleotide (nt virus genome and their leader sequences determined to be 48, 23, 95 and 125 nt, respectively. No conserved motifs were found around the transcription start site or in the leader sequence of these sgRNAs. The predicted secondary structure analysis of sequences around the start site failed to reveal any conserved motifs among the four sgRNAs. The GLRaV-3 isolate from Washington had a 737 nt long 5' nontranslated region (NTR with a tandem repeat of 65 nt sequence and differed in sequence and predicted secondary structure with a South Africa isolate. Comparison of the dissimilar sequences of the 5'NTRs did not reveal any common predicted structures. The 3'NTR was shorter and more conserved. The lack of similarity among the cis-acting elements of the diverse viruses in the family Closteroviridae is another measure of the complexity of their evolution. Conclusions The results indicate that transcription regulation of GLRaV-3 sgRNAs appears to be different

  12. Mapping cis-Regulatory Domains in the Human Genome UsingMulti-Species Conservation of Synteny

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Prabhakar, Shyam; Poulin, Francis; Rubin, EdwardM.; Couronne, Olivier

    2005-06-13

    Our inability to associate distant regulatory elements with the genes that they regulate has largely precluded their examination for sequence alterations contributing to human disease. One major obstacle is the large genomic space surrounding targeted genes in which such elements could potentially reside. In order to delineate gene regulatory boundaries we used whole-genome human-mouse-chicken (HMC) and human-mouse-frog (HMF) multiple alignments to compile conserved blocks of synteny (CBS), under the hypothesis that these blocks have been kept intact throughout evolution at least in part by the requirement of regulatory elements to stay linked to the genes that they regulate. A total of 2,116 and 1,942 CBS>200 kb were assembled for HMC and HMF respectively, encompassing 1.53 and 0.86 Gb of human sequence. To support the existence of complex long-range regulatory domains within these CBS we analyzed the prevalence and distribution of chromosomal aberrations leading to position effects (disruption of a genes regulatory environment), observing a clear bias not only for mapping onto CBS but also for longer CBS size. Our results provide a genome wide data set characterizing the regulatory domains of genes and the conserved regulatory elements within them.

  13. Differential trypanosome surface coat regulation by a CCCH protein that co-associates with procyclin mRNA cis-elements.

    Directory of Open Access Journals (Sweden)

    Pegine Walrad

    2009-02-01

    Full Text Available The genome of Trypanosoma brucei is unusual in being regulated almost entirely at the post-transcriptional level. In terms of regulation, the best-studied genes are procyclins, which encode a family of major surface GPI-anchored glycoproteins (EP1, EP2, EP3, GPEET that show differential expression in the parasite's tsetse-fly vector. Although procyclin mRNA cis-regulatory sequences have provided the paradigm for post-transcriptional control in kinetoplastid parasites, trans-acting regulators of procyclin mRNAs are unidentified, despite intensive effort over 15 years. Here we identify the developmental regulator, TbZFP3, a CCCH-class predicted RNA binding protein, as an isoform-specific regulator of Procyclin surface coat expression in trypanosomes. We demonstrate (i that endogenous TbZFP3 shows sequence-specific co-precipitation of EP1 and GPEET, but not EP2 and EP3, procyclin mRNA isoforms, (ii that ectopic overexpression of TbZFP3 does not perturb the mRNA abundance of procyclin transcripts, but rather that (iii their protein expression is regulated in an isoform-specific manner, as evidenced by mass spectrometric analysis of the Procyclin expression signature in the transgenic cell lines. The TbZFP3 mRNA-protein complex (TbZFP3mRNP is identified as a trans-regulator of differential surface protein expression in trypanosomes. Moreover, its sequence-specific interactions with procyclin mRNAs are compatible with long-established predictions for Procyclin regulation. Combined with the known association of TbZFP3 with the translational apparatus, this study provides a long-sought missing link between surface protein cis-regulatory signals and the gene expression machinery in trypanosomes.

  14. cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis).

    Science.gov (United States)

    Zhang, Li-Feng; Li, Wan-Feng; Han, Su-Ying; Yang, Wen-Hua; Qi, Li-Wang

    2013-10-15

    A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis. © 2013.

  15. Identification and characterization of cis-acting elements involved in the regulation of ABA- and/or GA-mediated LuPLR1 gene expression and lignan biosynthesis in flax (Linum usitatissimum L.) cell cultures.

    Science.gov (United States)

    Corbin, Cyrielle; Renouard, Sullivan; Lopez, Tatiana; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe

    2013-03-15

    Pinoresinol lariciresinol reductase 1, encoded by the LuPLR1 gene in flax (Linum usitatissimum L.), is responsible for the biosynthesis of (+)-secoisolariciresinol, a cancer chemopreventive phytoestrogenic lignan accumulated in high amount in the hull of flaxseed. Our recent studies have demonstrated a key role of abscisic acid (ABA) in the regulation of LuPLR1 gene expression and thus of the (+)-secoisolariciresinol synthesis during the flax seedcoat development. It is well accepted that gibberellins (GA) and ABA play antagonistic roles in the regulation of numerous developmental processes; therefore it is of interest to clarify their respective effects on lignan biosynthesis. Herein, using flax cell suspension cultures, we demonstrate that LuPLR1 gene expression and (+)-secoisolariciresinol synthesis are up-regulated by ABA and down-regulated by GA. The LuPLR1 gene promoter analysis and mutation experiments allow us to identify and characterize two important cis-acting sequences (ABRE and MYB2) required for these regulations. These results imply that a cross-talk between ABA and GA signaling orchestrated by transcription factors is involved in the regulation of lignan biosynthesis. This is particularly evidenced in the case of the ABRE cis-regulatory sequence of LuPLR1 gene promoter that appears to be a common target sequence of GA and ABA signals. Copyright © 2012 Elsevier GmbH. All rights reserved.

  16. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence

    Science.gov (United States)

    Gordon, Kacy L.; Arthur, Robert K.; Ruvinsky, Ilya

    2015-01-01

    Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. PMID:26020930

  17. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence.

    Directory of Open Access Journals (Sweden)

    Kacy L Gordon

    2015-05-01

    Full Text Available Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2 from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements.

  18. Direct activation of a notochord cis-regulatory module by Brachyury and FoxA in the ascidian Ciona intestinalis.

    Science.gov (United States)

    Passamaneck, Yale J; Katikala, Lavanya; Perrone, Lorena; Dunn, Matthew P; Oda-Ishii, Izumi; Di Gregorio, Anna

    2009-11-01

    The notochord is a defining feature of the chordate body plan. Experiments in ascidian, frog and mouse embryos have shown that co-expression of Brachyury and FoxA class transcription factors is required for notochord development. However, studies on the cis-regulatory sequences mediating the synergistic effects of these transcription factors are complicated by the limited knowledge of notochord genes and cis-regulatory modules (CRMs) that are directly targeted by both. We have identified an easily testable model for such investigations in a 155-bp notochord-specific CRM from the ascidian Ciona intestinalis. This CRM contains functional binding sites for both Ciona Brachyury (Ci-Bra) and FoxA (Ci-FoxA-a). By combining point mutation analysis and misexpression experiments, we demonstrate that binding of both transcription factors to this CRM is necessary and sufficient to activate transcription. To gain insights into the cis-regulatory criteria controlling its activity, we investigated the organization of the transcription factor binding sites within the 155-bp CRM. The 155-bp sequence contains two Ci-Bra binding sites with identical core sequences but opposite orientations, only one of which is required for enhancer activity. Changes in both orientation and spacing of these sites substantially affect the activity of the CRM, as clusters of identical sites found in the Ciona genome with different arrangements are unable to activate transcription in notochord cells. This work presents the first evidence of a synergistic interaction between Brachyury and FoxA in the activation of an individual notochord CRM, and highlights the importance of transcription factor binding site arrangement for its function.

  19. Transcription factor trapping by RNA in gene regulatory elements.

    Science.gov (United States)

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  20. Herpesvirus papio contains a plasmid origin of replication that acts in cis interspecies with an Epstein-Barr virus trans-acting function.

    Science.gov (United States)

    Pesano, R L; Pagano, J S

    1986-01-01

    Herpesvirus papio (HVP) and Epstein-Barr virus (EBV) are closely related biologically and biochemically; lymphoblastoid cells infected with either virus contain episomal viral DNA. The putative origin of replication for EBV plasmids (oriP) has been assigned to a 1,790-base-pair fragment (cis) in the short unique region of the genome which requires a viral function supplied in trans from elsewhere in the genome (J. Yates, N. Warren, D. Reisman, and B. Sugden, Proc. Natl. Acad. Sci. USA 81:3806-3810, 1984). We report here the identification of the putative origin of replication (cis) in HVP; we assigned it to the HVP EcoRI K fragment. The results indicate that the HVP replication process requires both a cis and a trans-acting function, analogous to that found in EBV. Images PMID:3023667

  1. Mapping of cis-regulatory sites in the promoter of testis-specific stellate genes of Drosophila melanogaster.

    Science.gov (United States)

    Olenkina, O M; Egorova, K S; Aravin, A A; Naumova, N M; Gvozdev, V A; Olenina, L V

    2012-11-01

    Tandem Stellate genes organized into two clusters in heterochromatin and euchromatin of the X-chromosome are part of the Ste-Su(Ste) genetic system required for maintenance of male fertility and reproduction of Drosophila melanogaster. Stellate genes encode a regulatory subunit of protein kinase CK2 and are the main targets of germline-specific piRNA-silencing; their derepression leads to appearance of protein crystals in spermatocytes, meiotic disturbances, and male sterility. A short promoter region of 134 bp appears to be sufficient for testis-specific transcription of Stellate, and it contains three closely located cis-regulatory elements called E-boxes. By using reporter analysis, we confirmed a strong functionality of the E-boxes in the Stellate promoter for in vivo transcription. Using selective mutagenesis, we have shown that the presence of the central E-box 2 is preferable to maintain a high-level testis-specific transcription of the reporter gene under the Stellate promoter. The Stellate promoter provides transcription even in heterochromatin, and corresponding mRNAs are translated with the generation of full-size protein products in case of disturbances in the piRNA-silencing process. We have also shown for the first time that the activity of the Stellate promoter is determined by chromatin context of the X-chromosome in male germinal cells, and it increases at about twofold when relocating in autosomes.

  2. 9-cis-retinoic acid represses estrogen-induced expression of the very low density apolipoprotein II gene.

    Science.gov (United States)

    Schippers, I J; Kloppenburg, M; Snippe, L; Ab, G

    1994-11-01

    The chicken very low density apolipoprotein II (apoVLDLII) gene is estrogen-inducible and specifically expressed in liver. We examined the possible involvement of the retinoid X receptor (RXR) and its ligand 9-cis-retinoic acid (9-cis-RA) in the activation of the apoVLDLII promoter. We first concentrated on a potential RXR recognition site, which deviates at only one position from a perfect direct A/GGGTCA repeat spaced by one nucleotide (DR-1) and was earlier identified as a common HNF-4/COUP-TF recognition site. However, band shift analysis revealed that this imperfect DR-1 motif does not interact with RXR alpha-homodimers. In accordance with this observation we found that this regulatory element does not mediate transactivation through RXR alpha in the presence of 9-cis-RA. However, our experiments revealed another, unexpected, effect of 9-cis-RA. Instead of stimulating, 9-cis-RA attenuated estrogen-induced expression of transfected estrogen-responsive VLDL-CAT reporter plasmids. This repression appeared to take place through the main estrogen response element (ERE) of the gene. Importantly, 9-cis-RA also strongly repressed the estrogen-induced expression of the endogenous apoVLDLII gene in cultured chicken hepatoma cells.

  3. Characterization of noncoding regulatory DNA in the human genome.

    Science.gov (United States)

    Elkon, Ran; Agami, Reuven

    2017-08-08

    Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.

  4. Cis-regulatory signatures of orthologous stress-associated bZIP transcription factors from rice, sorghum and Arabidopsis based on phylogenetic footprints

    Directory of Open Access Journals (Sweden)

    Xu Fuyu

    2012-09-01

    Full Text Available Abstract Background The potential contribution of upstream sequence variation to the unique features of orthologous genes is just beginning to be unraveled. A core subset of stress-associated bZIP transcription factors from rice (Oryza sativa formed ten clusters of orthologous groups (COG with genes from the monocot sorghum (Sorghum bicolor and dicot Arabidopsis (Arabidopsis thaliana. The total cis-regulatory information content of each stress-associated COG was examined by phylogenetic footprinting to reveal ortholog-specific, lineage-specific and species-specific conservation patterns. Results The most apparent pattern observed was the occurrence of spatially conserved ‘core modules’ among the COGs but not among paralogs. These core modules are comprised of various combinations of two to four putative transcription factor binding site (TFBS classes associated with either developmental or stress-related functions. Outside the core modules are specific stress (ABA, oxidative, abiotic, biotic or organ-associated signals, which may be functioning as ‘regulatory fine-tuners’ and further define lineage-specific and species-specific cis-regulatory signatures. Orthologous monocot and dicot promoters have distinct TFBS classes involved in disease and oxidative-regulated expression, while the orthologous rice and sorghum promoters have distinct combinations of root-specific signals, a pattern that is not particularly conserved in Arabidopsis. Conclusions Patterns of cis-regulatory conservation imply that each ortholog has distinct signatures, further suggesting that they are potentially unique in a regulatory context despite the presumed conservation of broad biological function during speciation. Based on the observed patterns of conservation, we postulate that core modules are likely primary determinants of basal developmental programming, which may be integrated with and further elaborated by additional intrinsic or extrinsic signals in

  5. Theory on the mechanism of distal action of transcription factors: looping of DNA versus tracking along DNA

    International Nuclear Information System (INIS)

    Murugan, R

    2010-01-01

    In this paper, we develop a theory on the mechanism of distal action of the transcription factors, which are bound at their respective cis-regulatory enhancer modules on the promoter-RNA polymerase II (PR) complexes to initiate the transcription event in eukaryotes. We consider both the looping and tracking modes of their distal communication and calculate the mean first passage time that is required for the distal interactions of the complex of enhancer and transcription factor with the PR via both these modes. We further investigate how this mean first passage time is dependent on the length of the DNA segment (L, base-pairs) that connects the cis-regulatory binding site and the respective promoter. When the radius of curvature of this connecting segment of DNA is R that was induced upon binding of the transcription factor at the cis-acting element and RNAPII at the promoter in cis-positions, our calculations indicate that the looping mode of distal action will dominate when L is such that L > 2πR and the tracking mode of distal action will be favored when L 2 bps. It seems that the free energy associated with the binding of the transcription factor with its cis-acting element and the distance of this cis-acting element from the corresponding promoter of the gene of interest is negatively correlated. Our results suggest that the looping and tracking modes of distal action are concurrently operating on the transcription activation and the physics that determines the timescales associated with the looping/tracking in the mechanism of action of these transcription factors on the initiation of the transcription event must put a selection pressure on the distribution of the distances of cis-regulatory modules from their respective promoters of the genes. The computational analysis of the upstream sequences of promoters of various genes in the human and mouse genomes for the presence of putative cis-regulatory elements for a set of known transcription factors using

  6. XcisClique: analysis of regulatory bicliques

    Directory of Open Access Journals (Sweden)

    Grene Ruth

    2006-04-01

    Full Text Available Abstract Background Modeling of cis-elements or regulatory motifs in promoter (upstream regions of genes is a challenging computational problem. In this work, set of regulatory motifs simultaneously present in the promoters of a set of genes is modeled as a biclique in a suitably defined bipartite graph. A biologically meaningful co-occurrence of multiple cis-elements in a gene promoter is assessed by the combined analysis of genomic and gene expression data. Greater statistical significance is associated with a set of genes that shares a common set of regulatory motifs, while simultaneously exhibiting highly correlated gene expression under given experimental conditions. Methods XcisClique, the system developed in this work, is a comprehensive infrastructure that associates annotated genome and gene expression data, models known cis-elements as regular expressions, identifies maximal bicliques in a bipartite gene-motif graph; and ranks bicliques based on their computed statistical significance. Significance is a function of the probability of occurrence of those motifs in a biclique (a hypergeometric distribution, and on the new sum of absolute values statistic (SAV that uses Spearman correlations of gene expression vectors. SAV is a statistic well-suited for this purpose as described in the discussion. Results XcisClique identifies new motif and gene combinations that might indicate as yet unidentified involvement of sets of genes in biological functions and processes. It currently supports Arabidopsis thaliana and can be adapted to other organisms, assuming the existence of annotated genomic sequences, suitable gene expression data, and identified regulatory motifs. A subset of Xcis Clique functionalities, including the motif visualization component MotifSee, source code, and supplementary material are available at https://bioinformatics.cs.vt.edu/xcisclique/.

  7. Alignment and prediction of cis-regulatory modules based on a probabilistic model of evolution.

    Directory of Open Access Journals (Sweden)

    Xin He

    2009-03-01

    Full Text Available Cross-species comparison has emerged as a powerful paradigm for predicting cis-regulatory modules (CRMs and understanding their evolution. The comparison requires reliable sequence alignment, which remains a challenging task for less conserved noncoding sequences. Furthermore, the existing models of DNA sequence evolution generally do not explicitly treat the special properties of CRM sequences. To address these limitations, we propose a model of CRM evolution that captures different modes of evolution of functional transcription factor binding sites (TFBSs and the background sequences. A particularly novel aspect of our work is a probabilistic model of gains and losses of TFBSs, a process being recognized as an important part of regulatory sequence evolution. We present a computational framework that uses this model to solve the problems of CRM alignment and prediction. Our alignment method is similar to existing methods of statistical alignment but uses the conserved binding sites to improve alignment. Our CRM prediction method deals with the inherent uncertainties of binding site annotations and sequence alignment in a probabilistic framework. In simulated as well as real data, we demonstrate that our program is able to improve both alignment and prediction of CRM sequences over several state-of-the-art methods. Finally, we used alignments produced by our program to study binding site conservation in genome-wide binding data of key transcription factors in the Drosophila blastoderm, with two intriguing results: (i the factor-bound sequences are under strong evolutionary constraints even if their neighboring genes are not expressed in the blastoderm and (ii binding sites in distal bound sequences (relative to transcription start sites tend to be more conserved than those in proximal regions. Our approach is implemented as software, EMMA (Evolutionary Model-based cis-regulatory Module Analysis, ready to be applied in a broad biological context.

  8. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize.

    Science.gov (United States)

    Busk, P K; Jensen, A B; Pagès, M

    1997-06-01

    The rab17 gene from maize is transcribed in late embryonic development and is responsive to abscisic acid and water stress in embryo and vegetative tissues. In vivo footprinting and transient transformation of rab17 were performed in embryos and vegetative tissues to characterize the cis-elements involved in regulation of the gene. By in vivo footprinting, protein binding was observed to nine elements in the promoter, which correspond to five putative ABREs (abscisic acid responsive elements) and four other sequences. The footprints indicated that distinct proteins interact with these elements in the two developmental stages. In transient transformation, six of the elements were important for high level expression of the rab17 promoter in embryos, whereas only three elements were important in leaves. The cis-acting sequences can be divided in embryo-specific, ABA-specific and leaf-specific elements on the basis of protein binding and the ability to confer expression of rab17. We found one positive, new element, called GRA, with the sequence CACTGGCCGCCC. This element was important for transcription in leaves but not in embryos. Two other non-ABRE elements that stimulated transcription from the rab17 promoter resemble previously described abscisic acid and drought-inducible elements. There were differences in protein binding and function of the five ABREs in the rab17 promoter. The possible reasons for these differences are discussed. The in vivo data obtained suggest that an embryo-specific pathway regulates transcription of the rab genes during development, whereas another pathway is responsible for induction in response to ABA and drought in vegetative tissues.

  9. 14q12 and severe Rett-like phenotypes: new clinical insights and physical mapping of FOXG1-regulatory elements

    Science.gov (United States)

    Allou, Lila; Lambert, Laetitia; Amsallem, Daniel; Bieth, Eric; Edery, Patrick; Destrée, Anne; Rivier, François; Amor, David; Thompson, Elizabeth; Nicholl, Julian; Harbord, Michael; Nemos, Christophe; Saunier, Aline; Moustaïne, Aissa; Vigouroux, Adeline; Jonveaux, Philippe; Philippe, Christophe

    2012-01-01

    The Forkhead box G1 (FOXG1) gene has been implicated in severe Rett-like phenotypes. It encodes the Forkhead box protein G1, a winged-helix transcriptional repressor critical for forebrain development. Recently, the core FOXG1 syndrome was defined as postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and dysgenesis of the corpus callosum. We present seven additional patients with a severe Rett-like neurodevelopment disorder associated with de novo FOXG1 point mutations (two cases) or 14q12 deletions (five cases). We expand the mutational spectrum in patients with FOXG1-related encephalopathies and precise the core FOXG1 syndrome phenotype. Dysgenesis of the corpus callosum and dyskinesia are not always present in FOXG1-mutated patients. We believe that the FOXG1 gene should be considered in severely mentally retarded patients (no speech-language) with severe acquired microcephaly (−4 to−6 SD) and few clinical features suggestive of Rett syndrome. Interestingly enough, three 14q12 deletions that do not include the FOXG1 gene are associated with phenotypes very reminiscent to that of FOXG1-mutation-positive patients. We physically mapped a putative long-range FOXG1-regulatory element in a 0.43 Mb DNA segment encompassing the PRKD1 locus. In fibroblast cells, a cis-acting regulatory sequence located more than 0.6 Mb away from FOXG1 acts as a silencer at the transcriptional level. These data are important for clinicians and for molecular biologists involved in the management of patients with severe encephalopathies compatible with a FOXG1-related phenotype. PMID:22739344

  10. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    Directory of Open Access Journals (Sweden)

    Amanda Malvessi Cattani

    Full Text Available Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.

  11. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    Science.gov (United States)

    Cattani, Amanda Malvessi; Siqueira, Franciele Maboni; Guedes, Rafael Lucas Muniz; Schrank, Irene Silveira

    2016-01-01

    Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.

  12. Properties of non-coding DNA and identification of putative cis-regulatory elements in Theileria parva

    Directory of Open Access Journals (Sweden)

    Guo Xiang

    2008-12-01

    Full Text Available Abstract Background Parasites in the genus Theileria cause lymphoproliferative diseases in cattle, resulting in enormous socio-economic losses. The availability of the genome sequences and annotation for T. parva and T. annulata has facilitated the study of parasite biology and their relationship with host cell transformation and tropism. However, the mechanism of transcriptional regulation in this genus, which may be key to understanding fundamental aspects of its parasitology, remains poorly understood. In this study, we analyze the evolution of non-coding sequences in the Theileria genome and identify conserved sequence elements that may be involved in gene regulation of these parasitic species. Results Intergenic regions and introns in Theileria are short, and their length distributions are considerably right-skewed. Intergenic regions flanked by genes in 5'-5' orientation tend to be longer and slightly more AT-rich than those flanked by two stop codons; intergenic regions flanked by genes in 3'-5' orientation have intermediate values of length and AT composition. Intron position is negatively correlated with intron length, and positively correlated with GC content. Using stringent criteria, we identified a set of high-quality orthologous non-coding sequences between T. parva and T. annulata, and determined the distribution of selective constraints across regions, which are shown to be higher close to translation start sites. A positive correlation between constraint and length in both intergenic regions and introns suggests a tight control over length expansion of non-coding regions. Genome-wide searches for functional elements revealed several conserved motifs in intergenic regions of Theileria genomes. Two such motifs are preferentially located within the first 60 base pairs upstream of transcription start sites in T. parva, are preferentially associated with specific protein functional categories, and have significant similarity to know

  13. ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent.

    Science.gov (United States)

    Hobo, T; Asada, M; Kowyama, Y; Hattori, T

    1999-09-01

    ACGT-containing ABA response elements (ABREs) have been functionally identified in the promoters of various genes. In addition, single copies of ABRE have been found to require a cis-acting, coupling element to achieve ABA induction. A coupling element 3 (CE3) sequence, originally identified as such in the barley HVA1 promoter, is found approximately 30 bp downstream of motif A (ACGT-containing ABRE) in the promoter of the Osem gene. The relationship between these two elements was further defined by linker-scan analyses of a 55 bp fragment of the Osem promoter, which is sufficient for ABA-responsiveness and VP1 activation. The analyses revealed that both motif A and CE3 sequence were required not only for ABA-responsiveness but also for VP1 activation. Since the sequences of motif A and CE3 were found to be similar, motif-exchange experiments were carried out. The experiments demonstrated that motif A and CE3 were interchangeable by each other with respect to both ABA and VP1 regulation. In addition, both sequences were shown to be recognized by a VP1-interacting, ABA-responsive bZIP factor TRAB1. These results indicate that ACGT-containing ABREs and CE3 are functionally equivalent cis-acting elements. Furthermore, TRAB1 was shown to bind two other non-ACGT ABREs. Based on these results, all these ABREs including CE3 are proposed to be categorized into a single class of cis-acting elements.

  14. Multiple Functional Variants in cis Modulate PDYN Expression.

    Science.gov (United States)

    Babbitt, Courtney C; Silverman, Jesse S; Haygood, Ralph; Reininga, Jennifer M; Rockman, Matthew V; Wray, Gregory A

    2010-02-01

    Understanding genetic variation and its functional consequences within cis-regulatory regions remains an important challenge in human genetics and evolution. Here, we present a fine-scale functional analysis of segregating variation within the cis-regulatory region of prodynorphin, a gene that encodes an endogenous opioid precursor with roles in cognition and disease. In order to characterize the functional consequences of segregating variation in cis in a region under balancing selection in different human populations, we examined associations between specific polymorphisms and gene expression in vivo and in vitro. We identified five polymorphisms within the 5' flanking region that affect transcript abundance: a 68-bp repeat recognized in prior studies, as well as two microsatellites and two single nucleotide polymorphisms not previously implicated as functional variants. The impact of these variants on transcription differs by brain region, sex, and cell type, implying interactions between cis genotype and the differentiated state of cells. The effects of individual variants on expression level are not additive in some combinations, implying epistatic interactions between nearby variants. These data reveal an unexpectedly complex relationship between segregating genetic variation and its expression-trait consequences and highlights the importance of close functional scrutiny of natural genetic variation within even relatively well-studied cis-regulatory regions.

  15. Hormone response element binding proteins: novel regulators of vitamin D and estrogen signaling.

    Science.gov (United States)

    Lisse, Thomas S; Hewison, Martin; Adams, John S

    2011-03-01

    Insights from vitamin D-resistant New World primates and their human homologues as models of natural and pathological insensitivity to sterol/steroid action have uncovered a family of novel intracellular vitamin D and estrogen regulatory proteins involved in hormone action. The proteins, known as "vitamin D or estrogen response element-binding proteins", behave as potent cis-acting, transdominant regulators to inhibit steroid receptor binding to DNA response elements and is responsible for vitamin D and estrogen resistances. This set of interactors belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family of previously known pre-mRNA-interacting proteins. This review provides new insights into the mechanism by which these novel regulators of signaling and metabolism can act to regulate responses to vitamin D and estrogen. In addition the review also describes other molecules that are known to influence nuclear receptor signaling through interaction with hormone response elements. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. cis-acting elements at opposite ends of the Citrus tristeza virus genome differ in initiation and termination of subgenomic RNAs

    International Nuclear Information System (INIS)

    Ayllon, Maria A.; Gowda, Siddarame; Satyanarayana, Tatineni; Dawson, William O.

    2004-01-01

    Citrus tristeza virus (CTV), a member of the Closteroviridae with a plus-stranded genomic RNA of approximately 20 kb, produces 10 3'-coterminal subgenomic (sg) RNAs that serve as messenger (m)RNAs for its internal genes. In addition, a population of 5'-terminal sgRNAs of approximately 700 nts are highly abundant in infected cells. Previous analysis demonstrated that the controller elements (CE) are responsible for the 3'-terminal mRNAs and the small 5'-terminal sgRNAs differ in the number of additional sgRNAs produced. A feature of both types of CE is production of 5'- and 3'-terminal positive-stranded sgRNAs, but the 3' CEs additionally produce a negative-stranded complement of the 3'-terminal mRNAs. Here, we found that the termination (for 5'-terminal sgRNAs) and initiation (for 3'-terminal sgRNAs) sites of the 5' vs. the 3' CEs occur at opposite ends of the respective minimal active CEs. The initiation site for the 3' CE of the major coat protein gene, and probably those of the p20 and p23 genes, was outside (3' in terms of the genomic RNA) the minimal unit, whereas the termination sites were located within the minimal CE, 30-50 nts upstream of the initiation site (referring to the positive-strand sequence). In contrast, the initiation site for the 5' CE was in the 5' region of the minimal unit, with the termination sites 20-35 nts downstream (referring to the positive-strand sequence). Furthermore, the CEs differ in initiation nucleotide and response to mutagenesis of that nucleotide. The 3' CE initiates sgRNA synthesis from a uridylate, whereas the 5' CE initiates from a cytidylate. We previously found that the 3' CEs were unusually tolerant to mutagenesis of the initiation sites, with initiation proceeding from alternative sites. Mutagenesis of the initiation site of the 5' CE prevented synthesis of either the 5'- or 3'-terminal sgRNAs. Thus, the cis-acting elements at opposite ends of the genome are remarkably different, perhaps having arisen from different

  17. Characterization of Cer-1 cis-regulatory region during early Xenopus development.

    Science.gov (United States)

    Silva, Ana Cristina; Filipe, Mário; Steinbeisser, Herbert; Belo, José António

    2011-05-01

    Cerberus-related molecules are well-known Wnt, Nodal, and BMP inhibitors that have been implicated in different processes including anterior–posterior patterning and left–right asymmetry. In both mouse and frog, two Cerberus-related genes have been isolated, mCer-1 and mCer-2, and Xcer and Xcoco, respectively. Until now, little is known about the mechanisms involved in their transcriptional regulation. Here, we report a heterologous analysis of the mouse Cerberus-1 gene upstream regulatory regions, responsible for its expression in the visceral endodermal cells. Our analysis showed that the consensus sequences for a TATA, CAAT, or GC boxes were absent but a TGTGG sequence was present at position -172 to -168 bp, relative to the ATG. Using a series of deletion constructs and transient expression in Xenopus embryos, we found that a fragment of 1.4 kb of Cer-1 promoter sequence could reproduce the endogenous expression pattern of Xenopus cerberus. A 0.7-kb mcer-1 upstream region was able to drive reporter expression to the involuting mesendodermal cells, while further deletions abolished reporter gene expression. Our results suggest that although no sequence similarity was found between mouse and Xenopus cerberus cis-regulatory regions, the signaling cascades regulating cerberus expression, during gastrulation, is conserved.

  18. Amplification of the Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 lytic origin of DNA replication is dependent upon a cis-acting AT-rich region and an ORF50 response element and the trans-acting factors ORF50 (K-Rta) and K8 (K-bZIP)

    International Nuclear Information System (INIS)

    AuCoin, David P.; Colletti, Kelly S.; Cei, Sylvia A.; Papouskova, Iva; Tarrant, Margaret; Pari, Gregory S.

    2004-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV8), has significant sequence homology to Epstein-Barr virus (EBV). In cell culture, HHV8 is primarily latent, and viral genes associated with lytic replication are not expressed. Two lytic origins of DNA replication (oriLyt) are present within the HHV8 genome and are composed of an AT-rich region adjacent to GC-rich DNA sequences. We have now identified essential cis- and trans-acting elements required for oriLyt-dependent DNA replication. The transient replication assay was used to show that two AT-rich elements, three consensus AP1 transcription factor-binding sites, an ORF50 response element (RE), and a consensus TATA box motif are essential for efficient origin-dependent DNA replication. Transient transfection of luciferase reporter constructs indicated that the downstream region of the HHV8 oriLyt responds to ORF50 and suggests that part of the oriLyt may be an enhancer/promoter. In addition, a transient cotransfection-replication assay elucidated the set of trans-acting factors required for lytic DNA replication. These factors consist of homologues to the core replication proteins: ORF6 (ssDNA binding protein), ORF9 (DNA polymerase), ORF40-41 (primase-associated factor), ORF44 (helicase), ORF56 (primase), and ORF59 (polymerase processivity factor) common to all herpesviruses along with ORF50 (K-Rta) and K8 (K-bZIP)

  19. Chorion gene activation and repression is dependent on BmC/EBP expression and binding to cognate cis-elements.

    Science.gov (United States)

    Papantonis, Argyris; Sourmeli, Sissy; Lecanidou, Rena

    2008-05-09

    From the different cis-elements clustered on silkmoth chorion gene promoters, C/EBP binding sites predominate. Their sequence composition and dispersal vary amongst promoters of diverse developmental specificity. Occupancy of these sites by BmC/EBP was examined through Southwestern and ChIP assays modified to suit ovarian follicular cells. For the genes studied, binding of BmC/EBP coincided with the respective stages of transcriptional activation. However, the factor was reloaded on promoter sequences long after individual gene repression. Furthermore, suppression of BmC/EBP transcription in developing follicles resulted in de-regulation of chorion gene expression. A biphasic function of BmC/EBP, according to which it may act as both an activator and a repressor during silkmoth choriogenesis, is considered under the light of the presented data.

  20. Theory on the mechanism of distal action of transcription factors: looping of DNA versus tracking along DNA

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, R, E-mail: rmurugan@gmail.co [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036 (India)

    2010-10-15

    In this paper, we develop a theory on the mechanism of distal action of the transcription factors, which are bound at their respective cis-regulatory enhancer modules on the promoter-RNA polymerase II (PR) complexes to initiate the transcription event in eukaryotes. We consider both the looping and tracking modes of their distal communication and calculate the mean first passage time that is required for the distal interactions of the complex of enhancer and transcription factor with the PR via both these modes. We further investigate how this mean first passage time is dependent on the length of the DNA segment (L, base-pairs) that connects the cis-regulatory binding site and the respective promoter. When the radius of curvature of this connecting segment of DNA is R that was induced upon binding of the transcription factor at the cis-acting element and RNAPII at the promoter in cis-positions, our calculations indicate that the looping mode of distal action will dominate when L is such that L > 2{pi}R and the tracking mode of distal action will be favored when L < 2{pi}R. The time required for the distal action will be minimum when L = 2{pi}R where the typical value of R for the binding of histones will be R {approx} 16 bps and L {approx} 10{sup 2} bps. It seems that the free energy associated with the binding of the transcription factor with its cis-acting element and the distance of this cis-acting element from the corresponding promoter of the gene of interest is negatively correlated. Our results suggest that the looping and tracking modes of distal action are concurrently operating on the transcription activation and the physics that determines the timescales associated with the looping/tracking in the mechanism of action of these transcription factors on the initiation of the transcription event must put a selection pressure on the distribution of the distances of cis-regulatory modules from their respective promoters of the genes. The computational analysis

  1. An in vivo cis-regulatory screen at the type 2 diabetes associated TCF7L2 locus identifies multiple tissue-specific enhancers.

    Directory of Open Access Journals (Sweden)

    Daniel Savic

    Full Text Available Genome-wide association studies (GWAS have repeatedly shown an association between non-coding variants in the TCF7L2 locus and risk for type 2 diabetes (T2D, implicating a role for cis-regulatory variation within this locus in disease etiology. Supporting this hypothesis, we previously localized complex regulatory activity to the TCF7L2 T2D-associated interval using an in vivo bacterial artificial chromosome (BAC enhancer-trapping reporter strategy. To follow-up on this broad initial survey of the TCF7L2 regulatory landscape, we performed a fine-mapping enhancer scan using in vivo mouse transgenic reporter assays. We functionally interrogated approximately 50% of the sequences within the T2D-associated interval, utilizing sequence conservation within this 92-kb interval to determine the regulatory potential of all evolutionary conserved sequences that exhibited conservation to the non-eutherian mammal opossum. Included in this study was a detailed functional interrogation of sequences spanning both protective and risk alleles of single nucleotide polymorphism (SNP rs7903146, which has exhibited allele-specific enhancer function in pancreatic beta cells. Using these assays, we identified nine segments regulating various aspects of the TCF7L2 expression profile and that constitute nearly 70% of the sequences tested. These results highlight the regulatory complexity of this interval and support the notion that a TCF7L2 cis-regulatory disruption leads to T2D predisposition.

  2. The Non-Coding Regulatory RNA Revolution in Archaea

    Directory of Open Access Journals (Sweden)

    Diego Rivera Gelsinger

    2018-03-01

    Full Text Available Small non-coding RNAs (sRNAs are ubiquitously found in the three domains of life playing large-scale roles in gene regulation, transposable element silencing and defense against foreign elements. While a substantial body of experimental work has been done to uncover function of sRNAs in Bacteria and Eukarya, the functional roles of sRNAs in Archaea are still poorly understood. Recently, high throughput studies using RNA-sequencing revealed that sRNAs are broadly expressed in the Archaea, comprising thousands of transcripts within the transcriptome during non-challenged and stressed conditions. Antisense sRNAs, which overlap a portion of a gene on the opposite strand (cis-acting, are the most abundantly expressed non-coding RNAs and they can be classified based on their binding patterns to mRNAs (3′ untranslated region (UTR, 5′ UTR, CDS-binding. These antisense sRNAs target many genes and pathways, suggesting extensive roles in gene regulation. Intergenic sRNAs are less abundantly expressed and their targets are difficult to find because of a lack of complete overlap between sRNAs and target mRNAs (trans-acting. While many sRNAs have been validated experimentally, a regulatory role has only been reported for very few of them. Further work is needed to elucidate sRNA-RNA binding mechanisms, the molecular determinants of sRNA-mediated regulation, whether protein components are involved and how sRNAs integrate with complex regulatory networks.

  3. Neutral forces acting on intragenomic variability shape the Escherichia coli regulatory network topology.

    Science.gov (United States)

    Ruths, Troy; Nakhleh, Luay

    2013-05-07

    Cis-regulatory networks (CRNs) play a central role in cellular decision making. Like every other biological system, CRNs undergo evolution, which shapes their properties by a combination of adaptive and nonadaptive evolutionary forces. Teasing apart these forces is an important step toward functional analyses of the different components of CRNs, designing regulatory perturbation experiments, and constructing synthetic networks. Although tests of neutrality and selection based on molecular sequence data exist, no such tests are currently available based on CRNs. In this work, we present a unique genotype model of CRNs that is grounded in a genomic context and demonstrate its use in identifying portions of the CRN with properties explainable by neutral evolutionary forces at the system, subsystem, and operon levels. We leverage our model against experimentally derived data from Escherichia coli. The results of this analysis show statistically significant and substantial neutral trends in properties previously identified as adaptive in origin--degree distribution, clustering coefficient, and motifs--within the E. coli CRN. Our model captures the tightly coupled genome-interactome of an organism and enables analyses of how evolutionary events acting at the genome level, such as mutation, and at the population level, such as genetic drift, give rise to neutral patterns that we can quantify in CRNs.

  4. Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis.

    Science.gov (United States)

    Iwasaki, T; Yamaguchi-Shinozaki, K; Shinozaki, K

    1995-05-20

    In Arabidopsis thaliana, the induction of a dehydration-responsive gene, rd22, is mediated by abscisic acid (ABA) but the gene does not include any sequence corresponding to the consensus ABA-responsive element (ABRE), RYACGTGGYR, in its promoter region. The cis-regulatory region of the rd22 promoter was identified by monitoring the expression of beta-glucuronidase (GUS) activity in leaves of transgenic tobacco plants transformed with chimeric gene fusions constructed between 5'-deleted promoters of rd22 and the coding region of the GUS reporter gene. A 67-bp nucleotide fragment corresponding to positions -207 to -141 of the rd22 promoter conferred responsiveness to dehydration and ABA on a non-responsive promoter. The 67-bp fragment contains the sequences of the recognition sites for some transcription factors, such as MYC, MYB, and GT-1. The fact that accumulation of rd22 mRNA requires protein synthesis raises the possibility that the expression of rd22 might be regulated by one of these trans-acting protein factors whose de novo synthesis is induced by dehydration or ABA. Although the structure of the RD22 protein is very similar to that of a non-storage seed protein, USP, of Vicia faba, the expression of the GUS gene driven by the rd22 promoter in non-stressed transgenic Arabidopsis plants was found mainly in flowers and bolted stems rather than in seeds.

  5. cis-Acting Complex-Trait-Associated lincRNA Expression Correlates with Modulation of Chromosomal Architecture

    Directory of Open Access Journals (Sweden)

    Jennifer Yihong Tan

    2017-02-01

    Full Text Available Summary: Intergenic long noncoding RNAs (lincRNAs are the largest class of transcripts in the human genome. Although many have recently been linked to complex human traits, the underlying mechanisms for most of these transcripts remain undetermined. We investigated the regulatory roles of a high-confidence and reproducible set of 69 trait-relevant lincRNAs (TR-lincRNAs in human lymphoblastoid cells whose biological relevance is supported by their evolutionary conservation during recent human history and genetic interactions with other trait-associated loci. Their enrichment in enhancer-like chromatin signatures, interactions with nearby trait-relevant protein-coding loci, and preferential location at topologically associated domain (TAD boundaries provide evidence that TR-lincRNAs likely regulate proximal trait-relevant gene expression in cis by modulating local chromosomal architecture. This is consistent with the positive and significant correlation found between TR-lincRNA abundance and intra-TAD DNA-DNA contacts. Our results provide insights into the molecular mode of action by which TR-lincRNAs contribute to complex human traits. : Tan et al. identify and characterize 69 human complex trait/disease-associated lincRNAs in LCLs. They show that these loci are often associated with cis-regulation of gene expression and tend to be localized at TAD boundaries, suggesting that these lincRNAs may influence chromosomal architecture. Keywords: intergenic long noncoding RNA, lincRNA, GWAS, expression quantitative trait loci, eQTL, complex trait and disease, enhancer, cis-regulation, topologically associated domains, TAD

  6. A versatile cis-acting inverter module for synthetic translational switches.

    Science.gov (United States)

    Endo, Kei; Hayashi, Karin; Inoue, Tan; Saito, Hirohide

    2013-01-01

    Artificial genetic switches have been designed and tuned individually in living cells. A method to directly invert an existing OFF switch to an ON switch should be highly convenient to construct complex circuits from well-characterized modules, but developing such a technique has remained a challenge. Here we present a cis-acting RNA module to invert the function of a synthetic translational OFF switch to an ON switch in mammalian cells. This inversion maintains the property of the parental switch in response to a particular input signal. In addition, we demonstrate simultaneous and specific expression control of both the OFF and ON switches. The module fits the criteria of universality and expands the versatility of mRNA-based information processing systems developed for artificially controlling mammalian cellular behaviour.

  7. Predicting tissue specific cis-regulatory modules in the human genome using pairs of co-occurring motifs

    Directory of Open Access Journals (Sweden)

    Girgis Hani Z

    2012-02-01

    Full Text Available Abstract Background Researchers seeking to unlock the genetic basis of human physiology and diseases have been studying gene transcription regulation. The temporal and spatial patterns of gene expression are controlled by mainly non-coding elements known as cis-regulatory modules (CRMs and epigenetic factors. CRMs modulating related genes share the regulatory signature which consists of transcription factor (TF binding sites (TFBSs. Identifying such CRMs is a challenging problem due to the prohibitive number of sequence sets that need to be analyzed. Results We formulated the challenge as a supervised classification problem even though experimentally validated CRMs were not required. Our efforts resulted in a software system named CrmMiner. The system mines for CRMs in the vicinity of related genes. CrmMiner requires two sets of sequences: a mixed set and a control set. Sequences in the vicinity of the related genes comprise the mixed set, whereas the control set includes random genomic sequences. CrmMiner assumes that a large percentage of the mixed set is made of background sequences that do not include CRMs. The system identifies pairs of closely located motifs representing vertebrate TFBSs that are enriched in the training mixed set consisting of 50% of the gene loci. In addition, CrmMiner selects a group of the enriched pairs to represent the tissue-specific regulatory signature. The mixed and the control sets are searched for candidate sequences that include any of the selected pairs. Next, an optimal Bayesian classifier is used to distinguish candidates found in the mixed set from their control counterparts. Our study proposes 62 tissue-specific regulatory signatures and putative CRMs for different human tissues and cell types. These signatures consist of assortments of ubiquitously expressed TFs and tissue-specific TFs. Under controlled settings, CrmMiner identified known CRMs in noisy sets up to 1:25 signal-to-noise ratio. CrmMiner was

  8. Validation of Skeletal Muscle cis-Regulatory Module Predictions Reveals Nucleotide Composition Bias in Functional Enhancers

    Science.gov (United States)

    Kwon, Andrew T.; Chou, Alice Yi; Arenillas, David J.; Wasserman, Wyeth W.

    2011-01-01

    We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions. PMID:22144875

  9. Validation of skeletal muscle cis-regulatory module predictions reveals nucleotide composition bias in functional enhancers.

    Directory of Open Access Journals (Sweden)

    Andrew T Kwon

    2011-12-01

    Full Text Available We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions.

  10. Lmx1b-targeted cis-regulatory modules involved in limb dorsalization.

    Science.gov (United States)

    Haro, Endika; Watson, Billy A; Feenstra, Jennifer M; Tegeler, Luke; Pira, Charmaine U; Mohan, Subburaman; Oberg, Kerby C

    2017-06-01

    Lmx1b is a homeodomain transcription factor responsible for limb dorsalization. Despite striking double-ventral (loss-of-function) and double-dorsal (gain-of-function) limb phenotypes, no direct gene targets in the limb have been confirmed. To determine direct targets, we performed a chromatin immunoprecipitation against Lmx1b in mouse limbs at embryonic day 12.5 followed by next-generation sequencing (ChIP-seq). Nearly 84% ( n =617) of the Lmx1b-bound genomic intervals (LBIs) identified overlap with chromatin regulatory marks indicative of potential cis -regulatory modules (PCRMs). In addition, 73 LBIs mapped to CRMs that are known to be active during limb development. We compared Lmx1b-bound PCRMs with genes regulated by Lmx1b and found 292 PCRMs within 1 Mb of 254 Lmx1b-regulated genes. Gene ontological analysis suggests that Lmx1b targets extracellular matrix production, bone/joint formation, axonal guidance, vascular development, cell proliferation and cell movement. We validated the functional activity of a PCRM associated with joint-related Gdf5 that provides a mechanism for Lmx1b-mediated joint modification and a PCRM associated with Lmx1b that suggests a role in autoregulation. This is the first report to describe genome-wide Lmx1b binding during limb development, directly linking Lmx1b to targets that accomplish limb dorsalization. © 2017. Published by The Company of Biologists Ltd.

  11. Cis-acting regulatory sequences promote high-frequency gene conversion between repeated sequences in mammalian cells.

    Science.gov (United States)

    Raynard, Steven J; Baker, Mark D

    2004-01-01

    In mammalian cells, little is known about the nature of recombination-prone regions of the genome. Previously, we reported that the immunoglobulin heavy chain (IgH) mu locus behaved as a hotspot for mitotic, intrachromosomal gene conversion (GC) between repeated mu constant (Cmu) regions in mouse hybridoma cells. To investigate whether elements within the mu gene regulatory region were required for hotspot activity, gene targeting was used to delete a 9.1 kb segment encompassing the mu gene promoter (Pmu), enhancer (Emu) and switch region (Smu) from the locus. In these cell lines, GC between the Cmu repeats was significantly reduced, indicating that this 'recombination-enhancing sequence' (RES) is necessary for GC hotspot activity at the IgH locus. Importantly, the RES fragment stimulated GC when appended to the same Cmu repeats integrated at ectopic genomic sites. We also show that deletion of Emu and flanking matrix attachment regions (MARs) from the RES abolishes GC hotspot activity at the IgH locus. However, no stimulation of ectopic GC was observed with the Emu/MARs fragment alone. Finally, we provide evidence that no correlation exists between the level of transcription and GC promoted by the RES. We suggest a model whereby Emu/MARS enhances mitotic GC at the endogenous IgH mu locus by effecting chromatin modifications in adjacent DNA.

  12. Thermodynamic state ensemble models of cis-regulation.

    Directory of Open Access Journals (Sweden)

    Marc S Sherman

    Full Text Available A major goal in computational biology is to develop models that accurately predict a gene's expression from its surrounding regulatory DNA. Here we present one class of such models, thermodynamic state ensemble models. We describe the biochemical derivation of the thermodynamic framework in simple terms, and lay out the mathematical components that comprise each model. These components include (1 the possible states of a promoter, where a state is defined as a particular arrangement of transcription factors bound to a DNA promoter, (2 the binding constants that describe the affinity of the protein-protein and protein-DNA interactions that occur in each state, and (3 whether each state is capable of transcribing. Using these components, we demonstrate how to compute a cis-regulatory function that encodes the probability of a promoter being active. Our intention is to provide enough detail so that readers with little background in thermodynamics can compose their own cis-regulatory functions. To facilitate this goal, we also describe a matrix form of the model that can be easily coded in any programming language. This formalism has great flexibility, which we show by illustrating how phenomena such as competition between transcription factors and cooperativity are readily incorporated into these models. Using this framework, we also demonstrate that Michaelis-like functions, another class of cis-regulatory models, are a subset of the thermodynamic framework with specific assumptions. By recasting Michaelis-like functions as thermodynamic functions, we emphasize the relationship between these models and delineate the specific circumstances representable by each approach. Application of thermodynamic state ensemble models is likely to be an important tool in unraveling the physical basis of combinatorial cis-regulation and in generating formalisms that accurately predict gene expression from DNA sequence.

  13. Transformation of Migration Flows Between the Russian Far East and CIS and non-CIS States

    Directory of Open Access Journals (Sweden)

    Motrich E. L.

    2010-06-01

    Full Text Available Basic trends in the migration processes in the Russian Far East are shown. Special emphasis is placed on the transformation of migration interactions with CIS and non-CIS countries both at the level of the region as a whole, and at the level of the Far Eastern territories of the Russian Federation. An extent of using foreign labor in different periods of the Russian Far East socio-economic development and the regulatory support of this process are shown. Prospects for attracting and utilizing foreign labor are stated

  14. Trans-acting translational regulatory RNA binding proteins.

    Science.gov (United States)

    Harvey, Robert F; Smith, Tom S; Mulroney, Thomas; Queiroz, Rayner M L; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa; Lilley, Kathryn S; Willis, Anne E

    2018-05-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms. © 2018 Medical Research Council and University of Cambridge. WIREs RNA published by Wiley Periodicals, Inc.

  15. Functional evolution of cis-regulatory modules at a homeotic gene in Drosophila.

    Directory of Open Access Journals (Sweden)

    Margaret C W Ho

    2009-11-01

    Full Text Available It is a long-held belief in evolutionary biology that the rate of molecular evolution for a given DNA sequence is inversely related to the level of functional constraint. This belief holds true for the protein-coding homeotic (Hox genes originally discovered in Drosophila melanogaster. Expression of the Hox genes in Drosophila embryos is essential for body patterning and is controlled by an extensive array of cis-regulatory modules (CRMs. How the regulatory modules functionally evolve in different species is not clear. A comparison of the CRMs for the Abdominal-B gene from different Drosophila species reveals relatively low levels of overall sequence conservation. However, embryonic enhancer CRMs from other Drosophila species direct transgenic reporter gene expression in the same spatial and temporal patterns during development as their D. melanogaster orthologs. Bioinformatic analysis reveals the presence of short conserved sequences within defined CRMs, representing gap and pair-rule transcription factor binding sites. One predicted binding site for the gap transcription factor KRUPPEL in the IAB5 CRM was found to be altered in Superabdominal (Sab mutations. In Sab mutant flies, the third abdominal segment is transformed into a copy of the fifth abdominal segment. A model for KRUPPEL-mediated repression at this binding site is presented. These findings challenge our current understanding of the relationship between sequence evolution at the molecular level and functional activity of a CRM. While the overall sequence conservation at Drosophila CRMs is not distinctive from neighboring genomic regions, functionally critical transcription factor binding sites within embryonic enhancer CRMs are highly conserved. These results have implications for understanding mechanisms of gene expression during embryonic development, enhancer function, and the molecular evolution of eukaryotic regulatory modules.

  16. Minimal and contributing sequence determinants of the cis-acting locus of transfer (clt) of streptomycete plasmid pIJ101 occur within an intrinsically curved plasmid region.

    Science.gov (United States)

    Ducote, M J; Prakash, S; Pettis, G S

    2000-12-01

    Efficient interbacterial transfer of streptomycete plasmid pIJ101 requires the pIJ101 tra gene, as well as a cis-acting plasmid function known as clt. Here we show that the minimal pIJ101 clt locus consists of a sequence no greater than 54 bp in size that includes essential inverted-repeat and direct-repeat sequences and is located in close proximity to the 3' end of the korB regulatory gene. Evidence that sequences extending beyond the minimal locus and into the korB open reading frame influence clt transfer function and demonstration that clt-korB sequences are intrinsically curved raise the possibility that higher-order structuring of DNA and protein within this plasmid region may be an inherent feature of efficient pIJ101 transfer.

  17. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  18. Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses.

    Directory of Open Access Journals (Sweden)

    Jumpei Ito

    2017-07-01

    Full Text Available Human endogenous retroviruses (HERVs and other long terminal repeat (LTR-type retrotransposons (HERV/LTRs have regulatory elements that possibly influence the transcription of host genes. We systematically identified and characterized these regulatory elements based on publicly available datasets of ChIP-Seq of 97 transcription factors (TFs provided by ENCODE and Roadmap Epigenomics projects. We determined transcription factor-binding sites (TFBSs using the ChIP-Seq datasets and identified TFBSs observed on HERV/LTR sequences (HERV-TFBSs. Overall, 794,972 HERV-TFBSs were identified. Subsequently, we identified "HERV/LTR-shared regulatory element (HSRE," defined as a TF-binding motif in HERV-TFBSs, shared within a substantial fraction of a HERV/LTR type. HSREs could be an indication that the regulatory elements of HERV/LTRs are present before their insertions. We identified 2,201 HSREs, comprising specific associations of 354 HERV/LTRs and 84 TFs. Clustering analysis showed that HERV/LTRs can be grouped according to the TF binding patterns; HERV/LTR groups bounded to pluripotent TFs (e.g., SOX2, POU5F1, and NANOG, embryonic endoderm/mesendoderm TFs (e.g., GATA4/6, SOX17, and FOXA1/2, hematopoietic TFs (e.g., SPI1 (PU1, GATA1/2, and TAL1, and CTCF were identified. Regulatory elements of HERV/LTRs tended to locate nearby and/or interact three-dimensionally with the genes involved in immune responses, indicating that the regulatory elements play an important role in controlling the immune regulatory network. Further, we demonstrated subgroup-specific TF binding within LTR7, LTR5B, and LTR5_Hs, indicating that gains or losses of the regulatory elements occurred during genomic invasions of the HERV/LTRs. Finally, we constructed dbHERV-REs, an interactive database of HERV/LTR regulatory elements (http://herv-tfbs.com/. This study provides fundamental information in understanding the impact of HERV/LTRs on host transcription, and offers insights into

  19. Replication of chromosomal and episomal DNA in X-ray-damaged human cells: A cis- or trans-acting mechanism

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Rose, R.; Mitchell, D.L.

    1990-01-01

    Episomal plasmids and viruses in mammalian cells present small targets for X-ray-induced DNA damage. At doses up to 100 Gy, DNA strand breaks or endonuclease III-sensitive sites were not discernible in 10.3-kb Epstein-Barr virus-based plasmid DNA or in 4.9-kb defective simian virus 40 DNA. DNA replication in these small molecules, however, was inhibited strongly by X-ray doses of greater than or equal to 20 Gy, decreasing to only 20 to 40% of control values. Inhibition was relieved slightly by growth in caffeine but was increased by growth in 3-aminobenzamide. Inhibition of DNA replication in episomal DNA molecules that are too small to sustain significant damage directly to their DNA may be due to either (a) a trans-acting diffusible factor that transfers the consequences of DNA breakage to episomes and to other replicating molecules, (b) a cis-acting mechanism in which episomes are structurally linked to genomic chromatin, and replication of both episomal and chromosomal replicons is under common control, or (c) radiation damage on other cellular structures unrelated to DNA. The resolution of these cellular mechanisms may shed light on the X-ray-resistant replication in ataxia-telangiectasia and may suggest strategies for molecular characterization of potential trans- or cis-acting factors

  20. Dis3- and exosome subunit-responsive 3′ mRNA instability elements

    International Nuclear Information System (INIS)

    Kiss, Daniel L.; Hou, Dezhi; Gross, Robert H.; Andrulis, Erik D.

    2012-01-01

    Highlights: ► Successful use of a novel RNA-specific bioinformatic tool, RNA SCOPE. ► Identified novel 3′ UTR cis-acting element that destabilizes a reporter mRNA. ► Show exosome subunits are required for cis-acting element-mediated mRNA instability. ► Define precise sequence requirements of novel cis-acting element. ► Show that microarray-defined exosome subunit-regulated mRNAs have novel element. -- Abstract: Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of ribonucleases (RNases) and RNA-binding proteins. The major RNase of the complex is thought to be Dis3, a multi-functional 3′–5′ exoribonuclease and endoribonuclease. Although it is known that Dis3 and core exosome subunits are recruited to transcriptionally active genes and to messenger RNA (mRNA) substrates, this recruitment is thought to occur indirectly. We sought to discover cis-acting elements that recruit Dis3 or other exosome subunits. Using a bioinformatic tool called RNA SCOPE to screen the 3′ untranslated regions of up-regulated transcripts from our published Dis3 depletion-derived transcriptomic data set, we identified several motifs as candidate instability elements. Secondary screening using a luciferase reporter system revealed that one cassette—harboring four elements—destabilized the reporter transcript. RNAi-based depletion of Dis3, Rrp6, Rrp4, Rrp40, or Rrp46 diminished the efficacy of cassette-mediated destabilization. Truncation analysis of the cassette showed that two exosome subunit-sensitive elements (ESSEs) destabilized the reporter. Point-directed mutagenesis of ESSE abrogated the destabilization effect. An examination of the transcriptomic data from exosome subunit depletion-based microarrays revealed that mRNAs with ESSEs are found in every up-regulated mRNA data set but are underrepresented or missing from the down-regulated data sets. Taken together, our findings imply a potentially novel mechanism of m

  1. The cis-acting replication signal at the 3' end of Flock House virus RNA2 is RNA3-dependent

    International Nuclear Information System (INIS)

    Albarino, Cesar G.; Eckerle, Lance D.; Ball, L. Andrew

    2003-01-01

    The nodavirus Flock House virus has a bipartite positive-sense RNA genome consisting of RNAs 1 and 2, which encode the viral RNA-dependent RNA polymerase (RdRp) and capsid protein precursor, respectively. The RdRp catalyzes replication of both genome segments and produces from RNA1 a subgenomic RNA (RNA3) that transactivates RNA2 replication. Here, we replaced internal sequences of RNAs 1 and 2 with a common heterologous core and were thereby able to test the RNA termini for compatibility in supporting the replication of chimeric RNAs. The results showed that the 3' 50 nt of RNA2 contained an RNA3-dependent cis-acting replication signal. Since covalent RNA dimers can direct the synthesis of monomeric replication products, the RdRp can evidently respond to cis-acting replication signals located internally. Accordingly, RNA templates containing the 3' termini of both RNAs 1 and 2 in tandem generated different replication products depending on the presence or absence of RNA3

  2. RNA-ID, a highly sensitive and robust method to identify cis-regulatory sequences using superfolder GFP and a fluorescence-based assay.

    Science.gov (United States)

    Dean, Kimberly M; Grayhack, Elizabeth J

    2012-12-01

    We have developed a robust and sensitive method, called RNA-ID, to screen for cis-regulatory sequences in RNA using fluorescence-activated cell sorting (FACS) of yeast cells bearing a reporter in which expression of both superfolder green fluorescent protein (GFP) and yeast codon-optimized mCherry red fluorescent protein (RFP) is driven by the bidirectional GAL1,10 promoter. This method recapitulates previously reported progressive inhibition of translation mediated by increasing numbers of CGA codon pairs, and restoration of expression by introduction of a tRNA with an anticodon that base pairs exactly with the CGA codon. This method also reproduces effects of paromomycin and context on stop codon read-through. Five key features of this method contribute to its effectiveness as a selection for regulatory sequences: The system exhibits greater than a 250-fold dynamic range, a quantitative and dose-dependent response to known inhibitory sequences, exquisite resolution that allows nearly complete physical separation of distinct populations, and a reproducible signal between different cells transformed with the identical reporter, all of which are coupled with simple methods involving ligation-independent cloning, to create large libraries. Moreover, we provide evidence that there are sequences within a 9-nt library that cause reduced GFP fluorescence, suggesting that there are novel cis-regulatory sequences to be found even in this short sequence space. This method is widely applicable to the study of both RNA-mediated and codon-mediated effects on expression.

  3. 14 CFR 399.73 - Definition of small business for Regulatory Flexibility Act.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Definition of small business for Regulatory... Rulemaking Proceedings § 399.73 Definition of small business for Regulatory Flexibility Act. For the purposes... Flexibility Act), a direct air carrier or foreign air carrier is a small business if it provides air...

  4. Modular arrangement of regulatory RNA elements.

    Science.gov (United States)

    Roßmanith, Johanna; Narberhaus, Franz

    2017-03-04

    Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of regulatory RNA elements. Challenges associated with modular RNA design are discussed.

  5. Polycomb domain formation depends on short and long distance regulatory cues.

    Directory of Open Access Journals (Sweden)

    Bernd Schuettengruber

    Full Text Available BACKGROUND: Polycomb group (PcG proteins dynamically define cellular identities through the epigenetic repression of key developmental genes. In Drosophila, cis-regulatory regions termed PcG response elements (PREs act as nucleation sites for PcG proteins to create large repressive PcG domains that are marked by trimethylation of lysine 27 on histone H3 (H3K27me3. In addition to an action in cis, PREs can interact over long distances, thereby enhancing PcG dependent silencing. How PcG domains are established, which factors limit their propagation in cis, and how long range interactions of PREs in trans affect the chromatin structure is largely unknown. PRINCIPAL FINDINGS: We demonstrate that the insertion of a PRE-containing transgene in the Drosophila genome generates an artificial PcG domain and we analyze its organization by quantitative ChIP and ChIP-on-chip experiments. Intriguingly, a boundary element and known insulator proteins do not necessarily interfere with spreading of H3K27me3. Instead, domain borders correlate with the presence of promoter regions bound by RNA Polymerase II and active chromatin marks. In contrast, genes that are silent during early fly development get included within the PcG domain and this incorporation interferes with gene activation at later developmental stages. Moreover, trans-interaction of the transgenic PRE with its homologous endogenous PRE results in increased PcG binding, correlating with reinforced silencing of genes within the domain borders. CONCLUSIONS: Our results suggest that higher-order organization of PcG-bound chromatin can stabilize gene silencing within PcG domains. Further we propose that multi-protein complexes associated with active promoters are able to define the limits of PcG domains. Future work aimed to pinpoint the factors providing this barrier function will be required to understand the precise molecular mechanism by which active promoter regions can act as boundaries to stop

  6. Comparative analysis of regulatory elements in different germin-like ...

    African Journals Online (AJOL)

    It was observed that these promoters have important regulatory elements, which are involved in various important functions. These elements have been compared on the basis of location, copy number, and distributed on positive and negative strands. It was also observed that some of these elements are common and ...

  7. Characterization of a cis-acting element involved in cell-specific expression of the zebrafish brain aromatase gene.

    Science.gov (United States)

    Le Page, Yann; Menuet, Arnaud; Kah, Olivier; Pakdel, Farzad

    2008-10-01

    The cytochrome P450 Aromatase is the key enzyme catalyzing the conversion of androgens into estrogens. In zebrafish, the brain aromatase is encoded by cyp19b. Expression of cyp19b is restricted to radial glial cells bordering forebrain ventricles and is strongly stimulated by estrogens during development. At the promoter level, we have previously shown that an estrogen responsive element (ERE) is required for induction by estrogens. Here, we investigated the role of ERE flanking regions in the control of cell-specific expression. First, we show that a 20 bp length motif, named G x RE (glial x responsive element), acts in synergy with the ERE to mediate the estrogenic induction specifically in glial cells. Second, we demonstrate that, in vitro, this sequence binds factors exclusively present in glial or neuro-glial cells and is able to confer a glial specificity to an artificial estrogen-dependent gene. Taken together, these results contribute to the understanding of the molecular mechanisms allowing cyp19b regulation by estrogens and allowed to identify a promoter sequence involved in the strong estrogen inducibility of cyp19b which is specific for glial cells. The exceptional aromatase activity measured in the brain of teleost fish could rely on such mechanisms.

  8. Meta-analysis of breast cancer microarray studies in conjunction with conserved cis-elements suggest patterns for coordinate regulation

    Directory of Open Access Journals (Sweden)

    Lundberg Cathryn

    2008-01-01

    Full Text Available Abstract Background Gene expression measurements from breast cancer (BrCa tumors are established clinical predictive tools to identify tumor subtypes, identify patients showing poor/good prognosis, and identify patients likely to have disease recurrence. However, diverse breast cancer datasets in conjunction with diagnostic clinical arrays show little overlap in the sets of genes identified. One approach to identify a set of consistently dysregulated candidate genes in these tumors is to employ meta-analysis of multiple independent microarray datasets. This allows one to compare expression data from a diverse collection of breast tumor array datasets generated on either cDNA or oligonucleotide arrays. Results We gathered expression data from 9 published microarray studies examining estrogen receptor positive (ER+ and estrogen receptor negative (ER- BrCa tumor cases from the Oncomine database. We performed a meta-analysis and identified genes that were universally up or down regulated with respect to ER+ versus ER- tumor status. We surveyed both the proximal promoter and 3' untranslated regions (3'UTR of our top-ranking genes in each expression group to test whether common sequence elements may contribute to the observed expression patterns. Utilizing a combination of known transcription factor binding sites (TFBS, evolutionarily conserved mammalian promoter and 3'UTR motifs, and microRNA (miRNA seed sequences, we identified numerous motifs that were disproportionately represented between the two gene classes suggesting a common regulatory network for the observed gene expression patterns. Conclusion Some of the genes we identified distinguish key transcripts previously seen in array studies, while others are newly defined. Many of the genes identified as overexpressed in ER- tumors were previously identified as expression markers for neoplastic transformation in multiple human cancers. Moreover, our motif analysis identified a collection of

  9. Deciphering RNA Regulatory Elements Involved in the Developmental and Environmental Gene Regulation of Trypanosoma brucei.

    Science.gov (United States)

    Gazestani, Vahid H; Salavati, Reza

    2015-01-01

    Trypanosoma brucei is a vector-borne parasite with intricate life cycle that can cause serious diseases in humans and animals. This pathogen relies on fine regulation of gene expression to respond and adapt to variable environments, with implications in transmission and infectivity. However, the involved regulatory elements and their mechanisms of actions are largely unknown. Here, benefiting from a new graph-based approach for finding functional regulatory elements in RNA (GRAFFER), we have predicted 88 new RNA regulatory elements that are potentially involved in the gene regulatory network of T. brucei. We show that many of these newly predicted elements are responsive to both transcriptomic and proteomic changes during the life cycle of the parasite. Moreover, we found that 11 of predicted elements strikingly resemble previously identified regulatory elements for the parasite. Additionally, comparison with previously predicted motifs on T. brucei suggested the superior performance of our approach based on the current limited knowledge of regulatory elements in T. brucei.

  10. LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms.

    Science.gov (United States)

    Yang, Peng; Wu, Min; Guo, Jing; Kwoh, Chee Keong; Przytycka, Teresa M; Zheng, Jie

    2014-02-17

    As a fundamental genomic element, meiotic recombination hotspot plays important roles in life sciences. Thus uncovering its regulatory mechanisms has broad impact on biomedical research. Despite the recent identification of the zinc finger protein PRDM9 and its 13-mer binding motif as major regulators for meiotic recombination hotspots, other regulators remain to be discovered. Existing methods for finding DNA sequence motifs of recombination hotspots often rely on the enrichment of co-localizations between hotspots and short DNA patterns, which ignore the cross-individual variation of recombination rates and sequence polymorphisms in the population. Our objective in this paper is to capture signals encoded in genetic variations for the discovery of recombination-associated DNA motifs. Recently, an algorithm called "LDsplit" has been designed to detect the association between single nucleotide polymorphisms (SNPs) and proximal meiotic recombination hotspots. The association is measured by the difference of population recombination rates at a hotspot between two alleles of a candidate SNP. Here we present an open source software tool of LDsplit, with integrative data visualization for recombination hotspots and their proximal SNPs. Applying LDsplit on SNPs inside an established 7-mer motif bound by PRDM9 we observed that SNP alleles preserving the original motif tend to have higher recombination rates than the opposite alleles that disrupt the motif. Running on SNP windows around hotspots each containing an occurrence of the 7-mer motif, LDsplit is able to guide the established motif finding algorithm of MEME to recover the 7-mer motif. In contrast, without LDsplit the 7-mer motif could not be identified. LDsplit is a software tool for the discovery of cis-regulatory DNA sequence motifs stimulating meiotic recombination hotspots by screening and narrowing down to hotspot associated SNPs. It is the first computational method that utilizes the genetic variation of

  11. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.

    Science.gov (United States)

    Liu, Bingqiang; Zhang, Hanyuan; Zhou, Chuan; Li, Guojun; Fennell, Anne; Wang, Guanghui; Kang, Yu; Liu, Qi; Ma, Qin

    2016-08-09

    Phylogenetic footprinting is an important computational technique for identifying cis-regulatory motifs in orthologous regulatory regions from multiple genomes, as motifs tend to evolve slower than their surrounding non-functional sequences. Its application, however, has several difficulties for optimizing the selection of orthologous data and reducing the false positives in motif prediction. Here we present an integrative phylogenetic footprinting framework for accurate motif predictions in prokaryotic genomes (MP(3)). The framework includes a new orthologous data preparation procedure, an additional promoter scoring and pruning method and an integration of six existing motif finding algorithms as basic motif search engines. Specifically, we collected orthologous genes from available prokaryotic genomes and built the orthologous regulatory regions based on sequence similarity of promoter regions. This procedure made full use of the large-scale genomic data and taxonomy information and filtered out the promoters with limited contribution to produce a high quality orthologous promoter set. The promoter scoring and pruning is implemented through motif voting by a set of complementary predicting tools that mine as many motif candidates as possible and simultaneously eliminate the effect of random noise. We have applied the framework to Escherichia coli k12 genome and evaluated the prediction performance through comparison with seven existing programs. This evaluation was systematically carried out at the nucleotide and binding site level, and the results showed that MP(3) consistently outperformed other popular motif finding tools. We have integrated MP(3) into our motif identification and analysis server DMINDA, allowing users to efficiently identify and analyze motifs in 2,072 completely sequenced prokaryotic genomes. The performance evaluation indicated that MP(3) is effective for predicting regulatory motifs in prokaryotic genomes. Its application may enhance

  12. The HIV-1 Rev/RRE system is required for HIV-1 5' UTR cis elements to augment encapsidation of heterologous RNA into HIV-1 viral particles

    Directory of Open Access Journals (Sweden)

    Ma Hong

    2011-06-01

    Full Text Available Abstract Background The process of HIV-1 genomic RNA (gRNA encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ. Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site from the 5' untranslated region (UTR. Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles. Results We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ. Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons; however, the cDNA forms are episomes predominantly in the 1-LTR circle form. Conclusions Premised on encapsidation of a heterologous RNA into

  13. MicroRNA signature of cis-platin resistant vs. cis-platin sensitive ovarian cancer cell lines

    Directory of Open Access Journals (Sweden)

    Kumar Smriti

    2011-09-01

    Full Text Available Abstract Background Ovarian cancer is the leading cause of death from gynecologic cancer in women worldwide. According to the National Cancer Institute, ovarian cancer has the highest mortality rate among all the reproductive cancers in women. Advanced stage diagnosis and chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The most commonly employed chemotherapeutic drug for ovarian cancer treatment is cis-platin. As with most chemotherapeutic drugs, many patients eventually become resistant to cis-platin and therefore, diminishing its effect. The efficacy of current treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Methods The present study is focused on identifying the differential expression of regulatory microRNAs (miRNAs between cis-platin sensitive (A2780, and cis-platin resistant (A2780/CP70 cell lines. Cell proliferation assays were conducted to test the sensitivity of the two cell lines to cis-platin. Differential expression patterns of miRNA between cis-platin sensitive and cis-platin resistant cell lines were analyzed using novel LNA technology. Results Our results revealed changes in expression of 11 miRNAs out of 1,500 miRNAs analyzed. Out of the 11 miRNAs identified, 5 were up-regulated in the A2780/CP70 cell line and 6 were down regulated as compared to cis-platin sensitive A2780 cells. Our microRNA data was further validated by quantitative real-time PCR for these selected miRNAs. Ingenuity Pathway Analysis (IPA and Kyoto Encyclopedia of Genes and Genomes (KEGG analysis was performed for the selected miRNAs and their putative targets to identify the potential pathways and networks involved in cis-platin resistance. Conclusions Our data clearly showed the differential expression of 11 miRNAs in cis-platin resistant cells, which could potentially target many important pathways including MAPK, TGF-β signaling, actin cytoskeleton, ubiquitin mediated

  14. cis and trans requirements for the selective packaging of adenovirus type 5 DNA.

    OpenAIRE

    Gräble, M; Hearing, P

    1992-01-01

    Polar packaging of adenovirus DNA into virions is dependent on the presence of cis-acting sequences at the left end of the viral genome. Our previous analyses demonstrated that the adenovirus type 5 (Ad5) packaging domain (nucleotides 194 to 358) is composed of at least five elements that are functionally redundant. A repeated sequence, termed the A repeat, was associated with packaging function. Here we report a more detailed analysis of the requirements for the selective packaging of Ad5 DN...

  15. 78 FR 61999 - Hydropower Regulatory Efficiency Act of 2013; Supplemental Notice of Workshop

    Science.gov (United States)

    2013-10-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD13-9-000] Hydropower Regulatory Efficiency Act of 2013; Supplemental Notice of Workshop As announced in the Notices issued on September 3, 2013 and September 18, 2013, the Federal Energy Regulatory Commission (FERC or Commission...

  16. Location analysis for the estrogen receptor-? reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements

    OpenAIRE

    Mason, Christopher E.; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M.; Kallen, Roland G.; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B.

    2010-01-01

    Location analysis for estrogen receptor-? (ER?)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ER?-bound loci and quantify the incidence of ERE sequences under two stringencies of detection:

  17. H-2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element.

    Science.gov (United States)

    Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K

    1989-11-01

    Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor.

  18. Speeding cis-trans regulation discovery by phylogenomic analyses coupled with screenings of an arrayed library of Arabidopsis transcription factors.

    Directory of Open Access Journals (Sweden)

    Gabriel Castrillo

    Full Text Available Transcriptional regulation is an important mechanism underlying gene expression and has played a crucial role in evolution. The number, position and interactions between cis-elements and transcription factors (TFs determine the expression pattern of a gene. To identify functionally relevant cis-elements in gene promoters, a phylogenetic shadowing approach with a lipase gene (LIP1 was used. As a proof of concept, in silico analyses of several Brassicaceae LIP1 promoters identified a highly conserved sequence (LIP1 element that is sufficient to drive strong expression of a reporter gene in planta. A collection of ca. 1,200 Arabidopsis thaliana TF open reading frames (ORFs was arrayed in a 96-well format (RR library and a convenient mating based yeast one hybrid (Y1H screening procedure was established. We constructed an episomal plasmid (pTUY1H to clone the LIP1 element and used it as bait for Y1H screenings. A novel interaction with an HD-ZIP (AtML1 TF was identified and abolished by a 2 bp mutation in the LIP1 element. A role of this interaction in transcriptional regulation was confirmed in planta. In addition, we validated our strategy by reproducing the previously reported interaction between a MYB-CC (PHR1 TF, a central regulator of phosphate starvation responses, with a conserved promoter fragment (IPS1 element containing its cognate binding sequence. Finally, we established that the LIP1 and IPS1 elements were differentially bound by HD-ZIP and MYB-CC family members in agreement with their genetic redundancy in planta. In conclusion, combining in silico analyses of orthologous gene promoters with Y1H screening of the RR library represents a powerful approach to decipher cis- and trans-regulatory codes.

  19. Direct repeat sequences are essential for function of the cis-acting locus of transfer (clt) of Streptomyces phaeochromogenes plasmid pJV1.

    Science.gov (United States)

    Franco, Bernardo; González-Cerón, Gabriela; Servín-González, Luis

    2003-11-01

    The functionality of direct and inverted repeat sequences inside the cis acting locus of transfer (clt) of the Streptomyces plasmid pJV1 was determined by testing the effect of different deletions on plasmid transfer. The results show that the single most important element for pJV1 clt function is a series of evenly spaced 9 bp long direct repeats which match the consensus CCGCACA(C/G)(C/G), since their deletion caused a dramatic reduction in plasmid transfer. The presence of these repeats in the absence of any other clt sequences allowed plasmid transfer to occur at a frequency that was at least two orders of magnitude higher than that obtained in the complete absence of clt. A database search revealed regions with a similar organization, and in the same position, in Streptomyces plasmids pSN22 and pSLS, which have transfer proteins homologous to those of pJV1.

  20. Investment in the CEE/CIS region

    International Nuclear Information System (INIS)

    Lemierre, J.

    2002-01-01

    The energy investments in the Central and Eastern European region and the Commonwealth of Independent States (CIS) region are discussed in this Keynote Address. The message is addressed to regulators and governments. The restructuring of old industries to save energy is highlighted. The regulatory system must undergo a substantial reform. Another message is placed for investors in the energy field. (R.P.)

  1. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.

    Science.gov (United States)

    Klann, Tyler S; Black, Joshua B; Chellappan, Malathi; Safi, Alexias; Song, Lingyun; Hilton, Isaac B; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2017-06-01

    Large genome-mapping consortia and thousands of genome-wide association studies have identified non-protein-coding elements in the genome as having a central role in various biological processes. However, decoding the functions of the millions of putative regulatory elements discovered in these studies remains challenging. CRISPR-Cas9-based epigenome editing technologies have enabled precise perturbation of the activity of specific regulatory elements. Here we describe CRISPR-Cas9-based epigenomic regulatory element screening (CERES) for improved high-throughput screening of regulatory element activity in the native genomic context. Using dCas9 KRAB repressor and dCas9 p300 activator constructs and lentiviral single guide RNA libraries to target DNase I hypersensitive sites surrounding a gene of interest, we carried out both loss- and gain-of-function screens to identify regulatory elements for the β-globin and HER2 loci in human cells. CERES readily identified known and previously unidentified regulatory elements, some of which were dependent on cell type or direction of perturbation. This technology allows the high-throughput functional annotation of putative regulatory elements in their native chromosomal context.

  2. 78 FR 55251 - Hydropower Regulatory Efficiency Act of 2013; Notice of Workshop

    Science.gov (United States)

    2013-09-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD13-9-000] Hydropower... hydropower development at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the Hydropower Regulatory Efficiency Act of 2013. Participants should be prepared to discuss...

  3. Identification of germline transcriptional regulatory elements in Aedes aegypti

    Science.gov (United States)

    Akbari, Omar S.; Papathanos, Philippos A.; Sandler, Jeremy E.; Kennedy, Katie; Hay, Bruce A.

    2014-02-01

    The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UDMEL, and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

  4. A trans-acting enhancer modulates estrogen-mediated transcription of reporter genes in osteoblasts.

    Science.gov (United States)

    Sasaki-Iwaoka, H; Maruyama, K; Endoh, H; Komori, T; Kato, S; Kawashima, H

    1999-02-01

    The presence of bone-specific estrogen agonists and discovery of the osteoblast-specific transcription factor (TF), Cbfa1, together with the discovery of synergism between a TF Pit-1 and estrogen receptor alpha (ERalpha) on rat prolactin gene, led to investigation of Cbfa1 in the modulation of osteoblast-specific actions of estrogen. Reverse transcribed-polymerase chain reaction demonstrated expression of Cbfa1 in the osteoblastic cell lines, MG63, ROS17/2.8, and MC3T3E1, but not in nonosteoblastic cell lines, MCF7, C3H10T1/2, and HeLa. An ER expression vector and a series of luciferase (Luc) reporter plasmids harboring the Cbfa1 binding site OSE2 (the osteoblast-specific cis element in the osteocalcin promoter) and palindromic estrogen response elements (EREs) were cotransfected into both osteoblastic and nonosteoblastic cells. OSE2 worked as a cis- acting element in osteoblastic cells but not nonosteoblastic cells, whereas EREs were cis- acting in all cell lines. Synergistic transactivation was observed in osteoblastic cells only when both ERE and OSE2 were placed in juxtaposition to the promoter. Forced expression of Cbfa1 in C3H10T1/2 cells also induced synergism. Tamoxifen, a partial agonist/antagonist of estrogen, acted as an osteoblast-specific agonist in cells transfected with a promoter containing ERE and acted synergistically with a promoter containing the ERE-OSE2 enhancer combination. These results support the idea that bone-specific TFs modulate the actions of estrogen in a tissue-specific manner.

  5. Interactions of trans-acting factor(s) with the estradiol response element and nuclear factor 1 of the vitellogenin II gene of Japanese quail.

    Science.gov (United States)

    Gupta, S; Upadhayay, R; Kanungo, M S

    1996-08-01

    This study was directed at achieving an understanding of the mechanisms by which steroid hormones control the synthesis of vitellogenin (VTG) protein in the liver of the Japanese quail. Northern hybridization shows that administration of estradiol alone or with progesterone stimulates the synthesis of VTG mRNA. Gel mobility shift assay of DNA fragments containing the ERE and NF 1 shows that estradiol alone or with progesterone increases the levels of nuclear proteins that bind to these cis-acting elements of the promoter of the VTG gene. The cooperative effect of the two hormones seen at the level of expression of the VTG gene may be due to protein-protein interactions of trans-acting factors that bind to ERE and NF 1.

  6. ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element.

    Science.gov (United States)

    Chen, Hsing-Yu; Hsieh, En-Jung; Cheng, Mei-Chun; Chen, Chien-Yu; Hwang, Shih-Ying; Lin, Tsan-Piao

    2016-07-01

    ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) of Arabidopsis thaliana is an AP2/ERF domain transcription factor that regulates jasmonate (JA) biosynthesis and is induced by methyl JA treatment. The regulatory mechanism of ORA47 remains unclear. ORA47 is shown to bind to the cis-element (NC/GT)CGNCCA, which is referred to as the O-box, in the promoter of ABI2. We proposed that ORA47 acts as a connection between ABA INSENSITIVE1 (ABI1) and ABI2 and mediates an ABI1-ORA47-ABI2 positive feedback loop. PORA47:ORA47-GFP transgenic plants were used in a chromatin immunoprecipitation (ChIP) assay to show that ORA47 participates in the biosynthesis and/or signaling pathways of nine phytohormones. Specifically, many abscisic acid (ABA) and JA biosynthesis and signaling genes were direct targets of ORA47 under stress conditions. The JA content of the P35S:ORA47-GR lines was highly induced under wounding and moderately induced under water stress relative to that of the wild-type plants. The wounding treatment moderately increased ABA accumulation in the transgenic lines, whereas the water stress treatment repressed the ABA content. ORA47 is proposed to play a role in the biosynthesis of JA and ABA and in regulating the biosynthesis and/or signaling of a suite of phytohormone genes when plants are subjected to wounding and water stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Network perturbation by recurrent regulatory variants in cancer.

    Directory of Open Access Journals (Sweden)

    Kiwon Jang

    2017-03-01

    Full Text Available Cancer driving genes have been identified as recurrently affected by variants that alter protein-coding sequences. However, a majority of cancer variants arise in noncoding regions, and some of them are thought to play a critical role through transcriptional perturbation. Here we identified putative transcriptional driver genes based on combinatorial variant recurrence in cis-regulatory regions. The identified genes showed high connectivity in the cancer type-specific transcription regulatory network, with high outdegree and many downstream genes, highlighting their causative role during tumorigenesis. In the protein interactome, the identified transcriptional drivers were not as highly connected as coding driver genes but appeared to form a network module centered on the coding drivers. The coding and regulatory variants associated via these interactions between the coding and transcriptional drivers showed exclusive and complementary occurrence patterns across tumor samples. Transcriptional cancer drivers may act through an extensive perturbation of the regulatory network and by altering protein network modules through interactions with coding driver genes.

  8. Antioxidant response elements: Discovery, classes, regulation and potential applications

    Directory of Open Access Journals (Sweden)

    Azhwar Raghunath

    2018-07-01

    Full Text Available Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs, which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress. Keywords: Antioxidant response elements, Antioxidant genes, ARE-reporter constructs, ARE SNPs, Keap1/Nrf2/ARE pathway, Oxidative stress

  9. Antioxidant response elements: Discovery, classes, regulation and potential applications.

    Science.gov (United States)

    Raghunath, Azhwar; Sundarraj, Kiruthika; Nagarajan, Raju; Arfuso, Frank; Bian, Jinsong; Kumar, Alan P; Sethi, Gautam; Perumal, Ekambaram

    2018-07-01

    Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. A distant cis acting intronic element induces site-selective RNA editing

    DEFF Research Database (Denmark)

    Daniel, Chammiran; Venø, Morten Trillingsgaard; Ekdahl, Ylva

    2012-01-01

    Transcripts have been found to be site selectively edited from adenosine-to-inosine (A-to-I) in the mammalian brain, mostly in genes involved in neurotransmission. While A-to-I editing occurs at double-stranded structures, other structural requirements are largely unknown. We have investigated...... shown to be important for A-to-I editing. We demonstrate that the element also can induce editing in related but normally not edited RNA sequences. In human, thousands of genes are edited in duplexes formed by inverted repeats in non-coding regions. It is likely that numerous such duplexes can induce...... the requirements for editing at the I/M site in the Gabra-3 transcript of the GABA(A) receptor. We identify an evolutionarily conserved intronic duplex, 150 nt downstream of the exonic hairpin where the I/M site resides, which is required for its editing. This is the first time a distant RNA structure has been...

  11. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation.

    Directory of Open Access Journals (Sweden)

    Flavia Vischi Winck

    Full Text Available The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1 gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF and transcription regulator (TR genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1 and Lcr2 (Low-CO2 response regulator 2, may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome

  12. Co-suppression of sterol-regulatory element binding protein ...

    African Journals Online (AJOL)

    Administrator

    2011-06-22

    Jun 22, 2011 ... In Arabidopsis,. At5g35220 gene being sterol regulatory element-binding protein site 2, protease and metalloendopeptidase activity were required for chloroplast development and play a role in regulation of endodermal plastid size and number that are involved in ethylene-dependent gravitropism of light-.

  13. PReMod: a database of genome-wide mammalian cis-regulatory module predictions.

    Science.gov (United States)

    Ferretti, Vincent; Poitras, Christian; Bergeron, Dominique; Coulombe, Benoit; Robert, François; Blanchette, Mathieu

    2007-01-01

    We describe PReMod, a new database of genome-wide cis-regulatory module (CRM) predictions for both the human and the mouse genomes. The prediction algorithm, described previously in Blanchette et al. (2006) Genome Res., 16, 656-668, exploits the fact that many known CRMs are made of clusters of phylogenetically conserved and repeated transcription factors (TF) binding sites. Contrary to other existing databases, PReMod is not restricted to modules located proximal to genes, but in fact mostly contains distal predicted CRMs (pCRMs). Through its web interface, PReMod allows users to (i) identify pCRMs around a gene of interest; (ii) identify pCRMs that have binding sites for a given TF (or a set of TFs) or (iii) download the entire dataset for local analyses. Queries can also be refined by filtering for specific chromosomal regions, for specific regions relative to genes or for the presence of CpG islands. The output includes information about the binding sites predicted within the selected pCRMs, and a graphical display of their distribution within the pCRMs. It also provides a visual depiction of the chromosomal context of the selected pCRMs in terms of neighboring pCRMs and genes, all of which are linked to the UCSC Genome Browser and the NCBI. PReMod: http://genomequebec.mcgill.ca/PReMod.

  14. Bipartite structure and functional independence of adenovirus type 5 packaging elements.

    OpenAIRE

    Schmid, S I; Hearing, P

    1997-01-01

    Selectivity and polarity of adenovirus type 5 DNA packaging are believed to be directed by an interaction of putative packaging factors with the cis-acting adenovirus packaging domain located within the genomic left end (nucleotides 194 to 380). In previous studies, this packaging domain was mutationally dissected into at least seven functional elements called A repeats. These elements, albeit redundant in function, exhibit differences in the ability to support viral packaging, with elements ...

  15. The cis decoy against the estrogen response element suppresses breast cancer cells via target disrupting c-fos not mitogen-activated protein kinase activity.

    Science.gov (United States)

    Wang, Li Hua; Yang, Xiao Yi; Zhang, Xiaohu; Mihalic, Kelly; Xiao, Weihua; Farrar, William L

    2003-05-01

    Breast cancer, the most common malignancy in women, has been demonstrated to be associated with the steroid hormone estrogen and its receptor (ER), a ligand-activated transcription factor. Therefore, we developed a phosphorothiolate cis-element decoy against the estrogen response element (ERE decoy) to target disruption of ER DNA binding and transcriptional activity. Here, we showed that the ERE decoy potently ablated the 17beta-estrogen-inducible cell proliferation and induced apoptosis of human breast carcinoma cells by functionally affecting expression of c-fos gene and AP-1 luciferase gene reporter activity. Specificity of the decoy was demonstrated by its ability to directly block ER binding to a cis-element probe and transactivation. Moreover, the decoy failed to inhibit ER-mediated mitogen-activated protein kinase signaling pathways and cell growth of ER-negative breast cancer cells. Taken together, these data suggest that estrogen-mediated cell growth of breast cancer cells can be preferentially restricted via targeted disruption of ER at the level of DNA binding by a novel and specific decoy strategy applied to steroid nuclear receptors.

  16. CONDOR: a database resource of developmentally associated conserved non-coding elements

    Directory of Open Access Journals (Sweden)

    Smith Sarah

    2007-08-01

    Full Text Available Abstract Background Comparative genomics is currently one of the most popular approaches to study the regulatory architecture of vertebrate genomes. Fish-mammal genomic comparisons have proved powerful in identifying conserved non-coding elements likely to be distal cis-regulatory modules such as enhancers, silencers or insulators that control the expression of genes involved in the regulation of early development. The scientific community is showing increasing interest in characterizing the function, evolution and language of these sequences. Despite this, there remains little in the way of user-friendly access to a large dataset of such elements in conjunction with the analysis and the visualization tools needed to study them. Description Here we present CONDOR (COnserved Non-coDing Orthologous Regions available at: http://condor.fugu.biology.qmul.ac.uk. In an interactive and intuitive way the website displays data on > 6800 non-coding elements associated with over 120 early developmental genes and conserved across vertebrates. The database regularly incorporates results of ongoing in vivo zebrafish enhancer assays of the CNEs carried out in-house, which currently number ~100. Included and highlighted within this set are elements derived from duplication events both at the origin of vertebrates and more recently in the teleost lineage, thus providing valuable data for studying the divergence of regulatory roles between paralogs. CONDOR therefore provides a number of tools and facilities to allow scientists to progress in their own studies on the function and evolution of developmental cis-regulation. Conclusion By providing access to data with an approachable graphics interface, the CONDOR database presents a rich resource for further studies into the regulation and evolution of genes involved in early development.

  17. Piecing together cis-regulatory networks: insights from epigenomics studies in plants.

    Science.gov (United States)

    Huang, Shao-Shan C; Ecker, Joseph R

    2018-05-01

    5-Methylcytosine, a chemical modification of DNA, is a covalent modification found in the genomes of both plants and animals. Epigenetic inheritance of phenotypes mediated by DNA methylation is well established in plants. Most of the known mechanisms of establishing, maintaining and modifying DNA methylation have been worked out in the reference plant Arabidopsis thaliana. Major functions of DNA methylation in plants include regulation of gene expression and silencing of transposable elements (TEs) and repetitive sequences, both of which have parallels in mammalian biology, involve interaction with the transcriptional machinery, and may have profound effects on the regulatory networks in the cell. Methylome and transcriptome dynamics have been investigated in development and environmental responses in Arabidopsis and agriculturally and ecologically important plants, revealing the interdependent relationship among genomic context, methylation patterns, and expression of TE and protein coding genes. Analyses of methylome variation among plant natural populations and species have begun to quantify the extent of genetic control of methylome variation vs. true epimutation, and model the evolutionary forces driving methylome evolution in both short and long time scales. The ability of DNA methylation to positively or negatively modulate binding affinity of transcription factors (TFs) provides a natural link from genome sequence and methylation changes to transcription. Technologies that allow systematic determination of methylation sensitivities of TFs, in native genomic and methylation context without confounding factors such as histone modifications, will provide baseline datasets for building cell-type- and individual-specific regulatory networks that underlie the establishment and inheritance of complex traits. This article is categorized under: Laboratory Methods and Technologies > Genetic/Genomic Methods Biological Mechanisms > Regulatory Biology. © 2017 Wiley

  18. Unique ATPase site architecture triggers cis-mediated synchronized ATP binding in heptameric AAA+-ATPase domain of flagellar regulatory protein FlrC.

    Science.gov (United States)

    Dey, Sanjay; Biswas, Maitree; Sen, Udayaditya; Dasgupta, Jhimli

    2015-04-03

    Bacterial enhancer-binding proteins (bEBPs) oligomerize through AAA(+) domains and use ATP hydrolysis-driven energy to isomerize the RNA polymerase-σ(54) complex during transcriptional initiation. Here, we describe the first structure of the central AAA(+) domain of the flagellar regulatory protein FlrC (FlrC(C)), a bEBP that controls flagellar synthesis in Vibrio cholerae. Our results showed that FlrC(C) forms heptamer both in nucleotide (Nt)-free and -bound states without ATP-dependent subunit remodeling. Unlike the bEBPs such as NtrC1 or PspF, a novel cis-mediated "all or none" ATP binding occurs in the heptameric FlrC(C), because constriction at the ATPase site, caused by loop L3 and helix α7, restricts the proximity of the trans-protomer required for Nt binding. A unique "closed to open" movement of Walker A, assisted by trans-acting "Glu switch" Glu-286, facilitates ATP binding and hydrolysis. Fluorescence quenching and ATPase assays on FlrC(C) and mutants revealed that although Arg-349 of sensor II, positioned by trans-acting Glu-286 and Tyr-290, acts as a key residue to bind and hydrolyze ATP, Arg-319 of α7 anchors ribose and controls the rate of ATP hydrolysis by retarding the expulsion of ADP. Heptameric state of FlrC(C) is restored in solution even with the transition state mimicking ADP·AlF3. Structural results and pulldown assays indicated that L3 renders an in-built geometry to L1 and L2 causing σ(54)-FlrC(C) interaction independent of Nt binding. Collectively, our results underscore a novel mechanism of ATP binding and σ(54) interaction that strives to understand the transcriptional mechanism of the bEBPs, which probably interact directly with the RNA polymerase-σ(54) complex without DNA looping. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Local effect of enhancer of zeste-like reveals cooperation of epigenetic and cis-acting determinants for zygotic genome rearrangements.

    Directory of Open Access Journals (Sweden)

    Maoussi Lhuillier-Akakpo

    2014-09-01

    Full Text Available In the ciliate Paramecium tetraurelia, differentiation of the somatic nucleus from the zygotic nucleus is characterized by massive and reproducible deletion of transposable elements and of 45,000 short, dispersed, single-copy sequences. A specific class of small RNAs produced by the germline during meiosis, the scnRNAs, are involved in the epigenetic regulation of DNA deletion but the underlying mechanisms are poorly understood. Here, we show that trimethylation of histone H3 (H3K27me3 and H3K9me3 displays a dynamic nuclear localization that is altered when the endonuclease required for DNA elimination is depleted. We identified the putative histone methyltransferase Ezl1 necessary for H3K27me3 and H3K9me3 establishment and show that it is required for correct genome rearrangements. Genome-wide analyses show that scnRNA-mediated H3 trimethylation is necessary for the elimination of long, repeated germline DNA, while single copy sequences display differential sensitivity to depletion of proteins involved in the scnRNA pathway, Ezl1- a putative histone methyltransferase and Dcl5- a protein required for iesRNA biogenesis. Our study reveals cis-acting determinants, such as DNA length, also contribute to the definition of germline sequences to delete. We further show that precise excision of single copy DNA elements, as short as 26 bp, requires Ezl1, suggesting that development specific H3K27me3 and H3K9me3 ensure specific demarcation of very short germline sequences from the adjacent somatic sequences.

  20. 78 FR 58535 - Hydropower Regulatory Efficiency Act of 2013; Supplemental Notice of Workshop

    Science.gov (United States)

    2013-09-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD13-9-000] Hydropower... license for hydropower development at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the Hydropower Regulatory Efficiency Act of 2013. The workshop will be held in...

  1. Analysis of cis-elements that facilitate extrachromosomal persistence of human papillomavirus genomes

    International Nuclear Information System (INIS)

    Pittayakhajonwut, Daraporn; Angeletti, Peter C.

    2008-01-01

    Human papillomaviruses (HPVs) are maintained latently in dividing epithelial cells as nuclear plasmids. Two virally encoded proteins, E1, a helicase, and E2, a transcription factor, are important players in replication and stable plasmid maintenance in host cells. Recent experiments in yeast have demonstrated that viral genomes retain replication and maintenance function independently of E1 and E2 [Angeletti, P.C., Kim, K., Fernandes, F.J., and Lambert, P.F. (2002). Stable replication of papillomavirus genomes in Saccharomyces cerevisiae. J. Virol. 76(7), 3350-8; Kim, K., Angeletti, P.C., Hassebroek, E.C., and Lambert, P.F. (2005). Identification of cis-acting elements that mediate the replication and maintenance of human papillomavirus type 16 genomes in Saccharomyces cerevisiae. J. Virol. 79(10), 5933-42]. Flow cytometry studies of EGFP-reporter vectors containing subgenomic HPV fragments with or without a human ARS (hARS), revealed that six fragments located in E6-E7, E1-E2, L1, and L2 regions showed a capacity for plasmid stabilization in the absence of E1 and E2 proteins. Interestingly, four fragments within E7, the 3' end of L2, and the 5' end of L1 exhibited stability in plasmids that lacked an hARS, indicating that they possess both replication and maintenance functions. Two fragments lying in E1-E2 and the 3' region of L1 were stable only in the presence of hARS, that they contained only maintenance function. Mutational analyses of HPV16-GFP reporter constructs provided evidence that genomes lacking E1 and E2 could replicate to an extent similar to wild type HPV16. Together these results support the concept that cellular factors influence HPV replication and maintenance, independently, and perhaps in conjunction with E1 and E2, suggesting a role in the persistent phase of the viral lifecycle

  2. Identifying Cis-Regulatory Changes Involved in the Evolution of Aerobic Fermentation in Yeasts

    Science.gov (United States)

    Lin, Zhenguo; Wang, Tzi-Yuan; Tsai, Bing-Shi; Wu, Fang-Ting; Yu, Fu-Jung; Tseng, Yu-Jung; Sung, Huang-Mo; Li, Wen-Hsiung

    2013-01-01

    Gene regulation change has long been recognized as an important mechanism for phenotypic evolution. We used the evolution of yeast aerobic fermentation as a model to explore how gene regulation has evolved and how this process has contributed to phenotypic evolution and adaptation. Most eukaryotes fully oxidize glucose to CO2 and H2O in mitochondria to maximize energy yield, whereas some yeasts, such as Saccharomyces cerevisiae and its relatives, predominantly ferment glucose into ethanol even in the presence of oxygen, a phenomenon known as aerobic fermentation. We examined the genome-wide gene expression levels among 12 different yeasts and found that a group of genes involved in the mitochondrial respiration process showed the largest reduction in gene expression level during the evolution of aerobic fermentation. Our analysis revealed that the downregulation of these genes was significantly associated with massive loss of binding motifs of Cbf1p in the fermentative yeasts. Our experimental assays confirmed the binding of Cbf1p to the predicted motif and the activator role of Cbf1p. In summary, our study laid a foundation to unravel the long-time mystery about the genetic basis of evolution of aerobic fermentation, providing new insights into understanding the role of cis-regulatory changes in phenotypic evolution. PMID:23650209

  3. Single nucleotide polymorphism in transcriptional regulatory regions and expression of environmentally responsive genes

    International Nuclear Information System (INIS)

    Wang, Xuting; Tomso, Daniel J.; Liu Xuemei; Bell, Douglas A.

    2005-01-01

    Single nucleotide polymorphisms (SNPs) in the human genome are DNA sequence variations that can alter an individual's response to environmental exposure. SNPs in gene coding regions can lead to changes in the biological properties of the encoded protein. In contrast, SNPs in non-coding gene regulatory regions may affect gene expression levels in an allele-specific manner, and these functional polymorphisms represent an important but relatively unexplored class of genetic variation. The main challenge in analyzing these SNPs is a lack of robust computational and experimental methods. Here, we first outline mechanisms by which genetic variation can impact gene regulation, and review recent findings in this area; then, we describe a methodology for bioinformatic discovery and functional analysis of regulatory SNPs in cis-regulatory regions using the assembled human genome sequence and databases on sequence polymorphism and gene expression. Our method integrates SNP and gene databases and uses a set of computer programs that allow us to: (1) select SNPs, from among the >9 million human SNPs in the NCBI dbSNP database, that are similar to cis-regulatory element (RE) consensus sequences; (2) map the selected dbSNP entries to the human genome assembly in order to identify polymorphic REs near gene start sites; (3) prioritize the candidate polymorphic RE containing genes by searching the existing genotype and gene expression data sets. The applicability of this system has been demonstrated through studies on p53 responsive elements and is being extended to additional pathways and environmentally responsive genes

  4. Public Utility Regulatory Policies Act of 1978. Annual report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1980-05-01

    Titles I and III of the Public Utility Regulatory Policies Act of 1978 (PURPA) establish retail regulatory policies for electric and natural gas utilities, respectively, aimed at achieving three purposes: conservation of energy supplied by electric and gas utilities; efficiency in the use of facilities and resources by these utilities; equitable rates to electricity and natural gas consumers. PURPA also continues the pilot utility implementation program, authorized under Title II of the Energy Conservation and Production ACT (ECPA), to encourage adoption of cost-based rates and efficient energy-management practices. The purpose of this report is twofold: (1) to summarize and analyze the progress that state regulatory authorities and certain nonregulated utilities have made in their consideration of the PURPA standards; and (2) to summarize the Department of Energy (DOE) activities relating to PURPA and ECPA. The report provides a broad overview and assessment of the status of electric and gas regulation nationwide, and thus helps provide the basis for congressional and DOE actions targeted on the utility industry to address pressing national energy problems.

  5. A nuclear factor I-like activity and a liver-specific repressor govern estrogen-regulated in vitro transcription from the Xenopus laevis vitellogenin B1 promoter.

    OpenAIRE

    Corthésy, B; Cardinaux, J R; Claret, F X; Wahli, W

    1989-01-01

    A hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to identify novel cis-acting elements within the vitellogenin gene B1 promoter region. In addition to the already well-documented estrogen-responsive element (ERE), two elements were found within the 140 base pairs upstream of the transcription initiation site. One of them, a negative regulatory element, is responsible for the lack of promoter activity in the absence of the hormone and...

  6. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.

    Science.gov (United States)

    Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C

    2017-11-10

    Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering

  7. Identification of functional elements and regulatory circuits by Drosophila modENCODE.

    Science.gov (United States)

    Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V; Kheradpour, Pouya; Negre, Nicolas; Eaton, Matthew L; Landolin, Jane M; Bristow, Christopher A; Ma, Lijia; Lin, Michael F; Washietl, Stefan; Arshinoff, Bradley I; Ay, Ferhat; Meyer, Patrick E; Robine, Nicolas; Washington, Nicole L; Di Stefano, Luisa; Berezikov, Eugene; Brown, Christopher D; Candeias, Rogerio; Carlson, Joseph W; Carr, Adrian; Jungreis, Irwin; Marbach, Daniel; Sealfon, Rachel; Tolstorukov, Michael Y; Will, Sebastian; Alekseyenko, Artyom A; Artieri, Carlo; Booth, Benjamin W; Brooks, Angela N; Dai, Qi; Davis, Carrie A; Duff, Michael O; Feng, Xin; Gorchakov, Andrey A; Gu, Tingting; Henikoff, Jorja G; Kapranov, Philipp; Li, Renhua; MacAlpine, Heather K; Malone, John; Minoda, Aki; Nordman, Jared; Okamura, Katsutomo; Perry, Marc; Powell, Sara K; Riddle, Nicole C; Sakai, Akiko; Samsonova, Anastasia; Sandler, Jeremy E; Schwartz, Yuri B; Sher, Noa; Spokony, Rebecca; Sturgill, David; van Baren, Marijke; Wan, Kenneth H; Yang, Li; Yu, Charles; Feingold, Elise; Good, Peter; Guyer, Mark; Lowdon, Rebecca; Ahmad, Kami; Andrews, Justen; Berger, Bonnie; Brenner, Steven E; Brent, Michael R; Cherbas, Lucy; Elgin, Sarah C R; Gingeras, Thomas R; Grossman, Robert; Hoskins, Roger A; Kaufman, Thomas C; Kent, William; Kuroda, Mitzi I; Orr-Weaver, Terry; Perrimon, Norbert; Pirrotta, Vincenzo; Posakony, James W; Ren, Bing; Russell, Steven; Cherbas, Peter; Graveley, Brenton R; Lewis, Suzanna; Micklem, Gos; Oliver, Brian; Park, Peter J; Celniker, Susan E; Henikoff, Steven; Karpen, Gary H; Lai, Eric C; MacAlpine, David M; Stein, Lincoln D; White, Kevin P; Kellis, Manolis

    2010-12-24

    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.

  8. Specificity determinants for the abscisic acid response element ?

    OpenAIRE

    Sarkar, Aditya Kumar; Lahiri, Ansuman

    2013-01-01

    Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interac...

  9. Genome-wide discovery of drug-dependent human liver regulatory elements.

    Directory of Open Access Journals (Sweden)

    Robin P Smith

    2014-10-01

    Full Text Available Inter-individual variation in gene regulatory elements is hypothesized to play a causative role in adverse drug reactions and reduced drug activity. However, relatively little is known about the location and function of drug-dependent elements. To uncover drug-associated elements in a genome-wide manner, we performed RNA-seq and ChIP-seq using antibodies against the pregnane X receptor (PXR and three active regulatory marks (p300, H3K4me1, H3K27ac on primary human hepatocytes treated with rifampin or vehicle control. Rifampin and PXR were chosen since they are part of the CYP3A4 pathway, which is known to account for the metabolism of more than 50% of all prescribed drugs. We selected 227 proximal promoters for genes with rifampin-dependent expression or nearby PXR/p300 occupancy sites and assayed their ability to induce luciferase in rifampin-treated HepG2 cells, finding only 10 (4.4% that exhibited drug-dependent activity. As this result suggested a role for distal enhancer modules, we searched more broadly to identify 1,297 genomic regions bearing a conditional PXR occupancy as well as all three active regulatory marks. These regions are enriched near genes that function in the metabolism of xenobiotics, specifically members of the cytochrome P450 family. We performed enhancer assays in rifampin-treated HepG2 cells for 42 of these sequences as well as 7 sequences that overlap linkage-disequilibrium blocks defined by lead SNPs from pharmacogenomic GWAS studies, revealing 15/42 and 4/7 to be functional enhancers, respectively. A common African haplotype in one of these enhancers in the GSTA locus was found to exhibit potential rifampin hypersensitivity. Combined, our results further suggest that enhancers are the predominant targets of rifampin-induced PXR activation, provide a genome-wide catalog of PXR targets and serve as a model for the identification of drug-responsive regulatory elements.

  10. Characterization of VuMATE1 expression in response to iron nutrition and aluminum stress reveals adaptation of rice bean (Vigna umbellata to acid soils through cis regulation

    Directory of Open Access Journals (Sweden)

    Meiya eLiu

    2016-04-01

    Full Text Available Rice bean (Vigna umbellata VuMATE1 appears to be constitutively expressed at vascular system but root apex, and Al stress extends its expression to root apex. Whether VuMATE1 participates in both Al tolerance and Fe nutrition, and how VuMATE1 expression is regulated is of great interest. In this study, the role of VuMATE1 in Fe nutrition was characterized through in planta complementation assays. The transcriptional regulation of VuMATE1 was investigated through promoter analysis and promoter-GUS reporter assays. The results showed that the expression of VuMATE1 was regulated by Al stress but not Fe status. Complementation of frd3-1 with VuMATE1 under VuMATE1 promoter could not restore phenotype, but restored with 35SCaMV promoter. Immunostaining of VuMATE1 revealed abnormal localization of VuMATE1 in vasculature. In planta GUS reporter assay identified Al-responsive cis-acting elements resided between -1228 and -574 bp. Promoter analysis revealed several cis-acting elements, but transcription is not simply regulated by one of these elements. We demonstrated that cis regulation of VuMATE1 expression is involved in Al tolerance mechanism, while not involved in Fe nutrition. These results reveal the evolution of VuMATE1 expression for better adaptation of rice bean to acidic soils where Al stress imposed but Fe deficiency pressure released.

  11. Contribution of transposable elements in the plant's genome.

    Science.gov (United States)

    Sahebi, Mahbod; Hanafi, Mohamed M; van Wijnen, Andre J; Rice, David; Rafii, M Y; Azizi, Parisa; Osman, Mohamad; Taheri, Sima; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat; Noor, Yusuf Muhammad

    2018-07-30

    Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Croatian energy regulatory council - independent Croatian regulatory body

    International Nuclear Information System (INIS)

    Klepo, M.

    2002-01-01

    By means of approving five energy laws, the Republic of Croatia established an appropriate legislative framework for energy sector regulation. A series of sub-law acts is presently being elaborated as well as some additional documents in order to bring about transparent and non-discriminatory provisions for the establishment of electric energy, gas, oil/oil derivatives and thermal energy markets, i.e. for the introduction and management of market activities and public services. A considerable share of these activities relates to the definition of transparent regulatory mechanisms that would guarantee the implementation of regulation rules based on the law, and be carried out by the independent regulatory body - Croatian Energy Regulatory Council. The Council's rights and obligations include firm executive functions, which present obligations to every energy entity. A dissatisfied party may set in motion a settlement of dispute, if it maintains that the decisions are not based on the law or reveal a flaw in the procedure. Therefore, it is the Council's priority to always make careful and law-abiding decisions. This paper gives insight into the regulatory framework elements based on the laws including the Council's organisational structure and non-profit entities that will prepare act proposals for the Council and perform other professional activities. (author)

  13. Characterization of promoter of EgPAL1, a novel PAL gene from the oil palm Elaeis guineensis Jacq.

    Science.gov (United States)

    Yusuf, Chong Yu Lok; Abdullah, Janna Ong; Shaharuddin, Noor Azmi; Abu Seman, Idris; Abdullah, Mohd Puad

    2018-02-01

    The oil palm EgPAL1 gene promoter and its regulatory region were functional as a promoter in the heterologous system of Arabidopsis according to the cis-acting elements present in that region. The promoter was developmentally regulated, vascular tissue specific and responsive to water stress agents. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the key enzyme of the phenylpropanoid pathway which plays important roles in plant development and adaptation. To date, there is no report on the study of PAL from oil palm (Elaeis guineensis), an economically important oil crop. In this study, the 5' regulatory sequence of a highly divergent oil palm PAL gene (EgPAL1) was isolated and fused with GUS in Arabidopsis to create two transgenic plants carrying the minimal promoter with (2302 bp) and without its regulatory elements (139 bp). The regulatory sequence contained cis-acting elements known to be important for plant development and stress response including the AC-II element for lignin biosynthesis and several stress responsive elements. The promoter and its regulatory region were fully functional in Arabidopsis. Its activities were characterised by two common fundamental features of PAL which are responsive to plant internal developmental programme and external factors. The promoter was developmentally regulated in certain organs; highly active in young organs but less active or inactive in mature organs. The presence of the AC elements and global activity of the EgPAL1 promoter in all organs resembled the property of lignin-related genes. The existence of the MBS element and enhancement of the promoter activity by PEG reflected the behaviour of drought-responsive genes. Our findings provide a platform for evaluating oil palm gene promoters in the heterologous system of Arabidopsis and give insights into the activities of EgPAL1 promoter in oil palm.

  14. Two regulatory RNA elements affect TisB-dependent depolarization and persister formation.

    Science.gov (United States)

    Berghoff, Bork A; Hoekzema, Mirthe; Aulbach, Lena; Wagner, E Gerhart H

    2017-03-01

    Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR-1 toxin-antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR-1 in TisB-dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug-tolerant by arresting growth. The RNA antitoxin IstR-1 sets a threshold for TisB-dependent depolarization under DNA-damaging conditions, resulting in two sub-populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5' UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub-population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity. © 2016 John Wiley & Sons Ltd.

  15. Evidence for multiple major histocompatibility class II X-box binding proteins.

    OpenAIRE

    Celada, A; Maki, R

    1989-01-01

    The X box is a loosely conserved DNA sequence that is located upstream of all major histocompatibility class II genes and is one of the cis-acting regulatory elements. Despite the similarity between all X-box sequences, each promoter-proximal X box in the mouse appears to bind a separate nuclear factor.

  16. A Dual Repeat Cis-Element Determines Expression of GERANYL DIPHOSPHATE SYNTHASE for Monoterpene Production in Phalaenopsis Orchids

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chuang

    2018-06-01

    Full Text Available Phalaenopsis bellina is a scented orchid emitting large amount of monoterpenes. GERANYL DIPHOSPHATE SYNTHASE (PbGDPS is the key enzyme for monoterpene biosynthesis, and shows concomitant expression with the emission of monoterpenes during flower development in P. bellina. Here, we identified a dual repeat cis-element in the GDPS promoter that is critical for monoterpene biosynthesis in Phalaenopsis orchids. A strong correlation between the dual repeat and the monoterpene production was revealed by examination of the GDPS promoter fragments over 12 Phalaenopsis species. Serial-deletion of the 2-kb GDPS promoter fragments demonstrated that the integrity of the dual repeat was crucial for its promoter activities. By screening the Arabidopsis transcription factors (TFs cDNA library using yeast one-hybrid assay, AtbZIP18, a member of group I of bZIP TFs, was identified to be able to bind the dual repeat. We then identified PbbZIP4 in the transcriptome of P. bellina, showing 83% identity in the DNA binding region with that of AtbZIP18, and the expression level of PbbZIP4 was higher in the scented orchids. In addition, PbbZIP4 transactivated the GDPS promoter fragment containing the dual repeat in dual luciferase assay. Furthermore, transient ectopic expression of PbbZIP4 induced a 10-fold production of monoterpenoids in the scentless orchid. In conclusion, these results indicate that the dual repeat is a real TF-bound cis-element significant for GDPS gene expression, and thus subsequent monoterpene biosynthesis in the scented Phalaenopsis orchids.

  17. RegRNA: an integrated web server for identifying regulatory RNA motifs and elements

    OpenAIRE

    Huang, Hsi-Yuan; Chien, Chia-Hung; Jen, Kuan-Hua; Huang, Hsien-Da

    2006-01-01

    Numerous regulatory structural motifs have been identified as playing essential roles in transcriptional and post-transcriptional regulation of gene expression. RegRNA is an integrated web server for identifying the homologs of regulatory RNA motifs and elements against an input mRNA sequence. Both sequence homologs and structural homologs of regulatory RNA motifs can be recognized. The regulatory RNA motifs supported in RegRNA are categorized into several classes: (i) motifs in mRNA 5′-untra...

  18. The Role of Cis-Lunar Space in Future Global Space Exploration

    Science.gov (United States)

    Bobskill, Marianne R.; Lupisella, Mark L.

    2012-01-01

    Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this

  19. Analysis of a cis-Acting Element Involved in Regulation by Estrogen of Human Angiotensinogen Gene Expression.

    Science.gov (United States)

    Zhao, Yan-Yan; Sun, Kai-Lai; Ashok, Kumar

    1998-01-01

    The work was aimed to identify the estrogen responsive element in the human angiotensinogen gene. The nucleotide sequence between the transcription initiation site and TATA box in angiotensinogen gene promoter was found to be strongly homologous with the consensus estrogen responsive element. This sequence was confirmed as the estrogen responsive element (HAG ERE) by electrophoretic mobility shift assay. The recombinant expression vectors were constructed in which chloramphenicol acetyltransferase (CAT) reporter gene was driven by angiotensinogen core promoter with HAG ERE of by TK core promoter with multiplied HAG ERE, and were used in cotransfection with the human estrogen receptor expression vector into HepG(2) cells; CAT assays showed an increase of the CAT activity on 17beta-estradiol treatment in those transfectants. These results suggest that the human angiotensinogen gene is transcriptionally up-regulated by estrogen through the estrogen responsive element near TATA box of the promoter.

  20. Intrinsic limits to gene regulation by global crosstalk

    Science.gov (United States)

    Friedlander, Tamar; Prizak, Roshan; Guet, Călin C.; Barton, Nicholas H.; Tkačik, Gašper

    2016-01-01

    Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144

  1. Computational methods to dissect cis-regulatory transcriptional ...

    Indian Academy of Sciences (India)

    The formation of diverse cell types from an invariant set of genes is governed by biochemical and molecular processes that regulate gene activity. A complete understanding of the regulatory mechanisms of gene expression is the major function of genomics. Computational genomics is a rapidly emerging area for ...

  2. Transcriptomic analysis of rice aleurone cells identified a novel abscisic acid response element.

    Science.gov (United States)

    Watanabe, Kenneth A; Homayouni, Arielle; Gu, Lingkun; Huang, Kuan-Ying; Ho, Tuan-Hua David; Shen, Qingxi J

    2017-09-01

    Seeds serve as a great model to study plant responses to drought stress, which is largely mediated by abscisic acid (ABA). The ABA responsive element (ABRE) is a key cis-regulatory element in ABA signalling. However, its consensus sequence (ACGTG(G/T)C) is present in the promoters of only about 40% of ABA-induced genes in rice aleurone cells, suggesting other ABREs may exist. To identify novel ABREs, RNA sequencing was performed on aleurone cells of rice seeds treated with 20 μM ABA. Gibbs sampling was used to identify enriched elements, and particle bombardment-mediated transient expression studies were performed to verify the function. Gene ontology analysis was performed to predict the roles of genes containing the novel ABREs. This study revealed 2443 ABA-inducible genes and a novel ABRE, designated as ABREN, which was experimentally verified to mediate ABA signalling in rice aleurone cells. Many of the ABREN-containing genes are predicted to be involved in stress responses and transcription. Analysis of other species suggests that the ABREN may be monocot specific. This study also revealed interesting expression patterns of genes involved in ABA metabolism and signalling. Collectively, this study advanced our understanding of diverse cis-regulatory sequences and the transcriptomes underlying ABA responses in rice aleurone cells. © 2017 John Wiley & Sons Ltd.

  3. Questions on maintenance of ecological safety in space of the CIS

    International Nuclear Information System (INIS)

    Maharramov, A.A.

    2009-01-01

    Disintegration of the USSR has led to disintegration uniform economic and legal space and it has led to occurrence of some problems in ecological sphere. In given article it is shown some directions of maintenance of ecological safety, agreements on this sphere and organizational mechanisms, forms of mutual relations of the CIS countries in this sphere. At the end it is shownthe basic directions on maintenance of ecological safety in framework of CIS and elements of development of mutual relations of the CIS countries

  4. The nomenclature of MHC class I gene regulatory regions - the case of two different downstream regulatory elements

    Czech Academy of Sciences Publication Activity Database

    Hatina, J.; Jansa, Petr; Forejt, Jiří

    2001-01-01

    Roč. 37, 12-13 (2001), s. 799-800 ISSN 0161-5890 Institutional research plan: CEZ:AV0Z5052915 Keywords : MHC I gene regulatory elements Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.973, year: 2001

  5. Arabidopsis miR171-Targeted Scarecrow-Like Proteins Bind to GT cis-Elements and Mediate Gibberellin-Regulated Chlorophyll Biosynthesis under Light Conditions

    Science.gov (United States)

    Ma, Zhaoxue; Hu, Xupeng; Cai, Wenjuan; Huang, Weihua; Zhou, Xin; Luo, Qian; Yang, Hongquan; Wang, Jiawei; Huang, Jirong

    2014-01-01

    An extraordinarily precise regulation of chlorophyll biosynthesis is essential for plant growth and development. However, our knowledge on the complex regulatory mechanisms of chlorophyll biosynthesis is very limited. Previous studies have demonstrated that miR171-targeted scarecrow-like proteins (SCL6/22/27) negatively regulate chlorophyll biosynthesis via an unknown mechanism. Here we showed that SCLs inhibit the expression of the key gene encoding protochlorophyllide oxidoreductase (POR) in light-grown plants, but have no significant effect on protochlorophyllide biosynthesis in etiolated seedlings. Histochemical analysis of β-glucuronidase (GUS) activity in transgenic plants expressing pSCL27::rSCL27-GUS revealed that SCL27-GUS accumulates at high levels and suppresses chlorophyll biosynthesis at the leaf basal proliferation region during leaf development. Transient gene expression assays showed that the promoter activity of PORC is indeed regulated by SCL27. Consistently, chromatin immunoprecipitation and quantitative PCR assays showed that SCL27 binds to the promoter region of PORC in vivo. An electrophoretic mobility shift assay revealed that SCL27 is directly interacted with G(A/G)(A/T)AA(A/T)GT cis-elements of the PORC promoter. Furthermore, genetic analysis showed that gibberellin (GA)-regulated chlorophyll biosynthesis is mediated, at least in part, by SCLs. We demonstrated that SCL27 interacts with DELLA proteins in vitro and in vivo by yeast-two-hybrid and coimmunoprecipitation analysis and found that their interaction reduces the binding activity of SCL27 to the PORC promoter. Additionally, we showed that SCL27 activates MIR171 gene expression, forming a feedback regulatory loop. Taken together, our data suggest that the miR171-SCL module is critical for mediating GA-DELLA signaling in the coordinate regulation of chlorophyll biosynthesis and leaf growth in light. PMID:25101599

  6. Absence of mutation at the 5'-upstream promoter region of the TPM4 gene from cardiac mutant axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Denz, Christopher R; Zhang, Chi; Jia, Pingping; Du, Jianfeng; Huang, Xupei; Dube, Syamalima; Thomas, Anish; Poiesz, Bernard J; Dube, Dipak K

    2011-09-01

    Tropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts. To identify the cis-elements that are essential for the expression of the TPM4, we created various deletion mutants of the TPM4 promoter DNA, inserted the deleted segments into PGL3 vector, and performed promoter-reporter assay using luciferase as the reporter gene. Comparison of sequences of the promoter region of the TPM4 gene from normal and mutant axolotl revealed no mutations in the promoter sequence of the mutant TPM4 gene. CArG box elements that are generally involved in controlling the expression of several other muscle-specific gene promoters were not found in the upstream regulatory region of the TPM4 gene. In deletion experiments, loss of activity of the reporter gene was noted upon deletion which was then restored upon further deletion suggesting the presence of both positive and negative cis-elements in the upstream regulatory region of the TPM4 gene. We believe that this is the first axolotl promoter that has ever been cloned and studied with clear evidence that it functions in mammalian cell lines. Although striated muscle-specific cis-acting elements are absent from the promoter region of TPM4 gene, our results suggest the presence of positive and negative cis-elements in the promoter region, which in conjunction with positive and negative trans-elements may be involved in regulating the expression of TPM4 gene in a tissue-specific manner.

  7. Cis-Lunar Base Camp

    Science.gov (United States)

    Merrill, Raymond G.; Goodliff, Kandyce E.; Mazanek, Daniel D.; Reeves, John D., Jr.

    2012-01-01

    Historically, when mounting expeditions into uncharted territories, explorers have established strategically positioned base camps to pre-position required equipment and consumables. These base camps are secure, safe positions from which expeditions can depart when conditions are favorable, at which technology and operations can be tested and validated, and facilitate timely access to more robust facilities in the event of an emergency. For human exploration missions into deep space, cis-lunar space is well suited to serve as such a base camp. The outer regions of cis-lunar space, such as the Earth-Moon Lagrange points, lie near the edge of Earth s gravity well, allowing equipment and consumables to be aggregated with easy access to deep space and to the lunar surface, as well as more distant destinations, such as near-Earth Asteroids (NEAs) and Mars and its moons. Several approaches to utilizing a cis-lunar base camp for sustainable human exploration, as well as some possible future applications are identified. The primary objective of the analysis presented in this paper is to identify options, show the macro trends, and provide information that can be used as a basis for more detailed mission development. Compared within are the high-level performance and cost of 15 preliminary cis-lunar exploration campaigns that establish the capability to conduct crewed missions of up to one year in duration, and then aggregate mass in cis-lunar space to facilitate an expedition from Cis-Lunar Base Camp. Launch vehicles, chemical propulsion stages, and electric propulsion stages are discussed and parametric sizing values are used to create architectures of in-space transportation elements that extend the existing in-space supply chain to cis-lunar space. The transportation options to cis-lunar space assessed vary in efficiency by almost 50%; from 0.16 to 0.68 kg of cargo in cis-lunar space for every kilogram of mass in Low Earth Orbit (LEO). For the 15 cases, 5-year campaign

  8. cis-Acting and trans-acting modulation of equine infectious anemia virus alternative RNA splicing

    International Nuclear Information System (INIS)

    Liao, Huey-Jane; Baker, Carl C.; Princler, Gerald L.; Derse, David

    2004-01-01

    Equine infectious anemia virus (EIAV), a lentivirus distantly related to HIV-1, encodes regulatory proteins, EIAV Tat (ETat) and Rev (ERev), from a four-exon mRNA. Exon 3 of the tat/rev mRNA contains a 30-nucleotide purine-rich element (PRE) which binds both ERev and SF2/ASF, a member of the SR family of RNA splicing factors. To better understand the role of this element in the regulation of EIAV pre-mRNA splicing, we quantified the effects of mutation or deletion of the PRE on exon 3 splicing in vitro and on alternative splicing in vivo. We also determined the branch point elements upstream of exons 3 and 4. In vitro splicing of exon 3 to exon 4 was not affected by mutation of the PRE, and addition of purified SR proteins enhanced splicing independently of the PRE. In vitro splicing of exon 2 to exon 3 was dependent on the PRE; under conditions of excess SR proteins, either the PRE or the 5' splice site of exon 3 was sufficient to activate splicing. We applied isoform-specific primers in real-time RT-PCR reactions to quantitatively analyze alternative splicing in cells transfected with rev-minus EIAV provirus constructs. In the context of provirus with wild-type exon 3, greater than 80% of the viral mRNAs were multiply spliced, and of these, less than 1% excluded exon 3. Deletion of the PRE resulted in a decrease in the relative amount of multiply spliced mRNA to about 40% of the total and approximately 39% of the viral mRNA excluded exon 3. Ectopic expression of ERev caused a decrease in the relative amount of multiply spliced mRNA to approximately 50% of the total and increased mRNAs that excluded exon 3 to about 4%. Over-expression of SF2/ASF in cells transfected with wild-type provirus constructs inhibited splicing but did not significantly alter exon 3 skipping

  9. The European Model Company Act: How to choose an efficient regulatory approach?

    DEFF Research Database (Denmark)

    Cleff, Evelyne Beatrix

    ) on the organization of company laws reflect an interesting paradigm shift. Whereas, previously company law was primarily focused on preventing abuse, there is now a trend towards legislation that promote commerce and satisfy the needs of business. This means that the goal of economic efficiency is having...... an increasing influence on the framing of company legislation, such as the choice between mandatory or default rules. This article introduces the project "European Company Law and the choice of Regulatory Method" which is carried out in collaboration with the European Model Company Act Group. The project aims...... to analyze the appropriateness of different regulatory methods which are available to achieve the regulatory goals.   ...

  10. Adaptive evolution of conserved noncoding elements in mammals.

    Directory of Open Access Journals (Sweden)

    Su Yeon Kim

    2007-09-01

    Full Text Available Conserved noncoding elements (CNCs are an abundant feature of vertebrate genomes. Some CNCs have been shown to act as cis-regulatory modules, but the function of most CNCs remains unclear. To study the evolution of CNCs, we have developed a statistical method called the "shared rates test" to identify CNCs that show significant variation in substitution rates across branches of a phylogenetic tree. We report an application of this method to alignments of 98,910 CNCs from the human, chimpanzee, dog, mouse, and rat genomes. We find that approximately 68% of CNCs evolve according to a null model where, for each CNC, a single parameter models the level of constraint acting throughout the phylogeny linking these five species. The remaining approximately 32% of CNCs show departures from the basic model including speed-ups and slow-downs on particular branches and occasionally multiple rate changes on different branches. We find that a subset of the significant CNCs have evolved significantly faster than the local neutral rate on a particular branch, providing strong evidence for adaptive evolution in these CNCs. The distribution of these signals on the phylogeny suggests that adaptive evolution of CNCs occurs in occasional short bursts of evolution. Our analyses suggest a large set of promising targets for future functional studies of adaptation.

  11. Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes.

    Science.gov (United States)

    Lenka, Sangram K; Lohia, Bikash; Kumar, Abhay; Chinnusamy, Viswanathan; Bansal, Kailash C

    2009-02-01

    Abscisic acid (ABA), the popular plant stress hormone, plays a key role in regulation of sub-set of stress responsive genes. These genes respond to ABA through specific transcription factors which bind to cis-regulatory elements present in their promoters. We discovered the ABA Responsive Element (ABRE) core (ACGT) containing CGMCACGTGB motif as over-represented motif among the promoters of ABA responsive co-expressed genes in rice. Targeted gene prediction strategy using this motif led to the identification of 402 protein coding genes potentially regulated by ABA-dependent molecular genetic network. RT-PCR analysis of arbitrarily chosen 45 genes from the predicted 402 genes confirmed 80% accuracy of our prediction. Plant Gene Ontology (GO) analysis of ABA responsive genes showed enrichment of signal transduction and stress related genes among diverse functional categories.

  12. In silico Analysis of osr40c1 Promoter Sequence Isolated from Indica Variety Pokkali

    Directory of Open Access Journals (Sweden)

    W.S.I. de Silva

    2017-07-01

    Full Text Available The promoter region of a drought and abscisic acid (ABA inducible gene, osr40c1, was isolated from a salt-tolerant indica rice variety Pokkali, which is 670 bp upstream of the putative translation start codon. In silico promoter analysis of resulted sequence showed that at least 15 types of putative motifs were distributed within the sequence, including two types of common promoter elements, TATA and CAAT boxes. Additionally, several putative cis-acing regulatory elements which may be involved in regulation of osr40c1 expression under different conditions were found in the 5′-upstream region of osr40c1. These are ABA-responsive element, light-responsive elements (ATCT-motif, Box I, G-box, GT1-motif, Gap-box and Sp1, myeloblastosis oncogene response element (CCAAT-box, auxin responsive element (TGA-element, gibberellin-responsive element (GARE-motif and fungal-elicitor responsive elements (Box E and Box-W1. A putative regulatory element, required for endosperm-specific pattern of gene expression designated as Skn-1 motif, was also detected in the Pokkali osr40c1 promoter region. In conclusion, the bioinformatic analysis of osr40c1 promoter region isolated from indica rice variety Pokkali led to the identification of several important stress-responsive cis-acting regulatory elements, and therefore, the isolated promoter sequence could be employed in rice genetic transformation to mediate expression of abiotic stress induced genes.

  13. Characterization of the human UDP-galactose:ceramide galactosyltransferase gene promoter.

    Science.gov (United States)

    Tencomnao, T; Yu, R K; Kapitonov, D

    2001-02-16

    UDP-galactose:ceramide galactosyltransferase (CGT, EC 2.4.1.45) is a key enzyme in the biosynthesis of galactocerebroside, the most abundant glycosphingolipid in the myelin sheath. An 8 kb fragment upstream from the transcription initiation site of CGT gene was isolated from a human genomic DNA library. Primer extension analysis revealed a single transcription initiation site 329 bp upstream from the ATG start codon. Neither a consensus TATA nor a CCAAT box was identified in the proximity to the transcription start site; however, this region contains a high GC content and multiple putative regulatory elements. To investigate the transcriptional regulation of CGT, a series of 5' deletion constructs of the 5'-flanking region were generated and cloned upstream from the luciferase reporter gene. By comparing promoter activity in the human oligodendroglioma (HOG) and human neuroblastoma (LAN-5) cell lines, we found that the CGT promoter functions in a cell type-specific manner. Three positive cis-acting regulatory regions were identified, including a proximal region at -292/-256 which contains the potential binding sites for known transcription factors (TFs) such as Ets and SP1 (GC box), a distal region at -747/-688 comprising a number of binding sites such as the ERE half-site, NF1-like, TGGCA-BP, and CRE, and a third positive cis-acting region distally localized at -1325/-1083 consisting of binding sites for TFs such as nitrogen regulatory, TCF-1, TGGCA-BP, NF-IL6, CF1, bHLH, NF1-like, GATA, and gamma-IRE. A negative cis-acting domain localized in a far distal region at -1594/-1326 was also identified. Our results suggest the presence of both positive and negative cis-regulatory regions essential for the cell-specific expression in the TATA-less promoter of the human CGT gene.

  14. The noncoding human genome and the future of personalised medicine.

    Science.gov (United States)

    Cowie, Philip; Hay, Elizabeth A; MacKenzie, Alasdair

    2015-01-30

    Non-coding cis-regulatory sequences act as the 'eyes' of the genome and their role is to perceive, organise and relay cellular communication information to RNA polymerase II at gene promoters. The evolution of these sequences, that include enhancers, silencers, insulators and promoters, has progressed in multicellular organisms to the extent that cis-regulatory sequences make up as much as 10% of the human genome. Parallel evidence suggests that 75% of polymorphisms associated with heritable disease occur within predicted cis-regulatory sequences that effectively alter the 'perception' of cis-regulatory sequences or render them blind to cell communication cues. Cis-regulatory sequences also act as major functional targets of epigenetic modification thus representing an important conduit through which changes in DNA-methylation affects disease susceptibility. The objectives of the current review are (1) to describe what has been learned about identifying and characterising cis-regulatory sequences since the sequencing of the human genome; (2) to discuss their role in interpreting cell signalling pathways pathways; and (3) outline how this role may be altered by polymorphisms and epigenetic changes. We argue that the importance of the cis-regulatory genome for the interpretation of cellular communication pathways cannot be overstated and understanding its role in health and disease will be critical for the future development of personalised medicine.

  15. Evolution of cichlid vision via trans-regulatory divergence

    Directory of Open Access Journals (Sweden)

    O’Quin Kelly E

    2012-12-01

    Full Text Available Abstract Background Phenotypic evolution may occur through mutations that affect either the structure or expression of protein-coding genes. Although the evolution of color vision has historically been attributed to structural mutations within the opsin genes, recent research has shown that opsin regulatory mutations can also tune photoreceptor sensitivity and color vision. Visual sensitivity in African cichlid fishes varies as a result of the differential expression of seven opsin genes. We crossed cichlid species that express different opsin gene sets and scanned their genome for expression Quantitative Trait Loci (eQTL responsible for these differences. Our results shed light on the role that different structural, cis-, and trans-regulatory mutations play in the evolution of color vision. Results We identified 11 eQTL that contribute to the divergent expression of five opsin genes. On three linkage groups, several eQTL formed regulatory “hotspots” associated with the expression of multiple opsins. Importantly, however, the majority of the eQTL we identified (8/11 or 73% occur on linkage groups located trans to the opsin genes, suggesting that cichlid color vision has evolved primarily via trans-regulatory divergence. By modeling the impact of just two of these trans-regulatory eQTL, we show that opsin regulatory mutations can alter cichlid photoreceptor sensitivity and color vision at least as much as opsin structural mutations can. Conclusions Combined with previous work, we demonstrate that the evolution of cichlid color vision results from the interplay of structural, cis-, and especially trans-regulatory loci. Although there are numerous examples of structural and cis-regulatory mutations that contribute to phenotypic evolution, our results suggest that trans-regulatory mutations could contribute to phenotypic divergence more commonly than previously expected, especially in systems like color vision, where compensatory changes in the

  16. RNA-Mediated cis Regulation in Acinetobacter baumannii Modulates Stress-Induced Phenotypic Variation.

    Science.gov (United States)

    Ching, Carly; Gozzi, Kevin; Heinemann, Björn; Chai, Yunrong; Godoy, Veronica G

    2017-06-01

    In the nosocomial opportunistic pathogen Acinetobacter baumannii , RecA-dependent mutagenesis, which causes antibiotic resistance acquisition, is linked to the DNA damage response (DDR). Notably, unlike the Escherichia coli paradigm, recA and DDR gene expression in A. baumannii is bimodal. Namely, there is phenotypic variation upon DNA damage, which may provide a bet-hedging strategy for survival. Thus, understanding recA gene regulation is key to elucidate the yet unknown DDR regulation in A. baumannii Here, we identify a structured 5' untranslated region (UTR) in the recA transcript which serves as a cis -regulatory element. We show that a predicted stem-loop structure in this 5' UTR affects mRNA half-life and underlies bimodal gene expression and thus phenotypic variation in response to ciprofloxacin treatment. We furthermore show that the stem-loop structure of the recA 5' UTR influences intracellular RecA protein levels and, in vivo , impairing the formation of the stem-loop structure of the recA 5' UTR lowers cell survival of UV treatment and decreases rifampin resistance acquisition from DNA damage-induced mutagenesis. We hypothesize that the 5' UTR allows for stable recA transcripts during stress, including antibiotic treatment, enabling cells to maintain suitable RecA levels for survival. This innovative strategy to regulate the DDR in A. baumannii may contribute to its success as a pathogen. IMPORTANCE Acinetobacter baumannii is an opportunistic pathogen quickly gaining antibiotic resistances. Mutagenesis and antibiotic resistance acquisition are linked to the DNA damage response (DDR). However, how the DDR is regulated in A. baumannii remains unknown, since unlike most bacteria, A. baumannii does not follow the regulation of the Escherichia coli paradigm. In this study, we have started to uncover the mechanisms regulating the novel A. baumannii DDR. We have found that a cis -acting 5' UTR regulates recA transcript stability, RecA protein levels, and DNA

  17. Identification of a spatially specific enhancer element in the chicken Msx-2 gene that regulates its expression in the apical ectodermal ridge of the developing limb buds of transgenic mice.

    Science.gov (United States)

    Sumoy, L; Wang, C K; Lichtler, A C; Pierro, L J; Kosher, R A; Upholt, W B

    1995-07-01

    Msx-2 is a member of the Msx family of homeobox-containing genes expressed in a variety of embryonic tissues involved in epithelial-mesenchymal interactions and pattern formation. In the developing chick limb bud, Msx-2 is expressed in the apical ectodermal ridge, which plays a crucial role in directing the growth and patterning of limb mesoderm. In addition, Msx-2 is expressed in the anterior nonskeletal-forming mesoderm of the limb bud, in the posterior necrotic zone, and in the interdigital mesenchyme. Studies of the altered expression patterns of Msx-2 in amelic and polydactylous mutant chick limbs have suggested that the apical ectodermal ridge and mesodermal domains of Msx-2 expression are independently regulated and that there might be separate cis-regulatory elements in the Msx-2 gene controlling its spatially distinct domains of expression. To test this hypothesis, we have isolated the chicken Msx-2 gene and have tested the ability of various regions of the gene to target expression of LacZ reporter gene to specific regions of the limbs of transgenic mice. A variety of these constructs are consistently expressed only in the apical ectodermal ridge and the ectoderm of the genital tubercle and are not expressed in the mesoderm of the limb bud or in other regions of the embryo where the endogenous Msx-2 gene is expressed. These results suggest the presence of spatially specific cis-regulatory elements in the Msx-2 gene. We identified a 348-bp region in the 5' flanking region of the Msx-2 gene which can act as an apical ectodermal ridge enhancer element when placed in reverse orientation in front of the reporter gene with transcription initiation directed by the minimal hsp68 promoter.

  18. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality

    DEFF Research Database (Denmark)

    Pundhir, Sachin; Bagger, Frederik Otzen; Lauridsen, Felicia Kathrine Bratt

    2016-01-01

    Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak......-valley-peak (PVP) pattern. However, different features of PVP patterns and their robustness in predicting active regulatory elements have never been systematically analyzed. Here, we present PARE, a novel computational method that systematically analyzes the H3K4me1 or H3K4me3 PVP patterns to predict NFRs. We show...... four ENCODE cell lines and four hematopoietic differentiation stages, we identified several enhancers whose regulatory activity is stage specific and correlates positively with the expression of proximal genes in a particular stage. In conclusion, our results demonstrate that PVP patterns delineate...

  19. Single nucleotide resolution RNA-seq uncovers new regulatory mechanisms in the opportunistic pathogen Streptococcus agalactiae.

    Science.gov (United States)

    Rosinski-Chupin, Isabelle; Sauvage, Elisabeth; Sismeiro, Odile; Villain, Adrien; Da Cunha, Violette; Caliot, Marie-Elise; Dillies, Marie-Agnès; Trieu-Cuot, Patrick; Bouloc, Philippe; Lartigue, Marie-Frédérique; Glaser, Philippe

    2015-05-30

    Streptococcus agalactiae, or Group B Streptococcus, is a leading cause of neonatal infections and an increasing cause of infections in adults with underlying diseases. In an effort to reconstruct the transcriptional networks involved in S. agalactiae physiology and pathogenesis, we performed an extensive and robust characterization of its transcriptome through a combination of differential RNA-sequencing in eight different growth conditions or genetic backgrounds and strand-specific RNA-sequencing. Our study identified 1,210 transcription start sites (TSSs) and 655 transcript ends as well as 39 riboswitches and cis-regulatory regions, 39 cis-antisense non-coding RNAs and 47 small RNAs potentially acting in trans. Among these putative regulatory RNAs, ten were differentially expressed in response to an acid stress and two riboswitches sensed directly or indirectly the pH modification. Strikingly, 15% of the TSSs identified were associated with the incorporation of pseudo-templated nucleotides, showing that reiterative transcription is a pervasive process in S. agalactiae. In particular, 40% of the TSSs upstream genes involved in nucleotide metabolism show reiterative transcription potentially regulating gene expression, as exemplified for pyrG and thyA encoding the CTP synthase and the thymidylate synthase respectively. This comprehensive map of the transcriptome at the single nucleotide resolution led to the discovery of new regulatory mechanisms in S. agalactiae. It also provides the basis for in depth analyses of transcriptional networks in S. agalactiae and of the regulatory role of reiterative transcription following variations of intra-cellular nucleotide pools.

  20. A conserved RNA structural element within the hepatitis B virus post-transcriptional regulatory element enhance nuclear export of intronless transcripts and repress the splicing mechanism.

    Science.gov (United States)

    Visootsat, Akasit; Payungporn, Sunchai; T-Thienprasert, Nattanan P

    2015-12-01

    Hepatitis B virus (HBV) infection is a primary cause of hepatocellular carcinoma and liver cirrhosis worldwide. To develop novel antiviral drugs, a better understanding of HBV gene expression regulation is vital. One important aspect is to understand how HBV hijacks the cellular machinery to export unspliced RNA from the nucleus. The HBV post-transcriptional regulatory element (HBV PRE) has been proposed to be the HBV RNA nuclear export element. However, the function remains controversial, and the core element is unclear. This study, therefore, aimed to identify functional regulatory elements within the HBV PRE and investigate their functions. Using bioinformatics programs based on sequence conservation and conserved RNA secondary structures, three regulatory elements were predicted, namely PRE 1151-1410, PRE 1520-1620 and PRE 1650-1684. PRE 1151-1410 significantly increased intronless and unspliced luciferase activity in both HepG2 and COS-7 cells. Likewise, PRE 1151-1410 significantly elevated intronless and unspliced HBV surface transcripts in liver cancer cells. Moreover, motif analysis predicted that PRE 1151-1410 contains several regulatory motifs. This study reported the roles of PRE 1151-1410 in intronless transcript nuclear export and the splicing mechanism. Additionally, these results provide knowledge in the field of HBV RNA regulation. Moreover, PRE 1151-1410 may be used to enhance the expression of other mRNAs in intronless reporter plasmids.

  1. The influence of cis-acting P1 protein and translational elements on the expression of Potato virus Y helper-component proteinase (HCPro) in heterologous systems and its suppression of silencing activity.

    Science.gov (United States)

    Tena Fernández, Fátima; González, Inmaculada; Doblas, Paula; Rodríguez, César; Sahana, Nandita; Kaur, Harpreet; Tenllado, Francisco; Praveen, Shelly; Canto, Tomas

    2013-06-01

    In the Potyvirus genus, the P1 protein is the first N-terminal product processed from the viral polyprotein, followed by the helper-component proteinase (HCPro). In silencing suppression patch assays, we found that Potato virus Y (PVY) HCPro expressed from a P1-HCPro sequence increased the accumulation of a reporter gene, whereas protein expressed from an HCPro sequence did not, even with P1 supplied in trans. This enhancing effect of P1 has been noted in other potyviruses, but has remained unexplained. We analysed the accumulation of PVY HCPro in infiltrated tissues and found that it was higher when expressed from P1-HCPro than from HCPro sequences. Co-expression of heterologous suppressors increased the steady-state level of mRNA expressed from the HCPro sequence, but not that of protein. This suggests that, in the absence of P1 upstream, either HCPro acquires a conformation that affects negatively its activity or stability, or that its translation is reduced. To test these options, we purified HCPro expressed in the presence or absence of upstream P1, and found no difference in purification pattern and final soluble state. By contrast, alteration of the Kozak context in the HCPro mRNA sequence to favour translation increased partially suppressor accumulation and activity. Furthermore, protein activity was not lower than in protein expressed from P1-HCPro sequences. Thus, a direct role for P1 on HCPro suppressor activity or stability, by influencing its conformation during translation, can be excluded. However, P1 could still have an indirect effect favouring HCPro accumulation. Our data highlight the relevance of cis-acting translational elements in the heterologous expression of HCPro. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  2. 78 FR 62322 - Hydropower Regulatory Efficiency Act of 2013; Notice of Rescheduled Two-Year Licensing Process...

    Science.gov (United States)

    2013-10-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD13-9-000] Hydropower... recommendations on the feasibility of a two-year process for the issuance of a license for hydropower development... Hydropower Regulatory Efficiency Act of 2013. The workshop will be held in the Commission Meeting Room at 888...

  3. Coevolution within a transcriptional network by compensatory trans and cis mutations

    KAUST Repository

    Kuo, D.; Licon, K.; Bandyopadhyay, S.; Chuang, R.; Luo, C.; Catalana, J.; Ravasi, Timothy; Tan, K.; Ideker, T.

    2010-01-01

    Transcriptional networks have been shown to evolve very rapidly, prompting questions as to how such changes arise and are tolerated. Recent comparisons of transcriptional networks across species have implicated variations in the cis-acting DNA

  4. Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops.

    Science.gov (United States)

    Bhunia, Rupam Kumar; Chakraborty, Anirban; Kaur, Ranjeet; Gayatri, T; Bhattacharyya, Jagannath; Basu, Asitava; Maiti, Mrinal K; Sen, Soumitra Kumar

    2014-11-01

    The sesame 2S albumin (2Salb) promoter was evaluated for its capacity to express the reporter gusA gene encoding β-glucuronidase in transgenic tobacco seeds relative to the soybean fad3C gene promoter element. Results revealed increased expression of gusA gene in tobacco seed tissue when driven by sesame 2S albumin promoter. Prediction based deletion analysis of both the promoter elements confirmed the necessary cis-acting regulatory elements as well as the minimal promoter element for optimal expression in each case. The results also revealed that cis-regulatory elements might have been responsible for high level expression as well as spatio-temporal regulation of the sesame 2S albumin promoter. Transgenic over-expression of a fatty acid desaturase (fad3C) gene of soybean driven by 2S albumin promoter resulted in seed-specific enhanced level of α-linolenic acid in sesame. The present study, for the first time helped to identify that the sesame 2S albumin promoter is a promising endogenous genetic element in genetic engineering approaches requiring spatio-temporal regulation of gene(s) of interest in sesame and can also be useful as a heterologous genetic element in other important oil seed crop plants in general for which seed oil is the harvested product. The study also established the feasibility of fatty acid metabolic engineering strategy undertaken to improve quality of edible seed oil in sesame using the 2S albumin promoter as regulatory element.

  5. Nitrogen transporter and assimilation genes exhibit developmental stage-selective expression in maize (Zea mays L.) associated with distinct cis-acting promoter motifs.

    Science.gov (United States)

    Liseron-Monfils, Christophe; Bi, Yong-Mei; Downs, Gregory S; Wu, Wenqing; Signorelli, Tara; Lu, Guangwen; Chen, Xi; Bondo, Eddie; Zhu, Tong; Lukens, Lewis N; Colasanti, Joseph; Rothstein, Steven J; Raizada, Manish N

    2013-10-01

    Nitrogen is considered the most limiting nutrient for maize (Zea mays L.), but there is limited understanding of the regulation of nitrogen-related genes during maize development. An Affymetrix 82K maize array was used to analyze the expression of ≤ 46 unique nitrogen uptake and assimilation probes in 50 maize tissues from seedling emergence to 31 d after pollination. Four nitrogen-related expression clusters were identified in roots and shoots corresponding to, or overlapping, juvenile, adult, and reproductive phases of development. Quantitative real time PCR data was consistent with the existence of these distinct expression clusters. Promoters corresponding to each cluster were screened for over-represented cis-acting elements. The 8-bp distal motif of the Arabidopsis 43-bp nitrogen response element (NRE) was over-represented in nitrogen-related maize gene promoters. This conserved motif, referred to here as NRE43-d8, was previously shown to be critical for nitrate-activated transcription of nitrate reductase (NIA1) and nitrite reductase (NIR1) by the NIN-LIKE PROTEIN 6 (NLP6) in Arabidopsis. Here, NRE43-d8 was over-represented in the promoters of maize nitrate and ammonium transporter genes, specifically those that showed peak expression during early-stage vegetative development. This result predicts an expansion of the NRE-NLP6 regulon and suggests that it may have a developmental component in maize. We also report leaf expression of putative orthologs of nitrite transporters (NiTR1), a transporter not previously reported in maize. We conclude by discussing how each of the four transcriptional modules may be responsible for the different nitrogen uptake and assimilation requirements of leaves and roots at different stages of maize development.

  6. Eucalyptus ESTs involved in the production of 9-cis epoxycarotenoid dioxygenase, a regulatory enzyme of abscisic acid production

    Directory of Open Access Journals (Sweden)

    Iraê A. Guerrini

    2005-01-01

    Full Text Available Abscisic acid (ABA regulates stress responses in plants, and genomic tools can help us to understand the mechanisms involved in that process. FAPESP, a Brazilian research foundation, in association with four private forestry companies, has established the FORESTs database (https://forests.esalq.usp.br. A search was carried out in the Eucalyptus expressed sequence tag database to find ESTs involved with 9-cis epoxycarotenoid dioxygenase (NCED, the regulatory enzyme for ABA biosynthesis, using the basic local BLAST alignment tool. We found four clusters (EGEZLV2206B11.g, EGJMWD2252H08.g, EGBFRT3107F10.g, and EGEQFB1200H10.g, which represent similar sequences of the gene that produces NCED. Data showed that the EGBFRT3107F10.g cluster was similar to the maize (Zea mays NCED enzyme, while EGEZLV2206B11.g and EGJMWD2252H08.g clusters were similar to the avocado (Persea americana NCED enzyme. All Eucalyptus clusters were expressed in several tissues, especially in flower buds, where ABA has a special participation during the floral development process.

  7. Regulatory challenges in developing long-acting antiretrovirals for treatment and prevention of HIV infection.

    Science.gov (United States)

    Arya, Vikram; Au, Stanley; Belew, Yodit; Miele, Peter; Struble, Kimberly

    2015-07-01

    To outline some of the regulatory challenges inherent to the development of long-acting antiretrovirals (ARVs) for the treatment or prevention of HIV infection. Despite advances in drug development that have reduced ARV dosing to once daily, suboptimal drug adherence remains an obstacle to successful HIV treatment. Further, large randomized trials of once daily oral ARVs for preexposure prophylaxis (PrEP) have shown that drug adherence correlates strongly with prophylactic effect and study outcomes. Thus, the prospect of developing long-acting ARVs, which may mitigate drug adherence issues, has attracted considerable attention lately. Because of their pharmacokinetic properties, the development of long-acting ARVs can present novel regulatory challenges. Chief among them is determining the appropriate dosing regimen, the need for an oral lead-in, and whether existing data with an approved oral agent, if available, can be leveraged for a treatment or prevention indication. For PrEP, because validated biomarkers are lacking, additional nonclinical studies and evaluation of tissue concentrations in multiple compartments may be necessary to identify optimal dosages. Study design and choice of controls for registrational trials of new long-acting PrEP agents might also prove challenging following the availability of an oral PrEP drug.

  8. Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Lonardi Stefano

    2008-01-01

    mitochondrion-targeted proteins are over-represented in the Arabidopsis cis-NATs and that 19% of sense and antisense partner genes of cis-NATs share at least one common Gene Ontology term, which suggests that they encode proteins with possible functional connection. Conclusion The negatively correlated expression patterns of sense and antisense genes as well as the presence of siRNAs in many of the cis-NATs suggest that siRNA regulation of cis-NATs via the RNAi pathway is an important gene regulatory mechanism for at least a subgroup of cis-NATs in Arabidopsis.

  9. Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast.

    Science.gov (United States)

    Belew, Ashton T; Advani, Vivek M; Dinman, Jonathan D

    2011-04-01

    Although first discovered in viruses, previous studies have identified operational -1 ribosomal frameshifting (-1 RF) signals in eukaryotic genomic sequences, and suggested a role in mRNA stability. Here, four yeast -1 RF signals are shown to promote significant mRNA destabilization through the nonsense mediated mRNA decay pathway (NMD), and genetic evidence is presented suggesting that they may also operate through the no-go decay pathway (NGD) as well. Yeast EST2 mRNA is highly unstable and contains up to five -1 RF signals. Ablation of the -1 RF signals or of NMD stabilizes this mRNA, and changes in -1 RF efficiency have opposing effects on the steady-state abundance of the EST2 mRNA. These results demonstrate that endogenous -1 RF signals function as mRNA destabilizing elements through at least two molecular pathways in yeast. Consistent with current evolutionary theory, phylogenetic analyses suggest that -1 RF signals are rapidly evolving cis-acting regulatory elements. Identification of high confidence -1 RF signals in ∼10% of genes in all eukaryotic genomes surveyed suggests that -1 RF is a broadly used post-transcriptional regulator of gene expression.

  10. Ancient and recent positive selection transformed opioid cis-regulation in humans.

    Directory of Open Access Journals (Sweden)

    Matthew V Rockman

    2005-12-01

    Full Text Available Changes in the cis-regulation of neural genes likely contributed to the evolution of our species' unique attributes, but evidence of a role for natural selection has been lacking. We found that positive natural selection altered the cis-regulation of human prodynorphin, the precursor molecule for a suite of endogenous opioids and neuropeptides with critical roles in regulating perception, behavior, and memory. Independent lines of phylogenetic and population genetic evidence support a history of selective sweeps driving the evolution of the human prodynorphin promoter. In experimental assays of chimpanzee-human hybrid promoters, the selected sequence increases transcriptional inducibility. The evidence for a change in the response of the brain's natural opioids to inductive stimuli points to potential human-specific characteristics favored during evolution. In addition, the pattern of linked nucleotide and microsatellite variation among and within modern human populations suggests that recent selection, subsequent to the fixation of the human-specific mutations and the peopling of the globe, has favored different prodynorphin cis-regulatory alleles in different parts of the world.

  11. Identification of high-confidence RNA regulatory elements by combinatorial classification of RNA-protein binding sites.

    Science.gov (United States)

    Li, Yang Eric; Xiao, Mu; Shi, Binbin; Yang, Yu-Cheng T; Wang, Dong; Wang, Fei; Marcia, Marco; Lu, Zhi John

    2017-09-08

    Crosslinking immunoprecipitation sequencing (CLIP-seq) technologies have enabled researchers to characterize transcriptome-wide binding sites of RNA-binding protein (RBP) with high resolution. We apply a soft-clustering method, RBPgroup, to various CLIP-seq datasets to group together RBPs that specifically bind the same RNA sites. Such combinatorial clustering of RBPs helps interpret CLIP-seq data and suggests functional RNA regulatory elements. Furthermore, we validate two RBP-RBP interactions in cell lines. Our approach links proteins and RNA motifs known to possess similar biochemical and cellular properties and can, when used in conjunction with additional experimental data, identify high-confidence RBP groups and their associated RNA regulatory elements.

  12. Prediction of regulatory elements

    DEFF Research Database (Denmark)

    Sandelin, Albin

    2008-01-01

    Finding the regulatory mechanisms responsible for gene expression remains one of the most important challenges for biomedical research. A major focus in cellular biology is to find functional transcription factor binding sites (TFBS) responsible for the regulation of a downstream gene. As wet......-lab methods are time consuming and expensive, it is not realistic to identify TFBS for all uncharacterized genes in the genome by purely experimental means. Computational methods aimed at predicting potential regulatory regions can increase the efficiency of wet-lab experiments significantly. Here, methods...

  13. Human developmental enhancers conserved between deuterostomes and protostomes.

    Directory of Open Access Journals (Sweden)

    Shoa L Clarke

    Full Text Available The identification of homologies, whether morphological, molecular, or genetic, is fundamental to our understanding of common biological principles. Homologies bridging the great divide between deuterostomes and protostomes have served as the basis for current models of animal evolution and development. It is now appreciated that these two clades share a common developmental toolkit consisting of conserved transcription factors and signaling pathways. These patterning genes sometimes show common expression patterns and genetic interactions, suggesting the existence of similar or even conserved regulatory apparatus. However, previous studies have found no regulatory sequence conserved between deuterostomes and protostomes. Here we describe the first such enhancers, which we call bilaterian conserved regulatory elements (Bicores. Bicores show conservation of sequence and gene synteny. Sequence conservation of Bicores reflects conserved patterns of transcription factor binding sites. We predict that Bicores act as response elements to signaling pathways, and we show that Bicores are developmental enhancers that drive expression of transcriptional repressors in the vertebrate central nervous system. Although the small number of identified Bicores suggests extensive rewiring of cis-regulation between the protostome and deuterostome clades, additional Bicores may be revealed as our understanding of cis-regulatory logic and sample of bilaterian genomes continue to grow.

  14. Does positive selection drive transcription factor binding site turnover? A test with Drosophila cis-regulatory modules.

    Directory of Open Access Journals (Sweden)

    Bin Z He

    2011-04-01

    Full Text Available Transcription factor binding site(s (TFBS gain and loss (i.e., turnover is a well-documented feature of cis-regulatory module (CRM evolution, yet little attention has been paid to the evolutionary force(s driving this turnover process. The predominant view, motivated by its widespread occurrence, emphasizes the importance of compensatory mutation and genetic drift. Positive selection, in contrast, although it has been invoked in specific instances of adaptive gene expression evolution, has not been considered as a general alternative to neutral compensatory evolution. In this study we evaluate the two hypotheses by analyzing patterns of single nucleotide polymorphism in the TFBS of well-characterized CRM in two closely related Drosophila species, Drosophila melanogaster and Drosophila simulans. An important feature of the analysis is classification of TFBS mutations according to the direction of their predicted effect on binding affinity, which allows gains and losses to be evaluated independently along the two phylogenetic lineages. The observed patterns of polymorphism and divergence are not compatible with neutral evolution for either class of mutations. Instead, multiple lines of evidence are consistent with contributions of positive selection to TFBS gain and loss as well as purifying selection in its maintenance. In discussion, we propose a model to reconcile the finding of selection driving TFBS turnover with constrained CRM function over long evolutionary time.

  15. Neither Reb1p nor poly(dA*T) elements are responsible for the highly specific chromatin organization at the ILV1 promoter

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Hörz, Wolfram; Holmberg, Steen

    2001-01-01

    Analysis of the chromatin structure at the yeast ILV1 locus revealed highly positioned nucleosomes covering the entire locus except for a hypersensitive site in the promoter region. All previously identified cis-acting elements required for GCN4-independent ILV1 basal level transcription, includi...

  16. A Bifunctional Intronic Element Regulates the Expression of the Arginine/Lysine Transporter Cat-1 via Mechanisms Involving the Purine-rich Element Binding Protein A (Purα)*

    Science.gov (United States)

    Huang, Charlie C.; Chiribau, Calin-Bogdan; Majumder, Mithu; Chiang, Cheng-Ming; Wek, Ronald C.; Kelm, Robert J.; Khalili, Kamel; Snider, Martin D.; Hatzoglou, Maria

    2009-01-01

    Expression of the arginine/lysine transporter Cat-1 is highly induced in proliferating and stressed cells via mechanisms that include transcriptional activation. A bifunctional INE (intronic element) within the first intron of the Cat-1 gene was identified and characterized in this study. The INE had high sequence homology to an amino acid response element and was shown to act as a transcriptional enhancer in unstressed cells by binding the transcription factor, purine-rich element binding protein A (Purα). During endoplasmic reticulum stress, binding of Purα to the INE decreased; the element acted as a positive regulator in early stress by binding of the transcription factor ATF4 and as a negative regulator in prolonged stress by binding the stress-induced C/EBP family member, CHOP. We conclude that transcriptional control of the Cat-1 gene is tightly controlled by multiple cis-DNA elements, contributing to regulation of cationic amino acid transport for cell growth and proliferation. In addition, we propose that genes may use stress-response elements such as the INE to support basal expression in the absence of stress. PMID:19720825

  17. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes.

    Science.gov (United States)

    Parker, Brian J; Moltke, Ida; Roth, Adam; Washietl, Stefan; Wen, Jiayu; Kellis, Manolis; Breaker, Ronald; Pedersen, Jakob Skou

    2011-11-01

    Regulatory RNA structures are often members of families with multiple paralogous instances across the genome. Family members share functional and structural properties, which allow them to be studied as a whole, facilitating both bioinformatic and experimental characterization. We have developed a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein-coding regions comprising 725 individual structures, including 48 families with known structural RNA elements. Known families identified include both noncoding RNAs, e.g., miRNAs and the recently identified MALAT1/MEN β lincRNA family; and cis-regulatory structures, e.g., iron-responsive elements. We also identify tens of new families supported by strong evolutionary evidence and other statistical evidence, such as GO term enrichments. For some of these, detailed analysis has led to the formulation of specific functional hypotheses. Examples include two hypothesized auto-regulatory feedback mechanisms: one involving six long hairpins in the 3'-UTR of MAT2A, a key metabolic gene that produces the primary human methyl donor S-adenosylmethionine; the other involving a tRNA-like structure in the intron of the tRNA maturation gene POP1. We experimentally validate the predicted MAT2A structures. Finally, we identify potential new regulatory networks, including large families of short hairpins enriched in immunity-related genes, e.g., TNF, FOS, and CTLA4, which include known transcript destabilizing elements. Our findings exemplify the diversity of post-transcriptional regulation and provide a resource for further characterization of new regulatory mechanisms and families of noncoding RNAs.

  18. Computational methods in sequence and structure prediction

    Science.gov (United States)

    Lang, Caiyi

    This dissertation is organized into two parts. In the first part, we will discuss three computational methods for cis-regulatory element recognition in three different gene regulatory networks as the following: (a) Using a comprehensive "Phylogenetic Footprinting Comparison" method, we will investigate the promoter sequence structures of three enzymes (PAL, CHS and DFR) that catalyze sequential steps in the pathway from phenylalanine to anthocyanins in plants. Our result shows there exists a putative cis-regulatory element "AC(C/G)TAC(C)" in the upstream of these enzyme genes. We propose this cis-regulatory element to be responsible for the genetic regulation of these three enzymes and this element, might also be the binding site for MYB class transcription factor PAP1. (b) We will investigate the role of the Arabidopsis gene glutamate receptor 1.1 (AtGLR1.1) in C and N metabolism by utilizing the microarray data we obtained from AtGLR1.1 deficient lines (antiAtGLR1.1). We focus our investigation on the putatively co-regulated transcript profile of 876 genes we have collected in antiAtGLR1.1 lines. By (a) scanning the occurrence of several groups of known abscisic acid (ABA) related cisregulatory elements in the upstream regions of 876 Arabidopsis genes; and (b) exhaustive scanning of all possible 6-10 bps motif occurrence in the upstream regions of the same set of genes, we are able to make a quantative estimation on the enrichment level of each of the cis-regulatory element candidates. We finally conclude that one specific cis-regulatory element group, called "ABRE" elements, are statistically highly enriched within the 876-gene group as compared to their occurrence within the genome. (c) We will introduce a new general purpose algorithm, called "fuzzy REDUCE1", which we have developed recently for automated cis-regulatory element identification. In the second part, we will discuss our newly devised protein design framework. With this framework we have developed

  19. Massive contribution of transposable elements to mammalian regulatory sequences.

    Science.gov (United States)

    Rayan, Nirmala Arul; Del Rosario, Ricardo C H; Prabhakar, Shyam

    2016-09-01

    Barbara McClintock discovered the existence of transposable elements (TEs) in the late 1940s and initially proposed that they contributed to the gene regulatory program of higher organisms. This controversial idea gained acceptance only much later in the 1990s, when the first examples of TE-derived promoter sequences were uncovered. It is now known that half of the human genome is recognizably derived from TEs. It is thus important to understand the scope and nature of their contribution to gene regulation. Here, we provide a timeline of major discoveries in this area and discuss how transposons have revolutionized our understanding of mammalian genomes, with a special emphasis on the massive contribution of TEs to primate evolution. Our analysis of primate-specific functional elements supports a simple model for the rate at which new functional elements arise in unique and TE-derived DNA. Finally, we discuss some of the challenges and unresolved questions in the field, which need to be addressed in order to fully characterize the impact of TEs on gene regulation, evolution and disease processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sterol regulatory element binding protein-1 (SREBP1) gene expression is similarly increased in polycystic ovary syndrome and endometrial cancer.

    Science.gov (United States)

    Shafiee, Mohamad N; Mongan, Nigel; Seedhouse, Claire; Chapman, Caroline; Deen, Suha; Abu, Jafaru; Atiomo, William

    2017-05-01

    Women with polycystic ovary syndrome have a three-fold higher risk of endometrial cancer. Insulin resistance and hyperlipidemia may be pertinent factors in the pathogenesis of both conditions. The aim of this study was to investigate endometrial sterol regulatory element binding protein-1 gene expression in polycystic ovary syndrome and endometrial cancer endometrium, and to correlate endometrial sterol regulatory element binding protein-1 gene expression with serum lipid profiles. A cross-sectional study was performed at Nottingham University Hospital, UK. A total of 102 women (polycystic ovary syndrome, endometrial cancer and controls; 34 participants in each group) were recruited. Clinical and biochemical assessments were performed before endometrial biopsies were obtained from all participants. Taqman real-time polymerase chain reaction for endometrial sterol regulatory element binding protein-1 gene and its systemic protein expression were analyzed. The body mass indices of women with polycystic ovary syndrome (29.28 ± 2.91 kg/m 2 ) and controls (28.58 ± 2.62 kg/m 2 ) were not significantly different. Women with endometrial cancer had a higher mean body mass index (32.22 ± 5.70 kg/m 2 ). Sterol regulatory element binding protein-1 gene expression was significantly increased in polycystic ovary syndrome and endometrial cancer endometrium compared with controls (p ovary syndrome, but this was not statistically significant. Similarly, statistically insignificant positive correlations were found between endometrial sterol regulatory element binding protein-1 gene expression and body mass index in endometrial cancer (r = 0.643, p = 0.06) and waist-hip ratio (r = 0.096, p = 0.073). Sterol regulatory element binding protein-1 gene expression was significantly positively correlated with triglyceride in both polycystic ovary syndrome and endometrial cancer (p = 0.028 and p = 0.027, respectively). Quantitative serum sterol regulatory element

  1. Generation of Chimeric RNAs by cis-splicing of adjacent genes (cis-SAGe) in mammals.

    Science.gov (United States)

    Zhuo, Jian-Shu; Jing, Xiao-Yan; Du, Xin; Yang, Xiu-Qin

    2018-02-20

    Chimeric RNA molecules, possessing exons from two or more independent genes, are traditionally believed to be produced by chromosome rearrangement. However, recent studies revealed that cis-splicing of adjacent genes (cis- SAGe) is one of the major mechanisms underlying the formation of chimeric RNAs. cis-SAGe refers to intergenic splicing of directly adjacent genes with the same transcriptional orientation, resulting in read-through transcripts, termed chimeric RNAs, which contain sequences from two or more parental genes. cis-SAGe was first identified in tumor cells, since then its potential in carcinogenesis has attracted extensive attention. More and more scientists are focusing on it. With the development of research, cis-SAGe was found to be ubiquitous in various normal tissues, and might make a crucial contribution to the formation of novel genes in the evolution of genomes. In this review, we summarize the splicing pattern, expression characteristics, possible mechanisms, and significance of cis-SAGe in mammals. This review will be helpful for general understanding of the current status and development tendency of cis-SAGe.

  2. Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase.

    Science.gov (United States)

    Rawat, Reetika; Xu, Zeng-Fu; Yao, Kwok-Ming; Chye, Mee-Len

    2005-03-01

    We have previously shown that the expression of SmCP which encodes Solanum melongena cysteine proteinase is ethylene-inducible and is under circadian control. To understand the regulation of SmCP, a 1.34-kb SmCP 5'-flanking region and its deletion derivatives were analyzed for cis-elements using GUS and luc fusions and by in vitro binding assays. Analysis of transgenic tobacco transformed with SmCP promoter-GUS constructs confirmed that the promoter region -415/+54 containing Ethylene Responsive Element ERE(-355/-348) conferred threefold ethylene-induction of GUS expression, while -827/+54 which also contains ERE(-683/-676), produced fivefold induction. Using gel mobility shift assays, we demonstrated that each ERE binds nuclear proteins from both ethephon-treated and untreated 5-week-old seedlings, suggesting that different transcriptions factors bind each ERE under varying physiological conditions. Binding was also observed in extracts from senescent, but not young, fruits. The variation in binding at the EREs in fruits and seedlings imply that organ-specific factors may participate in binding. Analysis of transgenic tobacco expressing various SmCP promoter-luc constructs containing wild-type or mutant Evening Elements (EEs) confirmed that both conserved EEs at -795/-787 and -785/-777 are important in circadian control. We confirmed the binding of total nuclear proteins to EEs in gel mobility shift assays and in DNase I footprinting. Our results suggest that multiple proteins bind the EEs which are conserved in plants other than Arabidopsis and that functional EEs and EREs are present in the 5'-flanking region of a gene encoding cysteine proteinase.

  3. Novel sequence variations in LAMA2 and SGCG genes modulating cis-acting regulatory elements and RNA secondary structure

    Directory of Open Access Journals (Sweden)

    Olfa Siala

    2010-01-01

    Full Text Available In this study, we detected new sequence variations in LAMA2 and SGCG genes in 5 ethnic populations, and analysed their effect on enhancer composition and mRNA structure. PCR amplification and DNA sequencing were performed and followed by bioinformatics analyses using ESEfinder as well as MFOLD software. We found 3 novel sequence variations in the LAMA2 (c.3174+22_23insAT and c.6085 +12delA and SGCG (c.*102A/C genes. These variations were present in 210 tested healthy controls from Tunisian, Moroccan, Algerian, Lebanese and French populations suggesting that they represent novel polymorphisms within LAMA2 and SGCG genes sequences. ESEfinder showed that the c.*102A/C substitution created a new exon splicing enhancer in the 3'UTR of SGCG genes, whereas the c.6085 +12delA deletion was situated in the base pairing region between LAMA2 mRNA and the U1snRNA spliceosomal components. The RNA structure analyses showed that both variations modulated RNA secondary structure. Our results are suggestive of correlations between mRNA folding and the recruitment of spliceosomal components mediating splicing, including SR proteins. The contribution of common sequence variations to mRNA structural and functional diversity will contribute to a better study of gene expression.

  4. Evolution of stress-regulated gene expression in duplicate genes of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Cheng Zou

    2009-07-01

    Full Text Available Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time is > approximately 0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments.

  5. A nuclear factor I-like activity and a liver-specific repressor govern estrogen-regulated in vitro transcription from the Xenopus laevis vitellogenin B1 promoter.

    Science.gov (United States)

    Corthésy, B; Cardinaux, J R; Claret, F X; Wahli, W

    1989-12-01

    A hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to identify novel cis-acting elements within the vitellogenin gene B1 promoter region. In addition to the already well-documented estrogen-responsive element (ERE), two elements were found within the 140 base pairs upstream of the transcription initiation site. One of them, a negative regulatory element, is responsible for the lack of promoter activity in the absence of the hormone and, as demonstrated by DNA-binding assays, interacts with a liver-specific transcription factor. The second is required in association with the estrogen-responsive element to mediate hormonal induction and is recognized by the Xenopus liver homolog of nuclear factor I.

  6. An ABA-responsive element in the AtSUC1 promoter is involved in the regulation of AtSUC1 expression.

    Science.gov (United States)

    Hoth, Stefan; Niedermeier, Matthias; Feuerstein, Andrea; Hornig, Julia; Sauer, Norbert

    2010-09-01

    Abscisic acid (ABA) and sugars regulate many aspects of plant growth and development, and we are only just beginning to understand the complex interactions between ABA and sugar signaling networks. Here, we show that ABA-dependent transcription factors bind to the promoter of the Arabidopsis thaliana AtSUC1 (At1g71880) sucrose transporter gene in vitro. We present the characterization of a cis-regulatory element by truncation of the AtSUC1 promoter and by electrophoretic mobility shift assays that is identical to a previously characterized ABA-responsive element (ABRE). In yeast 1-hybrid analyses we identified ABI5 (AtbZIP39; At2g36270) and AREB3 (AtbZIP66; At3g56850) as potential interactors. Analyses of plants expressing the beta-glucuronidase reporter gene under the control of ABI5 or AREB3 promoter sequences demonstrated that both transcription factor genes are co-expressed with AtSUC1 in pollen and seedlings, the primary sites of AtSUC1 action. Mutational analyses of the identified cis-regulatory element verified its importance for AtSUC1 expression in young seedlings. In abi5-4 seedlings, we observed an increase of sucrose-dependent anthocyanin accumulation and AtSUC1 mRNA levels. This suggests that ABI5 prevents an overshoot of sucrose-induced AtSUC1 expression and confirmed a novel cross-link between sugar and ABA signaling.

  7. Bioinformatic analysis of cis-regulatory interactions between progesterone and estrogen receptors in breast cancer

    Directory of Open Access Journals (Sweden)

    Matloob Khushi

    2014-11-01

    Full Text Available Chromatin factors interact with each other in a cell and sequence-specific manner in order to regulate transcription and a wealth of publically available datasets exists describing the genomic locations of these interactions. Our recently published BiSA (Binding Sites Analyser database contains transcription factor binding locations and epigenetic modifications collected from published studies and provides tools to analyse stored and imported data. Using BiSA we investigated the overlapping cis-regulatory role of estrogen receptor alpha (ERα and progesterone receptor (PR in the T-47D breast cancer cell line. We found that ERα binding sites overlap with a subset of PR binding sites. To investigate further, we re-analysed raw data to remove any biases introduced by the use of distinct tools in the original publications. We identified 22,152 PR and 18,560 ERα binding sites (<5% false discovery rate with 4,358 overlapping regions among the two datasets. BiSA statistical analysis revealed a non-significant overall overlap correlation between the two factors, suggesting that ERα and PR are not partner factors and do not require each other for binding to occur. However, Monte Carlo simulation by Binary Interval Search (BITS, Relevant Distance, Absolute Distance, Jaccard and Projection tests by Genometricorr revealed a statistically significant spatial correlation of binding regions on chromosome between the two factors. Motif analysis revealed that the shared binding regions were enriched with binding motifs for ERα, PR and a number of other transcription and pioneer factors. Some of these factors are known to co-locate with ERα and PR binding. Therefore spatially close proximity of ERα binding sites with PR binding sites suggests that ERα and PR, in general function independently at the molecular level, but that their activities converge on a specific subset of transcriptional targets.

  8. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication.

    Science.gov (United States)

    Herod, Morgan R; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C; Verdaguer, Nuria; Rowlands, David J; Stonehouse, Nicola J

    2016-08-01

    The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within

  9. Unveiling combinatorial regulation through the combination of ChIP information and in silico cis-regulatory module detection

    Science.gov (United States)

    Sun, Hong; Guns, Tias; Fierro, Ana Carolina; Thorrez, Lieven; Nijssen, Siegfried; Marchal, Kathleen

    2012-01-01

    Computationally retrieving biologically relevant cis-regulatory modules (CRMs) is not straightforward. Because of the large number of candidates and the imperfection of the screening methods, many spurious CRMs are detected that are as high scoring as the biologically true ones. Using ChIP-information allows not only to reduce the regions in which the binding sites of the assayed transcription factor (TF) should be located, but also allows restricting the valid CRMs to those that contain the assayed TF (here referred to as applying CRM detection in a query-based mode). In this study, we show that exploiting ChIP-information in a query-based way makes in silico CRM detection a much more feasible endeavor. To be able to handle the large datasets, the query-based setting and other specificities proper to CRM detection on ChIP-Seq based data, we developed a novel powerful CRM detection method ‘CPModule’. By applying it on a well-studied ChIP-Seq data set involved in self-renewal of mouse embryonic stem cells, we demonstrate how our tool can recover combinatorial regulation of five known TFs that are key in the self-renewal of mouse embryonic stem cells. Additionally, we make a number of new predictions on combinatorial regulation of these five key TFs with other TFs documented in TRANSFAC. PMID:22422841

  10. Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene.

    Science.gov (United States)

    Rim, Jong S; Kozak, Leslie P

    2002-09-13

    Thermogenesis against cold exposure in mammals occurs in brown adipose tissue (BAT) through mitochondrial uncoupling protein (UCP1). Expression of the Ucp1 gene is unique in brown adipocytes and is regulated tightly. The 5'-flanking region of the mouse Ucp1 gene contains cis-acting elements including PPRE, TRE, and four half-site cAMP-responsive elements (CRE) with BAT-specific enhancer elements. In the course of analyzing how these half-site CREs are involved in Ucp1 expression, we found that a DNA regulatory element for NF-E2 overlaps CRE2. Electrophoretic mobility shift assay and competition assays with the CRE2 element indicates that nuclear proteins from BAT, inguinal fat, and retroperitoneal fat tissue interact with the CRE2 motif (CGTCA) in a specific manner. A supershift assay using an antibody against the CRE-binding protein (CREB) shows specific affinity to the complex from CRE2 and nuclear extract of BAT. Additionally, Western blot analysis for phospho-CREB/ATF1 shows an increase in phosphorylation of CREB/ATF1 in HIB-1B cells after norepinephrine treatment. Transient transfection assay using luciferase reporter constructs also indicates that the two half-site CREs are involved in transcriptional regulation of Ucp1 in response to norepinephrine and cAMP. We also show that a second DNA regulatory element for NF-E2 is located upstream of the CRE2 region. This element, which is found in a similar location in the 5'-flanking region of the human and rodent Ucp1 genes, shows specific binding to rat and human NF-E2 by electrophoretic mobility shift assay with nuclear extracts from brown fat. Co-transfections with an Nfe2l2 expression vector and a luciferase reporter construct of the Ucp1 enhancer region provide additional evidence that Nfe2l2 is involved in the regulation of Ucp1 by cAMP-mediated signaling.

  11. Structure of an RNA dimer of a regulatory element from human thymidylate synthase mRNA

    OpenAIRE

    Dibrov, Sergey; McLean, Jaime; Hermann, Thomas

    2011-01-01

    An oligonucleotide representing a regulatory element of human thymidylate synthase mRNA has been crystallized as a dimer. The structure of the asymmetric dimer has been determined at 1.97 Å resolution.

  12. Dynamic analysis of fast-acting solenoid valves using finite element method

    International Nuclear Information System (INIS)

    Kwon, Ki Tae; Han, Hwa Taik

    2001-01-01

    It is intended to develop an algorithm for dynamic simulation of fast-acting solenoid valves. The coupled equations of the electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balances acting on the plunger, which include the electromagnetic force calculated from the finite element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well the experimental results including bouncing effects

  13. Interplay of cis- and trans-regulatory mechanisms in the spliceosomal RNA helicase Brr2.

    Science.gov (United States)

    Absmeier, Eva; Becke, Christian; Wollenhaupt, Jan; Santos, Karine F; Wahl, Markus C

    2017-01-02

    RNA helicase Brr2 is implicated in multiple phases of pre-mRNA splicing and thus requires tight regulation. Brr2 can be auto-inhibited via a large N-terminal region folding back onto its helicase core and auto-activated by a catalytically inactive C-terminal helicase cassette. Furthermore, it can be regulated in trans by the Jab1 domain of the Prp8 protein, which can inhibit Brr2 by intermittently inserting a C-terminal tail in the enzyme's RNA-binding tunnel or activate the helicase after removal of this tail. Presently it is unclear, whether these regulatory mechanisms functionally interact and to which extent they are evolutionarily conserved. Here, we report crystal structures of Saccharomyces cerevisiae and Chaetomium thermophilum Brr2-Jab1 complexes, demonstrating that Jab1-based inhibition of Brr2 presumably takes effect in all eukaryotes but is implemented via organism-specific molecular contacts. Moreover, the structures show that Brr2 auto-inhibition can act in concert with Jab1-mediated inhibition, and suggest that the N-terminal region influences how the Jab1 C-terminal tail interacts at the RNA-binding tunnel. Systematic RNA binding and unwinding studies revealed that the N-terminal region and the Jab1 C-terminal tail specifically interfere with accommodation of double-stranded and single-stranded regions of an RNA substrate, respectively, mutually reinforcing each other. Additionally, such analyses show that regulation based on the N-terminal region requires the presence of the inactive C-terminal helicase cassette. Together, our results outline an intricate system of regulatory mechanisms, which control Brr2 activities during snRNP assembly and splicing.

  14. Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice

    Directory of Open Access Journals (Sweden)

    Lu Tingting

    2012-12-01

    Full Text Available Abstract Background Cis-natural antisense transcripts (cis-NATs are RNAs transcribed from the antisense strand of a gene locus, and are complementary to the RNA transcribed from the sense strand. Common techniques including microarray approach and analysis of transcriptome databases are the major ways to globally identify cis-NATs in various eukaryotic organisms. Genome-wide in silico analysis has identified a large number of cis-NATs that may generate endogenous short interfering RNAs (nat-siRNAs, which participate in important biogenesis mechanisms for transcriptional and post-transcriptional regulation in rice. However, the transcriptomes are yet to be deeply sequenced to comprehensively investigate cis-NATs. Results We applied high-throughput strand-specific complementary DNA sequencing technology (ssRNA-seq to deeply sequence mRNA for assessing sense and antisense transcripts that were derived under salt, drought and cold stresses, and normal conditions, in the model plant rice (Oryza sativa. Combined with RAP-DB genome annotation (the Rice Annotation Project Database build-5 data set, 76,013 transcripts corresponding to 45,844 unique gene loci were assembled, in which 4873 gene loci were newly identified. Of 3819 putative rice cis-NATs, 2292 were detected as expressed and giving rise to small RNAs from their overlapping regions through integrated analysis of ssRNA-seq data and small RNA data. Among them, 503 cis-NATs seemed to be associated with specific conditions. The deep sequence data from isolated epidermal cells of rice seedlings further showed that 54.0% of cis-NATs were expressed simultaneously in a population of homogenous cells. Nearly 9.7% of rice transcripts were involved in one-to-one or many-to-many cis-NATs formation. Furthermore, only 17.4-34.7% of 223 many-to-many cis-NAT groups were all expressed and generated nat-siRNAs, indicating that only some cis-NAT groups may be involved in complex regulatory networks. Conclusions

  15. Sterols regulate 3β-hydroxysterol Δ24-reductase (DHCR24) via dual sterol regulatory elements: cooperative induction of key enzymes in lipid synthesis by Sterol Regulatory Element Binding Proteins.

    Science.gov (United States)

    Zerenturk, Eser J; Sharpe, Laura J; Brown, Andrew J

    2012-10-01

    3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Cre/loxP-mediated adenovirus type 5 packaging signal excision demonstrates that core element VI is sufficient for virus packaging

    International Nuclear Information System (INIS)

    Maeda, Yasushi; Kimura, En; Uchida, Yuji; Nishida, Yasuto; Yamashita, Satoshi; Arima, Toshiyuki; Uchino, Makoto

    2003-01-01

    Previous analyses have demonstrated that packaging of the adenovirus type 5 (Ad5) genome is dependent on at least seven cis-acting elements, called AI to AVII, which are located in the left-end region of the genome. These elements have different packaging efficiencies, and without AI through AV, viral DNA cannot be packaged. Here we report the identification of the cis-acting Ad5 packaging domain in vivo by using the Cre/loxP system. We found that an adenoviral DNA fragment (nt 192 to nt 358), which includes elements AI to AV, is excised by Cre recombinase and packaged into capsids. Furthermore, this mutant adenovirus replicated so efficiently by repetitive propagation that its purification by CsCI equilibrium gradient was possible. This study clarified that the region from nt 358 to nt 454 on the viral genome is sufficient for packaging. Recently, the helper-dependent adenoviral vector (HDAd) construction system has been developed for the purpose of gene therapy. This system uses a helper virus with two parallel loxP sites flanking the packaging signal. This region is eliminated by Cre-mediated excision, which prevents helper virus packaging. Our data provide useful information regarding factors affecting efficient elimination

  17. Characterization of an estrogen-responsive element implicated in regulation of the rainbow trout estrogen receptor gene.

    Science.gov (United States)

    Le Dréan, Y; Lazennec, G; Kern, L; Saligaut, D; Pakdel, F; Valotaire, Y

    1995-08-01

    We previously reported that the expression of the rainbow trout estrogen receptor (rtER) gene is markedly increased by estradiol (E2). In this paper, we have used transient transfection assays with reporter plasmids expressing chloramphenicol acetyl transferase (CAT), linked to 5' flanking regions of the rtER gene promoter, to identify cis-elements responsible for E2 inducibility. Deletion analysis localized an estrogen-responsive element (ERE), at position +242, with one mutation on the first base compared with the consensus sequence. This element confers estrogen responsiveness to CAT reporter linked to both the herpes simplex virus thymidine kinase promoter and the homologous rtER promoter. Moreover, using a 0.2 kb fragment of the rtER promoter encompassing the ERE and the rtER DNA binding domain obtained from a bacterial expression system, DNase I footprinting experiments demonstrated a specific protection covering 20 bp (+240/+260) containing the ERE sequence. Based on these studies, we believe that this ERE sequence, identified in the rtER gene promoter, may be a major cis-acting element involved in the regulation of the gene by estrogen.

  18. Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection.

    Directory of Open Access Journals (Sweden)

    Yoichiro Shibata

    2012-06-01

    Full Text Available Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species.

  19. Tissue-Specific Enrichment of Lymphoma Risk Loci in Regulatory Elements.

    Science.gov (United States)

    Hayes, James E; Trynka, Gosia; Vijai, Joseph; Offit, Kenneth; Raychaudhuri, Soumya; Klein, Robert J

    2015-01-01

    Though numerous polymorphisms have been associated with risk of developing lymphoma, how these variants function to promote tumorigenesis is poorly understood. Here, we report that lymphoma risk SNPs, especially in the non-Hodgkin's lymphoma subtype chronic lymphocytic leukemia, are significantly enriched for co-localization with epigenetic marks of active gene regulation. These enrichments were seen in a lymphoid-specific manner for numerous ENCODE datasets, including DNase-hypersensitivity as well as multiple segmentation-defined enhancer regions. Furthermore, we identify putatively functional SNPs that are both in regulatory elements in lymphocytes and are associated with gene expression changes in blood. We developed an algorithm, UES, that uses a Monte Carlo simulation approach to calculate the enrichment of previously identified risk SNPs in various functional elements. This multiscale approach integrating multiple datasets helps disentangle the underlying biology of lymphoma, and more broadly, is generally applicable to GWAS results from other diseases as well.

  20. The lncRNA Malat1 Is Dispensable for Mouse Development but Its Transcription Plays a cis-Regulatory Role in the Adult

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2012-07-01

    Full Text Available Genome-wide studies have identified thousands of long noncoding RNAs (lncRNAs lacking protein-coding capacity. However, most lncRNAs are expressed at a very low level, and in most cases there is no genetic evidence to support their in vivo function. Malat1 (metastasis associated lung adenocarcinoma transcript 1 is among the most abundant and highly conserved lncRNAs, and it exhibits an uncommon 3′-end processing mechanism. In addition, its specific nuclear localization, developmental regulation, and dysregulation in cancer are suggestive of it having a critical biological function. We have characterized a Malat1 loss-of-function genetic model that indicates that Malat1 is not essential for mouse pre- and postnatal development. Furthermore, depletion of Malat1 does not affect global gene expression, splicing factor level and phosphorylation status, or alternative pre-mRNA splicing. However, among a small number of genes that were dysregulated in adult Malat1 knockout mice, many were Malat1 neighboring genes, thus indicating a potential cis-regulatory role of Malat1 gene transcription.

  1. Splicing Regulatory Elements and mRNA-abundance of dlg1 and capt, Genetically Interacting with dFMRP in Drosophila Brain

    Directory of Open Access Journals (Sweden)

    Maria Petrova

    2014-09-01

    Full Text Available To further understand the molecular and cellular mechanisms underlying the disease, we used the Drososphila FraX model and investigated a not well studied role of Drosophila Fragile X Mental Retardation Protein (dFMRP in alternative splicing of neuronal mRNAs to which it binds via a G-quartet sequence. By means of qRT-PCR we established the relative abundance of some isoforms of the gene dlg1, resulting from alternative exon skipping nearby a G-quartet and an exonic ESE-sequence, both acting as exonic splicing enhancers. We also investigated the relative mRNA-abundance of all capt-isoforms and the pre-mRNAs of both genes. We proposed a possible involvement of dFMRP in alternative splicing of genes, interacting with dfmr1. In the absence of dFMRP in larval and pupal brains, we found a change in the mRNA-level of one of the studied isoforms of dlg1 and of its pre-mRNA.We also established previously reported splicing regulatory elements and predicted computationally novel hexamere sequences in the exonic/intronic ends of both genes with p upative regulatory roles in alternative splicing.

  2. Deciphering RNA regulatory elements in trypanosomatids: one piece at a time or genome-wide?

    Science.gov (United States)

    Gazestani, Vahid H; Lu, Zhiquan; Salavati, Reza

    2014-05-01

    Morphological and metabolic changes in the life cycle of Trypanosoma brucei are accomplished by precise regulation of hundreds of genes. In the absence of transcriptional control, RNA-binding proteins (RBPs) shape the structure of gene regulatory maps in this organism, but our knowledge about their target RNAs, binding sites, and mechanisms of action is far from complete. Although recent technological advances have revolutionized the RBP-based approaches, the main framework for the RNA regulatory element (RRE)-based approaches has not changed over the last two decades in T. brucei. In this Opinion, after highlighting the current challenges in RRE inference, we explain some genome-wide solutions that can significantly boost our current understanding about gene regulatory networks in T. brucei. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Genome-wide haplotype analysis of cis expression quantitative trait loci in monocytes.

    Directory of Open Access Journals (Sweden)

    Sophie Garnier

    Full Text Available In order to assess whether gene expression variability could be influenced by several SNPs acting in cis, either through additive or more complex haplotype effects, a systematic genome-wide search for cis haplotype expression quantitative trait loci (eQTL was conducted in a sample of 758 individuals, part of the Cardiogenics Transcriptomic Study, for which genome-wide monocyte expression and GWAS data were available. 19,805 RNA probes were assessed for cis haplotypic regulation through investigation of ~2,1 × 10(9 haplotypic combinations. 2,650 probes demonstrated haplotypic p-values >10(4-fold smaller than the best single SNP p-value. Replication of significant haplotype effects were tested for 412 probes for which SNPs (or proxies that defined the detected haplotypes were available in the Gutenberg Health Study composed of 1,374 individuals. At the Bonferroni correction level of 1.2 × 10(-4 (~0.05/412, 193 haplotypic signals replicated. 1000 G imputation was then conducted, and 105 haplotypic signals still remained more informative than imputed SNPs. In-depth analysis of these 105 cis eQTL revealed that at 76 loci genetic associations were compatible with additive effects of several SNPs, while for the 29 remaining regions data could be compatible with a more complex haplotypic pattern. As 24 of the 105 cis eQTL have previously been reported to be disease-associated loci, this work highlights the need for conducting haplotype-based and 1000 G imputed cis eQTL analysis before commencing functional studies at disease-associated loci.

  4. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    Directory of Open Access Journals (Sweden)

    Shuchi eSmita

    2015-12-01

    Full Text Available MYB transcription factor (TF is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by top down and guide gene approaches. More than 50% of OsMYBs were strongly correlated under fifty experimental conditions with 51 hub genes via top down approach. Further, clusters were identified using Markov Clustering (MCL. To maximize the clustering performance, parameter evaluation of the MCL inflation score (I was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by guide gene approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  5. Ionizing radiation sources management in the Commonwealth of Independent States - CIS

    International Nuclear Information System (INIS)

    Iskra, A.; Bufetova, M.

    2006-01-01

    Ionizing radiation sources cover a broad band of power: from powerful NPP reactors and research reactors to portable radioisotope ionizing radiation sources applied in medicine, agriculture, industry and in the energy supply systems of remote facilities. At present, scales and use field of radionuclide sources in the CIS have the tendency to increase. In this connection, the issues of ionizing radiation sources management safety at all stages of their life cycle, from production to treatment, have been of a great importance. The materials on ionizing radiation sources inventory and treatment in the CIS (Russia, Armenia, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan and Ukraine) are presented in the report. It is shown that in some republics, there is difficulty in ionizing radiation sources accounting and control system; the national regulatory and legal framework bases regulating activity on radioactive sources use, localization and treatment require update. Many problems are connected with the sources beyond state accounting. The problem of ionizing radiation sources use safety is complicated by the growing activity of various terrorist groups. The opportunity to use ionizing radiation sources with terrorism goals requires the application of defined systems of security and physical protection at all stages of their management. For this purpose a collective, with all CIS countries, organization of radioactive sources accounting and control as well as countermeasures on their illegal transportation and use are necessary. In this connection, the information collection regarding situation with providing of ionizing radiation sources safety, conditions of equipment and storage facilities, radioactive materials accounting and control system in the CIS countries is vitally needed

  6. Nsite, NsiteH and NsiteM Computer Tools for Studying Tran-scription Regulatory Elements

    KAUST Repository

    Shahmuradov, Ilham

    2015-07-02

    Summary: Gene transcription is mostly conducted through interactions of various transcription factors and their binding sites on DNA (regulatory elements, REs). Today, we are still far from understanding the real regulatory content of promoter regions. Computer methods for identification of REs remain a widely used tool for studying and understanding transcriptional regulation mechanisms. The Nsite, NsiteH and NsiteM programs perform searches for statistically significant (non-random) motifs of known human, animal and plant one-box and composite REs in a single genomic sequence, in a pair of aligned homologous sequences and in a set of functionally related sequences, respectively.

  7. Effects of sterol regulatory element-binding protein (SREBP in chickens

    Directory of Open Access Journals (Sweden)

    Alipour Fahimeh

    2012-02-01

    Full Text Available Abstract Sterol regulatory element binding protein- 1 and -2 (SREBP-1 and -2 are key transcription factors involved in the biosynthesis of cholesterol and fatty acids. The SREBP have mostly been studied in rodents in which lipogenesis is regulated in both liver and adipose tissue. There is, though, a paucity of information on birds, in which lipogenesis occurs essentially in the liver as in humans. Since a prelude to the investigation of the role of SREBP in lipid metabolism regulation in chicken, we review Size and Tissue expression Pattern of SREBP and role of this protein in chickens.

  8. Defective distal regulatory element at the 5' upstream of rat prolactin gene of steroid-nonresponsive GH-subclone.

    Science.gov (United States)

    Kumar, V; Wong, D T; Pasion, S G; Biswas, D K

    1987-12-08

    The prolactin-nonproducing (PRL-) GH cell strains (rat pituitary tumor cells in culture). GH12C1 and F1BGH12C1, do not respond to steroid hormones estradiol or hydrocortisone (HC). However, the stimulatory effect of estradiol and the inhibitory effect of hydrocortisone on prolactin synthesis can be demonstrated in the prolactin-producing GH cell strain, GH4C1. In this investigation we have examined the 5' end flanking region of rat prolactin (rat PRL) gene of steroid-responsive, GH4C1 cells to identify the positive and negative regulatory elements and to verify the status of these elements in steroid-nonresponsive F1BGH12C1 cells. Results presented in this report demonstrate that the basel level expression of the co-transferred Neo gene (neomycin phosphoribosyl transferase) is modulated by the distal upstream regulatory elements of rat PRL gene in response to steroid hormones. The expression of adjacent Neo gene is inhibited by dexamethasone and is stimulated by estradiol in transfectants carrying distal regulatory elements (SRE) of steroid-responsive cells. These responses are not observed in transfectants with the rat PRL upstream sequences derived from steroid-nonresponsive cells. The basal level expression of the host cell alpha-2 tubulin gene is not affected by dexamethasone. We report here the identification of the distal steroid regulatory element (SRE) located between 3.8 and 7.8 kb upstream of the transcription initiation site of rat PRL gene. Both the positive and the negative effects of steroid hormones can be identified within this upstream sequence. This distal SRE appears to be nonfunctional in steroid-nonresponsive cells. Though the proximal SRE is functional, the defect in the distal SRE makes the GH substrain nonresponsive to steroid hormones. These results suggest that both the proximal and the distal SREs are essential for the mediation of action of steroid hormones in GH cells.

  9. Synergism between a half-site and an imperfect estrogen-responsive element, and cooperation with COUP-TFI are required for estrogen receptor (ER) to achieve a maximal estrogen-stimulation of rainbow trout ER gene.

    Science.gov (United States)

    Petit, F G; Métivier, R; Valotaire, Y; Pakdel, F

    1999-01-01

    In all oviparous, liver represents one of the main E2-target tissues where estrogen receptor (ER) constitutes the key mediator of estrogen action. The rainbow trout estrogen receptor (rtER) gene expression is markedly up-regulated by estrogens and the sequences responsible for this autoregulation have been located in a 0.2 kb upstream transcription start site within - 40/- 248 enhancer region. Absence of interference with steroid hormone receptors and tissue-specific factors and a conserved basal transcriptional machinery between yeast and higher eukaryotes, make yeast a simple assay system that will enable determination of important cis-acting regulatory sequences within rtER gene promoter and identification of transcription factors implicated in the regulation of this gene. Deletion analysis allowed to show a synergistic effect between an imperfect estrogen-responsive element (ERE) and a consensus half-ERE to achieve a high hormone-dependent transcriptional activation of the rtER gene promoter in the presence of stably expressed rtER. As in mammalian cells, here we observed a positive regulation of the rtER gene promoter by the chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) through enhancing autoregulation. Using a point mutation COUP-TFI mutant unable to bind DNA demonstrates that enhancement of rtER gene autoregulation requires the interaction of COUP-TFI to the DNA. Moreover, this enhancement of transcriptional activation by COUP-TFI requires specifically the AF-1 transactivation function of ER and can be observed in the presence of E2 or 4-hydroxytamoxifen but not ICI 164384. Thus, this paper describes the reconstitution of a hormone-responsive transcription unit in yeast in which the regulation of rtER gene promoter could be enhanced by the participation of cis-elements and/or trans-acting factors, such as ER itself or COUP-TF.

  10. Small regulatory RNAs control the multi-cellular adhesive lifestyle of Escherichia coli

    DEFF Research Database (Denmark)

    Jørgensen, Mikkel Girke; Nielsen, Jesper Sejrup; Boysen, Anders

    2012-01-01

    Small regulatory RNA molecules have recently been recognized as important regulatory elements of developmental processes in both eukaryotes and bacteria. We here describe a striking example in Escherichia coli that can switch between a single-cell motile lifestyle and a multi-cellular, sessile....... Our demonstration that basal expression of each of the three RNA species is sufficient to downregulate CsgD synthesis and prevent curli formation indicates that all play a prominent role in the curli regulatory network. Our findings provide the first clue as to how the Rcs signalling pathway...... negatively regulates curli synthesis and increase the number of small regulatory RNAs that act directly on the csgD mRNA to five....

  11. Exposure of maternal mice to cis-bifenthrin enantioselectively disrupts the transcription of genes related to testosterone synthesis in male offspring.

    Science.gov (United States)

    Jin, Yuanxiang; Wang, Jiangcong; Sun, Xueqing; Ye, Yang; Xu, Minjie; Wang, Jianai; Chen, Shaoping; Fu, Zhengwei

    2013-12-01

    The commercial bifenthrin (BF) contains two cis isomers. In the present study, a dose of 15mg/kg of 1R-cis-BF or 1S-cis-BF was orally administered for 3 weeks to female mice before or during pregnancy. Then, the expression of steroidogenesis related genes which were considered as effective biomarkers of endocrine disruption were analyzed in the male offspring. Maternal exposure to 1S-cis-BF during pregnancy significantly reduced the mRNA levels of peripheral benzodiazepine receptor (PBR) and steroidogenic acute regulatory protein (StAR) in the testes of 3- or 6-week old male offspring. In addition, a significant decrease of cytochrome P450 17α-hydroxysteroid dehydrogenase (P450-17α) was also observed in the testes of 6-week old male offspring when dams were treated with 1S-cis-BF during pregnancy but not before pregnancy. Moreover, the scavenger receptor class B type 1 (SRB1) and cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) decreased significantly in the testes of 6-week old male offspring when dams were treated with 1S-cis-BF during and before pregnancy. Thus, oral administration of the maternal mice to cis-BF for 3 weeks, particularly during pregnancy, resulted in endocrine disruption in the male offspring, with the 1S-cis-BF causing more significant alterations than the 1R-cis-BF form. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Interpretation of the “Refugee” Term in the International Legal Acts and Laws of the CIS Countries

    Directory of Open Access Journals (Sweden)

    Gennadij A. Borisov

    2017-06-01

    Full Text Available The article describes peculiarities of the "refugee" term interpretation in the international legal acts and laws of the CIS countries. In particular, much attention is paid to its usage in the UN Convention of 1951 “About the status of refugees” and Protocol to it of 1967, and also in the Laws of the Russian Federation (Federal Law of 19.02 1993 No 4528-I “About refugees”, Armenia (The Law of the Armenia Republic of 16.01.2007 No ЗР-47 “About refugees and asylum”, Belarus (The Law of the Belarus Republic of 23.06 2008 No 354-З “About granting to citizens and people with no citizenship a refugee status, additional or temporal protection in the Belarus Republic” and Ukraine (The Law of Ukraine of 08.07.2011 No 3671-VI “About refugees and people who need additional or temporal protection”. Specific features of the interpretation of the concept of "refugee" in the legal system of these states are defined. The article gives arguments as for a single approach to the “refugee” term interpretation that must be legally confirmed within every country by a traditional international definition.

  13. Coordinated transcriptional regulation of two key genes in the lignin branch pathway--CAD and CCR--is mediated through MYB- binding sites.

    Science.gov (United States)

    Rahantamalala, Anjanirina; Rech, Philippe; Martinez, Yves; Chaubet-Gigot, Nicole; Grima-Pettenati, Jacqueline; Pacquit, Valérie

    2010-06-28

    Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the final steps in the biosynthesis of monolignols, the monomeric units of the phenolic lignin polymers which confer rigidity, imperviousness and resistance to biodegradation to cell walls. We have previously shown that the Eucalyptus gunnii CCR and CAD2 promoters direct similar expression patterns in vascular tissues suggesting that monolignol production is controlled, at least in part, by the coordinated transcriptional regulation of these two genes. Although consensus motifs for MYB transcription factors occur in most gene promoters of the whole phenylpropanoid pathway, functional evidence for their contribution to promoter activity has only been demonstrated for a few of them. Here, in the lignin-specific branch, we studied the functional role of MYB elements as well as other cis-elements identified in the regulatory regions of EgCAD2 and EgCCR promoters, in the transcriptional activity of these gene promoters. By using promoter deletion analysis and in vivo footprinting, we identified an 80 bp regulatory region in the Eucalyptus gunnii EgCAD2 promoter that contains two MYB elements, each arranged in a distinct module with newly identified cis-elements. A directed mutagenesis approach was used to introduce block mutations in all putative cis-elements of the EgCAD2 promoter and in those of the 50 bp regulatory region previously delineated in the EgCCR promoter. We showed that the conserved MYB elements in EgCAD2 and EgCCR promoters are crucial both for the formation of DNA-protein complexes in EMSA experiments and for the transcriptional activation of EgCAD2 and EgCCR promoters in vascular tissues in planta. In addition, a new regulatory cis-element that modulates the balance between two DNA-protein complexes in vitro was found to be important for EgCAD2 expression in the cambial zone. Our assignment of functional roles to the identified cis-elements clearly demonstrates the

  14. Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects

    Science.gov (United States)

    Vishwakarma, Kanchan; Upadhyay, Neha; Kumar, Nitin; Yadav, Gaurav; Singh, Jaspreet; Mishra, Rohit K.; Kumar, Vivek; Verma, Rishi; Upadhyay, R. G.; Pandey, Mayank; Sharma, Shivesh

    2017-01-01

    Abiotic stress is one of the severe stresses of environment that lowers the growth and yield of any crop even on irrigated land throughout the world. A major phytohormone abscisic acid (ABA) plays an essential part in acting toward varied range of stresses like heavy metal stress, drought, thermal or heat stress, high level of salinity, low temperature, and radiation stress. Its role is also elaborated in various developmental processes including seed germination, seed dormancy, and closure of stomata. ABA acts by modifying the expression level of gene and subsequent analysis of cis- and trans-acting regulatory elements of responsive promoters. It also interacts with the signaling molecules of processes involved in stress response and development of seeds. On the whole, the stress to a plant can be susceptible or tolerant by taking into account the coordinated activities of various stress-responsive genes. Numbers of transcription factor are involved in regulating the expression of ABA responsive genes by acting together with their respective cis-acting elements. Hence, for improvement in stress-tolerance capacity of plants, it is necessary to understand the mechanism behind it. On this ground, this article enlightens the importance and role of ABA signaling with regard to various stresses as well as regulation of ABA biosynthetic pathway along with the transcription factors for stress tolerance. PMID:28265276

  15. Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21

    NARCIS (Netherlands)

    Y. Hamdi (Yosr); Soucy, P. (Penny); Adoue, V. (Véronique); K. Michailidou (Kyriaki); S. Canisius (Sander); Lemaçon, A. (Audrey); A. Droit (Arnaud); I.L. Andrulis (Irene); H. Anton-Culver (Hoda); Arndt, V. (Volker); Baynes, C. (Caroline); C. Blomqvist (Carl); N.V. Bogdanova (Natalia); S.E. Bojesen (Stig); M.K. Bolla (Manjeet K.); B. Bonnani (Bernardo); A.-L. Borresen-Dale (Anne-Lise); J.S. Brand (Judith S.); H. Brauch (Hiltrud); Brenner, H. (Hermann); A. Broeks (Annegien); B. Burwinkel (Barbara); J. Chang-Claude (Jenny); Couch, F.J. (Fergus J.); A. Cox (Angela); S.S. Cross (Simon); K. Czene (Kamila); H. Darabi (Hatef); J. Dennis (Joe); P. Devilee (Peter); T. Dörk (Thilo); I. dos Santos Silva (Isabel); M. Eriksson (Mats); P.A. Fasching (Peter); J.D. Figueroa (Jonine); H. Flyger (Henrik); M. García-Closas (Montserrat); Giles, G.G. (Graham G.); M.S. Goldberg (Mark); A. González-Neira (Anna); G. Grenaker Alnæs (Grethe); P. Guénel (Pascal); L. Haeberle (Lothar); C.A. Haiman (Christopher); U. Hamann (Ute); Hallberg, E. (Emily); M.J. Hooning (Maartje); J.L. Hopper (John); A. Jakubowska (Anna); M. Jones (Michael); M. Kabisch (Maria); V. Kataja (Vesa); Lambrechts, D. (Diether); L. Le Marchand (Loic); A. Lindblom (Annika); J. Lubinski (Jan); A. Mannermaa (Arto); M. Maranian (Melanie); S. Margolin (Sara); Marme, F. (Frederik); R.L. Milne (Roger); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); P. Neven (Patrick); C. Olswold (Curtis); J. Peto (Julian); Plaseska-Karanfilska, D. (Dijana); K. Pykäs (Katri); P. Radice (Paolo); A. Rudolph (Anja); E.J. Sawyer (Elinor); M.K. Schmidt (Marjanka); X.-O. Shu (Xiao-Ou); M.C. Southey (Melissa); A.J. Swerdlow (Anthony ); R.A.E.M. Tollenaar (Rob); I.P. Tomlinson (Ian); D. Torres (Diana); T. Truong (Thérèse); C. Vachon (Celine); A.M.W. van den Ouweland (Ans); Q. Wang (Qin); R. Winqvist (Robert); W. Zheng (Wei); J. Benítez (Javier); G. Chenevix-Trench (Georgia); A.M. Dunning (Alison); P.D.P. Pharoah (Paul); Kristensen, V. (Vessela); P. Hall (Per); D.F. Easton (Douglas); T. Pastinen (Tomi); S. Nord (Silje); J. Simard (Jacques)

    2016-01-01

    textabstractThere are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are

  16. Association of breast cancer risk with genetic variants showing differential allelic expression

    DEFF Research Database (Denmark)

    Hamdi, Yosr; Soucy, Penny; Adoue, Véronique

    2016-01-01

    There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional...

  17. FK506 biosynthesis is regulated by two positive regulatory elements in Streptomyces tsukubaensis

    Directory of Open Access Journals (Sweden)

    Goranovič Dušan

    2012-10-01

    Full Text Available Abstract Background FK506 (Tacrolimus is an important immunosuppressant, produced by industrial biosynthetic processes using various Streptomyces species. Considering the complex structure of FK506, it is reasonable to expect complex regulatory networks controlling its biosynthesis. Regulatory elements, present in gene clusters can have a profound influence on the final yield of target product and can play an important role in development of industrial bioprocesses. Results Three putative regulatory elements, namely fkbR, belonging to the LysR-type family, fkbN, a large ATP-binding regulator of the LuxR family (LAL-type and allN, a homologue of AsnC family regulatory proteins, were identified in the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488, a progenitor of industrial strains used for production of FK506. Inactivation of fkbN caused a complete disruption of FK506 biosynthesis, while inactivation of fkbR resulted in about 80% reduction of FK506 yield. No functional role in the regulation of the FK506 gene cluster has been observed for the allN gene. Using RT-PCR and a reporter system based on a chalcone synthase rppA, we demonstrated, that in the wild type as well as in fkbN- and fkbR-inactivated strains, fkbR is transcribed in all stages of cultivation, even before the onset of FK506 production, whereas fkbN expression is initiated approximately with the initiation of FK506 production. Surprisingly, inactivation of fkbN (or fkbR does not abolish the transcription of the genes in the FK506 gene cluster in general, but may reduce expression of some of the tested biosynthetic genes. Finally, introduction of a second copy of the fkbR or fkbN genes under the control of the strong ermE* promoter into the wild type strain resulted in 30% and 55% of yield improvement, respectively. Conclusions Our results clearly demonstrate the positive regulatory role of fkbR and fkbN genes in FK506 biosynthesis in S. tsukubaensis NRRL 18488. We

  18. The Indian Gaming Regulatory Act and Its Effects on American Indian Economic Development

    OpenAIRE

    Randall K. Q. Akee; Katherine A. Spilde; Jonathan B. Taylor

    2015-01-01

    The Indian Gaming Regulatory Act (IGRA), passed by the US Congress in 1988, was a watershed in the history of policymaking directed toward reservation-resident American Indians. IGRA set the stage for tribal government-owned gaming facilities. It also shaped how this new industry would develop and how tribal governments would invest gaming revenues. Since then, Indian gaming has approached commercial, state-licensed gaming in total revenues. Gaming operations have had a far-reaching and trans...

  19. A novel begomovirus isolated from sida contains putative cis- and trans-acting replication specificity determinants that have evolved independently in several geographical lineages.

    Science.gov (United States)

    Mauricio-Castillo, J A; Torres-Herrera, S I; Cárdenas-Conejo, Y; Pastor-Palacios, G; Méndez-Lozano, J; Argüello-Astorga, G R

    2014-09-01

    A novel begomovirus isolated from a Sida rhombifolia plant collected in Sinaloa, Mexico, was characterized. The genomic components of sida mosaic Sinaloa virus (SiMSinV) shared highest sequence identity with DNA-A and DNA-B components of chino del tomate virus (CdTV), suggesting a vertical evolutionary relationship between these viruses. However, recombination analysis indicated that a short segment of SiMSinV DNA-A encompassing the plus-strand replication origin and the 5´-proximal 43 codons of the Rep gene was derived from tomato mottle Taino virus (ToMoTV). Accordingly, the putative cis- and trans-acting replication specificity determinants of SiMSinV were identical to those of ToMoTV but differed from those of CdTV. Modeling of the SiMSinV and CdTV Rep proteins revealed significant differences in the region comprising the small β1/β5 sheet element, where five putative DNA-binding specificity determinants (SPDs) of Rep (i.e., amino acid residues 5, 8, 10, 69 and 71) were previously identified. Computer-assisted searches of public databases led to identification of 33 begomoviruses from three continents encoding proteins with SPDs identical to those of the Rep encoded by SiMSinV. Sequence analysis of the replication origins demonstrated that all 33 begomoviruses harbor potential Rep-binding sites identical to those of SiMSinV. These data support the hypothesis that the Rep β1/β5 sheet region determines specificity of this protein for DNA replication origin sequences.

  20. A Polymorphic Antioxidant Response Element Links NRF2/sMAF Binding to Enhanced MAPT Expression and Reduced Risk of Parkinsonian Disorders

    Directory of Open Access Journals (Sweden)

    Xuting Wang

    2016-04-01

    Full Text Available The NRF2/sMAF protein complex regulates the oxidative stress response by occupying cis-acting enhancers containing an antioxidant response element (ARE. Integrating genome-wide maps of NRF2/sMAF occupancy with disease-susceptibility loci, we discovered eight polymorphic AREs linked to 14 highly ranked disease-risk SNPs in individuals of European ancestry. Among these SNPs was rs242561, located within a regulatory region of the MAPT gene (encoding microtubule-associated protein Tau. It was consistently occupied by NRF2/sMAF in multiple experiments and its strong-binding allele associated with higher mRNA levels in cell lines and human brain tissue. Induction of MAPT transcription by NRF2 was confirmed using a human neuroblastoma cell line and a Nrf2-deficient mouse model. Most importantly, rs242561 displayed complete linkage disequilibrium with a highly protective allele identified in multiple GWASs of progressive supranuclear palsy, Parkinson’s disease, and corticobasal degeneration. These observations suggest a potential role for NRF2/sMAF in tauopathies and a possible role for NRF2 pathway activators in disease prevention.

  1. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana

    Science.gov (United States)

    Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia

    2015-01-01

    Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700

  2. Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1.

    Science.gov (United States)

    Hattori, T; Terada, T; Hamasuna, S

    1995-06-01

    Osem, a rice gene homologous to the wheat Em gene, which encodes one of the late-embryogenesis abundant proteins was isolated. The gene was characterized with respect to control of transcription by abscisic acid (ABA) and the transcriptional activator VP1, which is involved in the ABA-regulated gene expression during late embryo-genesis. A fusion gene (Osem-GUS) consisting of the Osem promoter and the bacterial beta-glucuronidase (GUS) gene was constructed and tested in a transient expression system, using protoplasts derived from a suspension-cultured line of rice cells, for activation by ABA and by co-transfection with an expression vector (35S-Osvp1) for the rice VP1 (OSVP1) cDNA. The expression of Osem-GUS was strongly (40- to 150-fold) activated by externally applied ABA and by over-expression of (OS)VP1. The Osem promoter has three ACGTG-containing sequences, motif A, motif B and motif A', which resemble the abscisic acid-responsive element (ABRE) that was previously identified in the wheat Em and the rice Rab16. There is also a CATGCATG sequence, which is known as the Sph box and is shown to be essential for the regulation by VP1 of the maize anthocyanin regulatory gene C1. Focusing on these sequence elements, various mutant derivatives of the Osem promoter in the transient expression system were assayed. The analysis revealed that motif A functions not only as an ABRE but also as a sequence element required for the regulation by (OS)VP1.

  3. Shared regulatory sites are abundant in the human genome and shed light on genome evolution and disease pleiotropy.

    Science.gov (United States)

    Tong, Pin; Monahan, Jack; Prendergast, James G D

    2017-03-01

    Large-scale gene expression datasets are providing an increasing understanding of the location of cis-eQTLs in the human genome and their role in disease. However, little is currently known regarding the extent of regulatory site-sharing between genes. This is despite it having potentially wide-ranging implications, from the determination of the way in which genetic variants may shape multiple phenotypes to the understanding of the evolution of human gene order. By first identifying the location of non-redundant cis-eQTLs, we show that regulatory site-sharing is a relatively common phenomenon in the human genome, with over 10% of non-redundant regulatory variants linked to the expression of multiple nearby genes. We show that these shared, local regulatory sites are linked to high levels of chromatin looping between the regulatory sites and their associated genes. In addition, these co-regulated gene modules are found to be strongly conserved across mammalian species, suggesting that shared regulatory sites have played an important role in shaping human gene order. The association of these shared cis-eQTLs with multiple genes means they also appear to be unusually important in understanding the genetics of human phenotypes and pleiotropy, with shared regulatory sites more often linked to multiple human phenotypes than other regulatory variants. This study shows that regulatory site-sharing is likely an underappreciated aspect of gene regulation and has important implications for the understanding of various biological phenomena, including how the two and three dimensional structures of the genome have been shaped and the potential causes of disease pleiotropy outside coding regions.

  4. A novel method for predicting activity of cis-regulatory modules, based on a diverse training set.

    Science.gov (United States)

    Yang, Wei; Sinha, Saurabh

    2017-01-01

    With the rapid emergence of technologies for locating cis-regulatory modules (CRMs) genome-wide, the next pressing challenge is to assign precise functions to each CRM, i.e. to determine the spatiotemporal domains or cell-types where it drives expression. A popular approach to this task is to model the typical k-mer composition of a set of CRMs known to drive a common expression pattern, and assign that pattern to other CRMs exhibiting a similar k-mer composition. This approach does not rely on prior knowledge of transcription factors relevant to the CRM or their binding motifs, and is thus more widely applicable than motif-based methods for predicting CRM activity, but is also prone to false positive predictions. We present a novel strategy to improve the above-mentioned approach: to predict if a CRM drives a specific gene expression pattern, assess not only how similar the CRM is to other CRMs with similar activity but also to CRMs with distinct activities. We use a state-of-the-art statistical method to quantify a CRM's sequence similarity to many different training sets of CRMs, and employ a classification algorithm to integrate these similarity scores into a single prediction of the CRM's activity. This strategy is shown to significantly improve CRM activity prediction over current approaches. Our implementation of the new method, called IMMBoost, is freely available as source code, at https://github.com/weiyangedward/IMMBoost CONTACT: sinhas@illinois.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Screening for sequence-specific RNA-BPs by comprehensive UV crosslinking

    Directory of Open Access Journals (Sweden)

    Le Meuth-Metzinger Valerie

    2002-06-01

    Full Text Available Abstract Background Specific cis-elements and the associated trans-acting factors have been implicated in the post-transcriptional regulation of gene expression. In the era of genome wide analyses identifying novel trans-acting factors and cis-regulatory elements is a step towards understanding coordinated gene expression. UV-crosslink analysis is a standard method used to identify RNA-binding proteins. Uridine is traditionally used to radiolabel substrate RNAs, however, proteins binding to cis-elments particularly uridine poor will be weakly or not detected. We evaluate here the possibility of using UV-crosslinking with RNA substrates radiolabeled with each of the four ribonucleotides as an approach for screening for novel sequence specific RNA-binding proteins. Results The radiolabeled RNA substrates were derived from the 3'UTRs of the cloned Eg and c-mos Xenopus laevis maternal mRNAs. Specific, but not identical, uv-crosslinking signals were obtained, some of which corresponded to already identified proteins. A signal for a novel 90 kDa protein was observed with the c-mos 3'UTR radiolabeled with both CTP and GTP but not with UTP. The binding site of the 90 kDa RNA-binding protein was localised to a 59-nucleotide portion of the c-mos 3'UTR. Conclusion That the 90 kDa signal was detected with RNAs radiolabeled with CTP or GTP but not UTP illustrates the advantage of radiolabeling all four nucleotides in a UV-crosslink based screen. This method can be used for both long and short RNAs and does not require knowledge of the cis-acting sequence. It should be amenable to high throughput screening for RNA binding proteins.

  6. Health, safety and environmental risks from the operation of CdTe and CIS thin-film modules

    International Nuclear Information System (INIS)

    Steinberger, Hartmut

    1998-01-01

    This paper identifies the materials embedded in on a type of CIS (Copper indium diselenide) and four different types of CdTe (cadmium telluride) thin-film modules. It refers to the results of our outdoor leaching experiments on photovoltaic (PV) samples broken into small fragments. Estimations for modules accidents on the roof or in the garden of a residential house, e.g. leaching of hazardous materials into water or soil, are given. The outcomes of our estimations show some module materials released into water or oil during leaching accidents. In a worst-case scenario for CdTe modules the leached cadmium concentration in the collected water is estimated to be no higher than the German drinking water limit concentration. For the CIS module scenario the estimated leached element concentrations are about one to two orders of magnitude below the German drinking water limit concentration. For broken CIS and CdTe modules on the ground no critical increase of the natural element concentration is observed after leaching into the soil for 1 year. (Author)

  7. Identifying cis-mediators for trans-eQTLs across many human tissues using genomic mediation analysis.

    Science.gov (United States)

    Yang, Fan; Wang, Jiebiao; Pierce, Brandon L; Chen, Lin S

    2017-11-01

    The impact of inherited genetic variation on gene expression in humans is well-established. The majority of known expression quantitative trait loci (eQTLs) impact expression of local genes ( cis -eQTLs). More research is needed to identify effects of genetic variation on distant genes ( trans -eQTLs) and understand their biological mechanisms. One common trans -eQTLs mechanism is "mediation" by a local ( cis ) transcript. Thus, mediation analysis can be applied to genome-wide SNP and expression data in order to identify transcripts that are " cis -mediators" of trans -eQTLs, including those " cis -hubs" involved in regulation of many trans -genes. Identifying such mediators helps us understand regulatory networks and suggests biological mechanisms underlying trans -eQTLs, both of which are relevant for understanding susceptibility to complex diseases. The multitissue expression data from the Genotype-Tissue Expression (GTEx) program provides a unique opportunity to study cis -mediation across human tissue types. However, the presence of complex hidden confounding effects in biological systems can make mediation analyses challenging and prone to confounding bias, particularly when conducted among diverse samples. To address this problem, we propose a new method: Genomic Mediation analysis with Adaptive Confounding adjustment (GMAC). It enables the search of a very large pool of variables, and adaptively selects potential confounding variables for each mediation test. Analyses of simulated data and GTEx data demonstrate that the adaptive selection of confounders by GMAC improves the power and precision of mediation analysis. Application of GMAC to GTEx data provides new insights into the observed patterns of cis -hubs and trans -eQTL regulation across tissue types. © 2017 Yang et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Recognition of cis-acting sequences in RNA 3 of Prunus necrotic ringspot virus by the replicase of Alfalfa mosaic virus.

    Science.gov (United States)

    Aparicio, F; Sánchez-Navarro, J A; Olsthoorn, R C; Pallás, V; Bol, J F

    2001-04-01

    Alfalfa mosaic virus (AMV) and Prunus necrotic ringspot virus (PNRSV) belong to the genera ALFAMOVIRUS: and ILARVIRUS:, respectively, of the family BROMOVIRIDAE: Initiation of infection by AMV and PNRSV requires binding of a few molecules of coat protein (CP) to the 3' termini of the inoculum RNAs and the CPs of the two viruses are interchangeable in this early step of the replication cycle. CIS:-acting sequences in PNRSV RNA 3 that are recognized by the AMV replicase were studied in in vitro replicase assays and by inoculation of AMV-PNRSV RNA 3 chimeras to tobacco plants and protoplasts transformed with the AMV replicase genes (P12 plants). The results showed that the AMV replicase recognized the promoter for minus-strand RNA synthesis in PNRSV RNA 3 but not the promoter for plus-strand RNA synthesis. A chimeric RNA with PNRSV movement protein and CP genes accumulated in tobacco, which is a non-host for PNRSV.

  9. Cis-Lunar Reusable In-Space Transportation Architecture for the Evolvable Mars Campaign

    Science.gov (United States)

    McVay, Eric S.; Jones, Christopher A.; Merrill, Raymond G.

    2016-01-01

    Human exploration missions to Mars or other destinations in the solar system require large quantities of propellant to enable the transportation of required elements from Earth's sphere of influence to Mars. Current and proposed launch vehicles are incapable of launching all of the requisite mass on a single vehicle; hence, multiple launches and in-space aggregation are required to perform a Mars mission. This study examines the potential of reusable chemical propulsion stages based in cis-lunar space to meet the transportation objectives of the Evolvable Mars Campaign and identifies cis-lunar propellant supply requirements. These stages could be supplied with fuel and oxidizer delivered to cis-lunar space, either launched from Earth or other inner solar system sources such as the Moon or near Earth asteroids. The effects of uncertainty in the model parameters are evaluated through sensitivity analysis of key parameters including the liquid propellant combination, inert mass fraction of the vehicle, change in velocity margin, and change in payload masses. The outcomes of this research include a description of the transportation elements, the architecture that they enable, and an option for a campaign that meets the objectives of the Evolvable Mars Campaign. This provides a more complete understanding of the propellant requirements, as a function of time, that must be delivered to cis-lunar space. Over the selected sensitivity ranges for the current payload and schedule requirements of the 2016 point of departure of the Evolvable Mars Campaign destination systems, the resulting propellant delivery quantities are between 34 and 61 tonnes per year of hydrogen and oxygen propellant, or between 53 and 76 tonnes per year of methane and oxygen propellant, or between 74 and 92 tonnes per year of hypergolic propellant. These estimates can guide future propellant manufacture and/or delivery architectural analysis.

  10. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  11. Small RNA-Controlled Gene Regulatory Networks in Pseudomonas putida

    DEFF Research Database (Denmark)

    Bojanovic, Klara

    evolved numerous mechanisms to controlgene expression in response to specific environmental signals. In addition to two-component systems, small regulatory RNAs (sRNAs) have emerged as major regulators of gene expression. The majority of sRNAs bind to mRNA and regulate their expression. They often have...... multiple targets and are incorporated into large regulatory networks and the RNA chaper one Hfq in many cases facilitates interactions between sRNAs and their targets. Some sRNAs also act by binding to protein targets and sequestering their function. In this PhD thesis we investigated the transcriptional....... Detailed insights into the mechanisms through which P. putida responds to different stress conditions and increased understanding of bacterial adaptation in natural and industrial settings were gained. Additionally, we identified genome-wide transcription start sites, andmany regulatory RNA elements...

  12. Synthesis and characterization of meridional isomer of uns-cis-(ethylenediamine-N-N'-di-3-propionato-(S-norleucinatocobalt(III semihydrate

    Directory of Open Access Journals (Sweden)

    SRECKO R. TRIFUNOVIC

    2000-07-01

    Full Text Available The meridional geometrical isomer of uns-cis-(ethylenediamine-N-N'-di-3-propionato(S-norleucinatocobalt(III complex has been prepared by the reaction of sodium uns-cis-(ethylenediamine-N-N'-di-3-propionato(carbonatocobaltate(III with S-norleucine at 75°C. The complex was isolated choromatographically and characterized by elemental analyses, electron absorption and infrared spectroscopy.

  13. Finding cis-regulatory modules in Drosophila using phylogenetic hidden Markov models

    DEFF Research Database (Denmark)

    Wong, Wendy S W; Nielsen, Rasmus

    2007-01-01

    MOTIVATION: Finding the regulatory modules for transcription factors binding is an important step in elucidating the complex molecular mechanisms underlying regulation of gene expression. There are numerous methods available for solving this problem, however, very few of them take advantage of th...

  14. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    Directory of Open Access Journals (Sweden)

    Wijaya Edward

    2010-01-01

    Full Text Available Abstract Background The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10°C, an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach. Results Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10°C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters. Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2 spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters. Conclusion Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries.

  15. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    KAUST Repository

    Yun, Kil-Young

    2010-01-25

    Background: The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10C), an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach.Results: Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters.Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters.Conclusion: Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries. 2010 Yun et al; licensee BioMed Central Ltd.

  16. Transcriptional Regulation in Ebola Virus: Effects of Gene Border Structure and Regulatory Elements on Gene Expression and Polymerase Scanning Behavior.

    Science.gov (United States)

    Brauburger, Kristina; Boehmann, Yannik; Krähling, Verena; Mühlberger, Elke

    2016-02-15

    The highly pathogenic Ebola virus (EBOV) has a nonsegmented negative-strand (NNS) RNA genome containing seven genes. The viral genes either are separated by intergenic regions (IRs) of variable length or overlap. The structure of the EBOV gene overlaps is conserved throughout all filovirus genomes and is distinct from that of the overlaps found in other NNS RNA viruses. Here, we analyzed how diverse gene borders and noncoding regions surrounding the gene borders influence transcript levels and govern polymerase behavior during viral transcription. Transcription of overlapping genes in EBOV bicistronic minigenomes followed the stop-start mechanism, similar to that followed by IR-containing gene borders. When the gene overlaps were extended, the EBOV polymerase was able to scan the template in an upstream direction. This polymerase feature seems to be generally conserved among NNS RNA virus polymerases. Analysis of IR-containing gene borders showed that the IR sequence plays only a minor role in transcription regulation. Changes in IR length were generally well tolerated, but specific IR lengths led to a strong decrease in downstream gene expression. Correlation analysis revealed that these effects were largely independent of the surrounding gene borders. Each EBOV gene contains exceptionally long untranslated regions (UTRs) flanking the open reading frame. Our data suggest that the UTRs adjacent to the gene borders are the main regulators of transcript levels. A highly complex interplay between the different cis-acting elements to modulate transcription was revealed for specific combinations of IRs and UTRs, emphasizing the importance of the noncoding regions in EBOV gene expression control. Our data extend those from previous analyses investigating the implication of noncoding regions at the EBOV gene borders for gene expression control. We show that EBOV transcription is regulated in a highly complex yet not easily predictable manner by a set of interacting cis

  17. Targeted cleavage of hepatitis E virus 3' end RNA mediated by hammerhead ribozymes inhibits viral RNA replication

    International Nuclear Information System (INIS)

    Sriram, Bandi; Thakral, Deepshi; Panda, Subrat Kumar

    2003-01-01

    The 3' end of hepatitis E virus (HEV) contains cis-acting regulatory element, which plays an important role in viral replication. To develop specific replication inhibitor at the molecular level, mono- and di-hammerhead ribozymes (Rz) were designed and synthesized against the conserved 3' end sequences of HEV, which cleave at nucleotide positions 7125 and 7112/7125, respectively. Di-hammerhead ribozyme with two catalytic motifs in tandem was designed to cleave simultaneously at two sites spaced 13 nucleotides apart, which increases the overall cleavage efficiency and prevents the development of escape mutants. Specific cleavage products were obtained with both the ribozymes in vitro at physiological conditions. The inactive control ribozymes showed no cleavage. The ribozymes showed specific inhibition of HEV 3' end fused-luciferase reporter gene expression by ∼37 and ∼60%, respectively in HepG2 cells. These results demonstrate a feasible approach to inhibit the HEV replication to a limited extent by targeting the cis-acting 3' end of HEV with hammerhead ribozymes

  18. Cis-trans photoisomerization of abscisic acid

    International Nuclear Information System (INIS)

    Brabham, D.E.; Biggs, R.H.

    1981-01-01

    An important regulator of numerous physiological processes in higher plants is abscisic acid (ABA), which is photoisomerized from the more biologically active cis isomer to the nearly inactive trans isomer by natural sunlight. It is possible that this photoisomerization is a UV control mechanism in functions regulated by ABA. The quantum yields of both the cis to trans and trans to cis photoisomerizations were measured under various conditions of pH and oxygen concentration at room temperature. The yield for photoisomerization of cis-ABA ranged from 0.25 at pH 3.0 to 0.11 at pH 7.0. Oxygen partially quenched the process. The quantum yield varied only slightly with wavelength. The quantum yield of photolysis of cis-ABA was reported for pH 3.0 as 0.06. This yield also varied slightly with wavelength and was relatively insensitive to oxygen. This relatively high yield explains the loss of potency of ABA during UV irradiation. Phosphorescence of cis- and trans-ABA was observed in methanol at 77 K. Onset of the emission was at 350 nm. The emission spectra were the same for both isomers. From these results a mechanism of UV action on plants based on the photoisomerization of the inactive trans-ABA to the biologically active cis isomer is proposed. (author)

  19. The Coordinated P53 and Estrogen Receptor Cis-Regulation at an FLT1 Promoter SNP Is Specific to Genotoxic Stress and Estrogenic Compound

    Science.gov (United States)

    Langen, Jan-Stephan; Schoenfelder, Gilbert; Resnick, Michael A.; Inga, Alberto

    2010-01-01

    Background Recently, we established that a C>T single nucleotide polymorphism (SNP) in the promoter of the VEGF receptor FLT1 gene generates a ½ site p53 response element (RE-T) that results in p53 responsiveness of the promoter. The transcriptional control required an estrogen receptor (ER) ½ site response element (ERE1) 225 nt upstream to the RE-T. Methodology/Principal Findings Here we report the identification of a second ER ½ site (ERE2) located 145 bp downstream of the RE-T and establish that both EREs can impact p53-mediated transactivation of FLT1-T in a manner that is cell type and ER level dependent. Gene reporter assays and ChIP experiments conducted in the breast cancer-derived MCF7 cells revealed that the ERE2 site was sufficient for p53-mediated ERα recruitment and transactivation of the FLT1-T promoter/reporter construct. Surprisingly, unlike the case for other p53 target promoters, p53-mediated transactivation of FLT1-T constructs or expression of the endogenous FLT1 gene, as well as binding of p53 and ER at the promoter constructs, was inducible by doxorubicin but not by 5-fluorouracil. Furthermore, ER activity at FLT1-T was differentially affected by ER ligands, compared to a control TFF1/pS2 ER target promoter. The p53-related transcription factors (TFs) p73 and p63 had no effect on FLT1 transactivation. Conclusions/Significance We establish a new dimension to the p53 master regulatory network where p53-mediated transcription from a ½ site RE can be determined by ER binding at one or more cis-acting EREs in manner that is dependent on level of ER protein, the type of ER ligand and the specific p53-inducing agent. PMID:20422012

  20. Identification of Predictive Cis-Regulatory Elements Using a Discriminative Objective Function and a Dynamic Search Space.

    Directory of Open Access Journals (Sweden)

    Rahul Karnik

    Full Text Available The generation of genomic binding or accessibility data from massively parallel sequencing technologies such as ChIP-seq and DNase-seq continues to accelerate. Yet state-of-the-art computational approaches for the identification of DNA binding motifs often yield motifs of weak predictive power. Here we present a novel computational algorithm called MotifSpec, designed to find predictive motifs, in contrast to over-represented sequence elements. The key distinguishing feature of this algorithm is that it uses a dynamic search space and a learned threshold to find discriminative motifs in combination with the modeling of motifs using a full PWM (position weight matrix rather than k-mer words or regular expressions. We demonstrate that our approach finds motifs corresponding to known binding specificities in several mammalian ChIP-seq datasets, and that our PWMs classify the ChIP-seq signals with accuracy comparable to, or marginally better than motifs from the best existing algorithms. In other datasets, our algorithm identifies novel motifs where other methods fail. Finally, we apply this algorithm to detect motifs from expression datasets in C. elegans using a dynamic expression similarity metric rather than fixed expression clusters, and find novel predictive motifs.

  1. Sea urchin neural alpha2 tubulin gene: isolation and promoter analysis.

    Science.gov (United States)

    Costa, S; Ragusa, M A; Drago, G; Casano, C; Alaimo, G; Guida, N; Gianguzza, F

    2004-04-02

    Expression of Talpha2 gene, during sea urchin Paracentrotus lividus development, is spatially and temporally regulated. In order to characterize this gene, we isolated the relevant genomic sequences and scanned the isolated 5'-flanking region in searching for cis-regulatory elements required for proper expression. Gel mobility shift and footprinting assays, as well as reporter gene (CAT and beta-gal) expression assays, were used to address cis-regulatory elements involved in regulation. Here we report that an upstream 5'-flanking fragment of PlTalpha2 gene drives temporal expression of reporter genes congruent with that of endogenous Talpha2 gene. The fragment contains cis-elements able to bind nuclear proteins from the gastrula stage (at which the Talpha2 gene is expressed) whose sequences could be consistent with the consensus sequences for transcription factors present in data bank.

  2. Evaluating cis-2,6-Dimethylpiperidide (cis-DMP) as a Base Component in Lithium-Mediated Zincation Chemistry

    Science.gov (United States)

    Armstrong, David R; Garden, Jennifer A; Kennedy, Alan R; Leenhouts, Sarah M; Mulvey, Robert E; O'Keefe, Philip; O'Hara, Charles T; Steven, Alan

    2013-01-01

    Most recent advances in metallation chemistry have centred on the bulky secondary amide 2,2,6,6-tetramethylpiperidide (TMP) within mixed metal, often ate, compositions. However, the precursor amine TMP(H) is rather expensive so a cheaper substitute would be welcome. Thus this study was aimed towards developing cheaper non-TMP based mixed-metal bases and, as cis-2,6-dimethylpiperidide (cis-DMP) was chosen as the alternative amide, developing cis-DMP zincate chemistry which has received meagre attention compared to that of its methyl-rich counterpart TMP. A new lithium diethylzincate, [(TMEDA)LiZn(cis-DMP)Et2] (TMEDA=N,N,N′,N′-tetramethylethylenediamine) has been synthesised by co-complexation of Li(cis-DMP), Et2Zn and TMEDA, and characterised by NMR (including DOSY) spectroscopy and X-ray crystallography, which revealed a dinuclear contact ion pair arrangement. By using N,N-diisopropylbenzamide as a test aromatic substrate, the deprotonative reactivity of [(TMEDA)LiZn(cis-DMP)Et2] has been probed and contrasted with that of the known but previously uninvestigated di-tert-butylzincate, [(TMEDA)LiZn(cis-DMP)tBu2]. The former was found to be the superior base (for example, producing the ortho-deuteriated product in respective yields of 78 % and 48 % following D2O quenching of zincated benzamide intermediates). An 88 % yield of 2-iodo-N,N-diisopropylbenzamide was obtained on reaction of two equivalents of the diethylzincate with the benzamide followed by iodination. Comparisons are also drawn using 1,1,1,3,3,3-hexamethyldisilazide (HMDS), diisopropylamide and TMP as the amide component in the lithium amide, Et2Zn and TMEDA system. Under certain conditions, the cis-DMP base system was found to give improved results in comparison to HMDS and diisopropylamide (DA), and comparable results to a TMP system. Two novel complexes isolated from reactions of the di-tert-butylzincate and crystallographically characterised, namely the pre-metallation complex [{(iPr)2N(Ph)C=O}LiZn(cis

  3. Comparative evaluation of capillary electrophoresis and high-performance liquid chromatography for the separation of cis-cis, cis-trans, and trans-trans isomers of atracurium besylate.

    Science.gov (United States)

    de Moraes, M de L; Polakiewicz, B; Mattua, M F; Tavares, M F

    1998-01-01

    Atracurium besylate is a highly selective nondepolarizing neuromuscular blocking agent routinely used during anesthetic procedures. The commercial presentation of this drug is a mixture of positional isomers, cis-cis, cis-trans, and trans-trans. Reversed-phase high-performance liquid chromatography has been the technique of choice for the analysis of atracurium besylate formulations at the quality control laboratory of Núcleo de Desenvolvimento Cristália (São Paulo, Brazil), a local pharmaceutical company. HPLC analysis is usually conducted under gradient elution using acetonitrile/0.1 M phosphate buffer eluent mixture as mobile phase and an octadecyl silica (ODS)-packed column. The complete elution of the three isomers takes about 1 hr. In this work, an alternative capillary electrophoresis methodology was developed. The complete resolution of all three isomers was accomplished in about 13 min (+20 kV/72 cm, 211 nm direct detection) using a 60-mM phosphate buffer solution (pH 4) containing 20 mM beta-cyclodextrin and 4 M urea. The isomer ratio was found to be 59.1% cis-cis, 35.9% cis-trans, and 5.02% trans-trans (expected ratio: 59:35:6). Laudanosine, a major metabolite of atracurium besylate, was identified in two commercially available formulations, Tracur (Núcleo de Desenvolvimento Cristália) and Tracrium (Glaxo Wellcome, S.A., Rio de Janeiro, Brazil). Its concentration increases considerably during storage of the product, even if the product is stored at low temperatures.

  4. Classical Mus musculus Igκ enhancers support transcription but not high level somatic hypermutation from a V-lambda promoter in chicken DT40 cells.

    Directory of Open Access Journals (Sweden)

    Naga Rama Kothapalli

    2011-04-01

    Full Text Available Somatic hypermutation (SHM of immunoglobulin genes is initiated by activation-induced cytidine deaminase (AID in activated B cells. This process is strictly dependent on transcription. Hence, cis-acting transcriptional control elements have been proposed to target SHM to immunoglobulin loci. The Mus musculus Igκ locus is regulated by the intronic enhancer (iE/MAR and the 3' enhancer (3'E, and multiple studies using transgenic and knock-out approaches in mice and cell lines have reported somewhat contradictory results about the function of these enhancers in AID-mediated sequence diversification. Here we show that the M. musculus iE/MAR and 3'E elements are active solely as transcriptional enhancer when placed in the context of the IGL locus in Gallus gallus DT40 cells, but they are very inefficient in targeting AID-mediated mutation events to this locus. This suggests that either key components of the cis-regulatory targeting elements reside outside the murine Igκ transcriptional enhancer sequences, or that the targeting of AID activity to Ig loci occurs by largely species-specific mechanisms.

  5. cis-chlorobenzene dihydrodiol dehydrogenase (TcbB) from Pseudomonas sp. strain P51, expressed in Escherichia coli DH5alpha(pTCB149), catalyzes enantioselective dehydrogenase reactions.

    Science.gov (United States)

    Raschke, H; Fleischmann, T; Van Der Meer, J R; Kohler, H P

    1999-12-01

    cis-Chlorobenzene dihydrodiol dehydrogenase (CDD) from Pseudomonas sp. strain P51, cloned into Escherichia coli DH5alpha(pTCB149) was able to oxidize cis-dihydrodihydroxy derivatives (cis-dihydrodiols) of dihydronaphthalene, indene, and four para-substituted toluenes to the corresponding catechols. During the incubation of a nonracemic mixture of cis-1,2-indandiol, only the (+)-cis-(1R,2S) enantiomer was oxidized; the (-)-cis-(S,2R) enantiomer remained unchanged. CDD oxidized both enantiomers of cis-1,2-dihydroxy-1,2,3, 4-tetrahydronaphthalene, but oxidation of the (+)-cis-(1S,2R) enantiomer was delayed until the (-)-cis-(1R,2S) enantiomer was completely depleted. When incubated with nonracemic mixtures of para-substituted cis-toluene dihydrodiols, CDD always oxidized the major enantiomer at a higher rate than the minor enantiomer. When incubated with racemic 1-indanol, CDD enantioselectively transformed the (+)-(1S) enantiomer to 1-indanone. This stereoselective transformation shows that CDD also acted as an alcohol dehydrogenase. Additionally, CDD was able to oxidize (+)-cis-(1R,2S)-dihydroxy-1, 2-dihydronaphthalene, (+)-cis-monochlorobiphenyl dihydrodiols, and (+)-cis-toluene dihydrodiol to the corresponding catechols.

  6. cis-Chlorobenzene Dihydrodiol Dehydrogenase (TcbB) from Pseudomonas sp. Strain P51, Expressed in Escherichia coli DH5α(pTCB149), Catalyzes Enantioselective Dehydrogenase Reactions

    Science.gov (United States)

    Raschke, Henning; Fleischmann, Thomas; Van Der Meer, Jan Roelof; Kohler, Hans-Peter E.

    1999-01-01

    cis-Chlorobenzene dihydrodiol dehydrogenase (CDD) from Pseudomonas sp. strain P51, cloned into Escherichia coli DH5α(pTCB149) was able to oxidize cis-dihydrodihydroxy derivatives (cis-dihydrodiols) of dihydronaphthalene, indene, and four para-substituted toluenes to the corresponding catechols. During the incubation of a nonracemic mixture of cis-1,2-indandiol, only the (+)-cis-(1R,2S) enantiomer was oxidized; the (−)-cis-(S,2R) enantiomer remained unchanged. CDD oxidized both enantiomers of cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene, but oxidation of the (+)-cis-(1S,2R) enantiomer was delayed until the (−)-cis-(1R,2S) enantiomer was completely depleted. When incubated with nonracemic mixtures of para-substituted cis-toluene dihydrodiols, CDD always oxidized the major enantiomer at a higher rate than the minor enantiomer. When incubated with racemic 1-indanol, CDD enantioselectively transformed the (+)-(1S) enantiomer to 1-indanone. This stereoselective transformation shows that CDD also acted as an alcohol dehydrogenase. Additionally, CDD was able to oxidize (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene, (+)-cis-monochlorobiphenyl dihydrodiols, and (+)-cis-toluene dihydrodiol to the corresponding catechols. PMID:10583971

  7. Cis-Chlorobenzene dihydrodiol dehydrogenase (TcbB) from Pseudomonas sp. strain P51, expressed in Escherichia coli DH5{alpha}(pTCB149), catalyzes enantioselective dehydrogenase reactions

    Energy Technology Data Exchange (ETDEWEB)

    Raschke, H.; Fleischmann, T.; Meer, J.R. van der; Kohler, H.P.E.

    1999-12-01

    cis-Chlorobenzene dihydrodiol dehydrogenase (CDD) from Pseudomonas sp. strain P51, cloned into Escherichia coli DH5{alpha}(pTCB149) was able to oxidize cis-dihydrodihydroxy derivatives (cis-dihydrodiols) of dihydronaphthalene, indene, and four para-substituted toluenes to the corresponding catechols. During the incubation of a nonracemic mixture of cis-1,2-indandiol, only the (+)-cis-(1R,2S) enantiomer was oxidized; the (-)-cis-(S,2R) enantiomer remained unchanged, CDD oxidized both enantiomers of cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene, but oxidation of the (+)-cis-(1S,2R) enantiomer was delayed until the (-)-cis-(1R,2S) enantiomer was completely depleted. When incubated with nonracemic mixtures of para-substituted cis-toluene dihydrodiols, CDD always oxidized the major enantiomer at a higher rate than the minor enantiomer. When incubated with racemic 1-indanol, CDD enantioselectively transformed the (+)-(1S) enatiomer to 1-indanone. This stereoselective transformation shows that CDD also acted as an alcohol dehydrogenase. Additionally, CDD was able to oxidize (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene, (+)-cis-monochlorobiphenyl dihydrodiols, and (+)-cis-toluene dihydrodiol to the corresponding catechols.

  8. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci.

    Science.gov (United States)

    Coetzee, Simon G; Shen, Howard C; Hazelett, Dennis J; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J; Couch, Fergus J; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N A; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A; Pharoah, Paul D P; Noushmehr, Houtan; Gayther, Simon A

    2015-07-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Facile access to unnatural dipeptide-alcohols based on cis-2,5-disubstituted pyrrolidines.

    Science.gov (United States)

    Jia, Yan-Yan; Li, Xiao-Ye; Wang, Ping-An; Wen, Ai-Dong

    2015-02-11

    Well-defined unnatural dipeptide-alcohols based on a cis-2,5-disubstitued pyrrolidine backbone were synthesized from commercially available starting materials meso-diethyl-2,5-dibromoadipate, (S)-(-)-1-phenylethylamine, and phenylalaninol. The structures of these unnatural dipeptide-alcohols are supported by HRMS, 1H- and 13C-NMR spectroscopy. These unnatural dipeptide-alcohols can act as building blocks for peptidomimetics.

  10. Regulatory aspects of low doses control in Albania

    International Nuclear Information System (INIS)

    Dollani, K.; Kushe, R.

    1997-01-01

    In the present paper are described the status of regulatory aspects of low doses control as well as the existing procedures for their implementation in Albania. According to new Radiological Protection Act, approved by Parliament in 1995, the establishment of the infrastructures in radiation protection area is in course, accompanied by the installation and functioning of new equipment for low dose control. Based in many years experience it is concluded that personal doses of the workers added by practices in Albania are 1/10 of dose Emits. Some particular cases of overexposured workers were investigated. Last times the elements of the optimisation procedures (QA and QC) are outlined in the frame of improving regulatory aspects of low doses control. (author)

  11. Accelerated Evolution of Conserved Noncoding Sequences in theHuman Genome

    Energy Technology Data Exchange (ETDEWEB)

    Prambhakar, Shyam; Noonan, James P.; Paabo, Svante; Rubin, EdwardM.

    2006-07-06

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detect"cryptic" functional elements, which are too weakly conserved amongmammals to distinguish from nonfunctional DNA. To address this problem,we explored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  12. Enhancement of RNA synthesis by promoter duplication in tombusviruses

    International Nuclear Information System (INIS)

    Panavas, T.; Panaviene, Z.; Pogany, J.; Nagy, P.D.

    2003-01-01

    Replication of tombusviruses, small plus-strand RNA viruses of plants, is regulated by cis-acting elements present in the viral RNA. The role of cis-acting elements can be studied in vitro by using a partially purified RNA-dependent RNA polymerase (RdRp) preparation obtained from tombusvirus-infected plants , Virology 276, 279- 288). Here, we demonstrate that the minus-strand RNA of tombusviruses contains, in addition to the 3'-terminal minimal plus-strand initiation promoter, a second cis-acting element, termed the promoter proximal enhancer (PPE). The PPE element enhanced RNA synthesis by almost threefold from the adjacent minimal promoter in the in vitro assay. The sequence of the PPE element is 70% similar to the minimal promoter, suggesting that sequence duplication of the minimal promoter may have been the mechanism leading to the generation of the PPE. Consistent with this proposal, replacement of the PPE element with the minimal promoter, which resulted in a perfectly duplicated promoter region, preserved its enhancer-like function. In contrast, mutagenesis of the PPE element or its replacement with an artificial G/C-rich sequence abolished its stimulative effect on initiation of RNA synthesis in vitro. In vivo experiments are also consistent with the role of the PPE element in enhancement of tombusvirus replication. Sequence comparison of several tombusviruses and related carmoviruses further supports the finding that duplication of minimal promoter sequences may have been an important mechanism during the evolution of cis-acting elements in tombusviruses and related RNA viruses

  13. Sequence-based model of gap gene regulatory network.

    Science.gov (United States)

    Kozlov, Konstantin; Gursky, Vitaly; Kulakovskiy, Ivan; Samsonova, Maria

    2014-01-01

    ) functional important sites are not exclusively located in cis-regulatory elements, but are rather dispersed through regulatory region. It is of importance that some of the sites with high functional impact in hb, Kr and kni regulatory regions coincide with strong sites annotated and verified in Dnase I footprint assays.

  14. 10 points about buying C.I.S

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    On October 16, 1992, the U.S. Department of Commerce (DOC) settled the antidumping case against the CIS republics by imposing price and volume quotas on CIS uranium imported into the United States. Bound by a suspension agreement, each of the six uranium-producing CIS republics is responsible for restricting the flow of imports to the US-either directly or indirectly. (As the NUKEM Market Report went to press, the Ukraine government notified the DOC of its intent not to terminate the suspension agreement.) This action is to prevent undercutting price levels in the US domestic uranium markets. What follows are ten points about everything you should know about importing uranium from the uranium-producing CIS republics- Kazakhstan, Kyrgyzstan, Russian Federation, Tajikistan, Ukraine and Uzbekistan. Newcomers to the CIS scene should follow this simple roadmap and be aware of the issues they face as importers in terms of Commerce/Customs requirements and documentation and where to get them, when to buy the material and how to transport it, how to deal effectively with CIS exporters, and how to avoid unnecessary complications when buying CIS

  15. The transcriptional regulatory network mediated by banana (Musa acuminata) dehydration-responsive element binding (MaDREB) transcription factors in fruit ripening.

    Science.gov (United States)

    Kuang, Jian-Fei; Chen, Jian-Ye; Liu, Xun-Cheng; Han, Yan-Chao; Xiao, Yun-Yi; Shan, Wei; Tang, Yang; Wu, Ke-Qiang; He, Jun-Xian; Lu, Wang-Jin

    2017-04-01

    Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established significance of dehydration-responsive element binding (DREB) TFs in plant abiotic stress responses, the involvement of DREBs in fruit ripening is yet to be determined. Here, we identified four genes encoding ripening-regulated DREB TFs in banana (Musa acuminata), MaDREB1, MaDREB2, MaDREB3, and MaDREB4, and demonstrated that they play regulatory roles in fruit ripening. We showed that MaDREB1-MaDREB4 are nucleus-localized, induced by ethylene and encompass transcriptional activation activities. We performed a genome-wide chromatin immunoprecipitation and high-throughput sequencing (ChIP-Seq) experiment for MaDREB2 and identified 697 genomic regions as potential targets of MaDREB2. MaDREB2 binds to hundreds of loci with diverse functions and its binding sites are distributed in the promoter regions proximal to the transcriptional start site (TSS). Most of the MaDREB2-binding targets contain the conserved (A/G)CC(G/C)AC motif and MaDREB2 appears to directly regulate the expression of a number of genes involved in fruit ripening. In combination with transcriptome profiling (RNA sequencing) data, our results indicate that MaDREB2 may serve as both transcriptional activator and repressor during banana fruit ripening. In conclusion, our study suggests a hierarchical regulatory model of fruit ripening in banana and that the MaDREB TFs may act as transcriptional regulators in the regulatory network. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Identification of functional elements and regulatory circuits by Drosophila modENCODE

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V.; Kheradpour, Pouya; Negre, Nicolas; Eaton, Matthew L.; Landolin, Jane M.; Bristow, Christopher A.; Ma, Lijia; Lin, Michael F.; Washietl, Stefan; Arshinoff, Bradley I.; Ay, Ferhat; Meyer, Patrick E.; Robine, Nicolas; Washington, Nicole L.; Stefano, Luisa Di; Berezikov, Eugene; Brown, Christopher D.; Candeias, Rogerio; Carlson, Joseph W.; Carr, Adrian; Jungreis, Irwin; Marbach, Daniel; Sealfon, Rachel; Tolstorukov, Michael Y.; Will, Sebastian; Alekseyenko, Artyom A.; Artieri, Carlo; Booth, Benjamin W.; Brooks, Angela N.; Dai, Qi; Davis, Carrie A.; Duff, Michael O.; Feng, Xin; Gorchakov, Andrey A.; Gu, Tingting; Henikoff, Jorja G.; Kapranov, Philipp; Li, Renhua; MacAlpine, Heather K.; Malone, John; Minoda, Aki; Nordman, Jared; Okamura, Katsutomo; Perry, Marc; Powell, Sara K.; Riddle, Nicole C.; Sakai, Akiko; Samsonova, Anastasia; Sandler, Jeremy E.; Schwartz, Yuri B.; Sher, Noa; Spokony, Rebecca; Sturgill, David; van Baren, Marijke; Wan, Kenneth H.; Yang, Li; Yu, Charles; Feingold, Elise; Good, Peter; Guyer, Mark; Lowdon, Rebecca; Ahmad, Kami; Andrews, Justen; Berger, Bonnie; Brenner, Steven E.; Brent, Michael R.; Cherbas, Lucy; Elgin, Sarah C. R.; Gingeras, Thomas R.; Grossman, Robert; Hoskins, Roger A.; Kaufman, Thomas C.; Kent, William; Kuroda, Mitzi I.; Orr-Weaver, Terry; Perrimon, Norbert; Pirrotta, Vincenzo; Posakony, James W.; Ren, Bing; Russell, Steven; Cherbas, Peter; Graveley, Brenton R.; Lewis, Suzanna; Micklem, Gos; Oliver, Brian; Park, Peter J.; Celniker, Susan E.; Henikoff, Steven; Karpen, Gary H.; Lai, Eric C.; MacAlpine, David M.; Stein, Lincoln D.; White, Kevin P.; Kellis, Manolis

    2010-12-22

    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation. Several years after the complete genetic sequencing of many species, it is still unclear how to translate genomic information into a functional map of cellular and developmental programs. The Encyclopedia of DNA Elements (ENCODE) (1) and model organism ENCODE (modENCODE) (2) projects use diverse genomic assays to comprehensively annotate the Homo sapiens (human), Drosophila melanogaster (fruit fly), and Caenorhabditis elegans (worm) genomes, through systematic generation and computational integration of functional genomic data sets. Previous genomic studies in flies have made seminal contributions to our understanding of basic biological mechanisms and genome functions, facilitated by genetic, experimental, computational, and manual annotation of the euchromatic and heterochromatic genome (3), small genome size, short life cycle, and a deep knowledge of development, gene function, and chromosome biology. The functions

  17. In Silico Expression Analysis.

    Science.gov (United States)

    Bolívar, Julio; Hehl, Reinhard; Bülow, Lorenz

    2016-01-01

    Information on the specificity of cis-sequences enables the design of functional synthetic plant promoters that are responsive to specific stresses. Potential cis-sequences may be experimentally tested, however, correlation of genomic sequence with gene expression data enables an in silico expression analysis approach to bioinformatically assess the stress specificity of candidate cis-sequences prior to experimental verification. The present chapter demonstrates an example for the in silico validation of a potential cis-regulatory sequence responsive to cold stress. The described online tool can be applied for the bioinformatic assessment of cis-sequences responsive to most abiotic and biotic stresses of plants. Furthermore, a method is presented based on a reverted in silico expression analysis approach that predicts highly specific potentially functional cis-regulatory elements for a given stress.

  18. CoryneRegNet: an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks.

    Science.gov (United States)

    Baumbach, Jan; Brinkrolf, Karina; Czaja, Lisa F; Rahmann, Sven; Tauch, Andreas

    2006-02-14

    The application of DNA microarray technology in post-genomic analysis of bacterial genome sequences has allowed the generation of huge amounts of data related to regulatory networks. This data along with literature-derived knowledge on regulation of gene expression has opened the way for genome-wide reconstruction of transcriptional regulatory networks. These large-scale reconstructions can be converted into in silico models of bacterial cells that allow a systematic analysis of network behavior in response to changing environmental conditions. CoryneRegNet was designed to facilitate the genome-wide reconstruction of transcriptional regulatory networks of corynebacteria relevant in biotechnology and human medicine. During the import and integration process of data derived from experimental studies or literature knowledge CoryneRegNet generates links to genome annotations, to identified transcription factors and to the corresponding cis-regulatory elements. CoryneRegNet is based on a multi-layered, hierarchical and modular concept of transcriptional regulation and was implemented by using the relational database management system MySQL and an ontology-based data structure. Reconstructed regulatory networks can be visualized by using the yFiles JAVA graph library. As an application example of CoryneRegNet, we have reconstructed the global transcriptional regulation of a cellular module involved in SOS and stress response of corynebacteria. CoryneRegNet is an ontology-based data warehouse that allows a pertinent data management of regulatory interactions along with the genome-scale reconstruction of transcriptional regulatory networks. These models can further be combined with metabolic networks to build integrated models of cellular function including both metabolism and its transcriptional regulation.

  19. A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design.

    Science.gov (United States)

    Smith, Robin P; Riesenfeld, Samantha J; Holloway, Alisha K; Li, Qiang; Murphy, Karl K; Feliciano, Natalie M; Orecchia, Lorenzo; Oksenberg, Nir; Pollard, Katherine S; Ahituv, Nadav

    2013-07-18

    Large-scale annotation efforts have improved our ability to coarsely predict regulatory elements throughout vertebrate genomes. However, it is unclear how complex spatiotemporal patterns of gene expression driven by these elements emerge from the activity of short, transcription factor binding sequences. We describe a comprehensive promoter extension assay in which the regulatory potential of all 6 base-pair (bp) sequences was tested in the context of a minimal promoter. To enable this large-scale screen, we developed algorithms that use a reverse-complement aware decomposition of the de Bruijn graph to design a library of DNA oligomers incorporating every 6-bp sequence exactly once. Our library multiplexes all 4,096 unique 6-mers into 184 double-stranded 15-bp oligomers, which is sufficiently compact for in vivo testing. We injected each multiplexed construct into zebrafish embryos and scored GFP expression in 15 tissues at two developmental time points. Twenty-seven constructs produced consistent expression patterns, with the majority doing so in only one tissue. Functional sequences are enriched near biologically relevant genes, match motifs for developmental transcription factors, and are required for enhancer activity. By concatenating tissue-specific functional sequences, we generated completely synthetic enhancers for the notochord, epidermis, spinal cord, forebrain and otic lateral line, and show that short regulatory sequences do not always function modularly. This work introduces a unique in vivo catalog of short, functional regulatory sequences and demonstrates several important principles of regulatory element organization. Furthermore, we provide resources for designing compact, reverse-complement aware k-mer libraries.

  20. Regulatory elements involved in tax-mediated transactivation of the HTLV-I LTR.

    Science.gov (United States)

    Seeler, J S; Muchardt, C; Podar, M; Gaynor, R B

    1993-10-01

    HTLV-I is the etiologic agent of adult T-cell leukemia. In this study, we investigated the regulatory elements and cellular transcription factors which function in modulating HTLV-I gene expression in response to the viral transactivator protein, tax. Transfection experiments into Jurkat cells of a variety of site-directed mutants in the HTLV-1 LTR indicated that each of the three motifs A, B, and C within the 21-bp repeats, the binding sites for the Ets family of proteins, and the TATA box all influenced the degree of tax-mediated activation. Tax is also able to activate gene expression of other viral and cellular promoters. Tax activation of the IL-2 receptor and the HIV-1 LTR is mediated through NF-kappa B motifs. Interestingly, sequences in the 21-bp repeat B and C motifs contain significant homology with NF-kappa B regulatory elements. We demonstrated that an NF-kappa B binding protein, PRDII-BF1, but not the rel protein, bound to the B and C motifs in the 21-bp repeat. PRDII-BF1 was also able to stimulate activation of HTLV-I gene expression by tax. The role of the Ets proteins on modulating tax activation was also studied. Ets 1 but not Ets 2 was capable of increasing the degree of tax activation of the HTLV-I LTR. These results suggest that tax activates gene expression by either direct or indirect interaction with several cellular transcription factors that bind to the HTLV-I LTR.

  1. The core to regulatory reform

    International Nuclear Information System (INIS)

    Partridge, J.W. Jr.

    1993-01-01

    Federal Energy Regulatory Commission (FERC) Orders 436, 500, and 636, the Clean Air Act Amendments of 1990, Public Utility Holding Company Act reform, and the 1992 Energy Policy Act all can have significant effects on an LDC's operations. Such changes in an LDC's environments must be balanced by changes within the utility, its marketplace, and its state regulatory environment. The question is where to start. For Columbia Gas Distribution Cos., based in Columbus, OH, the new operating foundation begins with each employee. Internal strength is critical in designing initiatives that meet the needs of the marketplace and are well-received by regulators. Employees must understand not only the regulatory environment in which the LDC operates, but also how their work contributes to a positive regulatory relationship. To achieve this, Columbia initiated the COntinuing Regulatory Education program, or CORE, in 1991. CORE is a regulatory-focused, information-initiative program coordinated by Columbia's Regulatory Policy, Planning, and Government Affairs Department. The CORE programs can take many forms, such as emerging issue discussions, dialogues with regulators and key parties, updates on regulatory fillings, regulatory policy meetings, and formal training classes. The speakers and discussion facilitators can range from human resource department trainers to senior officers, from regulatory department staff members to external experts, or from state commissioners to executives from other LDCs. The goals of CORE initiatives are to: Support a professional level of regulatory expertise through employee participation in well-developed regulatory programs presented by credible experts. Encourage a constructive state regulatory environment founded on communication and cooperation. CORE achieves these goals via five program levels: introductory basics, advanced learning, professional expertise, crossfunctional dialogues, and external idea exchanges

  2. cis-Bifenthrin enantioselectively induces hepatic oxidative stress in mice.

    Science.gov (United States)

    Jin, Yuanxiang; Wang, Jiangcong; Pan, Xiuhong; Wang, Linggang; Fu, Zhengwei

    2013-09-01

    Bifenthrin (BF), as a chiral synthetic pyrethroid, is widely used to control field and household pests. In China, the commercial cis-BF contained two enantiomers including 1R-cis-BF and 1S-cis-BF. However, the difference in oxidative stress induced by the two enantiomers in mice still remains unclear. In the present study, 4 week-old adolescent male ICR mice were orally administered cis-BF, 1R-cis-BF or 1S-cis-BF daily for 2, 4 and 6 weeks at doses of 5 mg/kg/day, respectively. We found that the hepatic reactive oxygen species (ROS) levels, as well as the malondialdehyde (MDA) and glutathione (GSH) content both in the serum and liver increased significantly in the 4 or 6 weeks 1S-cis-BF treated groups. The activities of superoxide dismutase (SOD) and catalase (CAT) also changed significantly in the serum and liver of 1S-cis-BF treated mice. More importantly, the significant differences in MDA content and CAT activity both in the serum and liver, and the activities of total antioxidant capacity (T-AOC) and SOD in serum were also observed between the 1S-cis-BF and 1R-cis-BF treated groups. Moreover, the transcription of oxidative stress response related genes including Sod1, Cat and heme oxygenase-1(Ho-1) in the liver of 1S-cis-BF treated groups were also significant higher than those in 1R-cis-BF treated group. Thus, it was concluded that cis-BF induced hepatic oxidative stress in an enantiomer specific manner in mice when exposed during the puberty, and that 1S-cis-BF showed much more toxic in hepatic oxidative stress than 1R-cis-BF. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. The changing regulatory environment

    International Nuclear Information System (INIS)

    Caron, G.

    1999-01-01

    The role and value of regulation in the energy sector was discussed, demonstrating how, despite common perception, regulation is an essential part of Canada's strategy to find and develop new opportunities. The future vision of regulation for industry participants was presented with particular focus on issues related to streamlining the regulatory process. As far as pipelines are concerned, regulatory actions are necessary to facilitate capacity increases and to ensure the line's integrity, safety and environmental record. Furthermore, regulation provides economic solutions where market forces cannot provide them, as for example where business has elements of monopoly. It arbitrates interests of landowners, business, consumers, and environmental groups. It looks for ways to ensure conditions under which competition can flourish. It acts as the guardian of citizens' rights in a democratic society by providing citizens with an opportunity to be heard on the building or expansion of pipelines and associated facilities. As citizens become more and more concerned about their property and the land that surrounds them, citizen involvement in decision making about how industry activity affects their quality of life will become correspondingly more important. Regulatory agencies are committed to facilitate this engagement by flexible hearing procedures and by making use of evolving communication and information technology

  4. Globalisation reaches gene regulation: the case for vertebrate limb development.

    Science.gov (United States)

    Zuniga, Aimée

    2005-08-01

    Analysis of key regulators of vertebrate limb development has revealed that the cis-regulatory regions controlling their expression are often located several hundred kilobases upstream of the transcription units. These far up- or down-stream cis-regulatory regions tend to reside within rather large, functionally and structurally unrelated genes. Molecular analysis is beginning to reveal the complexity of these large genomic landscapes, which control the co-expression of clusters of diverse genes by this novel type of long-range and globally acting cis-regulatory region. An increasing number of spontaneous mutations in vertebrates, including humans, are being discovered inactivating or altering such global control regions. Thereby, the functions of a seemingly distant but essential gene are disrupted rather than the closest.

  5. HoxA Genes and the Fin-to-Limb Transition in Vertebrates

    Directory of Open Access Journals (Sweden)

    João Leite-Castro

    2016-02-01

    Full Text Available HoxA genes encode for important DNA-binding transcription factors that act during limb development, regulating primarily gene expression and, consequently, morphogenesis and skeletal differentiation. Within these genes, HoxA11 and HoxA13 were proposed to have played an essential role in the enigmatic evolutionary transition from fish fins to tetrapod limbs. Indeed, comparative gene expression analyses led to the suggestion that changes in their regulation might have been essential for the diversification of vertebrates’ appendages. In this review, we highlight three potential modifications in the regulation and function of these genes that may have boosted appendage evolution: (1 the expansion of polyalanine repeats in the HoxA11 and HoxA13 proteins; (2 the origin of +a novel long-non-coding RNA with a possible inhibitory function on HoxA11; and (3 the acquisition of cis-regulatory elements modulating 5’ HoxA transcription. We discuss the relevance of these mechanisms for appendage diversification reviewing the current state of the art and performing additional comparative analyses to characterize, in a phylogenetic framework, HoxA11 and HoxA13 expression, alanine composition within the encoded proteins, long-non-coding RNAs and cis-regulatory elements.

  6. Specificity determinants for the abscisic acid response element.

    Science.gov (United States)

    Sarkar, Aditya Kumar; Lahiri, Ansuman

    2013-01-01

    Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interaction with ACGT core motif-containing ABRE sequences. We have also examined the variation in the stability of the protein-DNA complex upon mutating ABRE sequences using the protein design algorithm FoldX. The high throughput free energy calculations successfully predicted the ability of ABF1 to bind to alternative core motifs like GCGT or AAGT and also rationalized the role of the flanking sequences in determining the specificity of the protein-DNA interaction.

  7. CisLunar Habitat Internal Architecture Design Criteria

    Science.gov (United States)

    Jones, R.; Kennedy, K.; Howard, R.; Whitmore, M.; Martin, C.; Garate, J.

    2017-01-01

    BACKGROUND: In preparation for human exploration to Mars, there is a need to define the development and test program that will validate deep space operations and systems. In that context, a Proving Grounds CisLunar habitat spacecraft is being defined as the next step towards this goal. This spacecraft will operate differently from the ISS or other spacecraft in human history. The performance envelope of this spacecraft (mass, volume, power, specifications, etc.) is being defined by the Future Capabilities Study Team. This team has recognized the need for a human-centered approach for the internal architecture of this spacecraft and has commissioned a CisLunar Phase-1 Habitat Internal Architecture Study Team to develop a NASA reference configuration, providing the Agency with a "smart buyer" approach for future acquisition. THE CISLUNAR HABITAT INTERNAL ARCHITECTURE STUDY: Overall, the CisLunar Habitat Internal Architecture study will address the most significant questions and risks in the current CisLunar architecture, habitation, and operations concept development. This effort is achieved through definition of design criteria, evaluation criteria and process, design of the CisLunar Habitat Phase-1 internal architecture, and the development and fabrication of internal architecture concepts combined with rigorous and methodical Human-in-the-Loop (HITL) evaluations and testing of the conceptual innovations in a controlled test environment. The vision of the CisLunar Habitat Internal Architecture Study is to design, build, and test a CisLunar Phase-1 Habitat Internal Architecture that will be used for habitation (e.g. habitability and human factors) evaluations. The evaluations will mature CisLunar habitat evaluation tools, guidelines, and standards, and will interface with other projects such as the Advanced Exploration Systems (AES) Program integrated Power, Avionics, Software (iPAS), and Logistics for integrated human-in-the-loop testing. The mission of the Cis

  8. Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis

    NARCIS (Netherlands)

    C. Nepal (Chirag); Y. Hadzhiev (Yavor); C. Previti (Christopher); V. Haberle (Vanja); N. Li (Nan); H. Takahashi (Hiroyuki); A.M. Suzuki (Ana Maria); Y. Sheng (Ying); R.F. Abdelhamid (Rehab); S. Anand (Santosh); P.A. Gehrig (Paola A.); A. Akalin (Altuna); C. Kockx (Christel); A. Van Der Sloot (Antoine); W.F.J. van IJcken (Wilfred); O. Armant (Olivier); S. Rastegar (Sepand); C. Watson (Craig); U. Strähle (Uwe); E. Stupka (Elia); P. Carninci (Piero); B. Lenhard (Boris); F. Müller (Ferenc)

    2013-01-01

    textabstractSpatiotemporal control of gene expression is central to animal development. Core promoters represent a previously unanticipated regulatory level by interacting with cis-regulatory elements and transcription initiation in different physiological and developmental contexts. Here, we

  9. Genome-wide identification and quantification of cis- and trans-regulated genes responding to Marek’s disease virus infection via analysis of allele-specific expression

    Directory of Open Access Journals (Sweden)

    Sean eMaceachern

    2012-01-01

    Full Text Available Marek’s disease (MD is a commercially important neoplastic disease of chickens caused by Marek’s disease virus (MDV, an oncogenic alphaherpesvirus. Selecting for increased genetic resistance to MD is a control strategy that can augment vaccinal control measures. To identify high-confidence candidate MD resistance genes, we conducted a genome-wide screen for allele-specific expression (ASE amongst F1 progeny of two inbred chicken lines that differ in MD resistance. High throughput sequencing was used to profile transcriptomes from pools of uninfected and infected individuals at 4 days post-infection to identify any genes showing ASE in response to MDV infection. RNA sequencing identified 22,655 single nucleotide polymorphisms (SNPs of which 5,360 in 3,773 genes exhibited significant allelic imbalance. Illumina GoldenGate assays were subsequently used to quantify regulatory variation controlled at the gene (cis and elsewhere in the genome (trans by examining differences in expression between F1 individuals and artificial F1 RNA pools over 6 time periods in 1,536 of the most significant SNPs identified by RNA sequencing. Allelic imbalance as a result of cis-regulatory changes was confirmed in 861 of the 1,233 GoldenGate assays successfully examined. Furthermore we have identified 7 genes that display trans-regulation only in infected animals and approximately 500 SNP that show a complex interaction between cis- and trans-regulatory changes. Our results indicate ASE analyses are a powerful approach to identify regulatory variation responsible for differences in transcript abundance in genes underlying complex traits. And the genes with SNPs exhibiting ASE provide a strong foundation to further investigate the causative polymorphisms and genetic mechanisms for MD resistance. Finally, the methods used here for identifying specific genes and SNPs may have practical implications for applying marker-assisted selection to complex traits that are

  10. Spatially conserved regulatory elements identified within human and mouse Cd247 gene using high-throughput sequencing data from the ENCODE project

    DEFF Research Database (Denmark)

    Pundhir, Sachin; Hannibal, Tine Dahlbæk; Bang-Berthelsen, Claus Heiner

    2014-01-01

    . In this study, we have utilized the wealth of high-throughput sequencing data produced during the Encyclopedia of DNA Elements (ENCODE) project to identify spatially conserved regulatory elements within the Cd247 gene from human and mouse. We show the presence of two transcription factor binding sites...

  11. Divergently overlapping cis-encoded antisense RNA regulating toxin-antitoxin systems from E. coli: hok/sok, ldr/rdl, symE/symR.

    Science.gov (United States)

    Kawano, Mitsuoki

    2012-12-01

    Toxin-antitoxin (TA) systems are categorized into three classes based on the type of antitoxin. In type I TA systems, the antitoxin is a small antisense RNA that inhibits translation of small toxic proteins by binding to the corresponding mRNAs. Those type I TA systems were originally identified as plasmid stabilization modules rendering a post-segregational killing (PSK) effect on the host cells. The type I TA loci also exist on the Escherichia coli chromosome but their biological functions are less clear. Genetic organization and regulatory elements of hok/sok and ldr/rdl families are very similar and the toxins are predicted to contain a transmembrane domain, but otherwise share no detectable sequence similarity. This review will give an overview of the type I TA modules of E. coli K-12, especially hok/sok, ldr/rdl and SOS-inducible symE/symR systems, which are regulated by divergently overlapping cis-encoded antisense RNAs.

  12. Introduction to the Unified Agenda of Federal Regulatory and Deregulatory Actions

    Science.gov (United States)

    2010-04-26

    ... Regulatory Commission Federal Housing Finance Agency Federal Maritime Commission Federal Mediation and... that the Regulatory Flexibility Act may require a Regulatory Flexibility Analysis, actions selected for.... Regulatory Flexibility Analysis Required -- whether an analysis is required by the Regulatory Flexibility Act...

  13. Density functional theory study of structural and electronic properties of trans and cis structures of thiothixene as a nano-drug.

    Science.gov (United States)

    Noori Tahneh, Akram; Bagheri Novir, Samaneh; Balali, Ebrahim

    2017-11-25

    The geometrical structure, electronic and optical properties, electronic absorption spectra, vibrational frequencies, natural charge distribution, MEP analysis and thermodynamic properties of the trans and cis structures of the drug thiothixene were investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) methods with the B3LYP hybrid functional and 6-311 + G(d,p) basis set. The results of the calculations demonstrate that the cis structure of thiothixene has appropriate quantum properties that can act as an active medicine. The relative energies of trans and cis structures of thiothixene shows that the cis structure is more stable than the trans structure, with a small energy difference. TDDFT calculations show that the cis structure of thiothixene has the best absorption properties. The calculated NLO properties show that the NLO properties of the cis structure of thiothixene are higher than the trans structure, and the fact that the chemical hardness of the cis structure is lower than that of the trans structure that indicates that the reactivity and charge transfer of the cis isomer of thiothixene is higher than that of trans thiothixene. The molecular electrostatic potential (MEP) maps of both structures of thiothixene demonstrate that the oxygen atoms of the molecule are appropriate areas for electrophilic reactions. The vibrational frequencies of the two conformations of thiothixene demonstrate that both structures of thiothixene have almost similar modes of vibrations. The calculated thermodynamic parameters show that these quantities increase with enhancing temperature due to the enhancement of molecular vibrational intensities with temperature. Graphical abstract Trans/Cis isomerization of thiothixene drug.

  14. Dilemmas of compliance in the CIS

    International Nuclear Information System (INIS)

    Vorobyev, A.

    1996-01-01

    The objective of this paper is to examine some of the difficulties faced by Russia and other Common Independent States (CIS) in the field of compliance with disarmament treaties and non-proliferation regimes, as well as ways and means, particularly with regard to the legal framework, designed to overcome these difficulties. Naturally, the fate and pace of overcoming the existing problems will depend only partially on development of CIS States. A large variety of international factors and the general security will be essential for progress in resolving disarmament and arms control issues in the CIS

  15. Using network component analysis to dissect regulatory networks mediated by transcription factors in yeast.

    Directory of Open Access Journals (Sweden)

    Chun Ye

    2009-03-01

    Full Text Available Understanding the relationship between genetic variation and gene expression is a central question in genetics. With the availability of data from high-throughput technologies such as ChIP-Chip, expression, and genotyping arrays, we can begin to not only identify associations but to understand how genetic variations perturb the underlying transcription regulatory networks to induce differential gene expression. In this study, we describe a simple model of transcription regulation where the expression of a gene is completely characterized by two properties: the concentrations and promoter affinities of active transcription factors. We devise a method that extends Network Component Analysis (NCA to determine how genetic variations in the form of single nucleotide polymorphisms (SNPs perturb these two properties. Applying our method to a segregating population of Saccharomyces cerevisiae, we found statistically significant examples of trans-acting SNPs located in regulatory hotspots that perturb transcription factor concentrations and affinities for target promoters to cause global differential expression and cis-acting genetic variations that perturb the promoter affinities of transcription factors on a single gene to cause local differential expression. Although many genetic variations linked to gene expressions have been identified, it is not clear how they perturb the underlying regulatory networks that govern gene expression. Our work begins to fill this void by showing that many genetic variations affect the concentrations of active transcription factors in a cell and their affinities for target promoters. Understanding the effects of these perturbations can help us to paint a more complete picture of the complex landscape of transcription regulation. The software package implementing the algorithms discussed in this work is available as a MATLAB package upon request.

  16. Identification of Smad Response Elements in the Promoter of Goldfish FSHβ Gene and Evidence for Their Mediation of Activin and GnRH Stimulation of FSHβ Expression

    Directory of Open Access Journals (Sweden)

    Man-Tat eLau

    2012-03-01

    Full Text Available As an essential hormone regulating gonads in vertebrates, the biosynthesis and secretion of follicle-stimulating hormone (FSH is controlled by a variety of endocrine and paracrine factors in both mammalian and non-mammalian vertebrates. Activin was initially discovered in the ovary for its specific stimulation of FSH secretion by the pituitary cells. Our earlier studies in fish have shown that activin stimulates FSHβ but suppresses LHβ expression in both the goldfish and zebrafish. Further experiments showed that the regulation of FSHβ in fish occurred at the promoter level involving Smads, in particular Smad3. To further understand the mechanisms by which activin/Smad regulates FSHβ transcription, the present study was undertaken to analyze the promoter of goldfish FSHβ gene (fshb with the aim to identify potential cis-regulatory elements responsible for activin/Smad stimulation. Both serial deletion and site-directed mutagenesis were used, and the promoter activity was tested in the LβT2 cells, a murine gonadotroph cell line. The reporter constructs of goldfish FSHβ promoter-SEAP (secreted alkaline phosphatase were co-transfected with an expression plasmid for Smads (2 or 3 followed by measurement of SEAP activity in the medium. Two putative Smad responsive elements (SRE were identified in the promoter at distal and proximal regions, respectively. The distal site contained a consensus Smad binding element (SBE; AGAC, -1675/-1672 whereas the proximal site (GACCTTGA, -212/-205 was identical to an SF-1 binding site reported in humans, which was preceded by a sequence (AACACTGA highly conserved between fish and mammals. The proximal site also seemed to be involved in mediating stimulation of FSHβ expression by gonadotropin-releasing hormone (GnRH and its potential interaction with activin. In conclusion, we have identified two potential cis-regulatory elements in the promoter of goldfish FSHβ that are responsible for activin

  17. A robust approach to identifying tissue-specific gene expression regulatory variants using personalized human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Je-Hyuk Lee

    2009-11-01

    Full Text Available Normal variation in gene expression due to regulatory polymorphisms is often masked by biological and experimental noise. In addition, some regulatory polymorphisms may become apparent only in specific tissues. We derived human induced pluripotent stem (iPS cells from adult skin primary fibroblasts and attempted to detect tissue-specific cis-regulatory variants using in vitro cell differentiation. We used padlock probes and high-throughput sequencing for digital RNA allelotyping and measured allele-specific gene expression in primary fibroblasts, lymphoblastoid cells, iPS cells, and their differentiated derivatives. We show that allele-specific expression is both cell type and genotype-dependent, but the majority of detectable allele-specific expression loci remains consistent despite large changes in the cell type or the experimental condition following iPS reprogramming, except on the X-chromosome. We show that our approach to mapping cis-regulatory variants reduces in vitro experimental noise and reveals additional tissue-specific variants using skin-derived human iPS cells.

  18. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene.

    OpenAIRE

    Itzhaki, H; Maxson, J M; Woodson, W R

    1994-01-01

    The increased production of ethylene during carnation petal senescence regulates the transcription of the GST1 gene encoding a subunit of glutathione-S-transferase. We have investigated the molecular basis for this ethylene-responsive transcription by examining the cis elements and trans-acting factors involved in the expression of the GST1 gene. Transient expression assays following delivery of GST1 5' flanking DNA fused to a beta-glucuronidase receptor gene were used to functionally define ...

  19. Up front in the CIS

    International Nuclear Information System (INIS)

    Grey, C.A.

    1994-01-01

    A picture is drawn of the current supply side of the front-end fuel cycle production capacities in the CIS. Uranium production has been steadily declining, as in the West. Market realities have been reflected in local costs of production since the break-up of the former Soviet Union and some uneconomic mines have been closed. In terms of actual production, Kazakhstan, Russia and Uzbekistan, remain among the top five uranium producers in the world. Western government action has been taken to restrict the market access for natural uranium from the CIS. Reactors in the CIS continue to be supplied with fabricated fuel solely by Russian, though Western fuel fabricators have reduced Russian supplies to Eastern Europe. Russia's current dominance in conversion and enrichment services in both the CIS and Eastern Europe is likely to continue as long as the present surplus low enriched uranium stocks last and surplus production capacity exists. Market penetration in the West has been limited by government action but Russia in 1993 still held about 20% of the world's conversion market and nearly 19% of the enrichment market. (6 figures, 2 tables, 4 references) (UK)

  20. Identification of an ICP27-responsive element in the coding region of a herpes simplex virus type 1 late gene.

    Science.gov (United States)

    Sedlackova, Lenka; Perkins, Keith D; Meyer, Julia; Strain, Anna K; Goldman, Oksana; Rice, Stephen A

    2010-03-01

    During productive herpes simplex virus type 1 (HSV-1) infection, a subset of viral delayed-early (DE) and late (L) genes require the immediate-early (IE) protein ICP27 for their expression. However, the cis-acting regulatory sequences in DE and L genes that mediate their specific induction by ICP27 are unknown. One viral L gene that is highly dependent on ICP27 is that encoding glycoprotein C (gC). We previously demonstrated that this gene is posttranscriptionally transactivated by ICP27 in a plasmid cotransfection assay. Based on our past results, we hypothesized that the gC gene possesses a cis-acting inhibitory sequence and that ICP27 overcomes the effects of this sequence to enable efficient gC expression. To test this model, we systematically deleted sequences from the body of the gC gene and tested the resulting constructs for expression. In so doing, we identified a 258-bp "silencing element" (SE) in the 5' portion of the gC coding region. When present, the SE inhibits gC mRNA accumulation from a transiently transfected gC gene, unless ICP27 is present. Moreover, the SE can be transferred to another HSV-1 gene, where it inhibits mRNA accumulation in the absence of ICP27 and confers high-level expression in the presence of ICP27. Thus, for the first time, an ICP27-responsive sequence has been identified in a physiologically relevant ICP27 target gene. To see if the SE functions during viral infection, we engineered HSV-1 recombinants that lack the SE, either in a wild-type (WT) or ICP27-null genetic background. In an ICP27-null background, deletion of the SE led to ICP27-independent expression of the gC gene, demonstrating that the SE functions during viral infection. Surprisingly, the ICP27-independent gC expression seen with the mutant occurred even in the absence of viral DNA synthesis, indicating that the SE helps to regulate the tight DNA replication-dependent expression of gC.

  1. Two ABREs, two redundant root-specific and one W-box cis-acting elements are functional in the sunflower HAHB4 promoter.

    Science.gov (United States)

    Manavella, Pablo A; Dezar, Carlos A; Ariel, Federico D; Chan, Raquel L

    2008-10-01

    HAHB4 is a sunflower gene encoding a homeodomain-leucine zipper (HD-Zip) transcription factor. It was previously demonstrated that this gene is regulated at the transcriptional level by several abiotic factors and hormones. A previous analysis in the PLACE database revealed the presence of four putative ABREs. In this work these four elements and also one W-box and two root-specific expression elements were characterized as functional. Site-directed mutagenesis on the promoter, stable transformation of Arabidopis plants as well as transient transformation of sunflower leaves, were performed. The analysis of the transformants was carried out by histochemistry and real time RT-PCR. The results indicate that just one ABRE out of the four is responsible for ABA, NaCl and drought regulation. However, NaCl induction occurs also by an additional ABA-independent way involving another two overlapped ABREs. On the other hand, it was determined that the W-box located 5' upstream is responsive to ethylene and only two root-specific expression elements, among the several detected, are functional but redundant. Conservation of molecular mechanisms between sunflower and Arabidopsis is strongly supported by this experimental work.

  2. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene.

    Science.gov (United States)

    Itzhaki, H; Maxson, J M; Woodson, W R

    1994-09-13

    The increased production of ethylene during carnation petal senescence regulates the transcription of the GST1 gene encoding a subunit of glutathione-S-transferase. We have investigated the molecular basis for this ethylene-responsive transcription by examining the cis elements and trans-acting factors involved in the expression of the GST1 gene. Transient expression assays following delivery of GST1 5' flanking DNA fused to a beta-glucuronidase receptor gene were used to functionally define sequences responsible for ethylene-responsive expression. Deletion analysis of the 5' flanking sequences of GST1 identified a single positive regulatory element of 197 bp between -667 and -470 necessary for ethylene-responsive expression. The sequences within this ethylene-responsive region were further localized to 126 bp between -596 and -470. The ethylene-responsive element (ERE) within this region conferred ethylene-regulated expression upon a minimal cauliflower mosaic virus-35S TATA-box promoter in an orientation-independent manner. Gel electrophoresis mobility-shift assays and DNase I footprinting were used to identify proteins that bind to sequences within the ERE. Nuclear proteins from carnation petals were shown to specifically interact with the 126-bp ERE and the presence and binding of these proteins were independent of ethylene or petal senescence. DNase I footprinting defined DNA sequences between -510 and -488 within the ERE specifically protected by bound protein. An 8-bp sequence (ATTTCAAA) within the protected region shares significant homology with promoter sequences required for ethylene responsiveness from the tomato fruit-ripening E4 gene.

  3. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci.

    Science.gov (United States)

    Canver, Matthew C; Lessard, Samuel; Pinello, Luca; Wu, Yuxuan; Ilboudo, Yann; Stern, Emily N; Needleman, Austen J; Galactéros, Frédéric; Brugnara, Carlo; Kutlar, Abdullah; McKenzie, Colin; Reid, Marvin; Chen, Diane D; Das, Partha Pratim; A Cole, Mitchel; Zeng, Jing; Kurita, Ryo; Nakamura, Yukio; Yuan, Guo-Cheng; Lettre, Guillaume; Bauer, Daniel E; Orkin, Stuart H

    2017-04-01

    Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants identified in genome-wide association studies largely cluster at regulatory loci. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating-mutagenesis libraries with single or multiple nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, which is associated with red-blood-cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false-positive regions, thus emphasizing the importance of off-target analysis in the design of saturating-mutagenesis experiments. Together, these data establish a widely applicable high-throughput and high-resolution methodology to identify minimal functional sequences within large disease- and trait-associated regions.

  4. Identification and applications of the Petunia class II Act1/dTph1 transposable element system.

    Science.gov (United States)

    Gerats, Tom; Zethof, Jan; Vandenbussche, Michiel

    2013-01-01

    Transposable genetic elements are considered to be ubiquitous. Despite this, their mutagenic capacity has been exploited in only a few species. The main plant species are maize, Antirrhinum, and Petunia. Representatives of all three major groups of class II elements, viz., hAT-, CACTA- and Mutator-like elements, have been identified in Petunia. Here we focus on the research "history" of the Petunia two-element Act1-dTph1 system and the development of its application in forward- and reverse-genetics studies.

  5. Systematic identification of cis-regulatory sequences active in mouse and human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Marica Grskovic

    2007-08-01

    Full Text Available Understanding the transcriptional regulation of pluripotent cells is of fundamental interest and will greatly inform efforts aimed at directing differentiation of embryonic stem (ES cells or reprogramming somatic cells. We first analyzed the transcriptional profiles of mouse ES cells and primordial germ cells and identified genes upregulated in pluripotent cells both in vitro and in vivo. These genes are enriched for roles in transcription, chromatin remodeling, cell cycle, and DNA repair. We developed a novel computational algorithm, CompMoby, which combines analyses of sequences both aligned and non-aligned between different genomes with a probabilistic segmentation model to systematically predict short DNA motifs that regulate gene expression. CompMoby was used to identify conserved overrepresented motifs in genes upregulated in pluripotent cells. We show that the motifs are preferentially active in undifferentiated mouse ES and embryonic germ cells in a sequence-specific manner, and that they can act as enhancers in the context of an endogenous promoter. Importantly, the activity of the motifs is conserved in human ES cells. We further show that the transcription factor NF-Y specifically binds to one of the motifs, is differentially expressed during ES cell differentiation, and is required for ES cell proliferation. This study provides novel insights into the transcriptional regulatory networks of pluripotent cells. Our results suggest that this systematic approach can be broadly applied to understanding transcriptional networks in mammalian species.

  6. Functional Analysis of Promoter Region from Eel Cytochrome P450 1A1 Gene in Transgenic Medaka.

    Science.gov (United States)

    Ogino; Itakura; Kato; Aoki; Sato

    1999-07-01

    : Transcription of the CYP1A1 genes in mammals and fish is stimulated by polyaromatic hydrocarbons. DNA sequencing analysis revealed that CYP1A1 gene in eel (Anguilla japonica) contains two kinds of putative cis-acting regulatory elements, XRE (xenobiotic-responsive element) and ERE (estrogen-responsive element). XRE is known as the enhancer that is responsible for the inducibility of the genes of CYP1A1 and some other drug-metabolizing enzymes. In the eel CYP1A1 gene, XRE motifs are distributed as follows: five times in the region from -2136 to -1125 bp, XRE(-6) to (-2); once in the proximal basal promoter region, XRE(-1); and once in the first intron, XRE(+1). The region between XRE(-2) and XRE(-1) contains three ERE motifs. To investigate the function of the cis-acting regulatory elements in the eel CYP1A1 gene, recombinant plasmids prepared with its 5' upstream sequence and the structural gene for luciferase were microinjected into fertilized eggs of medaka at the one-cell stage. Hatched fry were treated with 3-methylcholanthrene, and the transcription efficiency was assayed using competitive polymerase chain reaction analysis. Deletion of the region containing the five XREs, XRE(-6) to XRE(-2), and the point mutation of XRE(-1) reduced the inducible expressions by 75% and 56%, respectively, showing apparent dependency of the drug induction on the XREs. Constitutive expression, however, was not significantly affected by deletion or disruption of the XREs. When the region between XRE(-2) and XRE(-1) containing no XREs but three ERE motifs was internally deleted, the inducible expression and the constitutive expression were reduced by 88% and 75%, respectively. Replacement of this region with a partial fragment of eel CYP1A1 complementary DNA, with slight alteration of the distance between the five XREs and XRE(-1), reduced the inducible expression and the constitutive expression by 91% and 60%, respectively. These results strongly suggest that not only XRE but

  7. The preparation and characterization of uns-cis-(ethylene-diamine-N,N'-di-3-propionato(N-alkylethylenediaminescobalt(III complexes

    Directory of Open Access Journals (Sweden)

    SANJA R. GRGURIC

    2000-03-01

    Full Text Available Three octahedral cobalt(III complexes of the general formula uns-cis-SCo(eddp(R-enCClÿ2H2O, where eddp = the tetradentate ONNO-type ligand ethylenediamine-N,N'-di-3-propionate and R-en = a bidentate NN-type ligand, either N-methyl, N-ethyl or N-isopropylethylenediamine. The complexes were prepared by the reaction of sodium uns-cis-(ethylenediamine-N,N'-di-3-propionato(carbonatocobaltate(IIIdihydrate with the corresponding diamine. They were isolated chromatographically and characterized by elemental analysis, infrared and electronic absorption spectroscopy.

  8. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    Science.gov (United States)

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  9. Transcriptional regulatory elements in the noncoding region of human papillomavirus type 6

    International Nuclear Information System (INIS)

    Wu, Tzyy-Choou.

    1989-01-01

    The structure and function of the transcriptional regulatory region of human papillomavirus type 6 (HPV-6) has been investigated. To investigate tissue specific gene expression, a sensitive method to detect and localize HPV-6 viral DNA, mRNA and protein in plastic-embedded tissue sections of genital and respiratory tract papillomata by using in situ hybridization and immunoperoxidase assays has been developed. This method, using ultrathin sections and strand-specific 3 H labeled riboprobes, offers the advantages of superior morphological preservation and detection of viral genomes at low copy number with good resolution, and the modified immunocytochemistry provides better sensitivity. The results suggest that genital tract epithelium is more permissive for HPV-6 replication than respiratory tract epithelium. To study the tissue tropism of HPV-6 at the level of regulation of viral gene expression, the polymerase chain reaction was used to isolate the noncoding region (NCR) of HPV-6 in independent isolates. Nucleotide sequence analysis of molecularly cloned DNA identified base substitutions, deletions/insertions and tandem duplications. Transcriptional regulatory elements in the NCR were assayed in recombinant plasmids containing the bacterial gene for chloramphenicol acetyl transferase

  10. CoryneRegNet: An ontology-based data warehouse of corynebacterial transcription factors and regulatory networks

    Directory of Open Access Journals (Sweden)

    Czaja Lisa F

    2006-02-01

    Full Text Available Abstract Background The application of DNA microarray technology in post-genomic analysis of bacterial genome sequences has allowed the generation of huge amounts of data related to regulatory networks. This data along with literature-derived knowledge on regulation of gene expression has opened the way for genome-wide reconstruction of transcriptional regulatory networks. These large-scale reconstructions can be converted into in silico models of bacterial cells that allow a systematic analysis of network behavior in response to changing environmental conditions. Description CoryneRegNet was designed to facilitate the genome-wide reconstruction of transcriptional regulatory networks of corynebacteria relevant in biotechnology and human medicine. During the import and integration process of data derived from experimental studies or literature knowledge CoryneRegNet generates links to genome annotations, to identified transcription factors and to the corresponding cis-regulatory elements. CoryneRegNet is based on a multi-layered, hierarchical and modular concept of transcriptional regulation and was implemented by using the relational database management system MySQL and an ontology-based data structure. Reconstructed regulatory networks can be visualized by using the yFiles JAVA graph library. As an application example of CoryneRegNet, we have reconstructed the global transcriptional regulation of a cellular module involved in SOS and stress response of corynebacteria. Conclusion CoryneRegNet is an ontology-based data warehouse that allows a pertinent data management of regulatory interactions along with the genome-scale reconstruction of transcriptional regulatory networks. These models can further be combined with metabolic networks to build integrated models of cellular function including both metabolism and its transcriptional regulation.

  11. Orientation-dependent interaction between Drosophila insulators is a property of this class of regulatory elements.

    Science.gov (United States)

    Kyrchanova, Olga; Chetverina, Darya; Maksimenko, Oksana; Kullyev, Andrey; Georgiev, Pavel

    2008-12-01

    Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. According to previous data, an interaction (pairing) between some Drosophila insulators can support distant activation of a promoter by an enhancer. Here, we have demonstrated that pairs of well-studied insulators such as scs-scs, scs'-scs', 1A2-1A2 and Wari-Wari support distant activation of the white promoter by the yeast GAL4 activator in an orientation-dependent manner. The same is true for the efficiency of the enhancer that stimulates white expression in the eyes. In all insulator pairs tested, stimulation of the white gene was stronger when insulators were inserted between the eye enhancer or GAL4 and the white promoter in opposite orientations relative to each other. As shown previously, Zw5, Su(Hw) and dCTCF proteins are required for the functioning of different insulators that do not interact with each other. Here, strong functional interactions have been revealed between DNA fragments containing binding sites for either Zw5 or Su(Hw) or dCTCF protein but not between heterologous binding sites [Zw5-Su(Hw), dCTCF-Su(Hw), or dCTCF-Zw5]. These results suggest that insulator proteins can support selective interactions between distant regulatory elements.

  12. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.

    Science.gov (United States)

    Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N

    2008-12-01

    Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening.

  13. Chromatin Heterogeneity and Distribution of Regulatory Elements in the Late-Replicating Intercalary Heterochromatin Domains of Drosophila melanogaster Chromosomes.

    Directory of Open Access Journals (Sweden)

    Varvara A Khoroshko

    Full Text Available Late-replicating domains (intercalary heterochromatin in the Drosophila genome display a number of features suggesting their organization is quite unique. Typically, they are quite large and encompass clusters of functionally unrelated tissue-specific genes. They correspond to the topologically associating domains and conserved microsynteny blocks. Our study aims at exploring further details of molecular organization of intercalary heterochromatin and has uncovered surprising heterogeneity of chromatin composition in these regions. Using the 4HMM model developed in our group earlier, intercalary heterochromatin regions were found to host chromatin fragments with a particular epigenetic profile. Aquamarine chromatin fragments (spanning 0.67% of late-replicating regions are characterized as a class of sequences that appear heterogeneous in terms of their decompactization. These fragments are enriched with enhancer sequences and binding sites for insulator proteins. They likely mark the chromatin state that is related to the binding of cis-regulatory proteins. Malachite chromatin fragments (11% of late-replicating regions appear to function as universal transitional regions between two contrasting chromatin states. Namely, they invariably delimit intercalary heterochromatin regions from the adjacent active chromatin of interbands. Malachite fragments also flank aquamarine fragments embedded in the repressed chromatin of late-replicating regions. Significant enrichment of insulator proteins CP190, SU(HW, and MOD2.2 was observed in malachite chromatin. Neither aquamarine nor malachite chromatin types appear to correlate with the positions of highly conserved non-coding elements (HCNE that are typically replete in intercalary heterochromatin. Malachite chromatin found on the flanks of intercalary heterochromatin regions tends to replicate earlier than the malachite chromatin embedded in intercalary heterochromatin. In other words, there exists a

  14. A generalized allosteric mechanism for cis-regulated cyclic nucleotide binding domains.

    Directory of Open Access Journals (Sweden)

    Alexandr P Kornev

    2008-04-01

    Full Text Available Cyclic nucleotides (cAMP and cGMP regulate multiple intracellular processes and are thus of a great general interest for molecular and structural biologists. To study the allosteric mechanism of different cyclic nucleotide binding (CNB domains, we compared cAMP-bound and cAMP-free structures (PKA, Epac, and two ionic channels using a new bioinformatics method: local spatial pattern alignment. Our analysis highlights four major conserved structural motifs: 1 the phosphate binding cassette (PBC, which binds the cAMP ribose-phosphate, 2 the "hinge," a flexible helix, which contacts the PBC, 3 the beta(2,3 loop, which provides precise positioning of an invariant arginine from the PBC, and 4 a conserved structural element consisting of an N-terminal helix, an eight residue loop and the A-helix (N3A-motif. The PBC and the hinge were included in the previously reported allosteric model, whereas the definition of the beta(2,3 loop and the N3A-motif as conserved elements is novel. The N3A-motif is found in all cis-regulated CNB domains, and we present a model for an allosteric mechanism in these domains. Catabolite gene activator protein (CAP represents a trans-regulated CNB domain family: it does not contain the N3A-motif, and its long range allosteric interactions are substantially different from the cis-regulated CNB domains.

  15. Ligand design for riboswitches, an emerging target class for novel antibiotics.

    Science.gov (United States)

    Rekand, Illimar Hugo; Brenk, Ruth

    2017-09-01

    Riboswitches are cis-acting gene regulatory elements and constitute potential targets for new antibiotics. Recent studies in this field have started to explore these targets for drug discovery. New ligands found by fragment screening, design of analogs of the natural ligands or serendipitously by phenotypic screening have shown antibacterial effects in cell assays against a range of bacteria strains and in animal models. In this review, we highlight the most advanced drug design work of riboswitch ligands and discuss the challenges in the field with respect to the development of antibiotics with a new mechanism of action.

  16. Implementation of the waste management transfer act. Requirements from a regulatory point of view

    International Nuclear Information System (INIS)

    Mueller-Dehn, Christian

    2017-01-01

    In future in Germany, the state will be responsible for financing and handling the interim and final storage of radioactive waste from nuclear power plants. With regard to interim storage, this objective is achieved with the provisions of the Waste Management Transfer Act. Regulatory implementation is based on these regulations. BGZ Gesellschaft fuer Zwischenlager mbH is responsible for interim storage on behalf of the Federal Government. Simultaneously with the transfer of interim storage facilities to BGZ a legal transfer of approval is carried out. Insofar as there is a technical, organisational or personnel conjunction with the nuclear power plant operation, which continues to exist beyond this deadline and is relevant for regulatory purposes, a regulation is made via a service contract with the BGZ. This ensures compliance with the licensing regulations. Irradiated fuel assemblies and the waste from reprocessing can be handed over to BGZ from 1 January 2019 onwards and waste with negligible heat generation can be disposed of as of the determination of their proper packaging.

  17. The Evolution of Lineage-Specific Regulatory Activities in the Human Embryonic Limb

    OpenAIRE

    Cotney, Justin; Leng, Jing; Yin, Jun; Reilly, Steven K.; DeMare, Laura E.; Emera, Deena; Ayoub, Albert E.; Rakic, Pasko; Noonan, James P.

    2013-01-01

    The evolution of human anatomical features likely involved changes in gene regulation during development. However, the nature and extent of human-specific developmental regulatory functions remain unknown. We obtained a genome-wide view of cis-regulatory evolution in human embryonic tissues by comparing the histone modification H3K27ac, which provides a quantitative readout of promoter and enhancer activity, during human, rhesus, and mouse limb development. Based on increased H3K27ac, we find...

  18. Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots.

    Science.gov (United States)

    Wu, Min; Kwoh, Chee-Keong; Przytycka, Teresa M; Li, Jing; Zheng, Jie

    2012-06-21

    The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots.

  19. Ready access to functionally embellished cis-hydrindanes and cis-decalins: protecting group-free total syntheses of (±)-Nootkatone and (±)-Noreremophilane.

    Science.gov (United States)

    Handore, Kishor L; Seetharamsingh, B; Reddy, D Srinivasa

    2013-08-16

    A simple and efficient synthesis of functionalized cis-hydrindanes and cis-decalins was achieved using a sequential Diels-Alder/aldol approach in a highly diastereoselective manner. The scope of this method was tested with a variety of substrates and was successfully applied to the synthesis of two natural products in racemic form. The highlights of the present work provide ready access to 13 new cis-hydrindanes/cis-decalins, a protecting group-free total synthesis of an insect repellent Nootkatone, and the first synthesis of a Noreremophilane using the shortest sequence.

  20. Electronic structure description of the cis-MoOS unit in models for molybdenum hydroxylases.

    Science.gov (United States)

    Doonan, Christian J; Rubie, Nick D; Peariso, Katrina; Harris, Hugh H; Knottenbelt, Sushilla Z; George, Graham N; Young, Charles G; Kirk, Martin L

    2008-01-09

    The molybdenum hydroxylases catalyze the oxidation of numerous aromatic heterocycles and simple organics and, unlike other hydroxylases, utilize water as the source of oxygen incorporated into the product. The electronic structures of the cis-MoOS units in CoCp2[TpiPrMoVOS(OPh)] and TpiPrMoVIOS(OPh) (TpiPr = hydrotris(3-isopropylpyrazol-1-yl)borate), new models for molybdenum hydroxylases, have been studied in detail using S K-edge X-ray absorption spectroscopy, vibrational spectroscopy, and detailed bonding calculations. The results show a highly delocalized Mo=S pi* LUMO redox orbital that is formally Mo(dxy) with approximately 35% sulfido ligand character. Vibrational spectroscopy has been used to quantitate Mo-Ssulfido bond order changes in the cis-MoOS units as a function of redox state. Results support a redox active molecular orbital that has a profound influence on MoOS bonding through changes to the relative electro/nucleophilicity of the terminal sulfido ligand accompanying oxidation state changes. The bonding description for these model cis-MoOS systems supports enzyme mechanisms that are under orbital control and dominantly influenced by the unique electronic structure of the cis-MoOS site. The electronic structure of the oxidized enzyme site is postulated to play a role in polarizing a substrate carbon center for nucleophilic attack by metal activated water and acting as an electron sink in the two-electron oxidation of substrates.

  1. Optimization of Pseudomonas putida KT2440 as host for the production of cis, cis-muconate from benzoate

    NARCIS (Netherlands)

    Duuren, van J.B.J.H.

    2011-01-01

    Optimization of Pseudomonas putida KT2440 as host for the production of cis, cis-muconate

    from benzoate P. putida KT2440 was used as biocatalyst given its versatile and energetically robust metabolism.

    Therefore, a mutant was generated and a process developed based on which a

  2. Cloning and characterization of the promoter of the 9-cis-epoxycarotenoid dioxygenase gene in Arachis hypogaea L.

    Science.gov (United States)

    Liang, Jianhua; Yang, Lixia; Chen, Xiong; Li, Ling; Guo, Dongliang; Li, Haihang; Zhang, Biyu

    2009-09-01

    We cloned the promoter of the 9-cis-epoxycarotenoid dioxygenase gene from Arachis hypogaea L. beta-Glucuronidase (GUS) histochemical staining and GUS activity assay indicated that the activity of the promoter was exhibited predominantly in the leaves and enhanced by water and NaCl stresses, and by application of abscisic acid (ABA) and salicylic acid (SA) in transgenic Arabidopsis. Moreover, two novel ABRE-like (abscisic acid response element) elements were identified in the promoter region.

  3. E2-mediated cathepsin D (CTSD) activation involves looping of distal enhancer elements.

    Science.gov (United States)

    Bretschneider, Nancy; Kangaspeska, Sara; Seifert, Martin; Reid, George; Gannon, Frank; Denger, Stefanie

    2008-08-01

    Estrogen receptor alpha (ERalpha) is a ligand dependent transcription factor that regulates the expression of target genes through interacting with cis-acting estrogen response elements (EREs). However, only a minority of ERalpha binding sites are located within the proximal promoter regions of responsive genes. Here we report the characterization of an ERE located 9kbp upstream of the TSS of the cathepsin D gene (CTSD) that up-regulates CTSD expression upon estrogen stimulation in MCF-7 cells. Using ChIP, we show recruitment of ERalpha and phosphorylated PolII at the CTSD distal enhancer region. Moreover, we determine the kinetics of transient CpG methylation on the promoter region of CTSD and for the first time, at a distal enhancer element. We show that ERalpha is crucial for long-distance regulation of CTSD expression involving a looping mechanism.

  4. Nominal Anchors in the CIS

    OpenAIRE

    Peter M Keller; Thomas J Richardson

    2003-01-01

    Monetary policy has become increasingly important in the countries of the Commonwealth of Independent States (CIS) as fiscal adjustment and structural reforms have taken root. Inflation has been brought down to relatively low levels in almost all of these countries, raising the question of what should be the appropriate nominal anchor at this stage. Formally, almost all CIS countries have floating exchange rate regimes, yet in practice they manage their exchange rates very heavily, perhaps be...

  5. Development and utilization of complementary communication channels for treatment decision making and survivorship issues among cancer patients: The CIS Research Consortium Experience.

    Science.gov (United States)

    Fleisher, Linda; Wen, Kuang Yi; Miller, Suzanne M; Diefenbach, Michael; Stanton, Annette L; Ropka, Mary; Morra, Marion; Raich, Peter C

    2015-11-01

    Cancer patients and survivors are assuming active roles in decision-making and digital patient support tools are widely used to facilitate patient engagement. As part of Cancer Information Service Research Consortium's randomized controlled trials focused on the efficacy of eHealth interventions to promote informed treatment decision-making for newly diagnosed prostate and breast cancer patients, and post-treatment breast cancer, we conducted a rigorous process evaluation to examine the actual use of and perceived benefits of two complementary communication channels -- print and eHealth interventions. The three Virtual Cancer Information Service (V-CIS) interventions were developed through a rigorous developmental process, guided by self-regulatory theory, informed decision-making frameworks, and health communications best practices. Control arm participants received NCI print materials; experimental arm participants received the additional V-CIS patient support tool. Actual usage data from the web-based V-CIS was also obtained and reported. Print materials were highly used by all groups. About 60% of the experimental group reported using the V-CIS. Those who did use the V-CIS rated it highly on improvements in knowledge, patient-provider communication and decision-making. The findings show that how patients actually use eHealth interventions either singularly or within the context of other communication channels is complex. Integrating rigorous best practices and theoretical foundations is essential and multiple communication approaches should be considered to support patient preferences.

  6. Novel 9-cis/all-trans β-carotene isomerases from plastidic oil bodies in Dunaliella bardawil catalyze the conversion of all-trans to 9-cis β-carotene.

    Science.gov (United States)

    Davidi, Lital; Pick, Uri

    2017-06-01

    We identified and demonstrated the function of 9-cis/all-trans β-carotene isomerases in plastidic globules of Dunaliella bardawil, the species accumulating the highest levels of 9-cis β-carotene that is essential for humans. The halotolerant alga Dunaliella bardawil is unique in that it accumulates under light stress high levels of β-carotene in plastidic lipid globules. The pigment is composed of two major isomers: all-trans β-carotene, the common natural form of this pigment, and 9-cis β-carotene. The biosynthetic pathway of β-carotene is known, but it is not clear how the 9-cis isomer is formed. We identified in plastidic lipid globules that were isolated from D. bardawil two proteins with high sequence homology to the D27 protein-a 9-cis/all-trans β-carotene isomerase from rice (Alder et al. Science 335:1348-1351, 2012). The proteins are enriched in the oil globules by 6- to 17-fold compared to chloroplast proteins. The expression of the corresponding genes, 9-cis-βC-iso1 and 9-cis-βC-iso2, is enhanced under light stress. The synthetic proteins catalyze in vitro conversion of all-trans to 9-cis β-carotene. Expression of the 9-cis-βC-iso1 or of 9-cis-βC-iso2 genes in an E. coli mutant line that harbors β-carotene biosynthesis genes enhanced the conversion of all-trans into 9-cis β-carotene. These results suggest that 9-cis-βC-ISO1 and 9-cis-βC-ISO2 proteins are responsible for the formation of 9-cis β-carotene in D. bardawil under stress conditions.

  7. Studies on radiosensitization of Escherichia coli cells by cis-platinum complexes

    International Nuclear Information System (INIS)

    Zimbrick, J.D.; Sukrochana, A.; Richmond, R.C.

    1979-01-01

    We recently reported that the antitumor drug cis-Pt(NH 3 ) 2 Cl 2 (cis-DDP) produces significant radiosensitization of anoxic E coli C cells. We have extended these studies to three other platinum drugs, all of which have been shown to be more effective antitumor drugs than cis-DDP. The drugs are: cis-dichloro bis(ethylene imine) Pt(II) (cis-DEP); cis-dichlorobicyclopentylamine Pt(II) (cis-PAD); and Pt-thymine blue (cis-PTB). Survival curve studies indicate that these drugs all produce greater anoxic radiosensitization of E coli C than cis-DDP at concentrations which are less toxic to the cells than similar concentrations of cis-DDP. If the cells are treated with any one of these drugs for two hours and then washed to remove the drug before irradiation, no detectable radiosensitization is found. We conclude that these drugs have the potential for being useful agents in combined modality therapy and that they warrant further study in mammalian systems

  8. The rapid evolution of X-linked male-biased gene expression and the large-X effect in Drosophila yakuba, D. santomea, and their hybrids.

    Science.gov (United States)

    Llopart, Ana

    2012-12-01

    The X chromosome has a large effect on hybrid dysfunction, particularly on hybrid male sterility. Although the evidence for this so-called large-X effect is clear, its molecular causes are not yet fully understood. One possibility is that, under certain conditions, evolution proceeds faster in X-linked than in autosomal loci (i.e., faster-X effect) due to both natural selection and their hemizygosity in males, an effect that is expected to be greatest in genes with male-biased expression. Here, I study genome-wide variation in transcript abundance between Drosophila yakuba and D. santomea, within these species and in their hybrid males to evaluate both the faster-X and large-X effects at the level of expression. I find that in X-linked male-biased genes (MBGs) expression evolves faster than in their autosomal counterparts, an effect that is accompanied by a unique reduction in expression polymorphism. This suggests that Darwinian selection is driving expression differences between species, likely enhanced by the hemizygosity of the X chromosome in males. Despite the recent split of the two sister species under study, abundant changes in both cis- and trans-regulatory elements underlie expression divergence in the majority of the genes analyzed, with significant differences in allelic ratios of transcript abundance between the two reciprocal F(1) hybrid males. Cis-trans coevolution at molecular level, evolved shortly after populations become isolated, may therefore contribute to explain the breakdown of the regulation of gene expression in hybrid males. Additionally, the X chromosome plays a large role in this hybrid male misexpression, which affects not only MBG but also, to a lesser degree, nonsex-biased genes. Interestingly, hybrid male misexpression is concentrated mostly in autosomal genes, likely facilitated by the rapid evolution of sex-linked trans-acting factors. I suggest that the faster evolution of X-linked MBGs, at both protein and expression levels

  9. Future CIS Manufacturing Technology Development: Final Report, 8 July 1998--17 October 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T. J.; Crisalle, O. D.; Li, S. S.; Holloway, P. H.

    2003-06-01

    The University of Florida served as the basis for educating 12 graduate students in the area of photovoltaics engineering and research with a focus on thin-film CIS manufacturing technologies. A critical assessment of the thermodynamic data and of the phase diagrams for the Cu-Se and In-Se binary systems were carried out. We investigated the use of two novel precursor structures that used stacked In-Se and Cu-Se binary layers instead of conventional elemental layers, followed by rapid thermal processing (RTP) to produce CIS films. We investigated the evolution of electrical and microstructural properties of sputter-deposited ZnO:Al thin films. An assessment of the thermodynamics of the pseudobinary Cu2Se-Ga2Se3 system was done by using available experimental data, as well as an empirical method for estimating interactions in semiconductor solid solutions. Optimization studies were conducted to characterize the RTP of binary bilayer precursors for CIS synthesis using a newly acquired AG Associates Heatpulse furnace. Progress was made on the calculation of the 500C isothermal section of the phase diagram of the ternary Cu-In-Se system. Pursuit of developing alternative buffer layers for Cd-free CIS-based solar cells using a chemical-bath deposition (CBD) process has resulted in specific recipes for deposition. A rigorous model has been derived to predict the metal mass fluxes produced by conical thermal effusion sources. A two-dimensional model of the heat transfer was developed to model the substrate temperature distribution in the UF PMEE Reactor that features a rotating platen/substrates and effusion sources. We have grown and characterized polycrystalline CIS epitaxial films on single-crystal GaAs substrates under conditions that enhance the influence of surface effects on the resulting films and their properties. Progress was made on the study of CIS and CGS single-crystal growth, along with accompanying morphological and compositional characterizations. We have

  10. Compliance. Regulatory policy P-211

    International Nuclear Information System (INIS)

    2001-05-01

    This regulatory policy describes the basic principles and directives for establishing and conducting the Canadian Nuclear Safety Commission (CNSC) Compliance Program. The program is aimed at securing compliance by regulated persons with regulatory requirements made under the Nuclear Safety and Control Act ('the Act'). The policy applies to persons who are regulated by the CNSC through the Act, regulations and licences, as well as by decisions and orders made under the Act. The policy applies to officers and employees of the CNSC, and its authorized representatives or agents, who are involved in developing and carrying out compliance activities. Compliance, in the context of this policy, means conformity by regulated persons with the legally binding requirements of the Act, and the CNSC regulations, licences, decisions, and orders made under the Act. Compliance activities are CNSC measures of promotion, verification and enforcement aimed at securing compliance by regulated person with the applicable legally binding requirements. (author)

  11. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Riaño-Pachón Diego

    2007-08-01

    Full Text Available Abstract Background In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs, ABRE and CE3, in thale cress (Arabidopsis thaliana and rice (Oryza sativa. Results Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Conclusion Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of

  12. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice.

    Science.gov (United States)

    Gómez-Porras, Judith L; Riaño-Pachón, Diego Mauricio; Dreyer, Ingo; Mayer, Jorge E; Mueller-Roeber, Bernd

    2007-08-01

    In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa). Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be

  13. Reaction of the phosphorus, niobium and tantalum pentafluorides with dioxides of diphosphjines cis-isomers

    International Nuclear Information System (INIS)

    Il'in, E.G.; Nesterova, N.P.; Kovalev, V.V.; Simonov, M.V.; Medved', T.Ya.; Kabachnik, M.I.; Buslaev, Yu.A.

    1991-01-01

    NbF 5 and TaF 5 complex formation reactions with cis-isomers of diphosphine dioxides in methylene chloride are studied by NMR 19 F and 31 P method. Interaction of TaF 5 with Ph 2 P(0)CH=CHP(0)Ph 2 (L) results information of three basic foprms in the solution: TaF 5 molecular complex, TaF 6 - anion and TaF 4 L + octahedral cation. At NbF 5 interaction with L besides NbF 6 anion trifluorocomplex, the NMP 19 F spectrum of which testifies to the presence of short-linked ligand in the first coordination sphere is observed. It is shown that cis-vinylenediphosphine dioxides in octahedral complexes of transition and nontransition elements may play the role of mono-and bidentant ligands, forming a bridge group or closing 7 member chelating cycle

  14. 75 FR 29793 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Science.gov (United States)

    2010-05-27

    ...-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing and Immediate... (``Act'') \\1\\ and Rule 19b-4 thereunder,\\2\\ notice is hereby given that on May 4, 2010, Financial.... For more information about the rulebook consolidation process, see Information Notice, March 12, 2008...

  15. Ancient Pbx-Hox signatures define hundreds of vertebrate developmental enhancers

    Directory of Open Access Journals (Sweden)

    Parker Hugo J

    2011-12-01

    Full Text Available Abstract Background Gene regulation through cis-regulatory elements plays a crucial role in development and disease. A major aim of the post-genomic era is to be able to read the function of cis-regulatory elements through scrutiny of their DNA sequence. Whilst comparative genomics approaches have identified thousands of putative regulatory elements, our knowledge of their mechanism of action is poor and very little progress has been made in systematically de-coding them. Results Here, we identify ancient functional signatures within vertebrate conserved non-coding elements (CNEs through a combination of phylogenetic footprinting and functional assay, using genomic sequence from the sea lamprey as a reference. We uncover a striking enrichment within vertebrate CNEs for conserved binding-site motifs of the Pbx-Hox hetero-dimer. We further show that these predict reporter gene expression in a segment specific manner in the hindbrain and pharyngeal arches during zebrafish development. Conclusions These findings evoke an evolutionary scenario in which many CNEs evolved early in the vertebrate lineage to co-ordinate Hox-dependent gene-regulatory interactions that pattern the vertebrate head. In a broader context, our evolutionary analyses reveal that CNEs are composed of tightly linked transcription-factor binding-sites (TFBSs, which can be systematically identified through phylogenetic footprinting approaches. By placing a large number of ancient vertebrate CNEs into a developmental context, our findings promise to have a significant impact on efforts toward de-coding gene-regulatory elements that underlie vertebrate development, and will facilitate building general models of regulatory element evolution.

  16. Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression

    Science.gov (United States)

    Mars, Ruben A. T.; Nicolas, Pierre; Denham, Emma L.

    2016-01-01

    SUMMARY Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5′ untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5′ ends of mRNA molecules. These can include 5′ secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. PMID:27784798

  17. Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression.

    Science.gov (United States)

    Mars, Ruben A T; Nicolas, Pierre; Denham, Emma L; van Dijl, Jan Maarten

    2016-12-01

    Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5' untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5' ends of mRNA molecules. These can include 5' secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Regulatory inspection practices on fuel elements and core lay-out at NPPs

    International Nuclear Information System (INIS)

    Van Binnebeek, J.J.; Liuhto, Pekka; Badel, D.; Klonk, H.; Seidel, F.; Fichtinger, G.; Manzella, P.; Koizumi, Hiroyoshi; Delgado, Jose Luis; Gutierrez Ruiz, Luis Miguel; Bouvrie, E. des; Gil, J.; Forsberg, Staffan; Wand, H.; Warren, Tom; Gallo, R.

    1998-01-01

    The basic description of the reactor core of a nuclear power plant (NPP) is an important part of the Safety Analysis Report in all countries. Due to increased interest by regulatory authorities in the Member countries, in 1996 WGIP proposed looking at inspection aspects on fuel elements and core lay-out at nuclear power plants. The CNRA subsequently approved proceeding with this report. The report deals primarily with inspection practices and inspection requirements during nuclear power plant (NPP) operation with special emphasis on refuelling procedures. All license related topics, such as fuel and core design (mechanical, neutronic, thermal-hydraulic), as well as inspection philosophy and practices on fuel fabrication are included as appropriate serving as background information and may not be completely described. WGIP members describe their country's inspection programme according to the structure of a questionnaire (appendix 1). The individual contributions are contained in the appendix 2 and are compiled within the main chapters (1 through 3). Report Structure: 1. Licensing and Quality Assurance (QA) requirements for nuclear fuel; 2. Regulatory inspection programme during NPP operation and refuelling outages; 3. Procedures for inspection practices and inspection programme. Appendix: Questionnaire and Country specific contributions. Contributions are presented by Belgium, Finland, France, Germany, Hungary, Italy, Japan, Mexico, The Netherlands, Spain, Sweden, Switzerland, United Kingdom, USA

  19. 78 FR 44403 - Unified Agenda of Federal Regulatory and Deregulatory Actions

    Science.gov (United States)

    2013-07-23

    ... agenda (the Agenda) in accordance with Public Law 96-354, ``The Regulatory Flexibility Act,'' and... goals; (2) support for the Strategic Plan organizational excellence objectives; (3) a governmental... Flexibility Act Section 610 of the Regulatory Flexibility Act (RFA) requires agencies to conduct a review...

  20. Stepwise encapsulation and controlled two-stage release system for cis-Diamminediiodoplatinum.

    Science.gov (United States)

    Chen, Yun; Li, Qian; Wu, Qingsheng

    2014-01-01

    cis-Diamminediiodoplatinum (cis-DIDP) is a cisplatin-like anticancer drug with higher anticancer activity, but lower stability and price than cisplatin. In this study, a cis-DIDP carrier system based on micro-sized stearic acid was prepared by an emulsion solvent evaporation method. The maximum drug loading capacity of cis-DIDP-loaded solid lipid nanoparticles was 22.03%, and their encapsulation efficiency was 97.24%. In vitro drug release in phosphate-buffered saline (pH =7.4) at 37.5°C exhibited a unique two-stage process, which could prove beneficial for patients with tumors and malignancies. MTT (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay results showed that cis-DIDP released from cis-DIDP-loaded solid lipid nanoparticles had better inhibition activity than cis-DIDP that had not been loaded.

  1. Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing.

    Science.gov (United States)

    Zhang, Rui; Deng, Patricia; Jacobson, Dionna; Li, Jin Billy

    2017-02-01

    Adenosine-to-inosine RNA editing diversifies the transcriptome and promotes functional diversity, particularly in the brain. A plethora of editing sites has been recently identified; however, how they are selected and regulated and which are functionally important are largely unknown. Here we show the cis-regulation and stepwise selection of RNA editing during Drosophila evolution and pinpoint a large number of functional editing sites. We found that the establishment of editing and variation in editing levels across Drosophila species are largely explained and predicted by cis-regulatory elements. Furthermore, editing events that arose early in the species tree tend to be more highly edited in clusters and enriched in slowly-evolved neuronal genes, thus suggesting that the main role of RNA editing is for fine-tuning neurological functions. While nonsynonymous editing events have been long recognized as playing a functional role, in addition to nonsynonymous editing sites, a large fraction of 3'UTR editing sites is evolutionarily constrained, highly edited, and thus likely functional. We find that these 3'UTR editing events can alter mRNA stability and affect miRNA binding and thus highlight the functional roles of noncoding RNA editing. Our work, through evolutionary analyses of RNA editing in Drosophila, uncovers novel insights of RNA editing regulation as well as its functions in both coding and non-coding regions.

  2. Options for Staging Orbits in Cis-Lunar Space

    Science.gov (United States)

    Martinez, Roland; Whitley, Ryan

    2016-01-01

    NASA has been studying options to conduct missions beyond Low Earth Orbit, but within the Earth-Moon system, in preparation for deep space exploration including human missions to Mars. Referred to as the Proving Ground, this arena of exploration activities will enable the development of human spaceflight systems and operations to satisfy future exploration objectives beyond the cis-lunar environment. One option being considered includes the deployment of a habitable element or elements, which could be used as a central location for aggregation of supplies and resources for human missions in cis-lunar space and beyond. Characterizing candidate orbit locations for this asset and the impacts on system design and mission operations is important in the overall assessment of the options being considered. The orbits described in this paper were initially selected by taking advantage of previous studies conducted by NASA and the work of other authors. In this paper orbits are assessed for their relative attractiveness based on various factors. A set of constraints related to the capability of the combined Orion and SLS system to deliver humans and cargo to and from the orbit are evaluated. Deployed assets intended to spend multiple years in the Proving Ground would ideally require minimal station keeping costs to reduce the mass budget allocated to this function. Additional mission design drivers include eclipse frequency, potential for uninterrupted communication with deployed assets, thermal, attitude control, communications, and other operational implications. Also the ability to support potential lunar surface activities and excursion missions beyond Earth-Moon space is considered. The results of the characterization and evaluation of the selected orbits indicate a Near Rectilinear Orbit (NRO) is an attractive candidate as an aggregation point or staging location for operations. In this paper, the NRO is further described in terms which balance a number of key

  3. Structural and mutational analyses of cis-acting sequences in the 5'-untranslated region of satellite RNA of bamboo mosaic potexvirus

    International Nuclear Information System (INIS)

    Annamalai, Padmanaban; Hsu, Y.-H.; Liu, Y.-P.; Tsai, C.-H.; Lin, N.-S.

    2003-01-01

    The satellite RNA of Bamboo mosaic virus (satBaMV) contains on open reading frame for a 20-kDa protein that is flanked by a 5'-untranslated region (UTR) of 159 nucleotides (nt) and a 3'-UTR of 129 nt. A secondary structure was predicted for the 5'-UTR of satBaMV RNA, which folds into a large stem-loop (LSL) and a small stem-loop. Enzymatic probing confirmed the existence of LSL (nt 8-138) in the 5'-UTR. The essential cis-acting sequences in the 5'-UTR required for satBaMV RNA replication were determined by deletion and substitution mutagenesis. Their replication efficiencies were analyzed in Nicotiana benthamiana protoplasts and Chenopodium quinoa plants coinoculated with helper BaMV RNA. All deletion mutants abolished the replication of satBaMV RNA, whereas mutations introduced in most of the loop regions and stems showed either no replication or a decreased replication efficiency. Mutations that affected the positive-strand satBaMV RNA accumulation also affected the accumulation of negative-strand RNA; however, the accumulation of genomic and subgenomic RNAs of BaMV were not affected. Moreover, covariation analyses of natural satBaMV variants provide substantial evidence that the secondary structure in the 5'-UTR of satBaMV is necessary for efficient replication

  4. Relative Stability of cis- and trans-Hydrindanones

    Directory of Open Access Journals (Sweden)

    Motoo Tori

    2015-01-01

    Full Text Available The relative stabilities of several cis- and trans-hydrindanones were compared using both isomerization experiments and MM2 calculations. The generally believed rule that cis-hydrindanones are more stable than trans-isomers is applicable, but is not always true. This review introduces examples, mainly from studies in our laboratory, to explain these facts.

  5. Nuclear regulatory legislation, 104th Congress, Volume 1, No. 4

    International Nuclear Information System (INIS)

    1997-12-01

    This document is the first of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Atomic Energy Act, Energy Reorganization Act, Low-Level Radioactive Waste Policy Amendments Act, and Nuclear Waste Policy Act. Other information included in this volume pertains to NRC user fees, NRC authorizations, the Inspector General Act, and the Administrative Procedure Act

  6. Nuclear regulatory legislation, 104th Congress, Volume 1, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document is the first of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Atomic Energy Act, Energy Reorganization Act, Low-Level Radioactive Waste Policy Amendments Act, and Nuclear Waste Policy Act. Other information included in this volume pertains to NRC user fees, NRC authorizations, the Inspector General Act, and the Administrative Procedure Act.

  7. In silico transcriptional regulatory networks involved in tomato fruit ripening

    Directory of Open Access Journals (Sweden)

    Stilianos Arhondakis

    2016-08-01

    Full Text Available ABSTRACTTomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37 and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening.

  8. MicroRNAs as regulatory elements in psoriasis

    Directory of Open Access Journals (Sweden)

    Liu Yuan

    2016-01-01

    Full Text Available Psoriasis is a chronic, autoimmune, and complex genetic disorder that affects 23% of the European population. The symptoms of Psoriatic skin are inflammation, raised and scaly lesions. microRNA, which is short, nonprotein-coding, regulatory RNAs, plays critical roles in psoriasis. microRNA participates in nearly all biological processes, such as cell differentiation, development and metabolism. Recent researches reveal that multitudinous novel microRNAs have been identified in skin. Some of these substantial novel microRNAs play as a class of posttranscriptional gene regulator in skin disease, such as psoriasis. In order to insight into microRNAs biological functions and verify microRNAs biomarker, we review diverse references about characterization, profiling and subtype of microRNAs. Here we will share our opinions about how and which microRNAs are as regulatory in psoriasis.

  9. Atomic Act amended

    International Nuclear Information System (INIS)

    Drabova, D.

    2002-01-01

    In the paper by the chairwoman of the Czech nuclear regulatory authority, the history of Czech nuclear legislation is outlined, the reasons for the amendment of the Atomic Act (Act No. 18/1997) are explained, and the amendments themselves are highlighted. The Act No. 13/2002 of 18 December 2001 is reproduced from the official Collection of Acts of the Czech Republic in the facsimile form. The following acts were thereby amended: Atomic Act No. 18/1997, Metrology Act No. 505/1990, Public Health Protection Act No. 258/2000, and Act No. 2/1969 on the Establishment of Ministries and Other Governmental Agencies of the Czech Republic. (P.A.)

  10. The Community Intercomparison Suite (CIS)

    Science.gov (United States)

    Watson-Parris, Duncan; Schutgens, Nick; Cook, Nick; Kipling, Zak; Kershaw, Phil; Gryspeerdt, Ed; Lawrence, Bryan; Stier, Philip

    2017-04-01

    Earth observations (both remote and in-situ) create vast amounts of data providing invaluable constraints for the climate science community. Efficient exploitation of these complex and highly heterogeneous datasets has been limited however by the lack of suitable software tools, particularly for comparison of gridded and ungridded data, thus reducing scientific productivity. CIS (http://cistools.net) is an open-source, command line tool and Python library which allows the straight-forward quantitative analysis, intercomparison and visualisation of remote sensing, in-situ and model data. The CIS can read gridded and ungridded remote sensing, in-situ and model data - and many other data sources 'out-of-the-box', such as ESA Aerosol and Cloud CCI product, MODIS, Cloud CCI, Cloudsat, AERONET. Perhaps most importantly however CIS also employs a modular plugin architecture to allow for the reading of limitless different data types. Users are able to write their own plugins for reading the data sources which they are familiar with, and share them within the community, allowing all to benefit from their expertise. To enable the intercomparison of this data the CIS provides a number of operations including: the aggregation of ungridded and gridded datasets to coarser representations using a number of different built in averaging kernels; the subsetting of data to reduce its extent or dimensionality; the co-location of two distinct datasets onto a single set of co-ordinates; the visualisation of the input or output data through a number of different plots and graphs; the evaluation of arbitrary mathematical expressions against any number of datasets; and a number of other supporting functions such as a statistical comparison of two co-located datasets. These operations can be performed efficiently on local machines or large computing clusters - and is already available on the JASMIN computing facility. A case-study using the GASSP collection of in-situ aerosol observations

  11. ABFs, a family of ABA-responsive element binding factors.

    Science.gov (United States)

    Choi, H; Hong, J; Ha, J; Kang, J; Kim, S Y

    2000-01-21

    Abscisic acid (ABA) plays an important role in environmental stress responses of higher plants during vegetative growth. One of the ABA-mediated responses is the induced expression of a large number of genes, which is mediated by cis-regulatory elements known as abscisic acid-responsive elements (ABREs). Although a number of ABRE binding transcription factors have been known, they are not specifically from vegetative tissues under induced conditions. Considering the tissue specificity of ABA signaling pathways, factors mediating ABA-dependent stress responses during vegetative growth phase may thus have been unidentified so far. Here, we report a family of ABRE binding factors isolated from young Arabidopsis plants under stress conditions. The factors, isolated by a yeast one-hybrid system using a prototypical ABRE and named as ABFs (ABRE binding factors) belong to a distinct subfamily of bZIP proteins. Binding site selection assay performed with one ABF showed that its preferred binding site is the strong ABRE, CACGTGGC. ABFs can transactivate an ABRE-containing reporter gene in yeast. Expression of ABFs is induced by ABA and various stress treatments, whereas their induction patterns are different from one another. Thus, a new family of ABRE binding factors indeed exists that have the potential to activate a large number of ABA/stress-responsive genes in Arabidopsis.

  12. Optimization of Pseudomonas putida KT2440 as host for the production of cis, cis-muconate from benzoate

    OpenAIRE

    Duuren, van, J.B.J.H.

    2011-01-01

    Optimization of Pseudomonas putida KT2440 as host for the production of cis, cis-muconate from benzoate P. putida KT2440 was used as biocatalyst given its versatile and energetically robust metabolism. Therefore, a mutant was generated and a process developed based on which a life cycle assessment (LCA) was performed. Additionally, the growth related parameters were experimentally obtained to constrain the metabolic model iJP815 further. The mutant Pseudomonas putida KT2440-JD1 was deri...

  13. 75 FR 64306 - Sunshine Act Meeting Notice

    Science.gov (United States)

    2010-10-19

    ... Transmission System. Hydro H-1 P-12107-005 Granite County, Montana. H-2 P-2496-222 Eugene Water and Electric... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Sunshine Act Meeting Notice October 14... Sunshine Act (Pub. L. 94-409), 5 U.S.C. 552b: Agency Holding Meeting: Federal Energy Regulatory Commission...

  14. 14 CFR 313.4 - Major regulatory actions.

    Science.gov (United States)

    2010-01-01

    ...) PROCEDURAL REGULATIONS IMPLEMENTATION OF THE ENERGY POLICY AND CONSERVATION ACT § 313.4 Major regulatory... of actions shall not be deemed as major regulatory actions requiring an energy statement: (1) Tariff...

  15. The evolution of gene expression QTL in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    James Ronald

    2007-08-01

    Full Text Available Understanding the evolutionary forces that influence patterns of gene expression variation will provide insights into the mechanisms of evolutionary change and the molecular basis of phenotypic diversity. To date, studies of gene expression evolution have primarily been made by analyzing how gene expression levels vary within and between species. However, the fundamental unit of heritable variation in transcript abundance is the underlying regulatory allele, and as a result it is necessary to understand gene expression evolution at the level of DNA sequence variation. Here we describe the evolutionary forces shaping patterns of genetic variation for 1206 cis-regulatory QTL identified in a cross between two divergent strains of Saccharomyces cerevisiae. We demonstrate that purifying selection against mildly deleterious alleles is the dominant force governing cis-regulatory evolution in S. cerevisiae and estimate the strength of selection. We also find that essential genes and genes with larger codon bias are subject to slightly stronger cis-regulatory constraint and that positive selection has played a role in the evolution of major trans-acting QTL.

  16. The Ubx Polycomb response element bypasses an unpaired Fab-8 insulator via cis transvection in Drosophila.

    Science.gov (United States)

    Lu, Danfeng; Li, Zhuoran; Li, Lingling; Yang, Liping; Chen, Guijun; Yang, Deying; Zhang, Yue; Singh, Vikrant; Smith, Sheryl; Xiao, Yu; Wang, Erlin; Ye, Yunshuang; Zhang, Wei; Zhou, Lei; Rong, Yikang; Zhou, Jumin

    2018-01-01

    Chromatin insulators or boundary elements protect genes from regulatory activities from neighboring genes or chromatin domains. In the Drosophila Abdominal-B (Abd-B) locus, the deletion of such elements, such as Frontabdominal-7 (Fab-7) or Fab-8 led to dominant gain of function phenotypes, presumably due to the loss of chromatin barriers. Homologous chromosomes are paired in Drosophila, creating a number of pairing dependent phenomena including transvection, and whether transvection may affect the function of Polycomb response elements (PREs) and thus contribute to the phenotypes are not known. Here, we studied the chromatin barrier activity of Fab-8 and how it is affected by the zygosity of the transgene, and found that Fab-8 is able to block the silencing effect of the Ubx PRE on the DsRed reporter gene in a CTCF binding sites dependent manner. However, the blocking also depends on the zygosity of the transgene in that the barrier activity is present when the transgene is homozygous, but absent when the transgene is heterozygous. To analyze this effect, we performed chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) experiments on homozygous transgenic embryos, and found that H3K27me3 and H3K9me3 marks are restricted by Fab-8, but they spread beyond Fab-8 into the DsRed gene when the two CTCF binding sites within Fab-8 were mutated. Consistent with this, the mutation reduced H3K4me3 and RNA Pol II binding to the DsRed gene, and consequently, DsRed expression. Importantly, in heterozygous embryos, Fab-8 is unable to prevent the spread of H3K27me3 and H3K9me3 marks from crossing Fab-8 into DsRed, suggesting an insulator bypass. These results suggest that in the Abd-B locus, deletion of the insulator in one copy of the chromosome could lead to the loss of insulator activity on the homologous chromosome, and in other loci where chromosomal deletion created hemizygous regions of the genome, the chromatin barrier could be compromised. This study highlights

  17. Study of cis- and trans-uranium elements by paper chromatography and electrophoresis; Contribution a l'etude des elements cis- et trans-uraniens par chromatographie sur papier et electrophorese

    Energy Technology Data Exchange (ETDEWEB)

    Clanet, F [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-01-01

    In this work, the field of application of paper chromatography and electrophoresis in inorganic chemistry has been extended to elements 90 to 96 in hydrochloric and nitric acid solution. Results obtained concern the following points: 1) - Characterization of the valency states of Np and of Pu using coloured reactions on chromatograms and electrophoregrams. The valency IV is characterized by alizarin, arsenazo-I and thorin-I, whilst diphenylcarbazide is used for the hexavalent state. 2) - Paper chromatography: by using as eluent, mixtures of equal parts of aqueous HCl and HNO{sub 3} solutions and of alcohols (methanol, ethanol and n-butanol), the R{sub f} values of elements 90 to 96 have been determined. It has been possible to deduce certain conclusions concerning the complexing of these elements by Cl{sup -} and NO{sub 3}{sup -} ions. 3) - We have developed an electrophoretic technique on cellulose acetate membranes in order to separate the charged species formed by the elements 90 to 96 in HCl and HNO{sub 3} solutions from 1 to 12 M. Mobility curves have been obtained. It appears from our results that the tendency for the elements considered to form anionic complexes follows the order of the ionic potentials when the valency state is four; this order is reversed for the valency three. The ions Cl{sup -} have a smaller tendency to form complexes than the NO{sub 3}{sup -} ions with respect to these elements in their oxidation state III or IV, but the reverse phenomenon is observed for U{sup VI} and Pu{sup VI}. Finally, the complexing of the cations Pu{sup 4+} and PuUO{sub 2}{sup 2+} by NO{sub 3}{sup -} follows the order of the ionic potentials but occurs in the reverse order for Cl{sup -} ions. 4) - Various analytical applications are considered: separation of the various elements from each other and separation of the valency states of Np and of Pu. (author) [French] Dans cette etude, le champ d'application de la chromatographie sur papier et de l

  18. Cloning the uteroglobin gene promoter from the relic volcano rabbit (Romerolagus diazi) reveals an ancient estrogen-response element.

    Science.gov (United States)

    Acosta-MontesdeOca, Adriana; Zariñán, Teresa; Macías, Héctor; Pérez-Solís, Marco A; Ulloa-Aguirre, Alfredo; Gutiérrez-Sagal, Rubén

    2012-05-01

    To gain further insight on the estrogen-dependent transcriptional regulation of the uteroglobin (UG) gene, we cloned the 5'-flanking region of the UG gene from the phylogenetically ancient volcano rabbit (Romerolagus diazi; Rd). The cloned region spans 812 base pairs (bp; -812/-1) and contains a noncanonical TATA box (TACA). The translation start site is 48 bp downstream from the putative transcription initiation site (AGA), and is preceded by a consensus Kozak box. Comparison of the Rd-UG gene with that previously isolated from rabbits (Oryctolagus cuniculus) showed 93% in sequence identity as well as a number of conserved cis-acting elements, including the estrogen-response element (ERE; -265/-251), which differs from the consensus by two nucleotides. In MCF-7 cells, 17β-estradiol (E(2)) induced transcription of a luciferase reporter driven by the Rd-UG promoter in a similar manner as in an equivalent rabbit UG reporter; the Rd-UG promoter was 30% more responsive to E(2) than the rabbit promoter. Mutagenesis studies on the Rd-ERE confirmed this cis-element as a target of E(2) as two luciferase mutant reporters of the Rd-promoter, one with the rabbit and the other with the consensus ERE, were more responsive to the hormone than the wild-type reporter. Gel shift and super-shift assays showed that estrogen receptor-α indeed binds to the imperfect palindromic sequence of the Rd-ERE. Copyright © 2012 Wiley Periodicals, Inc.

  19. Study of cis- and trans-uranium elements by paper chromatography and electrophoresis

    International Nuclear Information System (INIS)

    Clanet, F.

    1968-01-01

    In this work, the field of application of paper chromatography and electrophoresis in inorganic chemistry has been extended to elements 90 to 96 in hydrochloric and nitric acid solution. Results obtained concern the following points: 1) - Characterization of the valency states of Np and of Pu using coloured reactions on chromatograms and electrophoregrams. The valency IV is characterized by alizarin, arsenazo-I and thorin-I, whilst diphenylcarbazide is used for the hexavalent state. 2) - Paper chromatography: by using as eluent, mixtures of equal parts of aqueous HCl and HNO 3 solutions and of alcohols (methanol, ethanol and n-butanol), the R f values of elements 90 to 96 have been determined. It has been possible to deduce certain conclusions concerning the complexing of these elements by Cl - and NO 3 - ions. 3) - We have developed an electrophoretic technique on cellulose acetate membranes in order to separate the charged species formed by the elements 90 to 96 in HCl and HNO 3 solutions from 1 to 12 M. Mobility curves have been obtained. It appears from our results that the tendency for the elements considered to form anionic complexes follows the order of the ionic potentials when the valency state is four; this order is reversed for the valency three. The ions Cl - have a smaller tendency to form complexes than the NO 3 - ions with respect to these elements in their oxidation state III or IV, but the reverse phenomenon is observed for U VI and Pu VI . Finally, the complexing of the cations Pu 4+ and PuUO 2 2+ by NO 3 - follows the order of the ionic potentials but occurs in the reverse order for Cl - ions. 4) - Various analytical applications are considered: separation of the various elements from each other and separation of the valency states of Np and of Pu. (author) [fr

  20. cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells.

    Science.gov (United States)

    Ito, Yoko; Uemura, Tomohiro; Shoda, Keiko; Fujimoto, Masaru; Ueda, Takashi; Nakano, Akihiko

    2012-08-01

    The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.

  1. Antisense Oligonucleotides Promote Exon Inclusion and Correct the Common c.-32-13T>G GAA Splicing Variant in Pompe Disease

    Directory of Open Access Journals (Sweden)

    Erik van der Wal

    2017-06-01

    Full Text Available The most common variant causing Pompe disease is c.-32-13T>G (IVS1 in the acid α-glucosidase (GAA gene, which weakens the splice acceptor of GAA exon 2 and induces partial and complete exon 2 skipping. It also allows a low level of leaky wild-type splicing, leading to a childhood/adult phenotype. We hypothesized that cis-acting splicing motifs may exist that could be blocked using antisense oligonucleotides (AONs to promote exon inclusion. To test this, a screen was performed in patient-derived primary fibroblasts using a tiling array of U7 small nuclear RNA (snRNA-based AONs. This resulted in the identification of a splicing regulatory element in GAA intron 1. We designed phosphorodiamidate morpholino oligomer-based AONs to this element, and these promoted exon 2 inclusion and enhanced GAA enzyme activity to levels above the disease threshold. These results indicate that the common IVS1 GAA splicing variant in Pompe disease is subject to negative regulation, and inhibition of a splicing regulatory element using AONs is able to restore canonical GAA splicing and endogenous GAA enzyme activity.

  2. Regulatory cross-talks and cascades in rice hormone biosynthesis pathways contribute to stress signaling

    Directory of Open Access Journals (Sweden)

    Arindam Deb

    2016-08-01

    Full Text Available Crosstalk among different hormone signaling pathways play an important role in modulating plant response to both biotic and abiotic stress. Hormone activity is controlled by its bio-availability, which is again influenced by its biosynthesis. Thus independent hormone biosynthesis pathways must be regulated and co-ordinated to mount an integrated response. One of the possibilities is to use cis-regulatory elements to orchestrate expression of hormone biosynthesis genes. Analysis of CREs, associated with differentially expressed hormone biosynthesis related genes in rice leaf under Magnaporthe oryzae attack and drought stress enabled us to obtain insights about cross-talk among hormone biosynthesis pathways at the transcriptional level. We identified some master transcription regulators that co-ordinate different hormone biosynthesis pathways under stress. We found that Abscisic acid and Brassinosteroid regulate Cytokinin conjugation; conversely Brassinosteroid biosynthesis is affected by both Abscisic acid and Cytokinin. Jasmonic acid and Ethylene biosynthesis may be modulated by Abscisic acid through DREB transcription factors. Jasmonic acid or Salicylic acid biosynthesis pathways are co-regulated but they are unlikely to influence each other’s production directly. Thus multiple hormones may modulate hormone biosynthesis pathways through a complex regulatory network, where biosynthesis of one hormone is affected by several other contributing hormones.

  3. Chiral synthesis of (Z)-3-cis-6,7-cis-9,10-diepoxyhenicosenes, sex pheromone components of the satin moth, Leucoma salicis.

    Science.gov (United States)

    Wimalaratne, Priyantha D C; Slessor, Keith N

    2004-06-01

    All four isomers of (Z)-3-cis-6,7-cis-9,10-diepoxyhenicosenes, 1-4, have been synthesized using D-xylose as the chirally pure starting material. D-Xylose was first converted to 2-deoxy-4,5-O-isopropylidene-3-t-butyldimethylsilyl-D-threopentose 11, via several steps of selective protection, dehydroxylation, and deprotection. Wittig coupling of 11 with nonyltriphenylphosphonium bromide followed by hydrogenation and acid catalyzed deprotection of hydroxyl groups yielded the chiral (2R,3R)-1,2,3-triol, 14, which was used as the precursor for the C-8 to C-21 unit of the (Z)-3-cis-6,7-cis-9,10-diepoxyhenicosenes. Selective tosylation of 14 followed by stereospecific cyclization yielded (2R,3R)-1,2-epoxytetradecan-3-ol, 16, which was then divergently converted to the t-butyldimethylsilyl ether 17 and tosylate 22, respectively. Establishment of the C-5 through C-7 unit of the target molecules was accomplished via regiospecific coupling of 17 with 1-t-butyldimethylsiloxy-2-propyne to form 18. Stepwise transformation of 18 via the formation of tosylate 19, desilylation, and stereospecific cyclization to form epoxy alcohol 20, followed by P2-Ni reduction yielded a key intermediate, allylic epoxy alcohol (Z)-2-(5S,6R)-cis-5,6-epoxyheptadecen-1-ol, 21. Similarly, the coupling of 22 with 1-t-butyldimethylsiloxy-2-propyne yielded 23, which was stereospecifically cyclized to form 24. Desilylation and P2-Ni reduction of 24 gave the antipodal intermediate, (Z)-2-(5R,6S)-cis-5,6-epoxyheptadecen-1-ol, 26. Asymmetric epoxidation of antipodes 21 and 26 with (L)- or (D)-diethyl tartrates resulted in the formation of diepoxy alcohols 27 and 29 from 21, and 33 and 31 from 26, respectively. Tosylation of these diepoxy alcohols followed by coupling with lithium dibutenyl cuprate yielded the four stereoisomers of (Z)-3-cis-6,7-cis-9,10-diepoxyhenicosenes, 1-4. Analysis of the retention characteristics of these materials revealed that one or both of the S*,R*,S*,R* stereoisomers comprise the

  4. Safety culture as a matter of regulatory control and regulatory effectiveness

    International Nuclear Information System (INIS)

    Camargo, C.T.M.; Furieri, E.B.; Arrieta, L.A.I.; Almeida, C.U.C.

    2002-01-01

    More than 15 years have passed since the term 'safety culture' was introduced by the International Nuclear Safety Advisory Group (INSAG), and although the concept now is widely accepted, practical applications and characteristics have been disseminated mainly for nuclear power plant operating organizations. There is still a lack of international guidance on the use of safety culture as a regulatory matter and on the application of the concept within regulatory organizations. This work explores the meaning of safety culture in two different fields: as an element of safety management systems it shall be a matter of regulatory control; as a complementary tool for quality management it should be used to enhance regulatory effectiveness. Brazilian recent experience on regulating nuclear power reactors provide some examples on how the concept of safety culture may influence regulatory strategies and regulatory management. (author)

  5. Comprehensive meta-analysis of Signal Transducers and Activators of Transcription (STAT genomic binding patterns discerns cell-specific cis-regulatory modules

    Directory of Open Access Journals (Sweden)

    Kang Keunsoo

    2013-01-01

    Full Text Available Abstract Background Cytokine-activated transcription factors from the STAT (Signal Transducers and Activators of Transcription family control common and context-specific genetic programs. It is not clear to what extent cell-specific features determine the binding capacity of seven STAT members and to what degree they share genetic targets. Molecular insight into the biology of STATs was gained from a meta-analysis of 29 available ChIP-seq data sets covering genome-wide occupancy of STATs 1, 3, 4, 5A, 5B and 6 in several cell types. Results We determined that the genomic binding capacity of STATs is primarily defined by the cell type and to a lesser extent by individual family members. For example, the overlap of shared binding sites between STATs 3 and 5 in T cells is greater than that between STAT5 in T cells and non-T cells. Even for the top 1,000 highly enriched STAT binding sites, ~15% of STAT5 binding sites in mouse female liver are shared by other STATs in different cell types while in T cells ~90% of STAT5 binding sites are co-occupied by STAT3, STAT4 and STAT6. In addition, we identified 116 cis-regulatory modules (CRM, which are recognized by all STAT members across cell types defining a common JAK-STAT signature. Lastly, in liver STAT5 binding significantly coincides with binding of the cell-specific transcription factors HNF4A, FOXA1 and FOXA2 and is associated with cell-type specific gene transcription. Conclusions Our results suggest that genomic binding of STATs is primarily determined by the cell type and further specificity is achieved in part by juxtaposed binding of cell-specific transcription factors.

  6. Estrogen-dependent downregulation of hairy and enhancer of split homolog-1 gene expression in breast cancer cells is mediated via a 3' distal element.

    Science.gov (United States)

    Müller, Patrick; Merrell, Kenneth W; Crofts, Justin D; Rönnlund, Caroline; Lin, Chin-Yo; Gustafsson, Jan-Ake; Ström, Anders

    2009-03-01

    Regulation of hairy and enhancer of split homologue-1 (HES-1) by estradiol and all-trans retinoic acid affects proliferation of human breast cancer cells. Here, we identify and characterize cis-regulatory elements involved in HES-1 regulation. In the distal 5' promoter of the HES-1 gene, we found a retinoic acid response element and in the distal 3' region, an estrogen receptor alpha(ER)alpha binding site. The ERalpha binding site, composed of an estrogen response element (ERE) and an ERE half-site, is important for both ERalpha binding and transcriptional regulation. Chromatin immunoprecipitation assays revealed that ERalpha is recruited to the ERE and associates with the HES-1 promoter. We also show recruitment of nuclear receptor co-regulators to the ERE in response to estradiol, followed by a decrease in histone acetylation and RNA polymerase II docking in the HES-1 promoter region. Our findings are consistent with a novel type of repressive estrogen response element in the distal 3' region of the HES-1 gene.

  7. Optomechanical Control of Quantum Yield in Trans-Cis Ultrafast Photoisomerization of a Retinal Chromophore Model.

    Science.gov (United States)

    Valentini, Alessio; Rivero, Daniel; Zapata, Felipe; García-Iriepa, Cristina; Marazzi, Marco; Palmeiro, Raúl; Fdez Galván, Ignacio; Sampedro, Diego; Olivucci, Massimo; Frutos, Luis Manuel

    2017-03-27

    The quantum yield of a photochemical reaction is one of the most fundamental quantities in photochemistry, as it measures the efficiency of the transduction of light energy into chemical energy. Nature has evolved photoreceptors in which the reactivity of a chromophore is enhanced by its molecular environment to achieve high quantum yields. The retinal chromophore sterically constrained inside rhodopsin proteins represents an outstanding example of such a control. In a more general framework, mechanical forces acting on a molecular system can strongly modify its reactivity. Herein, we show that the exertion of tensile forces on a simplified retinal chromophore model provokes a substantial and regular increase in the trans-to-cis photoisomerization quantum yield in a counterintuitive way, as these extension forces facilitate the formation of the more compressed cis photoisomer. A rationale for the mechanochemical effect on this photoisomerization mechanism is also proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The nT1 translocation separates vulval regulatory elements from the egl-18 and elt-6 GATA factor genes.

    Science.gov (United States)

    Koh, Kyunghee; Bernstein, Yelena; Sundaram, Meera V

    2004-03-01

    egl-18 and elt-6 are partially redundant, adjacent genes encoding GATA factors essential for viability, seam cell development, and vulval development in Caenorhabditis elegans. The nT1 reciprocal translocation causes a strong Vulvaless phenotype, and an nT1 breakpoint was previously mapped to the left arm of LGIV, where egl-18/elt-6 are located. Here we present evidence that the nT1 vulval phenotype is due to a disruption of egl-18/elt-6 function specifically in the vulva. egl-18 mutations do not complement nT1 for vulval defects, and the nT1 breakpoint on LGIV is located within approximately 800 bp upstream of a potential transcriptional start site of egl-18. In addition, we have identified a approximately 350-bp cis-regulatory region sufficient for vulval expression just upstream of the nT1 breakpoint. By examining the fusion state and division patterns of the cells in the developing vulva of nT1 mutants, we demonstrate that egl-18/elt-6 prevent fusion and promote cell proliferation at multiple steps of vulval development.

  9. FARE-CAFE: a database of functional and regulatory elements of cancer-associated fusion events.

    Science.gov (United States)

    Korla, Praveen Kumar; Cheng, Jack; Huang, Chien-Hung; Tsai, Jeffrey J P; Liu, Yu-Hsuan; Kurubanjerdjit, Nilubon; Hsieh, Wen-Tsong; Chen, Huey-Yi; Ng, Ka-Lok

    2015-01-01

    Chromosomal translocation (CT) is of enormous clinical interest because this disorder is associated with various major solid tumors and leukemia. A tumor-specific fusion gene event may occur when a translocation joins two separate genes. Currently, various CT databases provide information about fusion genes and their genomic elements. However, no database of the roles of fusion genes, in terms of essential functional and regulatory elements in oncogenesis, is available. FARE-CAFE is a unique combination of CTs, fusion proteins, protein domains, domain-domain interactions, protein-protein interactions, transcription factors and microRNAs, with subsequent experimental information, which cannot be found in any other CT database. Genomic DNA information including, for example, manually collected exact locations of the first and second break points, sequences and karyotypes of fusion genes are included. FARE-CAFE will substantially facilitate the cancer biologist's mission of elucidating the pathogenesis of various types of cancer. This database will ultimately help to develop 'novel' therapeutic approaches. Database URL: http://ppi.bioinfo.asia.edu.tw/FARE-CAFE. © The Author(s) 2015. Published by Oxford University Press.

  10. Instantaneous preparation of CuInSe2 films from elemental In, Cu, Se particles precursor films in a non-vacuum process

    International Nuclear Information System (INIS)

    Kaigawa, R.; Uesugi, T.; Yoshida, T.; Merdes, S.; Klenk, R.

    2009-01-01

    CuInSe 2 (CIS) films are successfully prepared by means of non-vacuum, instantaneous, direct synthesis from elemental In, Cu, Se particles precursor films without prior synthesis of CIS nanoparticle precursors and without selenization with H 2 Se or Se vapor. Our precursor films were prepared on metal substrates by spraying the solvent with added elemental In, Cu, and Se particles. Precursor films were instantaneously sintered using a spot welding machine. When the electric power was fixed to 0.6 kVA, elemental In, Cu, or Se peaks were not observed and only peaks of CIS are observed by X-ray diffraction (XRD) on the film sintered for 7/8 s. We can observe XRD peaks indicative of the chalcopyrite-type structure, such as (101), (103) and (211) diffraction peaks. We conclude that the synthesized CIS crystals have chalcopyrite-type structure with high crystallinity

  11. CisSERS: Customizable In Silico Sequence Evaluation for Restriction Sites.

    Science.gov (United States)

    Sharpe, Richard M; Koepke, Tyson; Harper, Artemus; Grimes, John; Galli, Marco; Satoh-Cruz, Mio; Kalyanaraman, Ananth; Evans, Katherine; Kramer, David; Dhingra, Amit

    2016-01-01

    High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated to enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERS enable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3'UTR sequencing, and cleaved amplified polymorphic sequence (CAPS) molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERS and results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.

  12. Monoclonal antibodies to DNA modified with cis- or trans-diamminedichloroplatinum(II)

    International Nuclear Information System (INIS)

    Sundquist, W.I.; Lippard, S.J.; Stollar, B.D.

    1987-01-01

    Murine monoclonal antibodies that bind selectively to adducts formed on DNA by the antitumor drug cis-diamminedichloroplatinum(II), cis-DDP, or to the chemothrapeutically inactive trans isomer trans-DDP were elicited by immunization with calf thymus DNA modified with either cis- or trans-DDP at ratios of bound platinum per nucleotide, (D/N)/sub b/, of 0.06-0.08. The binding of two monoclonal antibodies to cis-DDP-modified DNA was competitively inhibited in an enzyme-linked immunosorbent assay (ELISA) by 4-6 nM concentrations of cis-DDP bound to DNA. Adducts formed by cis-DDP on other synthetic DNA polymers did not inhibit antibody binding to cis-DDP-DNA. The biologically active compounds [Pt(en)Cl 2 ], [Pt(dach)Cl 2 ], and [Pt(NH 3 ) 2 (cbdca)] (carboplatin) all formed antibody-detectable adducts on DNA, whereas the inactive platinum complexes trans-DDP and [Pt(dien)Cl]Cl (dien, diethylenetriamine) did not. The monoclonal antibodies therefore recognize a bifunctional Pt-DNA adduct with cis stereochemistry in which platinum is coordinated by two adjacent guanines or, to a lesser degree, by adjacent adenine and guanine. A monoclonal antibody raised against trans-DDP-DNA was competitively inhibited in an ELISA by 40 nM trans-DDP bound to DNA. This antibody crossreacted with unmodified, denatured DNA. The recognition of cis- or trans-DDP-modified DNAs by monoclonal antibodies thus parallels the known modes of DNA binding of these compounds and may correlate with their biological activities

  13. Stepwise encapsulation and controlled two-stage release system for cis-Diamminediiodoplatinum

    Directory of Open Access Journals (Sweden)

    Chen Y

    2014-06-01

    Full Text Available Yun Chen,1,* Qian Li,1,2,* Qingsheng Wu1 1Department of Chemistry, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai; 2Shanghai Institute of Quality Inspection and Technical Research, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: cis-Diamminediiodoplatinum (cis-DIDP is a cisplatin-like anticancer drug with higher anticancer activity, but lower stability and price than cisplatin. In this study, a cis-DIDP carrier system based on micro-sized stearic acid was prepared by an emulsion solvent evaporation method. The maximum drug loading capacity of cis-DIDP-loaded solid lipid nanoparticles was 22.03%, and their encapsulation efficiency was 97.24%. In vitro drug release in phosphate-buffered saline (pH =7.4 at 37.5°C exhibited a unique two-stage process, which could prove beneficial for patients with tumors and malignancies. MTT (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assay results showed that cis-DIDP released from cis-DIDP-loaded solid lipid nanoparticles had better inhibition activity than cis-DIDP that had not been loaded. Keywords: stearic acid, emulsion solvent evaporation method, drug delivery, cis-DIDP, in vitro

  14. Connections between Transcription Downstream of Genes and cis-SAGe Chimeric RNA.

    Science.gov (United States)

    Chwalenia, Katarzyna; Qin, Fujun; Singh, Sandeep; Tangtrongstittikul, Panjapon; Li, Hui

    2017-11-22

    cis-Splicing between adjacent genes (cis-SAGe) is being recognized as one way to produce chimeric fusion RNAs. However, its detail mechanism is not clear. Recent study revealed induction of transcriptions downstream of genes (DoGs) under osmotic stress. Here, we investigated the influence of osmotic stress on cis-SAGe chimeric RNAs and their connection to DoGs. We found,the absence of induction of at least some cis-SAGe fusions and/or their corresponding DoGs at early time point(s). In fact, these DoGs and their cis-SAGe fusions are inversely correlated. This negative correlation was changed to positive at a later time point. These results suggest a direct competition between the two categories of transcripts when total pool of readthrough transcripts is limited at an early time point. At a later time point, DoGs and corresponding cis-SAGe fusions are both induced, indicating that total readthrough transcripts become more abundant. Finally, we observed overall enhancement of cis-SAGe chimeric RNAs in KCl-treated samples by RNA-Seq analysis.

  15. Cloning and functional analysis of the promoters that upregulate carotenogenic gene expression during flower development in Gentiana lutea.

    Science.gov (United States)

    Zhu, Changfu; Yang, Qingjie; Ni, Xiuzhen; Bai, Chao; Sheng, Yanmin; Shi, Lianxuan; Capell, Teresa; Sandmann, Gerhard; Christou, Paul

    2014-04-01

    Over the last two decades, many carotenogenic genes have been cloned and used to generate metabolically engineered plants producing higher levels of carotenoids. However, comparatively little is known about the regulation of endogenous carotenogenic genes in higher plants, and this restricts our ability to predict how engineered plants will perform in terms of carotenoid content and composition. During petal development in the Great Yellow Gentian (Gentiana lutea), carotenoid accumulation, the formation of chromoplasts and the upregulation of several carotenogenic genes are temporally coordinated. We investigated the regulatory mechanisms responsible for this coordinated expression by isolating five G. lutea carotenogenic gene (GlPDS, GlZDS, GlLYCB, GlBCH and GlLYCE) promoters by inverse polymerase chain reaction (PCR). Each promoter was sufficient for developmentally regulated expression of the gusA reporter gene following transient expression in tomato (Solanum lycopersicum cv. Micro-Tom). Interestingly, the GlLYCB and GlBCH promoters drove high levels of gusA expression in chromoplast-containing mature green fruits, but low levels in chloroplast-containing immature green fruits, indicating a strict correlation between promoter activity, tomato fruit development and chromoplast differentiation. As well as core promoter elements such as TATA and CAAT boxes, all five promoters together with previously characterized GlZEP promoter contained three common cis-regulatory motifs involved in the response to methyl jasmonate (CGTCA) and ethylene (ATCTA), and required for endosperm expression (Skn-1_motif, GTCAT). These shared common cis-acting elements may represent binding sites for transcription factors responsible for co-regulation. Our data provide insight into the regulatory basis of the coordinated upregulation of carotenogenic gene expression during flower development in G. lutea. © 2013 Scandinavian Plant Physiology Society.

  16. Enantioselective disruption of the endocrine system by Cis-Bifenthrin in the male mice.

    Science.gov (United States)

    Jin, Yuanxiang; Wang, Jiangcong; Pan, Xiuhong; Miao, Wenyu; Lin, Xiaojian; Wang, Linggang; Fu, Zhengwei

    2015-07-01

    Bifenthrin (BF), as a chiral pyrethroid, is widely used to control field and household pests in China. At present, the commercial BF is a mixed compound containing cis isomers (cis-BF) including two enantiomers of 1R-cis-BF and 1S-cis-BF. In the present study, the two individual cis-BF enantiomers were separated by a preparative supercritical fluid chromatography. Then, four week-old adolescent male ICR mice were orally administered 1R-cis-BF and 1S-cis-BF separately daily for 3 weeks at doses of 0, 7.5 and 15 mg/kg/day, respectively. Results showed that the transcription status of some genes involved in cholesterol synthesis and transport as well as testosterone (T) synthesis in the testes were influenced by cis-BF enantiomers. Especially, we observed that the transcription status of key genes on the pathway of T synthesis including cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) and cytochrome P450 17α-hydroxysteroid dehydrogenase (P45017α)) were selectively altered in the testis of mice when treated with 1S-cis-BF, suggesting that it is the possible reason to explain why the lower serum T concentration in 1S-cis-BF treated group. Taken together, it concluded that both of the cis-BF enantiomers have the endocrine disruption activities, while 1S-cis-BF was higher than 1R-cis-BF in mice when exposed during the puberty. The data was helpful to understand the toxicity of cis-BF in mammals under enantiomeric level. © 2014 Wiley Periodicals, Inc.

  17. Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q22.3

    NARCIS (Netherlands)

    Y. Hamdi (Yosr); Soucy, P. (Penny); Kuchenbaeker, K.B. (Karoline B.); Pastinen, T. (Tomi); A. Droit (Arnaud); Lemaçon, A. (Audrey); J.W. Adlard (Julian); K. Aittomäki (Kristiina); I.L. Andrulis (Irene); A. Arason (Adalgeir); N. Arnold (Norbert); B.K. Arun (Banu); J. Azzollini; A.L. Bane (Anita L.); Barjhoux, L. (Laure); D. Barrowdale (Daniel); J. Benítez (Javier); P. Berthet (Pascaline); M.J. Blok (Marinus); K.A. Bobolis (Kristie A.); V. Bonadona (Valérie); B. Bonnani (Bernardo); Bradbury, A.R. (Angela R.); C. Brewer (Carole); B. Buecher (Bruno); Buys, S.S. (Saundra S.); M.A. Caligo (Maria); Chiquette, J. (Jocelyne); W. Chung (Wendy); K.B.M. Claes (Kathleen B.M.); Daly, M.B. (Mary B.); F. Damiola (Francesca); R. Davidson (Rosemarie); M. de La Hoya (Miguel); K. De Leeneer (Kim); O. Díez (Orland); Y.C. Ding (Yuan); R. Dolcetti (Riccardo); S.M. Domchek (Susan); C.M. Dorfling (Cecilia); D. Eccles (Diana); R. Eeles (Ros); Z. Einbeigi (Zakaria); B. Ejlertsen (Bent); EMBRACE; C. Engel (Christoph); Gareth Evans, D.; L. Feliubadaló (L.); L. Foretova (Lenka); F. Fostira (Florentia); Foulkes, W.D. (William D.); G. Fountzilas (George); E. Friedman (Eitan); D. Frost (Debra); P. Ganschow (Pamela); P.A. Ganz (Patricia A.); J. Garber (Judy); S.A. Gayther (Simon); GEMO Study Collaborators; A-M. Gerdes (Anne-Marie); G. Glendon (Gord); A.K. Godwin (Andrew K.); D. Goldgar (David); M.H. Greene (Mark H.); J. Gronwald (Jacek); E. Hahnen (Eric); U. Hamann (Ute); T.V.O. Hansen (Thomas); S. Hart (Stewart); J. Hays (John); HEBON; F.B.L. Hogervorst (Frans); P.J. Hulick (Peter); E.N. Imyanitov (Evgeny); C. Isaacs (Claudine); L. Izatt (Louise); A. Jakubowska (Anna); M. James (Margaret); R. Janavicius (Ramunas); U.B. Jensen; E.M. John (Esther); V. Joseph (Vijai); Just, W. (Walter); Kaczmarek, K. (Katarzyna); Karlan, B.Y. (Beth Y.); KConFab Investigators; C.M. Kets; J. Kirk (Judy); Kriege, M. (Mieke); Y. Laitman (Yael); Laurent, M. (Maïté); C. Lazaro (Conxi); Leslie, G. (Goska); K.J. Lester (Kathryn); F. Lesueur (Fabienne); A. Liljegren (Annelie); N. Loman (Niklas); J.T. Loud (Jennifer); S. Manoukian (Siranoush); Mariani, M. (Milena); S. Mazoyer (Sylvie); L. McGuffog (Lesley); E.J. Meijers-Heijboer (Hanne); A. Meindl (Alfons); A. Miller (Austin); M. Montagna (Marco); A.-M. Mulligan (Anna-Marie); K.L. Nathanson (Katherine); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); R.L. Nussbaum (Robert L.); Olah, E. (Edith); O.I. Olopade (Olufunmilayo I.); K.-R. Ong (Kai-Ren); J.C. Oosterwijk (Jan); A. Osorio (Ana); L. Papi (Laura); S.K. Park (Sue K.); Pedersen, I.S. (Inge Sokilde); B. Peissel (Bernard); P.P. Segura (Pedro Perez); P. Peterlongo (Paolo); C. Phelan (Catherine); P. Radice (Paolo); J. Rantala (Johanna); Rappaport-Fuerhauser, C. (Christine); G. Rennert (Gad); A.L. Richardson (Andrea); M. Robson (Mark); G.C. Rodriguez (Gustavo); M.A. Rookus (Matti); R.K. Schmutzler (Rita); N. Sevenet (Nicolas); Shah, P.D. (Payal D.); C.F. Singer (Christian); Slavin, T.P. (Thomas P.); Snape, K. (Katie); J. Sokolowska (Johanna); Sønderstrup, I.M.H. (Ida Marie Heeholm); M.C. Southey (Melissa); A.B. Spurdle (Amanda); Stadler, Z. (Zsofia); D. Stoppa-Lyonnet (Dominique); G. Sukiennicki (Grzegorz); C. Sutter (Christian); Tan, Y. (Yen); M.-K. Tea; P.J. Teixeira; A. Teulé (A.); S.-H. Teo (Soo-Hwang); M.B. Terry (Mary Beth); M. Thomassen (Mads); L. Tihomirova (Laima); M. Tischkowitz (Marc); S. Tognazzo (Silvia); A.E. Toland (Amanda); N. Tung (Nadine); A.M.W. van den Ouweland (Ans); R.B. van der Luijt (Rob); K. van Engelen (Klaartje); E.J. van Rensburg (Elizabeth); R. Varon-Mateeva (Raymonda); B. Wapenschmidt (Barbara); J.T. Wijnen (Juul); R. Rebbeck (Timothy); G. Chenevix-Trench (Georgia); K. Offit (Kenneth); Couch, F.J. (Fergus J.); S. Nord (Silje); D.F. Easton (Douglas F.); A.C. Antoniou (Antonis C.); Simard, J. (Jacques)

    2016-01-01

    textabstractPurpose: Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility

  18. Regulatory RNA-assisted genome engineering in microorganisms.

    Science.gov (United States)

    Si, Tong; HamediRad, Mohammad; Zhao, Huimin

    2015-12-01

    Regulatory RNAs are increasingly recognized and utilized as key modulators of gene expression in diverse organisms. Thanks to their modular and programmable nature, trans-acting regulatory RNAs are especially attractive in genome-scale applications. Here we discuss the recent examples in microbial genome engineering implementing various trans-acting RNA platforms, including sRNA, RNAi, asRNA and CRISRP-Cas. In particular, we focus on how the scalable and multiplex nature of trans-acting RNAs has been used to tackle the challenges in creating genome-wide and combinatorial diversity for functional genomics and metabolic engineering applications. Advances in computational design and context-dependent regulation are also discussed for their contribution in improving fine-tuning capabilities of trans-acting RNAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Assessment of regulatory effectiveness. Peer discussions on regulatory practices

    International Nuclear Information System (INIS)

    1999-09-01

    This report arises from the seventh series of peer discussions on regulatory practices entitled 'Assessment of Regulatory Effectiveness'. The term 'regulatory effectiveness' covers the quality of the work and level of performance of a regulatory body. In this sense, regulatory effectiveness applies to regulatory body activities aimed at preventing safety degradation and ensuring that an acceptable level of safety is being maintained by the regulated operating organizations. In addition, regulatory effectiveness encompasses the promotion of safety improvements, the timely and cost effective performance of regulatory functions in a manner which ensures the confidence of the operating organizations, the general public and the government, and striving for continuous improvements to performance. Senior regulators from 22 Member States participated in two peer group discussions during March and May 1999. The discussions were focused on the elements of an effective regulatory body, possible indicators of regulatory effectiveness and its assessment. This report presents the outcome of these meetings and recommendations of good practices identified by senior regulators, which do not necessarily reflect those of the governments of the nominating Member States, the organizations they belong to, or the International Atomic Energy Agency. In order to protect people and the environment from hazards associated with nuclear facilities, the main objective of a nuclear regulatory body is to ensure that a high level of safety in the nuclear activities under its jurisdiction is achieved, maintained and within the control of operating organizations. Even if it is possible to directly judge objective safety levels at nuclear facilities, such safety levels would not provide an exclusive indicator of regulatory effectiveness. The way the regulatory body ensures the safety of workers and the public and the way it discharges its responsibilities also determine its effectiveness. Hence the

  20. The genomic view of genes responsive to the antagonistic phytohormones, abscisic acid, and gibberellin.

    Science.gov (United States)

    Yazaki, Junshi; Kikuchi, Shoshi

    2005-01-01

    We now have the various genomics tools for monocot (Oryza sativa) and a dicot (Arabidopsis thaliana) plant. Plant is not only a very important agricultural resource but also a model organism for biological research. It is important that the interaction between ABA and GA is investigated for controlling the transition from embryogenesis to germination in seeds using genomics tools. These studies have investigated the relationship between dormancy and germination using genomics tools. Genomics tools identified genes that had never before been annotated as ABA- or GA-responsive genes in plant, detected new interactions between genes responsive to the two hormones, comprehensively characterized cis-elements of hormone-responsive genes, and characterized cis-elements of rice and Arabidopsis. In these research, ABA- and GA-regulated genes have been classified as functional proteins (proteins that probably function in stress or PR tolerance) and regulatory proteins (protein factors involved in further regulation of signal transduction). Comparison between ABA and/or GA-responsive genes in rice and those in Arabidopsis has shown that the cis-element has specificity in each species. cis-Elements for the dehydration-stress response have been specified in Arabidopsis but not in rice. cis-Elements for protein storage are remarkably richer in the upstream regions of the rice gene than in those of Arabidopsis.

  1. CisSERS: Customizable In Silico Sequence Evaluation for Restriction Sites.

    Directory of Open Access Journals (Sweden)

    Richard M Sharpe

    Full Text Available High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated to enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERS enable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3'UTR sequencing, and cleaved amplified polymorphic sequence (CAPS molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERS and results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.

  2. RNA-ID, a Powerful Tool for Identifying and Characterizing Regulatory Sequences.

    Science.gov (United States)

    Brule, C E; Dean, K M; Grayhack, E J

    2016-01-01

    The identification and analysis of sequences that regulate gene expression is critical because regulated gene expression underlies biology. RNA-ID is an efficient and sensitive method to discover and investigate regulatory sequences in the yeast Saccharomyces cerevisiae, using fluorescence-based assays to detect green fluorescent protein (GFP) relative to a red fluorescent protein (RFP) control in individual cells. Putative regulatory sequences can be inserted either in-frame or upstream of a superfolder GFP fusion protein whose expression, like that of RFP, is driven by the bidirectional GAL1,10 promoter. In this chapter, we describe the methodology to identify and study cis-regulatory sequences in the RNA-ID system, explaining features and variations of the RNA-ID reporter, as well as some applications of this system. We describe in detail the methods to analyze a single regulatory sequence, from construction of a single GFP variant to assay of variants by flow cytometry, as well as modifications required to screen libraries of different strains simultaneously. We also describe subsequent analyses of regulatory sequences. © 2016 Elsevier Inc. All rights reserved.

  3. Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression : identification of a modifier of breast cancer risk at locus 11q22.3

    NARCIS (Netherlands)

    Hamdi, Yosr; Soucy, Penny; Kuchenbaeker, Karoline B; Pastinen, Tomi; Droit, Arnaud; Lemaçon, Audrey; Adlard, Julian; Aittomäki, Kristiina; Andrulis, Irene L; Arason, Adalgeir; Arnold, Norbert; Arun, Banu K; Azzollini, Jacopo; Bane, Anita; Barjhoux, Laure; Barrowdale, Daniel; Benitez, Javier; Berthet, Pascaline; Blok, Marinus J; Bobolis, Kristie; Bonadona, Valérie; Bonanni, Bernardo; Bradbury, Angela R; Brewer, Carole; Buecher, Bruno; Buys, Saundra S; Caligo, Maria A; Chiquette, Jocelyne; Chung, Wendy K; Claes, Kathleen B M; Daly, Mary B; Damiola, Francesca; Davidson, Rosemarie; De la Hoya, Miguel; De Leeneer, Kim; Diez, Orland; Ding, Yuan Chun; Dolcetti, Riccardo; Domchek, Susan M; Dorfling, Cecilia M; Eccles, Diana; Eeles, Ros; Einbeigi, Zakaria; Ejlertsen, Bent; Engel, Christoph; Gareth Evans, D; Feliubadalo, Lidia; Foretova, Lenka; Fostira, Florentia; Foulkes, William D; Fountzilas, George; Friedman, Eitan; Frost, Debra; Ganschow, Pamela; Ganz, Patricia A; Garber, Judy; Gayther, Simon A; Gerdes, Anne-Marie; Glendon, Gord; Godwin, Andrew K; Goldgar, David E; Greene, Mark H; Gronwald, Jacek; Hahnen, Eric; Hamann, Ute; Hansen, Thomas V O; Hart, Steven; Hays, John L; Hogervorst, Frans B L; Hulick, Peter J; Imyanitov, Evgeny N; Isaacs, Claudine; Izatt, Louise; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Joseph, Vijai; Just, Walter; Kaczmarek, Katarzyna; Karlan, Beth Y; Kets, Carolien M; Kirk, Judy; Kriege, Mieke; Laitman, Yael; Laurent, Maïté; Lazaro, Conxi; Leslie, Goska; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Loman, Niklas; Loud, Jennifer T; Manoukian, Siranoush; Mariani, Milena; Mazoyer, Sylvie; McGuffog, Lesley; Meijers-Heijboer, Hanne E J; Meindl, Alfons; Miller, Austin; Montagna, Marco; Mulligan, Anna Marie; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Nussbaum, Robert L; Olah, Edith; Olopade, Olufunmilayo I; Ong, Kai-Ren; Oosterwijk, Jan C; Osorio, Ana; Papi, Laura; Park, Sue Kyung; Pedersen, Inge Sokilde; Peissel, Bernard; Segura, Pedro Perez; Peterlongo, Paolo; Phelan, Catherine M; Radice, Paolo; Rantala, Johanna; Rappaport-Fuerhauser, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Rodriguez, Gustavo C; Rookus, Matti A; Schmutzler, Rita Katharina; Sevenet, Nicolas; Shah, Payal D; Singer, Christian F; Slavin, Thomas P; Snape, Katie; Sokolowska, Johanna; Sønderstrup, Ida Marie Heeholm; Southey, Melissa; Spurdle, Amanda B; Stadler, Zsofia; Stoppa-Lyonnet, Dominique; Sukiennicki, Grzegorz; Sutter, Christian; Tan, Yen; Tea, Muy-Kheng; Teixeira, Manuel R; Teulé, Alex; Teo, Soo-Hwang; Terry, Mary Beth; Thomassen, Mads; Tihomirova, Laima; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Tung, Nadine; van den Ouweland, Ans M W; van der Luijt, Rob B; van Engelen, Klaartje; van Rensburg, Elizabeth J; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Wijnen, Juul T; Rebbeck, Timothy; Chenevix-Trench, Georgia; Offit, Kenneth; Couch, Fergus J; Nord, Silje; Easton, Douglas F; Antoniou, Antonis C; Simard, Jacques

    PURPOSE: Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1

  4. The efficacy of 9-cis retinoic acid in experimental models of cancer.

    Science.gov (United States)

    Gottardis, M M; Lamph, W W; Shalinsky, D R; Wellstein, A; Heyman, R A

    1996-01-01

    9-cis retinoic acid (9-cis RA) is a retinoid receptor pan-agonist that binds with high affinity to both retinoic acid receptors (RARs) and retinoid X receptors (RXRs). Using a variety of in vivo and in vitro cancer models, we present experimental data that 9-cis RA has activity as a potential chemotherapeutic agent. Treatment of the human promyelocytic leukemia cell line HL-60 with 9-cis RA decreases cell proliferation, increases cell differentiation, and increases apoptosis. Induction of apoptosis correlates with an increase in tissue transglutaminase (type II) activity. In vivo, 9-cis RA induces complete tumor regression of an early passage human lip squamous cell carcinoma xenograft. Finally, 9-cis RA inhibits the anchorage-independent growth of the human breast cancer cell lines MCF-7 and LY2 (an antiestrogen-resistant MCF-7 variant). Transient co-transfection assays indicate that 9-cis RA inhibits estrogen receptor transcription of an ERE-tk-LUC reporter through RAR or RXR receptors. These data suggest that retinoid receptors can antagonize estrogen-dependent transcription and provides one possible mechanism for the inhibition of cell growth by 9-cis RA in breast cancer cell lines. In summary, these findings present evidence that 9-cis RA has a wide range of activities in human cancer models.

  5. HBVRegDB: Annotation, comparison, detection and visualization of regulatory elements in hepatitis B virus sequences

    Directory of Open Access Journals (Sweden)

    Firth Andrew E

    2007-12-01

    Full Text Available Abstract Background The many Hepadnaviridae sequences available have widely varied functional annotation. The genomes are very compact (~3.2 kb but contain multiple layers of functional regulatory elements in addition to coding regions. Key regions are subject to purifying selection, as mutations in these regions will produce non-functional viruses. Results These genomic sequences have been organized into a structured database to facilitate research at the molecular level. HBVRegDB is a comparative genomic analysis tool with an integrated underlying sequence database. The database contains genomic sequence data from representative viruses. In addition to INSDC and RefSeq annotation, HBVRegDB also contains expert and systematically calculated annotations (e.g. promoters and comparative genome analysis results (e.g. blastn, tblastx. It also contains analyses based on curated HBV alignments. Information about conserved regions – including primary conservation (e.g. CDS-Plotcon and RNA secondary structure predictions (e.g. Alidot – is integrated into the database. A large amount of data is graphically presented using the GBrowse (Generic Genome Browser adapted for analysis of viral genomes. Flexible query access is provided based on any annotated genomic feature. Novel regulatory motifs can be found by analysing the annotated sequences. Conclusion HBVRegDB serves as a knowledge database and as a comparative genomic analysis tool for molecular biologists investigating HBV. It is publicly available and complementary to other viral and HBV focused datasets and tools http://hbvregdb.otago.ac.nz. The availability of multiple and highly annotated sequences of viral genomes in one database combined with comparative analysis tools facilitates detection of novel genomic elements.

  6. Study of cis- and trans-uranium elements by paper chromatography and electrophoresis; Contribution a l'etude des elements cis- et trans-uraniens par chromatographie sur papier et electrophorese

    Energy Technology Data Exchange (ETDEWEB)

    Clanet, F. [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-01-01

    In this work, the field of application of paper chromatography and electrophoresis in inorganic chemistry has been extended to elements 90 to 96 in hydrochloric and nitric acid solution. Results obtained concern the following points: 1) - Characterization of the valency states of Np and of Pu using coloured reactions on chromatograms and electrophoregrams. The valency IV is characterized by alizarin, arsenazo-I and thorin-I, whilst diphenylcarbazide is used for the hexavalent state. 2) - Paper chromatography: by using as eluent, mixtures of equal parts of aqueous HCl and HNO{sub 3} solutions and of alcohols (methanol, ethanol and n-butanol), the R{sub f} values of elements 90 to 96 have been determined. It has been possible to deduce certain conclusions concerning the complexing of these elements by Cl{sup -} and NO{sub 3}{sup -} ions. 3) - We have developed an electrophoretic technique on cellulose acetate membranes in order to separate the charged species formed by the elements 90 to 96 in HCl and HNO{sub 3} solutions from 1 to 12 M. Mobility curves have been obtained. It appears from our results that the tendency for the elements considered to form anionic complexes follows the order of the ionic potentials when the valency state is four; this order is reversed for the valency three. The ions Cl{sup -} have a smaller tendency to form complexes than the NO{sub 3}{sup -} ions with respect to these elements in their oxidation state III or IV, but the reverse phenomenon is observed for U{sup VI} and Pu{sup VI}. Finally, the complexing of the cations Pu{sup 4+} and PuUO{sub 2}{sup 2+} by NO{sub 3}{sup -} follows the order of the ionic potentials but occurs in the reverse order for Cl{sup -} ions. 4) - Various analytical applications are considered: separation of the various elements from each other and separation of the valency states of Np and of Pu. (author) [French] Dans cette etude, le champ d'application de la chromatographie sur papier et de l

  7. Sterol regulatory element binding protein 2 overexpression is associated with reduced adipogenesis and ectopic fat accumulation in transgenic spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šimáková, Miroslava; Šilhavý, Jan; Trnovská, J.; Kazdová, L.; Pravenec, Michal

    2014-01-01

    Roč. 63, č. 5 (2014), s. 587-590 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LH12061 Institutional support: RVO:67985823 Keywords : sterol regulatory element binding protein 2 * transgenic * spontaneously hypertensive rat * lipid metabolism Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.293, year: 2014

  8. Nuclear regulatory legislation, 104th Congress. Volume 2, No. 4

    International Nuclear Information System (INIS)

    1997-12-01

    This document is the second of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Paperwork Reduction Act, various acts pertaining to low-level radioactive waste, the Clean Air Act, the Federal Water Pollution Control Act, the National Environmental Policy Act, the Hazardous Materials Transportation Act, the West Valley Demonstration Project Act, Nuclear Non-Proliferation and Export Licensing Statutes, and selected treaties, agreements, and executive orders. Other information provided pertains to Commissioner tenure, NRC appropriations, the Chief Financial Officers Act, information technology management reform, and Federal civil penalties

  9. Nuclear regulatory legislation, 104th Congress. Volume 2, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document is the second of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Paperwork Reduction Act, various acts pertaining to low-level radioactive waste, the Clean Air Act, the Federal Water Pollution Control Act, the National Environmental Policy Act, the Hazardous Materials Transportation Act, the West Valley Demonstration Project Act, Nuclear Non-Proliferation and Export Licensing Statutes, and selected treaties, agreements, and executive orders. Other information provided pertains to Commissioner tenure, NRC appropriations, the Chief Financial Officers Act, information technology management reform, and Federal civil penalties.

  10. Effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid (CLA) isomers on immune function in healthy men

    NARCIS (Netherlands)

    Albers, R.; Wielen, R.P.J. van der; Brink, E.J.; Hendriks, H.F.J.; Dorovska-Taran, V.N.; Mohede, I.C.M.

    2003-01-01

    Objectives: To study the effects of two different mixtures of the main conjugated linoleic acid (CLA) isomers cis-9, trans-11 CLA and trans-10, cis-12 CLA on human immune function. Design: Double-blind, randomized, parallel, reference-controlled intervention study. Subjects and intervention:

  11. Loregic: A Method to Characterize the Cooperative Logic of Regulatory Factors

    Science.gov (United States)

    Wang, Daifeng; Yan, Koon-Kiu; Sisu, Cristina; Cheng, Chao; Rozowsky, Joel; Meyerson, William; Gerstein, Mark B.

    2015-01-01

    The topology of the gene-regulatory network has been extensively analyzed. Now, given the large amount of available functional genomic data, it is possible to go beyond this and systematically study regulatory circuits in terms of logic elements. To this end, we present Loregic, a computational method integrating gene expression and regulatory network data, to characterize the cooperativity of regulatory factors. Loregic uses all 16 possible two-input-one-output logic gates (e.g. AND or XOR) to describe triplets of two factors regulating a common target. We attempt to find the gate that best matches each triplet’s observed gene expression pattern across many conditions. We make Loregic available as a general-purpose tool (github.com/gersteinlab/loregic). We validate it with known yeast transcription-factor knockout experiments. Next, using human ENCODE ChIP-Seq and TCGA RNA-Seq data, we are able to demonstrate how Loregic characterizes complex circuits involving both proximally and distally regulating transcription factors (TFs) and also miRNAs. Furthermore, we show that MYC, a well-known oncogenic driving TF, can be modeled as acting independently from other TFs (e.g., using OR gates) but antagonistically with repressing miRNAs. Finally, we inter-relate Loregic’s gate logic with other aspects of regulation, such as indirect binding via protein-protein interactions, feed-forward loop motifs and global regulatory hierarchy. PMID:25884877

  12. Risk Assessment Review Group report to the U.S. Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Lewis, H.W.; Budnitz, R.J.; Kouts, H.J.C.; Loewenstein, W.B.; Rowe, W.D.; von Hippel, F.; Zachariasen, F.

    1978-09-01

    The Risk Assessment Review Group was organized by the U.S. Nuclear Regulatory Commission on July 1, 1977, with four elements to its charter: clarify the achievements and limitations of WASH-1400, the ''Rasmussen Report''; assess the peer comments thereon, and responses to those comments; study the present state of such risk assessment methodology; and recommend to the Commission how (and whether) such methodology can be used in the regulatory and licensing process. Areas of study include: risk assessment methodologies; statistical issues; completeness; the data base; and the WASH-1400 assessment of the damage to human health from radiation after a postulated accident. Specific items discussed include: Browns Ferry; common cause failure; human factors; format and scrutability; the peer review process; earthquakes; risk perception; allegations by UCS concerning WASH-1400 treatment of quality assurance and quality control; current role of probabilistic methods in the regulatory process; acts of violence; ATWS; influence of design defects in quality assurance failures; and calculation of population doses from given releases of radionuclides

  13. 76 FR 63817 - Disclosure of Information; Privacy Act Regulations; Notice and Amendments

    Science.gov (United States)

    2011-10-14

    ..., paper, reports of examination, work papers, and correspondence relating to such reports, to the.... Regulatory Flexibility Act The Regulatory Flexibility Act, 5 U.S.C. 601, et seq., (RFA) applies only to rules... and comment requirements of the APA, the requirement to prepare a final regulatory flexibility...

  14. Recent developments in the Clean Water Act: Section 404 regulatory program

    Energy Technology Data Exchange (ETDEWEB)

    Kelsch, T. (EPA, Washington, DC (United States))

    1992-12-01

    Since the late 1970's and the 1980's, the Nation has become increasingly aware of the vital role wetlands play in providing habitat, protecting us from flooding and maintaining surface water quality. This public awakening came at the same time that the Fish and Wildlife Service's National Wetlands Inventory published reports indicating that less than one half of the wetlands that existed when the Europeans came to the US remain. The reports also indicated that the US was continuing to lose approximately 450,000 acres of our wetlands per year. Although recent data updating the status and trends of wetland losses for the 1980's indicate that the rate of loss has decreased, the Fish and Wildlife Service estimates indicate that approximately 290,000 acres of wetlands are still lost each year. Any loss in the natural functions provided by wetlands is not just felt in the environment; we simultaneously sustain, as a loss to our national economy, a decline in the income that could have been derived from the fisheries, recreation and other critical services performed by wetland systems. Clearly wetlands merit protection. However, in the US, where over 75 percent of our remaining wetlands are on private property, the protection of wetlands is often a difficult and sometimes contentious issue -- evoking debate about private property rights, economic development, the public interest in protecting wetland values, and the kind of world we wish to leave for future generations. Section 404 of the Clean Water Act establishes the primary Federal regulatory program providing protection for the Nation's remaining wetlands. The Section 404 permit program is recognized by both its supporters and critics as one of the strongest, yet often most contentious, Federal environmental protection programs. This presentation provides an overview of the Section 404 regulatory requirements and discusses some of the recent developments that have stirred considerable

  15. Plasmodium falciparum var Gene Silencing Is Determined by cis DNA Elements That Form Stable and Heritable Interactions ▿

    Science.gov (United States)

    Swamy, Lakshmi; Amulic, Borko; Deitsch, Kirk W.

    2011-01-01

    Antigenic variation in the human malaria parasite Plasmodium falciparum depends on the transcriptional regulation of the var gene family. In each individual parasite, mRNA is expressed exclusively from 1 var gene out of ∼60, while the rest of the genes are transcriptionally silenced. Both modifications to chromatin structure and DNA regulatory elements associated with each var gene have been implicated in the organization and maintenance of the silent state. Whether silencing is established at the level of entire chromosomal regions via heterochromatin spreading or at the level of individual var promoters through the action of a silencing element within each var intron has been debated. Here, we consider both possibilities, using clonal parasite lines carrying chromosomally integrated transgenes. We confirm a previous finding that the loss of an adjacent var intron results in var promoter activation and further show that transcriptional activation of a var promoter within a cluster does not affect the transcriptional activity of neighboring var promoters. Our results provide more evidence for the hypothesis that var genes are primarily silenced at the level of an individual gene, rather than by heterochromatin spreading. We also tested the intrinsic directionality of an intron's silencing effect on upstream or downstream var promoters. We found that an intron is capable of silencing in either direction and that, once established, a var promoter-intron pair is stably maintained through many generations, suggesting a possible role in epigenetic memory. This study provides insights into the regulation of endogenous var gene clusters. PMID:21317310

  16. Effects of pyrethroid pesticide cis-bifenthrin on lipogenesis in hepatic cell line.

    Science.gov (United States)

    Xiang, Dandan; Chu, Tianyi; Li, Meng; Wang, Qiangwei; Zhu, Guonian

    2018-06-01

    Mounting evidence suggests there is a link between exposure to synthetic pyrethroids (SPs) and the development of obesity. The information presented in this study suggests that cis-bifenthrin (cis-BF) could activate pregnane X receptor (PXR) mediated pathway and lead to the lipid accumulation of human hepatoma (HepG2) cells. Cells were incubated in the control or different concentrations of cis-BF for 24 h. The 1 × 10 -7  M and 1 × 10 -6  M cis-BF exposure were found to induce cellular triglyceride (TG) accumulation significantly. This phenomenon was further supported by Oil Red O Staining assay. The cis-BF exposure caused upregulation of PXR gene and protein. Correspondingly, we also observed the increased expression of downstream genes involved in lipid formation and the inhibition of the expression of β-oxidation. As chiral pesticide,cis-BF was further conformed to behave enantioselectivity in the lipid metabolism. Rather than 1R-cis-BF, HepG2 cells incubated with 1S-cis-BF exhibited a significant TG accumulation. 1S-cis-BF also showed a higher binding level, of which the KD value was 9.184 × 10 -8  M in the SPR assay, compared with 1R-cis-BF (3.463 × 10 -6  M). In addition, the molecular docking simulation analyses correlated well with the KD values measured by the SPR, indicating that 1S-cis-BF showed a better binding affinity with PXR. The results in this study also elucidates the differences between the two enantiomers of pyrethroid-induced toxicity in lipid metabolism of non-target organism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. RNA localization in Xenopus oocytes uses a core group of trans-acting factors irrespective of destination.

    Science.gov (United States)

    Snedden, Donald D; Bertke, Michelle M; Vernon, Dominic; Huber, Paul W

    2013-07-01

    The 3' untranslated region of mRNA encoding PHAX, a phosphoprotein required for nuclear export of U-type snRNAs, contains cis-acting sequence motifs E2 and VM1 that are required for localization of RNAs to the vegetal hemisphere of Xenopus oocytes. However, we have found that PHAX mRNA is transported to the opposite, animal, hemisphere. A set of proteins that cross-link to the localization elements of vegetally localized RNAs are also cross-linked to PHAX and An1 mRNAs, demonstrating that the composition of RNP complexes that form on these localization elements is highly conserved irrespective of the final destination of the RNA. The ability of RNAs to bind this core group of proteins is correlated with localization activity. Staufen1, which binds to Vg1 and VegT mRNAs, is not associated with RNAs localized to the animal hemisphere and may determine, at least in part, the direction of RNA movement in Xenopus oocytes.

  18. Foxf genes integrate tbx5 and hedgehog pathways in the second heart field for cardiac septation.

    Directory of Open Access Journals (Sweden)

    Andrew D Hoffmann

    2014-10-01

    Full Text Available The Second Heart Field (SHF has been implicated in several forms of congenital heart disease (CHD, including atrioventricular septal defects (AVSDs. Identifying the SHF gene regulatory networks required for atrioventricular septation is therefore an essential goal for understanding the molecular basis of AVSDs. We defined a SHF Hedgehog-dependent gene regulatory network using whole genome transcriptional profiling and GLI-chromatin interaction studies. The Forkhead box transcription factors Foxf1a and Foxf2 were identified as SHF Hedgehog targets. Compound haploinsufficiency for Foxf1a and Foxf2 caused atrioventricular septal defects, demonstrating the biological relevance of this regulatory network. We identified a Foxf1a cis-regulatory element that bound the Hedgehog transcriptional regulators GLI1 and GLI3 and the T-box transcription factor TBX5 in vivo. GLI1 and TBX5 synergistically activated transcription from this cis-regulatory element in vitro. This enhancer drove reproducible expression in vivo in the posterior SHF, the only region where Gli1 and Tbx5 expression overlaps. Our findings implicate Foxf genes in atrioventricular septation, describe the molecular underpinnings of the genetic interaction between Hedgehog signaling and Tbx5, and establish a molecular model for the selection of the SHF gene regulatory network for cardiac septation.

  19. Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites

    KAUST Repository

    Bruno, Mark

    2016-09-29

    The Arabidopsis carotenoid cleavage dioxygenase 4 (AtCCD4) is a negative regulator of the carotenoid content of seeds and has recently been suggested as a candidate for the generation of retrograde signals that are thought to derive from the cleavage of poly-cis-configured carotene desaturation intermediates. In this work, we investigated the activity of AtCCD4 in vitro and used dynamic modeling to determine its substrate preference. Our results document strict regional specificity for cleavage at the C9–C10 double bond in carotenoids and apocarotenoids, with preference for carotenoid substrates and an obstructing effect on hydroxyl functions, and demonstrate the specificity for all-trans-configured carotenes and xanthophylls. AtCCD4 cleaved substrates with at least one ionone ring and did not convert acyclic carotene desaturation intermediates, independent of their isomeric states. These results do not support a direct involvement of AtCCD4 in generating the supposed regulatory metabolites. In contrast, the strigolactone biosynthetic enzyme AtCCD7 converted 9-cis-configured acyclic carotenes, such as 9-cis-ζ-carotene, 9\\'-cis-neurosporene, and 9-cis-lycopene, yielding 9-cis-configured products and indicating that AtCCD7, rather than AtCCD4, is the candidate for forming acyclic retrograde signals.

  20. Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites

    KAUST Repository

    Bruno, Mark; Koschmieder, Julian; Wuest, Florian; Schaub, Patrick; Fehling-Kaschek, Mirjam; Timmer, Jens; Beyer, Peter; Al-Babili, Salim

    2016-01-01

    The Arabidopsis carotenoid cleavage dioxygenase 4 (AtCCD4) is a negative regulator of the carotenoid content of seeds and has recently been suggested as a candidate for the generation of retrograde signals that are thought to derive from the cleavage of poly-cis-configured carotene desaturation intermediates. In this work, we investigated the activity of AtCCD4 in vitro and used dynamic modeling to determine its substrate preference. Our results document strict regional specificity for cleavage at the C9–C10 double bond in carotenoids and apocarotenoids, with preference for carotenoid substrates and an obstructing effect on hydroxyl functions, and demonstrate the specificity for all-trans-configured carotenes and xanthophylls. AtCCD4 cleaved substrates with at least one ionone ring and did not convert acyclic carotene desaturation intermediates, independent of their isomeric states. These results do not support a direct involvement of AtCCD4 in generating the supposed regulatory metabolites. In contrast, the strigolactone biosynthetic enzyme AtCCD7 converted 9-cis-configured acyclic carotenes, such as 9-cis-ζ-carotene, 9'-cis-neurosporene, and 9-cis-lycopene, yielding 9-cis-configured products and indicating that AtCCD7, rather than AtCCD4, is the candidate for forming acyclic retrograde signals.