WorldWideScience

Sample records for circumstellar molecular composition

  1. Composite circumstellar dust grains

    Science.gov (United States)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  2. Composite Circumstellar Dust Grains

    CERN Document Server

    Gupta, Ranjan; Dutta, Rajeshwari

    2016-01-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5--25$\\rm \\mu m$. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18$\\rm \\mu m$. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-Type \\& AGB stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes; shape; composition and dust temperature.

  3. Circumstellar Molecular Spectra towards Evolved Stars

    CERN Document Server

    Bakker, E J

    1997-01-01

    In this paper we discuss the relevance of, and possible scientific gains which can be acquired from studying circumstellar molecular spectra toward evolved stars. Where can we expect circumstellar molecular spectra, why would we want to study these spectra, which molecules might be present, and what can we learn from these studies? We present an overview of reported detections, and discuss some of the results.

  4. Composite grains: Application to circumstellar dust

    Directory of Open Access Journals (Sweden)

    D. B. Vaidya

    2011-09-01

    Full Text Available Using the discrete dipole approximation (DDA we calculate the absorption efficiency of the composite grain, made up of a host silicate spheroid and inclusions of graphite, in the spectral region 5.0-25.0μm. We study the absorption as a function of the voulume fraction of the inclusions. In particular, we study the variation in the 10.0μm and 18.0μm emission features with the volume fraction of the inclusions. Using the extinction efficiencies, of the composite grains we calculate the infrared fluxes at several dust temperatures and compare the model curves with the observed infrared emission curves (IRAS-LRS, obtained for circumstellar dust shells around oxygen rich M-type stars.

  5. The composition of circumstellar and interstellar dust

    NARCIS (Netherlands)

    Tielens, AGGM; Woodward, CE; Biscay, MD; Shull, JM

    2001-01-01

    A large number of solid dust components have been identified through analysis of stardust recovered from meteorites, and analysis of IR observations of circumstellar shells and the interstellar medium. These include graphite, hydrogenated amorphous carbon, diamond, PAHs, silicon-, iron-, and titanin

  6. Chemical composition of the circumstellar disk around AB Aurigae

    CERN Document Server

    Pacheco-Vázquez, S; Agúndez, M; Pinte, C; Alonso-Albi, T; Neri, R; Cernicharo, J; Goicoechea, J R; Berné, O; Wiesenfeld, L; Bachiller, R; Lefloch, B

    2015-01-01

    Aims. Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is of paramount importance to understand the chemical evolution of the gas in warm disks. Methods. We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (A Chemical Survey of Sun-like Star-forming Regions). These data were complemented with interferometric observations of the HCO+ 1-0 and C17O 1-0 lines using the IRAM Plateau de Bure Interferometer (PdBI). Single-dish and interferometric data were used to constrain chemical models. Results. Throughout the survey, several lines of CO and its isotopologues, HCO+, H2CO, HCN, CN and CS, were detected. In addition, we detected the SO 54-33 and 56-45 lines, confirming the previous tentative detection. Comparing to other T Tauri's and Herbig Ae disks, AB Aur presents low HCN 3-2/HCO+ 3-2 ...

  7. Chemical composition of the circumstellar disk around AB Aurigae

    Science.gov (United States)

    Pacheco-Vázquez, S.; Fuente, A.; Agúndez, M.; Pinte, C.; Alonso-Albi, T.; Neri, R.; Cernicharo, J.; Goicoechea, J. R.; Berné, O.; Wiesenfeld, L.; Bachiller, R.; Lefloch, B.

    2015-06-01

    Aims: Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is paramount for understanding the chemical evolution of the gas in warm disks. Methods: We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (a chemical survey of Sun-like star-forming regions). These data were complemented with interferometric observations of the HCO+ 1→0 and C17O 1→0 lines using the IRAM Plateau de Bure Interferometer (PdBI). Single-dish and interferometric data were used to constrain chemical models. Results: Throughout the survey, several lines of CO and its isotopologues, HCO+, H2CO, HCN, CN, and CS, were detected. In addition, we detected the SO 54→33 and 56→45 lines, confirming the previously tentative detection. Compared to other T Tauri and Herbig Ae disks, AB Aur presents low HCN 3→2/HCO+ 3→2 and CN 2→1/HCN 3→2 line intensity ratios, similar to other transition disks. AB Aur is the only protoplanetary disk detected in SO thus far, and its detection is consistent with interpretation of this disk being younger than those associated with T Tauri stars. Conclusions: We modeled the line profiles using a chemical model and a radiative transfer 3D code. Our model assumes a flared disk in hydrostatic equilibrium. The best agreement with observations was obtained for a disk with a mass of 0.01 M⊙, Rin = 110 AU, Rout = 550 AU, a surface density radial index of 1.5, and an inclination of 27°. The intensities and line profiles were reproduced within a factor of ˜2 for most lines. This agreement is reasonable considering the simplicity of our model that neglects any structure within the disk. However, the HCN 3→2 and CN 2→1 line intensities were predicted to be more intense by a factor of >10. We discuss several scenarios to explain this

  8. Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae

    CERN Document Server

    Danilovich, T; Justtanont, K; Lombaert, R; Maercker, M; Olofsson, H; Ramstedt, S; Royer, P

    2014-01-01

    S-type AGB stars have a C/O ratio which suggests that they are transition objects between oxygen-rich M-type stars and carbon-rich C-type stars. As such, their circumstellar compositions of gas and dust are thought to be sensitive to their precise C/O ratio, and it is therefore of particular interest to examine their circumstellar properties. We present new Herschel HIFI and PACS sub-millimetre and far-infrared line observations of several molecular species towards the S-type AGB star W Aql. We use these observations, which probe a wide range of gas temperatures, to constrain the circumstellar properties of W Aql, including mass-loss rate and molecular abundances. We used radiative transfer codes to model the circumstellar dust and molecular line emission to determine circumstellar properties and molecular abundances. We assumed a spherically symmetric envelope formed by a constant mass-loss rate driven by an accelerating wind. Our model includes fully integrated H2O line cooling as part of the solution of th...

  9. A circumstellar molecular gas structure associated with the massive young star Cepheus A-HW 2

    Science.gov (United States)

    Torrelles, Jose M.; Rodriguez, Luis F.; Canto, Jorge; Ho, Paul T. P.

    1993-01-01

    We report the detection via VLA-D observations of ammonia of a circumstellar high-density molecular gas structure toward the massive young star related to the object Cepheus A-HW 2, a firm candidate for the powering source of the high-velocity molecular outflow in the region. We suggest that the circumstellar molecular gas structure could be related to the circumstellar disk previously suggested from infrared, H2O, and OH maser observations. We consider as a plausible scenario that the double radio continuum source of HW 2 could represent the ionized inner part of the circumstellar disk, in the same way as proposed to explain the double radio source in L1551. The observed motions in the circumstellar molecular gas can be produced by bound motions (e.g., infall or rotation) around a central mass of about 10-20 solar masses (B0.5 V star or earlier).

  10. Molecular content of the circumstellar disk in AB Aur: First detection of SO in a circumstellar disk

    CERN Document Server

    Fuente, A; Agundez, M; Berne, O; Goicoechea, J R; Alonso-Albi, T; Marcelino, N

    2010-01-01

    Very few molecular species have been detected in circumstellar disks surrounding young stellar objects. We are carrying out an observational study of the chemistry of circumstellar disks surrounding T Tauri and Herbig Ae stars. First results of this study are presented in this note. We used the EMIR receivers recently installed at the IRAM 30m telescope to carry a sensitive search for molecular lines in the disks surrounding AB Aur, DM Tau, and LkCa 15. We detected lines of the molecules HCO+, CN, H2CO, SO, CS, and HCN toward AB Aur. In addition, we tentatively detected DCO+ and H2S lines. The line profiles suggest that the CN, HCN, H2CO, CS and SO lines arise in the disk. This makes it the first detection of SO in a circumstellar disk. We have unsuccessfully searched for SO toward DM Tau and LkCa 15, and for c-C3H2 toward AB Aur, DM Tau, and LkCa 15. Our upper limits show that contrary to all the molecular species observed so far, SO is not as abundant in DM Tau as it is in AB Aur. Our results demonstrate th...

  11. Photochemistry and molecular ions in carbon-rich circumstellar envelopes

    Science.gov (United States)

    Glassgold, A. E.; Mamon, G. A.; Omont, A.; Lucas, R.

    1987-01-01

    An earlier theory of ionization of C-rich circumstellar envelopes based on the photochemical model is extended to include the temperature dependence of ion-molecule reactions with polar molecules, particularly HCN, and line self-shielding of CO dissociating radiation. The results are applied to the abundances of HCO(+) and HNC in C-rich circumstellar envelopes. With standard parameters for IRC + 10216, the model is found to be consistent with the new upper limit to the antenna temperature of the J = 1-0 line of HCO(+) obtained with the IRAM 30-m telescope. The photochemical model provides a natural explanation of the relatively large ratio of HCN to HNC observed for C-rich circumstellar envelopes, and good agreement is obtained for the H(C-13)N/HNC antenna temperature ratio measured for IRC + 10216.

  12. Testing circumstellar disk lifetimes in young embedded clusters associated with the Vela Molecular Ridge

    CERN Document Server

    Massi, Fabrizio; Codella, Claudio; Testi, Leonardo; Vanzi, Leonardo; Gomes, Joana

    2010-01-01

    Context. The Vela Molecular Ridge hosts a number of young embedded star clusters in the same evolutionary stage. Aims. The main aim of the present work is testing whether the fraction of members with a circumstellar disk in a sample of clusters in the cloud D of the Vela Molecular Ridge, is consistent with relations derived for larger samples of star clusters with an age spread. Besides, we want to constrain the age of the young embedded star clusters associated with cloud D. Methods. We carried out L (3.78 microns) photometry on images of six young embedded star clusters associated with cloud D of the Vela Molecular Ridge, taken with ISAAC at the VLT. These data are complemented with the available HKs photometry. The 6 clusters are roughly of the same size and appear to be in the same evolutionary stage. The fraction of stars with a circumstellar disk was measured in each cluster by counting the fraction of sources displaying a NIR excess in colour-colour (HKsL) diagrams. Results. The L photometry allowed us...

  13. Tracing planet-induced structures in circumstellar disks using molecular lines

    CERN Document Server

    Ober, F; Uribe, A L; Klahr, H H

    2015-01-01

    Circumstellar disks are considered to be the birthplace of planets. Specific structures like spiral arms, gaps, and cavities are characteristic indicators of planet-disk interaction. Investigating these structures can provide insights into the growth of protoplanets and the physical properties of the disk. We investigate the feasibility of using molecular lines to trace planet-induced structures in circumstellar disks. Based on 3D hydrodynamic simulations of planet-disk interactions, we perform self-consistent temperature calculations and produce N-LTE molecular line velocity-channel maps and spectra of these disks using our new N-LTE line radiative transfer code Mol3D. Subsequently, we simulate ALMA observations using the CASA simulator. We consider two nearly face-on inclinations, 5 disk masses, 7 disk radii, and 2 different typical pre-main-sequence host stars (T Tauri, Herbig Ae). We calculate up to 141 individual velocity-channel maps for five molecules/isotopoloques in a total of 32 rotational transitio...

  14. Atomic and molecular hydrogen in the circumstellar envelopes of late-type stars

    Science.gov (United States)

    Glassgold, A. E.; Huggins, P. J.

    1983-01-01

    The distribution of atomic and molecular hydrogen in the expanding circumstellar envelopes of cool evolved stars is discussed. The main concern is to evaluate the effects of photodestruction of H2 by galactic UV radiation, including shielding of the radiation by H2 itself and by dust in the envelope. One of the most important parameters is the H/H2 ratio which is frozen out in the upper atmosphere of the star. For stars with photospheric temperatures greater than about 2500 K, atmospheric models suggest that the outflowing hydrogen is mainly atomic, whereas cooler stars should be substantially molecular. In the latter case, photodissociation of H2 and heavy molecules contribute to the atomic hydrogen content of the outer envelope. The presented estimates indicate that atomic hydrogen is almost at the limit of detection in the C-rich star IRC + 10216, and may be detectable in warmer stars. Failure to detect it would have important implications for the general understanding of circumstellar envelopes.

  15. A HOT MOLECULAR CIRCUMSTELLAR DISK AROUND THE MASSIVE PROTOSTAR ORION SOURCE I

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Tomoya; Honma, Mareki [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Kim, Mi Kyoung [Korea Astronomy and Space Science Institute, Hwaam-dong 61-1, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Kurono, Yasutaka, E-mail: tomoya.hirota@nao.ac.jp [Chile Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)

    2014-02-20

    We report new Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a circumstellar disk around Source I in Orion KL, an archetype of massive protostar candidates. We detected two ortho-H{sub 2}O lines at 321 GHz (10{sub 2,} {sub 9}-9{sub 3,} {sub 6}) and 336 GHz (ν{sub 2} = 1, 5{sub 2,} {sub 3}-6{sub 1,} {sub 6}) for the first time in Source I. The latter one is in a vibrationally excited state at the lower state energy of 2939 K, suggesting evidence of hot molecular gas close to Source I. The integrated intensity map of the 321 GHz line is elongated along the bipolar outflow while the 336 GHz line map is unresolved with a beam size of 0.''4. Both of these maps show velocity gradients perpendicular to the bipolar outflow. The velocity centroid map of the 321 GHz line implies a spatial and velocity structure similar to that of vibrationally excited SiO masers tracing the root of the outflow emanating from the disk surface. In contrast, the 336 GHz line is most likely emitting from the disk midplane with a diameter of 0.''2 (84 AU) as traced by radio continuum emission and a dark lane devoid of the vibrationally excited SiO maser emission. The observed velocity gradient and the spectral profile of the 336 GHz H{sub 2}O line can be reconciled with a model of an edge-on ring-like structure with an enclosed mass of >7 M{sub ☉} and an excitation temperature of >3000 K. The present results provide further evidence of a hot and neutral circumstellar disk rotating around Source I with a diameter of ∼100 AU scale.

  16. Diagnostics of circumstellar grains in geometric models I: structure and composition

    Science.gov (United States)

    Dawes, J. H. P.; Greaves, J. S.

    2017-01-01

    The spectral energy distribution (SED) of circumstellar dust has been extensively used to diagnose the sizes and compositions of dust grains. We show that variations of SED slope in the long wavelength (submillimetre to radio) regime can be used to diagnose the gross physical nature (and hence origins) of the dust, using simple geometric models that complement the use of detailed simulations. We consider two dust grain types: (i) clustered aggregates of smaller particles (monomers), and (ii) composite grains comprising ferrous inclusions within a silicate matrix. These types are intended to be analogous to fluffy cometary particles and fragments of compacted asteroids, respectively. Our results indicate that clusters of silicate grains produce a smooth SED, while composite grains with FeS inclusions produce an SED that has a pronounced drop at a wavelength an order of magnitude larger than the grain size, and is flatter at long wavelengths. As a test case, we compare the model predictions to flux measurements of the TW Hydrae disc. This SED shows a drop that only occurs in our models of compacted grains with inclusions. Since the TW Hya discs spans approximately 10-40 AU in radius, fluffy particles from comets were perhaps expected, as in the Sun's Kuiper belt.

  17. The Nature of Transition Circumstellar Disks I. The Ophiuchus Molecular Cloud

    CERN Document Server

    Cieza, Lucas A; Romero, Gisela A; Mora, Marcelo D; Merin, Bruno; Swift, Jonathan J; Orellana, Mariana; Williams, Jonathan P; Harvey, Paul M; Evans, Neal J

    2010-01-01

    We have obtained millimeter wavelength photometry, high-resolution optical spectroscopy and adaptive optics near-infrared imaging for a sample of 26 Spitzer-selected transition circumstellar disks. All of our targets are located in the Ophiuchus molecular cloud (d ~125 pc) and have Spectral Energy Distributions (SEDs) suggesting the presence of inner opacity holes. We use these ground-based data to estimate the disk mass, multiplicity, and accretion rate for each object in our sample in order to investigate the mechanisms potentially responsible for their inner holes. We find that transition disks are a heterogeneous group of objects, with disk masses ranging from < 0.6 to 40 M_JUP and accretion rates ranging from <1E-11 1E-7 M_solar/yr, but most tend to have much lower masses and accretion rates than "full disks" (i.e., disks without opacity holes). Eight of our targets have stellar companions: 6 of them are binaries and the other 2 are triple systems. In four cases, the stellar companions are close en...

  18. Circumstellar Dust Composition of M-type Mira Variables observed with phase with Spitzer

    Science.gov (United States)

    Güth, Tina; Creech-Eakman, Michelle J.

    2017-01-01

    Our research concerns the detailed dust composition surrounding Mira variables. These regular pulsators are easily observed in the optical and infrared due to their changes in brightness. Data on 25 galactic Miras were obtained with the Spitzer Infrared Spectrograph (IRS) instrument in 2008-09 under a GO program led by Creech-Eakman. The stars were observed approximately once per month to track changes in their brightness and spectral features. This dataset is unique for both the number of observations of each star and the high SNR due to their intrinsic brightness.The stars in this study span the range of oxygen- to carbon-rich, with each type exhibiting certain known solid state components (i.e dust). The current focus is on trying to reproduce dust spectral features in the short, high (SH) and long, high (LH) resolution wavelength range (~9.7 - 40 microns) of the oxygen-rich Miras (C/O features that provide insight into the stellar atmospheres and circumstellar dust composition with phase.Using the 1-D radiative transfer modeling code, DUSTY, we are attempting to identify several broad, and some sharp, dust features by including recently derived laboratory spectral indices for dust opacities. Prominent features seen in oxygen-rich Mira variables include potential identifications of water ice emission, as well as amorphous and crystalline silicates. We implement a greybody continuum obtained from MARCS, a 1-D hydrostatic spherical LTE model grid code, as the stellar continuum input for DUSTY. Using a greybody rather than a blackbody curve allows us to obtain a better agreement between the DUSTY spectrum and the Spitzer data. We will show these amended model fits that will improve the identification of the dust and other features in the spectra.

  19. Structure and Composition of Two Transitional Circumstellar Disks in Corona Australis

    CERN Document Server

    Hughes, A M; Wilner, D J; Meyer, M R; Carpenter, J M; Qi, C; Hales, A S; Casassus, S; Hogerheijde, M R; Mamajek, E E; Wolf, S; Henning, T; Silverstone, M D

    2010-01-01

    The late stages of evolution of the primordial circumstellar disks surrounding young stars are poorly understood, yet vital to constrain theories of planet formation. We consider basic structural models for the disks around two ~10 Myr-old members of the nearby RCrA association, RX J1842.9-3532 and RX J1852.3-3700. We present new arcsecond-resolution maps of their 230 GHz continuum emission from the Submillimeter Array and unresolved CO(3-2) spectra from the Atacama Submillimeter Telescope Experiment. By combining these data with broadband fluxes from the literature and infrared fluxes and spectra from the catalog of the Formation and Evolution of Planetary Systems (FEPS) Legacy program on the Spitzer Space Telescope, we assemble a multiwavelength data set probing the gas and dust disks. Using the Monte Carlo radiative transfer code RADMC to model simultaneously the SED and millimeter continuum visibilities, we derive basic dust disk properties and identify an inner cavity of radius 16 AU in the disk around R...

  20. Molecular anions in circumstellar envelopes, interstellar clouds and planetary atmospheres: quantum dynamics of formation and evolution

    CERN Document Server

    Carelli, Fabio

    2012-01-01

    For decades astronomers and astrophysicists believed that only positively charged ions were worthy of relevance in drawing the networks for possible chemical reactions in the interstellar medium, as well as in modeling the physical conditions in most of astrophysical environments. Thus, molecular negative ions received minor attention until their possible existence was observationally confirmed (discovery of the first interstellar anion, C6H-), about thirty years after the first physically reasonable proposal on their actual detection was theoretically surmised by E.Herbst. In an astrophysical context, their role should be then found in their involvement in the charge balance as well as in the chemical evolution of the considered environment: depending on their amount and on the global gas density, in fact, the possible evolutive scenario could be susceptible of marked variations on the estimated time needed for reaching the steady state, their presence having thus also important repercussions on the final ch...

  1. Spitzer IRS Observations of Class I/II Objects in Taurus: Composition, Temperature and Thermal History of the Circumstellar Ices

    CERN Document Server

    Zasowski, G; Watson, Dan M; Furlan, E; Bohac, C J; Hull, C; Green, J D

    2007-01-01

    We present observations of Taurus-Auriga Class I/II protostars obtained with the Spitzer InfraRed Spectrograph. Detailed spectral fits to the 6 and 15 micron features are made, using publicly-available laboratory data, to constrain the molecular composition, abundances, and levels of thermal processing along the lines of sight. We provide an inventory of the molecular environments observed, which have an average composition dominated by water ice with ~12% CO_2 (abundance relative to H_2O), >~2-9% CH_3OH, <~14% NH_3, ~4% CH_4, ~2% H_2CO, ~0.6% HCOOH, and ~0.5% SO_2. We find CO_2/H_2O ratios nearly equivalent to those observed in cold clouds and lines of sight toward the galactic center. The unidentified 6.8 micron profile shapes vary from source to source, and it is shown to be likely that even combinations of the most common candidates (NH_4+ and CH_3OH) are inadequate to explain the feature fully. We discuss correlations among SED spectral indices, abundance ratios, and thermally-processed ice fractions ...

  2. The molecular composition of ambers

    Science.gov (United States)

    Grimalt, J.O.; Simoneit, B.R.T.; Hatcher, P.G.; Nissenbaum, A.

    1988-01-01

    Bulk (elemental composition, IR, CP/MAS 13C NMR) and molecular (GC-MS) analyses have been performed on a series of ambers and resins derived from different locations (Dominican Republic, Philippines, Canada, Israel, New Zealand, Chile) having diverse botanical affinities (Araucariaceae, Hymenaea) and variable age (from Holocene to Early Cretaceous). No major differences have been observed from the elemental composition and the spectroscopic data; however, the molecular analyses of the solvent extractable fraction show that a specific mixture of components is present in each sample. These are mainly diterpenoid products that in general are also found abundantly in the higher plants from which the ambers and resins originate. Nevertheless, a direct relationship between major terpenoid constituents in fossil resins and precursor plant materials can only be established for the younger samples. Irrespective of the geographical or botanical origin of the ambers and resins, several common age-dependent molecular transformation trends can be recognized: (1) progressive loss of olefinic bonds (especially those located in exocyclic positions), (2) decrease of functionalized products, and (3) increasing proportion of aromatized components. However, even in the samples of older age (Cretaceous) the degree of aromatization is very low when compared with that of other higher-plant related materials such as fossilized woods or low rank coals. This indicates that maturation must involve essentially olefin polymerization processes instead of extensive aromatization. ?? 1988.

  3. Carbon fiber composite molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.D.; Rogers, M.R.; Williams, A.M.

    1996-06-01

    The removal of CO{sub 2} is of significance in several energy applications. The combustion of fossil fuels, such as coal or natural gas, releases large volumes of CO{sub 2} to the environment. Several options exist to reduce CO{sub 2} emissions, including substitution of nuclear power for fossil fuels, increasing the efficiency of fossil plants and capturing the CO{sub 2} prior to emission to the environment. All of these techniques have the attractive feature of limiting the amount of CO{sub 2} emitted to the atmosphere, but each has economic, technical, or societal limitations. In the production of natural gas, the feed stream from the well frequently contains contaminants and diluents which must be removed before the gas can enter the pipeline distribution system. Notable amongst these diluent gasses is CO{sub 2}, which has no calorific value. Currently, the pipeline specification calls for <2 mol % CO{sub 2} in the gas. Gas separation is thus a relevant technology in the field of energy production. A novel separation system based on a parametric swing process has been developed that utilizes the unique combination of properties exhibited by our carbon fiber composite molecular sieve (CFCMS).

  4. Molecular composition of IMP1 ribonucleoprotein granules

    DEFF Research Database (Denmark)

    Jønson, Lars; Vikesaa, Jonas; Krogh, Anders

    2007-01-01

    Localized mRNAs are transported to sites of local protein synthesis in large ribonucleoprotein (RNP) granules, but their molecular composition is incompletely understood. Insulin-like growth factor II mRNA-binding protein (IMP) zip code-binding proteins participate in mRNA localization, and in mo......Localized mRNAs are transported to sites of local protein synthesis in large ribonucleoprotein (RNP) granules, but their molecular composition is incompletely understood. Insulin-like growth factor II mRNA-binding protein (IMP) zip code-binding proteins participate in mRNA localization...

  5. Toward Comprehensive Physical/Chemical Understanding of the Circumstellar Environments - Simultaneous Probing of Each of the Ionized/Atomic/Molecular Gas and Dust Components

    Science.gov (United States)

    Ueta, Toshiya

    We propose to continue our successful investigations into simultaneous probing of each of the ionized/atomic/molecular gas and dust components in planetary nebulae using primarily far-IR broadband images and spatially-resolved spectroscopic data cubes obtained with the Herschel Space Observatory to enhance our understanding of the circumstellar environments. This research originally started as the Herschel Planetary Nebula Survey (HerPlaNS) - an open time 1 program of the Herschel Space Observatory - in which 11 high-excitation PNs were observed to study the nebular energetics that involves very hot X-ray emitting plasma to very cold dust grains, whose density ranges over 3 to 4 orders of magnitude and temperature ranges over 7 orders of magnitude. The HerPlaNS data include broadband maps, IFU spectral data cubes, and bolometer array spectral data cubes covering 50 to 670 microns. Because of the sheer volume and complexity of the data set, the original funding was exhausted almost exclusively to the initial data reduction and not much to the subsequent science analysis. However, we managed to perform a nearly full science analysis for one target, NGC 6781, for which the broadband maps confirm the nearly pole-on barrel structure of the amorphous carbonrich dust shell and the surrounding halo having temperatures of 26-40 K. We also demonstrated that spatially resolved far-IR line diagnostics would yield the (Te, ne) profiles, from which distributions of ionized, atomic, and molecular gases can be determined. Direct comparison of the dust and gas column mass maps constrained by the HerPlaNS data allowed to construct an empirical gas-to-dust mass ratio map, which shows a range of ratios with the median of 195 with a standard deviation of 110. The analysis also yielded estimates of the total mass of the shell to be 0.86 M_sun, consisting of 0.54 M_sun of ionized gas, 0.12 M_sun of atomic gas, 0.2 M_sun of molecular gas, and 0.004 M_sun of dust grains. These estimates

  6. The Origin and Formation of the Circumstellar Disk

    CERN Document Server

    Machida, Masahiro N

    2010-01-01

    The formation and evolution of the circumstellar disk in the collapsing molecular cloud is investigated from the prestellar stage resolving both the molecular cloud core and the protostar itself. In the collapsing cloud, the first adiabatic core appears prior to the protostar formation. Reflecting the thermodynamics of the collapsing gas, the first core is much more massive than the protostar. When the molecular cloud has no angular momentum, the first core falls onto the protostar and disappears a few years after the protostar formation. On the other hand, when the molecular cloud has an angular momentum, the first core does not disappear even after the protostar formation, and directly evolves into the circumstellar disk with a Keplerian rotation. There are two paths for the formation of the circumstellar disk. When the initial cloud has a considerably small rotational energy, two nested disks appear just after the protostar formation. During the early main accretion phase, the inner disk increases its size...

  7. Interstellar and circumstellar fullerenes

    CERN Document Server

    Bernard-Salas, J; Jones, A P; Peeters, E; Micelotta, E R; Otsuka, M; Sloan, G C; Kemper, F; Groenewegen, M

    2014-01-01

    Fullerenes are a particularly stable class of carbon molecules in the shape of a hollow sphere or ellipsoid that might be formed in the outflows of carbon stars. Once injected into the interstellar medium (ISM), these stable species survive and are thus likely to be widespread in the Galaxy where they contribute to interstellar extinction, heating processes, and complex chemical reactions. In recent years, the fullerene species C60 (and to a lesser extent C70) have been detected in a wide variety of circumstellar and interstellar environments showing that when conditions are favourable, fullerenes are formed efficiently. Fullerenes are the first and only large aromatics firmly identified in space. The detection of fullerenes is thus crucial to provide clues as to the key chemical pathways leading to the formation of large complex organic molecules in space, and offers a great diagnostic tool to describe the environment in which they reside. Since fullerenes share many physical properties with PAHs, understand...

  8. The circumstellar envelope of the C-rich post-AGB star HD 56126

    NARCIS (Netherlands)

    Hony, S; Tielens, AGGM; Waters, LBFM; de Koter, A

    2003-01-01

    We present a detailed study of the circumstellar envelope of the post-asymptotic giant branch "21 mum object" HD 56126. We build a detailed dust radiative transfer model of the circumstellar envelope in order to derive the dust composition and mass, and the mass-loss history of the star. To model th

  9. CONFIRMATION OF CIRCUMSTELLAR PHOSPHINE

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, M.; Cernicharo, J. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco (Spain); Decin, L. [Sterrenkundig Instituut Anton Pannekoek, University of Amsterdam, Science Park 904, NL-1098 Amsterdam (Netherlands); Encrenaz, P. [LERMA, Observatoire de Paris, 61 Av. de l' Observatoire, F-75014 Paris (France); Teyssier, D. [European Space Astronomy Centre, Urb. Villafranca del Castillo, P.O. Box 50727, E-28080 Madrid (Spain)

    2014-08-01

    Phosphine (PH{sub 3}) was tentatively identified a few years ago in the carbon star envelopes IRC +10216 and CRL 2688 from observations of an emission line at 266.9 GHz attributable to the J = 1-0 rotational transition. We report the detection of the J = 2-1 rotational transition of PH{sub 3} in IRC +10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH{sub 3}. Radiative transfer calculations indicate that infrared pumping in excited vibrational states plays an important role in the excitation of PH{sub 3} in the envelope of IRC +10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R {sub *} from the star, with an abundance of 10{sup –8} relative to H{sub 2}. The detection of PH{sub 3} challenges chemical models, none of which offer a satisfactory formation scenario. Although PH{sub 3} holds just 2% of the total available phosphorus in IRC +10216, it is, together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggesting that it could also be an important phosphorus species in other astronomical environments. This is the first unambiguous detection of PH{sub 3} outside the solar system, and is a further step toward a better understanding of the chemistry of phosphorus in space.

  10. Confirmation of circumstellar phosphine

    CERN Document Server

    Agundez, M; Decin, L; Encrenaz, P; Teyssier, D

    2014-01-01

    Phosphine (PH3) was tentatively identified a few years ago in the carbon star envelopes IRC+10216 and CRL2688 from observations of an emission line at 266.9 GHz attributable to the J=1-0 rotational transition. We report the detection of the J=2-1 rotational transition of PH3 in IRC+10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH3. Radiative transfer calculations indicate that infrared pumping to excited vibrational states plays an important role in the excitation of PH3 in the envelope of IRC+10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R* from the star, with an abundance of 1e-8 relative to H2. The detection of PH3 challenges chemical models, none of which offers a satisfactory formation scenario. Although PH3 locks just 2 % of the total available phosphorus in IRC+10216, it is together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggest...

  11. Molecular studies of Planetary Nebulae

    OpenAIRE

    Zhang, Yong

    2016-01-01

    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition ...

  12. Mean gas opacity for circumstellar environments and equilibrium temperature degeneracy

    CERN Document Server

    Malygin, M G; Klahr, H; Dullemond, C P; Henning, Th

    2014-01-01

    In a molecular cloud dust opacity typically dominates over gas opacity, yet in the vicinities of forming stars dust is depleted, and gas is the sole provider of opacity. In the optically thin circumstellar environments the radiation temperature cannot be assumed to be equal to the gas temperature, hence the two-temperature Planck means are necessary to calculate the radiative equilibrium. By using the two-temperature mean opacity one does obtain the proper equilibrium gas temperature in a circumstellar environment, which is in a chemical equilibrium. A careful consideration of a radiative transfer problem reveals that the equilibrium temperature solution can be degenerate in an optically thin gaseous environment. We compute mean gas opacities based on the publicly available code DFSYNTHE by Kurucz and Castelli. We performed the calculations assuming local thermodynamic equilibrium and an ideal gas equation of state. The values were derived by direct integration of the high-resolution opacity spectrum. We prod...

  13. Polarimetric microlensing of circumstellar disks

    CERN Document Server

    Sajadian, Sedighe

    2015-01-01

    We study the benefits of polarimetry observations of microlensing events to detect and characterize circumstellar disks around the microlensed stars located at the Galactic bulge. These disks which are unresolvable from their host stars make a net polarization effect due to their projected elliptical shapes. Gravitational microlensing can magnify these signals and make them be resolved. The main aim of this work is to determine what extra information about these disks can be extracted from polarimetry observations of microlensing events in addition to those given by photometry ones. Hot disks which are closer to their host stars are more likely to be detected by microlensing, owing to more contributions in the total flux. By considering this kind of disks, we show that although the polarimetric efficiency for detecting disks is similar to the photometric observation, but polarimetry observations can help to constraint the disk geometrical parameters e.g. the disk inner radius and the lens trajectory with resp...

  14. Delamination toughness of ultra high molecular weight polyethylene (UHMWPE composites

    Directory of Open Access Journals (Sweden)

    Casas-Rodriguez J.P.

    2012-08-01

    Full Text Available Ultra high molecular weight polyethylene (UHMWPE fibre reinforced composites are an important group of material for armours solutions, where their unique combination of properties could be utilized. A commonly observed failure mode in this kind of unidirectional laminated composites under impact ballistic is delamination between the composite layers. In the present study, an investigation on the delamination toughness behaviour exhibited by UHMWPE composites laminated was made. The interlaminar Mode II critical strain energy release rates of (UHMWPE fibre reinforced composites were characterized using the End Notch Flexural (ENF test. Critical strain energy release rate was obtained from the load – deflection test data using the beam theory expression. It was found that the energy release rate of the composite exhibited a very low value of around 60J/m2 using a moulding pressure of approximately 1200 psi. In order to analyse the delamination resistance of composite, the effects of changing the manufacture process variables and the use of a thermoplastic adhesive film in the composites were investigated. The composite laminates were produced by hot compressing moulding using a film-stacking procedure. It was found that the damage resistance of the UHMWPE composite was influenced by the manufacture method, which affects the Mode II interlaminar fracture toughness and the ballistic response of composites.

  15. Composition of cardiolipin molecular species in Escherichia coli.

    OpenAIRE

    Yokota, K; Kanamoto, R.; Kito, M

    1980-01-01

    The composition of the molecular species of acidic phospholipids in Escherichia coli B during the late exponential growth phase at 37 degrees C was determined. Two phosphatidyl groups of cardiolipin, the 3-(3-sn-phosphatidyl) and 1-(3-sn-phosphatidyl) moieties of cardiolipin, were isolated by limited hydrolysis with phospholipase C. No significant difference in the composition of the molecular species was found between the 3-(3-sn-phosphatidyl) and 1-(3-sn-phosphatidyl) moieties. On the other...

  16. Grand Design Spiral Arms in A Young Forming Circumstellar Disk

    CERN Document Server

    Tomida, Kengo; Hosokawa, Takashi; Sakurai, Yuya; Lin, Chia Hui

    2016-01-01

    We study formation and long-term evolution of a circumstellar disk in a collapsing molecular cloud core using a resistive magnetohydrodynamic simulation. While the formed circumstellar disk is initially small, it grows as accretion continues and its radius becomes as large as 200 AUs toward the end of the Class-I phase. A pair of grand-design spiral arms form due to gravitational instability in the disk, and they transfer angular momentum in the highly resistive disk. Although the spiral arms disappear in a few rotations as expected in a classical theory, new spiral arms form recurrently as the disk soon becomes unstable again by gas accretion. Such recurrent spiral arms persist throughout the Class-0 and I phase. We then perform synthetic observations and compare our model with a recent high-resolution observation of a young stellar object Elias 2-27, whose circumstellar disk has grand design spiral arms. We find an excellent agreement between our theoretical model and the observation. Our model suggests tha...

  17. Small carbon chains in circumstellar envelopes

    CERN Document Server

    Hargreaves, R J; Bernath, P F

    2014-01-01

    Observations were made for a number of carbon-rich circumstellar envelopes using the Phoenix spectrograph on the Gemini South telescope to determine the abundance of small carbon chain molecules. Vibration-rotation lines of the $\

  18. Hydrophobic composition based on mixed-molecular weight polyethylene

    Science.gov (United States)

    Gorlenko, Nikolay; Debelova, Natalya; Sarkisov, Yuriy; Volokitin, Gennadiy; Zavyalova, Elena; Lapova, Tatyana

    2016-01-01

    The paper presents investigations of compositions based on low and high molecular weight polyethylene so as to synthesize a hydrophobic composition for moisture protection of timber. X-ray phase analysis and measurements of the tear-off force of hydrophobic coating needed to apply to the timber surface and the limiting wetting angle are carried out to detect the hydrophobic, adhesive, electrophysical, and physicochemical properties of compositions. Kinetic dependencies are given for moisture absorption of timber specimens. It is shown that the preliminary formation of the texture by the surface patterning or its treatment with low-temperature plasma with the following protective coating results in the improvement of hydrophobic properties of the suggested compositions. These compositions can be used in the capacity of water repellents to protect building materials from moisture including restoration works.

  19. The Structure of Brown Dwarf Circumstellar Disks

    OpenAIRE

    Walker, Christina; Wood, Kenneth; Lada, C. J.; Robitaille, Thomas; Bjorkman, J. E.; Whitney, Barbara

    2004-01-01

    We present synthetic spectra for circumstellar disks that are heated by radiation from a central brown dwarf. Under the assumption of vertical hydrostatic equilibrium, our models yield scaleheights for brown dwarf disks in excess of three times those derived for classical T Tauri (CTTS) disks. If the near-IR excess emission observed from brown dwarfs is indeed due to circumstellar disks, then the large scaleheights we find could have a significant impact on the optical and near-IR detectabili...

  20. Tracing Planets in Circumstellar Discs

    Directory of Open Access Journals (Sweden)

    Uribe Ana L.

    2013-04-01

    Full Text Available Planets are assumed to form in circumstellar discs around young stellar objects. The additional gravitational potential of a planet perturbs the disc and leads to characteristic structures, i.e. spiral waves and gaps, in the disc density profile. We perform a large-scale parameter study on the observability of these planet-induced structures in circumstellar discs in the (submm wavelength range for the Atacama Large (SubMillimeter Array (ALMA. On the basis of hydrodynamical and magneto-hydrodynamical simulations of star-disc-planet models we calculate the disc temperature structure and (submm images of these systems. These are used to derive simulated ALMA maps. Because appropriate objects are frequent in the Taurus-Auriga region, we focus on a distance of 140 pc and a declination of ≈ 20°. The explored range of star-disc-planet configurations consists of six hydrodynamical simulations (including magnetic fields and different planet masses, nine disc sizes with outer radii ranging from 9 AU to 225 AU, 15 total disc masses in the range between 2.67·10-7 M⊙ and 4.10·10-2 M⊙, six different central stars and two different grain size distributions, resulting in 10 000 disc models. At almost all scales and in particular down to a scale of a few AU, ALMA is able to trace disc structures induced by planet-disc interaction or the influence of magnetic fields in the wavelength range between 0.4...2.0 mm. In most cases, the optimum angular resolution is limited by the sensitivity of ALMA. However, within the range of typical masses of protoplane tary discs (0.1 M⊙...0.001 M⊙ the disc mass has a minor impact on the observability. At the distance of 140 pc it is possible to resolve discs down to 2.67·10-6 M⊙ and trace gaps in discs with 2.67·10-4 M⊙ with a signal-to-noise ratio greater than three. In general, it is more likely to trace planet-induced gaps in magneto-hydrodynamical disc models, because gaps are wider in the presence of

  1. A composite molecular phylogeny of living lemuroid primates.

    Science.gov (United States)

    DelPero, Massimiliano; Pozzi, Luca; Masters, Judith C

    2006-01-01

    Lemuroid phylogeny is a source of lively debate among primatologists. Reconstructions based on morphological, physiological, behavioural and molecular data have yielded a diverse array of tree topologies with few nodes in common. In the last decade, molecular phylogenetic studies have grown in popularity, and a wide range of sequences has been brought to bear on the problem, but consensus has remained elusive. We present an analysis based on a composite molecular data set of approx. 6,400 bp assembled from the National Center for Biotechnology Information (NCBI) database, including both mitochondrial and nuclear genes, and diverse analytical methods. Our analysis consolidates some of the nodes that were insecure in previous reconstructions, but is still equivocal on the placement of some taxa. We conducted a similar analysis of a composite data set of approx. 3,600 bp to investigate the controversial relationships within the family Lemuridae. Here our analysis was more successful; only the position of Eulemur coronatus remained uncertain.

  2. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    Science.gov (United States)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  3. Buckling induced delamination of graphene composites through hybrid molecular modeling

    Science.gov (United States)

    Cranford, Steven W.

    2013-01-01

    The efficiency of graphene-based composites relies on mechanical stability and cooperativity, whereby separation of layers (i.e., delamination) can severely hinder performance. Here we study buckling induced delamination of mono- and bilayer graphene-based composites, utilizing a hybrid full atomistic and coarse-grained molecular dynamics approach. The coarse-grain model allows exploration of an idealized model material to facilitate parametric variation beyond any particular molecular structure. Through theoretical and simulation analyses, we show a critical delamination condition, where ΔD∝kL4, where ΔD is the change in bending stiffness (eV), k the stiffness of adhesion (eV/Å4), and L the length of the adhered section (Å).

  4. Molecular Composites: Processing, Post-Treatment and Mechanics

    Science.gov (United States)

    1987-07-01

    Mechanical Analyzer was used. 3.2 Articulated Matricies Several isotropic solutions (2.5, 3.0, and 3.2 wt%) were made from PBT36 and ABPBI in MSA at a fixed...built to address this problem. 22 3.3 Thermoplastic Matricies Thermoplastic matrix molecular composites could potentially be melt processed. This would...provide obvious advantages over PBT which is, of course, limited to solution processing. Several candidates were considered for matricies . The only re

  5. The photodissociation of CO in circumstellar envelopes

    Science.gov (United States)

    Mamon, G. A.; Glassgold, A. E.; Huggins, P. J.

    1988-01-01

    The CO photodissociation rate for the unshielded ISM is calculated using recent laboratory results which confirm that photodissociation occurs by way of line absorption. A value of 2.0 x 10 to the -10th/s, an order of magnitude higher than the rate used in the past, is obtained. The new rate and a treatment of the radiative transfer and shielding are used to develop a theory for the CO abundance in the circumstellar envelopes of cool, evolved stars, and results are presented on the spatial variation of CO, C, and C(+). It is shown that these distributions play important roles in determining the observational properties of circumstellar envelopes.

  6. The Velocity Structure of SN 1987A's Outer Circumstellar Envelope

    Science.gov (United States)

    Crotts, A. P. S.; Heathcote, S. R.

    1997-12-01

    We present high-resolution optical spectroscopy, (obtained with the CTIO 4-meter/echelle spectrograph over many epochs between 1989 and 1997) of the circumstellar nebula of SN 1987A, including the outer rings (within 3 arcsec of the SN), the inner (equatorial) ring, and fainter features at larger radii never studied before spectroscopically. We report velocity displacements for portions of the outer rings, up to 26 km s(-1) with respect the SN centroid velocity, with blueshifted components in the location of the southern outer ring and the redshifted portions of the northern outer ring. The largest shifts are near the SN, as predicted by a model in which the outer rings are the crowns of an expanding, bipolar nebula with the inner ring at its waist. We also confirm that the inner ring shows a velocity full-width of about 13 km s(-1) , which, along with the geometry of the rings and our outer ring velocity measurements, allows us to estimate a characteristic timescale of about 20,000 y for each of the three rings, implying that all are coeval. This contrasts with measurements by others of compositional ratios in the inner versus outer rings indicating that they were, perhaps, ejected at different times from the progenitor's star's outer envelope. Additionally, we measure the velocity of low surface brightness features at larger radii indicating that circumstellar material even farther from the SN was ejected up to 400,000 y before the explosion. Finally, we note the presence of transient emission features within the circumstellar nebula and describe their behaviour, and consider what implications our observations may have for the coming transformation of this nebula into Supernova Remnant 1987A.

  7. Molecular composites and polymer blends containing ionic polymers

    Science.gov (United States)

    Tsou, Li-Chun

    1997-11-01

    Polymer blends are generally immiscible due to the unfavorable thermodynamics of mixing. By the introduction of ion-dipole interaction, mechanical properties of the PPTA anion/polar polymers (such as PVP, PEO and PPrO) molecular composites have been investigated in relation to their miscibility and microstructural morphology. Optical clarity observed in the glassy PPTA anion/PVP system suggest the presence of miscibility, since the refractive indices between the two components are quite different, nsb{PVP} = 1.509 and nsb{PPTA} = 1.644. In general, the difference greater than 0.01 is sufficient to make blends opaque. DSC measurements, showing a composition dependent Tsb{g} and a melting temperature depression, also indicate the miscibility achieved at the molecular level, about 50-100 A. By using the Hoffman-Weeks plot, a negative Flory-Huggins interaction parameter, chi = -1.10, is obtained for the PPTA anion/PEO molecular composites. An irregular spherulitic pattern and a reduced crystal size suggest that PPTA anion is intimately mixed with the amorphous PEO, both inter- and intra-spherulitically. Molecular composites exhibit not only an enhanced tensile strength and modulus, but also a greater fracture toughness, Ksb{IC}, e.g., an 80% increase at a 2 wt% PPTA anion addition. An enhanced tensile strength associated with a reduced crystallinity suggests that PPTA anion is the major contributor to the superior tensile properties instead of the crystalline phase. Upon addition of PPTA anion to PPrO, a slower relaxation rate and a better thermal stability are observed. Significant enhancement is found when the monovalent K salt is replaced with a divalent Ca salt. The molecular reinforcement achieved via ion-dipole interactions is more effective than the rigid filler effect obtained in the non-ionic PPTA/PPrO blend: e.g., a modulus enhancement of 814% vs. 286%, as compared with the value for PPrO. Two phase systems with microphase separation are developed since many

  8. Isothermal Circumstellar Dust Shell Model for Teaching

    Science.gov (United States)

    Robinson, G.; Towers, I. N.; Jovanoski, Z.

    2009-01-01

    We introduce a model of radiative transfer in circumstellar dust shells. By assuming that the shell is both isothermal and its thickness is small compared to its radius, the model is simple enough for students to grasp and yet still provides a quantitative description of the relevant physical features. The isothermal model can be used in a…

  9. The complex circumstellar environment of HD 142527

    NARCIS (Netherlands)

    Verhoeff, A.P.; Min, M.; Pantin, E.; Waters, L.B.F.M.; Tielens, A.G.G.M.; Honda, M.; Fujiwara, H.; Bouwman, J.; van Boekel, R.; Dougherty, S.M.; de Koter, A.; Dominik, C.; Mulders, G.D.

    2011-01-01

    Context. The recent findings of gas giant planets around young A-type stars suggest that disks surrounding Herbig Ae/Be stars will develop planetary systems. An interesting case is HD 142527, for which previous observations revealed a complex circumstellar environment and an unusually high ratio of

  10. The complex circumstellar environment of HD 142527

    NARCIS (Netherlands)

    Verhoeff, A. P.; Min, M.; Pantin, E.; Waters, L.B.F.M.; Tielens, A. G. G. M.; Honda, M.; Fujiwara, H.; Bouwman, J.; Van Boekel, R.; Dougherty, S.M.; de Koter, A.; Dominik, C.; Mulders, G. D.

    2011-01-01

    Context. The recent findings of gas giant planets around young A-type stars suggest that disks surrounding Herbig Ae/Be stars will develop planetary systems. An interesting case is HD142527, for which previous observations revealed a complex circumstellar environment and an unusually high ratio of i

  11. The complex circumstellar environment of HD142527

    NARCIS (Netherlands)

    Verhoeff, A. P.; Min, M.; Pantin, E.; Waters, L. B. F. M.; Tielens, A. G. G. M.; Honda, M.; Fujiwara, H.; Bouwman, J.; van Boekel, R.; Dougherty, S. M.; de Koter, A.; Dominik, C.; Mulders, G. D.

    2011-01-01

    Context. The recent findings of gas giant planets around young A-type stars suggest that disks surrounding Herbig Ae/Be stars will develop planetary systems. An interesting case is HD142527, for which previous observations revealed a complex circumstellar environment and an unusually high ratio of i

  12. Molecular profiling of permafrost soil organic carbon composition and degradation

    Science.gov (United States)

    Gu, B.; Mann, B.

    2014-12-01

    Microbial degradation of soil organic matter (SOM) is a key process for terrestrial carbon (C) cycling, though the dynamics of these transformations remain unclear at the molecular level. This study reports the application of ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to profile molecular components of Arctic SOM collected from the surface water and the mineral horizon of a low-centered polygon soil at Barrow Environmental Observatory (BEO), Barrow, Alaska. Soil samples were subjected to anaerobic warming experiments for a period of 40 days, and the SOM was extracted before and after the incubation to determine the components of organic C that were degraded over the course of the study. A CHO index based on molecular composition data was utilized to codify SOM components according to their observed degradation potential. Carbohydrate- and lignin-like compounds in the water-soluble fraction (WSF) demonstrated a high degradation potential, while structures with similar stoichiometries in the base-soluble fraction (BSF) were not readily degraded. The WSF of SOM also shifted to a wider range of measured molecular masses including an increased prevalence of larger compounds, while the size distribution of compounds in the BSF changed little over the same period. Additionally, the molecular profiling data indicated an apparently ordered incorporation of organic nitrogen in the BSF immobilized as primary and secondary amines, possibly as components of N-heterocycles, which may provide insight into nitrogen immobilization or mobilization processes in SOM. Our study represents an important step forward for studying Arctic SOM with improved understanding of the molecular properties of soil organic C and the ability to represent SOM in climate models that will predict the impact of climate change on soil C and nutrient cycling.

  13. Molecular Weight and Monosaccharide Composition of Astragalus Polysaccharides

    Directory of Open Access Journals (Sweden)

    Pei-Pei Wang

    2008-10-01

    Full Text Available Two polysaccharides (APS-I and APS-II were isolated from the water extract of Radix Astragali and purified through ethanol precipitation, deproteination and by ion-exchange and gel-filtration chromatography. Their molecular weight was determined using high performance liquid chromatography and gel permeation chromatography (HPLC-GPC and their monosaccharide composition was analyzed by TLC and HPLC methods, using a refractive index detector (RID and an NH2 column. It was shown that APS-I consisted of arabinose and glucose and APS-II consisted of rhamnose, arabinose and glucose, in a molar ratio of 1:3.45 and 1:6.25:17.86, respectively. The molecular weights (Mw of APS-I and APS-II were 1,699,100 Da and 1,197,600 Da, respectively.

  14. B[e] Supergiants' circumstellar environment: disks or rings?

    CERN Document Server

    Maravelias, G; Aret, A; Cidale, L; Arias, M L; Fernandes, M Borges

    2016-01-01

    B[e] Supergiants are a phase in the evolution of some massive stars for which we have observational evidence but no predictions by any stellar evolution model. The mass-loss during this phase creates a complex circumstellar environment with atomic, molecular, and dust regions usually found in rings or disk-like structures. However, the detailed structure and the formation of the circumstellar environment are not well-understood, requiring further investigation. To address that we initiated an observing campaign to obtain a homogeneous set of high-resolution spectra in both the optical and NIR (using MPG-ESO/FEROS, GEMINI/Phoenix and VLT/CRIRES, respectively). We monitor a number of Galactic B[e] Supergiants, for which we examined the [OI] and [CaII] emission lines and the bandheads of the CO and SiO molecules to probe the structure and the kinematics of their formation regions. We find that the emission from each tracer forms either in a single or in multiple equatorial rings.

  15. On the gas temperature in circumstellar disks around A stars

    CERN Document Server

    Kamp, I; Kamp, Inga; Zadelhoff, Gerd-Jan van

    2001-01-01

    In circumstellar disks or shells it is often assumed that gas and dust temperatures are equal where the latter is determined by radiative equilibrium. This paper deals with the question whether this assumption is applicable for tenous circumstellar disks around young A stars. In this paper the thin hydrostatic equilibrium models described by Kamp & Bertoldi (2000) are combined with a detailed heating/cooling balance for the gas. The most important heating and cooling processes are heating through infrared pumping, heating due to the drift velocity of dust grains, and fine structure and molecular line cooling. Throughout the whole disk gas and dust are not efficiently coupled by collisions and hence their temperatures are quite different. Most of the gas in the disk models considered here stays well below 300 K. In the temperature range below 300 K the gas chemistry is not much affected by T_gas and therefore the simplifying approximation T_gas = T_dust can be used for calculating the chemical structure of...

  16. B[e] Supergiants' Circumstellar Environment: Disks or Rings?

    Science.gov (United States)

    Maravelias, G.; Kraus, M.; Aret, A.; Cidale, L.; Arias, M. L.; Borges Fernandes, M.

    2017-02-01

    B[e] supergiants are a phase in the evolution of some massive stars for which we have observational evidence but no predictions by any stellar evolution model. The mass-loss during this phase creates a complex circumstellar environment with atomic, molecular, and dust regions usually found in rings or disk-like structures. However, the detailed structure and the formation of the circumstellar environment are not well-understood, requiring further investigation. To address that we initiated an observing campaign to obtain a homogeneous set of high-resolution spectra in both the optical and NIR (using MPG-ESO/FEROS, GEMINI /Phoenix and VLT/CRIRES, respectively). We monitor a number of Galactic B[e] supergiants, for which we examined the [O I] and [Ca II] emission lines and the bandheads of the CO and SiO molecules to probe the structure and the kinematics of their formation regions. We find that the emission from each tracer forms either in a single or multiple equatorial rings.

  17. Molecular bonding characteristics of Self-plasticized bamboo composites.

    Science.gov (United States)

    Xue, Qiu; Peng, Wanxi; Ohkoshi, Makoto

    2014-07-01

    Bamboo biomass fibers were gradually separated, prepared, and then self-plasticized for immune composites. The molecular bonding characteristics of the self-plasticized bamboo composites were investigated by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), and thermo gravimetric analysis (TG). The important results were as follows. (1) During self-plasticizing of bamboo biomass, the cross-linking between celluloses mainly depended on carboxylic acid anhydrides and carboxylic acid esters, that between cellulose and lignin depended on carboxylic acid esters and C=O groups of aliphatic hydrocarbons, and that of hemi cellulose had a ether bond and ester bond bridging effect between lignin and cellulose. The cross-linking effects of hemi cellulose, lignin, and cellulose could be stacked and coupled. (2) After self-plasticization, the crystallinity of the lingo cellulosic biomass, lignin cellulose, and cellulose were increased by 5.8%, 2.28%, and 11.67%, respectively. While the TG curves of all samples were basically similar in shape, the weight loss rate turning points of the self-plasticized samples were delayed compared with those of the bamboo biomass fibers. This result demonstrated that the molecular integration of the bamboo biomass was increased after self-plasticization, and confirmed that bond cross-linking between the hemi cellulose, lignin and cellulose of the bamboo biomass had occurred.

  18. Bayesian modelling of compositional heterogeneity in molecular phylogenetics.

    Science.gov (United States)

    Heaps, Sarah E; Nye, Tom M W; Boys, Richard J; Williams, Tom A; Embley, T Martin

    2014-10-01

    In molecular phylogenetics, standard models of sequence evolution generally assume that sequence composition remains constant over evolutionary time. However, this assumption is violated in many datasets which show substantial heterogeneity in sequence composition across taxa. We propose a model which allows compositional heterogeneity across branches, and formulate the model in a Bayesian framework. Specifically, the root and each branch of the tree is associated with its own composition vector whilst a global matrix of exchangeability parameters applies everywhere on the tree. We encourage borrowing of strength between branches by developing two possible priors for the composition vectors: one in which information can be exchanged equally amongst all branches of the tree and another in which more information is exchanged between neighbouring branches than between distant branches. We also propose a Markov chain Monte Carlo (MCMC) algorithm for posterior inference which uses data augmentation of substitutional histories to yield a simple complete data likelihood function that factorises over branches and allows Gibbs updates for most parameters. Standard phylogenetic models are not informative about the root position. Therefore a significant advantage of the proposed model is that it allows inference about rooted trees. The position of the root is fundamental to the biological interpretation of trees, both for polarising trait evolution and for establishing the order of divergence among lineages. Furthermore, unlike some other related models from the literature, inference in the model we propose can be carried out through a simple MCMC scheme which does not require problematic dimension-changing moves. We investigate the performance of the model and priors in analyses of two alignments for which there is strong biological opinion about the tree topology and root position.

  19. Discovery of a Circumstellar Disk in the Lagoon Nebula

    Science.gov (United States)

    1997-04-01

    photos as tear-drop shaped, bright-rimmed areas with the cusps of the ionised regions aligned towards the exciting star. Such a region is also a very compact source of radio emission. Clearly, the harsh environment in which these disks reside does not favour planet formation. These findings were facilitated by the fact that, at a distance of `only' 1500 lightyears (about 450 parsec), the Orion Nebula is the closest site of high-mass star formation. Furthermore, many circumstellar disks around stars in this nebula are seen in silhouette against a bright and uniform background and are therefore comparatively easy to detect. The Lagoon Nebula In principle, similar phenomena should occur in any giant molecular cloud that gives rise to the birth of massive stars. However, the detection of such disks in other clouds would be very difficult, first of all because of their much larger distance. The Lagoon Nebula (M8) is located four times further away than the Orion Nebula and it is also a site of recent high-mass star formation. Its brightest part constitutes a conspicuous region of ionised hydrogen gas (an `HII-region') dubbed `The Hourglass' because of the resemblance. The gas in this area is ionised by the action of the nearby, hot star Herschel 36 (Her 36) . High-resolution radio maps show that the emission from the ionised gas peaks at 2.7 arcsec southeast of Her 36. An early explanation was that this emission is due to an unseen, massive star that is deeply embedded in the gas and dust and which is causing an ultra-compact HII-region (UCHR), catalogued as G5.97-1.17 according to its galactic coordinates. High-resolution images from ESO During a detailed investigation of such ultra-compact HII regions, Bringfried Stecklum and his colleagues found that, unlike ordinary UCHRs, this particular object is visible on optical images obtained with the HST Wide-Field Planetary Camera (HST-WFPC). This means that, contrary to the others, it is not deeply embedded in the nebula - its

  20. Six White Dwarfs with Circumstellar Silicates

    CERN Document Server

    Jura, M; Zuckerman, B

    2008-01-01

    Spitzer Space Telescope spectra reveal 10 micron silicate emission from circumstellar dust orbiting six externally-polluted white dwarfs. Micron-size glasses with an olivine stoichiometry can account for the distinctively broad wings that extend to 12 microns; these particles likely are produced by tidal-disruption of asteroids. The absence of infrared PAH features is consistent with a scenario where extrasolar rocky planets are assembled from carbon-poor solids.

  1. The photochemistry of carbon-rich circumstellar shells

    Science.gov (United States)

    Huggins, P. J.; Glassgold, A. E.

    1982-01-01

    The effect of ambient ultraviolet photons on the chemical structure of carbon-rich, circumstellar envelopes is investigated with a simple formulation of the time-dependent, photochemical rate equations valid for optically thick shells. Molecules injected into the shielded inner envelope are broken down when they reach the outer regions where ambient ultraviolet photons can penetrate. A quantitative description of the abundance variations is obtained for the case of uniform expansion by detailed consideration of the shielding of the radiation by the dust and molecules of the envelope. Representative results are presented to illustrate the role of shielding in defining the extent of molecular envelopes, the formation of C I and C II shells by photodestruction of carbon-bearing molecules, and the development of layered chemical structures from the photobreakup of polyatomic molecules. Photochemistry makes the outer parts of thick, carbon-rich envelopes into complex regions containing radicals, ions, and atoms which are of considerable observational and theoretical interest.

  2. Process for attaching molecular wires and devices to carbon nanotubes and compositions thereof

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2008-01-01

    The present invention is directed towards processes for covalently attaching molecular wires and molecular electronic devices to carbon nanotubes and compositions thereof. Such processes utilize diazonium chemistry to bring about this marriage of wire-like nanotubes with molecular wires and molecular electronic devices.

  3. Use of Carbon Fiber Composite Molecular Sieves for Air Separation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Frederick S [ORNL; Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL; Burchell, Timothy D [ORNL

    2005-09-01

    A novel adsorbent material, 'carbon fiber composite molecular sieve' (CFCMS), has been developed by the Oak Ridge National Laboratory. Its features include high surface area, large pore volume, and a rigid, permeable carbon structure that exhibits significant electrical conductivity. The unique combination of high adsorptive capacity, permeability, good mechanical properties, and electrical conductivity represents an enabling technology for the development of novel gas separation and purification systems. In this context, it is proposed that a fast-cycle air separation process that exploits a kinetic separation of oxygen and nitrogen should be possible using a CFCMS material coupled with electrical swing adsorption (ESA). The adsorption of O{sub 2}, N{sub 2}, and CO{sub 2} on activated carbon fibers was investigated using static and dynamic techniques. Molecular sieving effects in the activated carbon fiber were highlighted by the adsorption of CO{sub 2}, a more sensitive probe molecule for the presence of microporosity in adsorbents. The kinetic studies revealed that O2 was more rapidly adsorbed on the carbon fiber than N{sub 2}, and with higher uptake under equilibrium conditions, providing the fiber contained a high proportion of very narrow micropores. The work indicated that CFCMS is capable of separating O{sub 2} and N{sub 2} from air on the basis of the different diffusion rates of the two molecules in the micropore network of the activated carbon fibers comprising the composite material. In response to recent enquires from several potential users of CFCMS materials, attention has been given to the development of a viable continuous process for the commercial production of CFCMS material. As part of this effort, work was implemented on characterizing the performance of lignin-based activated carbon fiber, a potentially lower cost fiber than the pitch-based fibers used for CFCMS production to date. Similarly, to address engineering issues

  4. Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Maria Françoise Bayer

    2013-01-01

    Full Text Available In plants, the intercellular communication through the membranous channels called plasmodesmata (PD; singular plasmodesma plays pivotal roles in the orchestration of development, defence responses and viral propagation. PD are dynamic structures embedded in the plant cell wall that are defined by specialised domains of the endoplasmic reticulum and the plasma membrane. PD structure and unique functions are guaranteed by their particular molecular composition. Yet, up to recent years and despite numerous approaches such as mutant screens, immunolocalisation or screening of random cDNAs, only few PD proteins had been conclusively identified and characterised. A clear breakthrough in the search of PD constituents came from mass-spectrometry-based proteomic approaches coupled with subcellular fractionation strategies. Due to their position, firmly anchored in the extracellular matrix, PD are notoriously difficult to isolate for biochemical analysis. Proteomic-based approaches have therefore first relied on the use of cell wall fractions containing embedded PD then on free PD fractions whereby PD membranes were released from the walls by enzymatic degradation. To discriminate between likely contaminants and PD protein candidates, bioinformatics tools have often been used in combination with proteomic approaches. GFP fusion proteins of selected candidates have confirmed the PD association of several protein families. Here we review the accomplishments and limitations of the proteomic based strategies to unravel the functional and structural complexity of PD. We also discuss the role of the identified PD associated proteins.

  5. Molecular studies of Planetary Nebulae

    CERN Document Server

    Zhang, Yong

    2016-01-01

    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition of PNe is rather different from those of AGB and PPNe, suggesting that the molecules synthesized in PN progenitors have been heavily processed by strong ultraviolet radiation from the central star. Intriguingly, fullerenes and complex organic compounds having aromatic and aliphatic structures can be rapidly formed and largely survive during the PPN/PN evolution. The similar molecular compositions in PNe and diffuse clouds as well as the detection of C$_{60}^+$ in the ISM reinforce the view that the mass-loss from PNe can ...

  6. Sub-Keplerian accretion onto circumstellar disks

    CERN Document Server

    Visser, R

    2010-01-01

    Models of the formation, evolution and photoevaporation of circumstellar disks are an essential ingredient in many theories of the formation of planetary systems. The ratio of disk mass over stellar mass in the circumstellar phase of a disk is largely determined by the angular momentum of the original cloud core from which the system was formed. While full 3D or 2D axisymmetric hydrodynamical models of accretion onto the disk automatically treat all aspects of angular momentum, this is not so trivial for 1D and semi-2D viscous disk models. Since 1D and semi-2D disk models are still very useful for long-term evolutionary modelling of disks with relatively little numerical effort, we investigate how the 2D nature of accretion affects the formation and evolution of the disk in such models. A proper treatment of this problem requires a correction for the sub-Keplerian velocity at which accretion takes place. We develop an update of our semi-2D time-dependent disk evolution model to properly treat the effects of s...

  7. A Novel Approach to Constraining the Lifetime of Primordial Gas in Circumstellar Disks

    Science.gov (United States)

    Anderson, Dana; Bergin, Edwin A.; Blake, Geoffrey A.; Zhang, Ke; Carpenter, John M.; Schwarz, Kamber R.

    2016-10-01

    The lifetime of primordial gas in circumstellar disks limits the timescale for gas-giant planet formation, determines the impact of gas-particle dynamics throughout disk evolution, and therefore influences the composition and architecture of planetary systems forming from these disks. Current estimates of the gas lifetime are based mainly on indirect tracers of the primordial gas, predominately IR through sub-mm dust and CO emission, in systems of different ages. However, these conventional gas tracers may be less reliable in older systems where the gas-to-dust ratio is highly uncertain and observations suggest that carbon may be severely depleted from the gas relative to interstellar abundances. Here we investigate the evolution of primordial disk gas using a novel approach based on evidence from our own solar system. The enhanced carbon-to-nitrogen (C/N) ratios in meteorites and comets relative to the solar value suggest that N is less likely than C to be sequestered into the solid phase as the disk evolves. Therefore, observable N-bearing volatile species such as N2H+ may be more accurate tracers of the gas than CO in older disks. N2H+ was detected in two mature, ˜5-11 Myr old, disks in the Upper Scorpious OB Association using ALMA. Comparison with previous CO measurements of these sources by Barenfeld et al. (2016) result in high N2H+/CO flux ratios relative to estimates of comparable measurements for younger, gas-rich disks based on a survey by Öberg et al. (2010, 2011). These preliminary results demonstrate that the mature disks retain primordial gas and may suggest a greater depletion of C relative to N from the gas as the disk evolves. Chemical modeling of these systems will aid in determining molecular column densities and relating the observed emission to the total molecular hydrogen mass.

  8. CIRCUMSTELLAR MAGNETITE FROM THE LAP 031117 CO3.0 CHONDRITE

    Energy Technology Data Exchange (ETDEWEB)

    Zega, Thomas J. [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd, Tucson, AZ 85721-0092 (United States); Haenecour, Pierre; Floss, Christine [Laboratory for Space Sciences and Physics Department, Washington University, One Brookings Drive, Campus Box 1105, St. Louis, MO 63130 (United States); Stroud, Rhonda M., E-mail: tzega@lpl.arizona.edu [Materials Science and Technology Division, Code 6366, Naval Research Laboratory, 4555 Overlook Ave, SW Washington, DC 20375 (United States)

    2015-07-20

    We report the first microstructural confirmation of circumstellar magnetite, identified in a petrographic thin section of the LaPaz Icefield 031117 CO3.0 chondrite. The O-isotopic composition of the grain indicates an origin in a low-mass (∼2.2 M{sub ⊙}), approximately solar metallicity red/asymptotic giant branch (RGB/AGB) star undergoing first dredge-up. The magnetite is a single crystal measuring 750 × 670 nm, is free of defects, and is stoichiometric Fe{sub 3}O{sub 4}. We hypothesize that the magnetite formed via oxidation of previously condensed Fe dust within the circumstellar envelope of its progenitor star. Using an empirically derived rate constant for this reaction, we calculate that such oxidation could have occurred over timescales ranging from approximately ∼9000–500,000 years. This timescale is within the lifetime of estimates for dust condensation within RGB/AGB stars.

  9. Dust Stratification in Young Circumstellar Disks

    CERN Document Server

    Rettig, T; Simon, T; Gibb, E; Balsara, D S; Tilley, D A; Kulesa, C; Simon, Theodore

    2006-01-01

    We present high-resolution infrared spectra of four YSOs (T Tau N, T Tau S, RNO 91, and HL Tau). The spectra exhibit narrow absorption lines of 12CO, 13CO, and C18O as well as broad emission lines of gas phase12CO. The narrow absorption lines of CO are shown to originate from the colder circumstellar gas. We find that the line of sight gas column densities resulting from the CO absorption lines are much higher than expected for the measured extinction for each source and suggest the gas to dust ratio is measuring the dust settling and/or grain coagulation in these extended disks. We provide a model of turbulence, dust settling and grain growth to explain the results. The techniques presented here allow us to provide some observationally-motivated bounds on accretion disk alpha in protostellar systems.

  10. Hydrogen sulfide in a circumstellar envelope

    Science.gov (United States)

    Ukita, N.; Morris, M.

    1983-01-01

    A search for hydrogen sulfide in the cool circumstellar envelopes of 25 stars was made using the 1(10)-1(01) rotational line at 1.8 mm. It was detected in the bipolar nebula/OH maser OH231.8+4.2, an object having a high rate of mass loss. An approximate analysis indicates that 1/60 of the sulfur in this outflowing envelope is in the form of H2S, a fraction which may be similar to that in the atmosphere of the central star. In addition, the shape of the observed line profile is discussed in terms of a possible variation of the outflow velocity with latitude above the system's equatorial plane.

  11. Rapid planetesimal formation in turbulent circumstellar discs

    CERN Document Server

    Johansen, Anders; Mac Low, Mordecai-Mark; Klahr, Hubert; Henning, Thomas; Youdin, Andrew

    2007-01-01

    The initial stages of planet formation in circumstellar gas discs proceed via dust grains that collide and build up larger and larger bodies (Safronov 1969). How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem (Dominik et al. 2007): boulders stick together poorly (Benz 2000), and spiral into the protostar in a few hundred orbits due to a head wind from the slower rotating gas (Weidenschilling 1977). Gravitational collapse of the solid component has been suggested to overcome this barrier (Safronov 1969, Goldreich & Ward 1973, Youdin & Shu 2002). Even low levels of turbulence, however, inhibit sedimentation of solids to a sufficiently dense midplane layer (Weidenschilling & Cuzzi 1993, Dominik et al. 2007), but turbulence must be present to explain observed gas accretion in protostellar discs (Hartmann 1998). Here we report the discovery of efficient gravitational collapse of boulders in locally overdense regions in the midplane. The bou...

  12. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization

    Science.gov (United States)

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-Lin; Pei, Ming-Yuan

    2016-03-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves.

  13. Molecular chemistry and the missing mass problem in PNe

    CERN Document Server

    Kimura, Rafael K; Aleman, Isabel; 10.1051/0004-6361/201118429

    2012-01-01

    Detections of molecular lines, mainly from H2$ and CO, reveal molecular material in planetary nebulae. Observations of a variety of molecules suggest that the molecular composition in these objects differs from that found in interstellar clouds or in circumstellar envelopes. The success of the models, which are mostly devoted to explain molecular densities in specific planetary nebulae, is still partial, however. The present study aims at identifying the influence of stellar and nebular properties on the molecular composition of planetary nebulae by means of chemical models. A comparison of theoretical results with those derived from the observations may provide clues to the conditions that favor the presence of a particular molecule. A self-consistent photoionization numerical code was adapted to simulate cold molecular regions beyond the ionized zone. The code was used to obtain a grid of models and the resulting column densities are compared with those inferred from observations. Our models show that the i...

  14. Chemical history of molecules in circumstellar disks

    CERN Document Server

    Visser, Ruud; Doty, Steven D

    2011-01-01

    The chemical composition of a protoplanetary disk is determined not only by in situ chemical processes during the disk phase, but also by the history of the gas and dust before it accreted from the natal envelope. In order to understand the disk's chemical composition at the time of planet formation, especially in the midplane, one has to go back in time and retrace the chemistry to the molecular cloud that collapsed to form the disk and the central star. Here we present a new astrochemical model that aims to do just that. The model follows the core collapse and disk formation in two dimensions, which turns out to be a critical upgrade over older collapse models. We predict chemical stratification in the disk due to different physical conditions encountered along different streamlines. We argue that the disk-envelope accretion shock does not play a significant role for the material in the disk at the end of the collapse phase. Finally, our model suggests that complex organic species are formed on the grain su...

  15. Imaging the circumstellar environment of the young T Tauri star SU Aurigae

    CERN Document Server

    Jeffers, S V; Canovas, H; Rodenhuis, M; Keller, C U

    2013-01-01

    The circumstellar environments of classical T Tauri stars are challenging to directly image because of their high star-to-disk contrast ratio. One method to overcome this is by using imaging polarimetry where scattered and consequently polarised starlight from the star's circumstellar disk can be separated from the unpolarised light of the central star. We present images of the circumstellar environment of SU Aur, a classical T Tauri star at the transition of T Tauri to Herbig stars. The images directly show that the disk extends out to ~500 au with an inclination angle of $\\sim$ 50$^\\circ$. Using interpretive models, we derived very small grains in the surface layers of its disk, with a very steep size- and surface-density distribution. Additionally, we resolved a large and extended nebulosity in our images that is most likely a remnant of the prenatal molecular cloud. The position angle of the disk, determined directly from our images, rules out a polar outflow or jet as the cause of this large-scale nebulo...

  16. Sulphur molecules in the circumstellar envelopes of M-type AGB stars

    CERN Document Server

    Danilovich, Taissa; Black, J H; Olofsson, H; Justtanont, K

    2016-01-01

    The sulphur compounds SO and SO$_2$ have not been widely studied in the circumstellar envelopes of asymptotic giant branch (AGB) stars. By presenting and modelling a large number of SO and SO$_2$ lines in the low mass-loss rate M-type AGB star R Dor, and modelling the available lines of those molecules in a further four M-type AGB stars, we aim to determine their circumstellar abundances and distributions. We use a detailed radiative transfer analysis based on the accelerated lambda iteration method to model circumstellar SO and SO$_2$ line emission and molecular data files for both SO and SO$_2$ that are more extensive than those previously available. Using 17 SO lines and 98 SO2 lines to constrain our models for R Dor, we find an SO abundance of 6.7x10$^{-6}$ and an SO$_2$ abundance of 5x10$^{-6}$ with both species having high abundances close to the star. We also modelled $^{34}$SO and found an abundance of 3.1x10$^{-7}$, giving an $^{32}$SO/$^{34}$SO ratio of 21.6. We derive similar results for the circum...

  17. The infrared spectral features of circumstellar envelope of evolved low-and intermediate-mass stars

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ke; JIANG BiWei

    2008-01-01

    The circumstellar envelope of evolved stars of low-and intermediate-mass is an important site for dust formation. In comparison with the interstellar medium, they have more types of organics and different types of inorganics. Various infrared features in the circumstellar envelope can reveal the composition and abundance of dust, as well as the chemical and physical conditions of the circumstellar shell. Infrared features and their carriers are different in the C-rich or O-rich environment, and the mixed-environment where the C-rich and O-rich circumstellar materials co-exist. The C-rich sources exhibit a series of spectral features which are attrib-uted to organic molecules. They also show two prominent features at 21 μm and 30 μm which emit a large portion of infrared radiation. The O-rich sources exhibit the strong 9.7 μm and 18 μm features attributed to the Si-O bending and O-Si-O stretching modes of amorphous silicate dust. With the ISO/SWS spectrometer, about 50 narrow bands are identified with the crystalline silicate grains, mainly forsterite and enstatite. In addition, a series of features, at 13 μm, 16.8 μm, 19.5 μm and 31.8 μm, appearing to be correlated with each other, are attributed to oxides. Some objects simultaneously show the C-rich and O-rich features, e.g. some C-rich sources have silicate features. There is no well-accepted interpretation for such mixed appearance, though a binary model is suggested.

  18. The infrared spectral features of circumstellar envelope of evolved low- and intermediate-mass stars

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The circumstellar envelope of evolved stars of low- and intermediate-mass is an important site for dust formation. In comparison with the interstellar medium, they have more types of organics and different types of inorganics. Various infrared features in the circumstellar envelope can reveal the composition and abundance of dust, as well as the chemical and physical conditions of the circumstellar shell. Infrared features and their carriers are different in the C-rich or O-rich environment, and the mixed-environment where the C-rich and O-rich circumstellar materials co-exist. The C-rich sources exhibit a series of spectral features which are attrib- uted to organic molecules. They also show two prominent features at 21 μm and 30 μm which emit a large portion of infrared radiation. The O-rich sources exhibit the strong 9.7 μm and 18 μm features attributed to the Si-O bending and O-Si-O stretching modes of amorphous silicate dust. With the ISO/SWS spectrometer, about 50 narrow bands are identified with the crystalline silicate grains, mainly forsterite and enstatite. In addition, a series of features, at 13 μm, 16.8 μm, 19.5 μm and 31.8 μm, appearing to be correlated with each other, are attributed to oxides. Some objects simultaneously show the C-rich and O-rich features, e.g. some C-rich sources have silicate features. There is no well-accepted interpretation for such mixed appearance, though a binary model is suggested.

  19. Evolution of Cold Circumstellar Dust Around Solar-Type Stars

    CERN Document Server

    Carpenter, J M; Schreyer, K; Launhardt, R; Henning, T; Carpenter, John M.; Wolf, Sebastian; Schreyer, Katharina; Launhardt, Ralf; Henning, Th.

    2004-01-01

    We present submillimeter (CSO 350um) and millimeter (SEST 1.2 mm, OVRO 3 mm) photometry for 125 solar-type stars from the FEPS Spitzer Legacy program that have masses between ~0.5 and 2.0 Msun and ages from 3 Myr to 3 Gyr. Continuum emission was detected toward four stars with a signal to noise ratio >= 3$: the classical T Tauri stars RX J1842.9-3532, RX J1852.3-3700, and PDS 66 with SEST, and the debris disk system HD 107146 with OVRO. RXJ1842.9-3532 and RXJ1852.3-3700 are located in projection nearby the R CrA molecular cloud with estimated ages of ~10 Myr, while PDS66 is a probable member of the 20 Myr old Lower Centaurus-Crux subgroup of the Sco-Cen OB association. The continuum emission toward these three sources is unresolved at the 24'' SEST resolution and likely originates from circumstellar accretion disks, each with estimated dust masses of ~5x10**-5 Msun. Analysis of the visibility data toward HD107146 (age 80-200 Myr) indicates that the 3 mm continuum emission is centered on the star within the as...

  20. Evolution of Gas and Dust in Circumstellar Disks

    CERN Document Server

    Körner, D W

    1999-01-01

    A clear understanding of the chemical processing of matter, as it is transferred from a molecular cloud to a planetary system, depends heavily on knowledge of the physical conditions endured by gas and dust as these accrete onto a disk and are incorporated into planetary bodies. Reviewed here are astrophysical observations of circumstellar disks which trace their evolving properties. Accretion disks that are massive enough to produce a solar system like our own are typically larger than 100 AU. This suggests that the chemistry of a large fraction of the infalling material is not radically altered upon contact with a vigorous accretion shock. The mechanisms of accretion onto the star and eventual dispersal are not yet well understood, but timescales for the removal of gas and optically thick dust appear to be a few times 10$^6$ yrs. At later times, tenuous ``debris disks'' of dust remain around stars as old as a few times 10$^8$ yrs. Features in the morphology of the latter, such as inner holes, warps, and azi...

  1. Circumstellar Dust Created by Terrestrial Planet Formation in HD 113766

    CERN Document Server

    Lisse, C M; Wyatt, M C; Morlok, A

    2007-01-01

    We present an analysis of the gas-poor circumstellar material in the HD 113766 binary system (F3/F5, 10 - 16 Myr), recently observed by the Spitzer Space Telescope. For our study we have used the infrared mineralogical model derived from observations of the Deep Impact experiment. We find the dust dominated by warm, fine (~1 um) particles, abundant in Mg-rich olivine, crystalline pyroxenes, amorphous silicates, Fe-rich sulfides, amorphous carbon, and colder water-ice. The warm dust material mix is akin to an inner main belt asteroid of S-type composition. The ~440 K effective temperature of the warm dust implies that the bulk of the observed material is in a narrow belt ~1.8 AU from the 4.4 L_solar central source, in the terrestrial planet-forming region and habitable zone of the system (equivalent to 0.9 AU in the solar system). The icy dust lies in 2 belts, located at 4-9 AU and at 30 - 80 AU. The lower bound of warm dust mass in 0.1 - 20 um, dn/da ~ a^-3.5 particles is very large, at least 3 x 10^20 kg, eq...

  2. A dynamical study of the circumstellar gas in UX Orionis

    CERN Document Server

    Mora, A; Eiroa, C; Grady, C A; De Winter, D; Davies, J K; Ferlet, R; Harris, A W; Montesinos, B; Oudmaijer, R D; Palacios, J; Quirrenbach, Andreas G; Rauer, H; Alberdi, A; Cameron, A; Deeg, H J; Garzón, F; Horne, K; Merin, B; Penny, A; Schneider, J; Solano, E; Tsapras, Y; Wesselius, P R

    2002-01-01

    We present the results of a high spectral resolution study of the circumstellar (CS) gas around the intermediate mass, pre-main sequence star UX Ori. The results are based on a set of 10 echelle spectra, monitoring the star on time scales of months, days and hours. A large number of transient blueshifted and redshifted absorption features are detected in the Balmer and in many metallic lines. A multigaussian fit is applied to determine for each transient absorption the velocity, v, dispersion velocity, Delta v, and the parameter R, which provides a measure of the absorption strength of the CS gas. The time evolution of those parameters is presented and discussed. A comparison of intensity ratios among the transient absorptions suggests a solar-like composition of the CS gas. This confirms previous results and excludes a very metal-rich environment as the cause of the transient features in UX Ori. The features can be grouped by their similar velocities into 24 groups, of which 17 are redshifted and 7 blueshift...

  3. Carbon-fiber composite molecular sieves for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.; Fei, Y.Q. [Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)

    1995-08-01

    The progress of research in the development of novel, rigid, monolithic adsorbent carbon fiber composites is described. Carbon fiber composites are produced at ORNL and activated at the CAER using steam or CO{sub 2} under different conditions, with the aims of producing a uniform degree of activation through the material, and of closely controlling pore structure and adsorptive properties The principal focus of the work to date has been to produce materials with narrow porosity for use in gas separations.

  4. Carbon-fiber composite molecular sieves for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F. [Univ. of Kentucky, Lexington, KY (United States)

    1996-08-01

    This report describes continuing work on the activation and characterization of formed carbon fiber composites. The composites are produced at the Oak Ridge National Laboratory (ORNL) and activated at the Center for Applied Energy Research (CAER) using steam, CO{sub 2}, or O{sub 2} at different conditions of temperature and time, and with different furnace configurations. The general aims of the project are to produce uniformly activated samples with controlled pore structures for specialist applications such as gas separation and water treatment. In previous work the authors reported that composites produced from isotropic pitch fibers weighing up to 25g can be uniformly activated through the appropriate choice of reaction conditions and furnace configurations. They have now succeeded in uniformly activating composites of dimensions up to 12 x 7 x 6 cm, or up to about 166 gram - a scale-up factor of about six. Part of the work has involved the installation of a new furnace that can accommodate larger composites. Efforts were made to achieve uniform activation in both steam and CO{sub 2}. The authors have also succeeded in producing materials with very uniform and narrow pore size distributions by using a novel method involving low temperature oxygen chemisorption in combination with heat treatment in N{sub 2} at high temperatures. Work has also started on the activation of PAN based carbon fibers and fiber composites with the aim of producing composites with wide pore structures for use as catalyst supports. So far activation of the PAN fiber composites supplied by ORNL has been difficult which is attributed to the low reactivity of the PAN fibers. As a result, studies are now being made of the activation of the PAN fibers to investigate the optimum carbonization and activation conditions for PAN based fibers.

  5. Polarization Raman Microscopic Study of Molecular Alignment Behavior in Liquid Crystal/Polymer Composite Films

    Science.gov (United States)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2005-12-01

    We clarified that the molecular alignment of aggregated polymers is partially synchronized with liquid crystal (LC) director reorientation in an LC/polymer composite film. The molecular alignment behavior in composite films with LC- and polymer-rich regions formed by photopolymerization-induced phase separation was investigated using polarization Raman spectral microscopy. Raman scattering intensity induced by aligned side chains of polymers in the LC-rich region changed with LC director reorientation when voltage was applied to the composite film. It was confirmed for the first time that polymers capable of movement are formed in the LC-rich region.

  6. EFFECTS OF MATRIX MOLECULAR WEIGHT ON STRUCTURE AND REINFORCEMENT OF HIGH DENSITY POLYETHYLENE/MICA COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Li Chen; Yu-fang Xiang; Ke Wang; Qin Zhang; Rong-ni Du; Qiang Fu

    2011-01-01

    Three types of high-density polyethylene (HDPE) with different molecular weights (high, medium and Iow) were adopted to evaluate the influence of matrix molecular weight on the structure-property relation of injection-molded HDPE/mica composites through a combination of SEM, 2d-WAXS, DSC, DMA and tensile testing. Various structural factors including orientation, filler dispersion, interfacial interaction between HDPE and mica, etc., which can impact the macroscopic mechanics, were compared in detail among the three HDPE/mica composites. The transcrystallization of HDPE on the mica surface was observed and it exhibited strong matrix molecular weight dependence. Obvious transcrystalline structure was found in the composite with Iow molecular weight HDPE, whereas it was hard to be detected in the composites with increased HDPE molecular weight. The best reinforcement effect in the composite with low molecular weight HDPE can be understood as mainly due to substantially improved interracial adhesion between matrix and mica filler, which arises from the transerystallization mechanism.

  7. Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation

    DEFF Research Database (Denmark)

    Ekroos, Kim; Ejsing, Christer S.; Bahr, Ute

    2003-01-01

    The molecular composition of phosphatidylcholines (PCs) in total lipid extracts was characterized by a combination of multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer and MS3 fragmentation on an ion trap mass spectrometer. Precursor ion spectra for 50 acyl...... spectrometer quantified the relative amount of their positional isomers, thus providing the most detailed and comprehensive characterization of the molecular composition of the pool of PCs at the low-picomole level. The method is vastly simplified, compared with conventional approaches, and does not require...... preliminary separation of lipid classes or of individual molecular species, enzymatic digestion, or chemical derivatization. The approach was validated by the comparative analysis of the molecular composition of PCs from human red blood cells. In the total lipid extract of Madin-Darby canine kidney II cells...

  8. Circumstellar disks around Herbig Be stars

    CERN Document Server

    Alonso-Albi, T; Bachiller, R; Neri, R; Planesas, P; Testi, L; Berne, O; Joblin, C

    2008-01-01

    We have carried out a search for circumstellar disks around Herbig Be stars using the NRAO Very Large Array (VLA) and the IRAM Plateau de Bure (PdB) interferometers. In this Paper, we present our new VLA and PdBI data on the three objects MWC 297, Z CMa and LKHa 215. We have constructed the SED from near-IR to centimeter wavelengths by adding our millimeter and centimeter data to the available data at other wavelengths, mainly Spitzer images. The whole SED has been fitted using a disk+envelope model. In addition, we have compiled all the disk millimeter observations in the literature and made some statistics. We show that the disk mass is usually only a small percentage (less than 10%) of the mass of the whole envelope in HBe stars. Concerning the disks, there are large source to source variations. Two disks of our sample, R Mon and Z CMa, have similar sizes and masses to those found in T Tauri and Herbig Ae stars. The disks around MWC 1080 and MWC 297 are, however, smaller (rout<100 AU). We have not detec...

  9. An MCMC Circumstellar Disks Modeling Tool

    Science.gov (United States)

    Wolff, Schuyler; Perrin, Marshall D.; Mazoyer, Johan; Choquet, Elodie; Soummer, Remi; Ren, Bin; Pueyo, Laurent; Debes, John H.; Duchene, Gaspard; Pinte, Christophe; Menard, Francois

    2016-01-01

    We present an enhanced software framework for the Monte Carlo Markov Chain modeling of circumstellar disk observations, including spectral energy distributions and multi wavelength images from a variety of instruments (e.g. GPI, NICI, HST, WFIRST). The goal is to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in the derived properties. This modular code is designed to work with a collection of existing modeling tools, ranging from simple scripts to define the geometry for optically thin debris disks, to full radiative transfer modeling of complex grain structures in protoplanetary disks (using the MCFOST radiative transfer modeling code). The MCMC chain relies on direct chi squared comparison of model images/spectra to observations. We will include a discussion of how best to weight different observations in the modeling of a single disk and how to incorporate forward modeling from PCA PSF subtraction techniques. The code is open source, python, and available from github. Results for several disks at various evolutionary stages will be discussed.

  10. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    CERN Document Server

    Nesvold, Erika R; Vican, Laura; Farr, Will M

    2016-01-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles' eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare t...

  11. Molecular Composition and Photochemical Reactivity of Size-Fractionated Dissolved Organic Matter.

    Science.gov (United States)

    Maizel, Andrew C; Remucal, Christina K

    2017-02-21

    The photochemical production of reactive species, such as triplet dissolved organic matter ((3)DOM) and singlet oxygen ((1)O2), contributes to the degradation of aquatic contaminants and is related to an array of DOM structural characteristics, notably molecular weight. In order to relate DOM molecular weight, optical properties, and reactive species production, Suwannee River (SRFA) and Pony Lake fulvic acid (PLFA) isolates are fractionated by sequential ultrafiltration, and the resultant fractions are evaluated in terms of molecular composition and photochemical reactivity. UV-visible measurements of aromaticity increase with molecular weight in both fulvic acids, while PLFA molecular weight fractions are shown to be structurally similar by Fourier-transform ion cyclotron resonance mass spectrometry. In addition, Bray-Curtis dissimilarity analysis of formulas identified in the isolates and their size fractions reveal that SRFA and PLFA have distinct molecular compositions. Quantum yields of (3)DOM, measured by electron and energy transfer probes, and (1)O2 decreased with molecular weight. Decreasing [(3)DOM]ss with molecular weight is shown to derive from elevated quenching in high molecular weight fractions, rather than increased (3)DOM formation. This work has implications for the photochemistry of waters undergoing natural or engineered treatment processes that alter DOM molecular weight, such as photooxidation and biological degradation.

  12. Preparation, tribological properties and biocompatibility of fluorinated graphene/ultrahigh molecular weight polyethylene composite materials

    Science.gov (United States)

    Xu, L.; Zheng, Y.; Yan, Z.; Zhang, W.; Shi, J.; Zhou, F.; Zhang, X.; Wang, J.; Zhang, J.; Liu, B.

    2016-05-01

    Fluorinated graphene (FG)/ultra-high molecular weight polyethylene (UHMWPE) composites were successfully prepared by ultrasonic dispersion and liquid thermoforming method. The mechanical and tribological properties of pure UHMWPE and FG/UHMWPE composites were investigated using micro-hardness tester and high-speed reciprocating friction tester. The results showed that: adding FG could not only increase the micro-hardness of the composites, but also decrease the wear volume of the composite significantly. The friction coefficients of the composites were also reduced with the increasing of FG content. In addition, the MC3T3-E1 cells adhered and grew well on the surface of the FG/UHMWPE composites as observed by SEM and fluorescence microscope, indicating the addition of FG did not affect the morphology and activity of the cells. The FG/UHMWPE composites exhibited excellent mechanical properties, tribological properties and biocompatibility, which could be used as the potential artificial joint replacement material.

  13. MODELING THE MOLECULAR COMPOSITION IN AN ACTIVE GALACTIC NUCLEUS DISK

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Nanase [Max Planck Institute for Radio Astronomy, D-53121 Bonn (Germany); Thompson, Todd A. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Herbst, Eric [Departments of Chemistry, Astronomy, and Physics, University of Virginia, Charlottesville, VA 22904 (United States)

    2013-03-10

    We use a high-temperature chemical network to derive the molecular abundances in axisymmetric accretion disk models around active galactic nuclei (AGNs) within 100 pc using simple radial and vertical density and temperature distributions motivated by more detailed physical models. We explore the effects of X-ray irradiation and cosmic-ray ionization on the spatial distribution of the molecular abundances of CO, CN, CS, HCN, HCO{sup +}, HC{sub 3}N, C{sub 2}H, and c-C{sub 3}H{sub 2} using a variety of plausible disk structures. These simple models have molecular regions with an X-ray-dominated region layer, a midplane without the strong influence of X-rays, and a high-temperature region in the inner portion with moderate X-ray flux where families of polyynes (C{sub n}H{sub 2}) and cyanopolyynes can be enhanced. For the high midplane density disks we explore, we find that cosmic rays produced by supernovae do not significantly affect the regions unless the star formation efficiency significantly exceeds that of the Milky Way. We highlight molecular abundance observations and ratios that may distinguish among theoretical models of the density distribution in AGN disks. Finally, we assess the importance of the shock crossing time and the accretion time relative to the formation time for various chemical species. Vertical column densities are tabulated for a number of molecular species at both the characteristic shock crossing time and steady state. Although we do not attempt to fit any particular system or set of observations, we discuss our models and results in the context of the nearby AGN NGC 1068.

  14. The circumstellar shell of the post-ABB star HD 56126: the 12C12C/12C13C isotope ratio and12C16O column density

    NARCIS (Netherlands)

    Barker, E.J.; Lambert, D.L.

    1998-01-01

    We have made the first detection of circumstellar absorption lines of the 12C13C A 1Πu-X 1∑g+ (Phillips) system 1-0 band and the 12C16O X 1∑+ first-overtone 2-0 band in the spectrum of the post-AGB star HD 56126 (IRAS 07134+1005). All current detections of circumstellar molecular absorption lines to

  15. The effect of molecular mobility on electronic transport in carbon nanotube-polymer composites and networks

    Energy Technology Data Exchange (ETDEWEB)

    Shenogin, Sergei, E-mail: sergei.shenogin.ctr.ru@us.af.mil [Air Force Research Laboratory, Materials and Manufacturing Directorate, 2941 Hobson Way, Wright-Patterson Air Force Base, Ohio 45433 (United States); University of Dayton Research Institute, 300 College Park, Dayton, Ohio 45469 (United States); Lee, Jonghoon [Air Force Research Laboratory, Materials and Manufacturing Directorate, 2941 Hobson Way, Wright-Patterson Air Force Base, Ohio 45433 (United States); UTC, Inc., 1270 N Fairfield Rd, Dayton, Ohio 45432 (United States); Voevodin, Andrey A.; Roy, Ajit K. [Air Force Research Laboratory, Materials and Manufacturing Directorate, 2941 Hobson Way, Wright-Patterson Air Force Base, Ohio 45433 (United States)

    2014-12-21

    A multiscale modeling approach to the prediction of electrical conductivity in carbon nanotube (CNT)–polymer composite materials is developed, which takes into account thermally activated molecular mobility of the matrix and the CNTs. On molecular level, a tight-binding density functional theory and non-equilibrium Green's function method are used to calculate the static electron transmission function in the contact between two metallic carbon nanotubes that corresponds to electron transport at 0 K. For higher temperatures, the statistical distribution of effective contact resistances is considered that originates from thermal fluctuations of intermolecular distances caused by molecular mobility of carbon nanotube and the polymer matrix. Based on this distribution and using effective medium theory, the temperature dependence of macroscopic electrical resistivity for CNT-polymer composites and CNT mats is calculated. The predicted data indicate that the electrical conductivity of the CNT-polymer composites increases linearly with temperature above 50 K, which is in a quantitative agreement with the experiments. Our model predicts a slight nonlinearity in temperature dependence of electric conductivity at low temperatures for percolated composites with small CNT loading. The model also explains the effect of glass transition and other molecular relaxation processes in the polymer matrix on the composite electrical conductivity. The developed multiscale approach integrates the atomistic charge transport mechanisms in percolated CNT-polymer composites with the macroscopic response and thus enables direct comparison of the prediction with the measurements of macroscopic material properties.

  16. Modeling The Molecular Composition in an AGN Disk

    CERN Document Server

    Harada, Nanase; Herbst, Eric

    2013-01-01

    We use a high-temperature chemical network to derive the molecular abundances in axisymmetric accretion disk models around active galactic nuclei (AGNs) within 100 pc using simple radial and vertical density and temperature distributions motivated by more detailed physical models. We explore the effects of X-ray irradiation and cosmic ray ionization on the spatial distribution of the molecular abundances of CO, CN, CS, HCN, HCO+, HC3N, C2H, and c-C3H2 using a variety of plausible disk structures. These simple models have molecular regions with a layer of X-ray dominated regions, a midplane without the strong influence of X-rays, and a high-temperature region in the inner portion with moderate X-ray flux where families of polyynes (C$_{\\rm n}$H$_{2}$) and cyanopolyynes can be enhanced. For the high midplane density disks we explore, we find that cosmic rays produced by supernovae do not significantly affect the regions unless the star formation efficiency significantly exceeds that of the Milky Way. We highlig...

  17. The Circumstellar Environments of Exoplanet Host Stars

    Science.gov (United States)

    Chen, Christine

    The WFIRST-AFTA mission currently includes the provision for a high contrast imaging instrument with a primary goal of discovering new, low mass exoplanets and characterizing their atmospheres. To date, eight exoplanetary systems have been discovered via direct imaging using the current generation of ground-based high-contrast facilities. Five of those systems, including the iconic beta Pictoris and HR 8799 systems, possess infrared excesses, indicative of the presence of circumstellar dust. Detailed studies of dust and gas morphology in the beta Pictoris disk provided the impetus for searching for, and eventually imaging the planet. These studies further suggest that additional planets orbit the star, but are below current detection thresholds. Such systems will be prime targets for WFIRST-AFTA, which will obtain visual spectroscopy of several spectral features from molecules in the exoplanet atmospheres including CH4, H2O, and CO2. We propose to: (1) model the dust in exoplanetary systems with well characterized planets and infrared excesses to better constrain the dust geometry and particle properties; (2) generate synthetic WFIRST-AFTA images of these disks with embedded known and putative planets using point-spread-functions generated by JPL, and run our simulations though a WFIRST-AFTA pipeline; and (3) evaluate the sensitivity of WFIRST-AFTA to known and putative planets that have a range of masses and distances from their host stars. The proposed simulations will also assist the community in understanding how WFIRST-AFTA will contribute to our knowledge of debris disks and the role that minor bodies play in the delivery of water into the terrestrial planet zone. The proposed project is complementary to the efforts currently being carried out by the Science Definition Team (SDT), which focus on simulating planets embedded in tenuous disks, analogous to the Zodiacal dust system in our Solar System, the Earth s resonant dust ring, and the HR 4796 dust ring

  18. Composition control of quinary GaInNAsSb alloy grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Miyashita, Naoya; Ahsan, Nazmul; Okada, Yoshitaka [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Islam, Muhammad Monirul [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan)

    2013-11-15

    In order to precisely control the composition of quinary GaInNAsSb alloy, we investigated the incorporation behavior of constituent atoms during atomic hydrogen-assisted molecular beam epitaxial growth. The nitrogen (N) composition, in comparison of GaNAs and GaNAsSb, increased by the supply of antimony (Sb). However, addition of indium (In) decreases the N composition during Sb mediated growth of GaInNAsSb, which enables obtaining the same N composition when an adequate In composition is chosen. It was revealed that Sb incorporation was increased when (i) In composition decreased, (ii) Sb flux increased, (iii) growth temperature decreased, and (iv) growth rate increased. These results are thought to be related to the effect of competitive role among strain, coverage, desorption, and segregation. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. The Nature of Transition Circumstellar Disks II. Southern Molecular Clouds

    CERN Document Server

    Romero, Gisela A; Cieza, Lucas A; Rebassa-Mansergas, Alberto; Merín, Bruno; Castelli, Analía V Smith; Allen, Lori E; Morrell, Nidia; 10.1088/0004-637X/749/1/79

    2012-01-01

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transition disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from lsim1 to 10 M JUP, and accretion rates ranging from lsim10-11 to 10-7.7 M \\odot yr-1. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, ph...

  20. THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. II. SOUTHERN MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Gisela A.; Schreiber, Matthias R.; Rebassa-Mansergas, Alberto [Departamento de Fisica y Astronomia, Universidad de Valparaiso, Valparaiso (Chile); Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Merin, Bruno [Herschel Science Centre, ESAC (ESA), P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain); Smith Castelli, Analia V. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Allen, Lori E. [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Morrell, Nidia [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile)

    2012-04-10

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transition disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from {approx}<1 to 10 M{sub JUP}, and accretion rates ranging from {approx}<10{sup -11} to 10{sup -7.7} M{sub Sun} yr{sup -1}. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole. We find the same heterogeneity of the transition disk population in Lupus III, IV, and Corona Australis as in our previous analysis of transition disks in Ophiuchus while all transition disk candidates selected in Lupus V, VI turned out to be contaminating background asymptotic giant branch stars. All transition disks classified as photoevaporating disks have small disk masses, which indicates that photoevaporation must be less efficient than predicted by most recent models. The three systems that are excellent candidates for harboring giant planets potentially represent invaluable laboratories to study planet formation with the Atacama Large Millimeter/Submillimeter Array.

  1. Hemichannel composition and electrical synaptic transmission: molecular diversity and its implications for electrical rectification.

    Science.gov (United States)

    Palacios-Prado, Nicolás; Huetteroth, Wolf; Pereda, Alberto E

    2014-01-01

    Unapposed hemichannels (HCs) formed by hexamers of gap junction proteins are now known to be involved in various cellular processes under both physiological and pathological conditions. On the other hand, less is known regarding how differences in the molecular composition of HCs impact electrical synaptic transmission between neurons when they form intercellular heterotypic gap junctions (GJs). Here we review data indicating that molecular differences between apposed HCs at electrical synapses are generally associated with rectification of electrical transmission. Furthermore, this association has been observed at both innexin and connexin (Cx) based electrical synapses. We discuss the possible molecular mechanisms underlying electrical rectification, as well as the potential contribution of intracellular soluble factors to this phenomenon. We conclude that asymmetries in molecular composition and sensitivity to cellular factors of each contributing hemichannel can profoundly influence the transmission of electrical signals, endowing electrical synapses with more complex functional properties.

  2. Molecular composition and ultrastructure of Jurassic paravian feathers.

    Science.gov (United States)

    Lindgren, Johan; Sjövall, Peter; Carney, Ryan M; Cincotta, Aude; Uvdal, Per; Hutcheson, Steven W; Gustafsson, Ola; Lefèvre, Ulysse; Escuillié, François; Heimdal, Jimmy; Engdahl, Anders; Gren, Johan A; Kear, Benjamin P; Wakamatsu, Kazumasa; Yans, Johan; Godefroit, Pascal

    2015-08-27

    Feathers are amongst the most complex epidermal structures known, and they have a well-documented evolutionary trajectory across non-avian dinosaurs and basal birds. Moreover, melanosome-like microbodies preserved in association with fossil plumage have been used to reconstruct original colour, behaviour and physiology. However, these putative ancient melanosomes might alternatively represent microorganismal residues, a conflicting interpretation compounded by a lack of unambiguous chemical data. We therefore used sensitive molecular imaging, supported by multiple independent analytical tests, to demonstrate that the filamentous epidermal appendages in a new specimen of the Jurassic paravian Anchiornis comprise remnant eumelanosomes and fibril-like microstructures, preserved as endogenous eumelanin and authigenic calcium phosphate. These results provide novel insights into the early evolution of feathers at the sub-cellular level, and unequivocally determine that melanosomes can be preserved in fossil feathers.

  3. Materials chemistry. Composition-matched molecular "solders" for semiconductors.

    Science.gov (United States)

    Dolzhnikov, Dmitriy S; Zhang, Hao; Jang, Jaeyoung; Son, Jae Sung; Panthani, Matthew G; Shibata, Tomohiro; Chattopadhyay, Soma; Talapin, Dmitri V

    2015-01-23

    We propose a general strategy to synthesize largely unexplored soluble chalcogenidometallates of cadmium, lead, and bismuth. These compounds can be used as "solders" for semiconductors widely used in photovoltaics and thermoelectrics. The addition of solder helped to bond crystal surfaces and link nano- or mesoscale particles together. For example, CdSe nanocrystals with Na2Cd2Se3 solder was used as a soluble precursor for CdSe films with electron mobilities exceeding 300 square centimeters per volt-second. CdTe, PbTe, and Bi2Te3 powders were molded into various shapes in the presence of a small additive of composition-matched chalcogenidometallate or chalcogel, thus opening new design spaces for semiconductor technologies.

  4. Direct thermal imaging of circumstellar discs and exo-planets

    Science.gov (United States)

    Pantin, Eric; Siebenmorgen, Ralf; Cavarroc, Celine; Sterzik, Michael F.

    2008-07-01

    The phase A study of a mid infrared imager and spectrograph for the European Extremely Large Telescope (E-ELT), called METIS, was endorsed in May 2008. Two key science drivers of METIS are: a) direct thermal imaging of exo-planets and b) characterization of circumstellar discs from the early proto-planetary to the late debris phase. Observations in the 10μm atmospheric window (N band) require a contrast ratio between stellar light and emitted photons from the exo-planet or the disc of ~ 105. At shorter wavelengths the contrast between star and reflected light from the planet-disc system exceeds >~ 107 posing technical challenges. By means of end-to-end detailed simulations we demonstrate that the superb spatial resolution of a 42m telescope in combination with stellar light rejection methods such as coronagraphic or differential imaging will allow detections at 10μm for a solar type system down to a star-planet separation of 0.1" and a mass limit for irradiated planets of 1 Jupiter (MJ) mass. In case of self-luminous planets observations are possible further out e.g. at the separation limit of JWST of ~ 0.7", METIS will detect planets >~5MJ. This allows to derive a census of all such exo-planets by means of thermal imaging in a volume limited sample of up to 6pc. In addition, METIS will provide the possibility to study the chemical composition of atmospheres of exo-planets using spectroscopy at moderate spectral resolution (λ/Δλ ~ 100) for the brightest targets. Based on detailed performance and sensitivity estimates, we demonstrate that a mid-infrared instrument on an ELT is perfectly suited to observe gravitationally created structures such as gaps in proto- and post- planetary discs, in a complementary way to space missions (e.g. JWST, SOFIA) and ALMA which can only probe the cold dust emission further out.

  5. The Circumstellar Medium of Massive Stars in Motion

    CERN Document Server

    Mackey, Jonathan; Meyer, Dominique M -A; Gvaramadze, Vasilii V; Mohamed, Shazrene; Neilson, Hilding R; Mignone, Andrea

    2014-01-01

    The circumstellar medium around massive stars is strongly impacted by stellar winds, radiation, and explosions. We use numerical simulations of these interactions to constrain the current properties and evolutionary history of various stars by comparison with observed circumstellar structures. Two- and three-dimensional simulations of bow shocks around red supergiant stars have shown that Betelgeuse has probably only recently evolved from a blue supergiant to a red supergiant, and hence its bow shock is very young and has not yet reached a steady state. We have also for the first time investigated the magnetohydrodynamics of the photoionised H II region around the nearby runaway O star Zeta Oph. Finally, we have calculated a grid of models of bow shocks around main sequence and evolved massive stars that has general application to many observed bow shocks, and which forms the basis of future work to model the explosions of these stars into their pre-shaped circumstellar medium.

  6. The EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE)

    CERN Document Server

    Guyon, Olivier; Belikov, Ruslan; Tenerelli, Domenick J

    2012-01-01

    We present an overview of the EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE), selected by NASA for technology development and maturation. EXCEDE will study the formation, evolution and architectures of exoplanetary systems, and characterize circumstellar environments into stellar habitable zones. EXCEDE provides contrast-limited scattered-light detection sensitivities ~ 1000x greater than HST or JWST coronagraphs at a much smaller effective inner working angle (IWA), thus enabling the exploration and characterization of exoplanetary circumstellar disks in currently inaccessible domains. EXCEDE will utilize a laboratory demonstrated high-performance Phase Induced Amplitude Apodized Coronagraph (PIAA-C) integrated with a 70 cm diameter unobscured aperture visible light telescope. The EXCEDE PIAA-C will deliver star-to-disk augmented image contrasts of < 10E-8 and a 1.2 L/D IWA or 140 mas with a wavefront control system utilizing a 2000-element MEMS DM and fast steering mirror. EXCEDE will...

  7. Laboratory Studies Of Circumstellar Carbonaceous Grain Formation

    Science.gov (United States)

    Contreras, Cesar; Sciamma-O'Brien, Ella; Salama, Farid

    2014-06-01

    The study of the formation processes of dust is essential to understand the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar (IS) chemistry and in the formation of organic molecules, little is known on the formation processes of carbonaceous dust. We report the progress that was recently achieved in this domain using NASA Ames’ COSmIC facility (Contreras & Salama 2013, ApJS, 208, 6). PAHs are important chemical building blocks of IS dust. They are detected in IDPs and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs are an important, ubiquitous component of the ISM. The formation of PAHs from smaller molecules has not been extensively studied. Therefore, we have performed laboratory experiments to study the dynamic processes of carbon grain formation, starting from the smallest hydrocarbon molecules into the formation of larger PAH and further into nanograins. Studies of IS dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include the atoms O, N, and S, have recently been performed in our laboratory using the COSmIC facility to provide conditions that simulate IS and circumstellar environments. The species formed in the COSmiC chamber through a pulsed discharge nozzle plasma source are detected and characterized with a cavity ringdown spectrometer coupled to a time-of-flight mass spectrometer, thus providing both spectroscopic and ion mass information in-situ. Analysis of solid soot particles was also conducted using scanning electron microscopy at the UCSC/NASA Ames’ MACS facility. The SEM analysis of the deposition of soot from methane and acetylene precursors seeded in argon plasmas provide examples on the types of nanoparticles and micrograins that are produced in these gas mixtures under our experimental conditions. From these measurements, we derive information on

  8. Detection of circumstellar CH2CHCN, CH2CN, CH3CCH and H2CS

    CERN Document Server

    Agundez, M; Cernicharo, J; Pardo, J R; Guélin, M

    2007-01-01

    We report on the detection of vinyl cyanide (CH2CHCN), cyanomethyl radical (CH2CN), methylacetylene (CH3CCH) and thioformaldehyde (H2CS) in the C-rich star IRC +10216. These species, which are all known to exist in dark clouds, are detected for the first time in the circumstellar envelope around an AGB star. The four molecules have been detected trough pure rotational transitions in the course of a 3 mm line survey carried out with the IRAM 30-m telescope. The molecular column densities are derived by constructing rotational temperature diagrams. A detailed chemical model of the circumstellar envelope is used to analyze the formation of these molecular species. We have found column densities in the range 5 x 10^(12)- 2 x 10^(13) cm^(-2), which translates to abundances relative to H2 of several 10^(-9). The chemical model is reasonably successful in explaining the derived abundances through gas phase synthesis in the cold outer envelope. We also find that some of these molecules, CH2CHCN and CH2CN, are most pr...

  9. Extra virgin olive oil: from composition to "molecular gastronomy".

    Science.gov (United States)

    Sacchi, Raffaele; Paduano, Antonello; Savarese, Maria; Vitaglione, Paola; Fogliano, Vincenzo

    2014-01-01

    The aim of this chapter is to provide a brief overview of the recent results of studies on extra virgin olive oil (EVOO) and its interactions with other food ingredients during cooking, to highlight basic molecular aspects of the "magic" of EVOO and its role in Mediterranean gastronomy. The use of raw EVOO added to foods after cooking (or as a salad oil) is the best way to express the original flavour and to maximize the intake of natural antioxidants and compounds related to positive effects on human health (hypotensive, anti-inflammatory, and anti-cancerogenic, among others). EVOO, however, also exhibits its protective properties during/after cooking. Different chemical interactions between biophenolic compounds and other food ingredients (water, milk proteins, carotenoids of tomato, omega-3 polyunsaturated fatty acids in canned-in-oil fish and meat or fish proteins) occur. Even during cooking, EVOO exhibits strong antioxidant properties and influences the overall flavour of cooked foods. The physical (partitioning, emulsion) and chemical (hydrolysis, covalent binding, antioxidant properties) phenomena occurring during cooking of EVOO are discussed with emphasis on the changes in the sensory (bitterness and fruity flavour) and nutritional qualities of some traditional Mediterranean foods. In particular, tomato-oil interactions during cooking, fish canning in EVOO, meat marinated in EVOO before cooking and roasting and frying in EVOO are examined. The interactions between EVOO antioxidants and flavours with milk proteins are also briefly discussed.

  10. Composition and molecular weight distribution of carob germ protein fractions.

    Science.gov (United States)

    Smith, Brennan M; Bean, Scott R; Schober, Tilman J; Tilley, Michael; Herald, Thomas J; Aramouni, Fadi

    2010-07-14

    Biochemical properties of carob germ proteins were analyzed using a combination of selective extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), size exclusion chromatography (SEC) coupled with multiangle laser light scattering (SEC-MALS), and electrophoretic analysis. Using a modified Osborne extraction procedure, carob germ flour proteins were found to contain approximately 32% albumin and globulin and approximately 68% glutelin with no prolamins detected. The albumin and globulin fraction was found to contain low amounts of disulfide-bonded polymers with relatively low M(w) ranging up to 5 x 10(6) Da. The glutelin fraction, however, was found to contain large amounts of high molecular weight disulfide-bonded polymers with M(w) up to 8 x 10(7) Da. When extracted under nonreducing conditions and divided into soluble and insoluble proteins as typically done for wheat gluten, carob germ proteins were found to be almost entirely ( approximately 95%) in the soluble fraction with only ( approximately 5%) in the insoluble fraction. As in wheat, SEC-MALS analysis showed that the insoluble proteins had a greater M(w) than the soluble proteins and ranged up to 8 x 10(7) Da. The lower M(w) distribution of the polymeric proteins of carob germ flour may account for differences in functionality between wheat and carob germ flour.

  11. Molecular and structural properties of polymer composites filled with activated charcoal particles

    Science.gov (United States)

    Tahir, Dahlang; Liong, Syarifuddin; Bakri, Fahrul

    2016-03-01

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH3) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO3, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  12. Neuroendocrine and squamous colonic composite carcinoma: Case report with molecular analysis

    Institute of Scientific and Technical Information of China (English)

    Sabrina C Wentz; Cindy Vnencak-Jones; William V Chopp

    2011-01-01

    Composite colorectal carcinomas are rare. There are a modest number of cases in the medical literature, with even fewer cases describing composite carcinoma with neuroendocrine and squamous components. There are to our knowledge no reports of composite carcinoma molecular alterations. We present a case of composite carcinoma of the splenic flexure in a 33 year-old Cau casian male to investigate the presence and prognos tic significance of molecular alterations in rare colonic carcinoma subtypes. Formalin-fixed paraffin-embedded (FFPE) tissue was hematoxylin and eosin- and mucicar-mine-stained according to protocol, and immuno-stained with cytokeratin (CK)7, CK20, CDX2, AE1/AE3, chromo-granin-A and synaptophysin. DNA was extracted from FFPE tissues and molecular analyses were performedaccording to lab-developed methods, followed by capil lary electrophoresis. Hematoxylin and eosin staining showed admixed neuroendocrine and keratinized squa mous cells. Positive nuclear CDX2 expression confirmed intestinal derivation. CK7 and CK20 were negative. Neuroendocrine cells stained positively for synaptophy sin and AE1/AE3 and negatively for chromogranin and mucicarmine. Hepatic metastases showed a similar im munohistochemical profile. Molecular analysis revealed a G13D KRAS mutation. BRAF mutational testing was negative and microsatellite instability was not detected. The patient had rapid disease progression on chemo therapy and died 60 d after presentation. Although the G13D KRAS mutation normally predicts an intermediate outcome, the aggressive tumor behavior suggests other modifying factors in rare types of colonic carcinomas.

  13. Molecular modeling of polymer composite-analyte interactions in electronic nose sensors

    Science.gov (United States)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.

    2003-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.

  14. An Infrared Diffuse Circumstellar Band? The Unusual 1.5272 Micron DIB In the Red Square Nebula

    CERN Document Server

    Zasowski, G; Whelan, D G; Miroshnichenko, A S; Hernández, D A García; Majewski, S R

    2015-01-01

    The molecular carriers of the ubiquitous absorption features called the diffuse interstellar bands (DIBs) have eluded identification for many decades, in part because of the enormous parameter space spanned by the candidates and the limited set of empirical constraints afforded by observations in the diffuse interstellar medium. Detection of these features in circumstellar regions, where the environmental properties are more easily measured, is thus a promising approach to understanding the chemical nature of the carriers themselves. Here, using high resolution spectra from the APOGEE survey, we present an analysis of the unusually asymmetric 1.5272 micron DIB feature along the sightline to the Red Square Nebula and demonstrate the likely circumstellar origin of about half of the DIB absorption in this line of sight. This interpretation is supported both by the velocities of the feature components and by the ratio of foreground to total reddening along the line of sight. The Red Square Nebula sightline offers...

  15. A systematic investigation of the preparation and properties of composite carbon molecular sieves containing inorganic oxides

    Science.gov (United States)

    Foley, Henry C.

    1990-01-01

    The objective of this research is to define the methodology for the preparation and characterization of new carbon-based molecular sieves with composite structures. Carbon molecular sieves have found increasing application in the field of separation and purification of gases. These materials are relatively easy to prepare and their surfaces can be modified to some extent. It is expected that by combining inorganic oxides with the carbonaceous structure one can begin to design composite materials with a wider range of possible chemical and physical properties. In this way, the IOM-CMS materials may confer distinct advantages over pure carbon molecular sieves, not just for separation, but also for catalysis. The most recent results in the design and characterization of these IOM-CMS materials are reviewed and summarized. Directions for further research are also presented.

  16. The Circumstellar Disk of the Butterfly Star in Taurus

    CERN Document Server

    Wolf, S; Stapelfeldt, K R; Wolf, Sebastian; Padgett, Deborah L.; Stapelfeldt, Karl R.

    2003-01-01

    We present a model of the circumstellar environment of the so-called ``Butterfly Star'' in Taurus (IRAS 04302+2247). The appearance of this young stellar object is dominated by a large circumstellar disk seen edge-on and the light scattering lobes above the disk. The model is based on multi-wavelength continuum observations: Millimeter maps and high-resolution near-infrared images obtained with HST/NICMOS. It was found that the disk and envelope parameters are comparable with those of the circumstellar environment of other young stellar objects. A main result is that the dust properties must be different in the circumstellar disk and in the envelope: While a grain size distribution with grain radii up to 100 micron is required to reproduce the millimeter observations of the disk, the envelope is dominated by smaller grains similar to those of the interstellar medium. Preprint with high figure quality available at: http://spider.ipac.caltech.edu/staff/swolf/homepage/public/preprints/i04302.ps

  17. Circumstellar C2, CN, and CH+ in the optical spectra of post-AGB stars

    CERN Document Server

    Bakker, E J; Waters, L B F M; Schoenmaker, T; Bakker, Eric J.; Dishoeck, Ewine F. van; Schoenmaker, Ton

    1996-01-01

    We present optical high-resolution spectra of a sample of sixteen post-AGB stars and IRC +10216. Of the post-AGB stars, ten show C2 Phillips and Swan and CN Red System absorption, one CH+ emission, one CH+ absorption, and four without any molecules. We find typically Trot=43-399, 155-202, and 18-50 K, log N = 14.90-15.57, 14.35, and 15.03-16.47 cm-2 for C2, CH+, and CN respectively, and 0.620. The presence of C2 and CN absorption is correlated with cold dust (Tdust300K). All objects with the unidentified 21mum emission feature exhibit C2 and CN absorption, but not all objects with C2 and CN detections exhibit a 21mum feature. The derived expansion velocity, ranging from 5 to 44 km/s, is the same as that derived from CO millimeter line emission. This unambiguously proves that these lines are of circumstellar origin and are formed in the AGB ejecta (circumstellar shell expelled during the preceding AGB phase). Furthermore there seems to be a relation between the C2 molecular column density and the expansion vel...

  18. The circumstellar envelope of the C-rich post-AGB star HD 56126

    CERN Document Server

    Hony, S; Waters, L B F M; De Koter, A

    2003-01-01

    We present a detailed study of the circumstellar envelope of the post-asymptotic giant branch ``21 micron object'' HD 56126. We build a detailed dust radiative transfer model of the circumstellar envelope in order to derive the dust composition and mass, and the mass-loss history of the star. To model the emission of the dust we use amorphous carbon, hydrogenated amorphous carbon, magnesium sulfide and titanium carbide. We present a detailed parametrisation of the optical properties of hydrogenated amorphous carbon as a function of H/C content. The mid-infrared imaging and spectroscopy is best reproduced by a single dust shell from 1.2 to 2.6 arcsec radius around the central star. This shell originates from a short period during which the mass-loss rate exceeded 10^(-4) M_sun/yr. We find that the strength of the ``21'' micron feature poses a problem for the TiC identification. The low abundance of Ti requires very high absorption cross-sections in the ultraviolet and visible wavelength range to explain the st...

  19. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element

    DEFF Research Database (Denmark)

    Mao, Yan; Bao, Yu; Gan, Shiyu

    2011-01-01

    A novel composite of graphene sheets/Congo red-molecular imprinted polymers (GSCR-MIPs) was synthesized through free radical polymerization (FRP) and applied as a molecular recognition element to construct dopamine (DA) electrochemical sensor. The template molecules (DA) were firstly absorbed...... at the GSCR surface due to their excellent affinity, and subsequently, selective copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) was further achieved at the GSCR surface. Potential scanning was presented to extract DA molecules from the imprinted polymers film...

  20. Deformation behavior of metallic glass composites reinforced with shape memory nanowires studied via molecular dynamics simulations

    Science.gov (United States)

    Şopu, D.; Stoica, M.; Eckert, J.

    2015-05-01

    Molecular dynamics simulations indicate that the deformation behavior and mechanism of Cu64Zr36 composite structures reinforced with B2 CuZr nanowires are strongly influenced by the martensitic phase transformation and distribution of these crystalline precipitates. When nanowires are distributed in the glassy matrix along the deformation direction, a two-steps stress-induced martensitic phase transformation is observed. Since the martensitic transformation is driven by the elastic energy release, the strain localization behavior in the glassy matrix is strongly affected. Therefore, the composite materials reinforced with a crystalline phase, which shows stress-induced martensitic transformation, represent a route for controlling the properties of glassy materials.

  1. Spectroscopic Evolution of Disintegrating Planetesimals: Minutes to Months Variability in the Circumstellar Gas Associated with WD 1145+017

    CERN Document Server

    Redfield, Seth; Cauley, P Wilson; Parsons, Steven G; Gaensicke, Boris T; Duvvuri, Girish

    2016-01-01

    With the recent discovery of transiting planetary material around WD 1145+017, a critical target has been identified that links the evolution of planetary systems with debris disks and their accretion onto the star. We present a series of observations, five epochs over a year, taken with Keck and the VLT, which for the first time show variability of circumstellar absorption in the gas disk surrounding WD 1145+017 on timescales of minutes to months. Circumstellar absorption is measured in more than 250 lines of 14 ions among ten different elements associated with planetary composition, e.g., O, Mg, Ca, Ti, Cr, Mn, Fe, Ni. Broad circumstellar gas absorption with a velocity spread of 225 km/s is detected, but over the course of a year blue shifted absorption disappears while redshifted absorption systematically increases. A correlation of equivalent width and oscillator strength indicates that the gas is not highly optically thick (median tau approximately 2). We discuss simple models of an eccentric disk couple...

  2. Influence of molecular composition on H-aggregation in hemicyanine Langmuir-Blodgett multilayers

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-jun; LI Shu-hong; HU Hai-quan; BAI Cheng-lin

    2006-01-01

    Influence of molecular composition in hemicyanine Langmuir-Blodgett (LB) films on the aggregation features was investigated by using steady state and time-resolved photoluminescence spectroscopy.It was found that a lower degree of H-aggregation (smaller aggregate size) could be realized in hemicyanine LB films with larger donor groups,leading to a smaller photoluminescence peak blue shift with respect to their solution spectra and longer aggregate lifetime.

  3. Dissolved organic nitrogen in urban streams: Biodegradability and molecular composition studies.

    Science.gov (United States)

    Lusk, Mary G; Toor, Gurpal S

    2016-06-01

    A portion of the dissolved organic nitrogen (DON) is biodegradable in water bodies, yet our knowledge of the molecular composition and controls on biological reactivity of DON is limited. Our objective was to investigate the biodegradability and molecular composition of DON in streams that drain a gradient of 19-83% urban land use. Weekly sampling over 21 weeks suggested no significant relationship between urban land use and DON concentration. We then selected two streams that drain 28% and 83% urban land use to determine the biodegradability and molecular composition of the DON by coupling 5-day bioassay experiments with high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Both urban streams contained a wide range of N-bearing biomolecular formulas and had >80% DON in lignin-like compounds, with only 5-7% labile DON. The labile DON consisted mostly of lipid-and protein-like structures with high H/C and low O/C values. Comparison of reactive formulas and formed counterparts during the bioassay experiments indicated a shift toward more oxygenated and less saturated N-bearing DON formulas due to the microbial degradation. Although there was a little net removal (5-7%) of organic-bound N over the 5-day bioassay, there was some change to the carbon skeleton of DON compounds. These results suggest that DON in urban streams contains a complex mixture of compounds such as lipids, proteins, and lignins of variable chemical structures and biodegradability.

  4. Molecular formula composition of β-caryophyllene ozonolysis SOA formed in humid and dry conditions

    Science.gov (United States)

    Kundu, Shuvashish; Fisseha, Rebeka; Putman, Annie L.; Rahn, Thom A.; Mazzoleni, Lynn R.

    2017-04-01

    We studied the molecular formula composition of six β-caryophyllene SOA samples using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry under various reaction conditions. The SOA samples were generated in dry or low relative humidity (RH) chamber conditions with or without cyclohexane. All of the studied SOA mass spectra have three distinct clusters of hundreds of negative ions referred to as Group I (100 molecular formulas with higher average carbon numbers were observed in humid SOA than in dry SOA in the absence of cyclohexane, suggesting a decrease of cleavage reactions in humid condition. This study characterizes β-caryophyllene ozonolysis SOA based on ultrahigh mass resolution and demonstrates the significance of humidity in terms of the molecular distributions and relative abundances of the analytes. We also discuss the possible mechanism for the formation of Group I-III compounds based on the current understanding of SOA formation in the atmosphere.

  5. Synthesis of a new meso/microporous composite molecular sieve of MCM-41/mordenite

    Institute of Scientific and Technical Information of China (English)

    WANG Shan; DOU Tao; LI Yuping; ZHANG Ying; YAN Zichun; LI Xiaofeng

    2005-01-01

    An MCM-41/mordenite composite with twofold porous structure and stepwise-distributed acidity was prepared for the first time by using zeolite mordenite as the silica-alumina source. The composite molecular sieve has been investigated and compared with a mechanical mixture of mordenite and MCM-41 for their structure, acidity and catalytic activity by means of XRD, N2 adsorption and desorption, HRTEM, DTG, NH3-TPD and catalytic reaction. The characterization results show that the structure and property of the composite molecular sieve are quite different from those of the mechanical mixture, which might be ascribed to the incorporation of secondary building units characteristic of zeolite mordenite into the mesoporous walls of the composite which gives rise to the thicker mesoporous walls, the higher hydrothermal stability and more strong acid sites. Furthermore, the new strategy could be used as a new general method for the preparation of catalysts for the reaction system with multifold large molecules, and the results were well confirmed by the dealkylation of C10+ aromatic hydrocarbon.

  6. Thermal decomposition of poly(ethylene terephthalate)/mesoporous molecular sieve composites

    Institute of Scientific and Technical Information of China (English)

    RUN Mingtao; ZHANG Dayu; WU Sizhu; WU Gang

    2007-01-01

    The nonisothermal and isothermal degradation processesofpoly(ethyleneterephthalate)/mesoporous molecular sieve (PET/MMS) composites synthesized by insitu polymerization were studied by using thermogravimetric analysis in nitrogen.The nonisothermal degradation of the composite is found to be the first-order reaction.An isoconversional procedure developed by Ozawa is used to calculate the apparent activation energy (E),which is an average value of about 260 kJ/mol with the weight conversion from 0% to 30%,and is higher than that of neat PET.Isothermal degradation results are confirmed with the nonisothermal process,in which PET/MMS showed higher thermal stability than neat PET.The polymer in mesoporous channels has more stability due to the protection of the inorganic pore-wall.These results indicate that mesoporous MMS in PET/MMS composites improve the stability of the polymer.

  7. Environmental drivers of dissolved organic matter molecular composition in the Delaware Estuary

    Science.gov (United States)

    Osterholz, Helena; Kirchman, David L.; Niggemann, Jutta; Dittmar, Thorsten

    2016-11-01

    Estuaries as connectors of freshwater and marine aquatic systems are hotspots of biogeochemical element cycling. In one of the best studied temperate estuaries, the Delaware Estuary (USA), we investigated the variability of dissolved organic matter (DOM) over five sampling cruises along the salinity gradient in August and November of 3 consecutive years. Dissolved organic carbon (DOC) concentrations were more variable in the upper reaches of the estuary (245±49 µmol L-1) than at the mouth of the estuary (129±14 µmol L-1). Bulk DOC decreased conservatively along the transect in November but was non-conservative with increased DOC concentrations mid-estuary in August. Detailed analysis of the solid-phase extractable DOM pool via ultrahigh resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) revealed compositional differences at the molecular level that were not reflected in changes in concentration. Besides the mixing of terrestrial and marine endmember signatures, river discharge levels and biological activity were found to impact DOM molecular composition. DOM composition changed less between August and November than along the salinity gradient. Relative contributions of presumed photolabile DOM compounds did not reveal non-conservative behavior indicative of photochemical processing; suggesting that on the timescales of estuarine mixing photochemical removal of molecules plays a minor role in the turbid Delaware Bay. Overall, a large portion of molecular formulae overlapped between sampling campaigns and persisted during estuarine passage. Extending the analysis to the structural level via the fragmentation of molecular masses in the FT-ICR-MS cell, we found that the relative abundance of isomers along the salinity gradient did not change, indicating a high structural similarity of aquatic DOM independent of the origin. These results point towards a recalcitrant character of the DOM supplied by the Delaware

  8. External Shaping of Circumstellar Envelopes of Evolved Stars

    Science.gov (United States)

    Cox, N. L. J.

    2015-08-01

    The circumstellar envelopes of asymptotic giant branch (AGB) stars and red supergiants (RSGs) are complex chemical and physical environments, and the specifics of their mass-loss history are important for both stellar and galactic evolution. One key aspect in this is to understand how the circumstellar medium of these stars can be shaped and affected by both internal and external mechanisms. These influences can skew our view on the (dust) chemistry and mass-loss history of these stars, and hence their role in the chemical enrichment of galaxies. This contribution focuses on the external mechanism related to the interaction between the slow dusty stellar wind and the local ambient medium. I will discuss what recent observations and hydrodynamical simulations have revealed and how these can help us learn more about AGB stars and RSGs, as well as the interstellar medium (ISM).

  9. CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ken J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Guillochon, James [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Foley, Ryan J., E-mail: kenshen@astro.berkeley.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-06-20

    Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

  10. Spectroscopic diagnostics for circumstellar disks of B[e] supergiants

    CERN Document Server

    Kraus, Michaela

    2016-01-01

    B[e] supergiants (B[e]SGs) are emission-line objects, presumably in a short-lived phase in the post-main sequence evolution of massive stars. Their intense infrared excess emission indicates large amounts of warm circumstellar dust, and the stars were longtime assumed to possess an aspherical wind consisting of a classical line-driven wind in polar direction and a dense, slow equatorial wind dubbed outflowing disk. The general properties obtained for these disks are in line with this scenario, although current theories have considerable difficulties reproducing the observed quantities. Therefore, more sophisticated observational constraints are needed. These follow from combined optical and infrared spectroscopic studies, which delivered the surprising result that the circumstellar material of B[e]SGs is concentrated in multiple rings revolving the stars on stable Keplerian orbits. Such a scenario requires new ideas for the formation mechanism, in which pulsations might play an important role.

  11. Circumstellar Shells in Absorption in Type Ia Supernovae

    CERN Document Server

    Borkowski, K J; Reynolds, S P

    2009-01-01

    Progenitors of Type Ia supernovae (SNe) have been predicted to modify their ambient circumstellar (CSM) and interstellar environments through the action of their powerful winds. While there is X-ray and optical evidence for circumstellar interaction in several remnants of Type Ia SNe, widespread evidence for such interaction in Type Ia SNe themselves has been lacking. We consider prospects for detection of CSM shells that have been predicted to be common around Type Ia SNe. Such shells are most easily detected in Na I absorption lines. Variable (declining) absorption is expected to occur soon after the explosion, primarily during the SN rise time, for shells located within 1 - 10 pc of a SN. The distance of the shell from the SN can be determined by measuring the time scale for line variability.

  12. Proper Motions of Water Masers in Circumstellar Shells

    Science.gov (United States)

    Marvel, K. B.; Diamond, P. J.; Kemball, A. J.

    We present proper motion measurements of circumstellar water masers obtained with the VLBA. The objects observed include S Persei, VX Sagittarii, U Herculis, VY Canis Majoris, NML Cygni, IK Tauri and RX Bootis. Results of the observations and modeling indicate that the water masers exist in a kinematically complex region of the circumstellar envelope, which is not well fit by the standard model of a uniformly expanding spherical wind. Attempts at fitting an ellipsoidal geometric distribution with a variety of kinematic models are presented. Estimates for the distances of the stars are also discussed. A change in position of the maser spots as a function of velocity has been measured. This effect may be used to place limits on accelerations in the masing gas.

  13. Optical Evidence for Circumstellar Interaction Around SN 1993J

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Feng; ZHANG Tian-Meng; ZHOU Xu; LI Zong-Wei

    2004-01-01

    We study the circumstellar interaction around SN 1993J by its intermediate-band light curves obtained by the 60/90 cm Schmidt telescope at Xinglong station. The optical emission showed a slow decay of 0.05±0.02 mag/100 d in the period from 1995 to 2003, invoking a main energy contribution from SN-circumstellar interaction at late times. The relatively flat power law SN density model fits better with the observations. In particular, the line ratio of [O Ⅲ]λλ4959, 5007 and Na I D relative to Hα are well reproduced by the model. Moreover, the Hα light curve displayed obvious bump structures at some epochs, which is probably attributed to the density fluctuations in the ambient material that surrounds the reverse shockwave.

  14. Observations of Circumstellar Thermochemical Equilibrium: The Case of Phosphorus

    Science.gov (United States)

    Milam, Stefanie N.; Charnley, Steven B.

    2011-01-01

    We will present observations of phosphorus-bearing species in circumstellar envelopes, including carbon- and oxygen-rich shells 1. New models of thermochemical equilibrium chemistry have been developed to interpret, and constrained by these data. These calculations will also be presented and compared to the numerous P-bearing species already observed in evolved stars. Predictions for other viable species will be made for observations with Herschel and ALMA.

  15. Dispersal of Gaseous Circumstellar Discs around High-Mass Stars

    CERN Document Server

    Shen, Y; Shen, Yue; Lou, Yu-Qing

    2006-01-01

    We study the dispersal of a gaseous disc surrounding a central high-mass stellar core once this circumstellar disc becomes fully ionized. If the stellar and surrounding EUV and X-ray radiations are so strong as to rapidly heat up and ionize the entire circumstellar disc as further facilitated by disc magnetohydrodynamic (MHD) turbulence, a shock can be driven to travel outward in the fully ionized disc, behind which the disc expands and thins. For an extremely massive and powerful stellar core, the ionized gas pressure overwhelms the centrifugal and gravitational forces in the disc. In this limit, we construct self-similar shock solutions for such an expansion and depletion phase. As a significant amount of circumstellar gas being removed, the relic disc becomes vulnerable to strong stellar winds and fragments into clumps. We speculate that disc disappearance happens rapidly, perhaps on a timescale of $\\sim 10^3-10^4\\hbox{yr}$ once the disc becomes entirely ionized sometime after the onset of thermal nuclear ...

  16. The Circumstellar Environments of NML Cyg and the Cool Hypergiants

    CERN Document Server

    Schuster, M T; Marengo, M; Schuster, Michael T.; Humphreys, Roberta M.; Marengo, Massimo

    2005-01-01

    We present high-resolution HST WFPC2 images of compact nebulosity surrounding the cool M-type hypergiants NML Cyg, VX Sgr and S Per. The powerful OH/IR source NML Cyg exhibits a peculiar bean-shaped asymmetric nebula that is coincident with the distribution of its H2O vapor masers. We show that NML Cyg's circumstellar envelope is likely shaped by photo-dissociation from the powerful, nearby association Cyg OB2 inside the Cygnus X superbubble. The OH/IR sources VX Sgr and S Per have marginally resolved envelopes. S Per's circumstellar nebula appears elongated in a NE/SW orientation similar to that for its OH and H2O masers, while VX Sgr is embedded in a spheroidal envelope. We find no evidence for circumstellar nebulosity around the intermediate-type hypergiants rho Cas, HR 8752, HR 5171a, nor the normal M-type supergiant mu Cep. We conclude that there is no evidence for high mass loss events prior to 500-1000 yrs ago for these four stars.

  17. Photodissociation and chemistry of N$_2$ in the circumstellar envelope of carbon-rich AGB stars

    CERN Document Server

    Li, Xiaohu; Walsh, Catherine; Heays, Alan N; van Dishoeck, Ewine F

    2014-01-01

    The envelopes of AGB stars are irradiated externally by ultraviolet photons; hence, the chemistry is sensitive to the photodissociation of N$_2$ and CO, which are major reservoirs of nitrogen and carbon, respectively. The photodissociation of N$_2$ has recently been quantified by laboratory and theoretical studies. Improvements have also been made for CO photodissociation. For the first time, we use accurate N$_2$ and CO photodissociation rates and shielding functions in a model of the circumstellar envelope of the carbon-rich AGB star, IRC +10216. We use a state-of-the-art chemical model of an AGB envelope, the latest CO and N$_2$ photodissociation data, and a new method for implementing molecular shielding functions in full spherical geometry with isotropic incident radiation. We compare computed column densities and radial distributions of molecules with observations. The transition of N$_2$ $\\to$ N (also, CO $\\to$ C $\\to$ C$^+$) is shifted towards the outer envelope relative to previous models. This leads...

  18. On Absorption by Circumstellar Dust, With the Progenitor of SN2012aw as a Case Study

    CERN Document Server

    Kochanek, C S; Dai, X

    2012-01-01

    We use the progenitor of SN2012aw to illustrate the consequences of modeling circumstellar dust using Galactic (interstellar) extinction laws that (1) ignore dust emission in the near-IR and beyond; (2) average over dust compositions, and (3) mis-characterize the optical/UV absorption by assuming that scattered photons are lost to the observer. The primary consequences for the progenitor of SN2012aw are that both the luminosity and the absorption are significantly over-estimated. In particular, the stellar luminosity is most likely in the range 10^4.8 0.3 micron) and total (absorption plus scattering) V-band optical depth (tau < 20). These do not include the contributions of dust emission, but provide a simple, physical alternative to incorrectly using interstellar extinction laws.

  19. Molecular dynamics simulation of diffusion of gases in a carbon-nanotube-polymer composite

    Science.gov (United States)

    Lim, Seong Y.; Sahimi, Muhammad; Tsotsis, Theodore T.; Kim, Nayong

    2007-07-01

    Extensive molecular dynamics (MD) simulations were carried out to compute the solubilities and self-diffusivities of CO2 and CH4 in amorphous polyetherimide (PEI) and mixed-matrix PEI generated by inserting single-walled carbon nanotubes into the polymer. Atomistic models of PEI and its composites were generated using energy minimizations, MD simulations, and the polymer-consistent force field. Two types of polymer composite were generated by inserting (7,0) and (12,0) zigzag carbon nanotubes into the PEI structure. The morphologies of PEI and its composites were characterized by their densities, radial distribution functions, and the accessible free volumes, which were computed with probe molecules of different sizes. The distributions of the cavity volumes were computed using the Voronoi tessellation method. The computed self-diffusivities of the gases in the polymer composites are much larger than those in pure PEI. We find, however, that the increase is not due to diffusion of the gases through the nanotubes which have smooth energy surfaces and, therefore, provide fast transport paths. Instead, the MD simulations indicate a squeezing effect of the nanotubes on the polymer matrix that changes the composite polymers’ free-volume distributions and makes them more sharply peaked. The presence of nanotubes also creates several cavities with large volumes that give rise to larger diffusivities in the polymer composites. This effect is due to the repulsive interactions between the polymer and the nanotubes. The solubilities of the gases in the polymer composites are also larger than those in pure PEI, hence indicating larger gas permeabilities for mixed-matrix PEI than PEI itself.

  20. Modified oleic cottonseeds show altered content, composition and tissue-specific distribution of triacylglycerol molecular species.

    Science.gov (United States)

    Horn, Patrick J; Sturtevant, Drew; Chapman, Kent D

    2014-01-01

    Targeted increases in monounsaturated (oleic acid) fatty acid content of refined cottonseed oil could support improved human nutrition and cardiovascular health. Genetic modifications of cottonseed fatty acid composition have been accomplished using several different molecular strategies. Modification of oleic acid content in cottonseed embryos using a dominant-negative protein approach, while successful in effecting change in the desired fatty acid composition, resulted in reduced oil content and seed viability. Here these changes in fatty acid composition were associated with changes in dominant molecular species of triacylglycerols (TAGs) and their spatial distributions within embryo tissues. A combination of mass spectrometry (MS)-based lipidomics approaches, including MS imaging of seed cryo-sections, revealed that cotton embryos expressing a non-functional allele of a Brassica napus delta-12 desaturase showed altered accumulation of TAG species, especially within cotyledonary tissues. While lipid analysis of seed extracts could demonstrate detailed quantitative changes in TAG species in transgenics, the spatial contribution of metabolite compartmentation could only be visualized by MS imaging. Our results suggest tissue-specific differences in TAG biosynthetic pathways within cotton embryos, and indicate the importance of considering the location of metabolites in tissues in addition to their identification and quantification when developing a detailed view of cellular metabolism.

  1. Molecular sieve/sulfonated poly(ether ketone ether sulfone) composite membrane as proton exchange membrane

    Science.gov (United States)

    Changkhamchom, Sairung; Sirivat, Anuvat

    2012-02-01

    A proton exchange membrane (PEM) is an electrolyte membrane used in both polymer electrolyte membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFCs). Currently, PEMs typically used for PEMFCs are mainly the commercially available Nafion^ membranes, which is high cost and loss of proton conductivity at elevated temperature. In this work, the Sulfonated poly(ether ketone ether sulfone), (S-PEKES), was synthesized by the nucleophilic aromatic substitution polycondensation between bisphenol S and 4,4'-dichlorobenzophenone, and followed by the sulfonation reaction with concentrated sulfuric acid. The molecular sieve was added in the S-PEKES matrix at various ratios to form composite membranes to be the candidate for PEM. Properties of both pure sulfonated polymer and composite membranes were compared with the commercial Nafion^ 117 membrane from Dupont. S-PEKES membranes cast from these materials were evaluated as a polymer electrolyte membrane for direct methanol fuel cells. The main properties investigated were the proton conductivity, methanol permeability, thermal, chemical, oxidative, and mechanical stabilities by using a LCR meter, Gas Chromatography, Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy, Fenton's reagent, and Universal Testing Machine. The addition of the molecular sieve helped to increase both the proton conductivity and the methanol stability. These composite membranes are shown as to be potential candidates for use as a Proton Exchange Membrane (PEM).

  2. COMPOSITE POLYMERICADDITIVESDESIGNATED FORCONCRETEMIXES BASED ONPOLYACRYLATES, PRODUCTS OF THERMAL DECOMPOSITION OF POLYAMIDE-6 AND LOW-MOLECULAR POLYETHYLENE

    Directory of Open Access Journals (Sweden)

    Polyakov Vyacheslav Sergeevich

    2012-07-01

    4 the optimal composite additive that increases the time period of stiffening of the cement grout , improves the water resistance and the compressive strength of concrete, represents the composition of polyacrylates and polymethacrylates, products of thermal decomposition of polyamide-6 and low-molecular polyethylene in the weight ratio of 1:1:0.5.

  3. Molecular size and amino acid composition of H-2d antigen solubilized in Nonidet P-40.

    Science.gov (United States)

    Rossowski, W; Kloczewiak, M; Radzikowski, C; Strzadala, L

    1976-01-01

    H-2d antigenic material solubilized by the detergent Nonidet P-40 from L-1210 mouse leukemia cells was isolated by gel filtration on Bio-Gel P-100. A single peak eluted in the void volume consisted of about 90% protein, 8% hexose and traces of sialic acids. In sedimentation velocity runs, the antigen sedimented as a single peak of 3-1 S. Molecular weight determined by sedimentation equilibrium as well as calculated from amino acid composition was found to be in the range of 53,000 daltons and approx. 45,000-51,000 when calculated from sodium dodecyl sulfate polyacrylamide gel electrophoresis. Secondary structure of H-2d glycoprotein was predicted from the amino acid composition. For NP-40-solubilized H-2d antigen, about 34% of helix, 13% beta sheet and 41% turns was found.

  4. On the cluster composition of supercritical water combining molecular modeling and vibrational spectroscopic data.

    Science.gov (United States)

    Tassaing, T; Garrain, P A; Bégué, D; Baraille, I

    2010-07-21

    The present study is aimed at a detailed analysis of supercritical water structure based on the combination of experimental vibrational spectra as well as molecular modeling calculations of isolated water clusters. We propose an equilibrium cluster composition model where supercritical water is considered as an ideal mixture of small water clusters (n=1-3) at the chemical equilibrium and the vibrational spectra are expected to result from the superposition of the spectra of the individual clusters, Thus, it was possible to extract from the decomposition of the midinfrared spectra the evolution of the partition of clusters in supercritical water as a function of density. The cluster composition predicted by this model was found to be quantitatively consistent with the near infrared and Raman spectra of supercritical water analyzed using the same procedure. We emphasize that such methodology could be applied to determine the portion of cluster in water in a wider thermodynamic range as well as in more complex aqueous supercritical solutions.

  5. Composite-boson approach to molecular Bose-Einstein condensates in mixtures of ultracold Fermi gases

    Science.gov (United States)

    Bouvrie, P. Alexander; Tichy, Malte C.; Roditi, Itzhak

    2017-02-01

    We show that an ansatz based on independent composite bosons [Phys. Rep. 463, 215 (2008), 10.1016/j.physrep.2007.11.003] accurately describes the condensate fraction of molecular Bose-Einstein condensates in ultracold Fermi gases. The entanglement between the fermionic constituents of a single Feshbach molecule then governs the many-particle statistics of the condensate, from the limit of strong interaction to close to unitarity. This result strengthens the role of entanglement as the indispensable driver of composite-boson behavior. The condensate fraction of fermion pairs at zero temperature that we compute matches excellently previous results obtained by means of fixed-node diffusion Monte Carlo methods and the Bogoliubov depletion approximation. This paves the way towards the exploration of the BEC-BCS crossover physics in mixtures of cold Fermi gases with an arbitrary number of fermion pairs as well as the implementation of Hong-Ou-Mandel-like interference experiments proposed within coboson theory.

  6. Molecular composition of organic matter controls methylmercury formation in boreal lakes

    Science.gov (United States)

    Bravo, Andrea G.; Bouchet, Sylvain; Tolu, Julie; Björn, Erik; Mateos-Rivera, Alejandro; Bertilsson, Stefan

    2017-02-01

    A detailed understanding of the formation of the potent neurotoxic methylmercury is needed to explain the large observed variability in methylmercury levels in aquatic systems. While it is known that organic matter interacts strongly with mercury, the role of organic matter composition in the formation of methylmercury in aquatic systems remains poorly understood. Here we show that phytoplankton-derived organic compounds enhance mercury methylation rates in boreal lake sediments through an overall increase of bacterial activity. Accordingly, in situ mercury methylation defines methylmercury levels in lake sediments strongly influenced by planktonic blooms. In contrast, sediments dominated by terrigenous organic matter inputs have far lower methylation rates but higher concentrations of methylmercury, suggesting that methylmercury was formed in the catchment and imported into lakes. Our findings demonstrate that the origin and molecular composition of organic matter are critical parameters to understand and predict methylmercury formation and accumulation in boreal lake sediments.

  7. Hypervelocity Impact Experiments on Epoxy/Ultra-High Molecular Weight Polyethylene Composite Panels Reinforced with Nanotubes

    Science.gov (United States)

    Khatiwada, Suman; Laughman, Jay W.; Armada, Carlos A.; Christiansen, Eric L.; Barrera, Enrique V.

    2012-01-01

    Advanced composites with multi-functional capabilities are of great interest to the designers of aerospace structures. Polymer matrix composites (PMCs) reinforced with high strength fibers provide a lightweight and high strength alternative to metals and metal alloys conventionally used in aerospace architectures. Novel reinforcements such as nanofillers offer potential to improve the mechanical properties and add multi-functionality such as radiation resistance and sensing capabilities to the PMCs. This paper reports the hypervelocity impact (HVI) test results on ultra-high molecular weight polyethylene (UHMWPE) fiber composites reinforced with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT). Woven UHMWPE fabrics, in addition to providing excellent impact properties and high strength, also offer radiation resistance due to inherent high hydrogen content. SWCNT have exceptional mechanical and electrical properties. BNNT (figure 1) have high neutron cross section and good mechanical properties that add multi-functionality to this system. In this project, epoxy based UHMWPE composites containing SWCNT and BNNT are assessed for their use as bumper shields and as intermediate plates in a Whipple Shield for HVI resistance. Three composite systems are prepared to compare against one another: (I) Epoxy/UHMWPE, (II) Epoxy/UHMWPE/SWCNT and (III) Epoxy/UHMWPE/SWCNT/BNNT. Each composite is a 10.0 by 10.0 by 0.11 cm3 panel, consisting of 4 layers of fabrics arranged in cross-ply orientation. Both SWCNT and BNNT are 0.5 weight % of the fabric preform. Hypervelocity impact tests are performed using a two-stage light gas gun at Rice University

  8. LABORATORY INVESTIGATIONS OF POLYCYCLIC AROMATIC HYDROCARBON FORMATION AND DESTRUCTION IN THE CIRCUMSTELLAR OUTFLOWS OF CARBON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Cesar S.; Salama, Farid, E-mail: cesar.contreras@nasa.gov, E-mail: Farid.Salama@nasa.gov [Space Science and Astrobiology Division, NASA-Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-09-15

    The formation and destruction mechanisms of interstellar dust analogs formed from a variety of polycyclic aromatic hydrocarbon (PAH) and hydrocarbon molecular precursors are studied in the laboratory. We used the newly developed facility COSmIC, which simulates interstellar and circumstellar environments, to investigate both PAHs and species that include the cosmically abundant atoms O, N, and S. The species generated in a discharge plasma are detected, monitored, and characterized in situ using highly sensitive techniques that provide both spectral and ion mass information. We report here the first series of measurements obtained in these experiments which focus on the characterization of the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars. We compare and discuss the relative efficiencies of the various molecular precursors that lead to the formation of the building blocks of carbon grains. We discuss the most probable molecular precursors in terms of size and structure and the implications for the expected growth and destruction processes of interstellar carbonaceous dust.

  9. Adsorption of Molecular Gases on Silver/Carbon Nanotube Composites at Low Temperatures and Low Pressures

    Directory of Open Access Journals (Sweden)

    M. Barberio

    2014-01-01

    Full Text Available We present an experimental study adsorption of molecular gases (N2, H2, O2, CH4, C2H4, and C2H6 on multiwalled carbon nanotubes (MWCNTs and MWCNT doped with Ag at low temperatures (35 K and pressures (10−6 Torr using the temperature programmed desorption technique. Our results show that the desorption kinetics is of the first order; furthermore comparative measurements indicate that Ag/MWCNTs have an adsorption capacity higher than that of a pure sample suggesting that these composites are good candidates as gas cryosorbers for applications in cryopumps or sensor of latest generation.

  10. Absorption Coefficient, Molecular Composition, and Photodegradation of Different Types of Brown Carbon Aerosols

    Science.gov (United States)

    Lee, H. J.; Aiona, P. K.; Nizkorodov, S.; Laskin, J.; Laskin, A.

    2014-12-01

    Atmospheric aerosols that absorb solar radiation have a direct effect on climate. Brown carbon (BrC) represents the type of carbonaceous aerosols characterized by large absorption coefficients in the near-UV range of the spectrum. BrC can be either directly emitted into the atmosphere from combustion sources, or be formed in the atmosphere through multi-phase reactions, such as aging of secondary organic aerosols (SOA) mediated by ammonium sulfate (AS). Under the conditions of exposure to solar radiation, both primary and secondary BrC can potentially change their molecular composition and optical properties as a result of photodegradation of chromophoric compounds. This presentation will discuss the molecular level composition, the absorption and fluorescence spectra, and the mechanism of photodegradation among several representative types of BrC. The primary BrC samples include aerosol produced by smoldering wood combustion. The secondary BrC samples include AS aged products of chamber-generated SOA, products of reaction between methylglyoxal and AS, and SOA produced by the hogh-NOx photooxdiation of aromatic compounds, such as naphthalene. This presentation will also include preliminary data on the absorption and fluorescence spectra of photo-degraded bioaerosols. In all cases, absorption spectra of extracted bulk samples are measured during irradiation by a known flux of UV or visible light. The molecular level composition of the fresh and photobleached samples are characterized by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Photobleaching of BrC is found to occur over a range of atmospherically relevant time scales. In many cases, the molecular level composition of photobleached BrC exhibits only subtle changes suggesting that the optical and fluorescence properties of BrC are controlled by a few compounds present in low quantities. The observed fluorescence from non-biological BrC indicates potential issues in using fluorescence

  11. Molecular dynamics and composition of crude oil by low-field nuclear magnetic resonance.

    Science.gov (United States)

    Jia, Zijian; Xiao, Lizhi; Wang, Zhizhan; Liao, Guangzhi; Zhang, Yan; Liang, Can

    2016-08-01

    Nuclear magnetic resonance (NMR) techniques are widely used to identify pure substances and probe protein dynamics. Oil is a complex mixture composed of hydrocarbons, which have a wide range of molecular size distribution. Previous work show that empirical correlations of relaxation times and diffusion coefficients were found for simple alkane mixtures, and also the shape of the relaxation and diffusion distribution functions are related to the composition of the fluids. The 2D NMR is a promising qualitative evaluation method for oil composition. But uncertainty in the interpretation of crude oil indicated further study was required. In this research, the effect of each composition on relaxation distribution functions is analyzed in detail. We also suggest a new method for prediction of the rotational correlation time distribution of crude oil molecules using low field NMR (LF-NMR) relaxation time distributions. A set of down-hole NMR fluid analysis system is independently designed and developed for fluid measurement. We illustrate this with relaxation-relaxation correlation experiments and rotational correlation time distributions on a series of hydrocarbon mixtures that employ our laboratory-designed downhole NMR fluid analyzer. The LF-NMR is a useful tool for detecting oil composition and monitoring oil property changes. Copyright © 2016 John Wiley & Sons, Ltd.

  12. SANS studies of solutions and molecular composites prepared from cellulose tricarbanilate

    Energy Technology Data Exchange (ETDEWEB)

    Alava, C.; Arrighi, V.; Cameron, J.D.; Cowie, J.M.G.; Vaqueiro, P. [Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Moeller, A.; Triolo, A. [Hahn-Meitner-Institut-BENSC, Glienicker Strasse 100, 14109 Berlin (Germany)

    2002-07-01

    We report on SANS measurements carried out on the instrument SANS1 (V4) at the BENSC facility on solutions and composites of cellulose tricarbanilate (CTC). This cellulose derivative exhibits lyotropic behaviour in methylacrylate (MA). The SANS data indicate that in the isotropic liquid state (up to 25% wt CTC in MA) the CTC chains behave like rods of mass per unit length (M/L). In the liquid crystalline (LC) phase (at and above 35% wt CTC in MA), the Q dependence varies from Q{sup -1} to Q{sup -4}, probably as a result of self-assembling of the CTC chains. The general aim of our work is to prepare molecular composites, i.e. miscible blends of rigid-rod and flexible-coil polymers, from CTC solutions in polymerizable media. To establish the degree of homogeneity of the composites, we performed SANS measurements on UV-cured CTC/MA solutions. Here, we compare the SANS data of CTC/monomer solutions with those of the corresponding composites. (orig.)

  13. Synthesis and Tribological Behavior of Ultra High Molecular Weight Polyethylene (UHMWPE-Lignin Composites

    Directory of Open Access Journals (Sweden)

    Surojit Gupta

    2016-08-01

    Full Text Available In this paper, we report the synthesis and characterization of ultra-high molecular weight polyethylene (UHMWPE-lignin composites. During this study four different compositions, namely UHMWPE, UHMWPE-13 wt. % lignin, UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % lignin were fabricated by hot pressing. Detailed microstructural studies by scanning electron microscopy (SEM showed that UHMWPE and UHMWPE-13 wt. % lignin had a uniform microstructure, whereas UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % lignin samples were riddled with pores. UHMWPE and UHMWPE-13% lignin showed comparable flexural strengths of ~32.2 MPa and ~32.4 MPa, respectively. However, the flexural strength dropped drastically in UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % samples to ~13 MPa and ~8 MPa, respectively. The tribology of UHMWPE-lignin composites is governed by the tribofilm formation. All the compositions showed similar µmean values and the specific wear rates (WR decreased gradually as the concentration of lignin in UHMWPE was increased.

  14. SANS studies of solutions and molecular composites prepared from cellulose tricarbanilate

    CERN Document Server

    Alava, C; Cameron, J D; Cowie, J M G; Vaqueiro, P; Möller, A; Triolo, A

    2002-01-01

    We report on SANS measurements carried out on the instrument SANS1 (V4) at the BENSC facility on solutions and composites of cellulose tricarbanilate (CTC). This cellulose derivative exhibits lyotropic behaviour in methylacrylate (MA). The SANS data indicate that in the isotropic liquid state (up to 25% wt CTC in MA) the CTC chains behave like rods of mass per unit length (M/L). In the liquid crystalline (LC) phase (at and above 35% wt CTC in MA), the Q dependence varies from Q sup - sup 1 to Q sup - sup 4 , probably as a result of self-assembling of the CTC chains. The general aim of our work is to prepare molecular composites, i.e. miscible blends of rigid-rod and flexible-coil polymers, from CTC solutions in polymerizable media. To establish the degree of homogeneity of the composites, we performed SANS measurements on UV-cured CTC/MA solutions. Here, we compare the SANS data of CTC/monomer solutions with those of the corresponding composites. (orig.)

  15. Biotribological behavior of ultra high molecular weight polyethylene composites containing bovine bone hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-long; ZHU Yuan-yuan; WANG Qing-liang; GE Shi-rong

    2008-01-01

    Wear particles of ultrahigh molecular weight polyethylene (UHMWPE) are the main cause of long-term failure of total joint replacements. Therefore, increasing its wear resistance or bioactivity will be very useful in order to obtain high quality artificial joints. In our study, UHMWPE composites filled with the bovine bone hydroxyapatite (BHA) were prepared by the method of compression moulding. A ball-on-disc wear test was carried out with a Universal Micro-Tribometer to investigate the friction and wear behavior of a Si3N4 ceramic ball, cross-sliding against the UHMWPE/BHA composites with human plasma lubrication. At the same time, the profiles of the worn grooves on the UHMWPE/BHA surface were scanned. The experimental results indicate that the addition of BHA to UHMWPE had a significant effect on the biotribological behavior of UHMWPE cross-sliding against the Si3N4 ceramic ball. The addition of BHA powder enhanced the hardness and modulus of elasticity of these composites and decreased the friction coefficients and wear rates under conditions of human plasma lubrication. When the added amount of BHA powders was up to 20%~30%, UHMWPE/BHA composites demonstrated the designed performance of the mechanical properties and biotribological behavior.

  16. Molecular Dynamics Modeling of Carbon Nanotube Composite Fracture Using ReaxFF

    Science.gov (United States)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2016-01-01

    Carbon nanotube (CNT) fiber reinforced composites with specific tensile strengths and moduli approaching those of aerospace grade carbon fiber composites have recently been reported. This achievement was enabled by the emerging availability of high N/tex yarns in kilometer-scale quantities. While the production of this yarn is an impressive advance, its strength is still much lower than that of the individual CNTs comprising the yarn. Closing this gap requires understanding load transfer between CNTs at the nanometer dimensional scale. This work uses reactive molecular dynamics simulations to gain an understanding at the nanometer scale of the key factors that determine CNT nanocomposite mechanical performance, and to place more realistic upper bounds on the target properties. While molecular dynamics simulations using conventional force fields can predict elastic properties, the ReaxFF reactive forcefield can also model fracture behavior because of its ability to accurately describe bond breaking and formation during a simulation. The upper and lower bounds of CNT composite properties are investigated by comparing systems composed of CNTs continuously connected across the periodic boundary with systems composed of finite length CNTs. These lengths, effectively infinite for the continuous tubes and an aspect ratio of 13 for the finite length case, result from practical limitations on the number of atoms that can be included in a simulation. Experimentally measured aspect ratios are typically on the order of 100,000, so the calculated results should represent upper and lower limits on experimental mechanical properties. Finally, the effect of various degrees of covalent crosslinking between the CNTs and amorphous carbon matrix is considered to identify the amount of CNT-matrix covalent bonding that maximizes overall composite properties.

  17. Chemistry and distribution of daughter species in the circumstellar envelopes of O-rich AGB stars

    Science.gov (United States)

    Li, Xiaohu; Millar, Tom J.; Heays, Alan N.; Walsh, Catherine; van Dishoeck, Ewine F.; Cherchneff, Isabelle

    2016-03-01

    Context. Thanks to the advent of Herschel and ALMA, new high-quality observations of molecules present in the circumstellar envelopes of asymptotic giant branch (AGB) stars are being reported that reveal large differences from the existing chemical models. New molecular data and more comprehensive models of the chemistry in circumstellar envelopes are now available. Aims: The aims are to determine and study the important formation and destruction pathways in the envelopes of O-rich AGB stars and to provide more reliable predictions of abundances, column densities, and radial distributions for potentially detectable species with physical conditions applicable to the envelope surrounding IK Tau. Methods: We use a large gas-phase chemical model of an AGB envelope including the effects of CO and N2 self-shielding in a spherical geometry and a newly compiled list of inner-circumstellar envelope parent species derived from detailed modeling and observations. We trace the dominant chemistry in the expanding envelope and investigate the chemistry as a probe for the physics of the AGB phase by studying variations of abundances with mass-loss rates and expansion velocities. Results: We find a pattern of daughter molecules forming from the photodissociation products of parent species with contributions from ion-neutral abstraction and dissociative recombination. The chemistry in the outer zones differs from that in traditional PDRs in that photoionization of daughter species plays a significant role. With the proper treatment of self-shielding, the N → N2 and C+→ CO transitions are shifted outward by factors of 7 and 2, respectively, compared with earlier models. An upper limit on the abundance of CH4 as a parent species of (≲2.5 × 10-6 with respect to H2) is found for IK Tau, and several potentially observable molecules with relatively simple chemical links to other parent species are determined. The assumed stellar mass-loss rate, in particular, has an impact on the

  18. H12CN and H13CN excitation analysis in the circumstellar outflow of R Sculptoris

    Science.gov (United States)

    Saberi, M.; Maercker, M.; De Beck, E.; Vlemmings, W. H. T.; Olofsson, H.; Danilovich, T.

    2017-03-01

    Context. The 12CO/13CO isotopologue ratio in the circumstellar envelope (CSE) of asymptotic giant branch (AGB) stars has been extensively used as the tracer of the photospheric 12C/13C ratio. However, spatially-resolved ALMA observations of R Scl, a carbon rich AGB star, have shown that the 12CO/13CO ratio is not consistent over the entire CSE. Hence, it can not necessarily be used as a tracer of the 12C/13C ratio. The most likely hypothesis to explain the observed discrepancy between the 12CO/13CO and 12C/13C ratios is CO isotopologue selective photodissociation by UV radiation. Unlike the CO isotopologue ratio, the HCN isotopologue ratio is not affected by UV radiation. Therefore, HCN isotopologue ratios can be used as the tracer of the atomic C ratio in UV irradiated regions. Aims: We aim to present ALMA observations of H13CN(4-3) and APEX observations of H12CN(2-1), H13CN(2-1, 3-2) towards R Scl. These new data, combined with previously published observations, are used to determine abundances, ratio, and the sizes of line-emitting regions of the aforementioned HCN isotopologues. Methods: We have performed a detailed non-LTE excitation analysis of circumstellar H12CN(J = 1-0, 2-1, 3-2, 4-3) and H13CN(J = 2-1, 3-2, 4-3) line emission around R Scl using a radiative transfer code based on the accelerated lambda iteration (ALI) method. The spatial extent of the molecular distribution for both isotopologues is constrained based on the spatially resolved H13CN(4-3) ALMA observations. Results: We find fractional abundances of H12CN/H2 = (5.0 ± 2.0) × 10-5 and H13CN/H2 = (1.9 ± 0.4) × 10-6 in the inner wind (r ≤ (2.0 ± 0.25) ×1015 cm) of R Scl. The derived circumstellar isotopologue ratio of H12CN/H13CN = 26.3 ± 11.9 is consistent with the photospheric ratio of 12C/13C 19 ± 6. Conclusions: We show that the circumstellar H12CN/H13CN ratio traces the photospheric 12C/13C ratio. Hence, contrary to the 12CO/13CO ratio, the H12CN/H13CN ratio is not affected by UV

  19. Cepheids at high angular resolution: circumstellar envelope and pulsation

    Science.gov (United States)

    Gallenne, Alexandre

    2011-12-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out a statistical study of the speckle noise and inspect a possible asymmetry. Secondly, I analysed VISIR data to study the spectral energy distribution of a sample of Cepheids. These diffraction-limited images enabled me to carry out an accurate photometry in the N band and to detect an IR excess linked to the presence of a circumstellar component. On the other hand, applying a Fourier analysis I showed that some components are resolved. I then explored the K' band with the recombination instrument FLUOR for some bright Cepheids. Thanks to new set of data of Y Oph, I improved the study of its circumstellar envelope, using a ring-like model for the CSE. For two other Cepheids, U Vul and S Sge, I applied the interferometric Baade-Wesselink method in order to estimate their distance.

  20. The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime

    Science.gov (United States)

    Walsh, Catherine; Nomura, Hideko; van Dishoeck, Ewine

    2015-10-01

    Context. Near- to mid-infrared observations of molecular emission from protoplanetary disks show that the inner regions are rich in small organic volatiles (e.g., C2H2 and HCN). Trends in the data suggest that disks around cooler stars (Teff ≈ 3000 K) are potentially (i) more carbon-rich; and (ii) more molecule-rich than their hotter counterparts (Teff ≳ 4000 K). Aims: We explore the chemical composition of the planet-forming region (gas-grain chemical network to map the molecular abundances in the planet-forming zone. The effects of (i) N2 self shielding; (ii) X-ray-induced chemistry; and (iii) initial abundances, are investigated. The chemical composition in the "observable" atmosphere is compared with that in the disk midplane where the bulk of the planet-building reservoir resides. Results: M dwarf disk atmospheres are relatively more molecule rich than those for T Tauri or Herbig Ae disks. The weak far-UV flux helps retain this complexity which is enhanced by X-ray-induced ion-molecule chemistry. N2 self shielding has only a small effect in the disk molecular layer and does not explain the higher C2H2/HCN ratios observed towards cooler stars. The models underproduce the OH/H2O column density ratios constrained in Herbig Ae disks, despite reproducing (within an order of magnitude) the absolute value for OH: the inclusion of self shielding for H2O photodissociation only increases this discrepancy. One possible explanation is the adopted disk structure. Alternatively, the "hot" H2O (T ≳ 300 K) chemistry may be more complex than assumed. The results for the atmosphere are independent of the assumed initial abundances; however, the composition of the disk midplane is sensitive to the initial main elemental reservoirs. The models show that the gas in the inner disk is generally more carbon rich than the midplane ices. This effect is most significant for disks around cooler stars. Furthermore, the atmospheric C/O ratio appears larger than it actually is when

  1. The circumstellar medium of the peculiar supernova SN1997ab

    CERN Document Server

    Salamanca, I M; Tenorio-Tagle, G; Telles, E; Terlevich, R J; Muñoz-Tunón, C; Salamanca, Isabel; Cid-Fernandes, Roberto; Tenorio-Tagle, Guillermo; Telles, Eduardo; Terlevich, Roberto J.; Munoz-Tunon, Casiana

    1998-01-01

    We report the detection of the slow moving wind into which the compact supernova remnant SN 1997ab is expanding. Echelle spectroscopy provides clear evidence for a well resolved narrow (Full Width at Zero Intensity, FWZI ~ 180 km/s) P-Cygni profile, both in Ha and Hb, superimposed on the broad emission lines of this compact supernova remnant. From theoretical arguments we know that the broad and strong emission lines imply a circumstellar density (n ~ 10^7 cm^-3). This, together with our detection, implies a massive and slow stellar wind experienced by the progenitor star shortly prior to the explosion.

  2. Circumstellar Environments of MYSOs Revealed by IFU Spectroscopy

    Science.gov (United States)

    Navarete, F.; Damineli, A.; Barbosa, C. L.; Blum, R. D.

    2015-01-01

    Formation of massive stars (M > 8 M ⊙) is still not well understood and lacks of observational constraints. We observed 7 MYSO candidates using the NIFS spectrometer at Gemini North Telescope to study the accretion process at high angular resolution (~ 50 mas) and very closer to the central star. Preliminary results for 2 sources have revealed circumstellar structures traced by Brackett-Gamma, CO lines and extended H2 emission. Both sources present kinematics in the CO absorption lines, suggesting rotating structures. The next step will derive the central mass of each source by applying a keplerian model for these CO features.

  3. Protonated acetylene - An important circumstellar and interstellar ion

    Science.gov (United States)

    Glassgold, A. E.; Omont, A.; Guelin, M.

    1992-01-01

    In a circumstellar envelope, a substantial amount of acetylene is transported in a wind to the outer envelope, where it can be photoionized by interstellar radiation and then converted into C2H3(+) by a low-temperature reaction with H2. New chemical modeling calculations indicate that sufficient C2H3(+) may be produced in the outer envelope of IRC + 10216 to be observable. Similar considerations suggest that C2H3(+) should also be detectable in interstellar clouds, provided its rotational spectrum has been measured accurately in the laboratory.

  4. BF Orionis - Evidence for an infalling circumstellar envelope

    Science.gov (United States)

    Welty, Alan D.; Barden, Samuel C.; Huenemoerder, David P.; Ramsey, Lawrence W.

    1992-01-01

    Analysis of the optical magnitudes and Balmer lines of the Herbig Ae/Be star BF Orionis confirm that the object is an early to mid A-type star, but appears to be below the zero-age main sequence. Enhanced metal-line strengths (once thought to link BF Ori with the Am stars), line asymmetries, and radial velocities are shown to be signatures of an infalling circumstellar envelope. The possibility that BF Ori has a late-type companion is examined, and it is concluded that it does not.

  5. Morphology and Molecular Composition of Purified Bovine Viral Diarrhea Virus Envelope.

    Directory of Open Access Journals (Sweden)

    Nathalie Callens

    2016-03-01

    Full Text Available The family Flaviviridae includes viruses that have different virion structures and morphogenesis mechanisms. Most cellular and molecular studies have been so far performed with viruses of the Hepacivirus and Flavivirus genera. Here, we studied bovine viral diarrhea virus (BVDV, a member of the Pestivirus genus. We set up a method to purify BVDV virions and analyzed their morphology by electron microscopy and their protein and lipid composition by mass spectrometry. Cryo-electron microscopy showed near spherical viral particles displaying an electron-dense capsid surrounded by a phospholipid bilayer with no visible spikes. Most particles had a diameter of 50 nm and about 2% were larger with a diameter of up to 65 nm, suggesting some size flexibility during BVDV morphogenesis. Morphological and biochemical data suggested a low envelope glycoprotein content of BVDV particles, E1 and E2 being apparently less abundant than Erns. Lipid content of BVDV particles displayed a ~2.3 to 3.5-fold enrichment in cholesterol, sphingomyelin and hexosyl-ceramide, concomitant with a 1.5 to 5-fold reduction of all glycerophospholipid classes, as compared to lipid content of MDBK cells. Although BVDV buds in the endoplasmic reticulum, its lipid content differs from a typical endoplasmic reticulum membrane composition. This suggests that BVDV morphogenesis includes a mechanism of lipid sorting. Functional analyses confirmed the importance of cholesterol and sphingomyelin for BVDV entry. Surprisingly, despite a high cholesterol and sphingolipid content of BVDV envelope, E2 was not found in detergent-resistant membranes. Our results indicate that there are differences between the structure and molecular composition of viral particles of Flaviviruses, Pestiviruses and Hepaciviruses within the Flaviviridae family.

  6. Molecularly Imprinted Composite Membranes for Selective Detection of 2-Deoxyadenosine in Urine Samples

    Directory of Open Access Journals (Sweden)

    Sonia Scorrano

    2015-06-01

    Full Text Available An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. In this work, a novel molecularly imprinted polymer composite membrane (MIM was synthesized and employed for the selective detection in urine samples of 2-deoxyadenosine (2-dA, an important tumoral marker. By thermal polymerization, the 2-dA-MIM was cross-linked on the surface of a polyvinylidene-difluoride (PVDF membrane. By characterization techniques, the linking of the imprinted polymer on the surface of the membrane was found. Batch-wise guest binding experiments confirmed the absorption capacity of the synthesized membrane towards the template molecule. Subsequently, a time-course of 2-dA retention on membrane was performed and the best minimum time (30 min to bind the molecule was established. HPLC analysis was also performed to carry out a rapid detection of target molecule in urine sample with a recovery capacity of 85%. The experiments indicated that the MIM was highly selective and can be used for revealing the presence of 2-dA in urine samples.

  7. Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity.

    Science.gov (United States)

    Ferguson, Scott W; Nguyen, Juliane

    2016-04-28

    Harnessing exosomes as therapeutic drug delivery vehicles requires a better understanding of exosomal composition and their mode of action. A full appreciation of all the exosomal components (proteins, lipids, and RNA content) will be important for the design of effective exosome-based or exosome-mimicking drug carriers. In this review we describe the presence of rarely studied, non-coding RNAs that exist in high numbers in exosomes. We discuss the implications of the molecular composition and heterogeneity of exosomes on their biological and therapeutic effects. Finally, we highlight outstanding questions with regard to RNA loading into exosomes, analytical methods to sort exosomes and their sub-populations, and the effects of exosomal proteins and lipids on recipient cells. Investigations into these facets of exosome biology will further advance the field, could lead to the clinical translation of exosome-based therapeutics, and aid in the reverse-engineering of synthetic exosomes. Although synthetic exosomes are still an underexplored area, they could offer researchers a way to manufacture exosomes with highly defined structure, composition, and function.

  8. Circum-stellar medium around rotating massive stars at solar metallicity

    CERN Document Server

    Georgy, Cyril; Folini, Doris; Bykov, Andrei; Marcowith, Alexandre; Favre, Jean M

    2013-01-01

    Aims. Observations show nebulae around some massive stars but not around others. If observed, their chemical composition is far from homogeneous. Our goal is to put these observational features into the context of the evolution of massive stars and their circumstellar medium (CSM) and, more generally, to quantify the role of massive stars for the chemical and dynamical evolution of the ISM. Methods. Using the A-MAZE code, we perform 2d-axisymmetric hydrodynamical simulations of the evolution of the CSM, shaped by stellar winds, for a whole grid of massive stellar models from 15 to 120 Msun and following the stellar evolution from the zero-age main-sequence to the time of supernova explosion. In addition to the usual quantities, we also follow five chemical species: H, He, C, N, and O. Results. We show how various quantities evolve as a function of time: size of the bubble, position of the wind termination shock, chemical composition of the bubble, etc. The chemical composition of the bubble changes considerab...

  9. First Evidence of Circumstellar Disks around Blue Straggler Stars

    CERN Document Server

    De Marco, O; Ouellette, J A; Zurek, D R; Shara, M M; Marco, Orsola De; Lanz, Thierry; Ouellette, John A.; Zurek, David; Shara, Michael M.

    2004-01-01

    We present an analysis of optical HST/STIS and HST/FOS spectroscopy of 6 blue stragglers found in the globular clusters M3, NGC6752 and NGC6397. These stars are a subsample of a set of ~50 blue stragglers and stars above the main sequence turn-off in four globular clusters which will be presented in an forthcoming paper. All but the 6 stars presented here can be well fitted with non-LTE model atmospheres. The 6 misfits, on the other hand, possess Balmer jumps which are too large for the effective temperatures implied by their Paschen continua. We find that our data for these stars are consistent with models only if we account for extra absorption of stellar Balmer photons by an ionized circumstellar disk. Column densities of HI and CaII are derived as are the the disks' thicknesses. This is the first time that a circumstellar disk is detected around blue stragglers. The presence of magnetically-locked disks attached to the stars has been suggested as a mechanism to lose the large angular momentum imparted by ...

  10. An energetic stellar outburst accompanied by circumstellar light echoes

    CERN Document Server

    Bond, H E; Levay, Z G; Panagia, N; Sparks, W B; Starrfield, S; Wagner, R M; Corradi, R L M; Munari, U; Bond, Howard E.; Henden, Arne; Levay, Zoltan G.; Panagia, Nino; Sparks, William B.; Starrfield, Sumner

    2003-01-01

    Some classes of stars, including supernovae and novae, undergo explosive outbursts that eject stellar material into space. In 2002, the previously unknown variable star V838 Monocerotis brightened suddenly by a factor of about 10^4. Unlike a supernova or nova, V838 Mon did not explosively eject its outer layers; rather, it simply expanded to become a cool supergiant with a moderate-velocity stellar wind. Superluminal light echoes were discovered as light from the outburst propagated into surrounding, pre-existing circumstellar dust. Here we report high-resolution imaging and polarimetry of the light echoes, which allow us to set direct geometric distance limits to the object. At a distance of >6 kpc, V838 Mon at its maximum brightness was temporarily the brightest star in the Milky Way. The presence of the circumstellar dust implies that previous eruptions have occurred, and spectra show it to be a binary system. When combined with the high luminosity and unusual outburst behavior, these characteristics indic...

  11. The Circumstellar Disk of the Be Star $o$~Aquarii

    CERN Document Server

    Sigut, T A A; Jansen, B; Zavala, R T

    2015-01-01

    Omicron Aquarii is late-type, Be shell star with a stable and nearly symmetric H$\\alpha$ emission line. We combine H$\\alpha$ interferometric observations obtained with the Navy Precision Optical Interferometer (NPOI) covering 2007 through 2014 with H$\\alpha$ spectroscopic observations over the same period and a 2008 observation of the system's near-infrared spectral energy distribution to constrain the properties of $o$~Aqr's circumstellar disk. All observations are consistent with a circumstellar disk seen at an inclination of $75\\pm\\,3^{\\circ}$ with a position angle on the sky of $110\\pm\\,8^{\\circ}$ measured E from N. From the best-fit disk density model, we find that 90\\% of the H$\\alpha$ emission arises from within $9.5$ stellar radii, and the mass associated with this H$\\alpha$ disk is $\\sim 1.8\\times10^{-10}$ of the stellar mass and the associated angular momentum, assuming Keplerian rotation for the disk, is $\\sim 1.6\\times10^{-8}$ of the total stellar angular momentum. The occurrence of a central quas...

  12. The Three-Dimensional Circumstellar Environment of SN 1987A

    CERN Document Server

    Sugerman, B E K; Kunkel, W E; Heathcote, S R; Lawrence, S S; Sugerman, Ben E. K.; Crotts, Arlin P. S.; Kunkel, William E.; Heathcote, Stephen R.; Lawrence, Stephen S.

    2005-01-01

    We present the detailed construction and analysis of the most complete map to date of the circumstellar environment around SN 1987A, using ground and space-based imaging from the past 16 years. PSF-matched difference-imaging analyses of data from 1988 through 1997 reveal material between 1 and 28 ly from the SN. Careful analyses allows the reconstruction of the probable circumstellar environment, revealing a richly-structured bipolar nebula. An outer, double-lobed ``Peanut,'' which is believed to be the contact discontinuity between red supergiant and main sequence winds, is a prolate shell extending 28 ly along the poles and 11 ly near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this Peanut, which is pinched to a radius of 6 ly. Interior to this is a cylindrical hourglass, 1 ly in radius and 4 ly long, which connects to the Peanut by a thick equatorial disk. The nebulae are inclined 41\\degr south and 8\\degr east of the line of sight, slightly elliptical in...

  13. The Complex Circumstellar and Circumbinary Environment of V356 Sgr

    Science.gov (United States)

    Fullard, Andrew; Lomax, Jamie R.; Malatesta, Michael A.; Babler, Brian L.; Bednarski, Daniel; Berdis, Jodi; Bjorkman, Karen S.; Bjorkman, Jon Eric; Carciofi, Alex C.; Davidson, James W.; Keil, Marcus; Meade, Marilyn; Nordsieck, Kenneth H.; Scheffler, Matt; Hoffman, Jennifer L.; Wisniewski, John P.

    2017-01-01

    The eclipsing, interacting binary star V356 Sgr is a particularly exciting object for analysis due to its probable nonconservative mass loss and the possible progenitor link between Roche-lobe overflow systems and core-collapse supernovae. We present the results of 45 spectropolarimetric observations of V356 Sgr taken over 21 years, which we used to characterize the geometry of the system's circumstellar material. We find that V356 Sgr exhibits a large intrinsic polarization signature arising from electron scattering. The lack of repeatable eclipses in the polarization phase curves indicates the presence of a substantial pool of scatterers not occulted by either star. We suggest that these scatterers form either a circumbinary disk coplanar with the gainer's accretion disk, or an elongated structure perpendicular to the orbital plane of V356 Sgr, possibly formed by bipolar outflows.We also observe small-scale, cycle-to-cycle variations in the magnitude of intrinsic polarization at individual phases. These may indicate a mass transfer or mass loss rate that varies on the time-scale of the system's orbital period. Finally, we present a comparison of V356 Sgr with the well studied beta Lyr system; the significant differences observed between the two systems suggests diversity in the basic circumstellar geometry of Roche-lobe overflow binaries.

  14. Characterizing the composition of molecular motors on moving axonal cargo using "cargo mapping" analysis.

    Science.gov (United States)

    Neumann, Sylvia; Campbell, George E; Szpankowski, Lukasz; Goldstein, Lawrence S B; Encalada, Sandra E

    2014-10-30

    Understanding the mechanisms by which molecular motors coordinate their activities to transport vesicular cargoes within neurons requires the quantitative analysis of motor/cargo associations at the single vesicle level. The goal of this protocol is to use quantitative fluorescence microscopy to correlate ("map") the position and directionality of movement of live cargo to the composition and relative amounts of motors associated with the same cargo. "Cargo mapping" consists of live imaging of fluorescently labeled cargoes moving in axons cultured on microfluidic devices, followed by chemical fixation during recording of live movement, and subsequent immunofluorescence (IF) staining of the exact same axonal regions with antibodies against motors. Colocalization between cargoes and their associated motors is assessed by assigning sub-pixel position coordinates to motor and cargo channels, by fitting Gaussian functions to the diffraction-limited point spread functions representing individual fluorescent point sources. Fixed cargo and motor images are subsequently superimposed to plots of cargo movement, to "map" them to their tracked trajectories. The strength of this protocol is the combination of live and IF data to record both the transport of vesicular cargoes in live cells and to determine the motors associated to these exact same vesicles. This technique overcomes previous challenges that use biochemical methods to determine the average motor composition of purified heterogeneous bulk vesicle populations, as these methods do not reveal compositions on single moving cargoes. Furthermore, this protocol can be adapted for the analysis of other transport and/or trafficking pathways in other cell types to correlate the movement of individual intracellular structures with their protein composition. Limitations of this protocol are the relatively low throughput due to low transfection efficiencies of cultured primary neurons and a limited field of view available for

  15. Molecular and carbon isotopic compositions of gas inclusions of deep carbonate rocks in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shixin; WANG Xianbin; MENG Zifang; LI Yuan; Paul Farrimond; LI Liwu; DUAN Yi

    2004-01-01

    Gaseous components of gas inclusions in deep carbonate rocks (>5700 m) from the Tacan 1 well were analyzed by online mass spectrometry by means of either the stepwise heating technique or vacuum electromagnetism crushing. The carbon isotopic compositions of gases released by vacuum electromagnetism crushing were also measured. Although the molecular compositions of gas inclusions show differences between the two methods, the overall characteristics are that gas inclusions mainly contain CO2, whilst hydrocarbon gases, such as CH4, C2H6 and C3H8, are less abundant. The content of CO is higher in the stepwise heating experiment than that in the method of vacuum electromagnetism crushing, and there are only minor amounts of N2, H2 and O2 in gas inclusions. Methane δ13C values of gas inclusions in Lower Ordovician and Upper Cambrian rocks (from 5713.7 to 6422 m; -52‰-63‰) are similar to those of bacterial methane, but their chemical compositions do not exhibit the dry character in comparison with biogenic gases. These characteristics of deep gas inclusions may be related to the migration fractionation. Some deep natural gases with light carbon isotopic characteristics in the Tazhong Uplift may have a similar origin. The δ13C1 values of gas inclusions in Lower Cambrian rocks (7117-7124 m) are heavier (-39‰), consistent with highly mature natural gases. Carbon isotopic compositions of CO2 in the gas inclusions of deep carbonate rocks are similar (from -4‰ to -13‰) to those of deep natural gases, indicating predominantly an inorganic origin.

  16. Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, Nupur; Coppinger, Matthew; Prakash Gupta, Jay; Kolodzey, James [Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716 (United States); Wielunski, Leszek [Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2013-07-22

    Single crystal epitaxial Ge{sub 1−x}Sn{sub x} alloys with atomic fractions of tin up to x = 0.145 were grown by solid source molecular beam epitaxy on Ge (001) substrates. The Ge{sub 1−x}Sn{sub x} alloys formed high quality, coherent, strained layers at growth temperatures below 250 °C, as shown by high resolution X-ray diffraction. The amount of Sn that was on lattice sites, as determined by Rutherford backscattering spectrometry channeling, was found to be above 90% substitutional in all alloys. The degree of strain and the dependence of the effective unstrained bulk lattice constant of Ge{sub 1−x}Sn{sub x} alloys versus the composition of Sn have been determined.

  17. HMW glutenin subunits in multiploid Aegilops species: composition analysis and molecular cloning of coding sequences

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Aegilops genus contains species closely related to wheat. Incommon with wheat, Aegilops species accumulate high molecular weight (HMW) glutenin subunits in their endospermic tissue. In this study, we investigated the composition of HMW glutenin subunits in four multiploid Aegilops species using SDS-PAGE analysis. Furthermore, by working with Ae. ventricosa, we established an efficient genomic PCR condition for simultaneous amplification of DNA sequences coding for either x-ory-type HMW glutenin subunits from polyploid Aegilops species. Using the genomic PCR condition, we amplified and subsequently cloned two DNA fragments that may code for HMW glutenin subunits in Ae. ventricosa. Based on an analysis of the deduced amino acid sequences, we concluded that the two cloned sequences encode one x- and one y-type of HMW glutenin subunit, respectively.

  18. COBRA: A Computational Brewing Application for Predicting the Molecular Composition of Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Fooshee, David R.; Nguyen, Tran B.; Nizkorodov, Sergey A.; Laskin, Julia; Laskin, Alexander; Baldi, Pierre

    2012-05-08

    Atmospheric organic aerosols (OA) represent a significant fraction of airborne particulate matter and can impact climate, visibility, and human health. These mixtures are difficult to characterize experimentally due to the enormous complexity and dynamic nature of their chemical composition. We introduce a novel Computational Brewing Application (COBRA) and apply it to modeling oligomerization chemistry stemming from condensation and addition reactions of monomers pertinent to secondary organic aerosol (SOA) formed by photooxidation of isoprene. COBRA uses two lists as input: a list of chemical structures comprising the molecular starting pool, and a list of rules defining potential reactions between molecules. Reactions are performed iteratively, with products of all previous iterations serving as reactants for the next one. The simulation generated thousands of molecular structures in the mass range of 120-500 Da, and correctly predicted ~70% of the individual SOA constituents observed by high-resolution mass spectrometry (HR-MS). Selected predicted structures were confirmed with tandem mass spectrometry. Esterification and hemiacetal formation reactions were shown to play the most significant role in oligomer formation, whereas aldol condensation was shown to be insignificant. COBRA is not limited to atmospheric aerosol chemistry, but is broadly applicable to the prediction of reaction products in other complex mixtures for which reasonable reaction mechanisms and seed molecules can be supplied by experimental or theoretical methods.

  19. Influence of Copolyester Composition on Adhesion to Soda-Lime Glass via Molecular Dynamics Simulations.

    Science.gov (United States)

    Hanson, Ben; Hofmann, John; Pasquinelli, Melissa A

    2016-06-01

    Copolyesters are a subset of polymers that have the desirable properties of strength and clarity while retaining chemical resistance, and are thus potential candidates for enhancing the impact resistance of soda-lime glass. Adhesion between the polymer and the glass relates to the impact performance of the system, as well as the longevity of the bond between the polymer and the glass under various conditions. Modifying the types of diols and diacids present in the copolyester provides a method for fine-tuning the physical properties of the polymer. In this study, we used molecular dynamics (MD) simulations to examine the influence of the chemical composition of the polymers on adhesion of polymer film laminates to two soda-lime glass surfaces, one tin-rich and one oxygen-rich. By calculating properties such as adhesion energies and contact angles, these results provide insights into how the polymer-glass interaction is impacted by the polymer composition, temperature, and other factors such as the presence of free volume or pi stacking. These results can be used to optimize the adhesion of copolyester films to glass surfaces.

  20. Molecular-dynamic studies of carbon-water-carbon composite nanotubes.

    Science.gov (United States)

    Zou, Jian; Ji, Baohua; Feng, Xi-Qiao; Gao, Huajian

    2006-11-01

    We recently reported the discovery via molecular-dynamic simulations that single-walled carbon nanotubes (SWCNTs) with different diameters, lengths, and chiralities can coaxially self-assemble into multi-walled carbon nanotubes (MWCNTs) in water via the spontaneous insertion of smaller tubes into larger ones. Here, we extend that study to investigate the various water structures formed between two selected SWCNTs after such coaxial assembly. Depending on the tube geometry, typical water structures, besides the bulk phase, include a one-dimensional (1D) ordered water chain inside the smaller tube, a uniform or nonuniform water shell between the two tubes, and a "boundary layer" of water near the exterior wall of the larger tube. It was found that a concentric water shell consisting of up to three layers of water molecules can form between the two SWCNTs, which leads to a class of carbon-water-carbon composite nanotubes. Analysis of the potential energy of the SWCNT-water system indicated that the composite nanotubes are stabilized by both the tube-tube and tube-water van der Waals interactions. Geometrically confined between the two SWCNTs, water mono- and bilayers are found to be stable, highly condensed, and ordered, although the average number of hydrogen bonds per water molecule is reduced. In contrast, a water trilayer between the two CNTs can be easily disrupted by thermal fluctuations.

  1. Molecular composition and paleobotanical origin of Eocene resin from northeast India

    Indian Academy of Sciences (India)

    Arka Rudra; Suryendu Dutta; Srinivasan V Raju

    2014-07-01

    The molecular composition of fossil resins from early to middle Eocene coal from northeast India, has been analyzed for the first time to infer their paleobotanical source. The soluble component of fossil resin was analyzed using gas chromatography–mass spectrometry (GC–MS). The resin extracts are composed of cadalene-based C15 sesquiterpenoids and diagenetically altered triterpenoids. The macromolecular composition was investigated using pyrolysis gas chromatography-mass spectrometry (Py-GC–MS) and Fourier transform infrared (FTIR) spectroscopy. The major pyrolysis products are C15} bicyclic sesquiterpenoids, alkylated naphthalenes, benzenes and a series of C17–C34 -alkene--alkane pairs. Spectroscopic analysis revealed the dominance of aliphatic components. The presence of cadalene-based sequiterpenoids confirms the resin to be Class II or dammar resin, derived from angiosperms of Dipterocarpaceae family. These sesquiterpenoids are often detected in many SE Asian fluvio-deltaic oils. Dipterocarpaceae are characteristic of warm tropical climate suggesting the prevalence of such climate during early Eocene in northeast India.

  2. High-Molecular-Weight Glutenin Subunit Composition of Chinese Wheat Germplasm

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ling-li; LI Xiu-quan; YANG Xin-ming; LI Hong-jie; WANG Hui; LI Li-hui

    2007-01-01

    The objective of the present study was to characterize the high molecular glutenin subunits (HMW-GS) composition and the presence of 1B/1R translocation in newly developed wheat (Triticum aestivum L.) germplasm, which have one or more traits that are useful in wheat improvement. Sodium dodecyl sulphate polyacrylamide-gel electrophoresis (SDS-PAGE)and acid polyacrylamide-gel electrophoresis (A-PAGE) were used to detect HMW-GS composition and the presence of 1B/1R wheat-rye (Secale cereale L.) chromosome translocation in the wheat germplasm. Bread-making quality scores of these lines were determined. A high level of variations in HMW-GS encoded by Glu-1 locus was observed. Sixteen major HMW-GS, with 30 combinations, were detected. The percentage of cultivars with more than two desirable subunits was 38.7%. Thirteen cultivars had bread-making quality scores of 10 in combination with one or two desirable agronomical traits, such as high-yield potential, dwarfing stem, resistance to diseases, and/or tolerance to abiotic stress. Sixty-eight (36.6%) cultivars possessed 1B/1R translocation. The newly developed germplasm with HMW-GS for good quality can be promising resources for improving bread-making quality of wheat.

  3. Composition and Content of High-Molecular-Weight Glutenin Subunits and Their Effects on Wheat Quality

    Institute of Scientific and Technical Information of China (English)

    SONG Jian-min; LIU Ai-feng; WU Xiang-yun; LIU Jian-jun; ZHAO Zhen-dong; LIU Guang-tian

    2002-01-01

    Sedimentation values, flour glutenin macropolymer (GMP) contents, composition and contents of high-molecular-weight (HMW) glutenin subunits (GS) of 233 flour samples were determined. Our data indicated that subunit 1 occurred more frequently at Glu-A1, subunit pair 7 + 8 at Glu- B1 and 2 + 12 at Glu-D1. The significant relationships between Glu-1 quality score and total HMW glutenin content, sedimentation value and GMP content suggested that the composition of HMW-GS affects wheat quality strongly. Moreover,the total content of HMW-GS was correlated with certain quality parameters more significantly. Relationship between subunit 5 + 10 content and breadmaking quality was better than others, but 2 + 12, 7 + 8, 7 + 9 and 4 + 12 also correlated with certain quality parameters significantly. The contents of total HMW-glutenin, x-type subunits and y-type subunits related with sedimentation value, flour GMP content, and Glu-1 quality score more strongly than that of individual subunit or subunit pair. The flour GMP content, with excellent correlation to sedimentation value, total contents of HMW glutenin, x- and y-type subunits and many other quality parameters, could be an ideal indicator of breadmaking quality at earlier generations for breeding purpose for its simple procedure and small scale.

  4. The Three-dimensional Circumstellar Environment of SN 1987A

    Science.gov (United States)

    Sugerman, Ben E. K.; Crotts, Arlin P. S.; Kunkel, William E.; Heathcote, Stephen R.; Lawrence, Stephen S.

    2005-07-01

    Surrounding SN 1987A is a three-ring nebula attributed to interacting stellar winds, yet no model has successfully reproduced this system. Fortunately, the progenitor's mass-loss history can be reconstructed using light echoes, in which scattered light from the supernova traces the three-dimensional morphology of its circumstellar dust. In this paper, we construct and analyze the most complete map to date of the progenitor's circumstellar environment, using ground- and space-based imaging from the past 16 years. PSF-matched difference-imaging analyses of data from 1988 through 1997 reveal material between 1 and 28 lt-yr from the SN. Previously known structures, such as an inner hourglass, Napoleon's Hat, and a contact discontinuity, are probed in greater spatial detail than before. Previously unknown features are also discovered, such as a southern counterpart to Napoleon's Hat. Careful analyses of these echoes allows the reconstruction of the probable circumstellar environment, revealing a richly structured bipolar nebula. An outer, double-lobed ``Peanut,'' which is believed to be the contact discontinuity between red supergiant and main-sequence winds, is a prolate shell extending 28 lt-yr along the poles and 11 lt-yr near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this Peanut, which is pinched to a radius of 6 lt-yr. Interior to this is a cylindrical hourglass, 1 lt-yr in radius and 4 lt-yr long, which connects to the Peanut by a thick equatorial disk. The nebulae are inclined 41° south and 8° east of the line of sight, slightly elliptical in cross section, and marginally offset west of the SN. From the hourglass to the large, bipolar lobes, echo fluxes suggest that the gas density drops from 1-3 to >~0.03 cm-3, while the maximum dust-grain size increases from ~0.2 to 2 μm, and the silicate:carbonaceous dust ratio decreases. The nebulae have a total mass of ~1.7 Msolar. The geometry of the three rings is

  5. A regional study of the seasonal variation in the molecular composition of rainwater

    Science.gov (United States)

    Cottrell, Barbara A.; Gonsior, Michael; Isabelle, Lorne M.; Luo, W.; Perraud, Véronique; McIntire, Theresa M.; Pankow, James F.; Schmitt-Kopplin, Philippe; Cooper, William J.; Simpson, André J.

    2013-10-01

    Rainwater is not only a critical source of drinking and agricultural water but it plays a key role in the fate and transport of contaminants through their removal by wet deposition. Rainwater is a complex mixture of organic compounds yet despite its importance its spatial and temporal variability are not well understood and less than 50% of the organic matter has been characterized. In-depth analytical approaches were used in this study to characterize the seasonal variation in rainwater composition. Rainwater samples were collected over a one-year period in Scarborough, Ontario, Canada. The seasonal variation of atmospheric organic carbon (AOC) in rainwater was analyzed by excitation-emission matrix spectroscopy (EEMs), 1D and 2D NMR with compound identification by spectral database matching, GC-MS, FT-ICR-MS, and GC × GC-TOFMS. This combination of techniques provided four complementary datasets, with less than 10% overlap, of anthropogenic and biogenic AOC. NMR with database matching identified over 100 compounds, primarily carboxylic acids, carbohydrates, and nitrogen-containing compounds. GC × GC-TOFMS analysis identified 344 compounds in two rain events with 33% of the compounds common to both events. FT-ICR-MS generated a seasonally dependent profile of 1226-1575 molecular ions of CHO, CHOS, and CHON elemental composition. FT-ICR-MS and GC × GC-TOFMS datasets were compared using van Krevelen diagrams (H/C vs. O/C), the H/C ratio vs. mass/charge (m/z), and the carbon oxidation state/carbon number matrix. Fluorescence patterns were correlated with NMR results resulting in the identification one seasonally-dependent component of chromophoric dissolved organic matter (CDOM). This study demonstrated the importance of using of an integrated analytical approach to monitor the compositional variation of AOC.

  6. Warming-Induced Changes to the Molecular Composition of Soil Organic Matter

    Science.gov (United States)

    Feng, X.; Simpson, M. J.; Simpson, A. J.; Wilson, K. P.; Williams, D.

    2007-12-01

    Soil organic matter (SOM) contains two times more carbon than the atmosphere and the potential changes to SOM quantity and quality with global warming are a major concern. It is commonly believed that global warming will accelerate the decomposition of labile SOM compounds while refractory SOM constituents will remain stable. However, experimental evidence of molecular-level changes to SOM composition with global warming is currently lacking. Here we employ SOM biomarkers and nuclear magnetic resonance (NMR) spectroscopy to study SOM composition and degradation in a soil warming experiment in southern Ontario, Canada. The soil warming experiment consisted of a control and a treatment plot in a mixed forest that had a temperature difference of about 5 degrees C for 14 months. Before soil warming the control and treatment plots had the same organic carbon (OC) content and SOM composition. Soil warming significantly increased soil OC content and the abundance of cutin-derived carbon originating from leaf tissues and decreased carbohydrates that are regarded as easily degradable. Lignin components, which are believed to be part of the stable and slowly-cycling SOM, were observed to be in an advanced stage of degradation. This observation is corroborated by increases in fungal biomass in the warmed soil because fungi are considered the primary decomposer of lignin in the soil environment. An NMR study of SOM in the warmed and control plots indicates that alkyl carbon, mainly originating from plant cuticles in the soil, increased in the warmed soil while O-alkyl carbon, primarily occurring in carbohydrates, decreased. Aromatic and phenolic carbon regions, which include the main structures found in lignin, decreased in the warmed soil. These data collectively suggest that there is a great potential for lignin degradation with soil warming, and that the refractory (aromatic) soil carbon storage may be reduced as a result of increased fungal growth in a warmer climate.

  7. The Complex Circumstellar and Circumbinary Environment of V356 Sgr

    CERN Document Server

    Lomax, Jamie R; Malatesta, Michael A; Babler, Brian; Bednarski, Daniel; Berdis, Jodi R; Bjorkman, Karen S; Bjorkman, Jon E; Carciofi, Alex C; Davidson, James W; Keil, Marcus; Meade, Marilyn R; Nordsieck, Kenneth; Scheffler, Matt; Hoffman, Jennifer L; Wisniewski, John P

    2016-01-01

    We analyze 45 spectropolarimetric observations of the eclipsing, interacting binary star V356 Sgr, obtained over a period of 21 years, to characterize the geometry of the system's circumstellar material. After removing interstellar polarization from these data, we find the system exhibits a large intrinsic polarization signature arising from electron scattering. In addition, the lack of repeatable eclipses in the polarization phase curves indicates the presence of a substantial pool of scatterers not occulted by either star. We suggest that these scatterers form either a circumbinary disk coplanar with the gainer's accretion disk or an elongated structure perpendicular to the orbital plane of V356 Sgr, possibly formed by bipolar outflows. We also observe small-scale, cycle-to-cycle variations in the magnitude of intrinsic polarization at individual phases, which we interpret as evidence of variability in the amount of scattering material present within and around the system. This may indicate a mass transfer ...

  8. Circumstellar Debris and Pollution at White Dwarf Stars

    CERN Document Server

    Farihi, J

    2016-01-01

    Circumstellar disks of planetary debris are now known or suspected to closely orbit hundreds of white dwarf stars. To date, both data and theory support disks that are entirely contained within the preceding giant stellar radii, and hence must have been produced during the white dwarf phase. This picture is strengthened by the signature of material falling onto the pristine stellar surfaces; disks are always detected together with atmospheric heavy elements. The physical link between this debris and the white dwarf host abundances enables unique insight into the bulk chemistry of extrasolar planetary systems via their remnants. This review summarizes the body of evidence supporting dynamically active planetary systems at a large fraction of all white dwarfs, the remnants of first generation, main-sequence planetary systems, and hence provide insight into initial conditions as well as long-term dynamics and evolution.

  9. Infrared observations of circumstellar ammonia in OH/IR supergiants

    Science.gov (United States)

    Mclaren, R. A.; Betz, A. L.

    1980-01-01

    Ammonia has been detected in the circumstellar envelopes of VY Canis Majoris, VX Sagittarii, and IRC +10420 by means of several absorption lines in the nu-2 vibration-rotation band near 950 kaysers. The line profiles are well resolved (0.2 km/sec resolution) and show the gas being accelerated to terminal expansion velocities near 30 km/sec. The observations reveal a method for determining the position of the central star on VLBI maps of OH maser emission to an accuracy of approximately 0.2 arcsec. A firm lower limit of 2 x 10 to the 15th/sq cm is obtained for the NH3 column density in VY Canis Majoris.

  10. Magnetic field and early evolution of circumstellar disks

    CERN Document Server

    Tsukamoto, Yusuke

    2016-01-01

    The magnetic field plays a central role in the formation and evolution of circumstellar disks. The magnetic field connects the rapidly rotating central region with the outer envelope and extracts angular momentum from the central region during gravitational collapse of the cloud core. This process is known as magnetic braking. Both analytical and multidimensional simulations have shown that disk formation is strongly suppressed by magnetic braking in moderately magnetized cloud cores in the ideal magnetohydrodynamic limit. On the other hand, recent observations have provided growing evidence of a relatively large disk several tens of astronomical units in size existing in some Class 0 young stellar objects. This introduces a serious discrepancy between the theoretical study and observations. Various physical mechanisms have been proposed to solve the problem of catastrophic magnetic braking, such as misalignment between the magnetic field and the rotation axis, turbulence, and non-ideal effect. In this paper,...

  11. Variable Circumstellar Disks: Prevalence, Timescales, and Physical Mechanisms

    Science.gov (United States)

    Burrow, Anthony; Wisniewski, John P.; Lomax, Jamie R.; Bjorkman, Karen S.; Bjorkman, Jon Eric; Covey, Kevin R.; Gerhartz, Cody; Richardson, Noel; Thao, Pa

    2017-01-01

    Rapidly rotating B-type stars often experience mass ejection that leads to the formation of a circumstellar gas disk, as diagnosed by distinct emission lines present in their spectra. The mass ejection from these stars, known as classical Be stars, sometimes slows or stops, leading to the mass falling back onto the central star and the disk dissipating. The prevalence and time-scale of such disk-loss and disk-replenishment episodes, as well as the underlying physical processes that cause the underlying mass ejection, remain unknown. We are using multi-epoch broad- and narrow-band photometric observations of 12 young open clusters to characterize the prevalence and time-scale of disk-loss and disk-replenishment episodes. We use our observations to gauge which cluster objects exhibit H-alpha emission, which is a primary indicator of Be stars in our clusters. This program is supported by NSF-AST 1411563, 1412110, and 1412135.

  12. Polarization and SEDs from Microlensing of Circumstellar Envelopes

    CERN Document Server

    Ignace, R; Bunker, C

    2008-01-01

    Microlensing surveys have proven to be tremendously fruitful in providing valuable data products for many fields of astrophysics, from eclipse lightcurves for substellar candidates to limb darkening in stellar atmospheres. We report on a program of modeling observables from microlensing of circumstellar envelopes, particularly those of red giant stars that are the most likely to show finite source effects. We will summarize work for how polarization light curves can be used to infer envelope properties and will describe recent modeling of the time dependent spectral energy distributions (SEDs) for microlensing of dusty winds. One of the most exciting developments is the possibility of measuring variable polarization from microlensing in a suitable source using the RINGO polarimeter at La Palma. Also quite interesting is the possibility of probing a dusty wind using IRAC data for a suitable source in the event that Spitzer has a ``warm'' cycle.

  13. The progenitor of SN 2011ja: Clues from circumstellar interaction

    CERN Document Server

    Chakraborti, Sayan; Smith, Randall; Ryder, Stuart; Yadav, Naveen; Sutaria, Firoza; Dwarkadas, Vikram V; Chandra, Poonam; Pooley, David; Roy, Rupak

    2013-01-01

    Massive stars, possibly red supergiants, which retain extended hydrogen envelopes until the time of core collapse produce Type IIP (Plateau) supernovae. The ejecta from these explosions shock the circumstellar matter originating from the mass loss of the progenitor during the final phases of its life. This interaction accelerates particles to relativistic energies which then lose energy via synchrotron radiation in the shock-amplified magnetic fields and inverse Compton scattering against optical photons from the supernova. These processes produce different signatures in the radio and X-ray part of the electromagnetic spectrum. Observed together, they allow us to break the degeneracy between shock acceleration and magnetic field amplification. In this work we use X-rays observations from the Chandra and radio observations from the ATCA to study the relative importance of particle acceleration and magnetic fields in producing the non-thermal radiation from SN 2011ja. We use radio observations to constrain the ...

  14. Why all stars should possess circumstellar temperature inversions

    Science.gov (United States)

    Scudder, Jack D.

    1992-01-01

    The paper shows that the circumstellar temperature inversions possessed by all stars are the consequence of the 'velocity filtration' process described by Scudder (1992), according to which a stellar envelope is hotter than its underlying layers. The filtration scenario relies on the theoretically predicted and experimentally determined non-Maxwellian velocity distributions of ions and/or electrons in other sampled astrophysical plasmas and the transition region. The most immediate consequence is that the temperature and quasi-neutral plasma density become anticorrelated with increasing radius in a thin transition region, leaving the temperature profile inverted in excess of 10 exp 6 K up into a corona, without depositing a wave of magnetic field energy into the gas above the base of the transition region.

  15. Growth of a Protostar and a Young Circumstellar Disk with High Mass Accretion Rate onto the Disk

    CERN Document Server

    Ohtani, Takuya

    2013-01-01

    The growing process of both a young protostar and a circumstellar disk is investigated. Viscous evolution of a disk around a single star is considered with a model where a disk increases its mass by dynamically accreting envelope and simultaneously loses its mass via viscous accretion onto the central star. We focus on the circumstellar disk with high mass accretion rate onto the disk $\\dot{M}=8.512c_{\\rm s}^3/G$ as a result of dynamical collapse of rotating molecular cloud core. We study the origin of the surface density distribution and the origin of the disk-to-star mass ratio by means of numerical calculations of unsteady viscous accretion disk in one-dimensional axisymmetric model. It is shown that the radial profiles of the surface density $\\Sigma$, azimuthal velocity $v_{\\phi}$, and mass accretion rate $\\dot{M}$ in the inner region approach to the quasi-steady state. Profile of the surface density distribution in the quasi-steady state is determined as a result of angular momentum transport rather than...

  16. A search for precursors of Ultracompact HII Regions in a sample of luminous IRAS sources; 3, Circumstellar Dust Properties

    CERN Document Server

    Molinari, S; Cesaroni, R; Palla, Fabrizio; Molinari, Sergio; Brand, Jan; Cesaroni, Riccardo; Palla, Francesco

    2000-01-01

    The James Clerk Maxwell Telescope has been used to obtain submillimeter and millimeter continuum photometry of a sample of 30 IRAS sources previously studied in molecular lines and centimeter radio continuum. All the sources have IRAS colours typical of very young stellar objects (YSOs) and are associated with dense gas. In spite of their high luminosities (L>10000 solar units), only ten of these sources are also associated with a radio counterpart. In 17 cases we could identify a clear peak of millimeter emission associated with the IRAS source, while in 9 sources the millimeter emission was extended or faint and a clear peak could not be identified; upper limits were found in 4 cases only. Using simple greybody fitting model to the observed SED, we derive global properties of the circumstellar dust. The dust temperature varies from 24 K to 45 K, while the exponent of the dust emissivity vs frequency power-law spans a range 1.56circumstellar masses ran...

  17. Changes in the molecular composition of ester-bound aliphatics with depth in an acid andic forest soil

    NARCIS (Netherlands)

    Naafs, Derck Ferdinand Werner; Nierop, K.G.J.; Bergen, P.F. van; Leeuw, J.W. de

    2005-01-01

    Changes in the molecular composition of ester-linked aliphatic compounds with depth in an acid andic forest soil are studied. Thermally assisted hydrolysis and methylation (THM) using tetramethylammonium hydroxide in combination with gas chromatography/mass spectrometry revealed a dominance of cutin

  18. Thermal desorption of circumstellar and cometary ice analogs

    CERN Document Server

    Martín-Doménech, Rafael; Bueno, Juan; Goesmann, Fred

    2014-01-01

    Thermal annealing of interstellar ices takes place in several stages of star formation. Knowledge of this process comes from a combination of astronomical observations and laboratory simulations under astrophysically relevant conditions. For the first time we present the results of temperature programmed desorption (TPD) experiments with pre-cometary ice analogs composed of up to five molecular components: H2 O, CO, CO2, CH3 OH, and NH3 . The experiments were performed with an ultra-high vacuum chamber. A gas line with a novel design allows the controlled preparation of mixtures with up to five molecular components. Volatiles desorbing to the gas phase were monitored using a quadrupole mass spectrometer, while changes in the ice structure and composition were studied by means of infrared spectroscopy. The TPD curves of water ice containing CO, CO2, CH3 OH, and NH3 present desorption peaks at temperatures near those observed in pure ice experiments, volcano desorption peaks after water ice crystallization, and...

  19. Study of the interpolyelectrolyte reaction between chitosan and alginate: influence of alginate composition and chitosan molecular weight.

    Science.gov (United States)

    Becherán-Marón, L; Peniche, C; Argüelles-Monal, W

    2004-04-01

    The interpolyelectrolyte reaction between chitosan (CHI) and alginate (ALG) was followed by conductimetry and potentiometry. Five chitosan samples, all with almost the same degree of N-acetylation (DA approximately 0.20) and molecular weights ranging from 5 x 10(3) to 2.5 x 10(5) Da were used. The polyelectrolyte complex was formed using alginate samples with three different M/G values (0.44, 1.31 and 1.96). The composition of the complex, Z (Z = [CHI]/[ALG]) resulted 0.70 +/- 0.02, independently of the molecular weight of chitosan and the composition of the alginate used. The degree of complexation was 0.51 with no dependence on the alginate composition.

  20. Comparison of cryoconite organic matter composition from Arctic and Antarctic glaciers at the molecular-level

    Science.gov (United States)

    Pautler, Brent G.; Dubnick, Ashley; Sharp, Martin J.; Simpson, André J.; Simpson, Myrna J.

    2013-03-01

    Glacier surfaces are reservoirs that contain organic and inorganic debris referred to as cryoconite. Solar heating of this material results in the formation of water-filled depressions that are colonized by a variety of microbes and are hypothesized to play a role in carbon cycling in glacier ecosystems. Recent studies on cryoconite deposits have focused on their contribution to carbon fluxes to determine whether they are a net source or sink for atmospheric CO2. To better understand carbon cycling in these unique ecosystems, the molecular constituents of cryoconite organic matter (COM) require further elucidation. COM samples from four glaciers were analyzed by targeted extraction of plant- and microbial-derived biomarkers in conjunction with non-targeted NMR experiments to determine the COM composition and potential sources. Several molecular proxies were applied to assess COM degradation and microbial activity using samples from Greenland, the Canadian Arctic, and Antarctica. COM from Canadian (John Evans glacier) and Greenlandic (Leverett glacier) locations was more chemically heterogeneous than that from the Antarctic likely due to inputs from higher plants, mosses and Sphagnum as suggested by the solvent-extractable alkyl lipids and sterols and the detection of lignin- and Sphagnum-derived phenols after cupric oxide chemolysis. Solid-state 13C nuclear magnetic resonance (NMR) experiments highlighted the bulk chemical functional groups of COM allowing for a general assessment of its degradation stage from the alkyl/O-alkyl proxy whereas solution-state 1H NMR highlighted both microbial and plant contributions to base-soluble extracts from these COM samples. The dominance of 1H NMR signals from microbial protein/peptides in base-soluble extracts of COM from Antarctica (Joyce glacier and Garwood glacier), phospholipid fatty acid (PLFA) biomarker detection and the absence of plant-derived biomarkers in both the solvent and cupric oxide extracts suggests that this

  1. Visualization of molecular composition and functionality of cancer cells using nanoparticle-augmented ultrasound-guided photoacoustics

    Science.gov (United States)

    Mallidi, Srivalleesha; Kim, Seungsoo; Karpiouk, Andrei; Joshi, Pratixa P.; Sokolov, Konstantin; Emelianov, Stanislav

    2015-01-01

    Assessment of molecular signatures of tumors in addition to their anatomy and morphology is desired for effective diagnostic and therapeutic procedures. Development of in vivo imaging techniques that can identify and monitor molecular composition of tumors remains an important challenge in pre-clinical research and medical practice. Here we present a molecular photoacoustic imaging technique that can visualize the presence and activity of an important cancer biomarker – epidermal growth factor receptor (EGFR), utilizing the effect of plasmon resonance coupling between molecular targeted gold nanoparticles. Specifically, spectral analysis of photoacoustic images revealed profound changes in the optical absorption of systemically delivered EGFR-targeted gold nanospheres due to their molecular interactions with tumor cells overexpressing EGFR. In contrast, no changes in optical properties and, therefore, photoacoustic signal, were observed after systemic delivery of non-targeted gold nanoparticles to the tumors. The results indicate that multi-wavelength photoacoustic imaging augmented with molecularly targeted gold nanoparticles has the ability to monitor molecular specific interactions between nanoparticles and cell-surface receptors, allowing visualization of the presence and functional activity of tumor cells. Furthermore, the approach can be used for other cancer cell-surface receptors such as human epidermal growth factor receptor 2 (HER2). Therefore, ultrasound-guided molecular photoacoustic imaging can potentially aid in tumor diagnosis, selection of customized patient-specific treatment, and monitor the therapeutic progression and outcome in vivo. PMID:25893171

  2. [Preparation of molecularly imprinted polypyrrole/Fe3O4 composite material and its application in recognition of tryptophan enantiomers].

    Science.gov (United States)

    Chen, Zhidong; Shan, Xueling; Kong, Yong

    2012-04-01

    Ferrosoferric oxide (Fe(3)O(4)) magnetic material was first synthesized, and then the in-situ chemical polymerization of pyrrole was carried out on the surface of Fe(3)O(4) by using pyrole and L-tryptophan (L-Trp) as the functional monomer and templates, respectively. As a result, molecularly imprinted polypyrrole/Fe(3)O(4) composite material was obtained. This composite material was separated from the solution because of its magnetic property. Polypyrrole in the composite was overoxidized in 1 mol/L NaOH solution by applying a potential of 1.0 V, and thus L-Trp templates were de-deoped from the composite. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical methods were employed to characterize the composite. The solution containing L- or D-Trp was pumped through a porous ceramic tube packed with the composite, separately. High performance liquid chromatography (HPLC) was adopted for the detection of L- or D-Trp in the eluate, and the results indicated that the enrichment ability of the composite for L-Trp was almost 2 times that of D-Trp. Therefore, the electro-magnetic composite material has potential applications as chromatographic stationary phase for chiral recognition.

  3. High spatial resolution infrared imaging of L1551-IRS 5 - Direct observations of its circumstellar envelope

    Science.gov (United States)

    Moneti, Andrea; Forrest, William J.; Pipher, Judith L.; Woodward, Charles E.

    1988-01-01

    Images of L1551-IRS 5 were obtained at 1.65, 2.2, and 3.8 microns using the University of Rochester's Infrared Array Camera. It is found that IRS 5 is spatially resolved, and that it is elongated: the observed FWHM size of IRS 5 is 4.1 x 2.8 arcsec-squared at 2.2 microns. These observations are interpreted in terms of a flattened circumstellar envelope that is viewed from about 18 deg above its equatorial plane, a configuration that has been treated theoretically by Lefevre et al. In this model the central star is not seen directly, but only light scattered toward the observer from the visible polar region, where the envelope is thinnest, is observed. It is deduced that the envelope has a diameter of 1000 AU, a molecular hydrogen density of greater than or approximately equal to 4 x 10 to the 6th/cu cm, and a mass of greater than or approximately equal to 0.02 M solar mass, which results in an extinction of Av greater than about 33 mag to the central source.

  4. The circumstellar disc of AB Aurigae: evidence for envelope accretion at late stages of star formation?

    CERN Document Server

    Tang, Ya-Wen; Pietu, Vincent; Dutrey, Anne; Ohashi, Nagayoshi; Ho, Paul T P

    2012-01-01

    The circumstellar disc of AB Aurigae has garnered great attentions due to the apparent existence of spirals at a relatively young stage and also the asymmetric disc traced in thermal dust emission. However, the physical conditions of the spirals are still not well understood. The origin of the asymmetric thermal emission is unclear. We observe the disc at 230 GHz (1.3 mm) in both continuum and the spectral line ^12 CO 2-1 with IRAM 30 m, the PdBI and the SMA to sample all spatial scales from 0.37" to about 50". To combine the data obtained from these telescopes, several methods and calibration issues have been checked and discussed. The 1.3 mm continuum (dust) emission is resolved into inner disc and outer ring. The emission from the dust ring is highly asymmetric in azimuth, with intensity variations by a factor 3. Molecular gas at high velocities traced by the CO line is detected aside the stellar location. The inclination angle of the disc is found to decrease toward the center. At larger scale, based on t...

  5. First Detection of Near-Infrared Line Emission from Organics in Young Circumstellar Disks

    CERN Document Server

    Mandell, A M; van Dishoeck, E F; Blake, G A; Salyk, C; Mumma, M J; Villanueva, G

    2012-01-01

    We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the VLT/CRIRES and Keck/NIRSPEC spectrographs, revealing the first detections of emission from HCN and C2H2 in circumstellar disks at near-infrared wavelengths. Using advanced data reduction techniques we achieve a dynamic range with respect to the disk continuum of ~500 at 3 microns, revealing multiple emission features of H2O, OH, HCN, and C2H2. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH4 and NH3. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20 degrees, suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature LTE slab model with a Gauss...

  6. Circumstellar HI and CO around the carbon stars V1942 Sgr and V CrB

    CERN Document Server

    Libert, Y; Thum, C; Winters, J M; Matthews, L D; Bertre, T Le

    2009-01-01

    Context. The majority of stars that leave the main sequence are undergoing extensive mass loss, in particular during the asymptotic giant branch (AGB) phase of evolution. Observations show that the rate at which this phenomenon develops differs highly from source to source, so that the time-integrated mass loss as a function of the initial conditions (mass, metallicity, etc.) and of the stage of evolution is presently not well understood. Aims. We are investigating the mass loss history of AGB stars by observing the molecular and atomic emissions of their circumstellar envelopes. Methods. In this work we have selected two stars that are on the thermally pulsing phase of the AGB (TP-AGB) and for which high quality data in the CO rotation lines and in the atomic hydrogen line at 21 cm could be obained. Results. V1942 Sgr, a carbon star of the Irregular variability type, shows a complex CO line profile that may originate from a long-lived wind at a rate of ~ 10^-7 Msol/yr, and from a young (< 10^4 years) fast...

  7. A Low-Mass H2 Component to the AU Microscopii Circumstellar Disk

    CERN Document Server

    France, Kevin; Lupu, Roxana E; Redfield, Seth; Feldman, Paul D

    2007-01-01

    We present a determination of the molecular gas mass in the AU Microscopii circumstellar disk. Direct detection of a gas component to the AU Mic disk has proven elusive, with upper limits derived from ultraviolet absorption line and submillimeter CO emission studies. Fluorescent emission lines of H2, pumped by the OVI 1032 resonance line through the C-X (1 -- 1) Q(3) 1031.87 \\AA\\ transition, are detected by the Far Ultraviolet Spectroscopic Explorer. These lines are used to derive the H2 column density associated with the AU Mic system. The derived column density is in the range N(H2) = 1.9 x 10^{17} - 2.8 x 10^{15} cm^{-2}, roughly two orders of magnitude lower than the upper limit inferred from absorption line studies. This range of column densities reflects the range of H2 excitation temperature consistent with the observations, T(H2) = 800 -- 2000 K, derived from the presence of emission lines excited by OVI in the absence of those excited by LyA. Within the observational uncertainties, the data are consi...

  8. Exploring the circumstellar environment of the young eruptive star V2492 Cyg

    CERN Document Server

    Kóspál, Á; Acosta-Pulido, J A; Morales, M J Arévalo; Balog, Z; Carnerero, M I; Szegedi-Elek, E; Farkas, A; Henning, Th; Kelemen, J; Kovács, T; Kun, M; Marton, G; Mészáros, Sz; Moór, A; Pál, A; Sárneczky, K; Szakáts, R; Szalai, N; Szing, A; Tóth, I; Turner, N J; Vida, K

    2013-01-01

    Context. V2492 Cyg is a young eruptive star that went into outburst in 2010. The near-infrared color changes observed since the outburst peak suggest that the source belongs to a newly defined sub-class of young eruptive stars where time-dependent accretion and variable line-of-sight extinction play a combined role in the flux changes. Aims. In order to learn about the origin of the light variations and to explore the circumstellar and interstellar environment of V2492 Cyg, we monitored the source at ten different wavelengths, between 0.55 \\mu m and 2.2 \\mu m from the ground, and between 3.6 \\mu m and 160 \\mu m from space. Methods. We analyze the light curves and study the color-color diagrams via comparison with the standard reddening path. We examine the structure of the molecular cloud hosting V2492 Cyg by computing temperature and optical depth maps from the far-infrared data. Results. We find that the shapes of the light curves at different wavelengths are strictly self-similar, and the observed variabil...

  9. CO and H2 Absorption in the AA Tauri Circumstellar Disk

    CERN Document Server

    France, Kevin; Herczeg, Gregory J; Schindhelm, Eric; Yang, Hao; Abgrall, Herve; Roueff, Evelyne; Brown, Alexander; Brown, Joanna; Linsky, Jeffrey L

    2011-01-01

    The direct study of molecular gas in inner protoplanetary disks is complicated by uncertainties in the spatial distribution of the gas, the time-variability of the source, and the comparison of observations across a wide range of wavelengths. Some of these challenges can be mitigated with far-ultraviolet spectroscopy. Using new observations obtained with the HST-Cosmic Origins Spectrograph, we measure column densities and rovibrational temperatures for CO and H2 observed on the line-of-sight through the AA Tauri circumstellar disk. CO A-X absorption bands are observed against the far-UV continuum. The CO absorption is characterized by log(N(^{12}CO)) = 17.5 +/- 0.5 cm^{-2} and T_rot(CO) = 500$^{+500}_{-200} K, although this rotational temperature may underestimate the local kinetic temperature of the CO-bearing gas. We also detect ^{13}CO in absorption with an isotopic ratio of ~20. We do not observe H2 absorption against the continuum; however, hot H2 (v > 0) is detected in absorption against the LyA emissio...

  10. TW Hya Association Membership and New WISE-detected Circumstellar Disks

    CERN Document Server

    Schneider, Adam; Song, Inseok

    2012-01-01

    We assess the current membership of the nearby, young TW Hydrae Association and examine newly proposed members with the Wide-field Infrared Survey Explorer (WISE) to search for infrared excess indicative of circumstellar disks. Newly proposed members TWA 30A, TWA 30B, TWA 31, and TWA 32 all show excess emission at 12 and 22 \\mum providing clear evidence for substantial dusty circumstellar disks around these low-mass, ~8 Myr old stars that were previously shown to likely be accreting from circumstellar material. TWA 30B shows large amounts of self-extinction, likely due to an edge-on disk geometry. We also confirm previously reported circumstellar disks with WISE, and determine a 22 \\mum excess fraction of 42+/- 9% based on our results.

  11. Importance of the H2 abundance in protoplanetary disk ices for the molecular layer chemical composition

    CERN Document Server

    Wakelam, V; Hersant, F; Dutrey, A; Semenov, D; Majumdar, L; Guilloteau, S

    2016-01-01

    Protoplanetary disks are the target of many chemical studies (both observational and theoretical) as they contain the building material for planets. Their large vertical and radial gradients in density and temperature make them challenging objects for chemical models. In the outer part of these disks, the large densities and low temperatures provide a particular environment where the binding of species onto the dust grains can be very efficient and can affect the gas-phase chemical composition. We attempt to quantify to what extent the vertical abundance profiles and the integrated column densities of molecules predicted by a detailed gas-grain code are affected by the treatment of the molecular hydrogen physisorption at the surface of the grains. We performed three different models using the Nautilus gas-grain code. One model uses a H2 binding energy on the surface of water (440 K) and produces strong sticking of H2. Another model uses a small binding energy of 23 K (as if there were already a monolayer of H...

  12. [Composition, physico-chemical properties and molecular superstructure of dietary fiber preparations of the cellan type].

    Science.gov (United States)

    Dongowski, G; Frigge, K; Zenke, I

    1995-07-01

    Dietary fiber preparations of "cellan" type were prepared from apples, white cabbage, sugar beet pulp, soy hulls and wheat bran by treatment with amylolytic and proteolytic enzymes as well as by chemical extractions. Scanning electron microscopic examinations show different morphological structures of the preparations and a high maintenance of native biomolecular superstructure. The content of pectin, protein, polysaccharide-hexoses and -pentoses and the composition of monosaccharides (also after their treatment with 4 or 8% sodium hydroxide) were determined. The cellans possess waterbinding capacities (WBC) between 25 g H2O/g and waterholding capacities between 50 g H2O/g. The WBC is related to the internal surface; it diminishes after treatment with NaOH. The interactions between the cellans and the adsorbed water were characterized by NMR-spin-lattice relaxation time T1. The molecular mobility increases as the water content grows. The T1-values of dried cellans decreased with increasing degree of moisture before drying. The supermolecular structure is comparatively disordered. Only in case of soy cellan a crystalline cellulose-I-modification could be identified by X-ray-diffraction pattern, esp. after NaOH treatment. The low degree of order of cellans was observed in the 13C-NMR spectra, too. Only the soy hull preparation resulted in a spectrum corresponding to well-ordered cellulose. The botanic source has an essential influence on the physico-chemical properties of dietary fiber preparations of cellan type.

  13. Molecular dynamics of structural properties of molten CaO-SiO2 with varying composition

    Institute of Scientific and Technical Information of China (English)

    吴永全; 黄世萍; 尤静林; 蒋国昌

    2002-01-01

    Molecular dynamics simulations of the xCaO-(1-x)SiO2 melts (x varying with the composition of melt) were performed to achieve some structural information. It is found that the first peak positions of Si-Si, Si-O and O-O partial radial distribution functions RDFs(3.165, 1.612  and 2.6 )agree very well with those of x-ray diffraction experiments. The discovered relation of coordinate number NSi-Si(r0) with the molar ratio of CaO is linear and the slope is -0.05617. The average bond lengths of Si-Ob and Si-Onb are 1.6275~1.630 and 1.595~1.60, respectively. Both distribution curves of the angles O-Si-O and Si-O-Si show one peak. For the distribution of angle O-Si-O the positions of the peaks are just a little less than the typical tetrahedral angle 109.5°. And for angle Si-O-Si the positions of peaks fluctuate in the range from 148° to 151°. At last, the distribution of five Si-O tetrahedra was obtained and discussed.

  14. Synthetic Spectra and Light Curves of Interacting Binaries and Exoplanets with Circumstellar Material: SHELLSPEC

    CERN Document Server

    Budaj, Jan

    2011-01-01

    Program SHELLSPEC is designed to calculate light-curves, spectra and images of interacting binaries and extrasolar planets immersed in a moving circumstellar environment which is optically thin. It solves simple radiative transfer along the line of sight in moving media. The assumptions include LTE and optional known state quantities and velocity fields in 3D. Optional (non)transparent objects such as a spot, disc, stream, jet, ufo, shell or stars may be defined (embedded) in 3D and their composite synthetic spectrum calculated. Roche model can be used as a boundary condition for the radiative transfer. Recently a new model of the reflection effect, dust and Mie scattering were incorporated into the code. $\\epsilon$ Aurigae is one of the most mysterious objects on the sky. Prior modeling of its light-curve assumed dark, inclined, disk of dust with the central hole to explain the light-curve with a sharp mid-eclipse brightening. Our model consists of two geometrically thick flared disks. Internal optically thi...

  15. The effects of circumstellar gas on terrestrial planet formation: Theory and observation

    Science.gov (United States)

    Mandell, Avram M.

    the remaining planets would be located in the Habitable Zone, suggesting that planetary systems with close-in giant planets are viable targets for searches for Earth-like habitable planets around other stars. I then present more realistic dynamical simulations of the effects of a migrating giant planet on a disk of protoplanetary material embedded in a gaseous disk, and the subsequent post-scattering evolution of the planetary system. I numerically investigate the dynamics of several types of post-migration planetary systems over 200 million years: a model with a single migrating giant planet, a model with one migrating and one nonmigrating giant planet, and a model excluding the effects of the gas disk. Material that is shepherded in front of the migrating giant planet by moving mean motion resonances accretes into "hot Earths", but survival of these bodies is strongly dependent on dynamical damping. Furthermore, a significant amount of material scattered outward by the giant planet survives in highly excited orbits; the orbits of these scattered bodies are then damped by gas drag and dynamical friction over the remaining accretion time. In all simulations Earth-mass planets accrete on approximately 100 Myr timescales, often with orbits in the Habitable Zone. These planets range in mass and water content, with both quantities increasing with the presence of a gas disk and decreasing with the presence of an outer giant planet. I use scaling arguments and previous results to derive a simple recipe that constrains which giant planet systems are able to form and harbor Earth-like planets in the Habitable Zone, demonstrating that roughly one third of the known planetary systems are potentially habitable. Finally, I present results from a search for new molecular tracers of warm gas in circumstellar disks using the NIRSPEC instrument on the Keck II telescope. I have detected emission from multiple ro-vibrational transitions in the v = 1--0 band of hydroxyl (OH) located in

  16. High Resolution Spectroscopy of Vega-like Stars: Abundances and Circumstellar Gas

    Science.gov (United States)

    Dunkin, S. K.; Barlow, M. J.; Ryan, Sean G.

    1996-01-01

    Vega-like stars are main-sequence stars exhibiting excess infrared emission. In an effort to improve the information available on this class of star, 13 stars have been analyzed which have been classed as Vega-like, or have an infra-red excess attributable to dust in their circumstellar environment. In a separate paper stellar properties such as effective temperature and log g have been derived and in this poster we highlight the results of the photospheric abundance analysis also carried out during this work. King recently drew attention to the possible link between Vega-like stars and the photospheric metal-depleted class of A-stars, the Lambda Bootis stars. Since Vega-like stars are thought to have disks of dust, it might be expected that accretion of depleted gas onto the surface of these stars may cause this same phenomenon. In the 6 stars studied for depletions, none showed the extreme underabundance patterns observed in Lambda Bootis stars. However, depletions of silicon and magnesium were found in two of the sample, suggesting that these elements are in silicate dust grains in the circumstellar environment of these stars. Absorption lines attributed to circumstellar gas have been positively identified in three stars in our sample. Individual cases show evidence either of high-velocity outflowing gas, variability in the circumstellar lines observed, or evidence of circumstellar gas in excited lines of Fe II. No previous identification of circumstellar material has been made for two of the stars in question.

  17. Dust Migration and Morphology in Optically Thin Circumstellar Gas Disks

    CERN Document Server

    Takeuchi, T; Takeuchi, Taku; Artymowicz, Pawel

    2001-01-01

    We analyze the dynamics of gas-dust coupling in the presence of stellar radiation pressure in circumstellar gas disks, which are in a transitional stage between the gas-dominated, optically thick, primordial nebulae, and the dust-dominated, optically thin Vega-type disks. Dust undergo radial migration, seeking a stable equilibrium orbit in corotation with gas. The migration of dust gives rise to radial fractionation of dust and creates a variety of possible observed disk morphologies, which we compute by considering the equilibrium between the dust production and the dust-dust collisions removing particles from their equilibrium orbits. Sand-sized and larger grains are distributed throughout most of the gas disk, with concentration near the gas pressure maximum in the inner disk. Smaller grains (typically in the range of 10 to 200 micron) concentrate in a prominent ring structure in the outer region of the gas disk (presumably at radius 100 AU), where gas density is rapidly declining with radius. The width an...

  18. The circumstellar environment of pre-SN Ia systems

    CERN Document Server

    Harvey, E; Boumis, P; Kopsacheili, M; Akras, S; Sabin, L; Jurkic, T

    2016-01-01

    Here we explore the possible preexisting circumstellar debris of supernova type Ia systems. Classical, symbiotic and recurrent novae all accrete onto roughly solar mass white dwarfs from main sequence or Mira type companions and result in thermonuclear runaways and expulsion of the accreted material at high velocity. The expelled material forms a fast moving shell that eventually slows to planetary nebula expansion velocities within several hundred years. All such systems are recurrent and thousands of shells (each of about 0.001 Mo) snow plough into the environment. As these systems involve common envelope binaries the material is distributed in a non-spherical shell. These systems could be progenitors of some SN Ia and thus explode into environments with large amounts of accumulated gas and dust distributed in thin non-spherical shells. Such shells should be observable around 100 years after a SN Ia event in a radio flash as the SN Ia debris meets that of the ejected material of the systems previous incarna...

  19. Type Ia Supernovae Strongly Interacting with Their Circumstellar Medium

    CERN Document Server

    Silverman, Jeffrey M; Gal-Yam, Avishay; Sullivan, Mark; Howell, D Andrew; Filippenko, Alexei V; Arcavi, Iair; Ben-Ami, Sagi; Bloom, Joshua S; Cenko, S Bradley; Cao, Yi; Chornock, Ryan; Clubb, Kelsey I; Coil, Alison L; Foley, Ryan J; Graham, Melissa L; Griffith, Christopher V; Horesh, Assaf; Kasliwal, Mansi M; Kulkarni, Shrinivas R; Leonard, Douglas C; Li, Weidong; Matheson, Thomas; Miller, Adam A; Modjaz, Maryam; Ofek, Eran O; Pan, Yen-Chen; Perley, Daniel A; Poznanski, Dovi; Quimby, Robert M; Steele, Thea N; Sternberg, Assaf; Xu, Dong; Yaron, Ofer

    2013-01-01

    Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia show evidence of strong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; we refer to them as SNe Ia-CSM. In the first systematic search for such systems, we have identified 16 SNe Ia-CSM, and here we present new spectra of 13 of them. Six SNe Ia-CSM have been well-studied previously, three were previously known but are analyzed in-depth for the first time here, and seven are new discoveries from the Palomar Transient Factory. The spectra of all SNe Ia-CSM are dominated by H{\\alpha} emission (with widths of ~2000 km/s) and exhibit large H{\\alpha}/H{\\beta} intensity ratios (perhaps due to collisional excitation of hydrogen via the SN ejecta overtaking slower-moving CSM shells); moreover, they have an almost complete lack of He I emission. They...

  20. The ionization structure of the circumstellar envelope of Alpha Orionis

    Science.gov (United States)

    Glassgold, A. E.; Huggins, P. J.

    1986-01-01

    The physical processes which affect the ionization of the outer circumstellar envelope of Alpha Ori are analyzed and evaluated. The ultraviolet radiation fields of the chromosphere and the interstellar medium dominate the envelope, and the most common forms of all species are neutral atoms and first ions. Hydrogen recombines just outside the chromosphere, where atoms with smaller ionization potential are essentially fully ionized. The heavier ions gradually recombine with increasing distance from the star, until the interstellar radiation field reverses this trend. The electron fraction in the outer envelope is approximately equal to the abundance of all such heavy atoms, i.e., of the order of 0.0001. The analysis is applied to the case of neutral K, whose density in the envelope has been determined by scattering experiments. The theory predicts that the slope of the K I density distribution should decrease from -1.5 to -3.5 in the outer envelope. The mass loss rate of Alpha Ori implied by the K I scattering experiments is 4 x 10 to the -6th solar mass/yr.

  1. A WISE survey of circumstellar disks in Taurus

    Energy Technology Data Exchange (ETDEWEB)

    Esplin, T. L.; Luhman, K. L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Mamajek, E. E., E-mail: taran.esplin@psu.edu [Department of Physics and Astronomy, The University of Rochester, Rochester, NY 14627 (United States)

    2014-04-01

    We have compiled photometry at 3.4, 4.6, 12, and 22 μm from the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) for all known members of the Taurus complex of dark clouds. Using these data and photometry from the Spitzer Space Telescope, we have identified members with infrared excess emission from circumstellar disks and have estimated the evolutionary stages of the detected disks, which include 31 new full disks and 16 new candidate transitional, evolved, evolved transitional, and debris disks. We have also used the WISE All-Sky Source Catalog to search for new disk-bearing members of Taurus based on their red infrared colors. Through optical and near-infrared spectroscopy, we have confirmed 26 new members with spectral types of M1-M7. The census of disk-bearing stars in Taurus should now be largely complete for spectral types earlier than ∼M8 (M ≳ 0.03 M {sub ☉}).

  2. The Structure of the DoAr 25 Circumstellar Disk

    CERN Document Server

    Andrews, Sean M; Wilner, D J; Qi, Chunhua

    2008-01-01

    We present high spatial resolution (< 0.3" = 40$ AU) Submillimeter Array observations of the 865 micron continuum emission from the circumstellar disk around the young star DoAr 25. Despite its bright millimeter emission, this source exhibits only a comparatively small infrared excess and low accretion rate, suggesting that the material and structural properties of the inner disk may be in an advanced state of evolution. A simple model of the physical conditions in the disk is derived from the submillimeter visibilities and the complete spectral energy distribution using a Monte Carlo radiative transfer code. For the standard assumption of a homogeneous grain size distribution at all disk radii, the results indicate a shallow surface density profile, $\\Sigma \\propto r^{-p}$ with p = 0.34, significantly less steep than a steady-state accretion disk (p = 1) or the often adopted minimum mass solar nebula (p = 1.5). Even though the total mass of material is large (M_d = 0.10 M_sun), the densities inferred in t...

  3. Numerical models for the circumstellar medium around Betelgeuse

    CERN Document Server

    Mackey, Jonathan; Neilson, Hilding R; Langer, Norbert; Meyer, Dominique M -A

    2013-01-01

    The nearby red supergiant (RSG) Betelgeuse has a complex circumstellar medium out to at least 0.5 parsecs from its surface, shaped by its mass-loss history within the past 0.1 Myr, its environment, and its motion through the interstellar medium (ISM). In principle its mass-loss history can be constrained by comparing hydrodynamic models with observations. Observations and numerical simulations indicate that Betelgeuse has a very young bow shock, hence the star may have only recently become a RSG. To test this possibility we calculated a stellar evolution model for a single star with properties consistent with Betelgeuse. We incorporated the resulting evolving stellar wind into 2D hydrodynamic simulations to model a runaway blue supergiant (BSG) undergoing the transition to a RSG near the end of its life. The collapsing BSG wind bubble induces a bow shock-shaped inner shell which at least superficially resembles Betelgeuse's bow shock, and has a similar mass. Surrounding this is the larger-scale retreating bow...

  4. ALMA Observations of HD141569's Circumstellar Disk

    CERN Document Server

    White, J A; Hughes, A M; Flaherty, K M; Ford, E; Wilner, D; Corder, S; Payne, M

    2016-01-01

    We present ALMA band 7 (345 GHz) continuum and $^{12}$CO(J = 3-2) observations of the circumstellar disk surrounding HD141569. At an age of about 5 Myr, the disk has a complex morphology that may be best interpreted as a nascent debris system with gas. Our $870\\rm~\\mu m$ ALMA continuum observations resolve a dust disk out to approximately $ 56 ~\\rm au$ from the star (assuming a distance of 116 pc) with $0."38$ resolution and $0.07 ~ \\rm mJy~beam^{-1}$ sensitivity. We measure a continuum flux density for this inner material of $3.8 \\pm 0.4 ~ \\rm mJy$ (including calibration uncertainties). The $^{12}$CO(3-2) gas is resolved kinematically and spatially from about 30 to 210 au. The integrated $^{12}$CO(3-2) line flux density is $15.7 \\pm 1.6~\\rm Jy~km~s^{-1}$. We estimate the mass of the millimeter debris and $^{12}$CO(3-2) gas to be $\\gtrsim0.04~\\rm M_{\\oplus}$ and $\\sim2\\times 10^{-3}~\\rm M_{\\oplus}$, respectively. If the millimeter grains are part of a collisional cascade, then we infer that the inner disk ($&...

  5. Rapid disappearance of a warm, dusty circumstellar disk

    CERN Document Server

    Melis, Carl; Rhee, Joseph H; Song, Inseok; Murphy, Simon J; Bessell, Michael S

    2012-01-01

    Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution is typically ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amoun...

  6. Rapid disappearance of a warm, dusty circumstellar disk

    Science.gov (United States)

    Melis, Carl; Zuckerman, B.; Rhee, Joseph H.; Song, Inseok; Murphy, Simon J.; Bessell, Michael S.

    2012-07-01

    Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution typically is ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amount of cooler dust. Such a phase of rapid ejecta evolution has not been previously predicted or observed, and no currently available physical model satisfactorily explains the observations.

  7. The formation of polycyclic aromatic hydrocarbons in evolved circumstellar environments

    CERN Document Server

    Cherchneff, Isabelle

    2010-01-01

    The formation of Polycyclic Aromatic Hydrocarbons in the circumstellar outflows of evolved stars is reviewed, with an emphasis on carbon stars on the Asymptotic Giant Branch. Evidence for PAHs present in their winds is provided by meteoritic studies and recent observations of the Unidentified Infrared bands. We detail the chemical processes leading to the closure of the first aromatic ring as well as the growth mechanisms leading to amorphous carbon grains. Existing studies on PAH formation in evolved stellar envelopes are reviewed and new results for the modelling of the inner wind of the archetype carbon star IRC+10216 are presented. Benzene, C6H6, forms close to the star, as well as water, H2O, as a result of non-equilibrium chemistry induced by the periodic passage of shocks. The growth process of aromatic rings may thus resemble that active in sooting flames due to the presence of radicals like hydroxyl, OH. Finally, we discuss possible formation processes for PAHs and aromatic compounds in the hydrogen-...

  8. Observation of Circumstellar Gas in the Neighborhood of RZ Psc

    Science.gov (United States)

    Potravnov, I. S.; Grinin, V. P.; Ilyin, I. V.

    2013-12-01

    The first evidence is found of the existence of circumstellar gas in the nearest surroundings of the UX Ori star RZ Psc. Spectra obtained at the Terskol Observatory, Special Astrophysical Observatory (SAO), and the Nordic Optical Telescope (NOT) reveal a strong variability in the sodium doublet lines that is indicative of a sporadic outflow of matter. Weak variability was also observed in the core of the Hα line. One nontrivial feature of this discovery is that RZ Psc is of spectral class K0 IV. This means that the star has no intrinsic energy resources for creating the observed outflow of matter. There are no emission lines in the star's spectrum which might indicate that matter is falling into the star so that the observed outflow could be related to an accretion process. We suggest, nevertheless, that the ejection of gas is related to residual (slow) accretion and is driven by a propeller mechanism. The latter is possible if the star has a sufficiently high (on the order of 103 G) magnetic field.

  9. Unifying Type II Supernova Light Curves with Dense Circumstellar Material

    CERN Document Server

    Morozova, Viktoriya; Valenti, Stefano

    2016-01-01

    A longstanding problem in the study of supernovae (SNe) has been the relationship between the Type IIP and Type IIL subclasses. Whether they come from distinct progenitors or they are from similar stars with some property that smoothly transitions from one class to another has been the subject of much debate. Here we show using one-dimensional radiation-hydrodynamic SN models that the multi-band light curves of SNe IIL are well fit by ordinary red supergiants surrounded by dense circumstellar material (CSM). The inferred extent of this material, coupled with a typical wind velocity of ~10-100 km/s, suggests enhanced activity by these stars during the last ~months to ~years of their lives, which may be connected with advanced stages of nuclear burning. Furthermore, we find that even for more plateau-like SNe that dense CSM provides a better fit to the first ~20 days of their light curves, indicating that the presence of such material may be more widespread than previously appreciated. Here we choose to model t...

  10. Cepheids at high angular resolution: circumstellar envelope and pulsation

    CERN Document Server

    Gallenne, Alexandre

    2011-01-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out ...

  11. Optical Signatures of Circumstellar Interaction in Type IIP Supernovae

    CERN Document Server

    Chugai, N N; Utrobin, V P; Chugai, Nikolai N.; Chevalier, Roger A.; Utrobin, Victor P.

    2007-01-01

    We propose new diagnostics for circumstellar interaction in Type IIP supernovae by the detection of high velocity (HV) absorption features in Halpha and He I 10830 A lines during the photospheric stage. To demonstrate the method, we compute the ionization and excitation of H and He in supernova ejecta taking into account time-dependent effects and X-ray irradiation. We find that the interaction with a typical red supergiant wind should result in the enhanced excitation of the outer layers of unshocked ejecta and the emergence of corresponding HV absorption, i.e. a depression in the blue absorption wing of Halpha and a pronounced absorption of He I 10830 A at a radial velocity of about -10,000 km/s. We identify HV absorption in Halpha and He I 10830 A lines of SN 1999em and in Halpha of SN 2004dj as being due to this effect. The derived mass loss rate is close to 10^{-6} Msun/yr for both supernovae, assuming a wind velocity 10 km/s. We argue that, in addition to the HV absorption formed in the unshocked ejecta...

  12. Supplementary Information for ``Rapid planetesimal formation in turbulent circumstellar discs''

    CERN Document Server

    Johansen, Anders; Mac Low, Mordecai-Mark; Klahr, Hubert; Henning, Thomas; Youdin, Andrew

    2007-01-01

    This document contains refereed supplementary information for the paper ``Rapid planetesimal formation in turbulent circumstellar discs''. It contains 15 sections (\\S1.1 -- \\S1.15) that address a number of subjects related to the main paper. We describe in detail the Poisson solver used to find the self-potential of the solid particles, including a linear and a non-linear test problem (\\S1.3). Dissipative collisions remove energy from the motion of the particles by collisional cooling (\\S1.4), an effect that allows gravitational collapse to occur in somewhat less massive discs (\\S1.7). A resolution study of the gravitational collapse of the boulders is presented in \\S1.6. We find that gravitational collapse can occur in progressively less massive discs as the grid resolution is increased, likely due to the decreased smoothing of the particle-mesh self-gravity solver with increasing resolution. In \\S1.10 we show that it is in good agreement with the Goldreich & Ward (1973) stability analysis to form severa...

  13. Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study

    Science.gov (United States)

    Kourtchev, Ivan; Godoi, Ricardo H. M.; Connors, Sarah; Levine, James G.; Archibald, Alex T.; Godoi, Ana F. L.; Paralovo, Sarah L.; Barbosa, Cybelli G. G.; Souza, Rodrigo A. F.; Manzi, Antonio O.; Seco, Roger; Sjostedt, Steve; Park, Jeong-Hoo; Guenther, Alex; Kim, Saewung; Smith, James; Martin, Scot T.; Kalberer, Markus

    2016-09-01

    The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic-biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.

  14. Molecular ordering and 2D conductivity in ultrathin poly(3-hexylthiophene)/gold nanoparticle composite films.

    Science.gov (United States)

    Ruiz, Virginia; Nicholson, Patrick G; Jollands, Stuart; Thomas, Pamela A; Macpherson, Julie V; Unwin, Patrick R

    2005-10-20

    This paper reports the first comparison of the structure and electrical conductivity properties of spin cast (SC) and Langmuir-Schaeffer (LS) films of regioregular poly(3-hexylthiophene) (P3HT). In addition, the effect of incorporating highly monodisperse Au nanoparticles (NPs), with a core diameter of approximately 5 nm, into SC and LS P3HT films is described. A detailed picture of molecular organization in the films has been obtained using ultraviolet-visible absorption spectroscopy, atomic force microscopy, field-emission scanning electron microscopy, X-ray diffraction, and X-ray reflectivity. Film morphology was correlated with pseudo-two-dimensional conductivity measured using scanning electrochemical microscopy, with P3HT in the semiconducting regime. It was found that SC films, which were slightly thicker than those formed with the LS technique, exhibited greater organization. This resulted in an order of magnitude higher lateral conductivity for the SC films. Inclusion of Au NPs (50 wt %) into both SC and LS films resulted in the formation of uniform and relatively flat (rms roughness approximately 1 nm) composite films. Surprisingly, the addition of NPs did not disrupt the characteristic crystal structure found for the native P3HT films. The effect of Au NPs on film lateral conductivity was found to be determined by the distribution of Au NPs within the polymer, which varied significantly between SC and LS films. Whereas Au NPs aggregated into hexagonally packed clusters in SC films, NPs in LS films were predominantly uniformly distributed between the lamella bilayer. It was found that, while the inclusion of Au NPs caused the lateral conductivity to decrease in SC films, in LS films, the lateral conductivity increased by a factor of 2.

  15. FIRST DETECTION OF NEAR-INFRARED LINE EMISSION FROM ORGANICS IN YOUNG CIRCUMSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, Avi M.; Mumma, Michael J.; Villanueva, Geronimo [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bast, Jeanette; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Blake, Geoffrey A. [California Institute of Technology, Division of Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125 (United States); Salyk, Colette, E-mail: Avi.Mandell@nasa.gov [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2012-03-10

    We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope, revealing the first detections of emission from HCN and C{sub 2}H{sub 2} in circumstellar disks at near-infrared wavelengths. Using advanced data reduction techniques, we achieve a dynamic range with respect to the disk continuum of {approx}500 at 3 {mu}m, revealing multiple emission features of H{sub 2}O, OH, HCN, and C{sub 2}H{sub 2}. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH{sub 4} and NH{sub 3}. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20 Degree-Sign , suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we compare these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU).

  16. Titan's organic aerosols: Molecular composition and structure of laboratory analogues inferred from pyrolysis gas chromatography mass spectrometry analysis

    Science.gov (United States)

    Morisson, Marietta; Szopa, Cyril; Carrasco, Nathalie; Buch, Arnaud; Gautier, Thomas

    2016-10-01

    Analogues of Titan's aerosols are of primary interest in the understanding of Titan's atmospheric chemistry and climate, and in the development of in situ instrumentation for future space missions. Numerous studies have been carried out to characterize laboratory analogues of Titan aerosols (tholins), but their molecular composition and structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about their chemical composition, highly disparate results were obtained with this technique. They can be attributed to the variety of analytical conditions used for pyr-GCMS analyses, and/or to differences in the nature of the analogues analyzed, that were produced with different laboratory set-ups under various operating conditions. In order to have a better description of Titan's tholin's molecular composition by pyr-GCMS, we carried out a systematic study with two major objectives: (i) exploring the pyr-GCMS analytical parameters to find the optimal ones for the detection of a wide range of chemical products allowing a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholin's molecular structure. We used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were pyrolyzed at temperatures covering the 200-700°C range. The extracted gases were then analyzed by GCMS for their molecular identification. The optimal pyrolysis temperature for characterizing the molecular composition of our tholins by GCMS analysis is found to be 600°C. This temperature choice results from the best compromise between the number of compounds released, the quality of the signal and the appearance of pyrolysis artifacts. About a hundred molecules are identified as pyrolysates. A common major chromatographic pattern appears clearly for all the

  17. A molecular survey of outflow gas: velocity-dependent shock chemistry and the peculiar composition of the EHV gas

    Science.gov (United States)

    Tafalla, M.; Santiago-García, J.; Hacar, A.; Bachiller, R.

    2010-11-01

    Context. Bipolar outflows from Class 0 protostars often present two components in their CO spectra that have different kinematic behaviors: a smooth outflow wing and a discrete, extremely high-velocity (EHV) peak. Aims: To better understand the origin of these two outflow components, we have studied and compared their molecular composition. Methods: We carried out a molecular survey of the outflows powered by L1448-mm and IRAS 04166+2706, two sources with prominent wing and EHV components. For each source, we observed a number of molecular lines towards the brightest outflow position and used them to determine column densities for 12 different molecular species. Results: The molecular composition of the two outflows is very similar. It presents systematic changes with velocity that we analyze by dividing the outflow in three chemical regimes, two of them associated with the wing component and the other the EHV gas. The analysis of the two wing regimes shows that species like H2CO and CH3OH favor the low-velocity gas, while SiO and HCN are more abundant in the fastest gas. This fastest wing gas presents strong similarities with the composition of the “chemically active” L1157 outflow (whose abundances we re-evaluate in an appendix). We find that the EHV regime is relatively rich in O-bearing species compared to the wing regime. The EHV gas is not only detected in CO and SiO (already reported elsewhere), but also in SO, CH3OH, and H2CO (newly reported here), with a tentative detection in HCO+. At the same time, the EHV regime is relatively poor in C-bearing molecules like CS and HCN, for which we only obtain weak detections or upper limits despite deep integrations. We suggest that this difference in composition arises from a lower C/O ratio in the EHV gas. Conclusions: The different chemical compositions of the wing and EHV regimes suggest that these two outflow components have different physical origins. The wing component is better explained by shocked ambient

  18. Characterization of silane coated hollow sphere alumina-reinforced ultra high molecular weight polyethylene composite as a possible bone substitute material

    Indian Academy of Sciences (India)

    S Roy; S Pal

    2002-12-01

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites were characterized for mechanical properties using destructive and non-destructive ultrasonic testing methods. The physical properties of the composite were determined and compared with those of cortical bone.

  19. Behavior of Aramid Fiber/Ultrahigh Molecular Weight Polyethylene Fiber Hybrid Composites under Charpy Impact and Ballistic Impact

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The aramid fiber/UHMWPE (ultrahigh molecular weight polyethylene) fiber hybrid composites (AF/DF) were manufactured. By Charpy impact, the low velocity impact behavior of AF/DF composite was studied. And the high velocity impact behavior under ballistic impact was also investigated. The influence of hybrid ratio on the performances of low and high velocity impact was analyzed, and hybrid structures with good impact properties under low velocity impact and high velocity were optimized. For Charpy impact, the maximal impact load increased with the accretion of the AF layers for AF/DF hybrid composites. The total impact power was reduced with the decrease of DF layers and the delamination can result in the increase of total impact power. For ballistic impact, the DF ballistic performance was better than that of the AF and the hybrid ratio had a crucial influence. The failure morphology of AF/DF hybrid composite under Charpy impact and ballistic impact was analyzed. The AF/DF hybrid composites in suitable hybrid ratio could attain better performance than AF or DF composites.

  20. Photons transport through ultra-high molecular weight polyethylene based composite containing tungsten and boron carbide fillers

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, S.M. [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Kuznetsov, S.A. [Russian State Technological University “MATI”, Moscow 121552 (Russian Federation); Volkov, A.E.; Terekhin, P.N.; Dmitriev, S.V. [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Tcherdyntsev, V.V.; Gorshenkov, M.V. [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Boykov, A.A., E-mail: kink03@gmail.com [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation)

    2014-02-15

    Highlights: • The developed method for predicting X-ray properties of the polymer. • Higher content of the fillers results in an increase of mechanical properties. • X-ray defensive properties of the samples were investigated experimentally. -- Abstract: Polymers are a base for creating of composite materials with high mechanical and chemical properties. Using the heavy metals as filler in these composites can give them X-ray protective properties. These materials have high deactivation rates and can be used to create Personal Protective Equipment (PPE) used in aggressive environments. It was proposed a model for calculation of X-ray protection properties of the polymer-based nanocomposite materials with ultra-high molecular weight polyethylene (UHMWPE) matrix, filled with tungsten and boron carbide particles. X-ray protective properties were calculated in a wide range of filler content using the developed model. Results of calculations allow selecting most effective compounds of X-ray protective UHMWPE based composites.

  1. Compression Molded Ultra High Molecular Weight Polyethylene-Hydroxyapatite-Aluminum Oxide-Carbon Nanotube Hybrid Composites for Hard Tissue Replacement

    Institute of Scientific and Technical Information of China (English)

    Ankur Gupta; Garima Tripathi; Debrupa Lahiri; Kantesh Balani

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is widely used for articulating surfaces in total hip and knee replacements.In the present work,UHMWPE based polymer composites were synthesized by synergistic reinforcing of bioactive hydroxyapatite (HA),bioinert aluminum oxide (Al2O3),and carbon nanotubes (CNTs) using compression molding.Phase and microstructural analysis suggests retention of UHMWPE and reinforcing phases in the compression molded composites.Microstructural analysis elicited variation in densification due to the size effect of the reinforcing particles.The hybrid composites exhibited hardness,elastic modulus and toughness comparable to that of UHMWPE.The interfacial effect of reinforcement phases has evinced the effectiveness of Al2O3 over HA and CNT reinforcements,depicting synergistic enhancement in hardness and elastic modulus.Weak interfacial bonding of polymer matrix with HA and CNT requires utilization of coupling agents to achieve enhanced mechanical properties without deteriorating cytocompatible properties.

  2. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all...

  3. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  4. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2010-01-01

    New Year is an open composition to be realised by improvising musicians. It is included in "From the Danish Seasons" (see under this title). See more about my composition practise in the entry "Composition - General Introduction". This work is licensed under a Creative Commons "by-nc" License. You...

  5. The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft

    Science.gov (United States)

    Batenburg, A. M.; Schuck, T. J.; Baker, A. K.; Zahn, A.; Brenninkmeijer, C. A. M.; Röckmann, T.

    2012-05-01

    More than 450 air samples that were collected in the upper troposphere - lower stratosphere (UTLS) region by the CARIBIC aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) have been analyzed for molecular hydrogen (H2) mixing ratios (χ(H2)) and H2 isotopic composition (deuterium content, δD). More than 120 of the analyzed samples contained air from the lowermost stratosphere (LMS). These show that χ(H2) does not vary appreciably with O3-derived height above the thermal tropopause (TP), whereas δD does increase with height. The isotope enrichment is caused by H2 production and destruction processes that enrich the stratospheric H2 reservoir in deuterium (D); the exact shapes of the profiles are mainly determined by mixing of stratospheric with tropospheric air. Tight negative correlations are found between δD and the mixing ratios of methane (χ(CH4)) and nitrous oxide (χ(N2O)), as a result of the relatively long lifetimes of these three species. The correlations are described by δD[‰]=-0.35 · χ(CH4)[ppb]+768 and δD[‰]=-1.90· χ(N2O)[ppb]+745. These correlations are similar to previously published results and likely hold globally for the LMS. Samples that were collected from the Indian subcontinent up to 40° N before, during and after the summer monsoon season show no significant seasonal change in χ(H2), but δD is up to 12.3‰ lower in the July, August and September monsoon samples. This δD decrease is correlated with the χ(CH4) increase in these samples. The significant correlation with χ(CH4) and the absence of a perceptible χ(H2) increase that accompanies the δD decrease indicates that microbial production of very D-depleted H2 in the wet season may contribute to this phenomenon. Some of the samples have very high χ(H2) and very low δD values, which indicates a pollution effect. Aircraft engine exhaust plumes are a suspected cause, since the effect mostly occurs in samples

  6. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland.

    Science.gov (United States)

    He, Wei; Choi, Ilhwan; Lee, Jung-Joon; Hur, Jin

    2016-02-15

    In this study, temporal and spatial variations in five defined molecular size fractions of dissolved organic matter (DOM) were examined for a well preserved wetland (Upo Wetland) and its surrounding areas, and the influencing factors were explored with many biotic and abioic parameters. For each DOM sample, the five size fractions were determined by size-exclusion chromatography coupled with organic carbon detector (SEC-OCD). For 2-year long monthly monitoring, bio-polymers (BP), humic substances (HS), building blocks (BB), low molecular-weight (LMW) neutrals, and LMW acids displayed the median values of 264, 1884, 1070, 1090, and 11 μg-CL(-1), respectively, accounting for 6.2%, 41.7%, 24.5%, 26.4%, and 0.4% of dissolved organic carbon (DOC). The dominant presence of HS indicated that terrestrial input played important roles in DOM composition of the freshwater ecosystem, which contrasted with coastal wetlands in other reports. Both seasonal and periodic patterns in the variations were found only for HS and BB among the size fractions. It was also notable that the sources of HS were seasonally shifted from aquagenic origin in winter to pedogenic origin in summer. The correlations among the size fractions revealed that BB and LMW neutrals might be degradation products from HS and humic-like substances (HS+BB), respectively, while LMW acids, from LMW neutrals. Principle component analysis revealed that the humic-like substances and the aromaticity of DOM were associated with temperature, chlorophyll a, phosphorous, and rainfall, whereas the other fractions and the molecular weight of HS were primarily affected by solar irradiation. Significant correlations between DOM composition and some biotic factors further suggested that DOM may even affect the biological communities, which provides an insight into the potential coupling effects of biotic and abiotic factors on DOM molecular composition in freshwater wetlands.

  7. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon.

    Science.gov (United States)

    Lee, Hyun Ji Julie; Aiona, Paige Kuuipo; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A

    2014-09-02

    Sources, optical properties, and chemical composition of atmospheric brown carbon (BrC) aerosol are uncertain, making it challenging to estimate its contribution to radiative forcing. Furthermore, optical properties of BrC may change significantly during its atmospheric aging. We examined the effect of photolysis on the molecular composition, mass absorption coefficient, and fluorescence of secondary organic aerosol (SOA) prepared by high-NOx photooxidation of naphthalene (NAP SOA). Our experiments were designed to model photolysis processes of NAP SOA compounds dissolved in cloud or fog droplets. Aqueous solutions of NAP SOA were observed to photobleach (i.e., lose their ability to absorb visible radiation) with an effective half-life of ∼15 h (with sun in its zenith) for the loss of near-UV (300-400 nm) absorbance. The molecular composition of NAP SOA was significantly modified by photolysis, with the average SOA formula changing from C14.1H14.5O5.1N0.085 to C11.8H14.9O4.5N0.023 after 4 h of irradiation. However, the average O/C ratio did not change significantly, suggesting that it is not a good metric for assessing the extent of photolysis-driven aging in NAP SOA (and in BrC in general). In contrast to NAP SOA, the photobleaching of BrC material produced by the reaction of limonene + ozone SOA with ammonia vapor (aged LIM/O3 SOA) was much faster, but it did not result in a significant change in average molecular composition. The characteristic absorbance of the aged LIM/O3 SOA in the 450-600 nm range decayed with an effective half-life of <0.5 h. These results emphasize the highly variable and dynamic nature of different types of atmospheric BrC.

  8. Integration of porous coordination polymers and gold nanorods into core-shell mesoscopic composites toward light-induced molecular release.

    Science.gov (United States)

    Khaletskaya, Kira; Reboul, Julien; Meilikhov, Mikhail; Nakahama, Masashi; Diring, Stéphane; Tsujimoto, Masahiko; Isoda, Seiji; Kim, Franklin; Kamei, Ken-ichiro; Fischer, Roland A; Kitagawa, Susumu; Furukawa, Shuhei

    2013-07-31

    Besides conventional approaches for regulating in-coming molecules for gas storage, separation, or molecular sensing, the control of molecular release from the pores is a prerequisite for extending the range of their application, such as drug delivery. Herein, we report the fabrication of a new porous coordination polymer (PCP)-based composite consisting of a gold nanorod (GNR) used as an optical switch and PCP crystals for controlled molecular release using light irradiation as an external trigger. The delicate core-shell structures of this new platform, composed of an individual GNR core and an aluminum-based PCP shell, were achieved by the selective deposition of an aluminum precursor onto the surface of GNR followed by the replication of the precursor into aluminum-based PCPs. The mesoscopic structure was characterized by electron microscopy, energy dispersive X-ray elemental mapping, and sorption experiments. Combination at the nanoscale of the high storage capacity of PCPs with the photothermal properties of GNRs resulted in the implementation of unique motion-induced molecular release, triggered by the highly efficient conversion of optical energy into heat that occurs when the GNRs are irradiated into their plasmon band. Temporal control of the molecular release was demonstrated with anthracene as a guest molecule and fluorescent probe by means of fluorescence spectroscopy.

  9. Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites

    Science.gov (United States)

    2016-06-08

    determine molecular design rules for maximizing electronic performance with good mechanical deformability ( Roth et al. Chem. Mater. 2016, 28, 2363...efficient and mechanically stable. This paragraph was adapted from our paper Roth et al. Chem. Mater. 2016, 28, 2363-2373. Figure 2. Schematic...bandgap semiconducting polymers to determine molecular design rules for maximizing electronic performance with good mechanical deformability ( Roth et

  10. Chemical composition and molecular structure of polysaccharide-protein biopolymer from Durio zibethinus seed: extraction and purification process

    Directory of Open Access Journals (Sweden)

    Amid Bahareh

    2012-10-01

    Full Text Available Abstract Background The biological functions of natural biopolymers from plant sources depend on their chemical composition and molecular structure. In addition, the extraction and further processing conditions significantly influence the chemical and molecular structure of the plant biopolymer. The main objective of the present study was to characterize the chemical and molecular structure of a natural biopolymer from Durio zibethinus seed. A size-exclusion chromatography coupled to multi angle laser light-scattering (SEC-MALS was applied to analyze the molecular weight (Mw, number average molecular weight (Mn, and polydispersity index (Mw/Mn. Results The most abundant monosaccharide in the carbohydrate composition of durian seed gum were galactose (48.6-59.9%, glucose (37.1-45.1%, arabinose (0.58-3.41%, and xylose (0.3-3.21%. The predominant fatty acid of the lipid fraction from the durian seed gum were palmitic acid (C16:0, palmitoleic acid (C16:1, stearic acid (C18:0, oleic acid (C18:1, linoleic acid (C18:2, and linolenic acid (C18:2. The most abundant amino acids of durian seed gum were: leucine (30.9-37.3%, lysine (6.04-8.36%, aspartic acid (6.10-7.19%, glycine (6.07-7.42%, alanine (5.24-6.14%, glutamic acid (5.57-7.09%, valine (4.5-5.50%, proline (3.87-4.81%, serine (4.39-5.18%, threonine (3.44-6.50%, isoleucine (3.30-4.07%, and phenylalanine (3.11-9.04%. Conclusion The presence of essential amino acids in the chemical structure of durian seed gum reinforces its nutritional value.

  11. Herschel/HIFI⋆ observations of the circumstellar ammonia lines in IRC+10216

    Science.gov (United States)

    Schmidt, M. R.; He, J. H.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Justtanont, K.; Teyssier, D.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Marston, A. P.; Sobolev, A. M.; de Koter, A.; Schöier, F. L.

    2016-01-01

    Context A discrepancy exists between the abundance of ammonia (NH3) derived previously for the circumstellar envelope (CSE) of IRC+10216 from far-IR submillimeter rotational lines and that inferred from radio inversion or mid-infrared (MIR) absorption transitions. Aims To address the discrepancy described above, new high-resolution far-infrared (FIR) observations of both ortho- and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of IRC+10216. Methods We used the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel to observe all rotational transitions up to the J = 3 level (three ortho- and six para-NH3 lines). We conducted non-LTE multilevel radiative transfer modelling, including the effects of near-infrared (NIR) radiative pumping through vibrational transitions. The computed emission line profiles are compared with the new HIFI data, the radio inversion transitions, and the MIR absorption lines in the ν2 band taken from the literature. Results We found that NIR pumping is of key importance for understanding the excitation of rotational levels of NH3. The derived NH3 abundances relative to molecular hydrogen were (2.8 ± 0.5) × 10−8 for ortho-NH3 and (3.2−0.6+0.7)×10−8 for para-NH3, consistent with an ortho/para ratio of 1. These values are in a rough agreement with abundances derived from the inversion transitions, as well as with the total abundance of NH3 inferred from the MIR absorption lines. To explain the observed rotational transitions, ammonia must be formed near to the central star at a radius close to the end of the wind acceleration region, but no larger than about 20 stellar radii (1σ confidence level). PMID:28065983

  12. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut (Juglans regia L.) proteins and protein fractionations.

    Science.gov (United States)

    Mao, Xiaoying; Hua, Yufei; Chen, Guogang

    2014-01-01

    As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE) showed that the isoelectric point was mainly in the range of 4.8-6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa.

  13. Amino Acid Composition, Molecular Weight Distribution and Gel Electrophoresis of Walnut (Juglans regia L. Proteins and Protein Fractionations

    Directory of Open Access Journals (Sweden)

    Xiaoying Mao

    2014-01-01

    Full Text Available As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE showed that the isoelectric point was mainly in the range of 4.8–6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa.

  14. Synthetic Spectra and Light Curves of Interacting Binaries and Exoplanets with Circumstellar Material: SHELLSPEC

    Science.gov (United States)

    Budaj, Ján

    2012-04-01

    Program SHELLSPEC is designed to calculate light-curves, spectra and images of interacting binaries and extrasolar planets immersed in a moving circumstellar environment which is optically thin. It solves simple radiative transfer along the line of sight in moving media. The assumptions include LTE and optional known state quantities and velocity fields in 3D. Optional (non)transparent objects such as a spot, disc, stream, jet, shell or stars may be defined (embedded) in 3D and their composite synthetic spectrum calculated. The Roche model can be used as a boundary condition for the radiative transfer. Recently, a new model of the reflection effect, dust and Mie scattering were incorporated into the code. ɛ Aurigae is one of the most mysterious objects on the sky. Prior modeling of its light-curve assumed a dark, inclined, disk of dust with a central hole to explain the light-curve with a sharp mid-eclipse brightening. Our model consists of two geometrically thick flared disks: an internal optically thick disk and an external optically thin disk which absorbs and scatters radiation. Shallow mid-eclipse brightening may result from eclipses by nearly edge-on flared (dusty or gaseous) disks. Mid-eclipse brightening may also be due to strong forward scattering and optical properties of the dust which can have an important effect on the light-curves. There are many similarities between interacting binary stars and transiting extrasolar planets. The reflection effect which is briefly reviewed is one of them. The exact Roche shape and temperature distributions over the surface of all currently known transiting extrasolar planets have been determined. In some cases (HAT-P-32b, WASP-12b, WASP-19b), departures from the spherical shape can reach 7-15%.

  15. Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite

    Directory of Open Access Journals (Sweden)

    Mathias Sorieul

    2016-07-01

    Full Text Available Plant cell walls form an organic complex composite material that fulfils various functions. The hierarchical structure of this material is generated from the integration of its elementary components. This review provides an overview of wood as a composite material followed by its deconstruction into fibres that can then be incorporated into biobased composites. Firstly, the fibres are defined, and their various origins are discussed. Then, the organisation of cell walls and their components are described. The emphasis is on the molecular interactions of the cellulose microfibrils, lignin and hemicelluloses in planta. Hemicelluloses of diverse species and cell walls are described. Details of their organisation in the primary cell wall are provided, as understanding of the role of hemicellulose has recently evolved and is likely to affect our perception and future study of their secondary cell wall homologs. The importance of the presence of water on wood mechanical properties is also discussed. These sections provide the basis for understanding the molecular arrangements and interactions of the components and how they influence changes in fibre properties once isolated. A range of pulping processes can be used to individualise wood fibres, but these can cause damage to the fibres. Therefore, issues relating to fibre production are discussed along with the dispersion of wood fibres during extrusion. The final section explores various ways to improve fibres obtained from wood.

  16. The detection of heavy metals in the circumstellar envelopes of post-AGB stars

    CERN Document Server

    Klochkova, V G

    2015-01-01

    A new type of peculiarity -- a splitting or asymmetry of strong absorption lines, is found in the optical spectra of selected post-AGB stars with C-rich circumstellar envelopes. The effect is maximal in BaII lines whose profile is split into two-three components. The particular components of the split absorption lines are shown to be formed in a structured circumstellar envelope, suggesting an efficient dredge-up of the heavy metals produced during the preceding evolution of this star into the envelope. We suspect that the splitting (or asymmetry) of the profiles of strongest absorptions with low excitation potential of the low level can be associated with the kinematic and chemical properties of the circumstellar environment and with type of its morphology.

  17. Tidal Truncation of Inclined Circumstellar and Circumbinary Discs in Young Stellar Binaries

    CERN Document Server

    Miranda, Ryan

    2015-01-01

    Recent observations have shown that circumstellar and circumbinary discs in young stellar binaries are often misaligned with respect to the binary orbital plane. We analyze the tidal truncation of such misaligned discs due to torques applied to the disc at the Lindblad resonances from the tidal forcings of the binary. We consider eccentric binaries with arbitrary binary-disc inclination angles. We determine the dependence of the tidal forcing strengths on the binary parameters and show that they are complicated non-monotonic functions of eccentricity and inclination. We adopt a truncation criterion determined by the balance between resonant torque and viscous torque, and use it to calculate the outer radii of circumstellar discs and the inner radii of circumbinary discs. Misaligned circumstellar discs have systematically larger outer radii than aligned discs, and are likely to fill their Roche lobes if inclined by more than $45^\\circ - 90^\\circ$, depending on the binary mass ratio and disc viscosity parameter...

  18. TYPE Ia SUPERNOVAE STRONGLY INTERACTING WITH THEIR CIRCUMSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States); Nugent, Peter E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi [Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Howell, D. Andrew; Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Filippenko, Alexei V.; Bloom, Joshua S.; Cenko, S. Bradley; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cao, Yi; Horesh, Assaf; Kulkarni, Shrinivas R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Chornock, Ryan; Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Coil, Alison L. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Griffith, Christopher V. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Kasliwal, Mansi M., E-mail: jsilverman@astro.as.utexas.edu [Observatories of the Carnegie Institution of Science, Pasadena, CA 91101 (United States); and others

    2013-07-01

    Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe Ia) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia shows evidence of strong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; we refer to them as SNe Ia-CSM. In the first systematic search for such systems, we have identified 16 SNe Ia-CSM, and here we present new spectra of 13 of them. Six SNe Ia-CSM have been well studied previously, three were previously known but are analyzed in depth for the first time here, and seven are new discoveries from the Palomar Transient Factory. The spectra of all SNe Ia-CSM are dominated by H{alpha} emission (with widths of {approx}2000 km s{sup -1}) and exhibit large H{alpha}/H{beta} intensity ratios (perhaps due to collisional excitation of hydrogen via the SN ejecta overtaking slower-moving CSM shells); moreover, they have an almost complete lack of He I emission. They also show possible evidence of dust formation through a decrease in the red wing of H{alpha} 75-100 days past maximum brightness, and nearly all SNe Ia-CSM exhibit strong Na I D absorption from the host galaxy. The absolute magnitudes (uncorrected for host-galaxy extinction) of SNe Ia-CSM are found to be -21.3 mag {<=} M{sub R} {<=} -19 mag, and they also seem to show ultraviolet emission at early times and strong infrared emission at late times (but no detected radio or X-ray emission). Finally, the host galaxies of SNe Ia-CSM are all late-type spirals similar to the Milky Way, or dwarf irregulars like the Large Magellanic Cloud, which implies that these objects come from a relatively young stellar population. This work represents the most detailed analysis of the SN Ia-CSM class to date.

  19. Illuminating the Role of Spiral Waves in Circumstellar Disks

    Science.gov (United States)

    Bae, Jaehan; Hartmann, Lee W.

    2017-01-01

    The transport of angular momentum and mass, and the generation of turbulence, play a crucial role in the evolution of a variety of astrophysical disks. Spiral waves, driven for instance by companion bodies or instabilities, have long been recognized as an important means for the aforementioned two processes. In this dissertation talk, I will discuss an instability of spiral waves that I have recently come across. I will begin by presenting the results from a three-dimensional global hydrodynamic simulation which described the growth and saturation of the instability. The spiral wave instability (SWI) arises as inertial modes, natural oscillations in rotating systems, amplify when they resonantly couple to and extract energy from the background spiral waves. This leads to break down of the spiral waves into turbulence when the velocity perturbations caused by unstable inertial modes reach a similar magnitude to those induced by the spiral waves. As an implication of the instability, I will present numerical results and discuss the consequence of the SWI when it acts on the spiral waves driven by a Jupiter-mass planet in a protoplanetary disk. I find that the planet-driven spiral arms are destabilized via the SWI, generating hydrodynamic turbulence and sustained vertical flows that are associated with long wavelength inertial modes. The associated vertical diffusion rate measured from the simulations is such that solid particles with sizes up to a few centimeters are vertically mixed within the first scale height in a protosolar nebula-like disk. Since circumstellar disks are believed to remain laminar, and thus to induce no or very little particle stirring as suggested by recent magnetocentrifugal wind models, the results imply that the SWI can be the mechanism controlling the degree of vertical settling of solid particles in planet-hosting disks. In particular, if accretion of mm- to cm-sized pebbles dominates the growth of terrestrial bodies, the stirring of solid

  20. Compositional Analysis of the High Molecular Weight Ethylene Oxide Propylene Oxide Copolymer by MALDI Mass Spectrometry

    CERN Document Server

    Houshia, Orwa Jaber

    2012-01-01

    The composition of narrow distribution poly ethylene oxide-propylene oxide copolymer (Mw ~ 8700 Da) was studied using matrix assisted laser desorption ionization (MALDI) mass spectrometry. The ethylene oxide-propylene oxide copolymer produced oligomers separated by 14 Da. The average resolving power over the entire spectrum was 28,000. Approximately 448 isotopically resolved peaks representing about 56 oligomers are identified. Although agreement between experimental and calculated isotopic distributions was strong, the compositional assignment was difficult. This is due to the large number of possible isobaric components. The purpose of this research is to resolve and study the composition of high mass copolymer such as ethylene oxide-propylene oxide.

  1. Molecular composition and volatility of isoprene photochemical oxidation secondary organic aerosol under low and high NOx conditions

    Energy Technology Data Exchange (ETDEWEB)

    D' Ambro, Emma; Lee, Ben H.; Liu, Jiumeng; Shilling, John E.; Gaston, Cassandra J.; Lopez-Hilfiker, Felipe D.; Schobesberger, Siegfried; Zaveri, Rahul A.; Mohr, Claudia; Lutz, Anna; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Rivera-Rios, Jean; Keutsch, Frank N.; Thornton, Joel A.

    2017-01-04

    We present measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation formed in an environmental simulation chamber using dry neutral seed particles, thereby suppressing the role of acid catalyzed multiphase chemistry, at a variety of oxidant conditions. A high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) utilizing iodide-adduct ionization coupled to the Filter Inlet for Gases and AEROsols (FIGAERO) allowed for the simultaneous online sampling of the gas and particle composition. Under high HO2 and low NO conditions, highly oxygenated (O:C ≥ 1) C5 compounds were major components (~50%) of the SOA. The overall composition of the SOA evolved both as a function of time and as a function of input NO concentrations. As the level of input NO increased, organic nitrates increased in both the gas- and particle-phases, but the dominant non-nitrate particle-phase components monotonically decreased. We use comparisons of measured and predicted gas-particle partitioning of individual components to assess the validity of literature-based group-contribution methods for estimating saturation vapor concentrations. While there is evidence for equilibrium partitioning being achieved on the chamber residence time scale (5.2 hours) for some individual components, significant errors in group-contribution methods are revealed. In addition, >30% of the SOA mass, detected as low-molecular weight compounds, cannot be reconciled with equilibrium partitioning. These compounds desorb from the FIGAERO at unexpectedly high temperatures given their molecular composition, indicative of thermal decomposition of effectively lower volatility components, likely larger molecular weight oligomers. We use these insights from the laboratory and observations of the same SOA components made during the Southern Oxidant and Aerosol Study (SOAS) to assess the importance of isoprene photooxidation as a local SOA source.

  2. Molecular composition and volatility of isoprene photochemical oxidation secondary organic aerosol under low- and high-NOx conditions

    Science.gov (United States)

    D'Ambro, Emma L.; Lee, Ben H.; Liu, Jiumeng; Shilling, John E.; Gaston, Cassandra J.; Lopez-Hilfiker, Felipe D.; Schobesberger, Siegfried; Zaveri, Rahul A.; Mohr, Claudia; Lutz, Anna; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Rivera-Rios, Jean C.; Keutsch, Frank N.; Thornton, Joel A.

    2017-01-01

    We present measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation in an environmental simulation chamber at a variety of oxidant conditions and using dry neutral seed particles to suppress acid-catalyzed multiphase chemistry. A high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) utilizing iodide-adduct ionization coupled to the Filter Inlet for Gases and Aerosols (FIGAERO) allowed for simultaneous online sampling of the gas and particle composition. Under high-HO2 and low-NO conditions, highly oxygenated (O : C ≥ 1) C5 compounds were major components (˜ 50 %) of SOA. The SOA composition and effective volatility evolved both as a function of time and as a function of input NO concentrations. Organic nitrates increased in both the gas and particle phases as input NO increased, but the dominant non-nitrate particle-phase components monotonically decreased. We use comparisons of measured and predicted gas-particle partitioning of individual components to assess the validity of literature-based group-contribution methods for estimating saturation vapor concentrations. While there is evidence for equilibrium partitioning being achieved on the chamber residence timescale (5.2 h) for some individual components, significant errors in group-contribution methods are revealed. In addition, > 30 % of the SOA mass, detected as low-molecular-weight semivolatile compounds, cannot be reconciled with equilibrium partitioning. These compounds desorb from the FIGAERO at unexpectedly high temperatures given their molecular composition, which is indicative of thermal decomposition of effectively lower-volatility components such as larger molecular weight oligomers.

  3. The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft

    Directory of Open Access Journals (Sweden)

    A. M. Batenburg

    2012-05-01

    Full Text Available More than 450 air samples that were collected in the upper troposphere – lower stratosphere (UTLS region by the CARIBIC aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container have been analyzed for molecular hydrogen (H2 mixing ratios (χ(H2 and H2 isotopic composition (deuterium content, δD.

    More than 120 of the analyzed samples contained air from the lowermost stratosphere (LMS. These show that χ(H2 does not vary appreciably with O3-derived height above the thermal tropopause (TP, whereas δD does increase with height. The isotope enrichment is caused by H2 production and destruction processes that enrich the stratospheric H2 reservoir in deuterium (D; the exact shapes of the profiles are mainly determined by mixing of stratospheric with tropospheric air. Tight negative correlations are found between δD and the mixing ratios of methane (χ(CH4 and nitrous oxide (χ(N2O, as a result of the relatively long lifetimes of these three species. The correlations are described by δD[‰]=−0.35 · χ(CH4[ppb]+768 and δD[‰]=−1.90· χ(N2O[ppb]+745. These correlations are similar to previously published results and likely hold globally for the LMS.

    Samples that were collected from the Indian subcontinent up to 40° N before, during and after the summer monsoon season show no significant seasonal change in χ(H2, but δD is up to 12.3‰ lower in the July, August and September monsoon samples. This δD decrease is correlated with the χ(CH4 increase in these samples. The significant correlation with χ(CH4 and the absence of a perceptible χ(H2 increase that accompanies the δD decrease indicates that microbial production of

  4. Radio Supernovae: Circum-Stellar Investigation (C.S.I.) of Supernova Progenitor Stars

    Science.gov (United States)

    2009-02-24

    ar X iv :0 90 2. 40 59 v1 [ as tr o- ph .H E ] 2 4 Fe b 20 09 Radio Supernovae : Circum-Stellar Investigation (C.S.I.) of Supernova Progenitor...FEB 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Radio Supernovae : Circum-Stellar Investigation (C.S.I...of Supernova Progenitor Stars 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f

  5. Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation.

    Science.gov (United States)

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Gusarov, Sergey; Skaf, Munir S; Kovalenko, Andriy

    2015-01-02

    Plant biomass recalcitrance, a major obstacle to achieving sustainable production of second generation biofuels, arises mainly from the amorphous cell-wall matrix containing lignin and hemicellulose assembled into a complex supramolecular network that coats the cellulose fibrils. We employed the statistical-mechanical, 3D reference interaction site model with the Kovalenko-Hirata closure approximation (or 3D-RISM-KH molecular theory of solvation) to reveal the supramolecular interactions in this network and provide molecular-level insight into the effective lignin-lignin and lignin-hemicellulose thermodynamic interactions. We found that such interactions are hydrophobic and entropy-driven, and arise from the expelling of water from the mutual interaction surfaces. The molecular origin of these interactions is carbohydrate-π and π-π stacking forces, whose strengths are dependent on the lignin chemical composition. Methoxy substituents in the phenyl groups of lignin promote substantial entropic stabilization of the ligno-hemicellulosic matrix. Our results provide a detailed molecular view of the fundamental interactions within the secondary plant cell walls that lead to recalcitrance.

  6. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    Science.gov (United States)

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  7. Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the bonding in glycogen α (composite particles.

    Directory of Open Access Journals (Sweden)

    Prudence O Powell

    Full Text Available Phytoglycogen (from certain mutant plants and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired.

  8. Application of a Neural Network Model for Prediction of Wear Properties of Ultrahigh Molecular Weight Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Halil Ibrahim Kurt

    2015-01-01

    Full Text Available In the current study, the effect of applied load, sliding speed, and type and weight percentages of reinforcements on the wear properties of ultrahigh molecular weight polyethylene (UHMWPE was theoretically studied. The extensive experimental results were taken from literature and modeled with artificial neural network (ANN. The feed forward (FF back-propagation (BP neural network (NN was used to predict the dry sliding wear behavior of UHMWPE composites. Eleven input vectors were used in the construction of the proposed NN. The carbon nanotube (CNT, carbon fiber (CF, graphene oxide (GO, and wollastonite additives are the main input parameters and the volume loss is the output parameter for the developed NN. It was observed that the sliding speed and applied load have a stronger effect on the volume loss of UHMWPE composites in comparison to other input parameters. The proper condition for achieving the desired wear behaviors of UHMWPE by tailoring the weight percentage and reinforcement particle size and composition was presented. The proposed NN model and the derived explicit form of mathematical formulation show good agreement with test results and can be used to predict the volume loss of UHMWPE composites.

  9. Molecular composition of soil organic matter with land-use change along a bi-continental mean annual temperature gradient.

    Science.gov (United States)

    Pisani, Oliva; Haddix, Michelle L; Conant, Richard T; Paul, Eldor A; Simpson, Myrna J

    2016-12-15

    Soil organic matter (SOM) is critical for maintaining soil fertility and long-term agricultural sustainability. The molecular composition of SOM is likely altered due to global climate and land-use change; but rarely are these two aspects studied in tandem. Here we used molecular-level techniques to examine SOM composition along a bi-continental (from North to South America) mean annual temperature (MAT) gradient from seven native grassland/forest and cultivated/pasture sites. Biomarker methods included solvent extraction, base hydrolysis and cupric (II) oxide oxidation for the analysis of free lipids of plant and microbial origin, ester-bound lipids from cutin and suberin, and lignin-derived phenols, respectively. Solid-state (13)C nuclear magnetic resonance (NMR) was used to examine the overall composition of SOM. Soil cultivation was found to increase the amount of microbial-derived compounds at warmer temperatures (up to 17% increase). The cultivated soils were characterized by much lower contributions of plant-derived SOM components compared to the native soils (up to 64% lower at the coldest site). In addition, cultivation caused an increase in lignin and cutin degradation (up to 68 and 15% increase, respectively), and an increase in the amount of suberin-derived inputs (up to 54% increase). Clear differences in the molecular composition of SOM due to soil cultivation were observed in soils of varying mineral composition and were attributed to disturbance, different vegetation inputs, soil aggregate destruction and MAT. A high organic allophanic tropical soil was characterized by its protection of carbohydrates and nitrogen-containing compounds. The conversion of native to cultivated land shows significant shifts in the degradation stage of SOM. In particular, cutin-derived compounds which are believed to be part of the stable SOM pool may undergo enhanced degradation with long-term cultivation and disruption of soil aggregates. On a per year basis, the total

  10. Circumstellar gas associated with HL Tauri - evidence for a remnant infalling envelope

    Energy Technology Data Exchange (ETDEWEB)

    Grasdalen, G.L.; Sloan, G.; Stout, N.; Strom, S.E.; Welty, A.D.

    1989-04-01

    Molecular carbon absorption lines in the spectrum of HL Tau has been discovered near 8775 A. These C2 lines have a heliocentric radial velocity of 43 + or - 3 km/s, redshifted by 23 + or - 3 km/s relative to the star and the associated molecular cloud. This velocity difference suggests that the molecular carbon absorption arises in an infalling envelope. Since KI and diffuse interstellar bands are much weaker than expected, the chemical composition and/or excitation conditions in the HL Tau envelope appear to differ substantially from those in the interstellar medium. 19 refs.

  11. Predicting the glass transition temperature of bioactive glasses from their molecular chemical composition.

    Science.gov (United States)

    Hill, Robert G; Brauer, Delia S

    2011-10-01

    A recently published paper (M.D. O'Donnell, Acta Biomaterialia 7 (2011) 2264-2269) suggests that it is possible to correlate the glass transition temperature (T(g)) of bioactive glasses with their molar composition, based on iterative least-squares fitting of published T(g) data. However, we show that the glass structure is an important parameter in determining T(g). Phase separation, local structural effects and components (intermediate oxides) which can switch their structural role in the glass network need to be taken into consideration, as they are likely to influence the glass transition temperature of bioactive glasses. Although the model suggested by O'Donnell works reasonably well for glasses within the composition range presented, it is oversimplified and fails for glasses outside certain compositional boundaries.

  12. Carbohydrate compositions and molecular structure of dextrins in enzymatic high maltose syrups

    Energy Technology Data Exchange (ETDEWEB)

    Nebesny, E. (Politechnika Lodzka, Lodz (Poland). Dept. of Food Technology)

    1990-11-01

    Investigations of the potato starch hydrolysis during bacterial {alpha}-amylase liquefaction and saccharification with barley {beta}-amylase itself and with cooperation with pullulanase were carried out. In adequate conditions at different enzyme dosages hydrolyzates of the maltose content of 60 to about 85% in DS with significantly (6-10 times) lower maltotriose and minimal glucose content could be obtained. Investigations comprised both carbohydrate contents in hydrolyzates changing with hydrolyze course and dextrine molecular structure in hydrolyzates. It was found out that decreasing dextrine molecular weight and the number of branchings was accompanied by charateristic changes of the viscosity of hydrolyzate solutions. (orig.).

  13. Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development.

    Science.gov (United States)

    Tokumoto, Hayato; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Hoson, Takayuki

    2002-04-01

    Cotton (Gossypium herbaceum L.) fiber development consists of a fiber elongation stage (up to 20 d post-anthesis) and a subsequent cell wall thickening stage. Cell wall analysis revealed that the extractable matrix (pectic and hemicellulosic) polysaccharides accounted for 30-50% of total sugar content in the fiber elongation stage but less than 3% in the cell wall thickening stage. By contrast, cellulose increased dramatically after the fiber elongation ceased. The amounts of extractable xyloglucans and arabinose- and galactose-containing polymers per seed increased in the early fiber elongation stage and decreased thereafter. The amounts of extractable acidic polymers and non-cellulosic beta-glucans (mainly composed of beta-1,3-glucans) increased in parallel with fiber elongation and then decreased. The molecular masses of extractable non-cellulosic beta-glucans, and arabinose- and galactose-containing polymers decreased during both fiber elongation and cell wall thickening stages. The molecular mass of extractable xyloglucans also decreased during the fiber elongation stage, but this decrease ceased during the cell wall thickening stage. Conversely, the molecular size of acidic polymers in the extractable pectic fraction increased during both stages. Thus, not only the amounts but also the molecular size of the extractable matrix polysaccharides showed substantial changes during cotton fiber development.

  14. Photoswitchable molecular dipole antennas with tailored coherent coupling in glassy composite

    DEFF Research Database (Denmark)

    Elbahri, Mady; Zillohu, Ahnaf Usman; Gothe, Bastian

    2015-01-01

    alteration of photochromic molecular dipole antennas. We successfully demonstrate the concept of Brewster wavelength, which is based on the dipolar interaction between radiating dipoles and the surrounding matrix possessing a net dipole moment, as a key tool for highly localized sensing of matrix polarity...

  15. Attenuation of super-soft X-ray sources by circumstellar material

    DEFF Research Database (Denmark)

    Nielsen, Mikkel; Gilfanov, Marat

    2015-01-01

    of the circumbinary material photo-ionised by the radiation of the central source. Our results show that the circumstellar mass-loss rates required for obcuration of super-soft X-ray sources is about an order of magnitude larger than those reported in earlier studies, for comparable model parameters. While this does...

  16. Circumstellar CO Emission in S Stars I. Mass-Loss with Little or No Dust

    Science.gov (United States)

    Sahai, R.; Liechti, S.

    1994-01-01

    47 S stars have been searched for circumstellar CO (J=1-0 and/or 2-1) emission, and 29 have been detected, including 4 which show no evidence of dust in their IRAS LRS spectra and one with possibly no Tc (and therefore not an AGB star).

  17. Daughter Fragmentation is Unlikely To Occur in Self-Gravitating Circumstellar Discs

    CERN Document Server

    Forgan, Duncan

    2016-01-01

    Circumstellar discs are thought to be self-gravitating at very early times. If the disc is relatively cool, extended and accreting sufficiently rapidly, it can fragment into bound objects of order a few Jupiter masses and upwards. Given that the fragment's initial angular momentum is non-zero, and it will continue to accrete angular momentum from the surrounding circumstellar disc, we should expect that the fragment will also possess a relatively massive disc at early times. Therefore, we can ask: is disc fragmentation a hierarchical process? Or, can a disc fragment go on to produce its own self-gravitating circumfragmentary disc that produces daughter fragments? We investigate this using a set of nested 1D self-gravitating disc models. We calculate the radial structure of a marginally stable, self-gravitating circumstellar disc, and compute its propensity to fragmentation. We use this data to construct the local fragment properties at this radius. For each circumstellar disc model that results in fragmentati...

  18. Circumstellar Dust Around AGB Stars and Implications for Infrared Emission from Galaxies

    CERN Document Server

    Villaume, Alexa; Johnson, Benjamin

    2015-01-01

    Stellar population synthesis (SPS) models are used to infer many galactic properties including star formation histories, metallicities, and stellar and dust masses. However, most SPS models neglect the effect of circumstellar dust shells around evolved stars and it is unclear to what extent they impact the analysis of SEDs. To overcome this shortcoming we have created a new set of circumstellar dust models, using the radiative transfer code DUSTY Ivezic et al. 1999, for asymptotic giant branch (AGB) stars and incorporated them into the Flexible Stellar Population Synthesis code. The circumstellar dust models provide a good fit to individual AGB stars as well as the IR color-magnitude diagrams of the Large and Small Magellanic Clouds. IR luminosity functions from the Large and Small Magellanic Clouds are not well-fit by the 2008 Padova isochrones when coupled to our circumstellar dust models, and so we adjusted the lifetimes of AGB stars in the models to provide a match to the data. We show, in agreement with ...

  19. Predicting bioactive glass properties from the molecular chemical composition: glass transition temperature.

    Science.gov (United States)

    O'Donnell, Matthew D

    2011-05-01

    The glass transition temperature (T(g)) of inorganic glasses is an important parameter than can be used to correlate with other glass properties, such as dissolution rate, which governs in vitro and in vivo bioactivity. Seven bioactive glass compositional series reported in the literature (77 in total) were analysed here with T(g) values obtained by a number of different methods: differential thermal analysis, differential scanning calorimetry and dilatometry. An iterative least-squares fitting method was used to correlate T(g) from thermal analysis of these compositions with the levels of individual oxide and fluoride components in the glasses. When all seven series were fitted a reasonable correlation was found between calculated and experimental values (R(2)=0.89). When the two compositional series that were designed in weight percentages (the remaining five were designed in molar percentage) were removed from the model an improved fit was achieved (R(2)=0.97). This study shows that T(g) for a wide range in compositions (e.g. SiO(2) content of 37.3-68.4 mol.%) can be predicted to reasonable accuracy enabling processing parameters to be predicted such as annealing, fibre-drawing and sintering temperatures.

  20. Molecular composition, grafting density and film area affect the swelling-induced Au-S bond breakage.

    Science.gov (United States)

    Lv, Bei'er; Zhou, Yitian; Cha, Wenli; Wu, Yuanzi; Hu, Jinxing; Li, Liqiang; Chi, Lifeng; Ma, Hongwei

    2014-06-11

    In previous studies, we reported the first observation of the Au-S bond breakage induced mechanically by the swelling of the surface-tethered weak polyelectrolyte brushes in phosphate buffered saline (PBS), a phenomenon with broad applications in the fields of biosensors and functional surfaces. In this study, three factors, namely the molecular composition, grafting density and film area of the weak polyelectrolyte, carboxylated poly(oligo(ethylene glycol) methacrylate-random-2-hydroxyethyl methacrylate) (poly(OEGMA-r-HEMA)), were studied systematically on how they affected the swelling-induced Au-S bond breakage (ABB). The results showed that, first, the swelling-induced ABB is applicable to a range of molecular compositions and grafting densities; but the critical thickness (Tcritical,dry) varied with both of the two factors. An analysis on the swelling ratio further revealed that the difference in the Tcritical,dry arose from the difference in the swelling ability. A film needed to swell to ∼250 nm to induce ABB regardless of its composition or structure, thus a higher swelling ratio would lead to a lower Tcritical,dry value. Then, the impact of the film area was studied in micrometer- and sub-micrometer-scale brush patterns, which showed that only partial, rather than complete ABB was induced in these microscopic films, resulting in buckling instead of film detaching. These results demonstrated that the ABB is suitable to be used in the design of biosensors, stimulus-responsive materials and mechanochemical devices. Although the >160 μm(2) required area for uniform ABB hinders the application of ABB in nanolithography, the irreversible buckling provides a facile method of generating rough surfaces.

  1. Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production.

    Science.gov (United States)

    Lavonen, E E; Kothawala, D N; Tranvik, L J; Gonsior, M; Schmitt-Kopplin, P; Köhler, S J

    2015-11-15

    Absorbance, 3D fluorescence and ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) were used to explain patterns in the removal of chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) at the molecular level during drinking water production at four large drinking water treatment plants in Sweden. When dissolved organic carbon (DOC) removal was low, shifts in the dissolved organic matter (DOM) composition could not be detected with commonly used DOC-normalized parameters (e.g. specific UV254 absorbance - SUVA), but was clearly observed by using differential absorbance and fluorescence or ESI-FT-ICR-MS. In addition, we took a novel approach by identifying how optical parameters were correlated to the elemental composition of DOM by using rank correlation to connect optical properties to chemical formulas assigned to mass peaks from FT-ICR-MS analyses. Coagulation treatment selectively removed FDOM at longer emission wavelengths (450-600 nm), which significantly correlated with chemical formulas containing oxidized carbon (average carbon oxidation state ≥ 0), low hydrogen to carbon ratios (H/C: average ± SD = 0.83 ± 0.13), and abundant oxygen-containing functional groups (O/C = 0.62 ± 0.10). Slow sand filtration was less efficient in removing DOM, yet selectively targeted FDOM at shorter emission wavelengths (between 300 and 450 nm), which commonly represents algal rather than terrestrial sources. This shorter wavelength FDOM correlated with chemical formulas containing reduced carbon (average carbon oxidation state ≤ 0), with relatively few carbon-carbon double bonds (H/C = 1.32 ± 0.16) and less oxygen per carbon (O/C = 0.43 ± 0.10) than those removed during coagulation. By coupling optical approaches with FT-ICR-MS to characterize DOM, we were for the first time able to confirm the molecular composition of absorbing and fluorescing DOM selectively targeted during drinking

  2. Lipid Classes, Fatty Acid Composition, and Glycerolipid Molecular Species of the Red Alga Gracilaria vermiculophylla, a Prostaglandin-Producing Seaweed.

    Science.gov (United States)

    Honda, Masaki; Ishimaru, Takashi; Itabashi, Yutaka

    2016-01-01

    The red alga Gracilaria vermiculophylla is a well-known producer of prostaglandins, such as PGE2 and PGF2α. In this study, the characteristics of glycerolipids as substrates of prostaglandin production were clarified, and the lipid classes, fatty acid composition, and glycerolipid molecular species were investigated in detail. The major lipid classes were monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG), as well as phosphatidylcholine (PC), which accounted for 43.0% of the total lipid profile. Arachidonic acid (20:4n-6), a prostaglandin precursor, and palmitic acid (16:0) were the predominant fatty acids in the total lipid profile. The 20:4n-6 content was significantly high in MGDG and PC (more than 60%), and the 16:0 content was significantly high in DGDG and SQDG (more than 50%). Chiral-phase high-performance liquid chromatography determined that fatty acids were esterified at the sn-1 and sn-2 positions of those lipids. The main glycerolipid molecular species were 20:4n-6/20:4n-6 (sn-1/sn-2) for MGDG (56.5%) and PC (40.0%), and 20:4n-6/16:0 for DGDG (75.4%) and SQDG (58.4%). Thus, it was considered that the glycerolipid molecular species containing one or two 20:4n-6 were the major substrates for prostaglandin production in G. vermiculophylla.

  3. Biodegradability and Molecular Composition of Dissolved Organic Nitrogen in Urban Stormwater Runoff and Outflow Water from a Stormwater Retention Pond.

    Science.gov (United States)

    Lusk, Mary G; Toor, Gurpal S

    2016-04-01

    Dissolved organic nitrogen (DON) can be a significant part of the reactive N in aquatic ecosystems and can accelerate eutrophication and harmful algal blooms. A bioassay method was coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to determine the biodegradability and molecular composition of DON in the urban stormwater runoff and outflow water from an urban stormwater retention pond. The biodegradability of DON increased from 10% in the stormwater runoff to 40% in the pond outflow water and DON was less aromatic and had lower overall molecular weight in the pond outflow water than in the stormwater runoff. More than 1227 N-bearing organic formulas were identified with FT-ICR-MS in the stormwater runoff and pond outflow water, which were only 13% different in runoff and outflow water. These molecular formulas represented a wide range of biomolecules such as lipids, proteins, amino sugars, lignins, and tannins in DON from runoff and pond outflow water. This work implies that the urban infrastructure (i.e., stormwater retention ponds) has the potential to influence biogeochemical processes in downstream water bodies because retention ponds are often a junction between the natural and the built environment.

  4. Effects of nitrogen composition on fermentation performance of brewer's yeast and the absorption of peptides with different molecular weights.

    Science.gov (United States)

    Mo, Fen; Zhao, Haifeng; Lei, Hongjie; Zhao, Mouming

    2013-11-01

    Four kinds of worts with different nitrogen compositions were used to examine their effects on fermentation performance of brewer's yeast. The absorption pattern of peptides with different molecular weights (Mw) in yeast cells during wort fermentation was also investigated. Results showed that both the nitrogen composition and level had significant impacts on the yeast biomass accumulation, ethanol production, and free amino nitrogen and sugars consumption rates. Worts supplemented with wheat gluten hydrolysates increased 11.5% of the biomass, 5.9% of fermentability, and 0.6% of ethanol content and decreased 25.6% of residual sugar content during wort fermentation. Moreover, yeast cells assimilated peptides with various Mw differently during fermentation. Peptides with Mw below 1 kDa decreased quickly, and the rate of assimilation was more than 50% at the end of fermentation, while those with Mw above 10 kDa almost could not be assimilated by yeast. All these results further indicated that the level and composition of wort nitrogen had significant impacts on the growth and fermentation performances of brewer's yeast, and peptides with Mw below 1 kDa were one of preferred nitrogen sources for brewer's yeast.

  5. Mechanical, Rheological, and Bioactivity Properties of Ultra High-Molecular-Weight Polyethylene Bioactive Composites Containing Polyethylene Glycol and Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Mazatusziha Ahmad

    2012-01-01

    Full Text Available Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P precipitates on the composite surface as proven from SEM and XRD analysis.

  6. Mechanical, rheological, and bioactivity properties of ultra high-molecular-weight polyethylene bioactive composites containing polyethylene glycol and hydroxyapatite.

    Science.gov (United States)

    Ahmad, Mazatusziha; Uzir Wahit, Mat; Abdul Kadir, Mohammed Rafiq; Mohd Dahlan, Khairul Zaman

    2012-01-01

    Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA) as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P) precipitates on the composite surface as proven from SEM and XRD analysis.

  7. Molecular dynamics simulation for mechanical properties of CNT/Polyethylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jia; Yang Qingsheng [Department of Engineering Mechanics, Beijing University of Technology, Beijing 100124 (China)], E-mail: jiajia2007@emails.bjut.edu.cn, E-mail: qsyang@bjut.edu.cn

    2009-09-01

    The pull-out process of the carbon nanotube from polyethylene was simulated by molecular dynamics method. A model of a carbon nanotube in polyethylene was established. In the simulation, Adaptive Intermolecular Reactive Empirical Bond Order(ARIEBO) potential was adopted to describe the interaction of C-C and C-H in the carbon nanotube and polymer, and Lennard-Jones pair potential was used to describe the interaction between the carbon nanotube and polymer; NVT ensemble was adopted in the whole simulation and Nose-Hoover method was used to control the temperature at absolute zero, which avoided the influence induced by thermal activation; Verlet algorithm was used to solve molecular dynamics equations in the procedure of simulation. The deformation and forces on interfaces between the carbon nanotube and polymer was analyzed by simulating the process of pulling-out of the carbon nanotube from polyethylene.

  8. Comparative Spectra of Oxygen-Rich vs. Carbon-Rich Circumstellar Shells: VY Canis Majoris and IRC+10216 at 215-285 GHz

    CERN Document Server

    Tenenbaum, E D; Milam, S N; Woolf, N J; Ziurys, L M

    2010-01-01

    A sensitive (1{\\sigma} rms at 1 MHz resolution ~3 mK) 1 mm spectral line survey (214.5-285.5 GHz) of VY Canis Majoris (VY CMa) and IRC+10216 has been conducted to compare the chemistries of oxygen and carbon-rich circumstellar envelopes. This study was carried out using the Submillimeter Telescope (SMT) of the Arizona Radio Observatory (ARO) with a new ALMA-type receiver. This survey is the first to chemically characterize an O-rich circumstellar shell at millimeter wavelengths. In VY CMa, 128 emission features were detected arising from 18 different molecules, and in IRC+10216, 720 lines were observed, assigned to 32 different species. The 1 mm spectrum of VY CMa is dominated by SO2 and SiS; in IRC +10216, C4H and SiC2 are the most recurrent species. Ten molecules were common to both sources: CO, SiS, SiO, CS, CN, HCN, HNC, NaCl, PN, and HCO+. Sulfur plays an important role in VY CMa, but saturated/unsaturated carbon dominates the molecular content of IRC+10216, producing CH2NH, for example. Although the mol...

  9. Photochemistry in the inner layers of clumpy circumstellar envelopes: formation of water in C-rich objects and of C-bearing molecules in O-rich objects

    CERN Document Server

    Agundez, Marcelino; Guelin, Michel

    2010-01-01

    A mechanism based on the penetration of interstellar ultraviolet photons into the inner layers of clumpy circumstellar envelopes around AGB stars is proposed to explain the non-equilibrium chemistry observed in such objects. We show through a simple modelling approach that in circumstellar envelopes with a certain degree of clumpiness or with moderately low mass loss rates (a few 10^(-7) solar masses per year) a photochemistry can take place in the warm and dense inner layers inducing important changes in the chemical composition. In carbon-rich objects water vapor and ammonia would be formed with abundances of 10^(-8) - 10(^-6) relative to H2, while in oxygen-rich envelopes ammonia and carbon-bearing molecules such as HCN and CS would form with abundances of 10^(-9) - 10^(-7) relative to H2. The proposed mechanism would explain the recent observation of warm water vapor in the carbon-rich envelope IRC +10216 with the Herschel Space Observatory, and predict that H2O should be detectable in other carbon-rich o...

  10. A novel composite of SiO2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine.

    Science.gov (United States)

    Zeng, Yanbo; Zhou, Ying; Kong, Lei; Zhou, Tianshu; Shi, Guoyue

    2013-07-15

    A novel imprinting route based on graphene oxide (GO) was proposed for preparing a composite of SiO2-coated GO and molecularly imprinted polymers (GO/SiO2-MIPs). In this route, SiO2-coated GO sheets were synthesized in a water-alcohol mixture with sol-gel technique. Prior to polymerization, the vinyl groups were introduced onto the surface of GO/SiO2 through chemical modification with γ-methacryloxypropyl trimethoxysilane (γ-MAPS), which can direct the selective polymerization on the GO/SiO2 surface. Then a novel composite of GO/SiO2-MIPs was successfully obtained by the copolymerization in presence of vinyl groups functionalized GO/SiO2, dopamine (DA), methacrylic acid and ethylene glycol dimethacrylate. The GO/SiO2-MIPs composite was characterized by FTIR, TGA, Raman spectroscopy, SEM and AFM. The properties such as special binding, adsorption dynamics and selective recognition ability using differential pulse voltammetry (DPV) were evaluated. The DPV current response of GO/SiO2-MIPs sensor was nearly 3.2 times that of the non-imprinted polymers (NIPs). In addition, the GO/SiO2-MIPs sensor could recognize DA from its relatively similar molecules of norepinephrine and epinephrine, while the sensors based on GO/SiO2-NIPs and vinyl groups functionalized GO/SiO2 did not have the ability. The GO/SiO2-MIPs sensor had a wide linear range over DA concentration from 5.0 × 10(-8) to 1.6 × 10(-4)M with a detection limit of 3.0 × 10(-8)M (S/N=3). The sensor based on this novel imprinted composite was applied to the determination of DA in injections and human urine samples with satisfactory results.

  11. A description of the mechanical behavior of composite solid propellants based on molecular theory

    Science.gov (United States)

    Landel, R. F.

    1976-01-01

    Both the investigation and the representation of the stress-strain response (including rupture) of gum and filled elastomers can be based on a simple functional statement. Internally consistent experiments are used to sort out the effects of time, temperature, strain and crosslink density on gum rubbers. All effects are readily correlated and shown to be essentially independent of the elastomer when considered in terms of non-dimensionalized stress, strain and time. A semiquantitative molecular theory is developed to explain this result. The introduction of fillers modifies the response, but, guided by the framework thus provided, their effects can be readily accounted for.

  12. Herschel/HIFI observations of the circumstellar ammonia lines in IRC+10216

    Science.gov (United States)

    Schmidt, M. R.; He, J. H.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Justtanont, K.; Teyssier, D.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Marston, A. P.; Sobolev, A. M.; de Koter, A.; Schöier, F. L.

    2016-08-01

    Context. A discrepancy exists between the abundance of ammonia (NH3) derived previously for the circumstellar envelope (CSE) of IRC+10216 from far-IR submillimeter rotational lines and that inferred from radio inversion or mid-infrared (MIR) absorption transitions. Aims: To address the discrepancy described above, new high-resolution far-infrared (FIR) observations of both ortho- and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of IRC+10216. Methods: We used the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel to observe all rotational transitions up to the J = 3 level (three ortho- and six para-NH3 lines). We conducted non-LTE multilevel radiative transfer modelling, including the effects of near-infrared (NIR) radiative pumping through vibrational transitions. The computed emission line profiles are compared with the new HIFI data, the radio inversion transitions, and the MIR absorption lines in the ν2 band taken from the literature. Results: We found that NIR pumping is of key importance for understanding the excitation of rotational levels of NH3. The derived NH3 abundances relative to molecular hydrogen were (2.8 ± 0.5) × 10-8 for ortho-NH3 and for para-NH3, consistent with an ortho/para ratio of 1. These values are in a rough agreement with abundances derived from the inversion transitions, as well as with the total abundance of NH3 inferred from the MIR absorption lines. To explain the observed rotational transitions, ammonia must be formed near to the central star at a radius close to the end of the wind acceleration region, but no larger than about 20 stellar radii (1σ confidence level). Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. HIFI is the Herschel Heterodyne Instrument for the Far

  13. INTERFACIAL MOLECULAR DESIGN OF A RIGID- PARTICLE TOUGHENED POLYAMIDE 6 COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    OU Yuchun; YU Zhongzhen; FENG Yupeng; FANG Xiaoping

    1993-01-01

    The effects of interfacial modifier on the mechanical properties of kaolin- filled polyamide 6 (PA6) have been studied. The interfacial interaction between polyamide 6 and kaolin has been characterized by means of infrared spectroscopy (IR) and scanning electron microscopy (SEM). The results show that the role of the interfacial modifier lies in forming an elastic interlayer with good adhesion between kaolin and PA 6. A composite with high impact strength, high tensile strength and high elastic modulus can be obtained by inserting the elastic interfacial modifier into the rigid-particle-filled polymer system.

  14. A Critical Analysis of Rejection in Vascularized Composite Allotransplantation: Clinical, cellular and molecular aspects, Current Challenges, and Novel Concepts

    Directory of Open Access Journals (Sweden)

    Karim A Sarhane

    2013-11-01

    Full Text Available Advances in microsurgical techniques and immunomodulatory protocols have contributed to the expansion of Vascularized Composite Allotransplantation (VCA with very encouraging immunological, functional, and cosmetic results. Rejection remains however a major hurdle that portends serious threats to recipients. Rejection features in VCA have been described in a number of studies, and an international consensus on the classification of rejection was established. Unfortunately, current available diagnostic methods carry many shortcomings that, in certain cases, pose a great diagnostic challenge to physicians especially in borderline rejection cases. In this review, we revisit the features of acute skin rejection in hand and face transplantation at the clinical, cellular and molecular levels. The multiple challenges in diagnosing rejection and in defining chronic and antibody-mediated rejection in VCA are then presented, and we finish by analyzing current research directions and novel concepts aiming at improving available diagnostic measures.

  15. Compositional variations in In(0.5)Ga(0.5)N nanorods grown by molecular beam epitaxy.

    Science.gov (United States)

    Cherns, D; Webster, R F; Novikov, S V; Foxon, C T; Fischer, A M; Ponce, F A; Haigh, S J

    2014-05-30

    The composition of InxGa1 - xN nanorods grown by molecular beam epitaxy with nominal x = 0.5 has been mapped by electron microscopy using Z-contrast imaging and x-ray microanalysis. This shows a coherent and highly strained core-shell structure with a near-atomically sharp boundary between a Ga-rich shell (x ∼ 0.3) and an In-rich core (x ∼ 0.7), which itself has In- and Ga-rich platelets alternating along the growth axis. It is proposed that the shell and core regions are lateral and vertical growth sectors, with the core structure determined by spinodal decomposition.

  16. Composites

    Science.gov (United States)

    Taylor, John G.

    The Composites market is arguably the most challenging and profitable market for phenolic resins aside from electronics. The variety of products and processes encountered creates the challenges, and the demand for high performance in critical operations brings value. Phenolic composite materials are rendered into a wide range of components to supply a diverse and fragmented commercial base that includes customers in aerospace (Space Shuttle), aircraft (interiors and brakes), mass transit (interiors), defense (blast protection), marine, mine ducting, off-shore (ducts and grating) and infrastructure (architectural) to name a few. For example, phenolic resin is a critical adhesive in the manufacture of honeycomb sandwich panels. Various solvent and water based resins are described along with resin characteristics and the role of metal ions for enhanced thermal stability of the resin used to coat the honeycomb. Featured new developments include pultrusion of phenolic grating, success in RTM/VARTM fabricated parts, new ballistic developments for military vehicles and high char yield carbon-carbon composites along with many others. Additionally, global regional market resin volumes and sales are presented and compared with other thermosetting resin systems.

  17. Molecular dynamics study of mechanical properties of carbon nanotube reinforced aluminum composites

    Science.gov (United States)

    Srivastava, Ashish Kumar; Mokhalingam, A.; Singh, Akhileshwar; Kumar, Dinesh

    2016-05-01

    Atomistic simulations were conducted to estimate the effect of the carbon nanotube (CNT) reinforcement on the mechanical behavior of CNT-reinforced aluminum (Al) nanocomposite. The periodic system of CNT-Al nanocomposite was built and simulated using molecular dynamics (MD) software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The mechanical properties of the nanocomposite were investigated by the application of uniaxial load on one end of the representative volume element (RVE) and fixing the other end. The interactions between the atoms of Al were modeled using embedded atom method (EAM) potentials, whereas Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential was used for the interactions among carbon atoms and these pair potentials are coupled with the Lennard-Jones (LJ) potential. The results show that the incorporation of CNT into the Al matrix can increase the Young's modulus of the nanocomposite substantially. In the present case, i.e. for approximately 9 with % reinforcement of CNT can increase the axial Young's modulus of the Al matrix up to 77 % as compared to pure Al.

  18. Preliminary molecular analysis of bacterial composition in periapical lesions with primary endodontic infections of deciduous teeth

    Institute of Scientific and Technical Information of China (English)

    SHANG Jia-jian; YANG Qiu-bo; ZHAO Huan-ying; CAI Shuang; ZHOU Yan; SUN Zheng

    2013-01-01

    Background The bacterial composition of periapical lesions in deciduous teeth has not been well documented.This study was designed to explore the bacterial compositions,especially the dominant bacteria in periapical lesions using 16S rRNA sequencing.Methods Tissue samples were collected from 11 periapical lesions in deciduous teeth with primary endodontic infections.DNA was extracted from each sample and analyzed using 16S rRNA cloning and sequencing for the identification of bacteria.Results All DNA samples were positive for 16S rRNA gene PCR.One hundred and fifty-one phylotypes from 810 clones were identified to eight phyla,and each sample contained an average of 25.9 phylotypes.In addition,59 phylotypes were detected in more than two samples,and Fusobacterium (F.) nucleatum (8/11),Dialister (D.) invisus (8/11),Campylobacter (C.) gracilis (7/11),Escherichia (E.) coil DH1 (6/11),Aggregatibacter (A.) segnis (6/11),and Streptococcus (S.) mitis (6/11) were the most prevalent species.Furthermore,45 as-yet-uncultivated phylotypes were also identified.Conclusions Chronic periapical lesions in deciduous teeth contained polymicrobial infections.F.nucleatum,D.invisus,C.gracilis,E.coli DH1,A.segnis,and S.mitis were the most prevalent species detected by 16S rRNA sequencing.

  19. The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime

    CERN Document Server

    Walsh, Catherine; van Dishoeck, Ewine F

    2015-01-01

    (Abridged) Near- to mid-IR observations of protoplanetary disks show that the inner regions (<10AU) are rich in small organic volatiles (e.g., C2H2 and HCN). Trends in the data suggest that disks around cooler stars (~3000K) are potentially more carbon- and molecule-rich than their hotter counterparts. Our aims are to explore the composition of the planet-forming region of disks around stars from M dwarf to Herbig Ae and compare with the observed trends. Models of the disk physical structure are coupled with a gas-grain chemical network to map the abundances in the planet-forming zone. N2 self shielding, X-ray-induced chemistry, and initial abundances, are investigated. The composition in the 'observable' atmosphere is compared with that in the midplane where the planet-building reservoir resides. M dwarf disk atmospheres are relatively more molecule rich than those for T Tauri or Herbig Ae disks. The weak far-UV flux helps retain this complexity which is enhanced by X-ray-induced ion-molecule chemistry. N...

  20. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites

    Science.gov (United States)

    Smith, Bettye L.; Schäffer, Tilman E.; Viani, Mario; Thompson, James B.; Frederick, Neil A.; Kindt, Johannes; Belcher, Angela; Stucky, Galen D.; Morse, Daniel E.; Hansma, Paul K.

    1999-06-01

    Natural materials are renowned for their strength and toughness,,,,. Spider dragline silk has a breakage energy per unit weight two orders of magnitude greater than high tensile steel,, and is representative of many other strong natural fibres,,. The abalone shell, a composite of calcium carbonate plates sandwiched between organic material, is 3,000 times more fracture resistant than a single crystal of the pure mineral,. The organic component, comprising just a few per cent of the composite by weight, is thought to hold the key to nacre's fracture toughness,. Ceramics laminated with organic material are more fracture resistant than non-laminated ceramics,, but synthetic materials made of interlocking ceramic tablets bound by a few weight per cent of ordinary adhesives do not have a toughness comparable to nacre. We believe that the key to nacre's fracture resistance resides in the polymer adhesive, and here we reveal the properties of this adhesive by using the atomic force microscope to stretch the organic molecules exposed on the surface of freshly cleaved nacre. The adhesive fibres elongate in a stepwise manner as folded domains or loops are pulled open. The elongation events occur for forces of a few hundred piconewtons, which are smaller than the forces of over a nanonewton required to break the polymer backbone in the threads. We suggest that this `modular' elongation mechanism might prove to be quite general for conveying toughness to natural fibres and adhesives, and we predict that it might be found also in dragline silk.

  1. Molecular composition of aged secondary organic aerosol generated from a mixture of biogenic volatile compounds using ultrahigh resolution mass spectrometry

    Directory of Open Access Journals (Sweden)

    I. Kourtchev

    2015-02-01

    Full Text Available Field observations over the past decade indicate that a significant fraction of organic aerosol in remote areas may contain highly oxidised molecules. Aerosol processing or further oxidation (ageing of organic aerosol has been suggested to be responsible for their formation through heterogeneous uptake of oxidants and multigenerational oxidation of vapours by OH radicals. In this study we investigated the influence of several ageing processes on the molecular composition of secondary organic aerosols (SOA using direct infusion and liquid chromatography ultrahigh resolution mass spectrometry. SOA was formed in simulation chamber experiments from ozonolysis of a mixture of four biogenic volatile organic compounds (BVOC: α-pinene, β-pinene, Δ3-carene and isoprene. The SOA was subsequently aged under three different sets of conditions: in the dark in the presence of residual ozone, with UV irradiation and OH radicals, and using UV light only. Among all studied conditions, only OH radical-initiated ageing was found to influence the molecular composition of the aerosol and showed an increase in carbon oxidation state (OSC and elemental O/C ratios of the SOA components. None of the ageing processes produced an observable effect on the oligomers formed from ozonolysis of the BVOC mixture, which were found to be equally abundant in both "fresh" and "aged" SOA. Additional experiments using α-pinene as the sole precursor demonstrated that oligomers are an important group of compounds in SOA produced from both ozonolysis and OH radical-initiated oxidation processes; however, a completely different set of oligomers is formed under these two oxidation regimes. SOA from the OH radical-initiated α-pinene oxidation had a significantly higher overall OSC and O/C compared to that from pure ozonolysis experiments confirming that the OH radical reaction is more likely to be responsible for the occurrence of highly oxidised species in ambient biogenic SOA.

  2. Optimization of a polymer composite employing molecular mechanic simulations and artificial neural networks for a novel intravaginal bioadhesive drug delivery device.

    Science.gov (United States)

    Ndesendo, Valence M K; Pillay, Viness; Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Buchmann, Eckhart; Meyer, Leith C R; Khan, Riaz A

    2012-01-01

    This study aimed at elucidating an optimal synergistic polymer composite for achieving a desirable molecular bioadhesivity and Matrix Erosion of a bioactive-loaded Intravaginal Bioadhesive Polymeric Device (IBPD) employing Molecular Mechanic Simulations and Artificial Neural Networks (ANN). Fifteen lead caplet-shaped devices were formulated by direct compression with the model bioactives zidovudine and polystyrene sulfonate. The Matrix Erosion was analyzed in simulated vaginal fluid to assess the critical integrity. Blueprinting the molecular mechanics of bioadhesion between vaginal epithelial glycoprotein (EGP), mucin (MUC) and the IBPD were performed on HyperChem 8.0.8 software (MM+ and AMBER force fields) for the quantification and characterization of correlative molecular interactions during molecular bioadhesion. Results proved that the IBPD bioadhesivity was pivoted on the conformation, orientation, and poly(acrylic acid) (PAA) composition that interacted with EGP and MUC present on the vaginal epithelium due to heterogeneous surface residue distributions (free energy= -46.33 kcalmol(-1)). ANN sensitivity testing as a connectionist model enabled strategic polymer selection for developing an IBPD with an optimally prolonged Matrix Erosion and superior molecular bioadhesivity (ME = 1.21-7.68%; BHN = 2.687-4.981 N/mm(2)). Molecular modeling aptly supported the EGP-MUC-PAA molecular interaction at the vaginal epithelium confirming the role of PAA in bioadhesion of the IBPD once inserted into the posterior fornix of the vagina.

  3. Influence of the gaseous mixture composition on accuracy of molecular iodine on-line detection by laser-induced fluorescence method

    Science.gov (United States)

    Kireev, S. V.; Shnyrev, S. L.

    2016-07-01

    This paper informs on research into the influence of the composition of gaseous mixtures analyzed on the accuracy of on-line molecular iodine detection by laser-induced fluorescence in various gaseous media—in atmospheric air and in technological mixtures formed during reprocessing of spent nuclear fuel. The paper shows that by considering the composition of buffer media and parts of its components, the accuracy of iodine content measurement may be increased in several times.

  4. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite

    Science.gov (United States)

    Yuen, G.; Blair, N.; Des Marais, D. J.; Chang, S.

    1984-01-01

    Carbon isotopic compositions have been measured for individual hydrocarbons and monocarboxylic acids from the Murchison meteorite, a C2 carbonaceous chondrite which fell in Australia in 1969. With few exceptions, notably benzene, the volatile products are substantially isotopically heavier than their terrestrial counterparts, signifying their extraterrestrial origin. For both classes of compounds, the ratio of C-13 to C-12 decreases with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic ratio than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with the kinetically controlled synthesis of higher homologues from lower ones. The results suggest the possibility that the production mechanisms for hydrocarbons and carboxylic acids may be similar, and impose constraints on the identity of the reactant species.

  5. Molecular composition and extinction coefficient of native botulinum neurotoxin complex produced by Clostridium botulinum hall A strain.

    Science.gov (United States)

    Bryant, Anne-Marie; Davis, Jenny; Cai, Shuowei; Singh, Bal Ram

    2013-02-01

    Seven distinct strains of Clostridium botulinum (type A to G) each produce a stable complex of botulinum neurotoxin (BoNT) along with neurotoxin-associated proteins (NAPs). Type A botulinum neurotoxin (BoNT/A) is produced with a group of NAPs and is commercially available for the treatment of numerous neuromuscular disorders and cosmetic purposes. Previous studies have indicated that BoNT/A complex composition is specific to the strain, the method of growth and the method of purification; consequently, any variation in composition of NAPs could have significant implications to the effectiveness of BoNT based therapeutics. In this study, a standard analytical technique using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and densitometry analysis was developed to accurately analyze BoNT/A complex from C. botulinum type A Hall strain. Using 3 batches of BoNT/A complex the molar ratio was determined as neurotoxin binding protein (NBP, 124 kDa), heavy chain (HC, 90 kDa), light chain (LC, 53 kDa), NAP-53 (50 kDa), NAP-33 (36 kDa), NAP-22 (24 kDa), NAP-17 (17 kDa) 1:1:1:2:3:2:2. With Bradford, Lowry, bicinchoninic acid (BCA) and spectroscopic protein estimation methods, the extinction coefficient of BoNT/A complex was determined as 1.54 ± 0.26 (mg/mL)(-1)cm(-1). These findings of a reproducible BoNT/A complex composition will aid in understanding the molecular structure and function of BoNT/A and NAPs.

  6. WR 120bb and WR 120bc: a pair of WN9h stars with possibly interacting circumstellar shells

    CERN Document Server

    Burgemeister, Sonja; Stringfellow, Guy S; Kniazev, Alexei Y; Todt, Helge; Hamann, Wolf-Rainer; 10.1093/mnras/sts588

    2012-01-01

    Two optically obscured Wolf-Rayet (WR) stars have been recently discovered by means of their infrared (IR) circumstellar shells, which show signatures of interaction with each other. Following the systematics of the WR star catalogues, these stars obtain the names WR\\,120bb and WR\\,120bc. In this paper, we present and analyse new near-IR, $J$, $H$, and $K$-band, spectra using the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For that purpose, the atomic data base of the code has been extended in order to include all significant lines in the near-IR bands. The spectra of both stars are classified as WN9h. As their spectra are very similar the parameters that we obtained by the spectral analyses hardly differ. Despite their late spectral subtype, we found relatively high stellar temperatures of 63 kK. The wind composition is dominated by helium, while hydrogen is depleted to 25 per cent by mass. Because of their location in the Scutum-Centaurus arm, WR\\,120bb and WR\\,120bc appear highly reddened, $A_{K_{\\rm ...

  7. Molecular anions in circumstellar envelopes, interstellar clouds and planetary atmospheres: quantum dynamics of formation and evolution

    OpenAIRE

    Carelli, Fabio

    2011-01-01

    Nowadays, it is a well known fact that most of the matter in our Solar System, in our Galaxy and, probably, within the whole Universe, exists in the form of ionized particles. For decades astronomers and astrophysicists believed that only positively charged ions were worthy of relevance in drawing the networks for possible chemical reactions in the interstellar medium, as well as in modeling the physical conditions in most of astrophysical environments. Thus, negative ions (and especially mol...

  8. Synthetic photometry for carbon-rich giants II. The effects of pulsation and circumstellar dust

    CERN Document Server

    Nowotny, Walter; Höfner, Susanne; Lederer, Michael T

    2011-01-01

    By using self-consistent dynamic model atmospheres which simulate pulsation-enhanced dust-driven winds of AGB stars we studied in detail the influence of (i) pulsations of the stellar interiors, and (ii) the development of dusty stellar winds on the spectral appearance of long period variables with carbon-rich atmospheric chemistry. While the pulsations lead to large-amplitude photometric variability, the dusty envelopes cause pronounced circumstellar reddening. Based on one selected dynamical model which is representative of C-type Mira variables with intermediate mass loss rates, we calculated synthetic spectra and photometry for standard broad-band filters from the visual to the near-infrared. Our modelling allows to investigate in detail the substantial effect of circumstellar dust on the resultant photometry. The pronounced absorption of amorphous carbon dust grains leads to colour indices which are significantly redder than the corresponding ones based on hydrostatic dust-free models. Only if we account...

  9. The circumstellar material around SN IIn 1997eg Another detection of Very Narrow P Cygni profile

    CERN Document Server

    Salamanca, I M; Tenorio-Tagle, G

    2002-01-01

    We report the detection of a very narrow P Cygni profile on top of the broad emission Ha and Hb lines of the Type IIn Supernova 1997eg. A similar feature has been detected in SN 1997ab (Salamanca et al. 1998), SN 1998S (Meikle & Geballe 1998, Fassia et al. 2001) and SN 1995G (Filippenko & Schlegel 1995). The detection of the narrow P Cygni profile indicates the existence of a dense circumstellar material (CSM) into which the ejecta of the supernova is expanding. From the analysis of the spectra of SN 1997eg we deduce (a) that such CSM is very dense (n ~ 5x10^7 cm^-3), (b) that has a low expanding velocity of about 160 \\kms. The origin of such dense CSM can be either a very dense progenitor wind (dotM ~ 10^-2 solar masses per year) or a circumstellar shell product of the progenitor wind expanding into a high pressure environment.

  10. Wind Dynamics and Circumstellar Extinction Variations in the T Tauri Star RY Tau

    CERN Document Server

    Babina, Elena V; Petrov, Peter P

    2016-01-01

    The wind interaction with the dusty environment of the classical T Tauri star RY Tau has been investigated. During two seasons of 2013-2015 we carried out a spectroscopic and photometric (BVR) monitoring of the star. A correlation between the stellar brightness and the radial velocity of the wind determined from the H-alpha and Na D line profiles has been found for the first time. The irregular stellar brightness variations are shown to be caused by extinction in a dusty disk wind at a distance of about 0.2 AU from the star. We suppose, that variations of the circumstellar extinction results from cyclic rearrangements of the stellar magnetosphere and coronal mass ejections, which affect the dusty disk wind near the inner boundary of the circumstellar disk.

  11. From Protoplanetary Disks to Extrasolar Planets: Understanding the Life Cycle of Circumstellar Gas with Ultraviolet Spectroscopy

    CERN Document Server

    France, Kevin; Ardila, David R; Bergin, Edwin A; Brown, Alexander; Burgh, Eric B; Calvet, Nuria; Chiang, Eugene; Cook, Timothy A; Désert, Jean-Michel; Ebbets, Dennis; Froning, Cynthia S; Green, James C; Hillenbrand, Lynne A; Johns-Krull, Christopher M; Koskinen, Tommi T; Linsky, Jeffrey L; Redfield, Seth; Roberge, Aki; Schindhelm, Eric R; Scowen, Paul A; Stapelfeldt, Karl R; Tumlinson, Jason

    2012-01-01

    Few scientific discoveries have captured the public imagination like the explosion of exoplanetary science during the past two decades. This work has fundamentally changed our picture of Earth's place in the Universe and led NASA to make significant investments towards understanding the demographics of exoplanetary systems and the conditions that lead to their formation. The story of the formation and evolution of exoplanetary systems is essentially the story of the circumstellar gas and dust that are initially present in the protostellar environment; in order to understand the variety of planetary systems observed, we need to understand the life cycle of circumstellar gas from its initial conditions in protoplanetary disks to its endpoint as planets and their atmospheres. In this white paper response to NASA's Request for Information "Science Objectives and Requirements for the Next NASA UV/Visible Astrophysics Mission Concepts (NNH12ZDA008L)", we describe scientific programs that would use the unique capabi...

  12. Radiative transfer modeling of three T Tauri stars: selecting candidates for studying circumstellar disk evolution

    Institute of Scientific and Technical Information of China (English)

    Yao Liu; Hong-Chi Wang; Sebastian Wolf; David Madlener

    2013-01-01

    We present modeling work on three young stellar objects that are promising targets for future high-resolution observations to investigate circumstellar disk evolution.The currently available data comprise the spectral energy distribution from optical to millimeter wavelengths which allow constraining the structure of the circumstellar disk using self-consistent radiative transfer models.The results suggest that the assumption of well-mixed dust and gas leads to overestimation of flux in the far-infrared.Observational and theoretical arguments suggest that an overall decrease in far-infrared excess can be explained by dust settling towards the midplane.A new disk model is hence employed to take the effect of dust sedimentation into account.The extended model satisfactorily reproduces all existing observations.The three targets studied here therefore deserve follow-up observations to reveal the evolutionary state of their protoplanetary disks.

  13. Circumstellar Habitable Zones to Ecodynamic Domains: A Preliminary Review and Suggested Future Directions

    CERN Document Server

    Heath, Martin J

    2009-01-01

    The concept of the Circumstellar Habitable Zone has served the scientific community well for some decades. It slips easily off the tongue, and it would be hard to replace. Recently, however, several workers have postulated types of habitable bodies which might exist outside the classic circumstellar habitable zone (HZ). These include not only bodies which orbit at substantial distances from their parent stars, but also snowball worlds with geothermally-maintained internal oceans and even densely-atmosphered worlds with geothermally-maintained surface oceans, which have been ejected from unstable planetary systems into interstellar space. If habitability is not a unique and diagnostic property of the HZ, then the value of the term has been compromised in a fundamental way. At the same time, it has become evident that multiple environmental states, differing in important ways in their habitability, are possible even for geophysically similar planets subject to similar levels of insolation, within the classic HZ...

  14. Differential interferometric phases at high spectral resolution as a sensitive physical diagnostic of circumstellar disks

    CERN Document Server

    Faes, D M; Rivinius, Th; Štefl, S; Baade, D; de Souza, A Domiciano

    2013-01-01

    Context. The circumstellar disks ejected by many rapidly rotating B stars (so-called Be stars) offer the rare opportunity of studying the structure and dynamics of gaseous disks at high spectral as well as angular resolution. Aims. This paper explores a newly identified effect in spectro-interferometric phase that can be used for probing the inner regions of gaseous edge-on disks on a scale of a few stellar radii. Methods. The origin of this effect (dubbed central quasi-emission phase signature, CQE-PS) lies in the velocity-dependent line absorption of photospheric radiation by the circumstellar disk. At high spectral and marginal interferometric resolution, photocenter displacements between star and isovelocity regions in the Keplerian disk reveal themselves through small interferometric phase shifts. To investigate the diagnostic potential of this effect, a series of models are presented, based on detailed radiative transfer calculations in a viscous decretion disk. Results. Amplitude and detailed shape of ...

  15. VizieR Online Data Catalog: Database of circumstellar OH masers (Engels+, 2015)

    Science.gov (United States)

    Engels, D.; Bunzel, F.

    2015-08-01

    We present a new database of circumstellar OH masers at 1612, 1665, and 1667MHz in the Milky Way galaxy in tabular form. The database (version 2.4) contains 13655 observations and 2341 different stars detected in at least one transition and includes published data until end of 2014. Interferometric follow-up observations and monitor programs are stored in two auxiliary tables. (3 data files).

  16. Physical properties of a high molecular weight hydroxyl-terminated polydimethylsiloxane modified castor oil based polyurethane/epoxy interpenetrating polymer network composites

    Science.gov (United States)

    Chen, Shoubing; Wang, Qihua; Wang, Tingmei

    2011-06-01

    A series of polyurethane (PU)/epoxy resin (EP) graft interpenetrating polymer network (IPN) composites modified by a high molecular weight hydroxyl-terminated polydimethylsiloxane (HTPDMS) were prepared. The effects of HTPDMS content on the phase structure, damping properties and the glass transition temperature ( Tg) of the HTPDMS-modified PU/EP IPN composites were studied by scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). Thermogravimetric analysis (TGA) showed that the thermal decomposition temperature of the composites increased with the increase of HTPDMS content. The tensile strength and impact strength of the IPN composites were also significantly improved, especially when the HTPDMS content was 10%. The modified IPN composites were expected to be used as structural damping materials in the future.

  17. Atomic and Molecular Layer Deposition for Enhanced Lithium Ion Battery Electrodes and Development of Conductive Metal Oxide/Carbon Composites

    Science.gov (United States)

    Travis, Jonathan

    The performance and safety of lithium-ion batteries (LIBs) are dependent on interfacial processes at the positive and negative electrodes. For example, the surface layers that form on cathodes and anodes are known to affect the kinetics and capacity of LIBs. Interfacial reactions between the electrolyte and the electrodes are also known to initiate electrolyte combustion during thermal runaway events that compromise battery safety. Atomic layer deposition (ALD) and molecular layer deposition (MLD) are thin film deposition techniques based on sequential, self-limiting surface reactions. ALD and MLD can deposit ultrathin and conformal films on high aspect ratio and porous substrates such as composite particulate electrodes in lithium-ion batteries. The effects of electrode surface modification via ALD and MLD are studied using a variety of techniques. It was found that sub-nm thick coatings of Al2O 3 deposited via ALD have beneficial effects on the stability of LIB anodes and cathodes. These same Al2O3 ALD films were found to improve the safety of graphite based anodes through prevention of exothermic solid electrolyte interface (SEI) degradation at elevated temperatures. Ultrathin and conformal metal alkoxide polymer films known as "metalcones" were grown utilizing MLD techniques with trimethylaluminum (TMA) or titanium tetrachloride (TiCl4) and organic diols or triols, such as ethylene glycol (EG), glycerol (GL) or hydroquinone (HQ), as the reactants. Pyrolysis of these metalcone films under inert gas conditions led to the development of conductive metal oxide/carbon composites. The composites were found to contain sp2 carbon using micro-Raman spectroscopy in the pyrolyzed films with pyrolysis temperatures ≥ 600°C. Four point probe measurements demonstrated that the graphitic sp2 carbon domains in the metalcone films grown using GL and HQ led to significant conductivity. The pyrolysis of conformal MLD films to obtain conductive metal oxide/carbon composite films

  18. High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    Science.gov (United States)

    Serabyn, G.; Grady, C. A.; Currie, T.

    2012-01-01

    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.15" (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A which extends to 120 AU, at a spatial resolution of 0.1" (14 AU). It is inclined by 46 degrees plus or minus 2 degrees as the west side is nearest. Although SED modeling and sub-millimeter imagery suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25 - 30 AU, we detect no evidence of a gap at the limit of our inner working angle (23AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66 %) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh scattering nor Mie scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with the radii of 30 micrometers is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations and have grown in the circumstellar disk of UX Tau A.

  19. Oxygen Chemistry in the Circumstellar Envelope of the Carbon-Rich Star IRC+10216

    CERN Document Server

    Agundez, M; Agundez, Marcelino; Cernicharo, Jose

    2006-01-01

    In this paper we study the oxygen chemistry in the C-rich circumstellar shells of IRC+10216. The recent discoveries of oxygen bearing species (water, hydroxyl radical and formaldehyde) toward this source challenge our current understanding of the chemistry in C-rich circumstellar envelopes. The presence of icy comets surrounding the star or catalysis on iron grain surfaces have been invoked to explain the presence of such unexpected species. This detailed study aims at evaluating the chances of producing O-bearing species in the C-rich circumstellar envelope only by gas phase chemical reactions. For the inner hot envelope, it is shown that although most of the oxygen is locked in CO near the photosphere (as expected for a C/O ratio greater than 1), some stellar radii far away species such as H2O and CO2 have large abundances under the assumption of thermochemical equilibrium. It is also shown how non-LTE chemistry makes very difficult the CO-->H2O,CO2 transformation predicted in LTE. Concerning the chemistry ...

  20. Observational Possibility of the "Snow Line" on the Surface of Circumstellar Disks with the Scattered Light

    CERN Document Server

    Inoue, Akio K; Nakamoto, Taishi; Oka, Akinori

    2008-01-01

    We discuss how we obtain the spatial distribution of ice on the surface of the circumstellar disk around young stars. Ice in the disks plays a very important role in various issues, for instance, on the disk structure, on the planet formation, on the isotopic anomaly in meteorites, and on the origin of the sea on the Earth. Therefore, the spatially resolved observation of the condensation/sublimation front of ice, so-called ``snow line'' is strongly required. Here, we propose a new method for obtaining the spatially resolved ``snow line'' on the circumstellar disks by observing 3 \\micron H$_2$O ice feature in the scattered light. Based on radiative transfer considerations, we show that the feature is clearly imprinted in the spectrum of the scattered light from both optically thick and thin circumstellar disks. We also show that the scattered light and the H$_2$O ice feature from protoplanetary disks are detectable and spatially resolvable with the current instruments through a $H_2O$ narrowband filter around...

  1. Circumstellar Dust, PAHs, and Stellar Populations in Early-Type Galaxies: Insights from GALEX and WISE

    CERN Document Server

    Simonian, Gregory V

    2016-01-01

    A majority of early-type galaxies contain interstellar dust, yet the origin of this dust, and why the dust sometimes exhibits unusual PAH ratios, remains a mystery. If the dust is internally produced, the most likely origin is the large number of AGB stars associated with the old stellar population. We present GALEX and WISE elliptical aperture photometry of $\\sim350$ early-type galaxies with Spitzer mid-infrared spectroscopy and/or ancillary data from ATLAS3D, to characterize their circumstellar dust and the shape of the radiation field that illuminates the interstellar PAHs. We find that circumstellar dust is ubiquitous in early-type galaxies, which indicates some tension between stellar population age estimates and models for circumstellar dust production in very old stellar populations. We also use dynamical masses from ATLAS3D to show that WISE W1 (3.4 $\\mu$m) mass-to-light ratios are inconsistent with model predictions for a single IMF, as found by previous work. While the stellar population differences...

  2. High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    Science.gov (United States)

    Tanii, Ryoko; Itoh, Yoichi; Kudo, Tomoyuki; Hioki, Tomonori; Oasa, Yumiko; Gupta, Ranjan; Sen, Asoke K.; Wisniewski, John P.; Muto, Takayuki; Grady, Carol A.; Hashimoto, Jun; Fukagawa, Misato; Mayama, Satoshi; Hornbeck, Jeremy; Sitko, Michael L.; Russell, Ray W.; Werren, Chelsea; Curé, Michel; Currie, Thayne; Ohashi, Nagayoshi; Okamoto, Yoshiko; Momose, Munetake; Honda, Mitsuhiko; Inutsuka, Shu-ichi; Takeuchi, Taku; Dong, Ruobing; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Egner, Sebastian E.; Feldt, Markus; Fukue, Tsubasa; Goto, Miwa; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kusakabe, Nobuhiko; Kuzuhara, Masayuki; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-ichi; Moro-Martín, Amaya; Nishimura, Tetsuro; Pyo, Tae-Soo; Serabyn, Eugene; Suto, Hiroshi; Suzuki, Ryuji; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2012-12-01

    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.''15 (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A, which extends to 120 AU, at a spatial resolution of 0.''1 (14 AU). It is inclined by 46° ± 2°, since the west side is nearest. Although SED modeling and sub-millimeter imagery have suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25-30 AU, we detect no evidence of a gap at the limit of our inner working angle (23 AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66%) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh-scattering nor Mie-scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with radii of 30μm is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations, and have grown in the circumstellar disk of UX Tau A.

  3. The magnetic field around late-type stars revealed by the circumstellar H2O masers

    CERN Document Server

    Vlemmings, W H T; Diamond, P J

    2005-01-01

    Through polarization observations, circumstellar masers are excellent probes of the magnetic field in the envelopes of late-type stars. Whereas observations of the polarization of the SiO masers close to the star and on the OH masers much further out were fairly commonplace, observations of the magnetic field strength in the intermediate density and temperature region where the 22 GHz water masers occur have only recently become possible. Here we present the analysis of the circular polarization, due to Zeeman splitting, of the water masers around the Mira variable stars U Her and U Ori and the supergiant VX Sgr. We present an upper limit of the field around U Her that is lower but consistent with previous measurements, reflecting possible changes in the circumstellar envelope. The field strengths around U Ori and VX Sgr are shown to be of the order of several Gauss. Moreover, we show for the first time that large scale magnetic fields permeate the circumstellar envelopes of an evolved star; the polarization ...

  4. The effects of aging on the molecular and cellular composition of the prostate microenvironment.

    Directory of Open Access Journals (Sweden)

    Daniella Bianchi-Frias

    Full Text Available BACKGROUND: Advancing age is associated with substantial increases in the incidence rates of common diseases affecting the prostate gland including benign prostatic hyperplasia (BPH and prostate carcinoma. The prostate is comprised of a functional secretory epithelium, a basal epithelium, and a supporting stroma comprised of structural elements, and a spectrum of cell types that includes smooth muscle cells, fibroblasts, and inflammatory cells. As reciprocal interactions between epithelium and stromal constituents are essential for normal organogenesis and serve to maintain normal functions, discordance within the stroma could permit or promote disease processes. In this study we sought to identify aging-associated alterations in the mouse prostate microenvironment that could influence pathology. METHODOLOGY/PRINCIPAL FINDINGS: We quantitated transcript levels in microdissected glandular-adjacent stroma from young (age 4 months and old (age 20-24 months C57BL/6 mice, and identified a significant change in the expression of 1259 genes (p<0.05. These included increases in transcripts encoding proteins associated with inflammation (e.g., Ccl8, Ccl12, genotoxic/oxidative stress (e.g., Apod, Serpinb5 and other paracrine-acting effects (e.g., Cyr61. The expression of several collagen genes (e.g., Col1a1 and Col3a1 exhibited age-associated declines. By histology, immunofluorescence, and electron microscopy we determined that the collagen matrix is abundant and disorganized, smooth muscle cell orientation is disordered, and inflammatory infiltrates are significantly increased, and are comprised of macrophages, T cells and, to a lesser extent, B cells. CONCLUSION/SIGNIFICANCE: These findings demonstrate that during normal aging the prostate stroma exhibits phenotypic and molecular characteristics plausibly contributing to the striking age associated pathologies affecting the prostate.

  5. Molecular composition of sugars in atmospheric particulate matter from interior Alaska

    Science.gov (United States)

    Haque, Md. Mozammel; Kawamura, Kimitaka; Kim, Yongwon

    2015-04-01

    Sugars can account for 0.5-8% of carbon in atmospheric particulate matter, affecting the earth climate, air quality and public health. Total of 33 total suspended particle (TSP) samples were collected from Fairbanks, Alaska in June 2008 to June 2009 using a low volume air sampler. Here, we report the molecular characteristics of anhydro-sugars (levoglucosan, galactosan and mannosan), primary saccharides (xylose, fructose, glucose, sucrose and trehalose) and sugar alcohols (erythritol, arabitol, mannitol and inositol). The average contribution of sugars to the organic carbon (OC) was also determined to be 0.92%. Sugar compounds were measured using solvent extraction/TMS-derivatization technique followed by gas chromatography-mass spectrometry (GC-MS) determination. The concentrations of total quantified sugar compounds ranged from 2.3 to 453 ng m-3 (average 145 ng m-3). The highest concentration was recorded for levoglucosan in summer, with a maximum concentration of 790 ng m-3 (average 108 ng m-3). Levoglucosan, which is specifically formed by a pyrolysis of cellulose, has been used as an excellent tracer of biomass burning. The highest level of levoglucosan indicates a significant contribution of biomass burning in ambient aerosols. Galactosan (average 20 ng m-3) and mannosan (average 27 ng m-3), which are also formed through the pyrolysis of cellulose/hemicelluloses, were identified in all samples. The average concentrations of arabitol, mannitol, glucose and sucrose were also found 14.7, 14.6, 14.1 and 16.8 ng m-3, respectively. They have been proposed as tracers for resuspension of surface soil and unpaved road dust, which contain biological materials including fungi and bacteria. These results suggest that there is some impact of bioaerosols on climate over Interior Alaska. We will also measure water-soluble organic carbon (WSOC) and inorganic ions for all samples.

  6. Molecular composition of staufen2-containing ribonucleoproteins in embryonic rat brain.

    Directory of Open Access Journals (Sweden)

    Marjolaine Maher-Laporte

    Full Text Available Messenger ribonucleoprotein particles (mRNPs are used to transport mRNAs along neuronal dendrites to their site of translation. Numerous mRNA-binding and regulatory proteins within mRNPs finely regulate the fate of bound-mRNAs. Their specific combination defines different types of mRNPs that in turn are related to specific synaptic functions. One of these mRNA-binding proteins, Staufen2 (Stau2, was shown to transport dendritic mRNAs along microtubules. Its knockdown expression in neurons was shown to change spine morphology and synaptic functions. To further understand the molecular mechanisms by which Stau2 modulates synaptic function in neurons, it is important to identify and characterize protein co-factors that regulate the fate of Stau2-containing mRNPs. To this end, a proteomic approach was used to identify co-immunoprecipitated proteins in Staufen2-containing mRNPs isolated from embryonic rat brains. The proteomic approach identified mRNA-binding proteins (PABPC1, hnRNP H1, YB1 and hsc70, proteins of the cytoskeleton (alpha- and beta-tubulin and RUFY3 a poorly characterized protein. While PABPC1 and YB1 associate with Stau2-containing mRNPs through RNAs, hsc70 is directly bound to Stau2 and this interaction is regulated by ATP. PABPC1 and YB1 proteins formed puncta in dendrites of embryonic rat hippocampal neurons. However, they poorly co-localized with Stau2 in the large dendritic complexes suggesting that they are rather components of Stau2-containing mRNA particles. All together, these results represent a further step in the characterization of Stau2-containing mRNPs in neurons and provide new tools to study and understand how Stau2-containing mRNPs are transported, translationally silenced during transport and/or locally expressed according to cell needs.

  7. Composite Biofilms grown in Acidic Mining Lakes and assessed by Electron Microscopy and Molecular Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Luensdorf, Heinrich; Wenderoth, Dirk F.; Abraham, Wolf-Rainer [GBF, German Research Center for Biotechnology, Department Environmental Microbiology (Germany)], E-mail: wab@gbf.de

    2002-05-15

    Microbial consortia of composite biofilms, grown in surface water of acidicmining lakes near Lauchhammer, Germany, were investigated. The red-brown colored lake water was acidic (pH 2.5), had high concentrations of Fe(III), Al(III), and sulphate and low concentrations of dissolved organic matter. As a result the abundance of bacteria in the lake is with 10{sup 4} cells mL{sup -1} rather low. One input of organic material into the lake are autumnal leaves from trees, growing in the lakeside area. From aliquots of unfixed birch leave biofilms the 16S rRNA genes were amplified by PCR and community fingerprints were determined by single-strand conformation polymorphism (SSCP) analysis. Specific bands within the fingerprints were extracted from SSCP gels and sequenced for the taxonomical affiliation.These results were compared with those from the second type of biofilms which were grown on sterile substrata, floating submersed in surface waters of the lakes. By excising the bands from the gel and sequencing the individual bands bacterial taxa, common to both types of biofilms, were found but also some, which were only present in one type of biofilm. Ultrathin sectioned biofilms often showed bacteria associated with electron dense particles as main inorganic constituents. Elemental microanalysis by energy dispersive X-ray analysis (EDX) revealed them to contain iron, sulfur and oxygen as main elemental fractions and electron diffraction ring pattern analysis classified them to be schwertmannite. These bacteria and their interactions with each other as well as with the inorganic minerals formed in this lake generally is of great interest, in order to use these results for bioremediation applications.

  8. Molecular changes in the maize composite EPS12 during selection for resistance to pink stem borer.

    Science.gov (United States)

    Butrón, A; Tarrío, R; Revilla, P; Ordás, A; Malvar, R A

    2005-04-01

    The pink stem borer (Sesamia nonagrioides Lefèvbre) is the most important pest of maize (Zea mays L.) throughout the Mediterranean area. The maize composite EPS12 has been chosen as the base population for a breeding program based on its resistance to pink stem borer, with the main selection criterion being resistance to stem tunneling. Yield was taken as a secondary selection criterion to avoid any unwanted negatively correlated response on this character. The aims of investigation were: (1) to monitor the effects of selection for resistance to pink stem borer on allele frequency at 70 simple sequence repeat (SSR) markers and their impact on the genetic structure of EPS12 and (2) to identify loci at which allelic frequencies changed significantly due to directional selection. Genetic diversity was reduced during the selection process (as expected since random genetic drift as well as selection could reduce genetic variability), but not significantly so. Although the loss of genetic variation was generally consistent with that expected in a model in which random genetic drift acts alone on neutral alleles, the changes observed in the frequency of five alleles were significantly greater than expected. Further, the linear trend of the departure from the random genetic drift model was significant for some allelic versions of two SSR markers, umc1329 and phi076; directional selection was therefore acting on these loci. The significant effect of directional selection on those markers suggests the presence of quantitative trait loci (QTLs) for tunnel length and/or for yield under artificial infestation with Sesamia nonagrioides on the long arm of chromosome 4.

  9. Photon Bubbles in the Circumstellar Envelopes of Young Massive Stars

    CERN Document Server

    Turner, N J; Yorke, H W

    2007-01-01

    We show that the optically-thick dusty envelopes surrounding young high-mass stars are subject to the photon bubble instability. The infrared radiation passing through the envelope amplifies magnetosonic disturbances, with growth rates in our local numerical radiation MHD calculations that are consistent with a linear analysis. Modes with wavelengths comparable to the gas pressure scale height grow by more than two orders of magnitude in a thousand years, reaching non-linear amplitudes within the envelope lifetime. If the magnetic pressure in the envelope exceeds the gas pressure, the instability develops into trains of propagating shocks. Radiation escapes readily through the low-density material between the shocks, enabling accretion to continue despite the Eddington limit imposed by the dust opacity. The supersonic motions arising from the photon bubble instability can help explain the large velocity dispersions of hot molecular cores, while conditions in the shocked gas are suitable for maser emission. We...

  10. Ultra high molecular weight polyethylene (UHMWPE) fiber epoxy composite hybridized with Gadolinium and Boron nanoparticles for radiation shielding

    Science.gov (United States)

    Mani, Venkat; Prasad, Narasimha S.; Kelkar, Ajit

    2016-09-01

    Deep space radiations pose a major threat to the astronauts and their spacecraft during long duration space exploration missions. The two sources of radiation that are of concern are the galactic cosmic radiation (GCR) and the short lived secondary neutron radiations that are generated as a result of fragmentation that occurs when GCR strikes target nuclei in a spacecraft. Energy loss, during the interaction of GCR and the shielding material, increases with the charge to mass ratio of the shielding material. Hydrogen with no neutron in its nucleus has the highest charge to mass ratio and is the element which is the most effective shield against GCR. Some of the polymers because of their higher hydrogen content also serve as radiation shield materials. Ultra High Molecular Weight Polyethylene (UHMWPE) fibers, apart from possessing radiation shielding properties by the virtue of the high hydrogen content, are known for extraordinary properties. An effective radiation shielding material is the one that will offer protection from GCR and impede the secondary neutron radiations resulting from the fragmentation process. Neutrons, which result from fragmentation, do not respond to the Coulombic interaction that shield against GCR. To prevent the deleterious effects of secondary neutrons, targets such as Gadolinium are required. In this paper, the radiation shielding studies that were carried out on the fabricated sandwich panels by vacuum-assisted resin transfer molding (VARTM) process are presented. VARTM is a manufacturing process used for making large composite structures by infusing resin into base materials formed with woven fabric or fiber using vacuum pressure. Using the VARTM process, the hybridization of Epoxy/UHMWPE composites with Gadolinium nanoparticles, Boron, and Boron carbide nanoparticles in the form of sandwich panels were successfully carried out. The preliminary results from neutron radiation tests show that greater than 99% shielding performance was

  11. Molecular simulations for determination of transport properties of nano-composites

    Science.gov (United States)

    Mahajan, Sanket S.

    In several recent applications, including those aimed at developing novel thermal interface materials, nano-particulate systems have been proposed to improve the effective behavior of the system. One critical challenge in using nano-particulate systems is the lack of knowledge regarding their thermal conductivity. In this thesis, techniques based on Molecular Dynamics (MD) simulations are developed to determine transport properties of various types of homogeneous and inhomogeneous systems. In particular, the thermal conductivity values of bulk silica, silica nano-wire and nano-particle are determined using MD simulations. The equilibrium MD simulations of nano-particles using Green-Kubo relations are demonstrated to be computationally very expensive and unsuitable for nano-scale systems. The reverse non-equilibrium MD method of imposing heat flux is shown to be efficient and more accurate. The method is first demonstrated on bulk amorphous silica and silica nano-wires. The mean thermal conductivity values for bulk silica and silica nano-wire are estimated to be 1.221 W/mK and 1.430 W/mK, respectively. To model nano-particles, a novel methodology inspired by the imposition of heat flux technique, is developed by dividing the nano-particle into concentric shells so as to capture the naturally radial mode of heat transfer. The mean thermal conductivity value of a 600-atom silica nano-particle obtained using this approach is 0.589 W/mK. This value is ˜50-60% lower than those of bulk silica and silica nano-wire. The above developed technique for estimating the thermal conductivity of nano-structured homogeneous systems is naturally extended to determine the Kapitza resistance between solid-solid interfaces. The systems considered are interfaces between Si-SiO2 and Si-HfO2 thin films. For the Si-SiO2 interface, the average Kapitza resistance for ˜8 A thick oxide layer system is 0.503 x 10-9 m2K/W and for the ˜11.5 A thick oxide layer system is 0.518 x 10-9 m 2K/W. For

  12. W Hya : Molecular inventory by ISO-SWS

    NARCIS (Netherlands)

    Justtanont, K; de Jong, T; Tielens, AGGM; Feuchtgruber, H; Waters, LBFM

    2004-01-01

    Infrared spectroscopy is a powerful tool to probe the inventory of solid state and molecular species in circumstellar ejecta. Here we analyse the infrared spectrum of the Asymptotic Giant Branch star W Hya, obtained by the Short and Long Wavelength Spectrometers on board of the Infrared Satellite Ob

  13. W Hya: Molecular inventory by ISO-SWS

    NARCIS (Netherlands)

    Justtanont, K.; de Jong, T.; Tielens, A.G.G.M.; Feuchtgruber, H.; Waters, L.B.F.M.

    2004-01-01

    Infrared spectroscopy is a powerful tool to probe the inventory of solid state and molecular species in circumstellar ejecta. Here we analyse the infrared spectrum of the Asymptotic Giant Branch star W Hya, obtained by the Short and Long Wavelength Spectrometers on board of the Infrared Satellite Ob

  14. Far-Ultraviolet H2 Emission from Circumstellar Disks

    CERN Document Server

    Ingleby, Laura; Bergin, Edwin; Yerasi, Ashwin; Espaillat, Catherine; Herczeg, Gregory; Roueff, Evelyne; Abgrall, Herve; Hernandez, Jesus; Briceno, Cesar; Pascucci, Ilaria; Miller, Jon; Fogel, Jeffrey; Hartmann, Lee; Meyer, Michael; Carpenter, John; Crockett, Nathan; McClure, Melissa

    2009-01-01

    We analyze the far-ultraviolet (FUV) spectra of 33 classical T Tauri stars (CTTS), including 20 new spectra obtained with the Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) on the Hubble Space Telescope. Of the sources, 28 are in the ~1 Myr old Taurus-Auriga complex or Orion Molecular Cloud, 4 in the 8-10 Myr old Orion OB1a complex and one, TW Hya, in the 10 Myr old TW Hydrae Association. We also obtained FUV ACS/SBC spectra of 10 non-accreting sources surrounded by debris disks with ages between 10 and 125 Myr. We use a feature in the FUV spectra due mostly to electron impact excitation of \\h2 to study the evolution of the gas in the inner disk. We find that the \\h2 feature is absent in non-accreting sources, but is detected in the spectra of CTTS and correlates with accretion luminosity. Since all young stars have active chromospheres which produce strong X-ray and UV emission capable of exciting \\h2 in the disk, the fact that the non-accreting sources show no \\h2 emission implies that the \\h2 ga...

  15. Investigating the composition of organic aerosol resulting from cyclohexene ozonolysis: low molecular weight and heterogeneous reaction products

    Directory of Open Access Journals (Sweden)

    J. F. Hamilton

    2006-01-01

    Full Text Available The composition of organic aerosol formed from the gas phase ozonolysis of cyclohexene has been investigated in a smog chamber experiment. Comprehensive gas chromatography with time of flight mass spectrometric detection was used to determine that dicarboxylic acids and corresponding cyclic anhydrides dominated the small gas phase reaction products found in aerosol sampled during the first hour after initial aerosol formation. Structural analysis of larger more polar molecules was performed using liquid chromatography with ion trap tandem mass spectrometry. This indicated that the majority of identified organic mass was in dimer form, built up from combinations of the most abundant small acid molecules, with frequent indication of the inclusion of adipic acid. Trimers and tetramers potentially formed via similar acid combinations were also observed in lower abundances. Tandem mass spectral data indicated dimers with either acid anhydride or ester functionalities as the linkage between monomers. High-resolution mass spectrometry identified the molecular formulae of the most abundant dimer species to be C10H16O6, C11H18O6, C10H14O8 and C11H16O8 and could be used in some cases to reduce uncertainty in exact chemical structure determination by tandem MS.

  16. An Observation of Diamond-Shaped Particle Structure in a Soya Phosphatidylcohline and Bacteriorhodopsin Composite Langmuir Blodgett Film Fabricated by Multilayer Molecular Thin Film Method

    Science.gov (United States)

    Tsujiuchi, Y.; Makino, Y.

    A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.

  17. A Prediction of the Damping Properties of Hindered Phenol AO-60/polyacrylate Rubber (AO-60/ACM) Composites through Molecular Dynamics Simulation

    Science.gov (United States)

    Yang, Da-Wei; Zhao, Xiu-Ying; Zhang, Geng; Li, Qiang-Guo; Wu, Si-Zhu

    2016-05-01

    Molecule dynamics (MD) simulation, a molecular-level method, was applied to predict the damping properties of AO-60/polyacrylate rubber (AO-60/ACM) composites before experimental measures were performed. MD simulation results revealed that two types of hydrogen bond, namely, type A (AO-60) -OH•••O=C- (ACM), type B (AO-60) - OH•••O=C- (AO-60) were formed. Then, the AO-60/ACM composites were fabricated and tested to verify the accuracy of the MD simulation through dynamic mechanical thermal analysis (DMTA). DMTA results showed that the introduction of AO-60 could remarkably improve the damping properties of the composites, including the increase of glass transition temperature (Tg) alongside with the loss factor (tan δ), also indicating the AO-60/ACM(98/100) had the best damping performance amongst the composites which verified by the experimental.

  18. Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat

    Directory of Open Access Journals (Sweden)

    Zhang Xiaofei

    2012-12-01

    Full Text Available Abstract Background Low-molecular-weight glutenin subunits (LMW-GS strongly influence the bread-making quality of bread wheat. These proteins are encoded by a multi-gene family located at the Glu-A3, Glu-B3 and Glu-D3 loci on the short arms of homoeologous group 1 chromosomes, and show high allelic variation. To characterize the genetic and protein compositions of LMW-GS alleles, we investigated 16 Aroona near-isogenic lines (NILs using SDS-PAGE, 2D-PAGE and the LMW-GS gene marker system. Moreover, the composition of glutenin macro-polymers, dough properties and pan bread quality parameters were determined for functional analysis of LMW-GS alleles in the NILs. Results Using the LMW-GS gene marker system, 14–20 LMW-GS genes were identified in individual NILs. At the Glu-A3 locus, two m-type and 2–4 i-type genes were identified and their allelic variants showed high polymorphisms in length and nucleotide sequences. The Glu-A3d allele possessed three active genes, the highest number among Glu-A3 alleles. At the Glu-B3 locus, 2–3 m-type and 1–3 s-type genes were identified from individual NILs. Based on the different compositions of s-type genes, Glu-B3 alleles were divided into two groups, one containing Glu-B3a, B3b, B3f and B3g, and the other comprising Glu-B3c, B3d, B3h and B3i. Eight conserved genes were identified among Glu-D3 alleles, except for Glu-D3f. The protein products of the unique active genes in each NIL were detected using protein electrophoresis. Among Glu-3 alleles, the Glu-A3e genotype without i-type LMW-GS performed worst in almost all quality properties. Glu-B3b, B3g and B3i showed better quality parameters than the other Glu-B3 alleles, whereas the Glu-B3c allele containing s-type genes with low expression levels had an inferior effect on bread-making quality. Due to the conserved genes at Glu-D3 locus, Glu-D3 alleles showed no significant differences in effects on all quality parameters. Conclusions This work

  19. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2012-08-01

    Full Text Available Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m−3 (mean 47.6 ng m−3, accounting for 1.8–11.0% (4.8% of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA tracers formed from the oxidation of biogenic volatile organic compounds (VOCs such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052–53.3 ng m−3 (9.2 ng m−3, followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC, we estimate that an average of 10.7% (up to 26.2% of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8% and α-pinene SOC (2.9%. In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  20. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2013-02-01

    Full Text Available Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m−3 (mean 47.6 ng m−3, accounting for 1.8–11.0% (4.8% of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA tracers formed from the oxidation of biogenic volatile organic compounds (VOCs such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052–53.3 ng m−3 (9.2 ng m−3, followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC, we estimate that an average of 10.7% (up to 26.2% of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8% and α-pinene SOC (2.9%. In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  1. Evidence of Dissipation of Circumstellar Disks from L-band Spectra of Bright Galactic Be Stars

    Science.gov (United States)

    Sabogal, B. E.; Ubaque, K. Y.; García-Varela, A.; Álvarez, M.; Salas, L.

    2017-01-01

    We present L-band spectra of the Be stars γ Cas, ϕ Per, 28 Tau, θ CrB, 66 Oph, o Her, and 28 Cyg, obtained through use of the CID-InSb spectrograph with the 2.1-m telescope at OAN/UNAM San Pedro Martir Observatory. This is the first report of L-band spectra of o Her and θ CrB, and of the data obtained with this spectrograph. We obtain flux ratios of hydrogen lines for these stars, finding that they have optically thin envelopes, except by 66 Oph and θ CrB, which do not show evidence of a circumstellar disk. γ Cas and ϕ Per have flux ratio values of hydrogen lines closer to the optically thick case than the other stars. We use the line flux ratio diagram and optical spectra reported in the literature to study the life cycles of the disks. We find clear evidence of the dissipating process of the envelopes of 66 Oph and 28 Cyg, i.e., they are decaying stars. 28 Tau seems to have passed by a similar process. γ Cas and ϕ Per are stable stars because their circumstellar disks do not show notorious changes for many years. Finally, the stars in a build-up phase, whose envelopes are generated after a decaying phase or for the first time, have not yet been observed in the L-band. It would be useful to monitor more Be stars to observe this class of stars that probably change from a very tenuous envelope to an optically thick circumstellar disk. The line flux ratio diagram seems to confirm that late Be stars have more tenuous disks than early-type Be stars, as they tend to be separated at the left bottom and the top right parts of the diagram, respectively. Larger samples of Be stars are needed to confirm this hypothesis through a statistical analysis.

  2. Simulation of compact circumstellar shells around Type Ia supernovae and the resulting high-velocity features

    Science.gov (United States)

    Mulligan, Brian W.; Wheeler, J. Craig

    2017-01-01

    For Type Ia supernovae that are observed prior to B-band maximum (approximately 18-20 days after the explosion) Ca absorption features are observed at velocities of order 10,000 km/s faster than the typical photospheric features. These high velocity features weaken in the first couple of weeks, disappearing entirely by a week after B-band maximum. The source of this high velocity material is uncertain: it may be the result of interaction between the supernova and circumstellar material or may be the result of plumes or bullets of material ejected during the course of the explosion. We simulate interaction between a supernova and several compact circumstellar shells, located within 0.03 solar radii of the progenitor white dwarf and having masses of 0.02 solar masses or less. We use FLASH to perform hydrodynamic simulations of the system to determine the structure of the ejecta and shell components after the interaction, then use these results to generate synthetic spectra with 1 day cadence for the first 25 days after the explosion. We compare the evolution of the velocity and pseudo-equivalent width of the Ca near-infrared triplet features in the synthetic spectra to observed values, demonstrating that these models are consistent with observations. Additionally, we fit the observed spectra of SN 2011fe (Parrent 2012, Pereira 2013) prior to B-band maximum using these models and synthetic spectra and provide an estimate for Ca abundance within the circumstellar material with implications for the mechanism by which the white dwarf explodes.

  3. A New View of the Circumstellar Environment of SN 1987A

    Science.gov (United States)

    Sugerman, Ben E. K.; Crotts, Arlin P. S.; Kunkel, William E.; Heathcote, Stephen R.; Lawrence, Stephen S.

    2005-07-01

    We summarize the analysis of a uniform set of both previously known and newly discovered scattered-light echoes, detected within 30" of SN 1987A in 10 years of optical imaging, and with which we have constructed the most complete three-dimensional model of the progenitor's circumstellar environment. Surrounding the SN is a richly structured bipolar nebula. An outer, double-lobed ``peanut,'' which we believe is the contact discontinuity between the red supergiant and main-sequence winds, is a prolate shell extending 28 lt-yr along the poles and 11 lt-yr near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this peanut, which is pinched to a radius of 6 lt-yr. Interior, the innermost circumstellar material lies along a cylindrical hourglass, 1 lt-yr in radius and 4 lt-yr long, which connects to the peanut by a thick equatorial disk. The nebulae are inclined 41° south and 8° east of the line of sight, slightly elliptical in cross section, and marginally offset west of the SN. The three-dimensional geometry of the three circumstellar rings is studied, suggesting the northern and southern rings are located 1.3 and 1.0 lt-yr from the SN, while the equatorial ring is elliptical (b/a~0.03 cm-3 the maximum dust-grain size increases from ~0.2 to 2 μm and the silicate:carbonaceous dust ratio decreases. The nebulae have a total mass of ~1.7 Msolar, yielding a red-supergiant mass loss around 5×10-6 Msolar yr-1. We compare these results to current formation models and find that no model has successfully reproduced this system. However, our results suggest a heuristic evolutionary sequence in which the progenitor evolves through two ``blue loops,'' perhaps accompanied by a close binary companion.

  4. Circumstellar dust, PAHs and stellar populations in early-type galaxies: insights from GALEX and WISE

    Science.gov (United States)

    Simonian, Gregory V.; Martini, Paul

    2017-02-01

    A majority of early-type galaxies contain interstellar dust, yet the origin of this dust, and why the dust sometimes exhibits unusual polycyclic aromatic hydrocarbon (PAH) ratios, remains a mystery. If the dust is internally produced, it likely originates from the large number of asymptotic giant branch stars associated with the old stellar population. We present GALEX and WISE elliptical aperture photometry of ˜310 early-type galaxies with Spitzer mid-infrared spectroscopy and/or ancillary data from ATLAS3D, to characterize their circumstellar dust and the shape of the radiation field that illuminates the interstellar PAHs. We find that circumstellar dust is ubiquitous in early-type galaxies, which indicates some tension between stellar population age estimates and models for circumstellar dust production in very old stellar populations. We also use dynamical masses from ATLAS3D to show that WISE W1 (3.4 μm) mass-to-light ratios are consistent with the initial mass function variation found by previous work. While the stellar population differences in early-type galaxies correspond to a range of radiation field shapes incident upon the diffuse dust, the ratio of the ionization-sensitive 7.7 μm/11.3 μm PAH feature does not correlate with the shape of the radiation field, nor to variations with the size-sensitive 11.3 μm/17 μm ratio. The 7.7 μm/11.3 μm PAH ratio does tend to be smaller in galaxies with proportionally greater H2 emission, which is evidence that processing of primarily smaller grains by shocks is responsible for the unusual ratios, rather than substantial differences in the overall PAH size or ionization distribution.

  5. Gas phase chemical kinetics at high temperature of carbonaceous molecules: application to circumstellar envelopes

    Science.gov (United States)

    Biennier, L.; Gardez, A.; Saidani, G.; Georges, R.; Rowe, B.; Reddy, K. P. J.

    2011-05-01

    Circumstellar shells of evolved stars are a theater of extremely rich physical and chemical processes. More than seventy molecules of varied nature have been identified in the envelopes through their spectral fingerprints in the microwave or far infrared regions. Many of them are carbon chain molecules and radicals and a significant number are unique to the circumstellar medium. However, observational data remain scarce and more than half of the detected species have been observed in only one object, the nearby carbon star IRC + 10216. Chemical kinetic models are needed to describe the formation of molecules in evolved circumstellar outflows. Upcoming terrestrial telescopes such as ALMA will increase the spatial resolution by several orders of magnitude and provide a wealth of data. The determination of relevant laboratory kinetics data is critical to keep up with the development of the observations and of the refinement of chemical models. Today, the majority of reactions studied in the laboratory are the ones involved in combustion and concerning light hydrocarbons. Our objective is to provide the scientific community with rate coefficients of reactions between abundant species in these warm environments. Cyanopolyynes from HC_2N to HC_9N have all been detected in carbon rich circumstellar envelopes in up to 10 sources for HC_3N. Neutral-neutral reactions of the CN radical with unsaturated hydrocarbons could be a dominant route in the formation of cyanopolyynes, even at low temperatures. Our approach aims to bridge the temperature gap between resistively heated flow tubes and shock tubes. The present kinetic measurements are obtained using a new reactor combining a high enthalpy source (Moudens et al. 2011) with a flow tube and a pulsed laser photolysis and laser induced fluorescence system to probe the undergoing chemical reactions. The high enthalpy flow tube has been used to measure the rate constant of the reaction of the CN radical with propane, propene

  6. Archival Legacy Investigations of Circumstellar Environments (ALICE): Statistical assessment of point source detections

    CERN Document Server

    Choquet, É; Soummer, R; Perrin, M D; Hagan, J B; Gofas-Salas, E; Rajan, A; Aguilar, J

    2015-01-01

    The ALICE program, for Archival Legacy Investigation of Circumstellar Environment, is currently conducting a virtual survey of about 400 stars, by re-analyzing the HST-NICMOS coronagraphic archive with advanced post-processing techniques. We present here the strategy that we adopted to identify detections and potential candidates for follow-up observations, and we give a preliminary overview of our detections. We present a statistical analysis conducted to evaluate the confidence level on these detection and the completeness of our candidate search.

  7. HST Spectroscopy of Spot 1 on the Circumstellar Ring of SN 1987A

    CERN Document Server

    Michael, E; Pun, C S J; Garnavich, P M; Challis, P M; Kirshner, R P; Raymond, J; Borkowski, K J; Chevalier, R A; Filippenko, A V; Fransson, C; Lundqvist, P; Panagia, N; Phillips, M M; Sonneborn, G; Suntzeff, N B; Wang, L; Wheeler, J C; Michael, Eli; Cray, Richard Mc; Garnavich, Peter; Challis, Peter; Kirshner, Robert P.; Raymond, John; Borkowski, Kazimierz; Chevalier, Roger; Filippenko, Alexei V.; Fransson, Claes; Lundqvist, Peter; Panagia, Nino; Sonneborn, George; Suntzeff, Nicholas B.; Wang, Lifan

    2000-01-01

    We present ultraviolet and optical spectra of the first bright spot (PA = 29 degrees) on Supernova 1987A's equatorial circumstellar ring taken with the Space Telescope Imaging Spectrograph. We interpret this spot as the emission produced by radiative shocks that occur where the supernova blast wave strikes an inward protrusion of the ring. The observed line widths and intensity ratios indicate the presence of radiative shocks with velocities ranging from 100 to 250 km s^-1 entering dense (> 10^4 cm^-3) gas. These observations, and future observations of the development of the spectra and line profiles, provide a unique opportunity to study the hydrodynamics of radiative shocks.

  8. Indicator of Exo-Solar Planet(s) in the Circumstellar Disk Around Beta Pictoris

    CERN Document Server

    Gorkavyi, N; Ozernoy, L M; Taidakova, T; Mather, J; Gorkavyi, Nick; Heap, Sara; Ozernoy, Leonid; Taidakova, Tanya; Mather, John

    2000-01-01

    Our efficient numerical approach has been applied to modeling the asymmetric circumstellar dust disk around Beta Pictoris as observed with the HST/STIS. We present a new model on the origin of the warping of the Beta Pic disk. We suggest that the observed warp is formed by the gravitational influence of a planet with a mass of about 10 masses of Earth, at a distance of 70 AU, and a small inclination ($\\sim 2.5^\\circ$) of the planetary orbit to the main dust disk. Results of our modeling are compared with the STIS observations.

  9. Enhancement of minority carrier lifetime of GaInP with lateral composition modulation structure grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. W.; Ravindran, Sooraj; Kang, S. J.; Hwang, H. Y.; Jho, Y. D. [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Park, C. Y. [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Jo, Y. R.; Kim, B. J. [School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Y. T., E-mail: ytlee@gist.ac.kr [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-07-28

    We report the enhancement of the minority carrier lifetime of GaInP with a lateral composition modulated (LCM) structure grown using molecular beam epitaxy (MBE). The structural and optical properties of the grown samples are studied by transmission electron microscopy and photoluminescence, which reveal the formation of vertically aligned bright and dark slabs corresponding to Ga-rich and In-rich GaInP regions, respectively, with good crystal quality. With the decrease of V/III ratio during LCM GaInP growth, it is seen that the band gap of LCM GaInP is reduced, while the PL intensity remains high and is comparable to that of bulk GaInP. We also investigate the minority carrier lifetime of LCM structures made with different flux ratios. It is found that the minority carrier lifetime of LCM GaInP is ∼37 times larger than that of bulk GaInP material, due to the spatial separation of electrons and holes by In-rich and Ga-rich regions of the LCM GaInP, respectively. We further demonstrate that the minority carrier lifetime of the grown LCM GaInP structures can easily be tuned by simply adjusting the V/III flux ratio during MBE growth, providing a simple yet powerful technique to tailor the electrical and optical properties at will. The exceptionally high carrier lifetime and the reduced band gap of LCM GaInP make them a highly attractive candidate for forming the top cell of multi-junction solar cells and can enhance their efficiency, and also make them suitable for other optoelectronics devices, such as photodetectors, where longer carrier lifetime is beneficial.

  10. Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhipeng [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041 (China); Huang, Bingxue; Li, Yiwen [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Tian, Meng [Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041 (China); Li, Li [Department of Oncology, the 452 Hospital of Chinese PLA, Chengdu 610021 (China); Yu, Xixun, E-mail: yuxixun@163.com [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2016-04-01

    To enhance implant stability and prolong the service life of artificial joint component, a new approach was proposed to improve the wear resistance of artificial joint component and endow artificial joint component with the biological efficacy of resistance to aseptic loosening. Strontium calcium polyphosphate (SCPP) were interfused in ultrahigh molecular weight polyethylene (UHMWPE) by a combination of liquid nitrogen ball-milling and flat-panel curing process to prepare the SCPP/UHMWPE composites. The micro-structure, mechanical characterization, tribological characterization and bioactivities of various SCPP/UHMWPE composites were investigated. The results suggested that this method could statistically improve the wear resistance of UHMWPE resulting from a good SCPP particle dispersion. Moreover, it is also observed that the SCPP/UHMWPE composites-wear particles could promote the production of OPG by osteoblasts and decrease the production of RANKL by osteoblasts, and then increase the OPG/RANKL ratio. This indicated that the SCPP/UHMWPE composites had potential efficacy to prevent and treat aseptic loosening. Above all, the SCPP/UHMWPE composites with a suitable SCPP content would be the promising materials for fabricating artificial joint component with ability to resist aseptic loosening. - Highlights: • SCPP/UHMWPE composites could enhance biological efficacy of resistance to aseptic loosening. • SCPP would improve biological efficacy with a few sacrifice of wear resistance. • The results might provide a promising wear-resistant material for fabricating acetabular cup.

  11. Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    CERN Document Server

    Wolf, Sebastian; Alexander, Richard; Berger, Jean-Philippe; Creech-Eakman, Michelle; Duchene, Gaspard; Dutrey, Anne; Mordasini, Christophe; Pantin, Eric; Pont, Frederic; Pott, Joerg-Uwe; Tatulli, Eric; Testi, Leonardo

    2012-01-01

    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.

  12. On the central symmetry of the circumstellar envelope of RS Cnc

    CERN Document Server

    Nhung, Pham Tuyet; Winters, Jan Martin; Darriulat, Pierre; Gérard, Eric; Bertre, Thibaut Le

    2014-01-01

    We present a phenomenological study of CO(1-0) and CO(2-1) emission from the circumstellar envelope (CSE) of the Asymptotic Giant Branch (AGB) star RS\\,Cnc. It reveals departures from central symmetry that turn out to be efficient tools for the exploration of some of the CSE properties. We use a wind model including a bipolar flow with a typical wind velocity of $\\sim$8 km\\,s$^{-1}$ decreasing to $\\sim$2 km\\,s$^{-1}$ near the equator to describe Doppler velocity spectral maps obtained by merging data collected at the IRAM Plateau de Bure Interferometer and Pico Veleta single dish radio telescope. Parameters describing the wind morphology and kinematics are obtained, together with the radial dependence of the gas temperature in the domain of the circumstellar envelope probed by the CO observations. Significant north-south central asymmetries are revealed by the analysis, which we quantify using a simple phenomenological description. The origin of such asymmetries is unclear.

  13. A Correlation Between Circumstellar Disks and Rotation in the Upper Scorpius OB Association

    CERN Document Server

    Dahm, S E; White, R J

    2011-01-01

    We present projected rotational velocities for 20 early-type (B8-A9) and 74 late-type (F2-M8) members of the ~5 Myr old Upper Scorpius OB Association derived from high dispersion optical spectra obtained with the High Resolution Echelle Spectrometer (HIRES) on Keck I and the Magellan Inamori Kyocera Echelle (MIKE) on the Magellan Clay telescope. The spectroscopic sample is composed of stars and brown dwarfs with infrared signatures of circumstellar disks, both primordial and debris, and non-excess sources of comparable spectral type. We merge projected rotational velocities, accretion diagnostics, and Spitzer Space Telescope Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) 24 micron photometry to examine the relationship between rotation and circumstellar disks. The rotational velocities are strongly correlated with spectral type, a proxy for mass, such that the median vsini for B8-A9 type stars is: 195(+/-)70 km/s, F2-K4: 37.8(+/-)7.4 km/s, K5-K9: 13.8(+21.3/-8.2) km/s, M0-M5:...

  14. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Perrin, Marshall; Hines, Dean C. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Nielsen, Eric L. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul [Astronomy Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Cardwell, Andrew [LBT Observatory, University of Arizona, 933 N. Cherry Avenue, Room 552, Tucson, AZ 85721 (United States); Chilcote, Jeffrey [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Fitzgerald, Michael P.; Hung, Li-Wei [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Goodsell, Stephen J. [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hartung, Markus; Hibon, Pascale, E-mail: swolff9@jh.edu [Gemini Observatory, Casilla 603, La Serena (Chile); and others

    2016-02-10

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.

  15. Mass loss from OH/IR stars - Models for the infrared emission of circumstellar dust shells

    Science.gov (United States)

    Justtanont, K.; Tielens, A. G. G. M.

    1992-01-01

    The IR emission of a sample of 24 OH/IR stars is modeled, and the properties of circumstellar dust and mass-loss rate of the central star are derived. It is shown that for some sources the observations of the far-IR emission is well fitted with a lambda exp -1 law, while some have a steeper index of 1.5. For a few sources, the presence of circumstellar ice grains is inferred from detailed studies of the observed 10-micron feature. Dust mass-loss rates are determined from detailed studies for all the stars in this sample. They range from 6.0 x 10 exp -10 solar mass/yr for an optically visible Mira to 2.2 x 10 exp -6 solar mass/yr for a heavily obscured OH/IR star. These dust mass-loss rates are compared to those calculated from IRAS photometry using 12-, 25-, and 60-micron fluxes. The dust mass-loss rates are also compared to gas mass-loss rates determined from OH and CO observations. For stars with tenuous shells, a dust-to-gas ratio of 0.001 is obtained.

  16. Recurring Occultations of RW Aurigae by Coagulated Dust in the Tidally Disrupted Circumstellar Disk

    CERN Document Server

    Rodriguez, Joseph E; Siverd, Robert J; Pepper, Joshua; Stassun, Keivan G; Gaudi, B Scott; Weintraub, David A; Beatty, Thomas G; Lund, Michael B; Stevens, Daniel J

    2015-01-01

    We present photometric observations of RW Aurigae, a Classical T Tauri system, that reveal two remarkable dimming events. These events are similar to that which we observed in 2010-2011, which was the first such deep dimming observed in RW Aur in a century's worth of photometric monitoring. We suggested the 2010-2011 dimming was the result of an occultation of the star by its tidally disrupted circumstellar disk. In 2012-2013, the RW Aur system dimmed by ~0.7 mag for ~40 days and in 2014/2015 the system dimmed by ~2 mag for >250 days. The ingress/egress duration measurements of the more recent events agree well with those from the 2010-2011 event, providing strong evidence that the new dimmings are kinematically associated with the same occulting source. Therefore, we suggest that both the 2012-2013 and 2014-2015 dimming events, measured using data from the Kilodegree Extremely Little Telescope and the Kutztown University Observatory, are also occultations of RW Aur A by tidally disrupted circumstellar materi...

  17. The frequency and infrared brightness of circumstellar discs at white dwarfs

    CERN Document Server

    Rocchetto, M; Gaensicke, B T; Bergfors, C

    2014-01-01

    White dwarfs whose atmospheres are polluted by terrestrial-like planetary debris have become a powerful and unique tool to study evolved planetary systems. This paper presents results for an unbiased Spitzer IRAC search for circumstellar dust orbiting a homogeneous and well-defined sample of 134 single white dwarfs. The stars were selected without regard to atmospheric metal content but were chosen to have 1) hydrogen rich atmospheres, 2) 17 000 K < T_eff < 25 000 K and correspondingly young post main-sequence ages of 15-270Myr, and 3) sufficient far-ultraviolet brightness for a corresponding Hubble Space Telescope COS Snapshot. Five white dwarfs were found to host an infrared bright dust disc, three previously known, and two reported here for the first time, yielding a nominal 3.7% of white dwarfs in this post-main sequence age range with detectable circumstellar dust. Remarkably, complementary HST observations indicate that a fraction of 27% show metals in their photosphere that can only be explained ...

  18. Hubble and Spitzer Observations of an Edge-on Circumstellar Disk around a Brown Dwarf

    CERN Document Server

    Luhman, K L; D'Alessio, Paola; Calvet, Nuria; McLeod, Kim K; Bohac, J; Forrest, William J; Hartmann, Lee; Sargent, B; Watson, Dan M

    2007-01-01

    We present observations of a circumstellar disk that is inclined close to edge-on around a young brown dwarf in the Taurus star-forming region. Using data obtained with SpeX at the NASA Infrared Telescope Facility, we find that the slope of the 0.8-2.5 um spectrum of the brown dwarf 2MASS J04381486+2611399 cannot be reproduced with a photosphere reddened by normal extinction. Instead, the slope is consistent with scattered light, indicating that circumstellar material is occulting the brown dwarf. By combining the SpeX data with mid-IR photometry and spectroscopy from the Spitzer Space Telescope and previously published millimeter data from Scholz and coworkers, we construct the spectral energy distribution for 2MASS J04381486+2611399 and model it in terms of a young brown dwarf surrounded by an irradiated accretion disk. The presence of both silicate absorption at 10 um and silicate emission at 11 um constrains the inclination of the disk to be ~70 deg, i.e. ~20 deg from edge-on. Additional evidence of the h...

  19. AGB stars in the LMC: evolution of dust in circumstellar envelopes

    CERN Document Server

    Dell'Agli, F; Schneider, R; Di Criscienzo, M; García-Hernández, D A; Rossi, C; Brocato, E

    2014-01-01

    We calculated theoretical evolutionary sequences of asymptotic giant branch (AGB) stars, including formation and evolution of dust grains in their circumstellar envelope. By considering stellar populations of the Large Magellanic Cloud (LMC), we calculate synthetic colour-colour and colour-magnitude diagrams, which are compared with those obtained by the Spitzer Space Telescope. The comparison between observations and theoretical predictions outlines that extremely obscured carbon-stars and oxygen-rich sources experiencing hot bottom burning (HBB) occupy well defined, distinct regions in the colour-colour ($[3.6]-[4.5]$, $[5.8]-[8.0]$) diagram. The C-rich stars are distributed along a diagonal strip that we interpret as an evolutionary sequence, becoming progressively more obscured as the stellar surface layers enrich in carbon. Their circumstellar envelopes host solid carbon dust grains with size in the range $0.05 2$, are the descendants of stars with initial mass $M_{in} \\sim 2.5 - 3 M_{\\odot}$ in the ver...

  20. The PDS 66 Circumstellar Disk as seen in Polarized Light with the Gemini Planet Imager

    CERN Document Server

    Wolff, Schuyler G; Millar-Blanchaer, Maxwell A; Nielsen, Eric L; Wang, Jason; Cardwell, Andrew; Chilcote, Jeffrey; Dong, Ruobing; Draper, Zachary H; Duchene, Gaspard; Fitzgerald, Michael P; Goodsell, Stephen J; Grady, Carol A; Graham, James R; Greenbaum, Alexandra Z; Hartung, Markus; Hibon, Pascale; Hines, Dean C; Hung, Li-Wei; Kalas, Paul; Macintosh, Bruce; Marchis, Franck; Marois, Christian; Pueyo, Laurent; Rantakyro, Fredrik T; Schneider, Glenn; Sivaramakrishnan, Anand; Wiktorowicz, Sloane J

    2016-01-01

    We present H and K band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.12'' inner working angle (IWA) in H band, almost 3 times as close to the star as the previous HST observations with NICMOS and STIS (0.35'' effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the East side of the disk which is inferred to be nearer to us. We also detect a lateral asymmetry in the South possibly due to shadowing from material within the inner working angle. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.

  1. The Evolutionary State of Anemic Circumstellar Disks and the Primordial-to-Debris Disk Transition

    CERN Document Server

    Currie, Thayne

    2008-01-01

    We investigate the evolution of $\\sim$ 3 Myr-old MIPS-detected circumstellar disks in IC 348 that may be in an intermediate stage between primordial, optically-thick disks of gas/dust and debris disks characteristic of the final stages of planet formation. We demonstrate that these \\textit{anemic} disks are not a homogenous class of objects corresponding to a unique evolutionary state. Rather, such disks around early (B/A) spectral type stars are most likely warm, terrestrial zone debris disks; MIPS-detected anemic disks around later (M) stars are likely \\textit{evolved primordial disks} such as transition disks in their mid-IR colors, accretion signatures, and disk luminosities. Anemic disks surrounding G and K stars contain both populations. The difference in evolutionary states between anemic disks surrounding early type vs. late-type stars is consistent with a mass-dependent evolution of circumstellar disks from the primordial disk phase through the debris disk phase. Specifically, disks characteristicall...

  2. A Deep Chandra Observation of Kepler's Supernova Remnant: A Type Ia Event with Circumstellar Interaction

    CERN Document Server

    Reynolds, S P; Hwang, U; Hughes, J P; Badenes, C; Laming, J M; Blondin, J M

    2007-01-01

    We present initial results of a 750 ks Chandra observation of the remnant of Kepler's supernova of AD 1604. The strength and prominence of iron emission, together with the absence of O-rich ejecta, demonstrate that Kepler resulted from a thermonuclear supernova, even though evidence for circumstellar interaction is also strong. We have analyzed spectra of over 100 small regions, and find that they fall into three classes. (1) The vast majority show Fe L emission between 0.7 and 1 keV and Si and S K alpha emission; we associate these with shocked ejecta. A few of these are found at or beyond the mean blast wave radius. (2) A very few regions show solar O/Fe abundance rations; these we associate with shocked circumstellar medium (CSM). Otherwise O is scarce. (3) A few regions are dominated by continuum, probably synchrotron radiation. Finally, we find no central point source, with a limit about 100 times fainter than the central object in Cas A. The evidence that the blast wave is interacting with CSM may indic...

  3. A search of diffuse bands in fullerene planetary nebulae: evidence for diffuse circumstellar bands

    CERN Document Server

    Diaz-Luis, J J; Rao, N Kameswara; Manchado, A; Cataldo, F

    2014-01-01

    Large fullerenes and fullerene-based molecules have been proposed as carriers of diffuse interstellar bands (DIBs). The recent detection of the most common fullerenes (C60 and C70) around some Planetary Nebulae (PNe) now enable us to study the DIBs towards fullerene-rich space environments. We search DIBs in the optical spectra towards three fullerene-containing PNe (Tc 1, M 1-20, and IC 418). Special attention is given to DIBs which are found to be unusually intense towards these fullerene sources. In particular, an unusually strong 4428A absorption feature is a common charateristic to fullerene PNe. Similarly to Tc 1, the strongest optical bands of neutral C60 are not detected towards IC 418. Our high-quality (S/N > 300) spectra for PN Tc 1 together with its large radial velocity permits us to search for the presence of diffuse bands of circumstellar origin which we refer to as diffuse circumstellar bands (DCBs). We report the first tentative detection of two DCBs at 4428 and 5780 A in the fullerene-rich ci...

  4. Conditions for circumstellar disc formation - II. Effects of initial cloud stability and mass accretion rate

    Science.gov (United States)

    Machida, Masahiro N.; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro

    2016-12-01

    Disc formation in strongly magnetized cloud cores is investigated using a three-dimensional magnetohydrodynamic simulation with a focus on the effects of the initial cloud stability and the mass accretion rate. The initial cloud stability greatly alters the disc formation process even for prestellar clouds with the same mass-to-flux ratio. A high mass accretion rate on to the disc-forming region is realized in initially unstable clouds, and a large angular momentum is introduced into the circumstellar region in a short time. The region around the protostar has both a thin infalling envelope and a weak magnetic field, which both weaken the effect of magnetic braking. The growth of the rotation-supported disc is promoted in such unstable clouds. Conversely, clouds in an initially near-equilibrium state show lower accretion rates of mass and angular momentum. The angular momentum is transported to the outer envelope before protostar formation. After protostar formation, the circumstellar region has a thick infalling envelope and a strong magnetic field that effectively brakes the disc. As a result, disc formation is suppressed when the initial cloud is in a nearly stable state. The density distribution of the initial cloud also affects the disc formation process. Disc growth strongly depends on the initial conditions when the prestellar cloud has a uniform density, whereas there is no significant difference in the disc formation process in prestellar clouds with non-uniform densities.

  5. A New View of the Circumstellar Environment of SN 1987A

    CERN Document Server

    Sugerman, B E K; Kunkel, W E; Heathcote, S R; Lawrence, S S; Sugerman, Ben E. K.; Crotts, Arlin P. S.; Kunkel, William E.; Heathcote, Stephen R.; Lawrence, Stephen S.

    2005-01-01

    We summarize the analysis of a uniform set of both previously-known and newly-discovered scattered-light echoes, detected within 30" of SN 1987A in ten years of optical imaging, and with which we have constructed the most complete three-dimensional model of the progenitor's circumstellar environment. Surrounding the SN is a richly-structured bipolar nebula. An outer, double-lobed ``peanut,'' which we believe is the contact discontinuity between the red supergiant and main sequence winds, is a prolate shell extending 28 ly along the poles and 11 ly near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this peanut, which is pinched to a radius of 6 ly. Interior, the innermost circumstellar material lies along a cylindrical hourglass, 1 ly in radius and 4 ly long, which connects to the peanut by a thick equatorial disk. The nebulae are inclined 41o south and 8o east of the line of sight, slightly elliptical in cross section, and marginally offset west of the SN. Th...

  6. V409 Tau As Another AA Tau: Photometric Observations of Stellar Occultations by the Circumstellar Disk

    CERN Document Server

    Rodriguez, Joseph E; Stassun, Keivan G; Siverd, Robert J; Cargile, Phillip; Weintraub, David A; Beatty, Thomas G; Gaudi, B Scott; Mamajek, Eric E; Sanchez, Nicole

    2015-01-01

    AA Tau is a well studied young stellar object that presents many of the photometric characteristics of a Classical T Tauri star (CTTS), including short-timescale stochastic variability attributed to spots and/or accretion as well as long duration dimming events attributed to occultations by vertical features (e.g., warps) in its circumstellar disk. We present new photometric observations of AA Tau from the Kilodegree Extremely Little Telescope North (KELT-North) which reveal a deep, extended dimming event in 2011, which we show supports the interpretation by Bouvier et al. (2013) of an occultation by a high-density feature in the circumstellar disk located >8 AU from the star. We also present KELT-North observations of V409 Tau, a relatively unstudied young stellar object also in Taurus-Auriga, showing short timescale erratic variability, along with two separate long and deep dimming events, one from January 2009 through late October 2010, and the other from March 2012 until at least September 2013. We interp...

  7. BANYAN. VIII. New Low-Mass Stars and Brown Dwarfs with Candidate Circumstellar Disks

    CERN Document Server

    Boucher, Anne; Gagné, Jonathan; Malo, Lison; Faherty, Jacqueline K; Doyon, René; Chen, Christine H

    2016-01-01

    We present the results of a search for new circumstellar disks around low-mass stars and brown dwarfs with spectral types >K5 that are confirmed or candidate members of nearby young moving groups. Our search input sample was drawn from the BANYAN surveys of Malo et al. and Gagn\\'e et al. Two-Micron All-Sky Survey and Wide-field Infrared Survey Explorer data were used to detect near- to mid-infrared excesses that would reveal the presence of circumstellar disks. A total of 13 targets with convincing excesses were identified: four are new and nine were already known in the literature. The new candidates are 2MASS J05010082$-$4337102 (M4.5), J08561384$-$1342242 (M8$\\,\\gamma$), J12474428$-$3816464 (M9$\\,\\gamma$) and J02265658$-$5327032 (L0$\\,\\delta$), and are candidate members of the TW Hya ($\\sim10\\pm 3\\,$Myr), Columba ($\\sim 42^{+6}_{-4}\\,$Myr) and Tucana-Horologium ($\\sim 45\\pm 4\\,$Myr) associations, with masses of $120$ and $13-18\\,M_{\\mathrm{Jup}}$. The M8$-$L0 objects in Columba and Tucana-Horologium are po...

  8. Effects of stellar flybys on planetary systems: 3D modeling of the circumstellar disks damping effects

    CERN Document Server

    Picogna, Giovanni

    2014-01-01

    Stellar flybys in star clusters are suspected to affect the orbital architecture of planetary systems causing eccentricity excitation and orbital misalignment between the planet orbit and the equatorial plane of the star. We explore whether the impulsive changes in the orbital elements of planets, caused by an hyperbolic stellar flyby, can be fully damped by the circumstellar disk surrounding the star. The time required to disperse stellar clusters is in fact comparable to circumstellar disk's lifetime. We have modelled in 3D a system made of a solar type star surrounded by a low density disk with a giant planet embedded in it approached on a hyperbolic encounter trajectory by a second star, of similar mass and with its own disk. We focus on extreme configurations where a very deep stellar flyby perturbs a Jovian planet on an external orbit. This allows to test in full the ability of the disk to erase the effects of the stellar encounter. We find that the amount of mass lost by the disk during the stellar fly...

  9. Preparation of Molecularly Imprinted Composite Membranes for Inducing Bergenin Crystallization in Supercritical CO{sub 2} and Adsorption Properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wencheng; Wang, Ruixia; Cui, Yanfang; Hong, Lile [Hefei University of Technology, Hefei (China); Zhang, Qing; Zhang, Xingyuan [University of Science and Technology of China, Hefei (China)

    2012-02-15

    The process of molecular imprinting is composed of three steps: covalent conjugate or noncovalent adduct between a functional monomer and a template molecule, which is the preorganization step; polymerization of this monomer-template conjugate (or adduct) and removal of the template from the polymer. In the above procedures, the molecular memory is strongly dependent on the formation and status of the template-monomer preorganization conjugate (or adduct). Therefore, to study these conjugates/adducts in detail is crucially important for understanding the imprinting mechanism and designing efficient molecular imprinting systems. On the other hand, one of the most important and facile ways to realize the molecular imprinting is using the molecularly imprinted membranes (MIMs), which were first introduced by Piletsky et al. In MIMs systems, the combination of the imprinting technique can provide membranes with specific selectivity for the separation of targeted organic compounds and thus make the MIMs possess the advantages of both molecular imprinting and membrane technology.

  10. Temporal and spatial variability of the stable isotopic composition of atmospheric molecular hydrogen: observations at six EUROHYDROS stations

    Directory of Open Access Journals (Sweden)

    A. M. Batenburg

    2011-03-01

    Full Text Available Despite the potential of isotope measurements to improve our understanding of the global atmospheric molecular hydrogen (H2 cycle, few H2 isotope data have been published so far. Now, within the EUROpean network for atmospheric HYDRogen Observations and Studies project (EUROHYDROS, weekly to monthly air samples from six locations in a global sampling network have been analysed for hydrogen mixing ratio (m(H2 and the stable hydrogen isotopic composition of H2 (δ(D,H2, hereafter referred to as δ(D. The time series thus obtained now cover one to five years for all stations. This is the largest set of ground station observations of δ(D so far. Annual average δ(D values are higher at the Southern Hemisphere (SH than at the Northern Hemisphere (NH stations; the maximum is observed at Neumayer (Antarctica, and the minimum at the NH midlatitude or subtropical stations. The maximum seasonal differences in δ(D range from ≈18‰ at Neumayer to ≈45‰ at Schauinsland (Southern Germany; in general, seasonal variability is largest at the NH stations. The timing of minima and maxima differs per station as well. In Alert (Arctic Canada, the variations in δ(D and m(H2 can be approximated as simple harmonic functions with a ≈5-month phase shift. This out-of-phase seasonal behaviour of δ(D and m(H2 can also be detected, but with a ≈6-month phase shift, at Mace Head and Cape Verde. However, no seasonal δ(D cycle could be observed at Schauinsland, which likely reflects the larger influence of local sources and sinks at this continental station. At the two SH stations, no seasonal cycle could be detected in the δ(D data. Assuming that the sink processes are the main drivers of the observed seasonality in m(H2 and δ(D on the NH, the relative seasonal variations can be used to estimate the relative sink strength of the two major sinks

  11. Temporal and spatial variability of the stable isotopic composition of atmospheric molecular hydrogen: observations at six EUROHYDROS stations

    Directory of Open Access Journals (Sweden)

    A. M. Batenburg

    2011-07-01

    Full Text Available Despite the potential of isotope measurements to improve our understanding of the global atmospheric molecular hydrogen (H2 cycle, few H2 isotope data have been published so far. Now, within the EUROpean network for atmospheric HYDRogen Observations and Studies project (EUROHYDROS, weekly to monthly air samples from six locations in a global sampling network have been analysed for H2 mixing ratio (m(H2 and the stable isotopic composition of the H2 (δ(D,H2, hereafter referred to as δD. The time series thus obtained now cover one to five years for all stations. This is the largest set of ground station observations of δD so far. Annual average δD values are higher at the Southern Hemisphere (SH than at the Northern Hemisphere (NH stations; the maximum is observed at Neumayer (Antarctica, and the minimum at the non-arctic NH stations. The maximum seasonal differences in δD range from ≈18 ‰ at Neumayer to ≈45 ‰ at Schauinsland (Southern Germany; in general, seasonal variability is largest at the NH stations. The timing of minima and maxima differs per station as well. In Alert (Arctic Canada, the variations in δD and m(H2 can be approximated as simple harmonic functions with a ≈5-month relative phase shift. This out-of-phase seasonal behaviour of δD and m(H2 can also be detected, but delayed and with a ≈6-month relative phase shift, at Mace Head and Cape Verde. However, no seasonal δD cycle could be observed at Schauinsland, which likely reflects the larger influence of local sources and sinks at this continental station. At the two SH stations, no seasonal cycle could be detected in the δD data. If it is assumed that the sink processes are the main drivers of the observed seasonality in m(H2 and δD on the NH, the relative seasonal variations can be used to estimate the relative sink strength of the two

  12. Observations of molecular hydrogen mixing ratio and stable isotopic composition at the Cabauw tall tower in the Netherlands

    Science.gov (United States)

    Batenburg, A. M.; Popa, M. E.; Vermeulen, A. T.; van den Bulk, W. C. M.; Jongejan, P. A. C.; Fisher, R. E.; Lowry, D.; Nisbet, E. G.; Röckmann, T.

    2016-12-01

    Measurements of the stable isotopic composition (δD(H2) or δD) of atmospheric molecular hydrogen (H2) are a useful addition to mixing ratio (χ(H2)) measurements for understanding the atmospheric H2 cycle. δD datasets published so far consist mostly of observations at background locations. We complement these with observations from the Cabauw tall tower at the CESAR site, situated in a densely populated region of the Netherlands. Our measurements show a large anthropogenic influence on the local H2 cycle, with frequently occurring pollution events that are characterized by χ(H2) values that reach up to ≈1 ppm and low δD values. An isotopic source signature analysis yields an apparent source signature below -400‰, which is much more D-depleted than the fossil fuel combustion source signature commonly used in H2 budget studies. Two diurnal cycles that were sampled at a suburban site near London also show a more D-depleted source signature (≈-340‰), though not as extremely depleted as at Cabauw. The source signature of the Northwest European vehicle fleet may have shifted to somewhat lower values due to changes in vehicle technology and driving conditions. Even so, the surprisingly depleted apparent source signature at Cabauw requires additional explanation; microbial H2 production seems the most likely cause. The Cabauw tower site also allowed us to sample vertical profiles. We found no decrease in χ(H2) at lower sampling levels (20 and 60 m) with respect to higher sampling levels (120 and 200 m). There was a significant shift to lower median δD values at the lower levels. This confirms the limited role of soil uptake around Cabauw, and again points to microbial H2 production during an extended growing season, as well as to possible differences in average fossil fuel combustion source signature between the different footprint areas of the sampling levels. So, although knowledge of the background cycle of H2 has improved over the last decade, surprising

  13. Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA

    Directory of Open Access Journals (Sweden)

    Notburga eGierlinger

    2014-06-01

    Full Text Available At the molecular level the plant cell walls consist of a few nanometer thick semi-crystalline cellulose fibrils embedded in amorphous matrix polymers such as pectins, hemicelluloses and lignins. The arrangement of these molecules within the cell wall in different plant tissues, cells and cell wall layers is of crucial importance for a better understanding and thus optimized utilization of plant biomass. During the last years Confocal Raman microscopy evolved as a powerful method in plant science by revealing the different molecules in context with the microstructure. In this study two-dimensional spectral maps have been acquired of micro-cross-sections of spruce (softwood and beech (hardwood. Raman images have been derived by using univariate (band integration, height ratios and multivariate methods (vertex component analysis, VCA. While univariate analysis only visualizes changes in selected band heights or areas, VCA separates anatomical regions and cell wall layers with the most different molecular structures by projecting the data to the identified orthogonal subspace in an interactive way and finding the endmember by repeated iteration. Beside visualization of the distinguished regions and features the underlying molecular structure can be derived based on the endmember spectra. Only one pure component spectrum (lignin from the cell corner was extracted, while all other endmember spectra represented mixtures characteristic for the different resolved spatial areas. VCA revealed that the lumen sided S3 layer has a similar molecular composition as the pit membrane, both revealing a clear change in lignin composition compared to all other cell wall regions. Within the S2 layer a lamellar structure was visualized, which was elucidated to derive also from slight changes in lignin composition and content and might be due to successive but not uniform lignification during growth.

  14. Determination of elemental compositions from mass peak profiles of the molecular ion (m) and the m + 1 and m + 2 ions.

    Science.gov (United States)

    Grange, A H; Donnelly, J R; Sovocool, G W; Brumley, W C

    1996-02-01

    The relative abundances of M + 1 and M + 2 ions help to identify the elemental composition of the molecular ion (M). But scan speed, sensitivity, and resolution limitations of mass spectrometers have impeded determination of these abundances. Mass peak profiling from selected ion recording data (MPPSIRD) provided faster sampling and enhanced sensitivity, which permitted use of higher resolution. M + 2 profiles having only a few percent of the ion abundance of M were monitored at 20 000 resolution. The relative abundances, exact masses, and shapes of M, M + 1, and M + 2 mass peak profiles were determined. By applying five criteria based on these quantities, elemental compositions were determined even for ions too large (up to 766 Da) to be uniquely assigned from their exact mass and accuracy limits alone. A profile generation model (PGM) was written to predict these resolution-dependent quantities by considering all M + 1 and M + 2 ions for each candidate composition. The model also provided assurance that no other compositions were possible. Characterization of the M + 1 and M + 2 profiles by MPPSIRD and the PGM greatly expanded the practical ability of high-resolution mass spectrometry to determine elemental compositions.

  15. Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening.

    Science.gov (United States)

    Gu, Zhipeng; Huang, Bingxue; Li, Yiwen; Tian, Meng; Li, Li; Yu, Xixun

    2016-04-01

    To enhance implant stability and prolong the service life of artificial joint component, a new approach was proposed to improve the wear resistance of artificial joint component and endow artificial joint component with the biological efficacy of resistance to aseptic loosening. Strontium calcium polyphosphate (SCPP) were interfused in ultrahigh molecular weight polyethylene (UHMWPE) by a combination of liquid nitrogen ball-milling and flat-panel curing process to prepare the SCPP/UHMWPE composites. The micro-structure, mechanical characterization, tribological characterization and bioactivities of various SCPP/UHMWPE composites were investigated. The results suggested that this method could statistically improve the wear resistance of UHMWPE resulting from a good SCPP particle dispersion. Moreover, it is also observed that the SCPP/UHMWPE composites-wear particles could promote the production of OPG by osteoblasts and decrease the production of RANKL by osteoblasts, and then increase the OPG/RANKL ratio. This indicated that the SCPP/UHMWPE composites had potential efficacy to prevent and treat aseptic loosening. Above all, the SCPP/UHMWPE composites with a suitable SCPP content would be the promising materials for fabricating artificial joint component with ability to resist aseptic loosening.

  16. Dynamics of Circumstellar Disks. III. The Case of GG Tau A

    Science.gov (United States)

    Nelson, Andrew F.; Marzari, F.

    2016-08-01

    We present two-dimensional hydrodynamic simulations using the Smoothed Particle Hydrodynamic code, VINE, to model a self-gravitating binary system. We model configurations in which a circumbinary torus+disk surrounds a pair of stars in orbit around each other and a circumstellar disk surrounds each star, similar to that observed for the GG Tau A system. We assume that the disks cool as blackbodies, using rates determined independently at each location in the disk by the time dependent temperature of the photosphere there. We assume heating due to hydrodynamical processes and to radiation from the two stars, using rates approximated from a measure of the radiation intercepted by the disk at its photosphere. We simulate a suite of systems configured with semimajor axes of either a = 62 AU (“wide”) or a = 32 AU (“close”), and with assumed orbital eccentricity of either e = 0 or e = 0.3. Each simulation follows the evolution for ˜6500-7500 yr, corresponding to about three orbits of the torus around the center of mass. Our simulations show that strong, sharply defined spiral structures are generated from the stirring action of the binary and that, in some cases, these structures fragment into 1-2 massive clumps. The torus quickly fragments into several dozen such fragments in configurations in which either the binary is replaced by a single star of equal mass, or radiative heating is neglected. The spiral structures extend inwards to the circumstellar environment as large scale material streams for which most material is found on trajectories that return it to the torus on a timescale of 1-200 yr, with only a small fraction accreting into the circumstellar environment. The spiral structures also propagate outwards through the torus, generating net outwards mass flow, and eventually losing coherence at large distances from the stars. The torus becomes significantly eccentric in shape over most of its evolution. In all configurations, accretion onto the stars

  17. ALMA view of the circumstellar environment of the post-common-envelope-evolution binary system HD101584

    CERN Document Server

    Olofsson, H; Maercker, M; Humphreys, E M L; Lindqvist, M; Nyman, L; Ramstedt, S

    2015-01-01

    We study the circumstellar evolution of the binary HD101584, consisting of a post-AGB star and a low-mass companion, which is most likely a post-common-envelope-evolution system. We used ALMA observations of the 12CO, 13CO, and C18O J=2-1 lines and the 1.3mm continuum to determine the morphology, kinematics, masses, and energetics of the circumstellar environment. The circumstellar medium has a bipolar hour-glass structure, seen almost pole-on, formed by an energetic jet, about 150 km/s. We conjecture that the circumstellar morphology is related to an event that took place about 500 year ago, possibly a capture event where the companion spiraled in towards the AGB star. However, the kinetic energy of the accelerated gas exceeds the released orbital energy, and, taking into account the expected energy transfer efficiency of the process, the observed phenomenon does not match current common-envelope scenarios. This suggests that another process must augment, or even dominate, the ejection process. A significant...

  18. Discovery of multiple dust shells beyond 1 arcmin in the circumstellar envelope of IRC +10216 using Herschel/PACS

    NARCIS (Netherlands)

    Decin, L.; Royer, P.; Cox, N.L.J.; Vandenbussche, B.; Ottensamer, R.; Blommaert, J.A.D.L.; Groenewegen, M.A.T.; Barlow, M.J.; Lim, T.; Kerschbaum, F.; Posch, T.; Waelkens, C.

    2011-01-01

    We present new Herschel/PACS images at 70, 100, and 160 μm of the well-known, nearby, carbon-rich asymptotic giant branch star IRC+10216 revealing multiple dust shells in its circumstellar envelope. For the first time, dust shells (or arcs) are detected until 320''. The almost spherical shells are n

  19. HST/STIS results on circumstellar disks and jets, future coronography and technology for IR multi-object spectroscopy

    Science.gov (United States)

    Woodgate, Bruce E.

    2002-01-01

    Results of studies of circumstellar disks and jets obtained by HST/STIS visible coronagraphy and UV spectroscopy, and by ground-based Fabry-Perot coronagraphy will be presented. Future improvements in coronagraphy will be discussed. The development of microshutter arrays as programmable multi-object selectors for the NGST near IR spectrograph will be described.

  20. Effects of stellar flybys on planetary systems: 3D modeling of the circumstellar disk's damping effects

    Science.gov (United States)

    Picogna, G.; Marzari, F.

    2014-04-01

    Context. Stellar flybys in star clusters are suspected of affecting the orbital architecture of planetary systems causing eccentricity excitation and orbital misalignment between the planet orbit and the equatorial plane of the star. Aims: We explore whether the impulsive changes in the orbital elements of planets, caused by a hyperbolic stellar flyby, can be fully damped by the circumstellar disk surrounding the star. The time required to disperse stellar clusters is comparable to the circumstellar disk's lifetime. Since we perform 3D simulations, we can also test the inclination, excitation, and damping. Methods: We have modeled in 3D with the SPH code VINE, a system made of a solar-type star surrounded by a low density disk with a giant planet embedded in it approached on a hyperbolic encounter trajectory by a second star of similar mass and with its own disk. Different inclinations between the disks, planet orbit, and star trajectory have been considered to explore various encounter geometries. We focus on an extreme configuration where a very deep stellar flyby perturbs a Jovian planet on an external orbit. This allows us to test in full the ability of the disk to erase the effects of the stellar encounter. Results: We find that the amount of mass lost by the disk during the stellar flyby is less than in 2D models where a single disk was considered. This is mostly related to the mass exchange between the two disks at the encounter. The damping in eccentricity is slightly faster than in 2D models and it occurs on timescales on the order of a few kyr. During the flyby both the disks are warped owing to the mutual interaction and to the stellar gravitational perturbations, but they quickly relax to a new orbital plane. The planet is quickly dragged back within the disk by the tidal interaction with the gas. The only trace of the flyby left in the planet system, after about 104 yr, is a small misalignment, lower than 9°, between the star equatorial plane and the

  1. Effects of high hydrostatic pressure on Escherichia coli ultrastructure, membrane integrity and molecular composition as assessed by FTIR spectroscopy and microscopic imaging techniques.

    Science.gov (United States)

    Prieto-Calvo, María; Prieto, Miguel; López, Mercedes; Alvarez-Ordóñez, Avelino

    2014-12-18

    High hydrostatic pressure (HHP) is a novel food processing technology that is considered as an attractive alternative to conventional heat treatments for the preservation of foods, due to its lethal effects on pathogenic and spoilage microorganisms, while causing minor effects on food quality and sensorial attributes. This study is aimed at investigating how HHP treatments at varying intensities in the range 50-900 MPa affect the viability, membrane integrity, ultrastructure and molecular composition of Escherichia coli. Results of membrane integrity tests (measurement of cellular leakage and monitoring of propidium iodide uptake through fluorescence microscopy) and ultrastructural observations by transmission electron microscopy demonstrated that HHP gave rise to cellular enlargement, membrane damage or detachment, DNA and protein denaturation and loss of intracellular contents. Fourier-transform infrared (FTIR) spectroscopy analyses evidenced minor changes in molecular composition in response to high pressures, which were mostly observed on the spectral region w4 (1200-900 cm-1), mainly informative of carbohydrates and polysaccharides of the cell wall. These findings suggest that exposure of E. coli cells to HHP causes alterations in their physical integrity while producing minor modifications in biochemical cellular composition. The current study increases the knowledge on the mechanisms of E. coli inactivation by HHP and provides valuable information for the design of more effective food preservation regimes based on the integration of mild HHP in combination with other food preservation strategies into a multi-target hurdle technology approach.

  2. Separation of small molecular peptides with the same amino acid composition but different sequences by high performance liquid chromatography-electrospray ionization-mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Peptidomics has emerged as a new discipline in recent years. Mass spectrometry (MS) is the most universal and efficient tool for structure identification of proteins and peptides. However,there is a limitation for the identification of peptides with the same amino acid composition but different se-quences because these peptides have identical mass spectra of molecular ions. This paper presents a high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) method for the separation of small molecular peptides with the same amino acid composition but dif-ferent sequences. Two tripeptides of Gly-Ser-Phe and Gly-Phe-Ser were used as a model sample. The separation behavior has been investigated and the separation conditions have been optimized. Under the optimum conditions,good repeatability was achieved. The developed method could provide a helpful reference for the separation of other peptides with the same amino acid composition but different sequences in the study of proteomics and peptidomics.

  3. CO and HI emission from the circumstellar envelopes of some evolved stars

    CERN Document Server

    Diep, P N; Nhung, P T; Tuan-Anh, P; Bertre, T Le; Winters, J M; Matthews, L D; Phuong, N T; Thao, N T; Darriulat, P

    2015-01-01

    Studies of the CO and HI radio emission of some evolved stars are presented using data collected by the IRAM Plateau de Bure interferometer and Pico Veleta telescope, the Nan\\c{c}ay Radio Telescope and the JVLA and ALMA arrays. Approximate axial symmetry of the physical and kinematic properties of the circumstellar envelope (CSE) are observed in CO emission, in particular, from RS Cnc, EP Aqr and the Red Rectangle. A common feature is the presence of a bipolar outflow causing an enhanced wind velocity in the polar directions. HI emission extends to larger radial distances than probed by CO emission and displays features related to the interaction between the stellar outflow and interstellar matter. With its unprecedented sensitivity, FAST will open a new window on such studies. Its potential in this domain is briefly illustrated.

  4. A Compact Circumstellar Shell as the Source of High--velocity Features in SN 2011fe

    CERN Document Server

    Mulligan, Brian W

    2015-01-01

    High--velocity features (HVF), especially of Ca II, are frequently seen in Type Ia supernovae observed prior to B-band maximum (Bmax). These HVF start at more than 25,000 km/s in the days after first light, and slow to about 18,000 km/s near Bmax. To recreate the Ca II near-infrared triplet (CaNIR) HVF in SN 2011fe, we consider the interaction between a Type Ia supernova and a compact circumstellar shell, employing a hydrodynamic 1-D simulation using FLASH. We generate synthetic spectra from the hydrodynamic results using syn++. We show that the CaNIR HVF and its velocity evolution is better explained by a supernova model interacting with a shell than a model without a shell, and briefly discuss the implications for progenitor models.

  5. Circular Polarization of Water Masers in the Circumstellar Envelopes of Late Type Stars

    CERN Document Server

    Vlemmings, W H T; Van Langevelde, H J

    2002-01-01

    We present circular polarization measurements of circumstellar H_2O masers. The circular polarization detected in the (6_{16}-5_{23}) rotational transition of the H_{2}O maser can be attributed to Zeeman splitting in the intermediate temperature and density regime. The magnetic fields are derived using a general, LTE Zeeman analysis as well as a full radiative transfer method (non-LTE), which includes a treatment of all hyperfine components simultaneously as well as the effects of saturation and unequal populations of the magnetic substates. The differences and relevances of these interpretations are discussed extensively. The field strengths are compared with previous detections of the magnetic field on the SiO and OH masers. We show that the magnetic pressure dominates the thermal pressure by a factor of 20 or more.

  6. An efficient algorithm for two-dimensional radiative transfer in axisymmetric circumstellar envelopes and disks

    CERN Document Server

    Dullemond, C P

    2000-01-01

    We present an algorithm for two-dimensional radiative transfer in axisymmetric, circumstellar media. The formal integration of the transfer equation is performed by a generalization of the short characteristics (SC) method to spherical coordinates. Accelerated Lambda Iteration (ALI) and Ng's algorithm are used to converge towards a solution. By taking a logarithmically spaced radial coordinate grid, the method has the natural capability of treating problems that span several decades in radius, in the most extreme case from the stellar radius up to parsec scale. Flux conservation is guaranteed in spherical coordinates by a particular choice of discrete photon directions and a special treatment of nearly-radially outward propagating radiation. The algorithm works well from zero up to very high optical depth, and can be used for a wide variety of transfer problems, including non-LTE line formation, dust continuum transfer and high temperature processes such as compton scattering. In this paper we focus on multip...

  7. A Hidden Population of Massive Stars with Circumstellar Shells Discovered with the Spitzer Space Telescope

    CERN Document Server

    Wachter, S; Van Dyk, S D; Hoard, D W; Kafka, S; Morris, P W

    2010-01-01

    We have discovered a large number of circular and elliptical shells at 24 microns around luminous central sources with the MIPS instrument on-board the Spitzer Space Telescope. Our archival follow-up effort has revealed 90% of these circumstellar shells to be previously unknown. The majority of the shells is only visible at 24 microns, but many of the central stars are detected at multiple wavelengths from the mid- to the near-IR regime. The general lack of optical counterparts, however, indicates that these sources represent a population of highly obscured objects. We obtained optical and near-IR spectroscopic observations of the central stars and find most of these objects to be massive stars. In particular, we identify a large population of sources that we argue represents a narrow evolutionary phase, closely related or identical to the LBV stage of massive stellar evolution.

  8. The effect of magnetic fields on the formation of circumstellar discs around young stars

    CERN Document Server

    Price, Daniel J

    2007-01-01

    We present first results of our simulations of magnetic fields in the formation of single and binary stars using a recently developed method for incorporating Magnetohydrodynamics (MHD) into the Smoothed Particle Hydrodynamics (SPH) method. An overview of the method is presented before discussing the effect of magnetic fields on the formation of circumstellar discs around young stars. We find that the presence of magnetic fields during the disc formation process can lead to significantly smaller and less massive discs which are much less prone to gravitational instability. Similarly in the case of binary star formation we find that magnetic fields, overall, suppress fragmentation. However these effects are found to be largely driven by magnetic pressure. The relative importance of magnetic tension is dependent on the orientation of the field with respect to the rotation axis, but can, with the right orientation, lead to a dilution of the magnetic pressure-driven suppression of fragmentation.

  9. Radiative Transfer Modeling of Passive Circumstellar Disks: Application to HR4796A

    CERN Document Server

    Currie, T; Henning, T; Furlan, E; Herter, T; Henning, Th.

    2003-01-01

    We present a radiative transfer model which computes the spectral energy distribution of a passive, irradiated, circumstellar disk, assuming the grains are in radiative equilibrium. Dependence on radial density profile, grain temperature estimation, and optical depth profiles on the output SED are discussed. The bist fit model for HR4796A has a minimum and maximum spherical grain size of 2.2 and 1000 \\mu$m respectively, a size distribution slightly steeper than the "classical" -3.5 MRN power law, grains composed of silicates, trolite, ice, and organics and a peak radial density of 1.0 x 10^-17 g cm^-2 at 70 AU, yielding a disk mass of roughly 2 M_{oplus}$.

  10. Circumstellar discs in X/gamma-ray binaries: first results from the Echelle spectrograph

    CERN Document Server

    Zamanov, R; Martí, J

    2015-01-01

    Here we report our first spectral observations of Be/X-ray and gamma-ray binaries obtained with the new Echelle spectrograph of the National Astronomical Observatory Rozhen. For four objects (LSI+61303, gamma Cas, MWC 148, 4U 2206+54), we report the parameters and estimate the sizes of their circumstellar discs using different emission lines (H-alpha, H-beta, H-gamma, HeI and FeII). For MWC 148, we find that the compact object goes deeply through the disc. The flank inflections of H-alpha can be connected with inner ring formed at the periastron passage or radiation transfer effects. We point out an intriguing similarity between the optical emission lines of the $\\gamma$-ray binary MWC 148 and the well known Be star $\\gamma$ Cas.

  11. First correlation between compact object and circumstellar disk in the Be/X-ray binaries

    CERN Document Server

    Zamanov, R K

    2000-01-01

    A remarkable correlation between the H-alpha emission line and the radio behaviour of LSI+61 303 (V615 Cas, GT 0236+610) over its 4 yr modulation is discovered. The radio outburst peak is shifted by a quarter of the 4 yr modulation period (about 400 days) with respect to the equivalent width of the H-alpha emission line variability. The onset of the LSI+61 303 radio outbursts varies in phase with the changes of the H-alpha emission line, at least during the increase of H-alpha equivalent width. This is the first clear correlation between the emission associated to the compact object and the Be circumstellar disk in a Be/X-ray binary system.

  12. THE GAS/DUST RATIO OF CIRCUMSTELLAR DISKS: TESTING MODELS OF PLANETESIMAL FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Horne, David [New York Center for Astrobiology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180-3590 (United States); Gibb, Erika [Department of Physics and Astronomy, University of Missouri-St. Louis, 8001 Natural Bridge Road, St. Louis, MO 63121 (United States); Rettig, Terrence W.; Tilley, David; Balsara, Dinshaw [Center for Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Brittain, Sean [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 (United States)

    2012-07-20

    We present high-resolution, near-infrared NIRSPEC observations of CO absorption toward six class II T Tauri stars: AA Tau, DG Tau, IQ Tau, RY Tau, CW Tau, and Haro 6-5b. {sup 12}CO overtone absorption lines originating from the circumstellar disk of each object were used to calculate line-of-sight gas column densities toward each source. We measured the gas/dust ratio as a function of disk inclination, utilizing measured visual extinctions and inclinations for each star. The majority of our sources show further evidence for a correlation between the gas/dust column density ratio and disk inclination similar to that found by Rettig et al.

  13. X-ray Emission from Strongly Asymmetric Circumstellar Material in the Remnant of Kepler's Supernova

    CERN Document Server

    Burkey, Mary T; Borkowski, Kazimierz J; Blondin, John M

    2012-01-01

    Kepler's supernova remnant resulted from a thermonuclear explosion, but is interacting with circumstellar material (CSM) lost from the progenitor system. We describe a statistical technique for isolating X-ray emission due to CSM from that due to shocked ejecta. Shocked CSM coincides well in position with 24 $\\mu$m emission seen by {\\sl Spitzer}. We find most CSM to be distributed along the bright north rim, but substantial concentrations are also found projected against the center of the remnant, roughly along a diameter with position angle $\\sim 100^\\circ$. We interpret this as evidence for a disk distribution of CSM before the SN, with the line of sight to the observer roughly in the disk plane. We present 2-D hydrodynamic simulations of this scenario, in qualitative agreement with the observed CSM morphology. Our observations require Kepler to have originated in a close binary system with an AGB star companion.

  14. Ground-based near-infrared imaging of the HD141569 circumstellar disk

    CERN Document Server

    Boccaletti, A; Marchis, F; Hanh, J

    2003-01-01

    We present the first ground-based near-infrared image of the circumstellar disk around the post-Herbig Ae/Be star HD141569A initially detected with the HST. Observations were carried out in the near-IR (2.2 $\\mu$m) at the Palomar 200-inch telescope using the adaptive optics system PALAO. The main large scale asymmetric features of the disk are detected on our ground-based data. In addition, we measured that the surface brightness of the disk is slightly different than that derived by HST observations (at 1.1 $\\mu$m and 1.6 $\\mu$m). We interpret this possible color-effect in terms of dust properties and derive a minimal

  15. Early-time signatures of {\\gamma}-ray emission from supernovae in dense circumstellar media

    CERN Document Server

    Kantzas, Dimitrios; Mastichiadis, Apostolos

    2016-01-01

    We present our results on the {\\gamma}-ray emission from interaction-powered supernovae (SNe), a recently discovered SN type that is suggested to be surrounded by a circumstellar medium (CSM) with densities 10^7-10^12~ cm^-3. Such high densities favor inelastic collisions between relativistic protons accelerated in the SN blast wave and CSM protons and the production of {\\gamma}-ray photons through neutral pion decays. Using a numerical code that includes synchrotron radiation, adiabatic losses due to the expansion of the source, photon-photon interactions, proton-proton collisions and proton-photon interactions, we calculate the multi-wavelength non-thermal photon emission soon after the shock breakout and follow its temporal evolution until 100-1000 days. Focusing on the {\\gamma}-ray emission at >100 MeV, we show that this could be detectable by the Fermi-LAT telescope for nearby (10^11 cm^-3).

  16. Plant lipid composition changes as a function of burning conditions and can be used as molecular proxy for the assessment of burning environments in soils

    Science.gov (United States)

    Wiesenberg, Guido

    2010-05-01

    Plant-derived biomass entering soil commonly leads to a typical chemical composition of soil organic matter (SOM), whereas alteration of biomass during microbial degradation results in different chemical changes of plant-derived SOM. On a molecular level plant-derived SOM is characterized by a predominance of long-chain alkanes, fatty acids and alcohols within the lipid fraction with a strong relative predominance of odd or even carbon-numbered homologues depending on the lipid fraction. E.g. plant-derived alkanes as typical degradation products of functionalized lipids are dominated by odd long-chain alkanes. Contrastingly, a progressive increase in short-chain even-numbered alkanes was found in charred biomass with increasing temperature associated by a decrease in chain-length and a decrease in the predominance of odd n-alkanes [1]. Thermal degradation of plant biomass during a fire results in a modification of lipid distribution patterns that differs from microbial degradation. Not only the composition, but the total amount of lipidic components changes as well. Thus, during charring at low temperatures (plant biomass not only as a function of temperature, duration of thermal degradation, and oxygen availability, but also as a function of the initial plant biomass composition. Molecular marker might be useful to trace not only fire in recent and ancient soils, but also the burning conditions and the initial biomass. In this study it will be demonstrated how total lipid contents and distribution patterns are modified during thermal degradation and how molecular markers can be used to trace burning conditions in recent and ancient soils and sediments. Cited references 1. G.L.B. Wiesenberg, E. Lehndorff and L. Schwark, Org. Geochem., 40 (2009) 167. 2. J.A. Baldock and R.J. Smernik, Org. Geochem, 33 (2002) 1093. 3. M. Schneider, M. Hilf and M.W.I. Schmidt, Geophy. Res. Abstr., 10 (2008) EGU2008-A-00350.

  17. Modelling the circumstellar medium in RS Ophiuchi and its link to Type Ia supernovae

    Science.gov (United States)

    Booth, R. A.; Mohamed, S.; Podsiadlowski, Ph.

    2016-03-01

    Recent interpretations of narrow, variable absorption lines detected in some Type Ia supernovae suggest that their progenitors are surrounded by dense, circumstellar material. Similar variations detected in the symbiotic recurrent nova system RS Oph, which undergoes thermonuclear outbursts every 20 years, making it an ideal candidate to investigate the origin of these lines. To this end, we present simulations of multiple mass transfer-nova cycles in RS Oph. We find that the quiescent mass transfer produces a dense, equatorial outflow, i.e. concentrated towards the binary orbital plane, and an accretion disc forms around the white dwarf. The interaction of a spherical nova outburst with these aspherical circumstellar structures produces a bipolar outflow, similar to that seen in Hubble Space Telescope imaging of the 2006 outburst. In order to produce an ionization structure that is consistent with observations, a mass-loss rate of 5 × 10-7 M⊙ yr-1 from the red giant is required. The simulations also produce a polar accretion flow, which may explain the broad wings of the quiescent H line and hard X-rays. By comparing simulated absorption line profiles to observations of the 2006 outburst, we are able to determine which components arise in the wind and which are due to the novae. We explore the possible behaviour of absorption line profiles as they may appear should a supernova occur in a system like RS Oph. Our models show similarities to supernovae like SN 2006X, but require a high mass-loss rate, dot{M} ˜ 10^{-6}-10-5 M⊙ yr-1, to explain the variability in SN 2006X.

  18. The circumstellar environment of IRAS 16293-2422. ISO-LWS and SCUBA observations

    Science.gov (United States)

    Correia, J. C.; Griffin, M.; Saraceno, P.

    2004-05-01

    We present far-infrared (FIR) continuum observations of the deeply embedded source IRAS 16293-2422 performed with the Long Wavelength Spectrometer (LWS) on-board the Infrared Space Observatory (ISO). We also report 450 and 850 μm mapping observations done with the Submillimetre Common-User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT). We combined these observations with IRAS and other JCMT data available in the literature to construct a complete spectral energy distribution (SED) of the source. A spherically symmetric dusty envelope model was used to reproduce the SED and to characterize the circumstellar matter around the object. We call attention to the fact that when using models such as the one presented here, one needs spatial information about the object to distinguish between different possible fits to the SED. A comparison between the intensity profiles at 450 and 850 μm obtained from the SCUBA observations and the profiles predicted by the model allowed us to constrain the size of the envelope and its density distribution. The SED and the 850 μm intensity profile of the source are consistent with a centrally peaked power law dust density distribution of the form ρ(r) ∝ r-p with p = 1.5-2, with a radius Renv = 3000-3250 AU, defining a very compact circumstellar envelope. We estimate a bolometric luminosity Lbol = 36 L⊙, an envelope mass Menv = 3.4 M⊙, and a submillimetre to bolometric luminosity ratio Lsubmm/Lbol = 1.9%, confirming that the source shows a submillimetre excess characteristic of Class 0 sources.

  19. Revealing the inclined circumstellar disk in the UX Ori system KK Ophiuchi

    Science.gov (United States)

    Kreplin, A.; Weigelt, G.; Kraus, S.; Grinin, V.; Hofmann, K.-H.; Kishimoto, M.; Schertl, D.; Tambovtseva, L.; Clausse, J.-M.; Massi, F.; Perraut, K.; Stee, Ph.

    2013-07-01

    We study the inner sub-AU region of the circumstellar environment of the UX Ori type star KK Oph with near-infrared VLTI/AMBER interferometry. We are particularly interested in the inclination of the star-disk system, and we will use this information to test the current standard picture for UX Ori stars. We recorded spectrally dispersed (R˜35) interferograms in the near-infrared H and K bands with the VLTI/AMBER instrument. The derived visibilities, closure phases and the SED of KK Oph were compared with two-dimensional geometric and radiative transfer models (RADMC). We obtained visibilities at four different position angles. Using two-dimensional geometric models, we derive an axis ratio ˜3.0 corresponding to an inclination of ˜70 degree. A fitted inclined ring model leads to a ring radius of 2.8 ± 0.2 mas, corresponding to 0.44 ± 0.03 AU at a distance of 160 pc, which is larger than the dust sublimation radius of ˜0.1 AU predicted for a dust sublimation temperature of 1500 K. Our derived two-dimensional RADMC model consists of a circumstellar disk with an inclination angle of ˜70 degree and an additional dust envelope. The finding of an ˜70 degree inclined disk around KK Oph is consistent with the prediction that UX Ori objects are seen under large inclination angles, and orbiting clouds in the line of sight cause the observed variability. Furthermore, our results suggest that the orbit of the companion KK Oph B and the disk plane are coplanar.

  20. Revealing the inclined circumstellar disk in the UX Orionis system KK Ophiuchi

    Science.gov (United States)

    Kreplin, A.; Weigelt, G.; Kraus, S.; Grinin, V.; Hofmann, K.-H.; Kishimoto, M.; Schertl, D.; Tambovtseva, L.; Clausse, J.-M.; Massi, F.; Perraut, K.; Stee, Ph.

    2013-03-01

    Aims: We study the inner sub-AU region of the circumstellar environment of the UX Ori-type star KK Oph with near-infrared VLTI/AMBER interferometry. We are particularly interested in the inclination of the star-disk system, and we use this information to test the current standard picture for UX Ori stars. Methods: We recorded spectrally dispersed (R ~ 35) interferograms in the near-infrared H and K bands with the VLTI/AMBER instrument. The derived visibilities, closure phases, and the spectral energy distribution of KK Oph were compared with two-dimensional geometric and radiative transfer models (RADMC). Results: We obtained visibilities at four different position angles. Using two-dimensional geometric models, we derive an axis ratio ~3.0 corresponding to an inclination of ~70°. A fitted inclined ring model leads to a ring radius of 2.8 ± 0.2 mas, corresponding to 0.44 ± 0.03 AU at a distance of 160 pc, which is larger than the dust sublimation radius of ~0.1 AU predicted for a dust sublimation temperature of 1500 K. Our derived two-dimensional RADMC model consists of a circumstellar disk with an inclination angle of ~70° and an additional dust envelope. Conclusions: The finding of an ~70° inclined disk around KK Oph is consistent with the prediction that UX Ori objects are seen under large inclination angles, and orbiting clouds in the line of sight cause the observed variability. Furthermore, our results suggest that the orbit of the companion KK Oph B and the disk plane are coplanar. Based on observations made with ESO telescopes at Paranal Observatory under program ID: 083.D-0224(C) and 088.C-0575(A).

  1. A SYMMETRIC INNER CAVITY IN THE HD 141569A CIRCUMSTELLAR DISK

    Energy Technology Data Exchange (ETDEWEB)

    Mazoyer, J.; Choquet, É.; Perrin, M. D.; Pueyo, L.; Debes, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218 (United States); Boccaletti, A. [LESIA, Observatoire de Paris, CNRS, UPMC and Univ. Paris Diderot, 5 place Jules Janssen, F-92190 Meudon (France); Augereau, J.-C.; Lagrange, A.-M. [Univ. Grenoble Alpes, Institut de Planétologie et d´Astrophysique (IPAG) F-38000 Grenoble (France); Wolff, S. G., E-mail: jmazoyer@stsci.edu [Johns Hopkins University, 3400 North Charles Street, Baltimore, MD (United States)

    2016-02-20

    Some circumstellar disks, called transitional or hybrid disks, present characteristics of both protoplanetary disks (significant amount of gas) and debris disks (evolved structures around young main-sequence stars, composed of second generation dust, from collisions between planetesimals). Therefore, they are ideal astrophysical laboratories to witness the last stages of planet formation. The circumstellar disk around HD 141569A was intensively observed and resolved in the past from space, but also from the ground. However, the recent implementation of high contrast imaging systems has opened up new opportunities to re-analyze this object. We analyzed Gemini archival data from the Near-infrared Coronagraphic Imager obtained in 2011 in the H band, using several angular differential imaging techniques (classical ADI, LOCI, KLIP). These images reveal the complex structures of this disk with an unprecedented resolution. We also include archival Hubble Space Telescope images as an independent data set to confirm these findings. Using an analysis of the inner edge of the disk, we show that the inner disk is almost axisymmetrical. The measurement of an offset toward the east observed by previous authors is likely due to the fact that the eastern part of this disk is wider and more complex in substructure. Our precise reanalysis of the eastern side shows several structures, including a splitting of the disk and a small finger detached from the inner edge to the southeast. Finally, we find that the arc at 250 AU is unlikely to be a spiral, at least not at the inclination derived from the first ring, but instead could be interpreted as a third belt at a different inclination. If the very symmetrical inner disk edge is carved by a companion, the data presented here put additional constraints on its position. The observed very complex structures will be confirmed by the new generation of coronagraphic instrument (GPI, SPHERE). However, a full understanding of this system will

  2. RECEIVING OF COMPOSITION OF THE RELEASE COATINGS BASED ON HIGH-MOLECULAR COMPOUNDS FOR MOLDING OF ALUMINUM ALLOYS UNDER PRESSURE

    Directory of Open Access Journals (Sweden)

    A. A. Pivovarchik

    2014-01-01

    Full Text Available The results of researches on determination of optimal technological parameters of the emulsions preparation, enabling to receive composition of separating covering with high sediment stability, are given.

  3. Temperature effects on polymer-carbon composite sensors: evaluating the role of polymer molecular weight and carbon loading

    Science.gov (United States)

    Homer, M. L.; Lim, J. R.; Manatt, K.; Kisor, A.; Lara, L.; Jewell, A. D.; Yen, S. -P. S.; Shevade, A. V.; Ryan, M. A.

    2003-01-01

    We report the effect of environmental condtions coupled with varying polymer properties and carbon loadings on the performance of polymer-carbon black composite film, used as sensing medium in the JPL Electronic Nose.

  4. Determination of the linear coefficient of thermal expansion in polymer films at the nanoscale: influence of the composition of EVA copolymers and the molecular weight of PMMA.

    Science.gov (United States)

    González-Benito, J; Castillo, E; Cruz-Caldito, J F

    2015-07-28

    Nanothermal-expansion of poly(ethylene-co-vinylacetate), EVA, and poly(methyl methacrylate), PMMA, in the form of films was measured to finally obtain linear coefficients of thermal expansion, CTEs. The simple deflection of a cantilever in an atomic force microscope, AFM, was used to monitor thermal expansions at the nanoscale. The influences of: (a) the structure of EVA in terms of its composition (vinylacetate content) and (b) the size of PMMA chains in terms of the molecular weight were studied. To carry out this, several polymer samples were used, EVA copolymers with different weight percents of the vinylacetate comonomer (12, 18, 25 and 40%) and PMMA polymers with different weight average molecular weights (33.9, 64.8, 75.600 and 360.0 kg mol(-1)). The dependencies of the vinyl acetate weight fraction of EVA and the molecular weight of PMMA on their corresponding CTEs were analyzed to finally explain them using new, intuitive and very simple models based on the rule of mixtures. In the case of EVA copolymers a simple equation considering the weighted contributions of each comonomer was enough to estimate the final CTE above the glass transition temperature. On the other hand, when the molecular weight dependence is considered the free volume concept was used as novelty. The expansion of PMMA, at least at the nanoscale, was well and easily described by the sum of the weighted contributions of the occupied and free volumes, respectively.

  5. Schottky barrier height of Ni to β-(AlxGa1‑x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Oshima, Yuichi; Wu, Feng; Speck, James S.

    2017-03-01

    Coherent β-(AlxGa1‑x)2O3 films (x = 0, 0.038, 0.084, 0.164) were grown successfully on a Sn-doped β-Ga2O3 (010) substrate using plasma-assisted molecular beam epitaxy. Atom probe tomography, transmission electron microscopy, and high resolution x-ray diffraction were used to verify the alloy composition and high quality of the films. Schottky diodes were then fabricated using Ni as the Schottky metal. Capacitance–voltage measurements revealed a very low (current–voltage (I–V) measurements performed at temperatures varying from 300 K to 500 K on the Schottky diodes. These measurements revealed that the apparent Schottky barrier height could have similar values for different compositions of β-(AlxGa1‑x)2O3. We believe this is attributed to the lateral fluctuation in the alloy’s composition. This results in a lateral variation in the barrier height. Therefore, the average Schottky barrier height extracted from I–V measurements could be similar for β-(AlxGa1‑x)2O3 films with different compositions.

  6. Nearby Supernova Factory Observations of SN 2005gj: Another TypeIa Supernova in a Massive Circumstellar Envelope

    Energy Technology Data Exchange (ETDEWEB)

    Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Bauer, A.; Blanc, N.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Kocevski, D.; Lee, B.C.; Loken, S.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Scalzo, R.; Smadja, G.; Thomas, R.C.; Wang, L.; Weaver, B.A.; Rabinowitz, D.; Bauer, A.

    2006-06-01

    We report the independent discovery and follow-up observations of supernova 2005gj by the Nearby Supernova Factory. This is the second confirmed case of a ''hybrid'' Type Ia/IIn supernova, which like the prototype SN 2002ic, we interpret as the explosion of a white dwarf interacting with a circumstellar medium. Our early-phase photometry of SN 2005gj shows that the strength of the interaction between the supernova ejecta and circumstellar material is much stronger than for SN 2002ic. Our .rst spectrum shows a hot continuum with broad and narrow H{alpha} emission. Later spectra, spanning over 4 months from outburst, show clear Type Ia features combined with broad and narrow H{gamma}, H{beta},H{alpha} and He I {lambda}{lambda}5876,7065 in emission. At higher resolution, P Cygni profiles are apparent. Surprisingly, we also observe an inverted P Cygni profile for [O III] {lambda}5007. We find that the lightcurve and measured velocity of the unshocked circumstellar material imply mass loss as recently as 8 years ago. This is in contrast to SN 2002ic, for which an inner cavity in the circumstellar material was inferred. Within the context of the thin-shell approximation, the early lightcurve is well-described by a flat radial density profile for the circumstellar material. However, our decomposition of the spectra into Type Ia and shock emission components allows for little obscuration of the supernova, suggesting an aspherical or clumpy distribution for the circumstellar material. We suggest that the emission line velocity profiles arise from electron scattering rather than the kinematics of the shock. This is supported by the inferred high densities, and the lack of evidence for evolution in the line widths. Ground- and space-based photometry, and Keck spectroscopy, of the host galaxy are used to ascertain that the host galaxy has low metallicity (Z/Z{sub {circle_dot}} < 0.3; 95% confidence) and that this galaxy is undergoing a significant star

  7. Improved method for immunostaining of mucin separated by supported molecular matrix electrophoresis by optimizing the matrix composition and fixation procedure.

    Science.gov (United States)

    Matsuno, Yu-Ki; Dong, Weijie; Yokoyama, Seiya; Yonezawa, Suguru; Saito, Takuro; Gotoh, Mitsukazu; Narimatsu, Hisashi; Kameyama, Akihiko

    2011-07-01

    Mucins are a family of heavily glycosylated high molecular mass proteins that have great potential as novel clinical biomarkers for the diagnosis of various malignant tumors. Supported molecular matrix electrophoresis (SMME) is a new type of membrane electrophoresis that can be used to characterize mucins. In SMME, mucins migrate in a molecular matrix supported by membrane materials. Here, we have developed an immunostaining method for the identification of SMME-separated mucins. The novel method involves stably fixing the mucins onto the SMME membrane and optimizing the molecular matrix for the fixation process. We applied this technique for the detection of MUC1 produced from three cancer cell lines (T47D, HPAF-II and BxPC3) and also analyzed their O-linked glycans by mass spectrometry. Our results revealed that properties of the MUC1 molecules from the three cell lines are different in terms of migrating position in SMME and glycan profile. The present method allows simple and rapid characterization of mucins in terms of both glycans and core proteins. The method will be a useful tool for the exploration of mucin alterations associated with various diseases such as cancer.

  8. Preparation of mesoporous-molecular-sieve/polydicyclopentadiene composites%介孔分子筛/聚双环戊二烯复合材料的制备

    Institute of Scientific and Technical Information of China (English)

    陆昶; 黄新辉; 赫玉欣; 张玉清

    2012-01-01

    The mesoporous molecular sieve(SBA-15)/polydicyclopentadiene(PDCPD) composites were prepared by in-situ polymerization with SBA-15 supported catalyst(method 1),SBA-15 modified by coupling agent(method 2),modified SBA-15 supported catalyst(method 3),respectively.The effect of preparing methods on mechanical performances of SBA-15/PDCPD was investigated.The results show that for the SBA-15/PDCPD composites prepared by method 2,although modified SBA-15 can improve the interface interaction between SBA-15 and PDCPD matrix,the polymerization of dicyclopentadiene(DCPD) monomer is difficult to occur in the pores of SBA-15,causing the mechanical performances of composites improve weakly,compared with PDCPD.Method 1 and method 3 applied to prepare SBA-15/PDCPD composites are beneficial to the form of PDCPD molecular chains in the pores of SBA-15.The form of molecular chains in the pores can improve the interface interaction between SBA-15 and PDCPD matrix,enhancing the mechanical performances of composites greatly.Compared with PDCPD,the tensile strength and bending strength of SBA-15/PDCPD prepared by method 1 increase by 24.5% and 24% when the mass ratio of SBA-15/PDCPD is 2∶100,respectively.For the composites prepared by method 3,the quantity of PDCPD molecular chains formed in the pores of SBA-15 is smaller than that of method 1 due to the SBA-15 pores occupied by coupling agent molecule,resulting that the mechanical performances is lower than that of method 1,but higher than that of method 2.%将负载催化剂的SBA-15型介孔分子筛(方法1)、偶联剂表面改性的SBA-15(方法2)、偶联剂表面改性后负载催化剂的SBA-15(方法3),采用原位聚合法分别制备了SBA-15/聚双环戊二烯(PDCPD)复合材料。研究了不同制备方法对SBA-15/PDCPD力学性能的影响。结果表明,对于方法2,虽然偶联剂改性SBA-15可提高与PDCPD界面作用力,但由于分子筛孔道中的双环戊二烯

  9. Active and passive smoking - New insights on the molecular composition of different cigarette smoke aerosols by LDI-FTICRMS

    Science.gov (United States)

    Schramm, Sébastien; Carré, Vincent; Scheffler, Jean-Luc; Aubriet, Frédéric

    2014-08-01

    The aerosol generated when a cigarette is smoked is a significant indoor contaminant. Both smokers and non-smokers can be exposed to this class of pollutants. Nevertheless, they are not exposed to the same kind of smoke. The active smoker breathes in the mainstream smoke (MSS) during a puff, whereas the passive smoker inhales not only the smoke generated by the lit cigarette between two puffs (SSS) but also the smoke exhaled by active smokers (EXS). The aerosol fraction of EXS has until now been poorly documented; its composition is expected to be different from MSS. This study aims to investigate the complex composition of aerosol from EXS to better understand the difference in exposure between active and passive smokers. To address this, the in-situ laser desorption ionisation Fourier transform ion cyclotron mass spectrometry (LDI-FTICRMS) was used to characterise the aerosol composition of EXS from two different smokers. Results clearly indicated many similarities between EXS samples but also significant differences with MSS and SSS aerosol. The comparison of MSS and EXS aerosol allowed the chemicals retained by the active smoker's lungs to be identified, whereas the convolution of the EXS and SSS aerosol compositions were considered relevant to the exposition of a passive smoker. As a consequence, active smokers are thought to be mainly exposed to polar and poorly unsaturated oxygenated and nitrogenated organics, compared with poorly oxygenated but highly unsaturated compounds in passive smokers.

  10. HI Observations of the Asymptotic Giant Branch Star X Herculis: Discovery of an Extended Circumstellar Wake Superposed on a Compact High-Velocity Cloud

    CERN Document Server

    Matthews, L D; Gerard, E; Bertre, T Le; Johnson, M C; Dame, T M

    2010-01-01

    We report HI 21-cm line observations of the AGB star X Her obtained with the Green Bank Telescope (GBT) and the Very Large Array (VLA). We have detected HI emission totaling M_HI=2.1e-03 M_sun associated with the circumstellar envelope of the star. The HI distribution exhibits a head-tail morphology, similar to those previously observed around Mira and RS Cnc. The tail extends ~6.0' (0.24 pc) in the plane of the sky, along the direction of the star's space motion. We also detect a velocity gradient of ~6.5 km/s across the envelope, consistent with the HI tracing a turbulent wake that arises from the motion of a mass-losing star through the ISM. GBT mapping of a 2x2deg region around X Her reveals that the star lies (in projection) near the periphery of a much larger HI cloud that also exhibits signatures of ISM interaction. The properties of the cloud are consistent with those of compact high-velocity clouds. Using CO observations, we have placed an upper limit on its molecular gas content of N_H22.4~M_sun) an...

  11. Preparation of ZSM-5-SBA-15 Composite Molecular Sieves%ZSM-5-SBA-15复合分子筛的制备

    Institute of Scientific and Technical Information of China (English)

    刘鹏; 沈健

    2015-01-01

    采用后合成法合成了 ZSM-5–SBA-15微介孔复合分子筛,考察了 m(ZSM-5)/m(SBA-15)、晶化时间、盐酸量、焙烧温度对烷基化催化性能的影响。在 m(ZSM-5)/m(SBA-15)=0.2,晶化时间为18 h,盐酸量为20 mL,焙烧温度为550℃条件下,合成的复合分子筛催化剂的甲醇转化率为94.93%,对二甲苯选择性为45.46%。惰性 SBA-15介孔分子筛抑制了 ZSM-5外表面酸性,提高了对二甲苯的选择性。%The micro-mesoporous composite molecular sieves of ZSM-5–SBA-15 were synthesized via a post synthesis. The influences of mass ratio of ZSM-5/SBA-15, crystallization time, acid content and calcination temperature on the preparation of the composite molecular sieves were investigated. The ZSM-5–SBA-15 prepared at the mass ratio of ZSM-5/SBA-15 of 0.2, crystallization time of 18 h, acid content of 20 mL and calcination temperature of 550 ℃ has a conversion rate of methanol of 94.93%and a selectivity of para-xylene of 45.46%. The acidity on the surface of ZSM-5 is reduced by mesoporous molecular sieve of nonvalent SBA-15, thus improving the selectivity of para-xylene.

  12. Recovery of ergosterol from the medicinal mushroom, Ganoderma tsugae var. Janniae, with a molecularly imprinted polymer derived from a cleavable monomer-template composite.

    Science.gov (United States)

    Hashim, Shima N N S; Schwarz, Lachlan J; Danylec, Basil; Mitri, Khosse; Yang, Yuanzhong; Boysen, Reinhard I; Hearn, Milton T W

    2016-10-14

    A semi-covalent imprinting strategy has been developed for the synthesis of molecularly-imprinted polymers specific for the fungal sterol, ergosterol, a biological precursor of vitamin D2. This imprinting approach involved a novel post-synthesis cleavable monomer-template composite, namely ergosteryl methacrylate, and resulted in the formation of an imprinted polymer that selectively and efficiently recognized ergosterol through non-covalent interactions. The derived molecularly-imprinted polymer and the corresponding non-imprinted polymer were systematically evaluated for their selectivity towards ergosterol via static and dynamic binding studies using various ergosteryl esters (e.g. ergosteryl-cinnamate, -ferulate, -coumarate, -ferulate acetate and -acetate, respectively) as competitors. Moreover, the binding capacity of the molecularly imprinted polymer for ergosterol was enhanced when the sample loading conditions involved the use of partially aqueous solvent mixtures, such as acetonitrile/water (9:1 (v/v) or 8:2 (v/v)). These attributes were exploited in a solid-phase extraction format, whereby ergosterol was obtained with excellent recoveries from an extract of the fruiting body powder of the medicinal fungus Ganoderma tsugae var. Janniae.

  13. Engineered Molecular Chain Ordering in Single-Walled Carbon Nanotubes/Polyaniline Composite Films for High-Performance Organic Thermoelectric Materials.

    Science.gov (United States)

    Wang, Liming; Yao, Qin; Xiao, Juanxiu; Zeng, Kaiyang; Qu, Sanyin; Shi, Wei; Wang, Qun; Chen, Lidong

    2016-06-21

    Single-walled carbon nanotubes (SWNTs)/polyaniline (PANI) composite films with enhanced thermoelectric properties were prepared by combining in situ polymerization and solution processing. Conductive atomic force microscopy and X-ray diffraction measurements confirmed that solution processing and strong π-π interactions between the PANI and SWNTs induced the PANI molecules to form a highly ordered structure. The improved degree of order of the PANI molecular arrangement increased the carrier mobility and thereby enhanced the electrical transport properties of PANI. The maximum in-plane electrical conductivity and power factor of the SWNTs/PANI composite films reached 1.44×10(3)  S cm(-1) and 217 μW m(-1)  K(-2) , respectively, at room temperature. Furthermore, a thermoelectric generator fabricated with the SWNTs/PANI composite films showed good electric generation ability and stability. A high power density of 10.4 μW cm(-2)  K(-1) was obtained, which is superior to most reported results obtained in organic thermoelectric modules.

  14. Lines of Circumstellar C2, CN, and CH$^+$ in the Optical Spectra of Post-Agb Stars

    CERN Document Server

    Bakker, E J; Van Dishoeck, E F; Bakker, Eric J.; Lambert, David L.; Dishoeck, Ewine F. van

    1996-01-01

    Recent optical spectra of post-AGB stars show the presence of C2, CN, and CH+ originating in the circumstellar shell. We present here new, higher resolution spectra which provide constraints on the physical parameters and information on the line profiles. An empirical curve of growth for the C2 Phillips and CN Red system lines in the spectrum of HD 56126 yields b = 0.50 (+0.59, -0.23) km/s. CH+ (0,0) emission lines in the spectrum of the Red Rectangle have been resolved with a FWHM approx 8.5 pm 0.8 km/s. The circumstellar CN lines of IRAS 08005--2356 are resolved into two separate components with a velocity separation of Delta v = 5.7 pm 2.0 km/s. The line profiles of CN of HD 235858 have not been resolved.

  15. Polarimetry with the Gemini Planet Imager: Methods, Performance at First Light, and the Circumstellar Ring around HR 4796A

    CERN Document Server

    Perrin, Marshall D; Millar-Blanchaer, Max; Fitzgerald, Michael P; Graham, James R; Wiktorowicz, Sloane J; Kalas, Paul G; Macintosh, Bruce; Bauman, Brian; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J; Dillon, Daren; Doyon, René; Dunn, Jennifer; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Ingraham, Patrick; Kerley, Daniel; Konapacky, Quinn; Larkin, James E; Maire, Jérôme; Marchis, Franck; Marois, Christian; Mittal, Tushar; Morzinski, Katie M; Oppenheimer, B R; Palmer, David W; Patience, Jennifer; Poyneer, Lisa; Pueyo, Laurent; Rantakyrö, Fredrik T; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Soummer, Rémi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J Kent; Wang, Jason J; Wolff, Schuyler G

    2014-01-01

    We present the first results from the polarimetry mode of the Gemini Planet Imager (GPI), which uses a new integral field polarimetry architecture to provide high contrast linear polarimetry with minimal systematic biases between the orthogonal polarizations. We describe the design, data reduction methods, and performance of polarimetry with GPI. Point spread function subtraction via differential polarimetry suppresses unpolarized starlight by a factor of over 100, and provides sensitivity to circumstellar dust reaching the photon noise limit for these observations. In the case of the circumstellar disk around HR 4796A, GPI's advanced adaptive optics system reveals the disk clearly even prior to PSF subtraction. In polarized light, the disk is seen all the way in to its semi-minor axis for the first time. The disk exhibits surprisingly strong asymmetry in polarized intensity, with the west side >9 times brighter than the east side despite the fact that the east side is slightly brighter in total intensity. Ba...

  16. Observational constraints for the circumstellar disk of the B[e] star CPD-52 9243

    Science.gov (United States)

    Cidale, L. S.; Borges Fernandes, M.; Andruchow, I.; Arias, M. L.; Kraus, M.; Chesneau, O.; Kanaan, S.; Curé, M.; de Wit, W. J.; Muratore, M. F.

    2012-12-01

    Context. The formation and evolution of gas and dust environments around B[e] supergiants are still open issues. Aims: We intend to study the geometry, kinematics and physical structure of the circumstellar environment (CE) of the B[e] supergiant CPD-52 9243 to provide further insights into the underlying mechanism causing the B[e] phenomenon. Methods: The influence of the different physical mechanisms acting on the CE (radiation pressure, rotation, bi-stability or tidal forces) is somehow reflected in the shape and kinematic properties of the gas and dust regions (flaring, Keplerian, accretion or outflowing disks). To investigate these processes we mainly used quasi-simultaneous observations taken with high spatial resolution optical long-baseline interferometry (VLTI/MIDI), near-IR spectroscopy of CO bandhead features (Gemini/Phoenix and VLT/CRIRES) and optical spectra (CASLEO/REOSC). Results: High angular resolution interferometric measurements obtained with VLTI/MIDI provide strong support for the presence of a dusty disk(ring)-like structure around CPD-52 9243, with an upper limit for its inner edge of ~8 mas (~27.5 AU, considering a distance of 3.44 kpc to the star). The disk has an inclination angle with respect to the line of sight of 46 ± 7°. The study of CO first overtone bandhead evidences a disk structure in Keplerian rotation. The optical spectrum indicates a rapid outflow in the polar direction. Conclusions: The IR emission (CO and warm dust) indicates Keplerian rotation in a circumstellar disk while the optical line transitions of various species are consistent with a polar wind. Both structures appear simultaneously and provide further evidence for the proposed paradigms of the mass-loss in supergiant B[e] stars. The presence of a detached cold CO ring around CPD-52 9243 could be due to a truncation of the inner disk caused by a companion, located possibly interior to the disk rim, clearing the center of the system. More spectroscopic and

  17. Chemical Composition of the Essential Oil from Aerial Parts of Javanian Pimpinella pruatjan Molk. and Its Molecular Phylogeny

    Directory of Open Access Journals (Sweden)

    Agustina D. R. Nurcahyanti

    2016-07-01

    Full Text Available The species-rich and diverse genus Pimpinella is mainly distributed in Europe and Asia; a few species occur in Africa. Yet, the Javanian Pimpinella, P. pruatjan, which has been used as an aphrodisiac in Indonesian traditional medicine, was studied for the first time in the context of chemical composition, as well as phylogeny analysis and antimicrobial activity. We examined the chemical composition of the essential oil (EO from aerial parts of P. pruatjan by gas liquid chromatography-mass spectrometry (GLC-MS. The main component of EO was (Z-γ-bisabolene. Several oxygenated monoterpenes, oxygenated sesquiterpenes, and sesquiterpenes were also detected. The genetic relationship of Pimpinella pruatjan Molk. to other Pimpinella species was reconstructed using nucleotide sequences of the nuclear DNA marker ITS (Internal Transcribed Spacer. P. pruatjan clusters as a sister group to the African Pimpinella species. The EO did not exhibit an apparent antimicrobial activity.

  18. Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters.

    Science.gov (United States)

    Önnby, L; Pakade, V; Mattiasson, B; Kirsebom, H

    2012-09-01

    Removal of As(V) by adsorption from water solutions was studied using three different synthetic adsorbents. The adsorbents, (a) aluminium nanoparticles (Alu-NPs, polymers (polymer backbones of pure polyacrylamide (MIP-cryo) were of better stability than the amine containing polymer backbone (Alu-cryo). Both composites worked well in the studied pH range of pH 2-8. Adsorption tested in real wastewater spiked with arsenic showed that co-ions (nitrate, sulphate and phosphate) affected arsenic removal for Alu-cryo more than for MIP-cryo. Both composites still adsorbed well in the presence of counter-ions (copper and zinc) present at low concentrations (μg/l). The unchanged and selective adsorption in realistic water observed for MIP-cryo was concluded to be due to a successful imprinting, here controlled using a non-imprinted polymer (NIP). A development of MIP-cryo is needed, considering its low adsorption capacity.

  19. SO and SO2 in mass-loss envelopes of red giants - Probes of nonequilibrium circumstellar chemistry and mass-loss rates

    Science.gov (United States)

    Sahai, Raghvendra; Wannier, Peter G.

    1992-01-01

    SO emission was searched for in one or more of four transitions toward 23 oxygen-rich red giant or supergiant stars and one S star, selected primarily on the basis of their nonmaser SiO emission. SO was detected in a total of 14 circumstellar envelopes, 13 of which are new detections. The circumstellar abundance of SO (and SO2) is significantly enhanced over the equilibrium value achieved in the photospheres of these stars. In general, the SO abundances are significantly larger than predicted by nonequilibrium circumstellar chemistry models. Sulfur cannot be significantly depleted onto circumstellar grains, and probably exists as H2S (and/or SH) in the inner regions of the envelopes. The SO rotational-level population in most circumstellar envelopes observed is characterized by excitation temperatures less than or approximately equal to 50 K. The circumstellar abundance of SO2 is comparable to, or larger than, that of SO, ruling out the 'large' value adopted for the unshielded photodissociation rate for SO2 in recent models.

  20. Molecular level control of nanoscale composition and morphology: Toward photocatalytic nanocomposites for solar-to-chemical energy conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ruberu, Thanthrige P. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Understanding the factors influencing nanocrystal formation is a challenge yet to be realized. In comparison to the large number of studies on nanocrystal synthesis and their applications, the number of studies on the effect of the precursor chemistry on nanocrystal composition and shape remains low. Although photochemical fabrication of metalsemiconductor nano-heterostructures is reported in literature, control over the free particle formation and the site of metal deposition have not been achieved. Moreover, utilization of metal- semiconductor nano-heterostructures in photocatalytic reactions other than water splitting is hardly explored. In this thesis, we studied the effect of chalcogenide precursor reactivity on the composition, morphology and the axial anisotropy of cadmiumchalcogenide nanocrystals. We also investigated the influence of the irradiation wavelength in synthesizing metal-semiconductor nano-heterostructures. Finally, we showed that metal semiconductor nano-heterostructures can be used as a photocatalyst for alcohol dehydrogenation reactions. We explored the pathways for the formation of Pt and Pd nanoparticles on CdS and CdS{sub 0.4}Se{sub 0.6} nanorods. This study revealed that the wavelength of irradiation is critical to control free-standing vs. bound metal (Pt and Pd) nanoparticles to semiconductor. Additionally, we observed that metal photodeposition occurs on specific segments of axially anisotropic, compositionally graded CdS0.4Se0.6 nanorods due to the band-gap differential between their nano-domains. We used semiconductor-metal heterostructures for sunlightdriven dehydrogenation and hydrogenolysis of benzyl alcohol. Heterostructure composition dictates activity (turnovers) and product distribution. A few metal (Pt, Pd) islands on the semiconductor surface significantly enhance activity and selectivity and also greatly stabilize the semiconductor against photoinduced etching and degradation.

  1. Nitrogen-containing compounds in two CR2 meteorites: 15N composition, molecular distribution and precursor molecules

    Science.gov (United States)

    Pizzarello, Sandra; Holmes, William

    2009-04-01

    Amino acids, amines and aldehydes were obtained from the water extracts of two CR2 carbonaceous chondrites from Antarctica and analyzed for their molecular and 15N isotopic content. These compounds were found to differ significantly from those of CM chondrites in both overall abundances and molecular distribution. The amino acids suites comprise a preponderant abundance of linear, 2-H amino acids, show rapid non-linear decrease with the compounds' increasing chain length and include protein amino acids never identified in meteorites before, such as threonine, tyrosine and phenylalanine. The presence of tertiary amines as well as a diverse, large abundance of aldehydes and ketones also distinguishes both CR2 organic suites. The δ 15N values determined for CR2 amino acids have a distribution between molecular subgroups that is opposite to the one of their δD values, with 2-H amino acids having higher δ 15N and lower δD values than 2-methyl amino acids, while the opposite is true for 2-methyl amino acids. Based on theoretical data, these isotopic findings would place the formation of the two amino acid groups or their direct precursors at different ISM stages of star formation.

  2. The effect of including molecular opacities of variable composition on the evolution of intermediate-mass AGB stars

    CERN Document Server

    Fishlock, C K; Stancliffe, R J

    2013-01-01

    Calculations from stellar evolutionary models of low- and intermediate-mass asymptotic giant branch (AGB) stars provide predictions of elemental abundances and yields for comparison to observations. However, there are many uncertainties that reduce the accuracy of these predictions. One such uncertainty involves the treatment of low-temperature molecular opacities that account for the surface abundance variations of C, N, and O. A number of prior calculations of intermediate-mass AGB stellar models that incorporate both efficient third dredge-up and hot bottom burning include a molecular opacity treatment which does not consider the depletion of C and O due to hot bottom burning. Here we update the molecular opacity treatment and investigate the effect of this improvement on calculations of intermediate-mass AGB stellar models. We perform tests on two masses, 5 M$_{\\odot}$ and 6 M$_{\\odot}$, and two metallicities, $Z~=~0.001$ and $Z~=~0.02$, to quantify the variations between two opacity treatments. We find t...

  3. Novel insights into the composition, variation, organization, and expression of the low-molecular-weight glutenin subunit gene family in common wheat.

    Science.gov (United States)

    Zhang, Xiaofei; Liu, Dongcheng; Zhang, Jianghua; Jiang, Wei; Luo, Guangbin; Yang, Wenlong; Sun, Jiazhu; Tong, Yiping; Cui, Dangqun; Zhang, Aimin

    2013-04-01

    Low-molecular-weight glutenin subunits (LMW-GS), encoded by a complex multigene family, play an important role in the processing quality of wheat flour. Although members of this gene family have been identified in several wheat varieties, the allelic variation and composition of LMW-GS genes in common wheat are not well understood. In the present study, using the LMW-GS gene molecular marker system and the full-length gene cloning method, a comprehensive molecular analysis of LMW-GS genes was conducted in a representative population, the micro-core collections (MCC) of Chinese wheat germplasm. Generally, >15 LMW-GS genes were identified from individual MCC accessions, of which 4-6 were located at the Glu-A3 locus, 3-5 at the Glu-B3 locus, and eight at the Glu-D3 locus. LMW-GS genes at the Glu-A3 locus showed the highest allelic diversity, followed by the Glu-B3 genes, while the Glu-D3 genes were extremely conserved among MCC accessions. Expression and sequence analysis showed that 9-13 active LMW-GS genes were present in each accession. Sequence identity analysis showed that all i-type genes present at the Glu-A3 locus formed a single group, the s-type genes located at Glu-B3 and Glu-D3 loci comprised a unique group, while high-diversity m-type genes were classified into four groups and detected in all Glu-3 loci. These results contribute to the functional analysis of LMW-GS genes and facilitate improvement of bread-making quality by wheat molecular breeding programmes.

  4. Utilization of molecular, phenotypic and geographical diversity to develop compact composite core collection in the oilseed crop, Safflower (Carthamus tinctorius L. through maximization strategy

    Directory of Open Access Journals (Sweden)

    Shivendra Kumar

    2016-10-01

    Full Text Available Carthamus tinctorius L. is a dryland oilseed crop yielding high quality edible oil. Previous studies have described significant phenotypic variability in the crop and used geographical distribution and phenotypic trait values to develop core collections. However, the molecular diversity component was lacking in the earlier collections thereby limiting their utility in breeding programs. The present study evaluated the phenotypic variability for twelve agronomically important traits during two growing seasons (2011-12 and 2012-13 in a global reference collection of 531 safflower accessions, assessed earlier by our group for genetic diversity and population structure using AFLP markers. Significant phenotypic variation was observed for all the agronomic traits in the representative collection. Cluster analysis of phenotypic data grouped the accessions into five major clusters. Accessions from the Indian Subcontinent and America harboured maximal phenotypic variability with unique characters for a few traits. MANOVA analysis indicated significant interaction between genotypes and environment for both the seasons. Initially, six independent core collections (CC1 – CC6 were developed using molecular marker and phenotypic data for two seasons through POWERCORE and MSTRAT. These collections captured the entire range of trait variability but failed to include complete genetic diversity represented in 19 clusters reported earlier through Bayesian Analysis of Population Structure (BAPS. Therefore, we merged the three POWERCORE core collections (CC1 – CC3 to generate a composite core collection, CartC1 and three MSTRAT core collections (CC4 – CC6to generate another composite core collection, CartC2.The mean difference percentage, variance difference percentage, variable rate of coefficient of variance percentage, coincidence rate of range percentage, Shannon’s diversity index and Nei’s gene diversity for CartC1 were 11.2, 43.7, 132.4, 93.4, 0

  5. Circumstellar Habitable Zones of Binary Star Systems in the Solar Neighborhood

    CERN Document Server

    Eggl, Siegfried; Funk, Barbara; Georgakarakos, Nikolaos; Haghighipour, Nader

    2012-01-01

    Binary and multiple systems constitute more than half of the total stellar population in the Solar neighborhood (Kiseleva-Eggleton and Eggleton 2001). Their frequent occurrence as well as the fact that more than 70 (Schneider et al. 2011) planets have already been discovered in such configurations - most noteably the telluric companion of alpha Centauri B (Dumusque et al. 2012) - make them interesting targets in the search for habitable worlds. Recent studies (Eggl et al. 2012b, Forgan 2012) have shown, that despite the variations in gravitational and radiative environment, there are indeed circumstellar regions where planets can stay within habitable insolation limits on secular dynamical timescales. In this article we provide habitable zones for 19 near S-Type binary systems from the Hipparchos and WDS catalogues with semimajor axes between 1 and 100 AU. Hereby, we accounted for the combined dynamical and radiative influence of the second star on the Earth-like planet. Out of the 19 systems presented, 17 of...

  6. Disk Detective: Discovery of New Circumstellar Disk Candidates through Citizen Science

    CERN Document Server

    Kuchner, Marc J; Bans, Alissa S; Bhattacharjee, Shambo; Kenyon, Scott J; Debes, John H; Currie, Thayne; Garcia, Luciano; Jung, Dawoon; Lintott, Chris; McElwain, Michael; Padgett, Deborah L; Rebull, Luisa M; Wisniewski, John P; Nesvold, Erika; Schawinski, Kevin; Thaller, Michelle L; Grady, Carol A; Biggs, Joseph; Bosch, Milton; Cernohous, Tadeás; Luca, Hugo A Durantini; Hyogo, Michiharu; Wah, Lily Lau Wan; Piipuu, Art; Piñeiro, Fernanda

    2016-01-01

    The Disk Detective citizen science project aims to find new stars with 22 micron excess emission from circumstellar dust using data from NASA's WISE mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false-positives (galaxies, background stars, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection o...

  7. THE FIRST DETERMINATION OF THE VISCOSITY PARAMETER IN THE CIRCUMSTELLAR DISK OF A Be STAR

    Energy Technology Data Exchange (ETDEWEB)

    Carciofi, Alex C.; Bjorkman, Jon E.; Haubois, Xavier [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900, Sao Paulo, SP (Brazil); Otero, Sebastian A. [American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138 (United States); Okazaki, Atsuo T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Stefl, Stanislav; Rivinius, Thomas [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile); Baade, Dietrich, E-mail: carciofi@usp.br, E-mail: jon@physics.utoledo.edu [European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching bei Muenchen (Germany)

    2012-01-15

    Be stars possess gaseous circumstellar decretion disks, which are well described using standard {alpha}-disk theory. The Be star 28 CMa recently underwent a long outburst followed by a long period of quiescence, during which the disk dissipated. Here we present the first time-dependent models of the dissipation of a viscous decretion disk. By modeling the rate of decline of the V-band excess, we determine that the viscosity parameter {alpha} = 1.0 {+-} 0.2, corresponding to a mass injection rate M-dot =(3.5{+-}1.3) Multiplication-Sign 10{sup -8} M{sub Sun} yr{sup -1}. Such a large value of {alpha} suggests that the origin of the turbulent viscosity is an instability in the disk whose growth is limited by shock dissipation. The mass injection rate is more than an order of magnitude larger than the wind mass-loss rate inferred from UV observations, implying that the mass injection mechanism most likely is not the stellar wind, but some other mechanism.

  8. Supernova PTF 09UJ: A Possible Shock Breakout from a Dense Circumstellar Wind

    Science.gov (United States)

    Ofek, E. O.; Rabinak, I.; Neill, J. D.; Arcavi, I.; Cenko, S. B.; Waxman, E.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Bildsten, L.; Bloom, J. S.; Filippenko, A. V.; Forster, K.; Howell, D. A.; Jacobsen, J.; Kasliwal, M. M.; Law, N.; Martin, C.; Poznanski, D.; Quimby, R. M.; Shen, K. J.; Sullivan, M.; Dekany, R.; Rahmer, G.; Hale, D.; Smith, R.; Zolkower, J.; Velur, V.; Walters, R.; Henning, J.; Bui, K.; McKenna, D.

    2010-12-01

    Type-IIn supernovae (SNe IIn), which are characterized by strong interaction of their ejecta with the surrounding circumstellar matter (CSM), provide a unique opportunity to study the mass-loss history of massive stars shortly before their explosive death. We present the discovery and follow-up observations of an SN IIn, PTF 09uj, detected by the Palomar Transient Factory (PTF). Serendipitous observations by Galaxy Evolution Explorer (GALEX) at ultraviolet (UV) wavelengths detected the rise of the SN light curve prior to the PTF discovery. The UV light curve of the SN rose fast, with a timescale of a few days, to a UV absolute AB magnitude of about -19.5. Modeling our observations, we suggest that the fast rise of the UV light curve is due to the breakout of the SN shock through the dense CSM (n ≈ 1010 cm-3). Furthermore, we find that prior to the explosion the progenitor went through a phase of high mass-loss rate (~0.1 M sun yr-1) that lasted for a few years. The decay rate of this SN was fast relative to that of other SNe IIn.

  9. Similarities in the structure of the circumstellar environments of B[e] supergiants and yellow hypergiants

    CERN Document Server

    Aret, Anna; Kraus, Michaela; Maravelias, Grigoris

    2016-01-01

    Yellow Hypergiants (YHGs) and B[e] supergiants (B[e]SGs), though in different phases in their evolution, display many features in common. This is partly due to the fact that both types of objects undergo strong, often asymmetric mass loss, and the ejected material accumulates in shells, rings, or disk-like structures, giving rise to emission from warm molecules and dust. We performed an optical spectroscopic survey of northern Galactic emission-line stars aimed at identifying tracers for the structure and kinematics of circumstellar environments. We identified two sets of lines, [O I] and [Ca II], which originate from the discs of B[e]SGs. The same set of lines is observed in V1302 Aql and V509 Cas, which are both hot YHGs. While V1302 Aql is known to have a disc-like structure, the kinematical broadening of the lines in V509 Cas suggest a Keplerian disk or ring around this star alike their hotter B[e]SG counterparts.

  10. Supernova PTF 09uj: A possible shock breakout from a dense circumstellar wind

    CERN Document Server

    Ofek, E O; Neill, J D; Arcavi, I; Cenko, S B; Waxman, E; Kulkarni, S R; Yam, A Gal; Nugent, P E; Bildsten, L; Bloom, J S; Filippenko, A V; Forster, K; Howell, D A; Jacobsen, J; Kasliwal, M M; Law, N; Martin, C; Poznanski, D; Quimby, R M; Shen, K J; Sullivan, M; Dekany, R; Rahmer, G; Hale, D; Smith, R; Zolkower, J; Velur, V; Walters, R; Henning, J; Bui, K; McKenna, D

    2010-01-01

    Type-IIn supernovae (SNe), which are characterized by strong interaction of their ejecta with the surrounding circumstellar matter (CSM), provide a unique opportunity to study the mass-loss history of massive stars shortly before their explosive death. We present the discovery and follow-up observations of a Type IIn SN, PTF 09uj, detected by the Palomar Transient Factory (PTF). Serendipitous observations by GALEX at ultraviolet (UV) wavelengths detected the rise of the SN light curve prior to the PTF discovery. The UV light curve of the SN rose fast, with a time scale of a few days, to a UV absolute AB magnitude of about -19.5. Modeling our observations, we suggest that the fast rise of the UV light curve is due to the breakout of the SN shock through the dense CSM (n~10^10 cm^-3). Furthermore, we find that prior to the explosion the progenitor went through a phase of high mass-loss rate (~0.1 solar mass per year) that lasted for a few years. The decay rate of this SN was fast relative to that of other SNe I...

  11. Do water fountain jets really indicate the onset of the morphological metamorphosis of circumstellar envelopes?

    Science.gov (United States)

    Yung, Bosco H. K.; Nakashima, Jun-ichi; Hsia, Chih-Hao; Imai, Hiroshi

    2017-03-01

    Small-scale bipolar jets with short dynamical ages from 'water-fountain' (WF) sources are regarded as an indication of the onset of circumstellar envelope morphological metamorphosis of intermediate-mass stars. Such a process usually happens at the end of the asymptotic giant branch (AGB) phase. However, recent studies found that WFs could be AGB stars or even early planetary nebulae. This fact prompted the idea that WFs may not necessarily be objects at the beginning of the morphological transition process. In the present work, we show that WFs could have different envelope morphologies by studying their spectral energy distribution profiles. Some WFs have spherical envelopes that resemble usual AGB stars, while others have aspherical envelopes, which are more common to post-AGB stars. The results imply that WFs may not represent the earliest stage of morphological metamorphosis. We argue further that the dynamical age of a WF jet, which can be calculated from maser proper motions, may not be the real age of the jet. The dynamical age cannot be used to justify the moment when the envelope begins to become aspherical, nor to tell the concrete evolutionary status of the object. A WF jet could be the innermost part of a larger well-developed jet, which is not necessarily a young jet.

  12. Physical properties of the supernova remnant expanding in a clumpy circumstellar medium

    Institute of Scientific and Technical Information of China (English)

    陈阳; 刘宁; 汪珍如

    1996-01-01

    Physical properties of the supernova remnant expanding in a dumpy circumstellar medium are studied. Taking into account the effect of cloud evaporation in the clumpy medium, it is found that the evolution and internal structure of supernova remnant in a clumpy medium of a power-law density distribution in the radius are generally serf-similar as long as the minus power-law index is in the range of about 0-3. In the case where the index equals -2, namely, the medium is composed of the inhomogeneous free stellar wind, based on the detailed hydrodynamic solution, the formulae, figures, and tables for describing the observable properties, such as the relative distribution of the remnant’s surface brightness, X-ray luminosity, the mass of X-ray-emitting gas, emission-measure-weighted mean temperature, infrared luminosity, and Ha luminosity, are provided. It is indicated that the evaporated matter may pile up near the center and the X-ray emission there is brighter than that near the limb when some parameters

  13. ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association

    CERN Document Server

    Barenfeld, Scott A; Ricci, Luca; Isella, Andrea

    2016-01-01

    We present ALMA observations of 106 G-, K-, and M-type stars in the Upper Scorpius OB Association hosting circumstellar disks. With these data, we measure the 0.88 mm continuum and $^{12}$CO $J = 3-2$ line fluxes of disks around low mass ($0.14-1.66$ $M_{\\odot}$) stars at an age of 5-11 Myr. Of the 75 primordial disks in the sample, 53 are detected in the dust continuum and 26 in CO. Of the 31 disks classified as debris/evolved transitional disks, 5 are detected in the continuum and none in CO. The lack of CO emission in approximately half of the disks with detected continuum emission can be explained if CO is optically thick but has a compact emitting area ($\\lesssim 40$ AU), or if the CO is heavily depleted by a factor of at least $\\sim1000$ relative to interstellar medium abundances and is optically thin. The continuum measurements are used to estimate the dust mass of the disks. We find a correlation between disk dust mass and stellar host mass consistent with a power-law relation of $M_{dust}\\propto M_*^...

  14. Exploring the multifaceted circumstellar environment of the luminous blue variable HR Carinae

    Science.gov (United States)

    Buemi, C. S.; Trigilio, C.; Leto, P.; Umana, G.; Ingallinera, A.; Cavallaro, F.; Cerrigone, L.; Agliozzo, C.; Bufano, F.; Riggi, S.; Molinari, S.; Schillirò, F.

    2017-03-01

    We present a multiwavelength study of the Galactic luminous blue variable HR Carinae, based on new high-resolution mid-infrared (IR) and radio images obtained with the Very Large Telescope (VLT) and the Australia Telescope Compact Array (ATCA), which have been complemented by far-infrared Herschel-Photodetector Array Camera and Spectrometer (PACS) observations and ATCA archive data. The Herschel images reveal the large-scale distribution of the dusty emitting nebula, which extends mainly to the north-east direction, up to 70 arcsec from the central star, and is oriented along the direction of the space motion of the star. In the mid-infrared images, the brightness distribution is characterized by two arc-shaped structures, tracing an inner envelope surrounding the central star more closely. At radio wavelengths, the ionized gas emission lies on the opposite side of the cold dust with respect to the position of the star, as if the ionized front were confined by the surrounding medium in the north-south direction. Comparison with previous data indicates significant changes in the radio nebula morphology and in the mass-loss rate from the central star, which has increased from 6.1 × 10-6 M⊙ yr-1 in 1994-1995 to 1.17 × 10-5 M⊙ yr-1 in 2014. We investigate possible scenarios that could have generated the complex circumstellar environment revealed by our multiwavelength data.

  15. Bursting SN 1996cr's Bubble: Hydrodynamic and X-ray Modeling of its Circumstellar Medium

    CERN Document Server

    Dwarkadas, Vikram V; Bauer, Franz

    2010-01-01

    SN1996cr is one of the five closest SNe to explode in the past 30 years. Due to its fortuitous location in the Circinus Galaxy at ~ 3.7 Mpc, there is a wealth of recently acquired and serendipitous archival data available to piece together its evolution over the past decade, including a recent 485 ks Chandra HETG spectrum. In order to interpret this data, we have explored hydrodynamic simulations, followed by computations of simulated spectra and light curves under non-equilibrium ionization conditions, and directly compared them to the observations. Our simulated spectra manage to fit both the X-ray continuum and lines at 4 epochs satisfactorily, while our computed light curves are in good agreement with additional flux-monitoring data sets. These calculations allow us to infer the nature and structure of the circumstellar medium, the evolution of the SN shock wave, and the abundances of the ejecta and surrounding medium. The data imply that SN 1996cr exploded in a low-density medium before interacting with ...

  16. The circumstellar disc around the Herbig AeBe star HD169142

    CERN Document Server

    Dent, W R F; Osorio, M; Calvet, N; Anglada, G

    2006-01-01

    We present 7 mm and 3.5 cm wavelength continuum observations toward the Herbig AeBe star HD169142 performed with the Very Large Array (VLA) with an angular resolution of ~1". We find that this object exhibits strong (~4.4 mJy), unresolved (~1") 7 mm continuum emission, being one of the brightest isolated Herbig AeBe stars ever detected with the VLA at this wavelength. No emission is detected at 3.5 cm continuum, with a 3 sigma upper limit of ~0.08 mJy. From these values, we obtain a spectral index of ~2.5 in the 3.5 cm to 7 mm wavelength range, indicating that the observed flux density at 7mm is most likely dominated by thermal dust emission coming from a circumstellar disc. We use available photometric data from the literature to model the spectral energy distribution (SED) of this object from radio to near-ultraviolet frequencies. The observed SED can be understood in terms of an irradiated accretion disc with low mass accretion rate, 10^{-8} solar masses per year, surrounding a star with an age of ~10 Myr....

  17. The nearby population of M dwarfs with WISE: A search for warm circumstellar dust

    CERN Document Server

    Avenhaus, Henning; Meyer, Michael R

    2012-01-01

    Circumstellar debris disks are important for their connection to planetary systems. An efficient way to identify such systems is through their infrared excess. Most studies so far concentrated on early-type or solar-type stars, but less effort has gone into M dwarfs. We characterize the mid-infrared photometric behavior of M dwarfs and search for infrared excess in nearby M dwarfs taken from the volume-limited RECONS sample using data from the WISE satellite and the 2MASS catalog. Our sample consists of 85 sources encompassing 103 M dwarfs. We derive empirical infrared colors from these data and discuss their errors. From this, we check the stars for infrared excess and discuss the minimum excess we would be able to detect. Other than the M8.5 dwarf SCR 1845-6357 A, where the excess is produced by a known T6 companion, we detect no excesses in any of our sample stars. The limits we derive for the 22um excess are slightly larger than the usual detection limit of 10-15% for Spitzer studies, but the inclusion of...

  18. Circumstellar Environments of Luminous Infrared Stellar Objects in the Magellanic Clouds

    Science.gov (United States)

    Azari, Abigail; Sahai, Raghvendra

    2011-01-01

    Young stars are formed out of the interstellar medium (ISM) which is replenished by mass loss rates from evolved stars. Circumstellar matter around young and evolved stellar objects usually emits energy in the infrared (IR) wavelength range as the matter is heated by the central star. Surveys of the Magellanic Clouds with the Spitzer Space Telescope in the 3.6-160 micron range have previously been completed. These surveys have led to catalogs of infrared sources: which include HII regions, young stars, super giants, asymptotic giant branch (AGB) stars, post-asymptotic giant branch (post-AGB) stars, and planetary nebulae. The utility of such surveys can be improved upon by using Hubble Space Telescope (HST) data. HST provides higher angular resolution than Spitzer and has allowed for more detailed investigation of these luminous IR objects. This project used previously obtained HST archival data to examine luminous IR objects at optical wavelengths. This allows for the reclassification of stellar objects previously thought as one type of object or in a particular stage of their stellar evolution. An overall objective of this project included looking for extended nebulosity around evolved stars to better understand the life cycle of such objects and classify these nebulae by shape.

  19. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    CERN Document Server

    Meyer, D M -A; Langer, N; Gvaramadze, V V; Mignone, A; Izzard, R G; Kaper, L

    2014-01-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [OIII]. The Ha emission of the bow shocks around hot stars originates from near their contact discontinuity. The H$\\alpha$ emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically-thin radiation mainly comes from th...

  20. A SCUBA-2 850-$\\mu$m survey of circumstellar disks in the $\\lambda$ Orionis cluster

    CERN Document Server

    Ansdell, Megan; Cieza, Lucas A

    2015-01-01

    We present results from an 850-$\\mu$m survey of the $\\sim$ 5 Myr old $\\lambda$ Orionis star-forming region. We used the SCUBA-2 camera on the James Clerk Maxwell Telescope to survey a $\\sim$0.5-diameter circular region containing 36 (out of 59) cluster members with infrared excesses indicative of circumstellar disks. We detected only one object at $>3\\sigma$ significance, the Herbig Ae star HD 245185, with a flux density of $\\sim74$ mJy beam$^{-1}$ corresponding to a dust mass of $\\sim150$ M$_{\\oplus}$. Stacking the individually undetected sources did not produce a significant mean signal but gives an upper limit on the average dust mass for $\\lambda$ Orionis disks of $\\sim3$ M$_{\\oplus}$. Our follow-up observations of HD 245185 with the Submillimeter Array found weak CO 2--1 line emission with an integrated flux of $\\sim170$ mJy km s$^{-1}$ but no $^{13}$CO or C$^{18}$O isotopologue emission at 30 mJy km s$^{-1}$ sensitivity, suggesting a gas mass of $\\lesssim1$ M$_{\\rm Jup}$. The implied gas-to-dust ratio i...

  1. Disk Detective: Discovery of New Circumstellar Disk Candidates through Citizen Science

    Science.gov (United States)

    Kuchner, Marc J.; Silverberg, Steven M.; Bans, Alissa S.; Bhattacharjee, Shambo; Kenyon, Scott J.; Debes, John H.; Currie, Thayne; García, Luciano; Jung, Dawoon; Lintott, Chris; McElwain, Michael; Padgett, Deborah L.; Rebull, Luisa M.; Wisniewski, John P.; Nesvold, Erika; Schawinski, Kevin; Thaller, Michelle L.; Grady, Carol A.; Biggs, Joseph; Bosch, Milton; C̆ernohous, Tadeás̆; Durantini Luca, Hugo A.; Hyogo, Michiharu; Wah, Lily Lau Wan; Piipuu, Art; Piñeiro, Fernanda; Disk Detective Collaboration

    2016-10-01

    The Disk Detective citizen science project aims to find new stars with 22 μm excess emission from circumstellar dust using data from NASA’s Wide-field Infrared Survey Explorer (WISE) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection of 22 μm excess around the previously known debris disk host star HD 22128.

  2. EVIDENCE FOR ASYMMETRIC DISTRIBUTION OF CIRCUMSTELLAR MATERIAL AROUND TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Francisco; Gonzalez-Gaitan, Santiago; Anderson, Joseph; Marchi, Sebastian; Gutierrez, Claudia; Hamuy, Mario; Cartier, Regis [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Pignata, Giuliano [Departamento Ciencias Fisicas, Universidad Andres Bello, Av. Republica 252, Santiago (Chile)

    2012-08-01

    We study the properties of low-velocity material in the line of sight toward nearby Type Ia supernovae (SNe Ia) that have measured late phase nebular velocity shifts (v{sub neb}), thought to be an environment-independent observable. We have found that the distribution of equivalent widths of narrow blended Na I D1 and D2 and Ca II H and K absorption lines differs significantly between those SNe Ia with negative and positive v{sub neb}, with generally stronger absorption for SNe Ia with v{sub neb} {>=} 0. A similar result had been found previously for the distribution of colors of SNe Ia, which was interpreted as a dependence of the temperature of the ejecta with viewing angle. Our work suggests that (1) a significant part of these differences in color should be attributed to extinction, (2) this extinction is caused by an asymmetric distribution of circumstellar material (CSM), and (3) the CSM absorption is generally stronger on the side of the ejecta opposite to where the ignition occurs. Since it is difficult to explain (3) via any known physical processes that occur before explosion, we argue that the asymmetry of the CSM is originated after explosion by a stronger ionizing flux on the side of the ejecta where ignition occurs, probably due to a stronger shock breakout and/or more exposed radioactive material on one side of the ejecta. This result has important implications for both progenitor and explosion models.

  3. A CHARA Array Survey of Circumstellar Disks around Nearby Be-type Stars

    CERN Document Server

    Touhami, Y; Schaefer, G H; McAlister, H A; Ridgway, S T; Richardson, N D; Matson, R; Grundstrom, E D; Brummelaar, T A ten; Goldfinger, P J; Sturmann, L; Sturmann, J; Turner, N H; Farrington, C

    2013-01-01

    We report on a high angular resolution survey of circumstellar disks around 24 northern sky Be stars. The K-band continuum survey was made using the CHARA Array long baseline interferometer (baselines of 30 to 331 m). The interferometric visibilities were corrected for the flux contribution of stellar companions in those cases where the Be star is a member of a known binary or multiple system. For those targets with good uv coverage, we used a four parameter Gaussian elliptical disk model to fit the visibilities and to determine the axial ratio, position angle, K-band photospheric flux contribution, and angular diameter of the disk major axis. For the other targets with relatively limited uv coverage, we constrained the axial ratio, inclination angle, and or disk position angle where necessary in order to resolve the degeneracy between possible model solutions. We also made fits of the ultraviolet and infrared spectral energy distributions to estimate the stellar angular diameter and infrared flux excess of e...

  4. Stellar and circumstellar properties of visual binaries in the Orion Nebula Cluster

    CERN Document Server

    Correia, S; Reipurth, B; Zinnecker, H; Daemgen, S; Petr-Gotzens, M G; Koehler, R; Ratzka, Th; Aspin, C; Konopacky, Q M; Ghez, A M

    2013-01-01

    Our general understanding of multiple star and planet formation is primarily based on observations of young multiple systems in low density regions like Tau-Aur and Oph. Since many, if not most, of the stars are born in clusters, observational constraints from young binaries in those environments are fundamental for understanding both the formation of multiple systems and planets in multiple systems throughout the Galaxy. We build upon the largest survey for young binaries in the Orion Nebula Cluster (ONC) which is based on Hubble Space Telescope observations to derive both stellar and circumstellar properties of newborn binary systems in this cluster environment. We present Adaptive Optics spatially-resolved JHKL'-band photometry and K-band R$\\sim$\\,5000 spectra for a sample of 8 ONC binary systems from this database. We characterize the stellar properties of binary components and obtain a census of protoplanetary disks through K-L' color excess. For a combined sample of ONC binaries including 7 additional s...

  5. The circumstellar structure of the Be shell star phi Per. I. Data analysis

    Science.gov (United States)

    Štefl, S.; Hummel, W.; Rivinius, Th.

    2000-06-01

    We present new phase resolved observations of emission lines of the Be binary phi Per. Analyzing the orbital phase variations in the He I emission features we find strong arguments that the feature as a whole originates in the outer parts of the disk around the primary star. In addition to the He I 6678 and 5876 lines, the emission features with orbital phase variations were detected in three more He I lines. The observations are in agreement with the scenario of Poeckert and others, in which the outer parts of an axisymmetric disk are illuminated by the radiation of the secondary. The observations after 1996 are consistent with a growing global density inhomogeneity in the circumprimary disk as it occurs in disks of single Be stars. The combination of the illumination effect and the increasing density inhomogeneity make phi Per an ideal laboratory to study density perturbations of circumstellar disks of Be stars in more detail. Based on observations collected at the Ond\\v{r}ejov Observatory (of the Academy of Sciences of the Czech Republic), Heidelberg Observatory, German-Spanish Astronomical Center (DSAZ) - Calar Alto (operated by the Max-Plank-Institut für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy) and Observatoire de Haute-Provence (OHP; CNRS, France)}

  6. Line formation in Be star circumstellar disks Shear broadening, shell absorption, stellar obscuration and rotational parameter

    Science.gov (United States)

    Hummel, W.; Vrancken, M.

    2000-07-01

    We improve the theory of Horne & Marsh on shear broadening in accretion disks of CVs and adapt it to Be star circumstellar disks. Stellar obscuration and shell absorption are taken into account in detail. It is shown that shell absorption is already present in those emission lines where the central depression does not drop below the stellar continuum. The model profiles are fitted to observed symmetric Hα net emission lines with low equivalent width. The derived disk radii range from Rd = 5.3 R_* to Rd = 18 R_* and the surface emissivity varies as ~ R-m with 1.6 (1)/(2) with the optically thick Hα profile of HR 5440 rules out the range of j>(1)/(2). This can be understood by the lack of velocity shear in the outer disk regions. We conclude that Keplerian rotation (j=(1)/(2)) is a valid approximation. Based on observations collected at the German-Spanish Astronomical Center (DSAZ), Calar Alto, operated by the Max-Plank-Institut für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy. Based on observations collected at the Observatoire de Haute-Provence (OHP), CNRS, France.

  7. Dynamics of Circumstellar Disks III: The case of GG Tau A

    CERN Document Server

    Nelson, Andrew F

    2016-01-01

    (abridged) We present 2-dimensional hydrodynamic simulations using the Smoothed Particle Hydrodynamic (SPH) code, VINE, to model a self-gravitating binary system similar to the GG Tau A system. We simulate systems configured with semi-major axes of either $a=62$~AU (`wide') or $a=32$~AU (`close'), and with eccentricity of either $e=0$ or $e=0.3$. Strong spiral structures are generated with large material streams extending inwards. A small fraction accretes onto the circumstellar disks, with most returning to the torus. Structures also propagate outwards, generating net outwards mass flow and eventually losing coherence at large distances. The torus becomes significantly eccentric in shape. Accretion onto the stars occurs at a rate of a few $\\times10^{-8}$\\msun/yr implying disk lifetimes shorter than $\\sim10^4$~yr, without replenishment. Only wide configurations retain disks by virtue of robust accretion. In eccentric configurations, accretion is episodic, occurs preferentially onto the secondary at wrates pea...

  8. CARMA CO(J = 2 - 1) Observations of the Circumstellar Envelope of Betelgeuse

    CERN Document Server

    O'Gorman, Eamon; Brown, Joanna M; Brown, Alexander; Redfield, Seth; Richter, Matthew J; Requena-Torres, Miguel A

    2012-01-01

    We report radio interferometric observations of the 12C16O 1.3 mm J = 2-1 emission line in the circumstellar envelope of the M supergiant Alpha Ori and have detected and separated both the S1 and S2 flow components for the first time. Observations were made with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) interferometer in the C, D, and E antenna configurations. We obtain good u-v coverage (5-280 klambda) by combining data from all three configurations allowing us to trace spatial scales as small as 0.9\\arcsec over a 32\\arcsec field of view. The high spectral and spatial resolution C configuration line profile shows that the inner S1 flow has slightly asymmetric outflow velocities ranging from -9.0 km s-1 to +10.6 km s-1 with respect to the stellar rest frame. We find little evidence for the outer S2 flow in this configuration because the majority of this emission has been spatially-filtered (resolved out) by the array. We also report a SOFIA-GREAT CO(J= 12-11) emission line profile w...

  9. The impact of secular resonances on habitable zones in circumstellar planetary systems of known binary stars

    CERN Document Server

    Bazsó, Ákos; Eggl, Siegfried; Funk, Barbara; Bancelin, David

    2016-01-01

    We present a survey on binary star systems with stellar separations less than 100 astronomical units. For a selection of 11 binaries with a detected (giant) planet in circumstellar motion we determine the conditions that would allow additional planets to be present inside or nearby the habitable zone (HZ) of the host star. First we calculate the three-body HZ for these systems, in order to investigate the dynamics of bodies in those regions. After adding the giant planet's influence the final HZ is considerably modified in particular by mean motion and secular resonances. We apply a semi-analytical method to determine the locations of linear secular resonances, which is based on finding the apsidal precession frequencies of the massive bodies. For very close-in giant planets we also take the general relativistic precession of the pericenter into account. Our results demonstrate that there is a qualitative difference in the dynamics whether the giant planet is located exterior or interior to the HZ. An exterio...

  10. Extinction Laws toward Stellar Sources within a Dusty Circumstellar Medium and Implications for Type Ia Supernovae

    Science.gov (United States)

    Nagao, Takashi; Maeda, Keiichi; Nozawa, Takaya

    2016-06-01

    Many astronomical objects are surrounded by dusty environments. In such dusty objects, multiple scattering processes of photons by circumstellar (CS) dust grains can effectively alter extinction properties. In this paper, we systematically investigate the effects of multiple scattering on extinction laws for steady-emission sources surrounded by the dusty CS medium using a radiation transfer simulation based on the Monte Carlo technique. In particular, we focus on whether and how the extinction properties are affected by properties of CS dust grains by adopting various dust grain models. We confirm that behaviors of the (effective) extinction laws are highly dependent on the properties of CS grains, especially the total-to-selective extinction ratio R V , which characterizes the extinction law and can be either increased or decreased and compared with the case without multiple scattering. We find that the criterion for this behavior is given by a ratio of albedos in the B and V bands. We also find that either small silicate grains or polycyclic aromatic hydrocarbons are necessary for realizing a low value of R V as often measured toward SNe Ia if the multiple scattering by CS dust is responsible for their non-standard extinction laws. Using the derived relations between the properties of dust grains and the resulting effective extinction laws, we propose that the extinction laws toward dusty objects could be used to constrain the properties of dust grains in CS environments.

  11. Radiation-Hydrodynamic Models of the evolving Circumstellar Medium around Massive Stars

    CERN Document Server

    Toalá, J A

    2011-01-01

    We study the evolution of the interstellar and circumstellar media around massive stars (M > 40M_{\\odot}) from the main sequence through to the Wolf-Rayet stage by means of radiationhydrodynamic simulations. We use publicly available stellar evolution models to investigate the different possible structures that can form in the stellar wind bubbles around Wolf-Rayet stars. We find significant differences between models with and without stellar rotation, and between models from different authors. More specifically, we find that the main ingredients in the formation of structures in the Wolf-Rayet wind bubbles are the duration of the Red Supergiant (or Luminous Blue Variable) phase, the amount of mass lost, and the wind velocity during this phase, in agreement with previous authors. Thermal conduction is also included in our models. We find that main-sequence bubbles with thermal conduction are slightly smaller, due to extra cooling which reduces the pressure in the hot, shocked bubble, but that thermal conducti...

  12. The polluted atmosphere of the white dwarf NLTT 25792 and the diversity of circumstellar environments

    CERN Document Server

    Vennes, S

    2013-01-01

    We present an analysis of X-Shooter spectra of the polluted, hydrogen-rich white dwarf NLTT 25792. The spectra show strong lines of calcium (Ca H&K, near-infrared calcium triplet, and Ca I 4226 and numerous lines of iron along with magnesium and aluminum lines from which we draw the abundance pattern. Moreover, the photospheric Ca H&K lines are possibly blended with a circumstellar component shifted by -20 km/s relative to the photosphere. A comparison with a sample of four white dwarfs with similar parameters show considerable variations in their abundance patterns, particularly in the calcium to magnesium abundance ratio that varies by a factor of five within this sample. The observed variations, even after accounting for diffusion effects, imply similar variations in the putative accretion source. Also, we find that silicon and sodium are significantly underabundant in the atmosphere of NLTT 25792, a fact that may offer some clues on the nature of the accretion source.

  13. Hubble imaging of V1331 Cygni: Proper motion study of its circumstellar structures

    CERN Document Server

    Choudhary, Arpita; Linz, Hendrik

    2016-01-01

    The young star V1331 Cyg received previous attention because it is surrounded by an optical, arc-like reflection nebula. V1331 Cyg is commonly considered to be a candidate for an object that has undergone an FU-Ori (FUOR) the outbreak in the past. This in turn could lead to a time-varying appearance of the dusty arcs that may be revealed by multi-epoch imaging. In particular, a radial colour analysis of the dust arcs can then be attempted to check whether radial grain size distribution was modified by a previous FUOR wind. Second-epoch imaging of V1331 Cyg was obtained by us in 2009 using the Hubble Space Telescope (HST). By comparing this to archival HST data from 2000, we studied the time evolution of the circumstellar nebulae. After a point spread function subtraction using model point spread functions, we used customised routines to perform a proper motion analysis. The nebula expansion was first derived by deconvolving and correlating the two-epoch radial brightness profiles. Additional data from other f...

  14. The inner circumstellar disk of the UX Ori star V1026 Sco

    CERN Document Server

    Vural, J; Kishimoto, M; Weigelt, G; Hofmann, K -H; Kraus, S; Schertl, D; Dugué, M; Duvert, G; Lagarde, S; Massi, F

    2014-01-01

    The UX Ori type variables (named after the prototype of their class) are intermediate-mass pre-main sequence objects. One of the most likely causes of their variability is the obscuration of the central star by orbiting dust clouds. We investigate the structure of the circumstellar environment of the UX~Ori star V1026 Sco (HD 142666) and test whether the disk inclination is large enough to explain the UX Ori variability. We observed the object in the low-resolution mode of the near-infrared interferometric VLTI/AMBER instrument and derived H- and K-band visibilities and closure phases. We modeled our AMBER observations, published Keck Interferometer observations, archival MIDI/VLTI visibilities, and the spectral energy distribution using geometric and temperature-gradient models. Employing a geometric inclined-ring disk model, we find a ring radius of 0.15 +- 0.06 AU in the H band and 0.18 +- 0.06 AU in the K band. The best-fit temperature-gradient model consists of a star and two concentric, ring-shaped disk...

  15. The circumstellar matter of supernova 2014J and the core-degenerate scenario

    CERN Document Server

    Soker, Noam

    2015-01-01

    I show that the circumstellar matter (CSM) of the type Ia supernova 2014J is too massive and its momentum too large to be accounted for by any but the core-degenerate (CD) scenario for type Ia supernovae. Assuming the absorbing gas is of CSM origin, the several shells responsible of the absorption potassium lines are accounted for by a mass loss episode from a massive asymptotic giant branch star during a common envelope phase with a white dwarf companion. The time-varying potassium lines can be accounted for by ionization of neutral potassium and the Na-from-dust absorption (NaDA) model. Before explosion some of the potassium resides in the gas phase and some in dust. Weakening in absorption strength is caused by potassium-ionizing radiation of the supernova, while release of atomic potassium from dust increases the absorption. I conclude that if the absorbing gas originated from the progenitor of SN 2014J, then a common envelope phase took place about 15,000 years ago, leading to the merging of the core wit...

  16. A hydrodynamical model of the circumstellar bubble created by two massive stars

    CERN Document Server

    van Marle, Allard Jan; Marcowith, Alexandre

    2012-01-01

    Numerical models of the wind-blown bubble of massive stars usually account only for the wind of a single star. However, since massive stars are usually formed in clusters, it would be more realistic to follow the evolution of a bubble created by several stars. We make a 2D model of the circumstellar bubble created by two massive stars: a 40 solar mass star and a 25 solar mass star and follow its evolution. The stars have a separation of approx. 16 pc and surrounded by a cold medium with a density of 20 particles per cubic cm. We use the MPI-AMRVAC hydrodynamics code to solve the conservation equations of hydrodynamics on a 2D cylindrical grid using time-dependent models for the parameters of the wind of the two stars. At the end of the stellar evolution (4.5 and 7.0 million years for the 40 and 25 solar mass stars respectively) we simulate the supernova explosion of each star. Initially, each star creates its own bubble. However, as the bubbles expand they merge, creating a combined, a-spherical bubble. The c...

  17. Far-infrared and sub-millimetre imaging of HD~76582's circumstellar disk

    CERN Document Server

    Marshall, J P; Holland, W S; Matthews, B C; Greaves, J S; Zuckerman, B

    2016-01-01

    Debris disks, the tenuous rocky and icy remnants of planet formation, are believed to be evidence for planetary systems around other stars. The JCMT/SCUBA-2 debris disk legacy survey 'SCUBA-2 Observations of Nearby Stars' (SONS) observed 100 nearby stars, amongst them HD~76582, for evidence of such material. Here we present imaging observations by JCMT/SCUBA-2 and \\textit{Herschel}/PACS at sub-millimetre and far-infrared wavelengths, respectively. We simultaneously model the ensemble of photometric and imaging data, spanning optical to sub-millimetre wavelengths, in a self-consistent manner. At far-infrared wavelengths, we find extended emission from the circumstellar disk providing a strong constraint on the dust spatial location in the outer system, although the angular resolution is too poor to constrain the interior of the system. In the sub-millimetre, photometry at 450 and 850~$\\mu$m reveal a steep fall-off that we interpret as a disk dominated by moderately-sized dust grains ($a_{\\rm min}~=~36~\\mu$m), ...

  18. Modeling Transiting Circumstellar Disks: Characterizing the Newly Discovered Eclipsing Disk System OGLE LMC-ECL-11893

    CERN Document Server

    Scott, Erin L; Pecaut, Mark J; Quillen, Alice C; Moolekamp, Fred; Bell, Cameron P M

    2014-01-01

    We investigate the nature of the unusual eclipsing star OGLE LMC-ECL-11893 (OGLE J05172127-6900558) in the Large Magellanic Cloud recently reported by Dong et al. 2014. The eclipse period for this star is 468 days, and the eclipses exhibit a minimum of ~1.4 mag, preceded by a plateau of ~0.8 mag. Spectra and optical/IR photometry are consistent with the eclipsed star being a lightly reddened B9III star of inferred age ~150 Myr and mass of ~4 solar masses. The disk appears to have an outer radius of ~0.2 AU with predicted temperatures of ~1100-1400 K. We model the eclipses as being due to either a transiting geometrically thin dust disk or gaseous accretion disk around a secondary object; the debris disk produces a better fit. We speculate on the origin of such a dense circumstellar dust disk structure orbiting a relatively old low-mass companion, and on the similarities of this system to the previously discovered EE Cep.

  19. Do Water Fountain Jets Really Indicate the Onset of the Morphological Metamorphosis of Circumstellar Envelopes?

    CERN Document Server

    Yung, Bosco H K; Hsia, Chih-Hao; Imai, Hiroshi

    2016-01-01

    The small-scale bipolar jets having short dynamical ages from "water fountain (WF)" sources are regarded as an indication of the onset of circumstellar envelope morphological metamorphosis of intermediate-mass stars. Such process usually happens at the end of the asymptotic giant branch (AGB) phase. However, recent studies found that WFs could be AGB stars or even early planetary nebulae. This fact prompted the idea that WFs may not necessarily be objects at the beginning of the morphological transition process. In the present work, we show that WFs could have different envelope morphologies by studying their spectral energy distribution profiles. Some WFs have spherical envelopes that resembles usual AGB stars, while others have aspherical envelopes which are more common to post-AGB stars. The results imply that WFs may not represent the earliest stage of the morphological metamorphosis. We further argue that the dynamical age of a WF jet, which can be calculated from maser proper motions, may not be the rea...

  20. Molecular composition of biogenic secondary organic aerosols using ultrahigh resolution mass spectrometry: linking laboratory and field studies

    Science.gov (United States)

    Kourtchev, Ivan; Fuller, Stephen; Aalto, Juho; Healy, Robert; Alfara, Rami; Ruuskanen, Taina; Wenger, John; McFiggans, Gordon; Kulmala, Markku; Kalberer, Markus

    2013-04-01

    Biogenic volatile organic compounds (BVOCs) play an important role in atmospheric chemistry and give rise to secondary organic aerosols (SOA), which have effects on climate and human health. Laboratory chamber experiments have been performed during several decades in an attempt to mimic atmospheric SOA formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. To date, most laboratory experiments have been performed using a single organic precursor (e.g., alpha- or beta-pinene, isoprene) while in the atmosphere a wide range of precursors contribute to SOA, which results most likely in a more complex SOA composition compared to the one-precursor laboratory systems. The objective of this work is to compare laboratory generated SOA from oxidation of BVOCs mixtures and remote ambient samples using ultrahigh-resolution mass spectrometry (UHR-MS) that allows detection of hundreds of individual SOA constituents. We examined aerosol samples from a boreal forest site, Hyytiälä, Finland and determined that a dominant fraction of the detected compounds are reaction products of a multi-component mixture of BVOCs. In the subsequent smog chamber experiments, SOA was generated from the ozonolysis and OH initiated reactions with BVOC mixtures containing species (alpha- and beta-pinene, delta-3-carene, and isoprene) that are most abundant in Hyytiälä's environment. The laboratory experiments were performed at conditions (e.g., RH, aerosol seed, and VOC ratios) that would resemble those at the boreal sampling site during the summer period. The elemental composition of the complex mixtures from laboratory generated SOA samples were compared with field samples using statistical data analysis methods.

  1. Electrochemical determination of bisphenol A in plastic bottled drinking water and canned beverages using a molecularly imprinted chitosan-graphene composite film modified electrode.

    Science.gov (United States)

    Deng, Peihong; Xu, Zhifeng; Kuang, Yunfei

    2014-08-15

    Herein, a novel electrochemical sensor based on an acetylene black paste electrode modified with molecularly imprinted chitosan-graphene composite film for sensitive and selective detection of bisphenol A (BPA) has been developed. Several important parameters controlling the performance of the sensor were investigated and optimised. The imprinted sensor offers a fast response and sensitive BPA quantification. Under the optimal conditions, a linear range from 8.0 nM to 1.0 μM and 1.0 to 20 μM for the detection of BPA was observed with the detection limit of 6.0 nM (S/N=3). Meanwhile, the fabricated sensor showed excellent specific recognition to template molecule among the structural similarities and coexistence substances. Furthermore, this imprinted electrochemical sensor was successfully employed to detect BPA in plastic bottled drinking water and canned beverages.

  2. Changes in the Fatty Acid Profile and Phospholipid Molecular Species Composition of Human Erythrocyte Membranes after Hybrid Palm and Extra Virgin Olive Oil Supplementation.

    Science.gov (United States)

    Pacetti, D; Gagliardi, R; Balzano, M; Frega, N G; Ojeda, M L; Borrero, M; Ruiz, A; Lucci, P

    2016-07-13

    This work aims to evaluate and compare, for the first time, the effects of extra virgin olive oil (EVOO) and hybrid palm oil (HPO) supplementation on the fatty acid profile and phospholipid (PL) molecular species composition of human erythrocyte membranes. Results supported the effectiveness of both HPO and EVOO supplementation (3 months, 25 mL/day) in decreasing the lipophilic index of erythrocytes with no significant differences between HPO and EVOO groups at month 3. On the other hand, the novel and rapid ultraperformance liquid chromatography-tandem mass spectrometry method used for PL analysis reveals an increase in the levels of phosphatidylcholine and phosphatidylethanolamine species esterified with polyunsaturated fatty acids. This work demonstrates the ability of both EVOO and HPO to increase the degree of unsaturation of erythrocyte membrane lipids with an improvement in membrane fluidity that could be associated with a lower risk of developing cardiovascular diseases.

  3. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias [Univ. of Florida, Gainesville, FL (United States)

    2014-04-14

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  4. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias [Univ. of Florida, Gainesville, FL (United States)

    2015-04-15

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  5. An Investigation Into the Molecular and Isotopic Composition of Diatom Frustule-Bound Organic Matter: Method Development for New Proxies

    Science.gov (United States)

    Bridoux, M. C.; Ingalls, A. E.

    2009-12-01

    Diatoms are single cell phytoplankton that are ubiquitous in marine ecosystems and are responsible for up to 40% of the carbon fixed annually in the ocean. Their intricately nanopatterned siliceous frustules are formed under the control of template organic molecules, some of which are incorporated into the frustule during growth. Several diatom frustule-based paleoproxies have been developed to exploit these microfossils because they are from a known phytoplankton source that is relatively unaltered from diagenesis. Among these proxies, diatom frustule-bound organic matter (OM) is recognized as a potentially important material for use in paleoreconstructions of past productivity (13C/12C), nutrient utilization (15N/14N) as well as to determine the radiocarbon age of sedimentary frustules (Δ14C). Despite numerous advances, diatom frustule-bound OM remains poorly characterized. Here we focus on the chemical characterization of diatom frustule-bound OM with the goal of developing molecular and compound-specific isotope methods to better reconstruct the past environments of diatom rich regions such as the Southern Ocean and the North Pacific. To do this, we 1) chemically cleaned diatom frustules, 2) dissolve them in HF to release organic compounds embedded in the frustules and 3) unambiguously characterized this organic matter by ion pairing reversed phase liquid chromatography coupled to diode array, electrospray ionization - ion trap mass spectrometry (ESI/IT-MSn) and accurate mass quadrupole time of flight mass spectrometry (Q-TOF). These analyses reveal the presence of low molecular weight, UV light absorbing compounds called mycosporine-like amino acids (MAAs) and a series of long chain polyamines (LCPAs) consisting of N-methylated derivatives of polypropyleneimine units attached to putrescine. LCPAs are known to direct silicification, while MAAs are thought to provide sunscreen to many marine organisms. The presence of these specific biomarkers in sediment

  6. A comparative study of the molecular composition and electrophysiological activity of the venoms from two fishing spiders Dolomedes mizhoanus and Dolomedes sulfurous.

    Science.gov (United States)

    Li, Jiayan; Li, Dan; Zhang, Fan; Wang, Hengyun; Yu, Hai; Liu, Zhonghua; Liang, Songping

    2014-06-01

    Dolomedes mizhoanus and Dolomedes sulfurous are two venomous spiders found in the same area in southern China and are characterized by living in water plants and feeding on fish. In this study, the chemical compositions and activities of these venoms were compared. Both venoms contain hundreds of peptides as shown by off-line RP-HPLC/MALDI-TOF-MS analysis, but have a different peptide distribution, with D. mizhoanus venom containing fewer high molecular mass (7000-9000 Da) peptides (3%) than D. sulfurous venom (25.6%). Patch-clamp analyses showed that both venoms inhibited voltage-activated Na(+), K(+) and Ca(2+) channels in rat DRG neurons, however, differences in their inhibitory effects were observed. In general, D. mizhoanus venom had lower inhibitory activity than D. sulfurous venom and both venoms had a different inhibitory spectrum against these ion channels, showing that both venoms are useful for identifying antagonists to them. In addition, intrathoracic injection of both venoms caused severe neurotoxic effects in zebrafish and death at higher concentrations, respectively. Considering that both spiders belong to the same genus, live in the same area and have similar habits, elucidation of the differences between the peptide toxins from both venoms would provide new molecular insights into the evolution of spider peptides.

  7. Effects of hydrophilic solvent and oxidation resistance post surface treatment on molecular structure and forward osmosis performance of polyamide thin-film composite (TFC) membranes

    Science.gov (United States)

    Jia, Qibo; Xu, Yangyu; Shen, Jianquan; Yang, Haijun; Zhou, Lu

    2015-11-01

    In this article, novel hydrophilic solvents and antioxidants were used to post-treat aromatic polyamide thin-film composite (TFC) hollow fiber forward osmosis (FO) membranes. The effects of trimesoyl chloride (TMC) and oxalic acid on the structure of polyamide skin layer were investigated using ATR-FTIR and XPS analyses. Pure water flux and rejection of salts were detected using 2 M NaCl solution as draw solutions in FO processes. The results demonstrated that hydrophilic solvent N-methyl pyrrolidone (NMP) enhanced the water flux and kept a high salt retention of the TFC FO membrane. TMC and oxalic acid were both found to improve the oxidation resistance properties of the skin layer of TFC membrane because the electron-withdrawing carboxyl groups reduced the activity of polyamide molecular. The effects of the oxalic acid and carbodiimide on the molecular structures and the FO water flux of the polyamide TFC membranes were more marked than those of TMC. The novel TFC FO membrane treated by oxalic acid and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) exhibited a high level of water flux (20.33 L m-2 h-1), and the rates of salt rejection and salt reverse rejection were higher by 50% and 83%, respectively.

  8. Sensitive HIV-1 detection in a homogeneous solution based on an electrochemical molecular beacon coupled with a nafion-graphene composite film modified screen-printed carbon electrode.

    Science.gov (United States)

    Li, Bo; Li, Zhengliang; Situ, Bo; Dai, Zong; Liu, Qinlan; Wang, Qian; Gu, Dayong; Zheng, Lei

    2014-02-15

    A novel electrochemical sensing assay for sensitive determination of HIV-1 in a homogeneous solution has been developed using an electrochemical molecular beacon combined with a nafion-graphene composite film modified screen-printed carbon electrode (nafion-graphene/SPCE). The electrochemical molecular beacon (CAs-MB), comprising a special recognition sequence for the conserved region of the HIV-1 gag gene and a pair of carminic acid molecules as a marker, can indicate the presence of the HIV-1 target by its on/off electrochemical signal behavior. It is suitable for direct, electrochemical determination of HIV-1, thereby simplifying the detection procedure and improving the signal-to-noise (S/N) ratio. To further improve the sensitivity, the nafion-graphene/SPCE was used to monitor changes in the CAs-MB, which has notable advantages, such as being ultrasensitive, inexpensive, and disposable. Under optimized conditions, the peak currents showed a linear relationship with the logarithm of target oligonucleotide concentrations ranging from 40 nM to 2.56 μM, with a detection limit of 5 nM (S/N=3). This sensing assay also displays a good stability, with a recovery of 88-106.8% and RSD<7% (n=5) in real serum samples. This work may lead to the development of an effective method for early point-of-care diagnosis of HIV-1 infection.

  9. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Treu, J., E-mail: Julian.Treu@wsi.tum.de, E-mail: Gregor.Koblmueller@wsi.tum.de; Speckbacher, M.; Saller, K.; Morkötter, S.; Xu, X.; Riedl, H.; Abstreiter, G.; Finley, J. J.; Koblmüller, G., E-mail: Julian.Treu@wsi.tum.de, E-mail: Gregor.Koblmueller@wsi.tum.de [Walter Schottky Institut, Physik Department, Center of Nanotechnology and Nanomaterials, Technische Universität München, Am Coulombwall 4, Garching 85748 (Germany); Döblinger, M. [Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich 81377 (Germany)

    2016-02-01

    We delineate the optimized growth parameter space for high-uniformity catalyst-free InGaAs nanowire (NW) arrays on Si over nearly the entire alloy compositional range using selective area molecular beam epitaxy. Under the required high group-V fluxes and V/III ratios, the respective growth windows shift to higher growth temperatures as the Ga-content x(Ga) is tuned from In-rich to Ga-rich InGaAs NWs. Using correlated x-ray diffraction, transmission electron microscopy, and micro-photoluminescence spectroscopy, we identify structural defects to govern luminescence linewidths in In-rich (x(Ga) < 0.4) and Ga-rich (x(Ga) > 0.6) NWs, whereas limitations at intermediate Ga-content (0.4 < x(Ga) < 0.6) are mainly due to compositional inhomogeneities. Most remarkably, the catalyst-free InGaAs NWs exhibit a characteristic transition in crystal structure from wurtzite to zincblende (ZB) dominated phase near x(Ga) ∼ 0.4 that is further reflected in a cross-over from blue-shifted to red-shifted photoluminescence emission relative to the band edge emission of the bulk ZB InGaAs phase.

  10. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5'-monophosphate.

    Science.gov (United States)

    Shi, Fan; Gong, Shixing; Xu, Li; Zhu, Huanhuan; Sun, Zhenfan; Sun, Wei

    2013-12-01

    In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5'-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results.

  11. Measuring changes in chemistry, composition, and molecular structure within hair fibers by infrared and Raman spectroscopic imaging

    Science.gov (United States)

    Zhang, Guojin; Senak, Laurence; Moore, David J.

    2011-05-01

    Spatially resolved infrared (IR) and Raman images are acquired from human hair cross sections or intact hair fibers. The full informational content of these spectra are spatially correlated to hair chemistry, anatomy, and structural organization through univariate and multivariate data analysis. Specific IR and Raman images from untreated human hair describing the spatial dependence of lipid and protein distribution, protein secondary structure, lipid chain conformational order, and distribution of disulfide cross-links in hair protein are presented in this study. Factor analysis of the image plane acquired with IR microscopy in hair sections, permits delineation of specific micro-regions within the hair. These data indicate that both IR and Raman imaging of molecular structural changes in a specific region of hair will prove to be valuable tools in the understanding of hair structure, physiology, and the effect of various stresses upon its integrity.

  12. Quantum Mechanical Treatment of Variable Molecular Composition: From "Alchemical" Changes of State Functions to Rational Compound Design

    CERN Document Server

    Chang, K Y Samuel

    2015-01-01

    "Alchemical" interpolation paths, i.e.~coupling systems along fictitious paths that without realistic correspondence, are frequently used within materials and molecular modeling and simulation protocols for the estimation of relative changes in state functions such as free energies. We discuss alchemical changes in the context of quantum chemistry, and present illustrative numerical results for the changes of HOMO eigenvalues of the He atom due to a linear alchemical teleportation---the simultaneous annihilation and creation of nuclear charges at different locations. To demonstrate the predictive power of alchemical first order derivatives (Hellmann-Feynman) the covalent bond potential of hydrogen fluoride and hydrogen chloride is investigated, as well as the van-der-Waals binding in the water-water and water-hydrogen fluoride dimer, respectively. Based on converged electron densities for one configuration, the versatility of alchemical derivatives is exemplified for the screening of entire binding potentials...

  13. Robust optical properties of sandwiched lateral composition modulation GaInP structure grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwangwook; Kang, Seokjin; Ravindran, Sooraj; Min, Jung-Wook; Hwang, Hyeong-Yong; Jho, Young-Dahl; Lee, Yong Tak

    2016-12-26

    Double-hetero structure lateral composition modulated (LCM) GaInP and sandwiched LCM GaInP having the same active layer thickness were grown and their optical properties were compared. Sandwiched LCM GaInP showed robust optical properties due to periodic potential nature of the LCM structure, and the periodicity was undistorted even for thickness far beyond the critical layer thickness. A thick LCM GaInP structure with undistorted potential that could preserve the properties of native LCM structure was possible by stacking thin LCM GaInP structures interspaced with strain compensating GaInP layers. The sandwiched structure could be beneficial in realizing the LCM structure embedded high efficiency solar cells.

  14. Composite mantle cell lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma: a clinicopathologic and molecular study.

    Science.gov (United States)

    Hoeller, Sylvia; Zhou, Yi; Kanagal-Shamanna, Rashmi; Xu-Monette, Zijun Y; Hoehn, Daniela; Bihl, Michel; Swerdlow, Steven H; Rosenwald, Andreas; Ott, German; Said, Jonathan; Dunphy, Cherie H; Bueso-Ramos, Carlos E; Lin, Pei; Wang, Michael; Miranda, Roberto N; Tzankov, Alexander; Medeiros, L Jeffrey; Young, Ken H

    2013-01-01

    Mantle cell lymphoma (MCL) and chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) share many features and both arise from CD5+ B-cells; their distinction is critical as MCL is a more aggressive neoplasm. Rarely, cases of composite MCL and CLL/SLL have been reported. Little is known about the nature of these cases and, in particular, the clonal relationship of the 2 lymphomas. Eleven composite MCL and CLL/SLL cases were identified. The clinical, morphologic and immunophenotypic features of the MCL and CLL/SLL were characterized. IGH (immunoglobulin heavy chain) gene analysis was performed on microdissected MCL and CLL/SLL components to assess their clonal relationship. Ten patients had lymphadenopathy, and 7 patients had bone marrow involvement. The MCL component had the following growth patterns: in situ (n = 1), mantle zone (n = 3), nodular and diffuse (n = 3), diffuse (n = 3), and interstitial in the bone marrow (the only patient without lymphadenopathy) (n = 1); 6 MCLs had blastoid or pleomorphic and 5 small lymphocytic features. The CLL/SLL component was nodular (n = 9) or diffuse (n = 2). All MCL were CD5(+) and cyclin D1(+) with t(11;14) translocation. All CLL/SLL were CD5(+), CD23(+) and negative for cyclin D1 or t(11;14). IGH gene analysis showed that the MCL and CLL/SLL components displayed different sized fragments, indicating that the MCL and CLL/SLL are likely derived from different neoplastic B-cell clones. The lack of a clonal relationship between the MCL and CLL/SLL components suggests that MCL and CLL/SLL components represent distinct disease processes and do not share a common progenitor B-cell.

  15. Heating the Primordial Soup: X-raying the Circumstellar Disk of T Cha

    Science.gov (United States)

    Principe, David; Huenemoerder, D.; Kastner, J. H.; Bessell, M. S.; Sacco, G.

    2014-01-01

    The classical T Tauri Star (cTTS) T Chamaeleontis (T Cha) presents a unique opportunity to probe pre-main sequence star-disk interactions and late-stage circumstellar disk evolution. T Cha is the only known example of a nearly edge-on, actively accreting star/disk system within ~110 pc, and furthermore may be orbited by a low-mass companion or massive planet that has cleared an inner hole in its disk. The star is characterized by strong variability in the optical 3 magnitudes in the V band) as well as large and variable extinction (AV in the range of 1-5). Like most cTTS, T Cha is also a luminous X-ray source. We present preliminary results of two observations (totaling 150 ks) of T Cha with Chandra’s HETGS. Our motivations are to (a) determine the intrinsic X-ray spectrum of T Cha, so as to establish whether its X-ray emission can be attributed to accretion shocks, coronal emission, or a combination; (b) investigate whether its X-ray flux exhibits modulation that may be related to the stellar rotational period 3.3 days); and (c) take advantage of the nearly-edge-on disk viewing geometry to model the spectrum of X-rays absorbed by the gaseous disk orbiting T Cha. These results will serve as much-needed input to models of magnetospheric accretion and irradiated, planet-forming disks. This research is supported via award number GO3-14022X to RIT issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS803060. Additional support is provided by National Science Foundation grant AST-1108950 to RIT.

  16. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216

    Science.gov (United States)

    Fonfría, J. P.; Hinkle, K. H.; Cernicharo, J.; Richter, M. J.; Agúndez, M.

    2017-01-01

    High spectral resolution mid-IR observations of ethylene (C2H4) towards the AGB star IRC+10216 were obtained using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). Eighty ro-vibrational lines from the 10.5 µm vibrational mode ν7 with J ≲ 30 were detected in absorption. The observed lines are divided into two groups with rotational temperatures of 105 and 400 K (warm and hot lines). The warm lines peak at ≃ −14 km s−1 with respect to the systemic velocity, suggesting that they are mostly formed outwards from ≃ 20R⋆. The hot lines are centered at −10 km s−1 indicating that they come from a shell between 10 and 20R⋆. 35% of the observed lines are unblended and can be fitted with a code developed to model the emission of a spherically symmetric circumstellar envelope. The analysis of several scenarios reveal that the C2H4 abundance relative to H2 in the range 5 − 20R⋆ is 6.9 × 10−8 in average and it could be as high as 1.1 × 10−7. Beyond 20R⋆, it is 8.2 × 10−8. The total column density is (6.5 ± 3.0) × 1015 cm−2. C2H4 is found to be rotationally under local thermodynamical equilibrium (LTE) and vibrationally out of LTE. One of the scenarios that best reproduce the observations suggests that up to 25% of the C2H4 molecules at 20R⋆ could condense onto dust grains. This possible depletion would not influence significantly the gas acceleration although it could play a role in the surface chemistry on the dust grains. PMID:28184097

  17. The First 40 Million Years of Circumstellar Disk Evolution: The Signature of Terrestrial Planet Formation

    Science.gov (United States)

    Meng, Huan Y. A.; Rieke, George H.; Su, Kate Y. L.; Gáspár, András

    2017-02-01

    We characterize the first 40 Myr of evolution of circumstellar disks through a unified study of the infrared properties of members of young clusters and associations with ages from 2 Myr up to ∼40 Myr: NGC 1333, NGC 1960, NGC 2232, NGC 2244, NGC 2362, NGC 2547, IC 348, IC 2395, IC 4665, Chamaeleon I, Orion OB1a and OB1b, Taurus, the β Pictoris Moving Group, ρ Ophiuchi, and the associations of Argus, Carina, Columba, Scorpius–Centaurus, and Tucana–Horologium. Our work features: (1) a filtering technique to flag noisy backgrounds; (2) a method based on the probability distribution of deflections, P(D), to obtain statistically valid photometry for faint sources; and (3) use of the evolutionary trend of transitional disks to constrain the overall behavior of bright disks. We find that the fraction of disks three or more times brighter than the stellar photospheres at 24 μm decays relatively slowly initially and then much more rapidly by ∼10 Myr. However, there is a continuing component until ∼35 Myr, probably due primarily to massive clouds of debris generated in giant impacts during the oligarchic/chaotic growth phases of terrestrial planets. If the contribution from primordial disks is excluded, the evolution of the incidence of these oligarchic/chaotic debris disks can be described empirically by a log-normal function with the peak at 12–20 Myr, including ∼13% of the original population, and with a post-peak mean duration of 10–20 Myr.

  18. Circumbinary ring, circumstellar disks, and accretion in the binary system UY Aurigae

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ya-Wen; Ho, Paul T. P. [Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Dutrey, Anne; Guilloteau, Stéphane; Di Folco, Emmanuel [Université de Bordeaux, Observatoire Aquitain des Sciences de l' Univers, CNRS, UMR 5804, Laboratoire d' Astrophysique de Bordeaux, 2 rue de l' Observatoire, BP 89, F-33271 Floirac Cedex (France); Piétu, Vincent; Gueth, Fréderic [IRAM, 300 rue de la piscine, F-38406 Saint Martin d' Hères Cedex (France); Beck, Tracy [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Boehler, Yann [Centro de Radioastronomìa y Astrofìsica, UNAM, Apartado Postal 3-72, 58089 Morelia, Michoacàn (Mexico); Bary, Jeff [Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton, NY 13346 (United States); Simon, Michal, E-mail: ywtang@asiaa.sinica.edu.tw [Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2014-09-20

    Recent exo-planetary surveys reveal that planets can orbit and survive around binary stars. This suggests that some fraction of young binary systems which possess massive circumbinary (CB) disks may be in the midst of planet formation. However, there are very few CB disks detected. We revisit one of the known CB disks, the UY Aurigae system, and probe {sup 13}CO 2-1, C{sup 18}O 2-1, SO 5(6)-4(5) and {sup 12}CO 3-2 line emission and the thermal dust continuum. Our new results confirm the existence of the CB disk. In addition, the circumstellar (CS) disks are clearly resolved in dust continuum at 1.4 mm. The spectral indices between the wavelengths of 0.85 mm and 6 cm are found to be surprisingly low, being 1.6 for both CS disks. The deprojected separation of the binary is 1.''26 based on our 1.4 mm continuum data. This is 0.''07 (10 AU) larger than in earlier studies. Combining the fact of the variation of UY Aur B in R band, we propose that the CS disk of an undetected companion UY Aur Bb obscures UY Aur Ba. A very complex kinematical pattern inside the CB disk is observed due to a mixing of Keplerian rotation of the CB disk, the infall and outflow gas. The streaming gas accreting from the CB ring toward the CS disks and possible outflows are also identified and resolved. The SO emission is found to be at the bases of the streaming shocks. Our results suggest that the UY Aur system is undergoing an active accretion phase from the CB disk to the CS disks. The UY Aur B might also be a binary system, making the UY Aur a triple system.

  19. Mid-Infrared Signatures from Type Ia Supernovae Strongly Interacting with a Circumstellar Medium

    Science.gov (United States)

    Fox, Ori

    2016-08-01

    Type Ia supernovae (SNe Ia) are well-known for their use as precise cosmological distance indicators due to a standardizable peak luminosity resulting from a thermonuclear explosion. A growing subset of SNe Ia, however, show evidence for interaction with a dense circumstellar medium during the first year post-explosion, and sometimes longer (SNe Ia-CSM). The origin of this dense CSM is unknown and suggests either a) the less typical single-degenerate progenitor scenario must be considered or b) the exploding star was not a thermonuclear explosion of a white dwarf at all (i.e., core-collapse). Mid-infrared (IR) observations, in particular, are critical for tracing the density profile of dust (and hence gas) in the surrounding CSM. Yet no Spitzer light curve exists for this subclass within the first year post-expolosion. Here we propose a 'low-impact' (>8 weeks) ToO to obtain 3 epochs of Spitzer imaging of a SN Ia-CSM within 100 Mpc over 1 year post-explosion. The strength of this program is that it will be in conjunction with pre-approved multi-wavelength programs on HST/STIS/UV (GO 13649), Chandra/ASIS-S (17500672), the Keck/LRIS optical spectrograph (U037LA), and the RATIR visible/infrared robotic imager. Requiring only 2.1 hours of observation total, this program will not only distinguish between the SN explosion mechanisms, but also trace CSM interaction, constrain the progenitor mass loss history, and identify late-time heating mechanisms of warm dust.

  20. Circumstellar Dust Shells: Clues to the Evolution of R Coronae Borealis Stars

    Science.gov (United States)

    Montiel, Edward J.; Clayton, Geoffrey C.

    2016-06-01

    R Coronae Borealis (RCB) stars are an exotic group of extremely hydrogen- deficient, carbon-rich supergiants that are known for their spectacular declines in brightness (up to 8 mags) at irregular intervals. Two scenarios are currently competing to explain the origins of these stars. One suggests that RCB stars are the products after a binary white dwarf (WD) system merges. The other takes a single, evolved star and has it undergo a final, helium-shell flash (FF) and becoming a cool giant. Recently, observations of elemental abundances in RCB stars have strongly swung the argument in favor of the WD merger model. The FF scenario has maintained its relevancy by seemingly being the only model able to offer a suitable explanation for one RCB feature that merger model has historically struggled with explaining: the presence of cold, circumstellar dust envelopes which might be fossil planetary nebulae (PNe). In reality, the shells could actually be fossil PNe, material left over from the WD merger, or mass lost during the RCB phase, itself. I will present the results of my dissertation, which is to try and discern the nature and history of the far-IR dust shells around RCB stars to help understand the origin of these enigmatic stars. I will discuss our efforts to determine the mass, size, temperature, and morphology of these diffuse structures surrounding a sample of RCB stars using multi-wavelength observations ranging from the ultraviolet to the submillimeter. These observations have provided unprecedented wavelength coverage for both the central stars and their CSM. They have been examined by eye for morphology and have been used in the construction of maximum-light spectral energy distributions (SEDs). I will present the results of our Monte Carlo radiative transfer of the maximum-light SEDs. Finally, I will highlight our work investigating the HI abundance of the envelope of R Coronae Borealis, itself, using archival 21—cm observations from the Arecibo

  1. ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association

    Science.gov (United States)

    Barenfeld, Scott A.; Carpenter, John M.; Ricci, Luca; Isella, Andrea

    2016-08-01

    We present ALMA observations of 106 G-, K-, and M-type stars in the Upper Scorpius OB Association hosting circumstellar disks. With these data, we measure the 0.88 mm continuum and 12CO J = 3-2 line fluxes of disks around low-mass (0.14-1.66 M ⊙) stars at an age of 5-11 Myr. Of the 75 primordial disks in the sample, 53 are detected in the dust continuum and 26 in CO. Of the 31 disks classified as debris/evolved transitional disks, five are detected in the continuum and none in CO. The lack of CO emission in approximately half of the disks with detected continuum emission can be explained if CO is optically thick but has a compact emitting area (≲40 au), or if the CO is heavily depleted by a factor of at least ˜1000 relative to interstellar medium abundances and is optically thin. The continuum measurements are used to estimate the dust mass of the disks. We find a correlation between disk dust mass and stellar host mass consistent with a power-law relation of {M}{dust}\\propto {M}* 1.67+/- 0.37. Disk dust masses in Upper Sco are compared to those measured in the younger Taurus star-forming region to constrain the evolution of disk dust mass. We find that the difference in the mean of {log}({M}{dust}/{M}* ) between Taurus and Upper Sco is 0.64 ± 0.09, such that M dust/M * is lower in Upper Sco by a factor of ˜4.5.

  2. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216

    Science.gov (United States)

    Fonfría, J. P.; Hinkle, K. H.; Cernicharo, J.; Richter, M. J.; Agúndez, M.; Wallace, L.

    2017-02-01

    High spectral resolution mid-IR observations of ethylene ({{{C}}}2{{{H}}}4) toward the AGB star IRC+10216 were obtained using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). 80 ro-vibrational lines from the 10.5 μm vibrational mode {ν }7 with J ≲ 30 were detected in absorption. The observed lines are divided into two groups with rotational temperatures of 105 and 400 K (warm and hot lines). The warm lines peak at ≃ ‑14 km s‑1 with respect to the systemic velocity, suggesting that they are mostly formed outwards from ≃ 20{R}\\star . The hot lines are centered at ‑10 km s‑1 indicating that they come from a shell between 10 and 20{\\text{}}{R}\\star . 35% of the observed lines are unblended and can be fitted with a code developed to model the emission of a spherically symmetric circumstellar envelope. The analysis of several scenarios reveals that the {{{C}}}2{{{H}}}4 abundance relative to H2 in the range 5‑20R⋆ is 6.9× {10}-8 on average and it could be as high as 1.1 × 10‑7. Beyond 20{\\text{}}{R}\\star , it is 8.2 × 10‑8. The total column density is (6.5 ± 3.0) × 1015 cm‑2. {{{C}}}2{{{H}}}4 is found to be rotationally under local thermodynamical equilibrium (LTE) and vibrationally out of LTE. One of the scenarios that best reproduce the observations suggests that up to 25% of the {{{C}}}2{{{H}}}4 molecules at 20{\\text{}}{R}\\star could condense onto dust grains. This possible depletion would not significantly influence the gas acceleration although it could play a role in the surface chemistry on the dust grains.

  3. ULTRAVIOLET SPECTROSCOPY OF TYPE IIB SUPERNOVAE: DIVERSITY AND THE IMPACT OF CIRCUMSTELLAR MATERIAL

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ami, Sagi [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Hachinger, Stephan; Mazzali, Paolo A. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Gal-Yam, Avishay; Horesh, Assaf; Yaron, Ofer [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Matheson, Thomas [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Modjaz, Maryam [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, Room 529, New York, NY 10003 (United States); Sauer, Daniel N. [Department of Astronomy, Stockholm University, Albanova University Center, SE-106 91 Stockholm (Sweden); Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Smith, Nathan, E-mail: sbenami@cfa.harvard.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2015-04-10

    We present new Hubble Space Telescope (HST) multi-epoch ultraviolet (UV) spectra of the bright Type IIb SN 2013df, and undertake a comprehensive analysis of the set of four SNe IIb for which HST UV spectra are available (SN 1993J, SN 2001ig, SN 2011dh, and SN 2013df). We find strong diversity in both continuum levels and line features among these objects. We use radiative-transfer models that fit the optical part of the spectrum well, and find that in three of these four events we see a UV continuum flux excess, apparently unaffected by line absorption. We hypothesize that this emission originates above the photosphere, and is related to interaction with circumstellar material (CSM) located in close proximity to the SN progenitor. In contrast, the spectra of SN 2001ig are well fit by single-temperature models, display weak continuum and strong reverse-fluorescence features, and are similar to spectra of radioactive {sup 56}Ni-dominated SNe Ia. A comparison of the early shock-cooling components in the observed light curves with the UV continuum levels which we assume trace the strength of CSM interaction suggests that events with slower cooling have stronger CSM emission. The radio emission from events having a prominent UV excess is perhaps consistent with slower blast-wave velocities, as expected if the explosion shock was slowed down by the CSM that is also responsible for the strong UV, but this connection is currently speculative as it is based on only a few events.

  4. A deep Spitzer survey of circumstellar disks in the young double cluster, h and χ Persei

    Energy Technology Data Exchange (ETDEWEB)

    Cloutier, Ryan; Currie, Thayne; Jayawardhana, Ray [University of Toronto, 50 St. George Street, Toronto, ON, M5S 2J7 (Canada); Rieke, George H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Kenyon, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02140 (United States); Balog, Zoltan, E-mail: cloutier@cita.utoronto.ca, E-mail: currie@astro.utoronto.ca, E-mail: grieke@as.arizona.edu, E-mail: skenyon@cfa.harvard.edu [Max Planck Institute for Astrophysics, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-12-01

    We analyze very deep Infrared Array Camera and Multiband Imaging Photometer for Spitzer (MIPS) photometry of ∼12, 500 members of the 14 Myr old Double Cluster, h and χ Persei, building upon our earlier, shallower Spitzer Cycle 1 studies. Numerous likely members show infrared (IR) excesses at 8 μm and 24 μm, indicative of circumstellar dust. The frequency of stars with 8 μm excess is at least 2% for our entire sample, slightly lower (higher) for B/A stars (later type, lower mass stars). Optical spectroscopy also identifies gas in about 2% of systems, but with no clear trend between the presence of dust and gas. Spectral energy distribution modeling of 18 sources with detections at optical wavelengths through MIPS 24 μm reveals a diverse set of disk evolutionary states, including a high fraction of transitional disks, though similar data for all disk-bearing members would provide constraints. Using Monte Carlo simulations, we combine our results with those for other young clusters to study the global evolution of dust/gas disks. For nominal cluster ages, the e-folding times (τ{sub 0}) for the frequency of warm dust and gas are 2.75 Myr and 1.75 Myr, respectively. Assuming a revised set of ages for some clusters, these timescales increase to 5.75 and 3.75 Myr, respectively, implying a significantly longer typical protoplanetary disk lifetime than previously thought. In both cases, the transitional disk duration, averaged over multiple evolutionary pathways, is ≈1 Myr. Finally, 24 μm excess frequencies for 4-6 M {sub ☉} stars appear lower than for 1-2.5 M {sub ☉} stars in other 10-30 Myr old clusters.

  5. Molecular composition and indigenity of organic matter in Late Neoproterozoic sedimentary rocks from the Yangtze region, South China

    Institute of Scientific and Technical Information of China (English)

    LI Meijun; WANG Tieguan; WANG Chunjiang; ZHANG Weibiao

    2006-01-01

    Diamictites from Late Neoproterozoic Nantuo tillites (~600 Ma), and dolomites from the overlying Dousantuo and Dengying formations in the Yangtze region, southern China, were analyzed for solvent extractable hydrocarbons. Even though all these samples have low contents of TOC and have undergone overmature thermal evolution, there has been still preserved quite a large amount of hydrocarbons. Analysis of the extracts by gas chromatography-mass spectrometry (GC-MS) revealed the presence of n-alkanes, regular acyclic isoprenoids, tricyclic terpanes, hopanes, gammacerane, steranes, and polyaromatic hydrocarbons. Strict experimental measurements were performed in the analytical procedure to prevent any potential contaminants from being introduced. All these bitumens have molecular markers of Precambrian characteristics and no external organics derived from current contamination events or migrated hydrocarbons from younger strata. The maturity parameters for bitumens indicate that the hydrocarbons are of over-maturity, which is consistent with the thermal maturity of the host rocks. Consequently, it is concluded that the Late Neoproterozoic bitumens in the Yangtze region, South China, are indigenous to their host rocks, which provides the basis for our organic geochemical research on "Snowball Earth" and "Cambrian Explosion."

  6. Protein–Mineral Interactions: Molecular Dynamics Simulations Capture Importance of Variations in Mineral Surface Composition and Structure

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Amity; Reardon, Patrick N.; Chacon, Stephany S.; Qafoku, Nikolla P.; Washton, Nancy M.; Kleber, Markus

    2016-06-21

    Molecular dynamics simulations, conventional and metadynamics, were performed to determine the interaction of model protein Gb1 over kaolinite (001), Na+-montmorillonite (001), Ca2+-montmorillonite (001), goethite (100), and Na+-birnessite (001) mineral surfaces. Gb1, a small (56 residue) protein with a well-characterized solution-state nuclear magnetic resonance (NMR) structure and having α-helix, four-fold β-sheet, and hydrophobic core features, is used as a model protein to study protein soil mineral interactions and gain insights on structural changes and potential degradation of protein. From our simulations, we observe little change to the hydrated Gb1 structure over the kaolinite, montmorillonite, and goethite surfaces relative to its solvated structure without these mineral surfaces present. Over the Na+-birnessite basal surface, however, the Gb1 structure is highly disturbed as a result of interaction with this birnessite surface. Unraveling of the Gb1 β-sheet at specific turns and a partial unraveling of the α-helix is observed over birnessite, which suggests specific vulnerable residue sites for oxidation or hydrolysis possibly leading to fragmentation.

  7. Structure, mechanical and tribological properties of radiation cross-linked ultrahigh molecular weight polyethylene and composite materials based on it

    Energy Technology Data Exchange (ETDEWEB)

    Tcherdyntsev, V.V., E-mail: vvch@misis.ru [National University of Science and Technology «MISiS», Leninsky Prospect, 4, Moscow, 119049 (Russian Federation); Kaloshkin, S.D.; Lunkova, A.A.; Musalitin, A.M. [National University of Science and Technology «MISiS», Leninsky Prospect, 4, Moscow, 119049 (Russian Federation); Danilov, V.D. [A.A. Blagonravov Institute of Mechanical Engineering RAS, ul. Bardina 4, Moscow, 117334 (Russian Federation); Borisova, Yu.V.; Boykov, A.A.; Sudarchikov, V.A. [National University of Science and Technology «MISiS», Leninsky Prospect, 4, Moscow, 119049 (Russian Federation)

    2014-02-15

    Highlights: • Effect of irradiation, oriented drawing, and filling on the structure and properties of UHMWPE was studied. • Radiation cross-linking leads to an increase in the melting temperature of UHMWPE. • The optimal irradiation dose is found to be 20 Mrad. • Strength of UHMWPE can be improved by a combination of irradiation, orientation, and filling with nanotubes. -- Abstract: The effect of irradiation with electrons, oriented drawing, and reinforcement with multi-walled carbon nanotubes (MWCNT) on the structure, physico-mechanical and tribological properties of ultrahigh molecular weight polyethylene (UHMWPE) is studied. It is shown that the radiation cross-linking leads to the melting temperature of UHMWPE nearly linear increases with the dose of radiation. The optimal irradiation dose with respect to the mechanical characteristics is found to be 20 Mrad. It is shown that the strength characteristics of UHMWPE can be improved most efficiently by a combination of irradiation, oriented drawing, and reinforcement with nanotubes, and the second and the third factors have a stronger effect than the first one. A combined effect of three factors enabled us to enhance the yield strength of material by almost four times without a detrimental effect on its plasticity.

  8. Reexamination In Vitro and In Situ of an Antibacterially Modified Experimental Dental Resin Composite with Molecular Methods: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Birgit Henrich

    2016-01-01

    Full Text Available Purpose. To introduce additional methods to detect and to quantify single pathogens in the complex biofilm formation on an antibacterial dental material. Materials and Methods. A conventional (ST and an antibacterial dental composite (B were manufactured. In vitro: specimens were incubated with a mixture of early colonizers. Bacterial adhesion was analyzed by TaqMan PCR after 8/24 h. In situ: TaqMan PCR and 16S rRNA Next Generation Sequencing (NGS were performed. Results. In vitro: after 8 h incubation, B was covered by 58.6% of the bacterial amount that was attached to ST. After 24 h, the amount of attached bacteria to ST remained constant on ST only slightly lower on B. In situ: after 8 h the amount of adhering A. viscosus and S. mitis was prominent on ST and reduced on B. NGS revealed that S. sanguinis, S. parasanguinis, and Gemella sanguinis were the mainly attached species with S. sanguinis dominant on ST and S. parasanguinis and G. sanguinis dominant on B. Conclusions. Initial biofilm formation was altered by B. A shift between actinomycetes and streptococci was observed in situ. TaqMan PCR and 16S rRNA NGS revealed comparable results in situ and demonstrated the usefulness of NGS to characterize complex bacterial communities.

  9. Interfacial Chemical Composition and Molecular Order in Organic Photovoltaic Blend Thin Films Probed by Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Razzell-Hollis, Joseph; Thiburce, Quentin; Tsoi, Wing C; Kim, Ji-Seon

    2016-11-16

    Organic electronic devices invariably involve transfer of charge carriers between the organic layer and at least one metal electrode, and they are sensitive to the local properties of the organic film at those interfaces. Here, we demonstrate a new approach for using an advanced technique called surface-enhanced raman spectroscopy (SERS) to quantitatively probe interfacial properties relevant to charge injection/extraction. Exploiting the evanescent electric field generated by a ∼7 nm thick layer of evaporated silver, Raman scattering from nearby molecules is enhanced by factors of 10-1000× and limited by a distance dependence with a measured decay length of only 7.6 nm. When applied to the study of an all-polymer 1:1 blend of P3HT and F8TBT used in organic solar cells, we find that the as-cast film is morphologically suited to charge extraction in inverted devices, with a top (anode) interface very rich in hole-transporting P3HT (74.5%) and a bottom (cathode) interface slightly rich in electron-transporting F8TBT (55%). While conventional, uninverted P3HT:F8TBT devices are reported to perform poorly compared to inverted devices, their efficiency can be improved by thermal annealing but only after evaporation of a metallic top electrode. This is explained by changes in composition at the top interface: annealing prior to silver evaporation leads to a greater P3HT concentration at the top interface to 83.3%, exaggerating the original distribution that favored inverted devices, while postevaporation annealing increases the concentration of F8TBT at the top interface to 34.8%, aiding the extraction of electrons in a conventional device. By nondestructively probing buried interfaces, SERS is a powerful tool for understanding the performance of organic electronic devices.

  10. The Molecular Composition of Comet C/2007 W1 (Boattini): Evidence of a Peculiar Outgassing and a Rich Chemistry

    Science.gov (United States)

    Villanueva, G. L.; Mumma, M. J.; DiSanti, M. A.; Bonev, B. P.; Gibb, E. L.; Magee-Sauer, K.; Blake, G. A.; Salyk, C.

    2011-01-01

    We measured the chemical composition of Comet C/2007 W1 (Boattini) using the long-slit echelle grating spectrograph at Keck-2 (NIRSPEC) on 2008 July 9 and 10. We sampled 11 volatile species (H2O, OH*, C2H6, CH3OH, H2CO, CH4, HCN, C2H2, NH3, NH2, and CO), and retrieved three important cosmogonic indicators: the ortho-para ratios of H2O and CH4, and an upper-limit for the D/H ratio in water. The abundance ratios of almost all trace volatiles (relative to water) are among the highest ever observed in a comet. The comet also revealed a complex outgassing pattern, with some volatiles (the polar species H2O and CH3OH) presenting very asymmetric spatial profiles (extended in the anti-sunward hemisphere), while others (e.g., C2H6 and HCN) showed particularly symmetric profiles. We present emission profiles measured along the Sun-comet line for all observed volatiles, and discuss different production scenarios needed to explain them. We interpret the emission profiles in terms of release from two distinct moieties of ice, the first being clumps of mixed ice and dust released from the nucleus into the sunward hemisphere. The second moiety considered is very small grains of nearly pure polar ice (water and methanol, without dark material or apolar volatiles). Such grains would sublimate only very slowly, and could be swept into the anti-sunward hemisphere by radiation pressure and solar-actuated non-gravitational jet forces, thus providing an extended source in the anti-sunward hemisphere.

  11. Connecting the evolution of thermally pulsing asymptotic giant branch stars to the chemistry in their circumstellar envelopes - I. Hydrogen cyanide

    Science.gov (United States)

    Marigo, Paola; Ripamonti, Emanuele; Nanni, Ambra; Bressan, Alessandro; Girardi, Léo

    2016-02-01

    We investigate the formation of hydrogen cyanide (HCN) in the inner circumstellar envelopes of thermally pulsing asymptotic giant branch (TP-AGB) stars. A dynamic model for periodically shocked atmospheres, which includes an extended chemo-kinetic network, is for the first time coupled to detailed evolutionary tracks for the TP-AGB phase computed with the COLIBRI code. We carried out a calibration of the main shock parameters (the shock formation radius rs,0 and the effective adiabatic index γ _ad^eff) using the circumstellar HCN abundances recently measured for a populous sample of pulsating TP-AGB stars. Our models recover the range of the observed HCN concentrations as a function of the mass-loss rates, and successfully reproduce the systematic increase of HCN moving along the M-S-C chemical sequence of TP-AGB stars, which traces the increase of the surface C/O ratio. The chemical calibration brings along two important implications for the physical properties of the pulsation-induced shocks: (i) the first shock should emerge very close to the photosphere (rs,0 ≃ 1R), and (ii) shocks are expected to have a dominant isothermal character (γ _ad^eff˜eq 1) in the denser region close to the star (within ˜3-4R), implying that radiative processes should be quite efficient. Our analysis also suggests that the HCN concentrations in the inner circumstellar envelopes are critically affected by the H-H2 chemistry during the post-shock relaxation stages. Given the notable sensitiveness of the results to stellar parameters, this paper shows that such chemo-dynamic analyses may indeed provide a significant contribution to the broader goal of attaining a comprehensive calibration of the TP-AGB evolutionary phase.

  12. THE REINCARNATION OF INTERSTELLAR DUST: THE IMPORTANCE OF ORGANIC REFRACTORY MATERIAL IN INFRARED SPECTRA OF COMETARY COMAE AND CIRCUMSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Hiroshi, E-mail: hiroshi_kimura@cps-jp.org [Graduate School of Science, Kobe University, c/o CPS (Center for Planetary Science), Chuo-ku Minatojima Minamimachi 7-1-48, Kobe 650-0047 (Japan)

    2013-09-20

    We consider the reincarnation of interstellar dust to be reborn in protoplanetary disks as aggregates consisting of submicron-sized grains with a crystalline or amorphous silicate core and an organic-rich carbonaceous mantle. We find that infrared spectra of reincarnated interstellar dust reproduce emission peaks at correct wavelengths where the peaks were observed in cometary comae, debris disks, and protoplanetary disks if the volume fraction of organic refractory meets the constraints on elemental abundances. We discuss what we can learn from the infrared spectra of reincarnated interstellar dust in cometary comae and circumstellar disks.

  13. The Reincarnation of Interstellar Dust: The Importance of Organic Refractory Material in Infrared Spectra of Cometary Comae and Circumstellar Disks

    Science.gov (United States)

    Kimura, Hiroshi

    2013-09-01

    We consider the reincarnation of interstellar dust to be reborn in protoplanetary disks as aggregates consisting of submicron-sized grains with a crystalline or amorphous silicate core and an organic-rich carbonaceous mantle. We find that infrared spectra of reincarnated interstellar dust reproduce emission peaks at correct wavelengths where the peaks were observed in cometary comae, debris disks, and protoplanetary disks if the volume fraction of organic refractory meets the constraints on elemental abundances. We discuss what we can learn from the infrared spectra of reincarnated interstellar dust in cometary comae and circumstellar disks.

  14. Molecular composition of drusen and possible involvement of anti-retinal autoimmunity in two different forms of macular degeneration in cynomolgus monkey (Macaca fascicularis).

    Science.gov (United States)

    Umeda, Shinsuke; Suzuki, Michihiro T; Okamoto, Haru; Ono, Fumiko; Mizota, Atsushi; Terao, Keiji; Yoshikawa, Yasuhiro; Tanaka, Yasuhiko; Iwata, Takeshi

    2005-10-01

    We have previously reported a cynomolgus monkey (Macaca fascicularis) pedigree with early onset macular degeneration that develops drusen at 2 yr after birth. In this study, the molecular composition of drusen in monkeys affected with late onset and early onset macular degeneration was both characterized. Involvement of anti-retinalautoimmunity in the deposition of drusen and the pathogenesis of the disease was also evaluated. Funduscopic and histological examinations were performed on 278 adult monkeys (mean age=16.94 yr) for late onset macular degeneration. The molecular composition of drusen was analyzed by immunohistochemistry and/or direct proteome analysis using liquid chromatography tandem mass spectroscopy (LC-MS/MS). Anti-retinal autoantibodies in sera were screened in 20 affected and 10 age-matched control monkeys by Western blot techniques. Immunogenic molecules were identified by 2D electrophoresis and LC-MS/MS. Relative antibody titer against each antigen was determined by ELISA in sera from 42 affected (late onset) and 41 normal monkeys. Yellowish-white spots in the macular region were observed in 90 (32%) of the late onset monkeys that were examined. Histological examination demonstrated that drusen or degenerative retinal pigment epithelium (RPE) cells were associated with the pigmentary abnormalities. Drusen in both late and early onset monkeys showed immunoreactivities for apolipoprotein E, amyloid P component, complement component C5, the terminal C5b-9 complement complex, vitronectin, and membrane cofactor protein. LC-MS/MS analyses identified 60 proteins as constituents of drusen, including a number of common components in drusen of human age-related macular degeneration (AMD), such as annexins, crystallins, immunoglobulins, and complement components. Half of the affected monkeys had single or multiple autoantibodies against 38, 40, 50, and 60 kDa retinal proteins. The reacting antigens of 38 and 40 kDa were identified as annexin II and mu

  15. Heterogeneous dimer peptide-conjugated polylysine dendrimer-Fe3O4 composite as a novel nanoscale molecular probe for early diagnosis and therapy in hepatocellular carcinoma

    Science.gov (United States)

    Shen, Jian-Min; Li, Xin-Xin; Fan, Lin-Lan; Zhou, Xing; Han, Ji-Min; Jia, Ming-Kang; Wu, Liang-Fan; Zhang, Xiao-Xue; Chen, Jing

    2017-01-01

    A novel nanoscale molecular probe is formulated in order to reduce toxicity and side effects of antitumor drug doxorubicin (DOX) in normal tissues and to enhance the detection sensitivity during early imaging diagnosis. The mechanism involves a specific targeting of Arg-Gly-Asp peptide (RGD)-GX1 heterogeneous dimer peptide-conjugated dendrigraft poly-l-lysine (DGL)–magnetic nanoparticle (MNP) composite by αvβ3-integrin/vasculature endothelium receptor-mediated synergetic effect. The physicochemical properties of the nanoprobe were characterized by using transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, dynamic light scattering (DLS), and vibrating sample magnetometer. The average diameter of the resulting MNP–DGL–RGD-GX1–DOX nanoparticles (NPs) was ~150−160 nm by DLS under simulate physiological medium. In the present experimental system, the loading amount of DOX on NPs accounted for 414.4 mg/g for MNP–DGL–RGD-GX1–DOX. The results of cytotoxicity, flow cytometry, and cellular uptake consistently indicated that the MNP–DGL–RGD-GX1–DOX NPs were inclined to target HepG2 cells in selected three kinds of cells. In vitro exploration of molecular mechanism revealed that cell apoptosis was associated with the overexpression of Fas protein and the significant activation of caspase-3. In vivo magnetic resonance imaging and biodistribution study showed that the MNP–DGL–RGD-GX1–DOX formulation had high affinity to the tumor tissue, leading to more aggregation of NPs in the tumor. In vivo antitumor efficacy research verified that MNP–DGL–RGD-GX1–DOX NPs possessed significant antitumor activity and the tumor inhibitory rate reached 78.5%. These results suggested that NPs could be promising in application to early diagnosis and therapy in hepatocellular carcinoma as a specific nanoprobe. PMID:28243083

  16. Molecular distributions and isotopic compositions of marine aerosols over the western North Atlantic: Dicarboxylic acids, ketoacids, α-dicarbonyls (glyoxal and methylglyoxal), fatty acids, sugars, and SOA tracers

    Science.gov (United States)

    Kawamura, K.; Ono, K.; Tachibana, E.; Quinn, P.; Bates, T. S.

    2013-12-01

    Marine aerosols were collected over the western North Atlantic from off the coast of Boston to Bermuda during the WACS (Western Atlantic Climate Study) cruise of R/V Ronald H. Brown in August 2012 using a high volume air sampler and pre-combusted quartz fiber filters. Aerosol filter samples (n=5) were analyzed for OC/EC, major inorganic ions, low molecular weight dicarboxylic acids and various secondary organic aerosol (SOA) tracers using carbon analyzer, ion chromatograph, GC/FID and GC/MS, respectively. Homologous series (C2-C12) of dicarboxylic acids (31-335 ng m-3) were detected with a predominance of oxalic acid. Total carbon and nitrogen and their stable isotope ratios were determined as well as stable carbon isotopic compositions of individual diacids using IRMS. Diacids were found to be the most abundant compound class followed by monoterpene-SOA tracers > isoprene-SOA tracers > sugar compounds > ketoacids > fatty alcohols > fatty acids > α-dicarbonyls > aromatic acids > n-alkanes. The concentrations of these compounds were higher in the coastal site and decreased in the open ocean. However, diacids stayed relatively high even in the remote ocean. Interestingly, contributions of oxalic acid to total aerosol carbon increased from the coast (2.3%) to the remote ocean (5.6%) during long-range atmospheric transport. Stable carbon isotopic composition of oxalic acid increased from the coast (-17.5‰) to open ocean (-12.4‰), suggesting that photochemical aging of organic aerosols occurred during the atmospheric transport over the ocean. Stable carbon isotope ratios of bulk aerosol carbon also increased from the coast near Boston to the open ocean near Bermuda.

  17. Location and origin of dust in circumstellar debris disks: A mid-infrared imaging study

    Science.gov (United States)

    Moerchen, Margaret Marie

    Approximately one third of A-type stars host dusty disks beyond the expected timescales for dissipation of the primordial disk material. The primordial dust particles may either be blown out by radiation pressure from the star or they may experience destructive collisions that generate smaller particles that are then blown out of the system. We infer from the sustained presence of the dust that it must be resupplied through collisions of already-formed planets and planetesimals or through the sublimation of cometary bodies, and systems with such dust are called debris disks. Since the 1984 discovery of the debris disk Vega, observations of circumstellar debris disks have revealed the presence planetary systems that would otherwise have remained unknown. In this work, we set out to find asymmetric structures in debris disks that would indicate a physical process sculpting the disk, such as a catastrophic planetesimal collision that generates a bright region of newly-formed dust, or a clumpy pattern comprised of dust that is trapped in an orbital resonance with a giant planet. We obtained high spatial resolution ([Special characters omitted.] 0.5") images of the thermally emitting dust in 21 debris disk candidates (some of which are now known not to be debris disks), and in most cases we did not detect any brightness asymmetry nor was the source even spatially resolved. However, among the resolved disks, we have discovered several structures that may be analogous to those in our own solar system, such as a potential asteroid belts (in z Lep) and a snow line (in HD 32297). One brightness asymmetry is seen, in the disk of 16 HR 4796A, and we have determined that the bright side of the disk is also hotter than the opposite side. We review the possible origins of such a temperature asymmetry in the dust disk, such as pericenter glow and resonant trapping, and this investigation is ongoing. More generally, two disk archetypes are observed among all of the disks in this

  18. CARMA CO(J = 2 - 1) OBSERVATIONS OF THE CIRCUMSTELLAR ENVELOPE OF BETELGEUSE

    Energy Technology Data Exchange (ETDEWEB)

    O' Gorman, Eamon; Harper, Graham M. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Brown, Joanna M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Brown, Alexander [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389 (United States); Redfield, Seth [Astronomy Department, Van Vleck Observatory, Wesleyan University, Middletown, CT 06459 (United States); Richter, Matthew J. [Physics Department, UC Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Requena-Torres, Miguel A. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany)

    2012-08-15

    We report radio interferometric observations of the {sup 12}C{sup 16}O 1.3 mm J = 2 - 1 emission line in the circumstellar envelope of the M supergiant {alpha} Ori and have detected and separated both the S1 and S2 flow components for the first time. Observations were made with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) interferometer in the C, D, and E antenna configurations. We obtain good u - v coverage (5-280 k{lambda}) by combining data from all three configurations allowing us to trace spatial scales as small as 0.''9 over a 32'' field of view. The high spectral and spatial resolution C configuration line profile shows that the inner S1 flow has slightly asymmetric outflow velocities ranging from -9.0 km s{sup -1} to +10.6 km s{sup -1} with respect to the stellar rest frame. We find little evidence for the outer S2 flow in this configuration because the majority of this emission has been spatially filtered (resolved out) by the array. We also report a SOFIA-GREAT CO(J = 12 - 11) emission line profile, which we associate with this inner higher excitation S1 flow. The outer S2 flow appears in the D and E configuration maps and its outflow velocity is found to be in good agreement with high-resolution optical spectroscopy of K I obtained at the McDonald Observatory. We image both S1 and S2 in the multi-configuration maps and see a gradual change in the angular size of the emission in the high absolute velocity maps. We assign an outer radius of 4'' to S1 and propose that S2 extends beyond CARMA's field of view (32'' at 1.3 mm) out to a radius of 17'', which is larger than recent single-dish observations have indicated. When azimuthally averaged, the intensity falloff for both flows is found to be proportional to R{sup -1}, where R is the projected radius, indicating optically thin winds with {rho}{proportional_to}R{sup -2}.

  19. The inner circumstellar disk of the UX Orionis star V1026 Scorpii

    Science.gov (United States)

    Vural, J.; Kreplin, A.; Kishimoto, M.; Weigelt, G.; Hofmann, K.-H.; Kraus, S.; Schertl, D.; Dugué, M.; Duvert, G.; Lagarde, S.; Massi, F.

    2014-04-01

    Context. The UX Ori type variables (named after the prototype of their class) are intermediate-mass pre-main sequence objects. One of the most likely causes of their variability is the obscuration of the central star by orbiting dust clouds. Aims: We investigate the structure of the circumstellar environment of the UX Ori star V1026 Sco (HD 142666) and test whether the disk inclination is large enough to explain the UX Ori variability. Methods: We observed the object in the low-resolution mode of the near-infrared interferometric VLTI/AMBER instrument and derived H- and K-band visibilities and closure phases. We modeled our AMBER observations, published Keck Interferometer observations, archival MIDI/VLTI visibilities, and the spectral energy distribution using geometric and temperature-gradient models. Results: Employing a geometric inclined-ring disk model, we find a ring radius of 0.15 ± 0.06 AU in the H band and 0.18 ± 0.06 AU in the K band. The best-fit temperature-gradient model consists of a star and two concentric, ring-shaped disks. The inner disk has a temperature of 1257+133-53 K at the inner rim and extends from 0.19 ± 0.01 AU to 0.23 ± 0.02 AU. The outer disk begins at 1.35+0.19-0.20 AU and has an inner temperature of 334+35-17 K. The derived inclination of 48.6+2.9-3.6° approximately agrees with the inclination derived with the geometric model (49 ± 5° in the K band and 50 ± 11° in the H band). The position angle of the fitted geometric and temperature-gradient models are 163 ± 9° (K band; 179 ± 17° in the H band) and 169.3+4.2-6.7°, respectively. Conclusions: The narrow width of the inner ring-shaped model disk and the disk gap might be an indication for a puffed-up inner rim shadowing outer parts of the disk. The intermediate inclination of ~50° is consistent with models of UX Ori objects where dust clouds in the inclined disk obscure the central star. Based on observations made with ESO telescopes at the La Silla Paranal Observatory

  20. Interactive effects of elevated CO2 and nitrogen deposition on fatty acid molecular and isotope composition of above- and belowground tree biomass and forest soil fractions.

    Science.gov (United States)

    Griepentrog, Marco; Eglinton, Timothy I; Hagedorn, Frank; Schmidt, Michael W I; Wiesenberg, Guido L B

    2015-01-01

    Atmospheric carbon dioxide (CO2) and reactive nitrogen (N) concentrations have been increasing due to human activities and impact the global carbon (C) cycle by affecting plant photosynthesis and decomposition processes in soil. Large amounts of C are stored in plants and soils, but the mechanisms behind the stabilization of plant- and microbial-derived organic matter (OM) in soils are still under debate and it is not clear how N deposition affects soil OM dynamics. Here, we studied the effects of 4 years of elevated (13C-depleted) CO2 and N deposition in forest ecosystems established in open-top chambers on composition and turnover of fatty acids (FAs) in plants and soils. FAs served as biomarkers for plant- and microbial-derived OM in soil density fractions. We analyzed above- and belowground plant biomass of beech and spruce trees as well as soil density fractions for the total organic C and FA molecular and isotope (δ13C) composition. FAs did not accumulate relative to total organic C in fine mineral fractions, showing that FAs are not effectively stabilized by association with soil minerals. The δ13C values of FAs in plant biomass increased under high N deposition. However, the N effect was only apparent under elevated CO2 suggesting a N limitation of the system. In soil fractions, only isotope compositions of short-chain FAs (C16+18) were affected. Fractions of 'new' (experimental-derived) FAs were calculated using isotope depletion in elevated CO2 plots and decreased from free light to fine mineral fractions. 'New' FAs were higher in short-chain compared to long-chain FAs (C20-30), indicating a faster turnover of short-chain compared to long-chain FAs. Increased N deposition did not significantly affect the quantity of 'new' FAs in soil fractions, but showed a tendency of increased amounts of 'old' (pre-experimental) C suggesting that decomposition of 'old' C is retarded by high N inputs.